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Abstract

Dongzhi ZHANG

Periodic Pattern Mining from Spatio-temporal Trajectory
Data

Rapid development in GPS tracking techniques produces a large number
of spatio-temporal trajectory data. The analysis of these data provides us
with a new opportunity to discover useful behavioural patterns.
Spatio-temporal periodic pattern mining is employed to find temporal
regularities for interesting places. Mining periodic patterns from
spatio-temporal trajectories can reveal useful, important and valuable
information about people’s regular and recurrent movements and
behaviours.

Previous studies have been proposed to extract people’s regular and
repeating movement behavior from spatio-temporal trajectories. These
previous approaches can target three following issues, (1) long individual
trajectory; (2) spatial fuzziness; and (3) temporal fuzziness. First, periodic
pattern mining is different to other pattern mining, such as association rule
ming and sequential pattern mining, periodic pattern mining requires a
very long trajectory from an individual so that the regular period can be
extracted from this long single trajectory, for example, one month or one
year period. Second, spatial fuzziness shows although a moving object can
regularly move along the similar route, it is impossible for it to appear at the
exactly same location. For instance, Bob goes to work everyday, and
although he can follow a similar path from home to his workplace, the same
location cannot be repeated across different days. Third, temporal fuzziness
shows that periodicity is complicated including partial time span and
multiple interleaving periods. In reality, the period is partial, it is highly
impossible to occur through the whole movement of the object.
Alternatively, the moving object has only a few periods, such as a daily
period for work, or yearly period for holidays.

However, it is insufficient to find effective periodic patterns considering
these three issues only. This thesis aims to develop a new framework to
extract more effective, understandable and meaningful periodic patterns by
taking more features of spatio-temporal trajectories into account.

The first feature is trajectory sequence, GPS trajectory data is temporally
ordered sequences of geolocation which can be represented as consecutive
trajectory segments, where each entry in each trajectory segment is closely
related to the previous sampled point (trajectory node) and the latter one,
rather than being isolated. Existing approaches disregard the important



viii

sequential nature of trajectory. Furthermore, they introduce both unwanted
false positive reference spots and false negative reference spots.

The second feature is spatial and temporal aspects. GPS trajectory data
can be presented as triple data (x, y, t), x and y represent longitude and
latitude respectively whilst t shows corresponding time in this location.
Obviously, spatial and temporal aspects are two key factors. Existing
methods do not consider these two aspects together in periodic pattern
mining.

Irregular time interval is the third feature of spatio-temporal trajectory.
In reality, due to weather conditions, device malfunctions, or battery issues,
the trajectory data are not always regularly sampled. Existing algorithms
cannot deal with this issue but instead require a computationally expensive
trajectory interpolation process, or it is assumed that trajectory is with
regular time interval.

The fourth feature is hierarchy of space. Hierarchy is an inherent
property of spatial data that can be expressed in different levels, such as a
country includes many states, a shopping mall is comprised of many shops.
Hierarchy of space can find more hidden and valuable periodic patterns.
Existing studies do not consider this inherent property of trajectory.

Hidden background semantic information is the final feature. Aspatial
semantic information is one of important features in spatio-temporal data,
and it is embedded into the trajectory data. If the background semantic
information is considered, more meaningful, understandable and useful
periodic patterns can be extracted. However, existing methods do not
consider the geographical information underlying trajectories.

In addition, at times we are interested in finding periodic patterns among
trajectory paths rather than trajectory nodes for different applications. This
means periodic patterns should be identified and detected against trajectory
paths rather than trajectory nodes for some applications. Existing approaches
for periodic pattern mining focus on trajectories nodes rather than paths.

To sum up, the aim of this thesis is to investigate solutions to these
problems in periodic pattern mining in order to extract more meaningful,
understandable periodic patterns. Each of three chapters addresses a
different problem and then proposes adequate solutions to problems
currently not addressed in existing studies. Finally, this thesis proposes a
new framework to address all problems.

First, we investigated a path-based solution which can target trajectory
sequence and spatio-temporal aspects. We proposed an algorithm called
Traclus (spatio-temporal) which can take spatial and temporal aspects into
account at the same time instead of only considering spatial aspect. The
result indicated our method produced more effective periodic patterns
based on trajectory paths than existing node-based methods using two
real-world trajectories. In order to consider hierarchy of space, we
investigated existing hierarchical clustering approaches to obtain
hierarchical reference spots (trajectory paths) for periodic pattern mining.
HDBSCAN is an incremental version of DBSCAN which is able to handle
clusters with different densities to generate a hierarchical clustering result
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using the single-linkage method, and then it automatically extracts clusters
from a hierarchical tree. Thus, we modified traditional clustering method
DBSCAN in Traclus (spatio-temporal) to HDBSCAN for extraction of
hierarchical reference spots. The result is convincing, and reveals more
periodic patterns than those of existing methods.

Second, we introduced a stop/move method to annotate each
spatio-temporal entry with a semantic label, such as restaurant, university
and hospital. This method can enrich a trajectory with background semantic
information so that we can easily infer people’s repeating behaviors. In
addition, existing methods use interpolation to make trajectory regular and
then apply Fourier transform and autocorrelation to automatically detect
period for each reference spot. An increasing number of trajectory nodes
leads to an exponential increase of running time. Thus, we employed
Lomb-Scargle periodogram to detect period for each reference spot based on
raw trajectory without requiring any interpolation method. The results
showed our method outperformed existing approaches on effectiveness and
efficiency based on two real datasets. For hierarchical aspect, we extended
previous work to find hierarchical semantic periodic patterns by applying
HDBSCAN. The results were promising.

Third, we apply our methodology to a case study, which reveals many
interesting medical periodic patterns. These patterns can effectively explore
human movement behaviors for positive medical outcomes.

To sum up, this research proposed a new framework to gradually target
the problems that existing methods cannot handle. These include: how to
consider trajectory sequence, how to consider spatial temporal aspects
together, how to deal with trajectory with irregular time interval, how to
consider hierarchy of space and how to extract semantic information behind
trajectory. After addressing all these problems, the experimental results
demonstrate that our method can find more understandable, meaningful
and effective periodic patterns than existing approaches.
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Chapter 1

Introduction

In this chapter, we introduce the background of spatio-temporal trajectory data
mining, motivation of our research, research content, structure and framework of
this thesis.

1.1 Background

Collecting large-scale spatio-temporal trajectory data of moving objects has
become quicker and easier due to the rapid development of location
acquisition technologies such as GPS (Global Position System), RFID (Radio
Frequency IDentification), GSM (Global System for Mobile
Communications networks), geo-social network and Wi-Fi (Li et al., 2004;
Hoyoung Jeung, 2014; Spinsanti et al., 2013). With the help of these
techniques, various moving objects like vehicles, animals, human beings,
and natural phenomena (such as cyclones, tornados and ocean currents) can
be tracked. A spatio-temporal trajectory from a moving object is defined as
a series of continuously sampled points (trajectory nodes) through which a
moving object passes. The trajectory data can be represented as a temporal
sequence of geographical locations. Figure 1.1 shows a spatio-temporal
trajectory {(l0, t0), (l1, t1), (l2, t2), (l3, t3), (l4, t4), (l5, t5)}, where the blue solid
circles represent sampled points, li is the geographical location for each
sampled point, ti is the time at sampled point, the blue line segments with
arrows present the trace, and the arrow shows the direction of trace. The
most common spatio-temporal trajectory data is GPS data, which can be
generated from GPS-equipped devices such as smartphones, vehicles and
GPS collars. GPS data are temporally ordered sequences of geolocation
which are recorded by a built-in GPS device which is carried by a moving
object. This thesis explores GPS trajectory data, which is generally classified
according to its different applications:

1. Movement of people: people record their travels with smartphones.
For instance, people share travel experiences with others (Zheng et al.,
2011); athletes record their performance for analysis (Gudmundsson
and Horton, 2017); Flickr, an online photo management and sharing
application, attaches a location and timestamp to each photo (Lee,
2014);
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FIGURE 1.1: An example of spatio-temporal trajectory.

2. Movement of animals: GPS tracking collars are utilised to record
animal’ trajectories in the study of animal’ migration and
behaviors (Lee et al., 2007; Li et al., 2010a; Li et al., 2012; Bar-David,
2009);

3. Movement of vehicles: private and public transport are equipped with
a GPS sensor that uploads real-time locations with a specific frequency
for efficient traffic analysis (Gu et al., 2017; Yuan et al., 2013);

4. Movement of natural phenomena: Trajectories of some natural
phenomena (such as cyclones, tornados and ocean currents) are
collected to capture changes in climate. This enables people to better
predict and manage natural disasters and to preserve the natural
environment (Osuri, 2013; Mumby, 2011; Scott, 2017; Ashley, 2006).

Such a large number of long trajectories provides a new opportunity to
discover meaningful, repetitive, and regular information and knowledge
from the spatio-temporal context. However, this information cannot be
directly extracted using traditional approaches. Periodic Pattern Mining
(PPM) is a powerful technique that intelligently and automatically extracts
regular and repetitive movement information from the vast amounts of
spatio-temporal trajectory data (Cao et al., 2007; Li et al., 2012).

1.2 Motivation and Significance

A voluminous number of long movement trajectory data has been collected
from various types of GPS-enabled tracking devices, such as built-in GPS
mobile phones and PDAs, and sensors attached to animals. Spatio-temporal
trajectory patterns can capture the movement patterns of objects which can
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plot the movements of objects in the study of their behaviours (Li et al., 2012;
Zheng, 2015).

Periodicity is one of the common phenomena in moving objects. For
instance, people go to work on weekdays and go shopping on the weekend,
while animals migrate from one place to another. Both exhibit a certain
periodicity. Thus, periodic patterns reveal repeated activities at regular
time-intervals for a certain location. The mining of periodic patterns from
spatio-temporal trajectories has attracted increased attention recently (Li
et al., 2012). There is an increasing demand for its application for better
understanding of the behaviours of moving objects (Cao et al., 2007; Li et al.,
2012). For instance, knowledge of the periodic patterns exhibited by animals
is crucial to their conservation. Likewise, the movements of motorists can
assist congestion monitoring and traffic control. Furthermore, periodic
patterns can provide valuable information to assist with
decision-making (Li et al., 2010a; Han et al., 2010; Cao et al., 2007; L. Zhu
et al., 2012; Jindal et al., 2013). Figure 1.2 shows an example of three
interesting periodic patterns. John demonstrates three periodic patterns;
periodic pattern 1→2 shows that he usually goes to university 2© from home
1© every day. Periodic pattern 2→3 displays that he goes to Smithfield shops
3© after school every week, and periodic pattern 1→4 demonstrates that he

goes to Trinity Beach 4© from home 1© on the weekend. This particular
example shows how these periodic patterns can be used to analyse regular
behaviours of moving objects. In addition, periodic patterns can also be
used for compression of movement data (Cao et al., 2007; Mamoulis et al.,
2004) and future movement prediction (Jeung et al., 2008; Li et al., 2012).

FIGURE 1.2: An example of periodic patterns.

In traditional periodic pattern mining, many studies have been conducted
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in the analysis of different types of datasets to obtain periodic patterns. These
studies cover the following contexts:

• periodic pattern mining in event/symbol sequence data (Cao et al.,
2004; Dong, 2009);

• periodic pattern mining in time series data (Jiawei Han, 1999; Aref et
al., 2004; Yang et al., 2002);

• periodic pattern mining in social network data (Lahiri and Berger-Wolf,
2010; Lahiri and Berger-Wolf, 2008).

Approaches to these datasets cannot be directly applied to locating
periodic patterns for spatio-temporal trajectories due to the unique
characteristics of spatio-temporal trajectories: the uncertainty of
spatio-temporal trajectories including locational (spatial) fuzziness,
temporal fuzziness, the hierarchical nature of spatio-temporal phenomena,
and irregularities of time intervals.

Also, existing spatio-temporal periodic pattern mining approaches suffer
from some drawbacks (Cao et al., 2007; Mamoulis et al., 2004; Li et al., 2010a;
Jindal et al., 2013; Li et al., 2012; Li et al., 2011):

• cannot consider sequence of trajectory;
Figure 1.3 shows a spatio-temporal trajectory. This is a temporal
sequence where each trajectory node is related to the previous one or
the next one. For example, trajectory node (x1, y1, t1) is related to
trajectory node (x2, y2, t2). Existing periodic pattern mining
approaches failed to consider the sequence of trajectory.

FIGURE 1.3: An example of sequence of trajectory.

• cannot deal with spatio-temporal trajectories with irregular time
intervals;
Figure 1.4(a) illustrates a spatio-temporal trajectory which is from
Figure 1.4(b). Obviously, time intervals between two trajectory nodes
are different. Existing periodic pattern mining approaches failed to
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(a) (b)

FIGURE 1.4: An example of irregular trajectory.

extract periodic patterns from irregular spatio-temporal trajectory
data.

• cannot consider spatial and temporal aspects at the same time;
In Figure 1.5(a), spatio-temporal trajectory data are composed of triple
data which include geographical location and timestamp (In
Figure 1.5(b), the columns in red ellipse represent the geographical
locations and timestamps). Spatial and temporal aspects are inherent
properties for spatio-temporal trajectory data. Existing approaches to
periodic pattern mining failed to consider spatio-temporal aspects at
the same time in the process of periodic pattern mining.

(a) (b)

FIGURE 1.5: An example of spatial and temporal aspects.

• cannot take hierarchy of space into account;
Spatial hierarchy is inherent in spatial data. For instance, in Figure 1.6,
a moving object goes to James Cook University from home, and then
goes to Smithfield Shopping Centre, and finally he/she returns home.
Existing periodic pattern mining approaches only consider the
single-level hierarchy. These approaches found periodic patterns
between home, James Cook University and Smithfield shopping
centre, but failed to find hierarchical periodic patterns between
Smithfield area and Trinity Beach area.

• cannot consider background semantic information of spatio-temporal
trajectories;
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FIGURE 1.6: An example of hierarchy of space.

Background semantic information is very useful to infer people’s
purpose in moving to a particular place. Especially for periodic
pattern mining, it is vital to know the aim of people’s repeating and
regular movement behaviors. For instance, In Figure 1.7(a), a moving
object is moving around the space, but we do not know where he is
going, when he is going and what is his purpose. In Figure 1.7(b), if
we add a small amount of semantic background information, we can
find he is moving around in the Trinity Beach area. If we add further
semantic background information in Figure 1.7(c), we can see he goes
to a gym, his workplace, his church, a shopping centre and a
playground. Finally, we can find some periodic patterns, such as in
Figure 1.7 (d), where he goes to his workplace at 9 am and then returns
at 5 pm. Existing approaches cannot find these types of semantic
periodic patterns.

• Existing periodic pattern approaches focus on trajectory nodes rather
than paths;
Sometimes, we are interested in finding some periodic patterns for
trajectory paths based on particular needs, such as road planning.
However, existing approaches focus on obtaining periodic patterns for
trajectory nodes while ignoring trajectory paths. For instance, In
Figure 1.8, existing methods can find the reference spots in blue circle
areas but fail to find trajectory paths in red rectangle areas.

These limitations and drawbacks provide incentive to developing new
approaches to periodic pattern mining from spatio-temporal trajectories.
These six drawbacks of existing models are discussed in detail in Chapter 2
and Chapter 3
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(a) (b)

(c) (d)

FIGURE 1.7: An example of semantic information.

FIGURE 1.8: An example of trajectory paths.

1.3 Research Aim

As previously noted, related work on periodic pattern mining can be
categorised into two fields of research: traditional periodic pattern mining
and spatio-temporal trajectory periodic pattern mining. The former focuses
on traditional datasets, including event/sequence data, time series data and
social network data. The latter aims at spatio-temporal trajectory data. This
thesis explores this latter research, analyses related studies and develops a
new systematic framework to scope six aims, which are:

1. To develop an efficient and effective periodic pattern mining for
irregular spatio-temporal trajectories without expensive interpolation
process;

2. To develop an efficient and effective periodic pattern mining
considering the sequence of trajectory;

3. To develop an efficient and effective periodic pattern mining
considering spatiality and temporality at the same time;
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4. To develop an efficient and effective periodic pattern mining
considering the hierarchy of space ;

5. To develop an efficient and effective periodic pattern mining
considering semantic background information;

6. To develop an efficient and effective periodic pattern mining for
clustered both trajectory nodes and clustered trajectory paths.

To achieve these six research aims, we propose six hypotheses:

1. A periodic pattern mining for irregularly sampled spatio-temporal
trajectories without expensive interpolation process is more efficient
than traditional periodic pattern mining approaches whilst capable of
detecting effective periodic patterns;

2. Considering the sequence of trajectory is able to avoid unwanted false
positive reference spots, and also false negative reference spots;

3. Considering spatiality and temporality at the same time in periodic
pattern mining will improve the effectiveness of periodic patterns
from spatio-temporal trajectories;

4. Considering the hierarchical nature of space in periodic pattern mining
will improve the effectiveness of patterns, and also avoid false positive
and false negative reference spots;

5. Considering background semantic information in periodic pattern
mining will generate more interpretable and effective periodic
patterns;

6. Finding periodic patterns for clustered trajectory paths reveals
interesting periodic patterns that cannot be detected by traditional
trajectory node focused periodic pattern mining.

Based on these six hypotheses, there are six questions that need to be
answered:

1. how can we develop an efficient and effective periodic pattern mining
for irregular spatio-temporal trajectories without an expensive
interpolation process?

2. how can we develop an efficient and effective periodic pattern mining
considering the sequence of trajectory?

3. how can we develop an efficient and effective periodic pattern mining
considering spatiality and temporality at the same time?

4. how can we develop an efficient and effective periodic pattern mining
considering the hierarchy of space?
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5. how can we develop an efficient and effective periodic pattern mining
considering semantic background information?

6. how can we develop an efficient and effective periodic pattern mining
for clustered trajectory paths along with trajectory nodes?

Figure 1.9 briefly illustrates the overall procedure of the thesis. More
detailed information is described in Chapter 3. This research mainly focuses
on periodic pattern mining from spatio-temporal trajectories. There are two
approaches, one is a path-based approach, the other is a node-based
approach. The former focuses on finding periodic patterns for paths, the
latter pays attention to obtaining periodic patterns for semantic reference
spots. Both approaches also consider the hierarchy of space to find periodic
patterns for hierarchical paths and hierarchical semantic reference spots. In
addition, in the presence of background semantic information, (human’
behaviours are usually related to specific locations) we need to attach
semantic information database to this research to consider aspatial
background semantic information in periodic pattern mining. We will
interpret this specifically in Chapter 3.

FIGURE 1.9: Overall research of this thesis.

1.4 Contributions

This research makes contributions to the literature of periodic pattern
mining to analyse an individual moving object’s regular and repeating
behaviors based on GPS data. More importantly, this research takes aspatial
semantic information and the hierarchy of space into account for periodic
pattern mining. The benefit is that more hidden personal movement
patterns and behaviours can be inferred. Table 1.1 shows a summary of
contributions in this thesis.
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TABLE 1.1: Contributions.

Chapter Publications Contributions
2 Dongzhi Zhang,

Kyungmi Lee and Ickjai
Lee (2015), “Periodic
Pattern Mining
for Spatiotemporal
trajectories: A Survey”,
Proceedings of the
2015 International
Conference on
Intelligent System
and Knowledge
Engineering, pp. 306-
313.

• to propose a survey for the breath and depth analysis
of existing spatio-temporal trajectory periodic pattern
mining;
• to identify a list of unique characteristics of spatio-
temporal trajectories;

4 Dongzhi Zhang,
Kyungmi Lee and
Ickjai Lee (2018),
“Hierarchical Trajectory
Clustering for Spatio-
temporal Periodic
Pattern Mining”,
Expert Systems with
Applications, 92: 1-11.

• to propose a path-based trajectory clustering that takes
into account the sequence of trajectory and additional
spatio-temporal semantic information in order to
produce context-sensitive reference spots (trajectory
paths);

• to detect hierarchical reference spots (trajectory
paths) in order to reduce false positive reference spots
(trajectory paths);

5 Dongzhi Zhang,
Kyungmi Lee and Ickjai
Lee (2018), “Semantic
periodic pattern mining
from spatio-temporal
trajectories”,
Information Sciences
(submitted)

Dongzhi Zhang,
Kyungmi Lee and Ickjai
Lee (2018), “Mining
Hierarchical semantic
periodic patterns from
GPS-collected spatio-
temporal trajectories”,
Expert Systems with
Applications (Under
revision)

• to propose a novel trajectory representation method
to describe a spatio-temporal trajectory as a sequence
of semantic episodes that match background aspatial
semantic information;

• to discover spatially, temporally and semantically
aggregated concentrations as reference spots for periodic
pattern mining;

• to detect regular time periods for each spatio-temporal
concentration from irregular trajectories;

• to consider all spatiality, temporality, semantics,
and hierarchy together in detecting reference spots.

6 Dongzhi Zhang,
Kyungmi Lee and Ickjai
Lee (2018), “Mining
Medical Periodic
Patterns form spatio-
temporal Trajectories”,
Proceedings of the
7th International
Conference on Health
Information Science,
Springer, Lecture Notes
in Computer Science.
Accepted and in press

Dongzhi Zhang,
Kyungmi Lee and
Ickjai Lee (2018),
"Multi-level Medical
Periodic Patterns from
Human Movement
Behaviors”, Journal
of Health Information
Science and Systems
(Submitted)

• to propose a medical periodic pattern mining
framework from spatio-temporal trajectories;

• to utilise cutting-edge spatio-temporal periodic
pattern mining to identify a set of trajectories (possibly
patients and health professionals) exhibiting periodic
visits to medical centres;

• to find medical periodic patterns from spatio-temporal
trajectories;

• to propose a multi-level (hierarchical) medical periodic
pattern mining framework from spatio-temporal
trajectories;

• to utilise cutting-edge spatio-temporal multi-level
periodic pattern mining to identify a set of trajectories
(possibly patients and health professionals) exhibiting
periodic visits to medical centres;

• to find single-level and multi-level medical periodic
patterns from spatio-temporal trajectories;
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The innovation of this research includes: 1©we first detect sequentially,
spatially, temporally, semantically and hierarchically aggregated
concentrations from trajectories with irregular time intervals using aspatial
semantic information to find periodic patterns to reveal people’s behaviors
based on two effective approaches: path-based approach and node-based
approach, 2©According to moving object’s periodic behaviors, it is possible
to infer more hidden personal movement patterns, behaviors and
information. For instance, a moving object has a regular movement between
two universities, thus we can infer that he/she is a student or teacher.

1.5 Structure of Thesis

• Chapter 2 analyses related studies including traditional periodic
pattern mining and spatio-temporal data mining. Traditional periodic
pattern mining approaches mainly focus on event/sequence data, time
series data and social network data. Spatio-temporal data mining
mainly includes association rule mining, sequential pattern mining
and periodic pattern mining. We analyse these literatures and identify
several research gaps in existing studies in periodic pattern mining.

• Chapter 3 describes the overall framework of this thesis. This chapter
briefly interprets the overall procedure, significant definitions and
function of each component in this framework.

• Chapter 4 proposes a new path-based trajectory clustering algorithm
called Traclus (ST) that takes both the sequence of trajectory and the
semantic spatio-temporal information such as direction, speed, and
time into account. This algorithm is comprised of two phases:
partitioning and grouping. In the first phase, it partitions a trajectory
into a few line segments through characteristic points at which the
moving object makes a sharp turn. In the second phase, it extends
traditional density-based points clustering DBSCAN to group these
line segments. In order to overcome the non-hierarchical nature of
DBSCAN, this approach utilises HDBSCAN, which is a hierarchical
version of DBSCAN capable of handling clusters with different
densities, while preserving the scalability of DBSCAN. HDBSCAN is
able to generate hierarchical clusters using the single-linkage and then
automatically extracts clusters from a hierarchical tree. In single-level,
the results indicate our approaches can generate more reference spots
(trajectory paths) and periodic patterns than existing approaches. In
multi-level, more hidden and meaningful periodic patterns can be
found with hierarchical reference spots (trajectory paths).

• Chapter 5 demonstrates the study of hierarchical semantic periodic
pattern mining from spatio-temporal trajectories. This node-based
approach utilises semantic information extracted from background
maps, such as a restaurant, a university and a gym to identify spatially
and temporally aggregated dense regions from irregularly sampled
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trajectories, and then applies Hidden Markov Model (HMM) to
identify semantically meaningful stops (places where an object or a
user stays more than a user-specified threshold, thereby indicating the
object is engaged in a meaningful behaviour). Next, it applies
Lomb-Scargle periodogram to find periods for each semantically
meaningful stop, and finally mine periodic patterns for each
stop-point (previous methods employed Fourier transform for period
detection). One limitation of Fourier transform is the use of evenly
sampled points as input. It is for this reason that previous approaches
use interpolation to make input trajectory regular, or assume that the
trajectory is with regular time intervals. In addition, the hierarchy of
space is also considered in the process of periodic pattern mining.
Experimental results show our method can obtain periodic patterns
with higher effectiveness and efficiency than previous approaches, and
it is possible to infer more important and meaningful information
through the moving object’s behaviours and semantic information. As
with Chapter 4, more hidden and meaningful periodic patterns can be
extracted based on multi-level reference spots when compared to
single-level counterparts.

• Chapter 6 is is a case study, which shows periodic pattern mining from
spatio-temporal trajectories when applied to a health context.

• Chapter 7 summaries the content and contributions in this thesis, and
briefly describes the potential future work that can be further explored
based on this thesis.

1.6 Framework

This section proposes a new framework for PPM from spatio-temporal
trajectories. Movement trajectories include valuable and repeating
information and patterns (Gudmundsson et al., 2017; Han et al., 2010).
Periodic patterns can reveal this useful and important information.
However, existing studies are not sufficiently adequate to mine periodic
patterns using real spatio-temporal trajectory data. This thesis proposes a
new framework to obtain more effective and efficient periodic patterns from
spatio-temporal trajectories.

Figure 1.10 illustrates the overall framework proposed in this thesis. Our
framework is mainly divided into two approaches, a path-based approach
and a node-based approach. Both approaches use raw trajectory data as
input, and then the path-based approach considers all features of trajectory
except irregularity and aspatial semantics to find usual periodic patterns
and hierarchical periodic patterns. The node-based approach considers all
features of trajectory except path to find periodic patterns and hierarchical
periodic patterns. Both approaches are applied to overcome the drawbacks
of existing studies but focus on different results. One is for periodic patterns
among trajectory paths while the other focuses on periodic patterns among
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semantic reference spots. As a result, more effective periodic patterns are
obtained, based on trajectory paths and semantic reference spots. In
addition, a semantic database is attached to the node-based approach to
mine semantic periodic patterns for human behaviors.

FIGURE 1.10: Overall framework of our proposed method.

According to the literature, there are nine key factors that need to be
considered in this research as shown in Table 2.5. Previous studies have
covered three items: ( 1© long trajectory; 2© spatial fuzziness; 3© temporal
fuzziness). Our framework is also to consider further six characteristics: 4©
sequence; 5© hierarchy; 6© spatio-temporal; 7© path; 8© irregularity; 9©
aspatial semantics.
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Chapter 2

Literature Review

This chapter investigates previous studies for PPM. Section 2.1 briefly provides
definitions of the different categories of periodic patterns. Section 2.2 introduces
existing studies for traditional PPM, including PPM in event/sequence data, time
series data and social network data. In Section 2.3, we describe related works in
spatio-temporal trajectory data mining, which mainly involve ARM, sequential
pattern mining and in particular, discuss PPM. Section 2.4 summaries the depth
review of literature which is related to our research, and proposes objectives and
tasks of our research.

2.1 Periodic Pattern

A periodic pattern is a pattern that is defined as repeating behaviors at a
certain location (spatial property) with regular time interval (time property)
for objects. Three types of periodic patterns can be detected (Sirisha et al.,
2013): (1) partial vs. full; (2) perfect vs. imperfect; (3) synchronous vs.
asynchronous.

2.1.1 Partial vs. Full

A full periodic pattern is a pattern where every element in every position in
the pattern exhibits the periodicity, such as, the sequence:

ABABBCAB.

AB is a full periodic pattern with a period 2. Partial periodic pattern is a
pattern where one or more elements do not present the periodicity, for
instance, the sequence:

ABDABBABD.

AB* is a partial periodic pattern with a period 3 because the third
element does not exhibit periodicity. In spatio-temporal trajectory data, a
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full periodic pattern is ideal but it is more time consuming or impossible
with spatio-temporal data due to the uncertainty embedded in trajectories.
Therefore, partial PPM is more suited to spatio-temporal trajectories.

2.1.2 Perfect vs. Imperfect

A sequence is said to have perfect periodicity, if a pattern p with a period t
starts with the first occurrence of p until the end of the sequence, and every
next p occupies t positions away from the current occurrence p.

BCEBCFBCA.

BC* is a perfect periodic pattern with a period 3. It occurs 3 times from
the first occurrence to the end of the sequence. Imperfect periodicity means
that the pattern deviates from the next expected occurrence.

ABCHDJABD.

Given the above example, AB* is an imperfect periodic pattern; the
pattern is missed in the second expected position. A perfect periodic pattern
is also almost impossible (highly unlikely) with spatio-temporal data due to
the trajectory uncertainty. Thus, imperfect PPM is more suited to
spatio-temporal trajectories.

2.1.3 Synchronous vs. Asynchronous

A pattern that occurs periodically without any misalignment or with no
intervention of random noise is called a synchronous periodic pattern.

ABCADCBDCBAC.

**C is a synchronous periodic pattern with a period 3. Asynchronous
periodic patterns mean the patterns might be misaligned due to the
intervention of random noise. The misalignment is accepted only up to a
certain threshold value. In the sequence,

ABCDBCCBABC.
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*BC is an asynchronous periodic pattern due to the insertion of random
noise events CB between the second and third occurrences of the pattern.
Asynchronous PPM can deal with the shift and distortion due to the presence
of random noises in the periodic sequence.

In conclusion, for spatio-temporal trajectories, periodic patterns are
usually partial, imperfect and asynchronous, due to the mixture of periodic
activities and non-periodic activities in real world data.

2.2 Traditional PPM

In existing work, traditional PPM can be divided into three types:
one-dimensional event/sequence, two-dimensional time series or spatial
data, and social network data.

2.2.1 One-dimensional Event/Sequence PPM

A sequence is an ordered list of elements from any application domain. The
order of elements in a sequence might be implied by time order, such as
physical positions in DNA, protein sequences, or stock market data (Dong,
2009). If the order of elements is implied by time order, the sequences can be
called event sequences.

One-dimensional event PPM is used to find periodic patterns from a set
of sequences (symbols or events). Existing techniques for PPM include
Apriori (Agrawal and Srikant, 1994) and Max-subpattern Hit Set (Cao et al.,
2004). In addition, it is worth noting that period discovery is a key factor for
one-dimensional PPM. The more precise period, the more accurate periodic
patterns. The main works on period detection are fast Fourier transform
and autocorrelation (Kargupta, 2005). Automatic period detection can
discover as many periods as possible, but false and redundant periods
might occur. The advantage of user-specific periods is that specific periods
are obtained for mining periodic patterns, but other periods will be
discarded, possibly leading to the loss of some patterns.

To sum up, in Table 2.1, it can be concluded that these discrete symbols
are explicitly given with regular and constant time intervals in
one-dimensional PPM, but one-dimensional PPM methods cannot be
directly applied to two, even three-dimensional data due to the additional
information with two/three-dimensional data.
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TABLE 2.1: Symbolic PPM for trajectory.

Space Time Automatic
Detection
of Time
Windows

(Agrawal and Srikant, 1994; Cao et
al., 2004; Huang and Chang, 2004;
Yang et al., 2013)

No Regular
time
interval

No

(Kargupta, 2005) No Regular
time
interval

Yes

2.2.2 Two-dimensional PPM

Two-dimensional PPM focuses on mining two-dimensional data that
describes anything consisting of two kinds of properties. Similar to
one-dimensional PPM, it is assumed that the data is collected at regular and
constant time intervals. We will discuss two-dimensional time-series and
spatial PPM in this section.

Time Series PPM

Time series data captures the change of data value over time, such as power
consumption data in energy companies, stock prices in the financial market,
and event logs in computer networks. Research in time series data mining
has concentrated on discovering different types of patterns: sequential
patterns (Agrawal and Srikant, 1995; Srikant and Agrawal, 1995; Garofalakis
et al., 1999), temporal patterns (Bettini et al., 1998), periodic association
rules (Özden et al., 1998), partial periodic patterns (Jiawei Han, 1999; Aref
et al., 2004; Yang et al., 2002), and surprising patterns (Keogh et al., 2002).

Most early PPM studies belong to this category; one example is shown in
Figure 2.1. In general, the data are collected at regular and constant time
intervals. X-axis is for time and Y -axis is for values. By connecting
contiguous (adjacent) neighbors, we can get a trajectory (Figure 2.1).

Jiawei Han (1999) developed an algorithm called Max-Subpattern Hit
Set which creates a max subpattern tree to mine periodic patterns by two
scans of the time series database. Aref et al. (2004) extended the
Max-Subpattern Hit Set to develop an online incremental version to allow
users to modify the threshold and mine periodic patterns in the presence of
insertion and deletion updates in the database. Chen et al. (2011)
discovered periodic patterns with a given period using the encoded period
segments and then applied Max-Subpattern Hit Set to mine periodic
patterns. Some variations of periodic patterns are also represented. L. Zhu
et al. (2012) worked on mining approximate periodic patterns in
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FIGURE 2.1: Change of stock price via regular time intervals (source from:
http://static.businessinsider.com/image/4c5862a77f8b9af546280000/image.jpg).

hydrological time series. Another investigation was conducted by Zhang
et al. (2007) to find periodic patterns with gap requirements from DNA.
Sheng et al. (2006) proposed a method to mine dense periodic patterns in
the time series database. Yang et al. (2000), Huang and Chang (2005), Yeh
and Lin (2009), and Maqbool et al. (2006) developed algorithms to mine
asynchronous periodic patterns. Yang et al. (2001) employed a method to
mine surprising periodic patterns. Nishi et al. (2013) proposed an algorithm
which uses an apriori-based sequential mining approach to mine flexible
periodic pattern. This method has similar drawbacks to apriori-based
sequential mining appraoches, such as complexities in mining long
sequences. To overcome the drawbacks identified by Nishi et al. (2013),
Chanda et al. (2015) proposed an approach to generate flexible periodic
patterns which uses a suffix tree to deal with a variable starting position
without a mass of redundant computation. Chanda et al. (2017) proposed a
weighted PPM algorithm for time series databases.

All existing time series PPM algorithms map two-dimensional data into
one-dimensional sequences. Then, one-dimensional PPM is applied to
handle the transformed one-dimensional sequences. This is necessary
because two-dimensional PPM is designed to handle lower-dimensional
data, but not to analyse higher-dimensional data. Therefore, these
two-dimensional algorithms cannot be directly applied to
three-dimensional spatio-temporal trajectory data; instead, they must be
extended/modified to handle additional dimensional information in
three-dimensional data in order to not to miss hidden patterns. Table 2.2
shows related studies in time series PPM, and demonstrates these
algorithms are not suitable for mining spatio-temporal trajectory data, due
to the absence of spatio-temporal properties. L. Zhu et al. (2012), Zhang
et al. (2007), Sheng et al. (2006), Yang et al. (2000), Huang and Chang (2005),
Yeh and Lin (2009), Maqbool et al. (2006), Yang et al. (2001), Nishi et al.
(2013), Chanda et al. (2015), and Chanda et al. (2017) all use automatic
period detection algorithms to discover periods.
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TABLE 2.2: Time series PPM for trajectory.

Space Time Automatic
Detection
of Time
Windows

(Jiawei Han, 1999; Aref et al., 2004;
Chen et al., 2011)

No Regular
time
interval

No

(L. Zhu et al., 2012; Zhang et al., 2007;
Sheng et al., 2006; Yang et al., 2000;
Huang and Chang, 2005; Yeh and Lin,
2009; Maqbool et al., 2006; Yang et al.,
2001; Nishi et al., 2013; Chanda et al.,
2015; Chanda et al., 2017)

No Regular
time
interval

Yes

Spatial PPM

Spatial data involves the data with spatial distributions, such as spatial
precipitation patterns, vegetation patterns in selected basins, aquifer
properties and change of temperature in different areas (Figure 2.2). Major
studies include those by Han et al. (1998) who integrated data cube,
bit-mapping and Apriori (Agrawal and Srikant, 1994) to mine
segment-wise periodicity with fixed length period. In He et al. (2008), they
proposed a multiple partial PPM algorithm in parallel computing
environments that detects all valid periods to reduce the cost of
communication among processors, while avoiding the generation of
redundant patterns. Figure 2.2 shows one example of spatial PPM.

Although spatial properties are considered in spatial PPM, the time
element is not embedded in spatial data. The X-axis represents locations,
while the Y -axis shows values. Time is not explicit, but a regular or constant
time interval is implicitly included (e.g. every second, every minute, every
hour, etc.). Table 2.3 shows a summary of past studies in spatial PPM.
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FIGURE 2.2: Sunshine and clear days by capital city in Australia (source from:
http://www.aussiemove.com/aus/images/sunshine.png).

TABLE 2.3: Spatial PPM for trajectories.

Space Time Automatic
Detection
of Time
Windows

(Yang et al., 2001) Yes Regular
time
interval

No

(He et al., 2008) Yes Regular
time
interval

Yes

Social Network PPM

PPM in dynamic social networks has been becoming very interesting
research nowadays. Analysis of dynamic social networks through PPM was
proposed by (Lahiri and Berger-Wolf, 2010; Lahiri and Berger-Wolf, 2008).
They proposed a single pass PSEMiner algorithm which uses sub-graphs to
capture periodic patterns based on a pattern-tree in polynomial time.
Traversal of a pattern tree and creation of many unwanted tree nodes are
very time consuming. Apostolico et al. (2011) proposed the ListMiner
algorithm to speed up the PSEMiner algorithm by solving unwanted tree
node creation. This approach is faster than PSEMiner because it requires
traversing of a smaller number of list nodes. However the number of list
nodes is still large, and the same graph is stored at different times. This
redundant information utilizes substantial memory and time. Halder et al.
(2013) proposed an algorithm called SPBMiner which is faster than both
PSEMiner and ListMiner. This method stores all entries only once and than
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finds common sub patterns only once as well. However, a vast number of
redundant periodic information is generated, which results in high memory
consumption. Halder et al. (2017) proposed a sub graph-based algorithm
called SPP miner for PPM. It can also be used for polynomial graph mining.
The advantage of this method is that the memory consumption is more
efficient compared to other algorithms.

2.2.3 Three-dimensional PPM

Three-dimensional PPM focuses on mining spatio-temporal trajectory data.
Obviously, one-dimensional and two-dimensional PPM approaches cannot
be used directly for spatio-temporal trajectory PPM. This will be discussed
in Section 2.3.3.

2.3 Spatio-temporal Trajectory Data Mining

Three types of spatio-temporal trajectory data mining techniques show
relationships between trajectories: Association Rule Mining (ARM);
Sequential Pattern Mining (SPM); and PPM.

2.3.1 Spatio-temporal Trajectory ARM

Association rules were first used for supermarket basket data. ARM seeks to
discover positive frequent associations among transactions encoded within
a database (Agrawal et al., 1993). The aim of ARM is to identify all the
strong association rules among itemsets in a given database. The support
and confidence of strong association rules must satisfy user-specified
minimum support and minimum confidence. ARM finds associations, but
fails to find causal effects, sequential patterns and periodic patterns. ARM
can be considered for mining trajectory data using Apriori (Agrawal and
Srikant, 1994) and FP-tree (Han et al., 2004). For more details about these
algorithms, please refer to (Tanbeer et al., 2009; Lee et al., 2009). In addition,
Association rules can also be used for location prediction (Verhein and
Chawla, 2006; Tao et al., 2004; Yavas et al., 2005).

ARM from spatio-temporal trajectories demonstrates how objects move
between places over time (Verhein and Chawla, 2006). For instance, a group
of people moves from place pi to place pj over time period [ti, tj] whilst
these moving objects satisfy conditions q, this can be presented as the
following:

(pi, ti, q)→ (pj , tj)[s%, c%],
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where s and c are support and confidence of the rule, respectively. The
support is the number of moving objects that move from place pi to place pj
during time period [ti, tj].

2.3.2 Spatio-Temporal Trajectory SPM

SPM was first proposed by Garofalakis et al. (1999), and since then there
have been many studies to detect sequential patterns in time series
data (Agrawal and Srikant, 1995; Srikant and Agrawal, 1995; Garofalakis
et al., 1999; Bermingham and Lee, 2014). SPM is to detect sequential patterns
for a given sequence database satisfying the minimum support
threshold (Han et al., 2005). The major algorithms include Generalized
Sequential Patterns (GSP) (Srikant and Agrawal, 1995), SPADE (Zaki, 2001),
and PrefixSpan (Pei et al., 2001). PrefixSpan is reported to be better than
GSP and SPADE (Pei et al., 2004).

Traditional sequential pattern discovery techniques are not readily
applicable to SPM in spatio-temporal data. SPM in spatio-temporal
trajectory data is more complicated than traditional SPM due to the mixture
of temporal and spatial relations. Spatio-temporal SPM for trajectory data
has also attracted some attention (Hwang et al., 2005; Liu et al., 2007;
Giannotti et al., 2007).

SPM from spatio-temporal trajectories is to find popular transitions from
one instance to another which show sequences of geographical locations
and regions that a group of moving objects visited in the same order
(Agrawal and Srikant, 1995). For instance, a group of people moves from
location a to b and then to c: a→ b→ c is a frequent sequential pattern. The
typical method is from Giannotti et al. (2007) who propose trajectory pattern
mining to enrich the sequential patterns with transition time information
between two locations. For instance, a trajectory can be represented as a pair
(S, T ), where S = (x0, y0), (x1, y1), ..., (xn, yn) is a sequence of points in R2,
and T = (∆T1,∆T2, ...,∆Tn) ∈ R+ is a corresponding transition time
between two locations. Thus, the trajectory pattern could be presented as:

(S, T ) = (x0, y0)
∆T1−−→ (x1, y1)

∆T2−−→ (x2, y2).

The trajectory pattern mining focuses on finding all frequent trajectory
patterns (S, T ) which satisfy the following condition:

support(S, T ) ≥ supmin,
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where support(S, T ) is the number of input trajectories which contains the
trajectory pattern (S, T ) and supmin is a user-specific minimum support
threshold. SPM can find associative effects and sequential patterns, but fails
to find periodicity in spatio-temporal trajectories.

2.3.3 Spatio-temporal Trajectory PPM

Spatio-temporal trajectory PPM is attracting increasing attention.
Periodicity is a kind of movement rule that naturally exists in moving
objects. Moving objects always obey more or less the same route (spatial
property) over regular time intervals (temporal property). A periodic
pattern (the repeating green line) is shown in Figure 2.3 where an entity
exhibits the same spatio-temporal pattern with some periodicity. For
example, birds have yearly migration patterns, people travel on regular
routes to work and commercial airliners operate regular schedules from one
place to another. PPM can be used to discover the intrinsic behavior of
moving objects (Han et al., 2010), compressing movement data (Agrawal
and Srikant, 1995; Mamoulis et al., 2004), predicting future movements of
objects (Han et al., 2010; Jeung et al., 2008), and detecting abnormal
events (Han et al., 2010).

FIGURE 2.3: An example of periodic pattern (Gudmundsson et al., 2017).

Section 2.2 discusses PPM with lower-dimensional data and discusses
problems when lower-dimensional PPM is used for spatio-temporal data.
Section 2.3.1 and 2.3.2 survey trajectory data mining for ARM and SPM
which are not able to detect periodic patterns. These two sections highlight
the need for spatio-temporal PPM, which is the main aim of this survey.

2.3.4 Difference among ARM, SPM and PPM

Table 2.4 summarizes the main differences among PPM, ARM and SPM.
ARM and SPM typically require a large number of trajectories where the
length of trajectory is not important. Conversely, PPM requires a single and
extremely long trajectory where the number of trajectories is not important.
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PPM has periodicity where the period can be user-specific or automatically
detected. However, ARM and SPM do not need to consider periodicity.
ARM is not concerned about order, whereas SPM and PPM must strictly
obey the time sequence.

TABLE 2.4: Comparison ARM, SPM and PPM.

Length of
Trajectory

Trajectory Periodicity Time-
Order

ARM Short Multiple No No
SPM Short Multiple No Yes
PPM Long Single Yes Yes

2.3.5 Features of PPM for Spatio-Temporal Trajectories

In the process of PPM for spatio-temporal trajectory data, a number of unique
characteristics need to be considered:

• The Length of Trajectory;
ARM and SPM focus on the number of short trajectories. In contrast,
PPM uses an extremely long trajectory that might be a month
trajectory, one year trajectory or even longer. For instance, Figure 2.4
shows ARM and SPM that focus on a small number of short
trajectories. In comparison, In Figure 2.5, PPM focuses on a very long
and single trajectory. Thus, mining this extremely long trajectory
needs a different approach. PPM finds repetitive patterns from this
long single trajectory, whereas it is not suited for use with multiple
trajectories.

FIGURE 2.4: An example of a group of short trajectories.
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FIGURE 2.5: An example of a long and single trajectory.

• Irregular Time Intervals;
Unlike one- and two-dimensional data, spatio-temporal data is
collected at different time intervals due to different sampling rates as
shown in Figure 2.6. In the last column, the time intervals are irregular
among trajectory nodes. Dealing with this irregularity is a challenging
task, but worth exploring.

FIGURE 2.6: An example of GPS data (source from: research.microsoft.com).

• Densely Recorded or Sparsely Recorded;
The sampling rate has a great influence on the accuracy of mining. For
instance, the presence of sparse data due to a low sampling rate
requires trajectory interpolation as depicted in Figure 2.7(a). On the
other hand, the presence of dense data due to a high sampling rate
requires trajectory smoothing, while ensuring minimum loss of
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information. Figure 2.7(b) shows a simplification method,
Douglas-Peucker algorithm (Douglas, 1973).

(a) (b)

FIGURE 2.7: Trajectory interpolation and smoothing (Douglas (1973)).

• Trajectory Uncertainty;
While we live in a continuous space, spatio-temporal trajectories are
recorded at discrete locations. However, imperfect sensors, coarse
resolutions in GPS or GSM (a few meters (GPS) and kilometers
GSM) (Berberidis et al., 2002), errors in positioning devices, software
malfunction or human error lead to the generation of missing or noisy
data. For instance, Figure 2.8 shows a spatio-temporal trajectory has
three missing data and one noisy data. Thus, it is necessary to include
an adequate data preprocessing method to deal with noisy raw
trajectory data.

FIGURE 2.8: An example of trajectory uncertainty.

• Locational (spatial) Fuzziness;
Because of spatial uncertainty, traditional PPM cannot be directly
applied to trajectory data since the repetitions of spatial locations (x, y)
might not exactly coincide. Although objects move along the same
route regularly, they might not appear at the exactly the same location.
For example, Figure 2.9 shows a person may go from home to office
along the same route every day between 9.00 A.M. and 10.00 A.M.
However, it is unlikely that he will be at exactly the same location
(x, y) on his route every day at 9.30 A.M. (Cao et al., 2007). Cao et al.
(2007), Mamoulis et al. (2004), Li et al. (2010a), Jindal et al. (2013), Li
et al. (2012), and Li et al. (2011) use clustering approaches to solve
uncertainties of spatial locations.



28 Chapter 2. Literature Review

FIGURE 2.9: An example of spatial fuzziness.

• Temporal Fuzziness;
Periodicity is complex since it is hierarchical including partial time
span and multiple interleaving periods. The former occurs when
periods exist in the partial time interval but not the whole time
interval. The latter happens when many periods are interleaved. For
example, from March to September; there might be three periods (day,
week and month) that interleave each other. For instance, Figure 2.10
shows Bob’s daily life. He goes to work from home on weekdays, goes
to a restaurant from home on Saturday and goes to a shopping mall on
Sunday. The periods include 24 hours for work and 168 hours (7 days)
for dinner and shopping. Each period of specific activity is considered
a partial time interval. Li et al. (2010a), Jindal et al. (2013), Li et al.
(2012), and Li et al. (2011) employ automatic period detection
approaches to be capable of finding partial time span and multiple
interleaving periods.

FIGURE 2.10: An example of temporal fuzziness.

• Hierarchical Spatial Clusters;
Spatial data is hierarchical in nature. Spatial characteristics of data can
be expressed in different levels of detail. The notion of hierarchical
spatial clusters supports hierarchical partitions of the space, by
applying hierarchical design to the trajectory data. The design of a
hierarchical method to explore and discover different levels of dense
regions is a domain-specific task and worthy of exploration. For
example, the space can be divided into multiple locations, such as
cities, states and countries. As we mentioned in Chapter 1, Figure 2.11
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shows different levels of density within regions, such as Queensland
as one of the states in Australia, Cairns as one of the cities in
Queensland and Trinity Beach as one of the suburbs of Cairns.

(a) (b)

(c)

FIGURE 2.11: An example of hierarchy of space.

• Spatio-Temporal Aspects;
Spatial and temporal properties are two core features of
spatio-temporal trajectory data. These core features must be
considered at the same time in spatio-temporal data mining. For
instance, Figure 2.12 shows a real GPS trajectory from home to
university. Each trajectory node is a triple data which includes a
geographical location and a corresponding timestamp, they are
indiscerptible. As an example, the trajectory node that is close to home
(145.686, -16.818, “2017-07-30, 06-23-40”), (145.686, -16.818) is
geographical location whilst “2017-07-30, 06-23-40” is timestamp.

• Background Semantic Information;
Although mobile devices can track trajectory data, these data do not
explicitly represent background semantic geographic information
which is relevant to application. This complicates trajectory analysis
and PPM. Thus, it is an essential step to integrate trajectory with
semantic geographical information in order to capture useful and
underlying information (Alvares et al., 2007b; Alvares et al., 2007a;
Alvares et al., 2007c). By incorporating this semantic background
information, we can explain the spatio-temporal trajectory in a more
interesting and meaningful way. For instance, we can identify the
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FIGURE 2.12: An example of spatial and temporal aspects.

purpose of the moving object as it travels to different locations.
Figure 2.13 illustrates how a moving object starts from home, then
goes to his/her workplace, and finally reaches to a supermarket.

FIGURE 2.13: An example of semantic background information.

• Sequence of Trajectory;
Spatio-temporal trajectory is a sequence comprised of successively
sampled points. Each trajectory segment presents two continuous
sampled points. Thus, each sampled point is associated with the
previous sampled point and the next one, rather than being
independent. For instance, Figure 2.14 displays a spatio-temporal
trajectory, trajectory nodes 1 and 2 are two end points of a trajectory
segment, similarly trajectory nodes 2 and 3 are two end points of
another trajectory segment.

• Trajectory Path;
The path which an object follows is called its trajectory, thus path is
one important feature of spatio-temporal trajectory. For instance,
Figure 2.15 illustrates two trajectory paths: one is from Captain Cook
Highway to Clifton Road, the other is Trinity Beach Road coming off
Captain Cook Highway. These two trajectory paths are main points of
interest in this movement and they represent the main trace of this
moving object. In some scenarios, these trajectory paths are main
points of interest instead of trajectory nodes (in this example they are
just entrances of particular road).
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FIGURE 2.14: An example of sequence of trajectory.

FIGURE 2.15: An example of trajectory path.

2.3.6 Previous Studies in PPM for ST Trajectories

Due to the unique features in spatio-temporal trajectory data, traditional
one-dimensional and two-dimensional PPM algorithms cannot be directly
applied to mining spatio-temporal trajectory data. Researchers in this field
have devised several methods over the past decade to mine spatio-temporal
trajectory periodic patterns. Major existing studies can be divided into two
groups: the fixed period approach (Cao et al., 2007; Mamoulis et al., 2004)
and the reference spot approach (Li et al., 2010a; Jindal et al., 2013; Li et al.,
2012; Li et al., 2011).

Fixed Period Approach

This approach proposes an algorithm to find maximal periodic patterns
with a user-specific period from a long spatio-temporal data. This algorithm
first segments the long trajectory data into sub segments where the length of
the sub-segment is the length of the user-specified period. To overcome the
drawbacks of regular grid, this approach uses traditional data mining
algorithm density-based clustering (DBSCAN (Ester et al., 1996)) to discover
dense clusters as valid regions (using cluster ids to replace trajectory data)
and hash-based methods to speed up the algorithm. The fixed period
approach finds all frequent singular patterns (1-patterns). Finally, it uses
bottom-up and top-down mining techniques to generate longer periodic
patterns. The main flow for the fixed period approach is shown in
Figure 2.16.
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FIGURE 2.16: Overall procedure of the fixed period approach.

First, this approach segments the raw long trajectory into smaller
sub-trajectories based on a certain time period (user-specific period).
Second, it utilises density-based clustering DBSCAN to find dense regions
and distributes class labels to these regions (as shown in Figure 2.17). The
approach then transforms the raw trajectory data into one-dimensional
event/sequence data. Finally, it uses traditional one-dimensional PPM
algorithm Max-Subpattern Hit Set to mine periodic patterns.

FIGURE 2.17: One long trajectory is divided into 3 segments (red, green and blue).
Each segment represents a period with one day, and then a clustering method is used

to discover dense regions (regions with circles).

To sum up, the fixed period suffers from several major drawbacks. First,
the approach takes a polished and preprocessed(regularly sampled)
trajectory as an input. There is no effective data preprocessing method
embedded to deal with irregularly sampled raw trajectories. Note that,
trajectories could have different sampling rates, and need preprocessing
before they are analyzed. Second, this approach assumes that the data is
collected at regular and constant time intervals. The approach does not
consider this irregularity. Apparently, an irregular time interval is more
likely the case in the real world. This irregularity must be resolved using
trajectory simplification or interpolation before PPM. Third, this approach
uses user-provided periods to mine periodic patterns. Therefore, the
approach is user-centered rather data-centered, and leads to a possible loss
of periods and patterns. Fourth, temporal information is not considered;
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instead, it is abstracted into discrete regional symbols. Thus temporal
property is hidden in segment symbols, or is represented by redundant
symbols. As a result, hidden and valuable patterns cannot easily be mined.
Fifth, hierarchical spatial clusters and hierarchical temporal periods are not
considered to mine inherent hierarchical dense regions and time intervals.
Sixth, extra computations are required to merge and sort segmented
trajectories repeatedly, which leads to extra time and inefficiency of the
overall processing performance. Finally,the fixed period approach focuses
on trajectory nodes rather than paths.

Reference Spot Approach

The reference spot approach first proposes a two stage algorithm for
automatic period detection and periodic behavior mining. In the first stage,
this approach uses the kernel method (Worton, 1989) to calculate densities
to find reference spots (dense regions) that are frequently visited by moving
objects. The approach then obtains periods associated with each reference
spot using both Fourier transform and autocorrelation (Kargupta, 2005). For
the presence/absence of a time series, a given timestamp value 0 represents
when an individual was out of a dense region and value 1 means when an
object was in this dense region. Since every period is associated with at least
one reference spot, all periods in the movement are guaranteed to be
detected when attempting to detect the periods associated with each
reference spot. In the second stage, periodic behaviors can be generated by
considering all the reference spots associated with a period. The authors
extended this work to handle missing data interpolation and movement
prediction (Li et al., 2012). The main flow for the reference spot approach is
shown in Figure 2.18.

FIGURE 2.18: Overall procedure of the reference spot approach.

The drawbacks of this approach are as follows. First, similar to the fixed
period approach, this method does not have an adequate data
preprocessing method to process raw inconsistent trajectory data with
different time stamps. Second, time intervals are assumed to be regular.
That is, data are sampled at regular intervals (for instance every hour); thus,
how to deal with irregular time intervals still needs to be explored in the
method. Third, this approach only proposes to compare the actual Fourier
power spectrum values with the threshold based on randomly permutated
presence or absence of event sequence. Thus Markov model of time series is
ignored. The probability of a moving object in an area at a timestamp is
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largely affected by the pervious timestamp. Fourth, the reference spot
approach improves the period detection method (Bar-David, 2009) to
handle noise and also detect multiple interleaved partial periods. However,
it does not find multi-level hierarchical periods and thus could miss some
valid periods. Fifth, the temporal property is not considered when this
approach discovers reference spots (dense regions), thus this approach does
not really take into account both important aspects of spatio-temporal data.
Integrating temporal property can obtain more precise estimation of
reference spots. Sixth, this approach still does not consider the hierarchical
nature of space and time. Finally, a reference spot still focuses on finding
periodic patterns based on the trajectory node instead of the trajectory path.

2.4 Summary of Algorithms

In Table 2.5, eight important features are listed with major spatio-temporal
PPM methods. The table clearly shows that the two major approaches in the
literature are not able to handle all of these important features. For instance,
two approaches can handle trajectories with arbitrary length, but they fail
to deal with irregular time intervals in the raw trajectory data. They do not
consider spatial hierarchies, sequence of trajectory, spatio-temporal aspects
together and background semantic information. Our research aims at solving
these six issues in PPM. In addition, the existing PPM approaches only focus
on finding periodic patterns for the trajectory node instead of the trajectory
path, thus, our approach also considers periodic patterns among trajectory
paths.

TABLE 2.5: Comparison of spatio-temporal PPM approaches.

Fixed Reference Our Proposed
Period Spot Framework

Long Trajectory X X X
Temporal Fuzziness × X X
Location Fuzziness X X X

Irregularity × × X
Spatio-temporal × × X

Semantics × × X
Hierarchy × × X
Sequence × × X

Path × × X
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Chapter 3

Preliminaries and Definitions

This chapter introduces the concepts and definitions which are related to PPM in
this thesis. Section 3.1 briefly discusses the aspatial semantic information database.
Section 3.2 provides key terminologies related to PPM from spatio-temporal
trajectories in this thesis. Finally, Section 3.3 summary the content of this chapter.

3.1 Aspatial Semantic Database

This research requires the presence of aspatial semantic information in the
process of PPM. A geographic information database is the way of extracting
aspatial semantic information. This database can be used to annotate the type
of places, such as a restaurant or a shopping mall. OpenStreetMap 3 is used
in this research to obtain aspatial semantic information. OpenStreetMap is
a very large, free geographic database that covers all countries and includes
millions of place names.

3.2 Preliminaries and Definitions

The aim of this section is to introduce correlative definition and terms utilized
in this research.

• A spatio-temporal trajectory: A spatio-temporal trajectory, T , is a list
of spatio-temporal entries, (〈x1, y1, t1〉, 〈x2, y2, t2〉, . . . , 〈xn, yn, tn〉),
where xi, yi ∈ R2 and ti ∈ R+ for 1 ≤ i ≤ n and t1 < t2 < . . . < tn. A
regular spatio-temporal trajectory is when |tj+1 − tj| = |tk+1 − tk| for
∀ j, k where 1 ≤ j 6= k < n whilst a irregular spatio-temporal
trajectory is when |tj+1 − tj| 6= |tk+1 − tk| for ∃ j, k where
1 ≤ j 6= k < n. For instance, Figure 3.1 shows spatio-temporal
trajectories, where X-axis and Y -axis represent the location, and
Z-axis means time. The green points present trajectory nodes in T, and
every node is composed of a triple (x, y, t). In GPS data, x is longitude
and y is latitude.

GPS data: Table 3.1 shows the format of GPS data. GPS data usually
include 〈id, longitude, latitude, altitude, date, time〉. In spatio-termporal
trajectory data mining, some of these attributes are usually used,

3https://www.openstreetmap.org
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FIGURE 3.1: An example of spatio-temporal trajectory.

including id, longitude, latitude, timestamp (date + time), where id is
the identification number of the moving object, latitude and longitude
represent spatial geographic coordinates and date and time present
the timestamp. PPM focuses on individual moving object, thus we
only choose geographic information (longitude and latitude), and time
stamp, but do not consider id attributes. In addition, we do not
consider altitude in PPM.

TABLE 3.1: An example of GPS trajectory data.

id longitude latitude altitude date time
1 39.45892 116.381293 490 2016-01-01 18:01:01

• A reference spot: A reference spot (dense region) is a specific spatial
area that the moving object frequently visits. Different from ARM and
SPM, this research focuses on finding reference spots from individual
moving object. In Chapter 4, we also refer to trajectory paths as
reference spots. If a reference spot (trajectory path) has a non-zero
period, this reference spot (trajectory path) is a periodic path. In
Chapter 5, we focus on finding periodic patterns among reference
spots in the presence of semantic background information. Therefore
we refer to these reference spots as semantic reference spots.

• A semantic spatio-temporal trajectory: Tsem, is a list of
spatio-temporal, semantically annotated entries, (〈x1, y1, t1, a1〉,
〈x2, y2, t2, a2〉, . . . , 〈xn, yn, tn, an〉), where xi, yi ∈ R2, ti ∈ R+, and
ai ∈ A, for 1 ≤ i ≤ n and t1 < t2 < . . . < tn. A is a finite set of semantic
labels which is from a geographical semantic database, such as a
restaurant or a university.
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• A semantic episode: A semantic episode Ej,k, is a single vector that
represents a portion of movement from a semantic trajectory, Tsem. The
portion of movement starts from the trajectory’s j-th index and ends at
its k-th index (inclusive), where j ≤ k. Note that a semantic episode
always maximises the number of contiguous entries in Tsem with the
same semantic label, which means that
Tsem.aj = Tsem.aj+1 = . . . = Tsem.ak ∧Tsem.aj−1 6= Tsem.aj
∧Tsem.ak+1 6= Tsem.ak. The actual vector of the semantic episode Ej,k

contains a geometry, g, which represents a portion of an entity’s
movement from indices j to k; a start and end time; ts and te
respectively; and a semantic label, a. Specifically, Ej,k = 〈g, ts, te, a〉,
where g is constructed using {Tsem.xyj, Tsem.xyj+1, . . . , Tsem.xyk},
ts = Tsem.tj , te = Tsem.tk, and a = Tsem.aj = Tsem.aj+1 = . . . = Tsem.ak.

The geometry, g, of a semantic episode is often used to infer additional
semantic information. For example, the geometry of a semantic
episode with the semantic label {Stop} (a stop episode), is useful to
discover the real-world place where the stop occurred. However, there
are many types of semantic episodes though: how g is therefore
constructed varies. In this paper, a semantic stop episode means that a
user is staying in a particular place more than the user-specified
duration doing a meaningful activity.

• A semantic reference spot: A semantic reference spot is a spatial place
with annotated type. It can be represented as (RS, type), RS means
reference spot, type represents a type of reference spot, such as a
restaurant, university or hospital.

• A hierarchical reference spot: A hierarchical reference spot represents
a division of a reference spot or merger of reference spots at a previous
step. In a trajectory path, for instance, Figure 3.2(a) shows a
hierarchical trajectory path (in red curve) which includes the paths in
Trinity Beach Road, Clifton Road and Captain Cook Highway. In a
semantic reference spot, for example, Figure 3.2(b) demonstrates that
State A includes City A and City B. City A is composed of many
buildings, such as business premises, gyms, restaurants and shopping
malls. A shopping mall may have many shops as well. Hospital,
supermarket and zoo can be combined as City B. A hierarchical
reference spot can be built as a dendrogram, which is a type of tree
diagram showing hierarchical reference spots.
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(a)

(b)

FIGURE 3.2: An example of hierarchy of space.

3.3 Summary

In this chapter, we introduce related concepts which are relative to periodic
pattern mining in this thesis. In the later chapters, we will discuss our
approaches in detail.
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Chapter 4

Hierarchical Trajectory Clustering
for Spatio-temporal PPM

In this chapter, we present a study of path-based approach for PPM from
spatio-temporal trajectory. In Section 4.1, we present an introduction of this
study. Section 4.2 shows an overall framework for extracting (hierarchical)
periodic patterns based on trajectory paths. Experimental results are
presented and discussed in Chapter 4.3. We summarise our result in
Section 4.4.

4.1 Introduction

This chapter aims at developing a path-based PPM approach, and compares
these patterns against traditional node-based periodic patterns. In the
process of PPM, there are four features of spatio-temporal trajectory data
need to be considered, 1© sequence of trajectory; 2© spatial and temporal
together; 3© hierarchy of space; 4© trajectory path.

Figure 4.1 displays an example illustrating the drawbacks of traditional
approaches. Let us take an example of 10 trajectory nodes
(pa, pb, pc, . . . , pi, pj) where 4 black circles (pa, pd, pg, pj) for ‘home’, blue
triangles (pb, pe, ph) for ‘work’ and red squares (pc, pf , pi) for ‘gym’ as shown
in Figure 4.1(a). For better explanation, ‘home’, ‘work’ and ‘gym’ are used
as a dense region, and they can also be some trajectory paths. Figure 4.1 (b)
and (c) illustrate two possible trajectories: TA and TB. TA exhibits a pattern
of moving from ‘home’ to ‘work’ and then go to ‘gym’ before they come
back ’home’ whilst TB shows a pattern of moving from ‘home’ to ‘work’ and
come back ‘home’ (might be weekdays), and ‘home’ to ‘gym’ and come back
‘home’ (might be weekends). These two trajectories exhibit totally different
movement behaviours (sequences), and they have different reference spots
and thus have different periodic patterns. However, traditional
spatio-temporal PPM approaches (Cao et al., 2007; Li et al., 2012) ignore
these sequences but instead only consider the 10 trajectory nodes as a set of
unrelated (unordered) targets when detecting reference spots. That is,
traditional approaches fail to distinguish the two trajectories TA and TB, but
detect the same set of two reference spots for them. In addition, traditional
approaches cannot separate and detect two interesting places of ‘work’ and
‘gym’, but rather detect them as one reference spot. This is due to the
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(a) (b)

(c) (d)

(e)

FIGURE 4.1: An example illustrating drawbacks of traditional approaches: (a)
10 points (pa, pb, pc, . . . , pi, pj) where 4 black circles (pa, pd, pg, pj) for ‘home’, blue
triangles (pb, pe, ph) for ‘work’ and red squares (pc, pf , pi) for ‘gym’; (b) Person
A’s trajectory TA = {pa, pb, pc, pd, pe, pf , pg, ph, pi}; (c) Person B’s trajectory TB =
{pa, pe, pa, ph, pg, pc, pj , pi, pd, pf , pj}; (d) Person A’s trajectory exhibiting a ‘home’-
‘work’-‘gym’ sequential pattern; (e) Person B’s trajectory exihibiting ‘home’-‘work’

and ‘home’-‘gym’ patterns.

ignorance of trajectory sequence, and also due to the underlying
density-based nature of clustering. Figure 4.1(d) shows periodic patterns
between ‘home’ and ‘work’, ‘work’ and ‘gym’, and ‘gym’ and ‘home’ whilst
Figure 4.1(e) exhibits periodic patterns between ‘home’ and ‘work’, and
‘home’ and ‘gym’. There is no direct periodic patterns between ‘work’ and
‘gym’ in Figure 4.1(c). One thing to note is that there is a hierarchical cluster
‘work-and-gym’ combining ‘work’ and ‘gym’ in Figure 4.1(d) which could
imply a potential hierarchical periodic pattern of TA between ‘home’ and
‘work-and-gym’.

In Figure 4.2, although the existing node-based approach can find some
reference spots around home (trajectory nodes {a, d, g, j}, work {b, e, h} and
gym {c, f, i}, it fails to find some trajectory paths, such as p(x, z), p(t, s),
p(n,w). Sometimes, finding periodic patterns among trajectory paths is very
important and useful according to the specific applications. For instance, a
route planner can generate strategies along the paths that a moving object
frequently and regularly passes to provide input to road planning or
business premises.

In this chapter, we start to identify drawbacks in the process of
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FIGURE 4.2: Another example illustrating the drawbacks of traditional approaches.

discovering reference spots for PPM and utilises our algorithm to reflect the
sequence of objects for finding reference spots (trajectory clustering method
which considers the sequence of objects and more attributes). Then we
extend it to hierarchical clustering to incorporate the hierarchy of objects.
We compare and contrast our algorithm with node-based clustering such as
Kernel function, Grid-based and initial Traclus to highlight the importance
of considering the hierarchy, sequence and spatio-temporal aspects. Note
that, in this chapter, we refer to trajectory paths as reference spots in order to
make comparisons with the existing approach.

4.2 Hierarchical Trajectory Clustering Based PPM

4.2.1 Hierarchical PPM Framework

Spatial data can be expressed at different levels of detail (Haining, 2003).
The notion of hierarchical spatial clusters supports hierarchical partitions of
the space, by applying a hierarchical design to trajectory data. How to
design a hierarchical method to explore and discover different levels of
reference spots is a domain-specific task and worth exploring. Figure 4.3
shows an architecture of our proposed hierarchical PPM framework. First,
we use spatio-temporal trajectory datasets with regular time intervals as
input. Using regular time intervals is for period detection, and then
single-level clustering and multi-level hierarchical clustering are applied for
finding reference spots. In the process of single-level clustering, the
framework implements two point based clustering approaches used in
traditional spatio-temporal PPM: Kernel function (Li et al., 2012) and
Grid-based (Giannotti et al., 2007), one trajectory based clustering
Traclus (Lee et al., 2007) and our proposed algorithm. Note that, the point
based clustering approaches ignore the sequence of trajectory nodes whilst
the trajectory based clustering considers the sequence.

The single-linkage merge approach is the most popular merging
technique in hierarchical clustering (Lee and Yang, 2009). In this method,



42 Chapter 4. Hierarchical Trajectory Clustering for Spatio-temporal PPM

FIGURE 4.3: Framework of hierarchical PPM.

the distance between two clusters is the shortest distance between all pairs
of patterns drawn from the two clusters (H.A. Sneath and R. Sokal, 1963).
This chapter utilises the single-linkage with Traclus and our algorithm to
find hierarchical reference spots. After gaining reference spots, we will
apply Fourier transform and auto-correlation (Bar-David, 2009; Kargupta,
2005) to obtain periods for each reference spot. Finally, we apply the
algorithm in (Li et al., 2012) to mine periodic patterns. Please refer
to (Bar-David, 2009; Cao et al., 2007; Lee et al., 2007; Li et al., 2012;
H.A. Sneath and R. Sokal, 1963; Kargupta, 2005) for details of approaches
used in this chapter.

4.2.2 Hierarchical Trajectory Clustering Methodology

Our algorithm is based on Traclus (Lee et al., 2007). It is a trajectory
clustering algorithm that considers the sequence of trajectory. This
algorithm includes two phases for clustering trajectories: partition and
group. It first partitions a trajectory into a set of line segments by
characteristic points at which the object makes a sharp turn, and then,
groups similar line segments together into a cluster. In the group phase, it
extends traditional density-based points clustering algorithm DBSCAN to
line-segment based clustering algorithm, which means it only considers the
spatial attribute to calculate distance for clustering. Note that, traditional
density-based clustering algorithms such as DBSCAN and
DENCLUE (Hinneburg and Keim, 1998) cannot find hierarchical clusters
and they fail to detect clusters of different densities since they use a global
density threshold. In order to achieve hierarchical trajectory clustering for
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PPM, we utilise HDBSCAN (Campello et al., 2013). It is an incremental
version of DBSCAN which is able to handle clusters with different densities
while preserving the scalability of DBSCAN. HDBSCAN is capable of
generating a hierarchical clustering result using the single-linkage method,
and then automatically extracts clusters from a hierarchical tree. We extend
HDBSCAN to handle line segments and plug it into Traclus to detect
hierarchical clusters.

Note that, trajecotry is a series of spatial locations with timestamps, thus
it is explicitly spatio-temporal. Speed and direction properties are two
implicit trajectory properties and they have been widely used in many
trajectory data mining (Bermingham and Lee, 2015; Yuan et al., 2012; Zheng
and Zhou, 2011). This chapter further extends Traclus with HDBSCAN to
incorporate these two additional implicit trajectory properties. Thus, this
quadruple < Space,Direction, Speed, T ime > covers both the explicit and
implicit features of trajectory and captures more meaningful behaviors of
trajectory.

As known, distance is a numerical description of how far apart objects
are. In this chapter, we consider spatial distance, temporal distance, and
additional directional distance and speed distance in order to consider
spatio-temporal and sequential information.

FIGURE 4.4: Spatial distance for two line segments Li = (si, ei) and Lj = (sj , ej) (ps
and pe are the projection points from si and ei onto Lj , respectively. d(si, ps) is the

Euclidean distance between si and ps, and d(ei, pe) is that between ei and pe.).

Spatial distance (SpaDist) is to measure the geographic distance
difference between trajectory segments. For example, two trajectory
segments Li = (si, ei) and Lj = (sj, ej) as shown in Figure 4.4, the spatial
distance is computed as below:

SpaDist(Li, Lj) =
d(si, ps)

2 + d(ei, pe)
2

d(si, ps) + d(ei, pe)
, (4.1)

where d(si, ps) is the Euclidean distance between si and ps, whilst d(ei, pe) is
that between ei and pe.
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FIGURE 4.5: Directional distance for two line segments Li and Lj (θ is the included
angle between Li and Lj).

Directional distance (DirDist) is to measure the difference in directional
movements between trajectory segments. Given two trajectory segments Li

and Lj as shown in Figure 4.5, the directional distance is computed as below:

DirDist(Li, Lj) =

{
min(||Li||, ||Lj||)× sin(θ) (0 ≤ θ ≤ 90),

min(||Li||, ||Lj||)× sin(π − θ) (90 < θ ≤ 180),
(4.2)

where ||Li|| and ||Lj|| are the length of Li and Lj , respectively, and θ is the
included angle between Li and Lj . DirDist(Li, Lj) represents the deviation
of direction in moving tendency between Li and Lj (Yuan et al., 2012).

FIGURE 4.6: Speed distance for two line segments Li = (pi1, pi4) and Lj = (pj1, pj5).

Speed distance (SpdDist) is to measure the difference in speed between
trajectory segments. For two given line segments Li = (pi1, pi4) and Lj =
(pj1, pj5) as shown in Figure 4.6, SpdDist(Li, Lj) is calculated as below:

SpdDist(Li, Lj) =
Smax(Li, Lj) + Savg(Li, Lj) + Smin(Li, Lj)

3
, (4.3)

where Smax(Li, Lj) represents the absolute difference in maximum speed of
two segments. Correspondingly, Savg and Smin represent absolute
differences in average and minimum speed of two segments. Note that, in
the partitioning phase of Traclus, the whole trajectory is first examined to
identify a sequence of characteristic points at which the object makes a
sharp turn, and then the whole trajectory is partitioned into line segments



4.2. Hierarchical Trajectory Clustering Based PPM 45

by these characteristic points. In Figure 4.6, pi1 and pi4, pj1 and pj5 can be
represented as characteristic points, thus, Li and Lj can be obtained.

FIGURE 4.7: Two line segments Li with two end points: (pi1, ti1) and (pi2, ti2), and
Lj with two end points: (pj1, tj1) and (pj2, tj2), where pk is a spatial location and tk

is a corresponding timestamp for k ∈ {i1, i2, j1, j2}.

For two given line segments Li = ((pi1, ti1), (pi2, ti2)) and
Lj = ((pj1, tj1), (pj2, tj2)) where pk is a spatial location and tk is a
corresponding timestamp for k ∈ {i1, i2, j1, j2} as shown in Figure 4.7,
time distance (TimeDist) is to measure the difference during time intervals
between trajectory segments. TimeDist(Li, Lj) is represented by:

TimeDist(Li, Lj) =
√

(tj1 − ti1)2 + (tj2 − ti2)2. (4.4)

These four distance measures have different scales. In order to avoid the
scaling problem, we use the min-max normalisation (Han, 2005) to scale each
distance measure into the unit range [0,1]. The total distance (TotalDist) is
now defined as below:

TotalDist(Li, Lj) =

Wspa ∗ SpaDist′(Li, Lj) + Wdir ∗DirDist′(Li, Lj)

+ Wspd ∗ SpdDist′(Li, Lj) + Wtime ∗ TimeDist′(Li, Lj), (4.5)

where SpaDist′, DirDist′, SpdDist′ and TimeDist′ are min-max normalised
distances whilst Wspa, Wdir, Wspd and Wtime are relative weights for
SpaDist′, DirDist′, SpdDist′ and TimeDist′, respectively. Note that, the
sum of weights is equal to 1 (Wspa+Wdir+Wspd+Wtime=1). In this chapter, we
use the same equal weight for these distances but they can vary with
applications. That is, Wspa=Wdir=Wspd=Wtime=0.25 in this experiment. This
TotalDist(Li, Lj) replaces the distance function used in Traclus.

Note that, the quadruple< Space,Direction, Speed, T ime > can represent
the implicit and explicit properties of trajectory and capture more meaningful
trajectory behaviours. Namely, each property expresses periodicity: people
go to office on weekdays (periodic spatial pattern); people keep similar speed
in different road segments (periodic speed pattern); people move north-west-
east-north of city (periodic directional pattern).



46 Chapter 4. Hierarchical Trajectory Clustering for Spatio-temporal PPM

4.3 Experimental Results

(a)

(b)

FIGURE 4.8: Real world datasets: (a) Dataset 1: Free-ranging Maremma sheepdogs
dataset; (b) Dataset 2: GPS collar dataset.

TABLE 4.1: Format of Dataset 1 and 2.

tag-local-
identifier

Longitude Latitude Timestamp Sensor-
type

1 147.367458 36.318158 2012-07-
30,00:35:18

gps

Our aim is to find quality reference spots with non-zero periods as
possible so that more periodic patterns can be found in order not to miss
false positives. Experiments are based on two real datasets from movebank.
1 Movebank is a free online animal tracking database which helps
researchers to share and analyse animal movement data. The database is
designed to capture individual animal tracking data. Information from
animal movements is significant for movement ecology, such as climate
change, disease spread and biodiversity loss. The main aims of Movebank
include: (1) to archive animal movement data; (2) to help scientists explore
new questions by combining these datasets; (3) to allow the public to
explore these datasets. We use GPS tracking collar data which describe

1https://www.movebank.org
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movements and behaviours of free-ranging livestock guardian dogs on
three properties in Victoria, Australia. We use Google Earth1 to visualise the
datasets. The first dataset (Figure 4.8(a)) contains around 4 months long
tracking records (7/2012 - 11/2012), while the second one (Figure 4.8(b))
describes more than 2 months long trajectories (4/2011 - 6/2011). Table 4.1
shows a part of attributes in two datasets. The tag-local-identifier presents
id which can identify different moving objects. Location is shown with
longitude and latitude. Timestamp means recorded time in the location.
Sensor-type represents that the datasets are GPS recorded. In our study, we
choose two single moving objects and their location and corresponding
timestamp. Note that, we need some interpolation methods to make these
data regular time intervals. In this chapter, we use the cubic
interpolation (McKinley and Levine, 1998). Since most of the nodes have the
same time interval (30 minutes), there is minimal influence from this
interpolation preprocessing.

4.3.1 Dataset 1

(a) (b)

(c)

FIGURE 4.9: Selection of parameter values for Dataset 1: (a) Grid-based; (b) Initial
Traclus; (c) Extended Traclus.

1https://www.google.com/earth
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Selection of Parameter Values

As most data mining approaches require parameter-tuning (Han, 2005), the
clustering approaches under study in this chapter also require
parameter-tuning to produce best possible results. The main aim of this
subsection is to empirically evaluate parameter values for the clustering
approaches used in this chapter. Figure 4.9 shows the measure of cluster
quality, and we use the silhouette coefficient (Rousseeuw, 1987) for this aim.
The silhouette value ranges from -1 to +1. A high silhouette value indicates
that a cluster is well-matched to its own cluster, and poorly-matched to
neighboring clusters. If most points have a high silhouette value, then the
clustering solution is appropriate. If many points have a low or negative
silhouette value, then the clustering solution may have either too many or
too few clusters. Figure 4.9 displays the number of negatives in Y -axis while
presenting parameter values for corresponding clustering algorithms in
X-axis. Thus, a lower value in Y -axis results in a high silhouette value.
Figure 4.9(a) shows the quality measure for Grid-based clustering. We set
the density threshold from 1% to 2% of total number of data points in
X-axis, and Y -axis presents the number of negatives. There is a peak when
the density threshold is 1.1%, which means the clustering solution is
inappropriate. Oppositely, after 1.5%, the clustering becomes stable and
better, thus, we choose 1.5% as a dense threshold for the first dataset.
Figure 4.9(b) shows the quality measure for original initial Traclus. We can
get an optimal value when ε = 0.044 and MinLns = 21. Figure 4.9(c)
displays the quality measure of our extended Traclus, and the optimal value
can be set to ε = 0.004 and MinLns = 11. For Kernel function, we use a top
15% density value threshold for cluster, most parts of reference spots should
be detected with high probability (Li et al., 2012).

Comparison among Clustering Methods

In this part, we undertake comparative studies among three existing
clustering algorithms and our algorithm for Dataset 1.

Figure 4.10 shows visualisations of reference spots using three clustering
methods and our extended Traclus for Dataset 1. Numbers in red rectangles
represent i-th reference spots. We use different colors to distinguish different
reference spots for Traclus-based approaches which include initial Traclus
and our method. Figure 4.10(a) shows the result of Kernel Function finding
4 reference spots (the areas with red plus). Kernel Function finds the least
number of reference spots, and only returns globally high dense reference
spots. This approach misses many other locally formulated dense reference
spots as shown in Figure 4.10(a). Figure 4.10(b) displays 7 reference spots
found with Grid-based whilst Figure 4.10(c) exhibits 7 reference spots (lines
with different color) with inital Traclus. Figure 4.10(d) illustrates 7 reference
spots detected with proposed extended Traclus. Initial Traclus and extended
Traclus find more reference spots than Kernel Function in single-level. They
return global and local dense reference spots that will be used for interesting
periodic patterns.
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(a) (b)

(c) (d)

FIGURE 4.10: Four clustering results for Dataset 1: (a) Kernel Function (4 reference
spots); (b) Grid-based (7 reference spots); (c) Traclus (7 reference spots); (d) Extended

Traclus (space+time, 7 reference spots).

TABLE 4.2: Number of reference spots found from three existing clustering in single-
level for Dataset 1. (RS: the number of Reference Spots; NZRS: the number of

Reference Spots with Non-Zero period).

Kernel
Function

Grid-based Initial
Traclus

RS 4 7 7
NZRS 2 2 5

Table 4.2 represents the number of reference spots, and the number of
reference spots with non-zero period. Note that, we only choose reference
spots with non-zero period to obtain periodic patterns in the later phase in
this chapter. As we have mentioned before, the aim of PPM is to find
regularly repeating activities for reference spots. Oppositely, if a reference
spot with 0 period, it would represent that an object goes to this place with
irregular time or infrequent. Thus, RS is useful but NZRS is more useful and
meaningful to mine periodic patterns. Also, it is worth noting that
Grid-based has the same reference spots with initial Traclus, but the latter
obtains more reference spots with non-zero period, which means more
periodic patterns can be found from initial Traclus compared to Grid-based.
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TABLE 4.3: Reference spots from extended Traclus in single-level for Dataset 1 (Sc:
Space; Di: Direction; Sd: Speed; Ti: Time).

ScDi ScSd ScTi ScDi
Sd

ScDi
Ti

ScSd
Ti

ScDi
SdTi

RS 6 18 7 8 6 7 7
NZRS 4 9 3 4 2 3 3

Table 4.3 displays the number of reference spots for various
combinations of the four attributes considered (space, direction, speed and
time) for our proposed method. Obviously, we can find useful and hidden
periodic patterns in all combinations. For instance, in Figure 4.11, we obtain
8 reference spots considering the combination of space, direction and speed,
and then a period (147 hours) at 6th reference spot is found. However, three
existing methods cannot detect this reference spot and thus cannot obtain a
non-zero period for that. Comparing Table 4.2 and Table 4.3, extended
Traclus can find more RS and NZRS, which means more interesting periodic
patterns can be found.

FIGURE 4.11: Extended Traclus (Space+Direction+Speed) results for Dataset 1.

Hierarchical Clustering

In this section, initial Traclus and extended Traclus are extended to consider
hierarchy using HDBSCAN with the single-linkage approach in order to find
hierarchical reference spots.

Figure 4.12 represents corresponding dendrograms obtained using
HDBSCAN with the single-linkage algorithm. Dendrograms can be broken
at different levels to yield different clusterings of data (Jain and Dubes,
1988). For instance, Figure 4.12(a) represents a dendrogram of Dataset 1 for
initial Traclus. Clusters 1 and 3 can be combined as a new reference spot,
and also another new reference spot can be formed by merging clusters 4
and 5. Figure 4.12(b) shows a dendrogram of Dataset 1 for extended Traclus
(considering space and time).
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(a)

(b)

FIGURE 4.12: Dendrograms for initial Traclus and extended Traclus clustering
algorithms for Dataset 1: (a) Initial Traclus; (b) Extended Traclus (space+time).

TABLE 4.4: Hierarchical reference spots with initial Traclus for Dataset 1.

Initial Traclus
RS 6
NZRS 5

Table 4.4 displays the number of hierarchical reference spots with initial
Traclus. Obviously, more periodic patterns can be mined with this
hierarchical initial Traclus. For instance, Figure 4.13 shows reference spots 1
and 3 (shown in Figure 4.10(c)) can be combined to reference spot 8, and
then, we can mine some periodic patterns for reference spot 8. This
hierarchical reference spot 8 could represent an hierarchical geographical
place type that could not be detected by the single-level clustering
approaches.
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FIGURE 4.13: Hierarchical initial Traclus for Dataset 1.

TABLE 4.5: Reference spots for hierarchical extended Traclus for Dataset 1.

ScDi ScSd ScTi ScDi
Sd

ScDi
Ti

ScSd
Ti

ScDi
SdTi

RS 5 17 6 7 5 6 6
NZRS 4 14 5 6 4 4 5

As shown in Table 4.5, various reference spots are found with various
combinations in the hierarchy. For instance, Figure 4.14 displays reference
spots 4 and 5 (shown in Figure 4.10(d)) are combined as a larger one. More
periodic patterns can be mined for reference spot 8.

FIGURE 4.14: Hierarchical extended Traclus (space+time) for Dataset 1.

In our proposed framework, we allow users to take additional
information into account in clustering including direction, speed and time
in addition to the basic spatio-temporal information. Choosing additional
semantic information is context-dependent (Ilarri, 2011), and we provide
experimental results with all different combinations of these additional
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semantic information to provide users with various reference spots for their
decision-making. Note that, since we are dealing with spatio-temporal
trajectories, ‘ScTi’ considering space and time is used as default in this
chapter.

Table 4.3 and Table 4.5 display the number of reference spots for various
combinations of the four attributes considered (space, direction, speed and
time). In all combinations, the number of NZRS generated with hierarchical
clustering exceeds that of NZRS generated with corresponding single-level
clustering.

4.3.2 Dataset 2

Selection of Parameter Values

(a) (b)

(c)

FIGURE 4.15: Selection of parameter values for Dataset 2: (a) Grid-based; (b)
InitalTraclus; (c) Extended Traclus (space+time).

Similar to Section 4.1.1, Figure 4.15 shows the quality measure for Dataset
2. Figure 4.15(a) shows the quality measure for Grid-based where we choose
3.4% as the density threshold. The quality measure for Traclus is shown in
Figure 4.15(b). ε = 0.004 (MinLns = 27) has the lowest number of negatives (a
high silhouette value), and it obtains more reference spots. Thus, (ε = 0.004,
MinLns = 27) are better values gaining a higher silhouette value and more
reference spots. In Figure 4.15(d), obviously, (ε = 0.01, MinLns = 42) have
the lowest value. For Kernel function, we still use the top-15% density value
threshold for clustering.
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Comparison among Three Existing Clustering Methods

For Dataset 2, Figure 4.16 shows visualisations of reference spots for each
clustering method. Figure 4.16(a) shows the clustering result of Kernel
Function with 2 reference spots, while Figure 4.16(b), (c), (d), Grid-based,
inital Traclus and extended Traclus depict the same number of reference
spots.

(a) (b)

(c) (d)

FIGURE 4.16: Four clustering results for Dataset 2: (a) Kernel Function (2 reference
spots); (b) Grid-based (3 reference spots); (c) Traclus (3 reference spots); (d) Extended

Traclus (space+time, 3 reference spots).

TABLE 4.6: Reference spots from three existing clustering methods in single-level
for Dataset 2.

Kernel
Function

Grid-
based

Initial
Traclus

RS 2 3 3
NZRS 2 2 3

Similar to Dataset 1, in Table 4.6 and 4.7, the sequence based clustering
methods (initial Traclus and extended Traclus) produce more NZRS than
corresponding point based approaches (Kernel Function and Grid-based)
with Dataset 2, and different combinations of these additional semantic
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information can produce more reference spots. In addition, hierarchical
clustering produces more NZRS than corresponding single-level clustering
with Dataset 2. Table 4.8 and Table 4.9 confirm these with Dataset 2.

TABLE 4.7: Reference spots from extended Traclus (our algorithm) for Dataset 2.

ScDi ScSd ScTi ScDi
Sd

ScDi
Ti

ScSd
Ti

ScDi
SdTi

RS 3 6 3 4 3 3 3
NZRS 1 3 1 2 1 1 3

Hierarchical Clustering

(a)

(b)

FIGURE 4.17: Dendrograms for initial Traclus and extended Traclus for Dataset 2:
(a) Initial Traclus; (b) Extended Traclus (space+time).

Figure 4.17 shows dendrograms of hierarchical clustering with Dataset 2.
Similar to Dataset 1, initial Traclus and extended Traclus reveal many
interesting hierarchical reference spots.
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TABLE 4.8: Reference spots for hierarchical initial Traclus for Dataset 2.

Initial Traclus
RS 3
NZRS 2

TABLE 4.9: Reference spots for hierarchical clustering for Dataset 2 (our algorithm).

ScDi ScSd ScTi ScDi
Sd

ScDi
Ti

ScSd
Ti

ScDi
SdTi

RS 3 5 3 3 3 3 3
NZRS 2 4 2 2 2 2 2
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4.3.3 Effectiveness and Efficiency

Effectiveness

(a) (b)

(c) (d)

(e)

FIGURE 4.18: Some interesting periodic patterns for Datasets 1 and 2: (a)
Hierarchical initial Traclus; (b) Single-level extended Traclus (space+time); (c)
Single-level extended Traclus (all 4 properties); (d) Hierarchical extended Traclus

(all 4 properties); e) Single-level extended Traclus (all 4 properties).

We have listed RS and NZRS, but we will use NZRS for PPM method to
extract periodic behaviors and patterns. Due to the page limit, we list some
periodic patterns. Figure 4.18 visualises interesting reference spots detected
by our approach.
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TABLE 4.10: Number of periodic behaviors (patterns).

Reference
spot

period
(Hours)

periodic
behaviors

Periodic
Patterns

Figure 4.18(a) 8 67.5 7 5→0→8
Figure 4.18(b) 3 47.5 2 0→3→0
Figure 4.18(c) 6 239.5 2 5→0→6
Figure 4.18(c) 6 166.5 3 6→0→7
Figure 4.18(d) 8 22 16 1→0→8
Figure 4.18(e) 1 24.5 4 2→0→1
Figure 4.18(e) 2 25.5 20 1→0→2

Table 4.10 shows some periodic patterns from reference spots shown in
Figure 4.18. Note that, traditional approaches are not able to detect these
periodic behaviors. Figure 4.18(a) displays hierarchical reference spots
identified by initial Traclus, it shows that reference spot 8 is periodically
visited with a regular time interval (67.5 hours), from reference spot 5. In
reality, this happens frequently, for instance, Bob picks up his best friend
before going to work sometimes, the place where his friend is living should
be related to their work place. Thus, in Figure 4.18(a), we can say that there
is a periodic pattern from reference spot 5 to 8 with 67.5 hours. There are 7
periodic behaviors for Figure 4.18(a), which means a person arrives at
reference spot 8 at different time. For instance, Bob arrives at office at 8:00
on Moday, at 9:00 on Tuesday, and at 8:00 on Wednesday etc. Figure 4.18(b)
shows those identified by the space and time combination. In the same
period, we can find a periodic pattern between somewhere (0 means not in
any reference spot) and reference spot 3 with 47.5 hours, and 2 periodic
behaviors. Figure 4.18(c) displays two periodic patterns, 5→0→6 and
6→0→7, it does not necessarily mean that we can get 5→0→6→0→7 since
two patterns do not frequently occur together. Figure 4.18(d) reveals a
periodic pattern 1→0→8 (22 hours) between hierarchical reference spots 1
and 8. In Figure 4.18(e), we can find that reference spots 1 and 2 have a
similar period, which is around 25 hours, periodic pattern, 2→0→1 is for
reference spot 1, while 1→0→2 is for reference spot 2, which means the
object moves periodically between reference spots 1 and 2, and 20 different
periodic behaviors from reference spot 1 to reference spot 2 in a period. In
reality, reference spot 1 and 2 can be seen as work place and home.

Efficiency

Figure 4.19 shows the running time analysis of the proposed trajectory
clustering between single-level and multi-level with Dataset 1. When
compared to single-level, hierarchy does not require a great amount of extra
time, but affordable additional time.
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FIGURE 4.19: Efficiency for single-level and multi-level for Dataset 1.

4.4 Summary

In this chapter, we identify four crucial drawbacks of traditional PPM
methods: disregarding the sequence of trajectory, ignoring hierarchical
nature of clustering, not consider spatio-temporal aspects at the same time,
and not considering trajectory path. We propose a new path-based
clustering method based on Traclus to find reference spots (trajectory paths).
We utilise a trajectory clustering approach in order to consider the
sequential nature of trajectory and also use a hierarchical clustering method
to generate hierarchical reference spots. Experimental results show that our
hierarchical approach requires slightly more time than the single-level
approach with a small margin, but generates more reference spots and
periodic patterns that traditional approaches are unable to detect.
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Chapter 5

Hierarchical Semantic PPM from
Spatio-temoral Trajectories

In this chapter, we present the node-based approach with consideration of semantic
background information for PPM from spatio-temporal trajectory. Section 5.1
represents an introduction of this study. Section 5.2 shows the overall framework
and presents the details of node-based approach. The experimental results are
represented and discussed in Section 5.3. In Section 5.4, we present and discuss the
experimental results for hierarchical semantic reference spots and hierarchical
periodic patterns. In addition, we compare this to the path-based approach to
demonstrate that our method in this chapter (node-based approach) outperforms
Traclus (ST) (path-based approach) when we consider semantic background
information. Finally, Section 5.5 shows conclusive remarks.

5.1 Introduction

Periodic patterns exhibit important repeating and regular behaviours of a
moving object at a certain place. According to the literature, existing PPM
approaches for spatio-temporal trajectories suffer from different problems.
Note that these GPS-collected trajectory datasets represent real-world
movement phenomena and thus they are sequentially connected, spatially
placed, temporally recorded, aspatial semantically meaningful,
hierarchically structured, and irregularly sampled. Therefore, PPM from
spatio-temporal trajectories must consider the following special
characteristics of GPS collected spatio-temporal trajectories. They are: (1)
consideration of trajectory sequence in reference spot detection.
Spatio-temporal trajectory is a sequence which is comprised of successively
sampled points. Each sampled point is associated with the previous
sampled point and the next one; (2) simultaneous consideration of spatiality
and temporality features in reference spot detection. A trajectory is a
temporal sequence of spatial locations where each location is associated
with a timestamp describing the movement of an object. Thus, more
effective periodic patterns can be mined when space and time are
considered simultaneously; (3) consideration of background semantic
information in reference spot detection. Note that spatio-temporal
trajectories capture movements of real-world objects, and real-world
phenomena have three dimensions: spatiality, temporality and aspatial
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semantics (Ying et al., 2011). Thus considering the aspatial semantic
dimension in spatio-temporal PPM is of importance in order not to miss any
spatially, temporally and semantically meaningful periodic patterns; (4)
consideration of hierarchical nature of spatio-temporal data due to the
inherent hierarchy of space. More hidden periodic patterns can be mined
when the hierarchical nature of space is considered; (5) consideration of
handling irregular spatio-temporal trajectory data for period detection. In
reality, it is highly impossible that spatio-temporal trajectory data can be
obtained with regular time intervals due to weather conditions, battery
issues, and device malfunctions. Therefore, robust PPM from
spatio-temporal trajectories must be able to manage this irregularity of
spatio-temporal trajectories.

In Chapter 4, we have proposed a path-based approach called Traclus
(ST), which considers both spatial and temporal aspects at the same time in
order to find spatio-temporal concentrations when mining (hierarchical)
periodic patterns. Although this approach can effectively obtain periodic
patterns based on trajectory paths considering the sequence of trajectory, the
hierarchy of space and two important dimensions (spatial and temporal), it
disregards another important dimension aspatial semantic dimension
(descriptive geographical feature information). Spatio-temporal trajectories
are geographical phenomena occurring in the geographical space.
Geographical phenomena have three dimensions: spatial, temporal and
aspatial semantic (Peuquet, 2002; Ying et al., 2011), thus considering the
aspatial semantic dimension in spatio-temporal trajectory mining is of
importance in order not to miss any spatially, temporally and semantically
meaningful periodic patterns.

All these traditional approaches assume that GPS trajectories are regular
trajectories that are characterised by a constant time lag between two
successive recordings. That is, they assume spatio-temporal trajectories are
regularly sampled, and they take a regularly sampled trajectory data as
input. In the real world, spatio-temporal trajectories are irregularly sampled
due to weather conditions, device malfunctions, battery issues, bandwidth
limitations and power issues (Li et al., 2016). These traditional approaches
require a computationally expensive trajectory interpolation method
(Bermingham and Lee, 2017) to make trajectory data regular to employ
Fourier Transform and Autocorrelation (FT&Auto) in order to find regular
periods for references spots.

In this chapter, we propose a node-based hierarchical semantic PPM
from spatio-temporal trajectories. We first detect sequentially, spatially,
temporally, semantically and hierarchically aggregated concentrations from
irregular trajectories using aspatial semantic information from
OpenStreetMap, and compute regular periodic time intervals for these
spatio-temporal concentrations from irregular trajectories.
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5.2 Framework and Algorithm

5.2.1 Framework and Algorithm

FIGURE 5.1: Framework of semantic PPM from spatio-temporal trajectories.

Figure 5.1 illustrates an architecture of our proposed framework for
hierarchical semantic PPM from spatio-temporal trajectories. First, we
extract geographical background semantic information from
OpenStreetMap. This background information includes place id, place name,
place type and geometry. Second, we compute centroids of places using
corresponding geometries of places, and then add them to enrich raw
spatio-temporal trajectories. Third, traditional clustering algorithm
DBSCAN is employed using centroids of places as core points to find
clusters for each place. The output is a semantic trajectory with annotated
place id. In this step, we can also implement HDBSCAN to replace
DBSCAN using the centroids of places as core points to generate
hierarchical reference spots. The output of this process is a set of trajectories
with annotated place IDs. Fourth, spatio-temporally aggregated trajectory
nodes with annotated place id might indicate stops where a meaningful
activity occurs. We cluster these possible stops to form stop episodes based
on a user-specified time threshold. That is, if a user stays in a certain
geographical place (stop) for more than the user-specified threshold, then
we form a stop episode that indicates a meaningful activity in a certain
geographical place. Fifth, each extracted stop episode is matched to a
semantic place using Hidden Markov Model (HMM). Sixth, we apply
Lomb-Scargle periodogram to detect regular periods from unevenly
sampled data for each hierarchical semantic place. Finally, we mine
semantic periodic patterns from single-level relevant places or multi-level
(hierarchical) relevant places in a dendrogram, using the single-linkage
approach merging two semantic places with the smallest distance.

Obviously, there are three key steps in our method, which include stop
episode detection, place matching and period detection. After stop episode



64 Chapter 5. Hierarchical Semantic PPM from Spatio-temoral Trajectories

detection, we match each stop episode to relative semantic places, and then
we can calculate the period for related semantic places. Algorithm 1 shows
the overall procedure of our proposed semantic PPM from spatio-temporal
trajectories for single-level. Algorithm 2 shows the pseudocode of our
proposed semantic PPM from spatio-temporal trajectories for multi-level.

Algorithm 1 Semantic PPM from spatio-temporal trajectories

INPUT: A spatio-temporal trajectory T , and semantic background
information (.OSM file);

OUTPUT: A set of periodic patterns;
1: /* Divide all points into cluster points */
2: Extracts centroids for places;
3: Apply DBSCAN to get clusters C = {c1, c2, . . . , ck} from T and centroids

for places;
4: /* Find stop episode */
5: for each si ∈ ci do
6: S = S ∪ si
7: end for
8: Find stop episodes S = {s1, s2, ..., sn};
9: /* Match stop episodes to places */

10: for each si ∈ S do
11: Match each stop episode in S to places P = {p1, p2, ..., pn};
12: end for
13: /* Detect periods */
14: for each stop episode si ∈ S do
15: Detect periods for place pi that matches with si, and store the periods

in Ti;
16: end for
17: /* Find periodic patterns */
18: for each t ∈ Ti do
19: pt = {pi | t ∈ Ti};
20: Construct a symbolised sequence Q using pt;
21: Mining periodic patterns from Q;
22: end for

5.2.2 Stop Episode Detection

In this section, we give details of how to find stop episodes. First, we use
OpenStreetMap to generate an OSM file. Relevant spatial and aspatial
semantic information can be extracted from this file, including place ids,
place names, place types and coordinates of places, and road networks.
Second, we employ DBSCAN using the centroids of places as core points in
raw spatio-temporal trajectories in order to find trajectory nodes (GPS
points) which are close to places or within the places. The output is a
semantic trajectory with annotated place id. One thing to note is that some
trajectory nodes could have more than one place id assigned. Figure 5.2
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Algorithm 2 Hierarchical semantic PPM from spatio-temporal trajectories

INPUT: A spatio-temporal trajectory T , and semantic background
information (.OSM file);

OUTPUT: A set of semantic periodic patterns;
1: /* Divide all points into cluster points */
2: Extracts centroids for places;
3: Apply HDBSCAN to get clusters HC = {hc1, hc2, . . . , hck} from T and

centroids for places;
4: /* Find stop episode */
5: for each si ∈ hci do
6: S = S ∪ si
7: end for
8: Find stop episodes S = {s1, s2, ..., sn};
9: /* Match stop episodes to places */

10: for each si ∈ S do
11: Match each stop episode in S to places P = {p1, p2, ..., pn};
12: end for
13: /* Generate hierarchical reference spots */
14: Build hierarchical semantic places HR = {hr1, hr2, . . . , hrk} from

dendrogram;
15: /* Detect periods */
16: for each hierarchical semantic place hri ∈ HR do
17: Detect periods for each semantic place hri, and store the periods in Ti;
18: end for
19: /* Find periodic patterns */
20: for each t ∈ Ti do
21: pt = {pi | t ∈ Ti};
22: Construct a symbolised sequence Q using pt;
23: Mining periodic patterns from Q;
24: end for
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illustrates an example. It displays that there is a trajectory
T = {p1, p2, . . . , p14} through three buildings A1, A2 and A3.

FIGURE 5.2: A spatio-temporal trajectory with stop or move annotations (nodes in
black for moves otherwise stops).

After DBSCAN, some possible stops can be found, such as red points p1,
p2 and p3 belonging to A1, yellow and brown points p7, p8, p9, p10 and p11

belonging to A2. Brown and green points p9, p10, p11, p12, p13 and p14

belonging to A3. Note that p9, p10 and p11 are shared by A2 and A3. Thus,
the raw trajectory can be represented as (lon1, lat1, time1, {A1}), (lon2, lat2,
time2, {A1}), ..., (lon4, lat4, time4, {0}), ..., (lon7, lat7, time7, {A2}), ..., (lon9, lat9,
time9, {A2, A3}), ..., (lon14, lat14, time14, {A3}), 0 means there is no place to
match this trajectory node. Third, as emphasised in Chapter 4, the temporal
sequence must be considered in the process of stop episode detection, that
is, all points in one cluster (reference spot or dense region) must be
temporally closed. That is, the sequential order of trajectory nodes should
be continuous, and a sudden increase between two points should not be
permitted. If some trajectory nodes in a cluster satisfy the continuity of
sequence, and the time duration of each of these points is greater than a
user-specified threshold, these points are combined to form a stop episode.
For example, Figure 5.3(a) shows there is a trajectory through two
rectangular shaped places (left and right) where the numbers in circles
represent the order of trajectory nodes and the blue solid circle c1 is the
centroid of the left place. The trajectory nodes in the right rectangular place
present some trajectory nodes between point 9 and point 30. Figure 5.3(b)
shows that we need to identify possible stops first and then cluster those
stops to identify stop episodes. Let us assume that p1, p2, p3, p6, p7, p9, p32,
p33, p34 are possible stops as shown in Figure 5.3(b). Once potential stops are
identified, then use the user-specified time duration to form stop episodes.
In this particular example, let us set a time duration threshold to 30 minutes.
Then, the duration of a set of continuous stops that is less than the
user-provided time duration is not considered to be a stop episode
(meaningful activity). Let us assume that time_duration(p1, p2, p3) is 30
minutes, time_duration(p6, p7) is 45 minutes, time_duration(p32, p33, p34) is
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20 minutes, and time_duration(p9) is 10 minutes. Then, (p1, p2, p3) is a stop
episode, and (p6, p7) is another stop episode as identified in Figure 5.3(c). In
some cases, two stop episodes could be merged together to form one stop
episode when they are spatially in the same place, and temporally close. In
this particular example, two stop episodes E1,3 and E6,7 are in the same
place, and the time duration of these two stop episodes are close enough
(this is application-dependent and is less than a user-specified threshold).
These two stop episodes could then be merged to represent one large stop
episode E1,7 as shown in Figure 5.3(d).

FIGURE 5.3: Identification of stop episodes.

Algorithm 3 illustrates a detailed procedure for stop episode detection.

5.2.3 Place Matching

In reality, there are two topological relationships among buildings: some
places are spatially distinct and distant from each other or some places are
spatially close. With the former, it is relatively easy to match each stop
episode to a place, but with the latter one stop episode could be shared by a
number of places and it is difficult to match the stop episode to a place.
Figure 5.4 illustrates an example where a place A1 is distant from other
places whilst places (A2 and A3), (A3 and A4), and (A5 and A6) are spatially
close to each other. There is a trajectory passing through these places. Since
A1 is distant from other places, it is relatively clear that stop episode 1
belongs to A1. Note that stop episode 2 (green points with red circles) is
generated by A2, and is also part of stop episode 3, which is generated by
A3. In this case, stop episode 2 is for A2 whilst stop episode 3 is for A3.
When considering the sequential order and minimum time duration in
clustering, the clusters are divided into different stop episodes when these
clusters are spatially and temporally close. One example is when episode 3
completely includes episode 2 as shown in Figure 5.4. If all entries (stops) in
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Algorithm 3 Stop episode detection

INPUT: A spatio-temporal trajectory T , (〈x1,y1,t1〉,
〈x2,y2,t2〉,. . . ,〈xm,ym,tm〉,. . . ,〈xn,yn,tn〉,. . . ,〈xk,yk,tk〉), k is length of
trajectory, and semantic background information (.OSM file);

OUTPUT: A set of stop episodes S;
1: /* Divide all points into cluster points */
2: Extracts centroids for places;
3: Apply DBSCAN to get clusters C = {c1, c2, . . . , ck} from T and centroids

for places;
4: /* stop episode finding */
5: for all p ∈ cj do
6: if pm to pn is temporally sequential and t(pn) - t(pm) > threshold then
7: pm, ..., pn is a stop episode;
8: add pm, ..., pn to S;
9: end if

10: end for
11: /* combine stop episodes */
12: for all sej ∈ S do
13: /* combine two continuous stop episodes*/
14: if time_duration(sej , sej+1) < threshold and spatially close then sej

and sej+1 are combined as a stop episode;
15: end if
16: end for

a stop episode are shared by a few places, we will use HMM to match this
stop episode to relevant places. For example, all entries in stop episode 4 are
shared by place A3 and A4, stop episode 7 is shared by A7 and A8. Note
that stop episode 5 and stop episode 6 share some entries (two grey points
with red circles, where not one stop episode fully includes another stop
episode). In this case, we will combine two stop episodes, and then use
HMM to match this whole stop episode to the places.

FIGURE 5.4: Illustration of place matching.
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Hidden Markov Model for Place Matching

FIGURE 5.5: Illustration of place matching using HMM.

HMM (Rabiner, 1986) is used to match places in ambiguous and complex
situations. HMM includes 3 main parts: initial probability; transition
probability; and emission probability. Figure 5.5 shows how to use HMM
for place matching. A series of connected red points (a trajectory segment)
represents a unique stop episode. Initial probability is obtained by the place
where the first stop episode belongs to. For example, in Figure 5.5, if the
first stop episode belongs to A1, initial probability can be obtained as Table
5.1. If the first stop episode is ambiguous, that is, it belongs to A1 or B1, then
these two buildings share the initial probability, 0.5 each.

TABLE 5.1: Initial probability for the example shown in Figure 5.5.

A1 B1 A2 A3 A4 A5 A6 A7 A8
1 0 0 0 0 0 0 0 0
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TABLE 5.2: Transition probability for the example shown in Figure 5.5.

A1 B1 A2 A3 A4 A5 A6 A7 A8
A1 0 0 0.5 0 0 0 0.5 0 0
B1 0 0 1 0 0 0 0 0 0
A2 0 0.5 0 0.5 0 0 0 0 0
A3 0 0 0 0 0.5 0.5 0 0 0
A4 0 0 0.5 0 0 0 0 0.25 0.25
A5 0 0 0.5 0 0 0 0 0.25 0.25
A6 0 0 0 0 0.5 0.5 0 0 0
A7 1 0 0 0 0 0 0 0 0
A8 1 0 0 0 0 0 0 0 0

Table 5.2 shows the result of transition probability. The first stop episode
is ambiguous, it can be shown as (A1, B1), thus, all stop episodes can be
represented by the places, like (A1, B1)→ A2→ A3→ (A4, A5)→ (A7, A8)
→ A1 → A6 → (A4, A5) → A2 → B1. There are 2 paths from A1 to other
places, that is (A1, B1)→ A2 and A1→ A6, thus we put A1→ A2 is 0.5, A1
→ A6 is 0.5. A4 can be represented (A4, A5)→ (A7, A8) and (A4, A5)→ A2,
due to A7 and A8 share the stop episode, thus the probability for A7 and A8
are 1/2 * 1/2 = 1/4 and A4→ A2 is 1/2.

FIGURE 5.6: An example illustrating no intersection in place matching: two
rectangular places A1 and A2 with Ep1,p5 ; abcd are four corners of A1 whilst efgh

are four corners of A2.

The last part is how to compute emission probability. There are two
situations we need to consider and they are whether the stop episodes
intersect with places or not. If not, like an example shown in Figure 5.6, the
stop episode (p1, p2, p3, p4, p5) could belong to either A1 or A2. This stop
episode does not intersect with A1 and A2, thus, the emission probability
for this stop episode belonging to A1 can be computed as follows:

total_time_duration = time_duration(p1, p5), (5.1)
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total_distance =dist(p1p2, ad) + dist(p2p3, ad)+

dist(p3p4, ab) + dist(p4p5, ab),
(5.2)

P (A1) =
time_duration(p1, p2)

total_time_duration
∗ (1− dist(p1p2, ad)

total_distance
)+

time_duration(p2, p3)

total_time_duration
∗ (1− dist(p2p3, ad)

total_distance
)+

time_duration(p3, p4)

total_time_duration
∗ (1− dist(p3p4, ab)

total_distance
)+

time_duration(p4, p5)

total_time_duration
∗ (1− dist(p4p5, ab)

total_distance
),

(5.3)

Where the total time duration (total_time_duration) is computed by the time
duration of a given stop episode, the total distance (total_distance) is
computed by the sum of distances between two line segments (a line
segment with two successive nodes in the stop episode and the nearest line
segment of the rectangular place), dist(., .) computes a distance between two
given points, and P (A1) computes an emission probability for A1.

The total distance between a stop episode and a place is calculated in
Equation 5.2. Note that we choose the nearest edge of a rectangular place for
each segment of a stop episode to compute the distance. For example, we
compute the distance between p1p2 and ad instead of p1p2 and ab. Based on
Equation 5.1 and 5.2, the emission probability between a stop episode and a
place is computed in Equation 5.3. In the process of place matching, the time
duration and the distance between a stop episode and a place are two key
factors because: (1) time duration of each segment (two consecutive entries)
in a stop episode is different. If one segment spends a longer time, then it
means the object stays longer which implies this segment is more important
than other segments from the temporal aspect; and (2) if one segment in a
stop episode is spatially closer to a place than another segment, this segment
is more important from the spatial aspect.

In reality, an object usually enters into a building with a certain purpose
such as shopping or working. Figure 5.7 shows that one stop episode
intersects with places. Figure 5.7 (a) shows there is a stop episode (p1, p2, p3,
,p4, p5, p6) passing through places A1 and A2. Equation 5.4 illustrates how to
compute an emission probability for the stop episode (p1, p2, p3, p4, p5, p6) to
match A1. First, we first find entries in a stop episode which is relevant to
place A1, that is, finding the last stop before entering into place A1 (p4) and
the first stop coming out from A1 (p6). We compute a time duration between
them, which indicates how long the object stays in A1. If it is long, it means
a segment p4p6 is important from the temporal aspect. Spatially, each stop
episode has a centroid, a radius, a starting time, and a duration. The
centroid is calculated by the average spatial coordinate of all the stops in the
episode. After the stop centroid is known, the stop radius is calculated as
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FIGURE 5.7: An example illustrating intersection in place matching.

the distance from the centroid to the most distant stop in the stop episode.
As shown in Figure 5.7, a stop episode circle can be computed by a stop
centroid and a stop radius. The yellow part of the circle which overlaps
place A1 is calculated by the area of the stop episode circle
(Area(stopcircle)) ∩ the area of place A1 (Area(A1)) as shown in
Equation 5.4. In Equation 5.4, w1 and w2 are weights and the sum of these
two weights is 0.5. Note that considering the time duration is also of
importance. Figure 5.7 (b) illustrates that the stop circle completely includes
A1 and A2. In this example, it is necessary to consider both the spatial
relationship and the temporal dimension. Finally, Figure 5.7 (c) illustrates
an extreme situation when there are only two entries in a stop episode and
its stop episode circle completely includes A1 and A2. In this case, we
assign 0.5 to A1 and A2 to make them equally contribute to the stop
episode. After computing initial probability, transition probability and
emission probability, we use Viterbi algorithm (Viterbi, 1967) to find the
most possible sequence of place visitations for each stop episode.

P (A1) = 0.5+w1 ∗
time_duration(p4, p6)

time_duration(p1, p6)
+

w2 ∗
Area(stopcircle) ∩ Area(A1)

Area(A1)
,

(5.4)

where w1 and w2 are weights and the sum of them is equal to 0.5.

5.2.4 Period Detection

Past studies in the reference spot approach (Li et al., 2010a; Li et al., 2012;
Zhang et al., 2018) use the combination of Fourier transform and
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autocorrelation in order to detect regular periods. One limitation of Fourier
transform is that it requires evenly spaced (regular) time series data as
input. However, unevenly spaced data are very often in the real world due
to a variety of reasons such as limitations of instruments and errors in
devices. Therefore, these traditional period detection approaches cannot be
directly used for irregular spatio-temporal trajectories under study. In this
chapter, we utilise Lomb-Scargle periodogram (Lomb, 1976; Scargle, 1982) in
order to handle unequally sampled/recorded and irregular trajectories.

Lomb (1976) proposed an approach to find periods in unevenly spaced
data where he used least squares fits to sinusoidal curves. Scargle (1982)
extended Lomb’s work by defining Lomb-Scargle periodogram. Ruf (1999)
was one of the first to employ Lomb-Scargle periodogram for the analysis of
biological data. He used this technique to detect a circadian rhythm with a
period of 24 hours for alpine marmot, based on telemetric temperature data.
Glynn et al. (2006) used Lomb-Scargle periodogram to detect significant
periodic gene expression patterns. They proved that Lomb-Scargle
periodogram is an effective approach to finding periodic gene expression
profiles in microarray data, especially when data are sampled at arbitrary
time points or when missing data exist at a significant proportion.
Van Dongen et al. (1999) successfully analysed unevenly spaced time series
data of human oral temperatures with a period of 24 hours. Bohn et al.
(2003) applied Lomb-Scargle periodogram for periodogram estimation.

For time series data, considering N observations where xj was taken at
time tj for j = 1, 2, . . . , N, Lomb-Scargle periodogram is calculated by
Equation 5.5:

PLS(f) =
1

2σ2
{

[
∑N

j=1((xj − x) cos(2πf(tj − τ))]2∑N
j=1 cos2(2πf(tj − τ))

+

[
∑N

j=1(xj − x) sin(2πf(tj − τ))]2∑N
j=1 sin2(2πf(tj − τ))

},
(5.5)

x =
1

N

N∑
j=1

xj, (5.6)

σ2 =
1

N − 1

N∑
j=1

(xj − x)2, (5.7)

where x̄ and σ2 are the mean and the variance of the time series data as shown
in Equation 5.6 and 5.7, and τ is specified for each f to ensure time-shift
invariance caused by unevenly sampled (irregular) data, which is shown in
Equation 5.8.

tan(2(2πf)τ) =

∑N
j=1 sin(2(2πf)tj)∑N
j=1 cos(2(2πf)tj)

. (5.8)
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The false alarm probability in Lomb-Scargle periodogram was shown by
Scargle (1982), and the false alarm probability of peaks Pmax in the
periodogram caused by a chance noise fluctuation can be calculated by
Equation 5.9.

Pr(pmax) = 1− [1− exp(−pmax)]N . (5.9)

From the distribution in Equation 5.9, to find a power level z where a
peak must exceed to reach the statistical significance at a given error
probability α (for example 0.01, 0.05) is computed by Equation 5.10

z = − ln[1− (1− α)
1
N ]. (5.10)

Please refer to Lomb-Scargle periodogram (Lomb, 1976; Scargle, 1982) for
more details.

5.3 Experimental Results

This section includes explanation of two real datasets that we use in this
study, evaluation of efficiency and effectiveness for existing approaches and
our method. Note that the effectiveness of reference spots and the
effectiveness of periods are two key steps. Effective periods can be obtained
by high quality reference spots; thus the effectiveness of reference spots
should be explained before the evaluation of effectiveness of periods.
Finally, we show the effectiveness of periodic patterns in this section.

5.3.1 Datasets

Two real datasets (referred to as Dataset 1 and Dataset 2) are used for
experimental studies in this chapter. Due to the nonexistence of
ground-truth dataset for PPM evaluation, the first synthetic real-world GPS
dataset was intentionally collected by authors from 20/9/2017 to
20/10/2017 in Cairns, Australia. This generated a ground-truth benchmark
dataset in order to validate and evaluate our proposed approach against
past studies. There are two thing to consider in this dataset. First, to
measure the effectiveness of proposed algorithm for PPM, authors
intentionally visited a range of places regularly so that the dataset would
not record the author’s normal routines. Second, authors periodically
visited some places with regular time intervals in order to generate some
periodic patterns. Dataset 1 is shown in Figure 5.8(a). The second GPS
dataset is from Geolife 2, which was collected by Microsoft Research Asia.
The Geolife project was compiled by 182 users over a five-year period (from
4/2007 to 8/2012) in Beijing, China. The dataset collected users’ outdoor
movements including daily life, for example, their regular travels between
home and work place, entertainment, sports, study, and shopping activities.
We utilised one of the users from Geolife for our study which was recorded

2https://privamov.github.io/accio/reference/datasets/
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from 24/10/2008 to 23/11/2008 (this is referred to as Dataset 2). Figure
5.8(b) displays Dataset 2. Table 5.3 summarises the main features of these
two datasets under study, which are both GPS data. They are irregular
trajectories and the time period is approximately one month.

(a)

(b)

FIGURE 5.8: Visualisations of Dataset 1 and Dataset 2.

TABLE 5.3: A summary of two datasets under study.

Type Time
Period

Time
Interval

Dataset 1 GPS 1 month irregular
Dataset 2 GPS 1 month irregular

5.3.2 Trajectory Interpolation

Past reference spot approaches (Li et al., 2010a; Li et al., 2012) need an
interpolation preprocessing step to transform irregular spatio-temporal
trajectories into regular ones for period detection. To compare the
effectiveness and efficiency of our method against these traditional
approaches, we apply the most common linear interpolation (Rhee et al.,
2011; Li et al., 2010b) to the existing approaches to conduct subsequent
comparative experiments.
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Efficiency for Linear Interpolation

Figure 5.9(a) and (b) display the running time analysis using linear
interpolation with different time intervals (10, 30, 60 , 90, 120 seconds) for
Dataset 1 and Dataset 2. As the time interval increases, the running time
greatly decreases. It becomes very time-consuming when 10 seconds is
used. Even though we use a long interval, 120 seconds as an interpolation
interval, the running time requires almost 60 seconds and 8 seconds on
linear interpolation for Dataset 1 and Dataset 2.

(a) (b)

FIGURE 5.9: Efficiency analysis with different time intervals in linear interpolation:
(a) Dataset 1; (b) Dataset 2.

Effectiveness for Linear Interpolation

In this section, we show the number of references spots obtained from
Periodica and Traclus (ST) after applying linear interpolation with different
time intervals, 10, 60 and 120 seconds.
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(a)

(b)

(c)

FIGURE 5.10: Reference spots with Periodica for Dataset 1 and Dataset 2: (a) 10
seconds interpolation; (b) 60 seconds interpolation; (c) 120 seconds interpolation.
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(a)

(b)

(c)

FIGURE 5.11: Reference spots with Traclus (ST) for Dataset 1 and Dataset 2: (a) 10
seconds interpolation; (b) 60 seconds interpolation; (c) 120 seconds interpolation.
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TABLE 5.4: The number of reference spots for Dataset 1 and Dataset 2.

Approach Dataset 1 Dataset 2
Periodica (10 seconds) 6 4
Periodica (60 seconds) 4 3
Periodica (120 seconds) 4 3
Traclus (ST) (10 seconds) 7 5
Traclus (ST) (60 seconds) 4 4
Traclus (ST) (120 seconds) 2 3
Our approach 10 10

Figure 5.10 and Figure 5.11 visualise reference spots obtained from
Periodica and Traclus (ST). The main difference between them is Traclus
(ST) can find some dense paths between places whilst Periodica tends to
find some compact clusters. Table 5.4 shows the number of reference spots
from two existing algorithms. Regardless of whether Periodica or Traclus
(ST) is in place, they are both sensitive to the number of trajectory nodes. On
the one hand, it will be relatively fast when a large interpolation interval is
used. However, this large time interval fails to model local variations and
details, and eventually misses some reference spots. On the other hand,
when a small interval is in place, it becomes time-consuming, but it captures
more details and variations, and thus produces more reference spots than
the use of large interpolation interval. There is a trade-off between efficiency
and effectiveness with the use of interpolation interval. Finding the best
interpolation interval is data-dependent and requires several trial-and-error
steps which are difficult and time-consuming.

5.3.3 Efficiency

Figure 5.12 displays the efficiency analysis of three approaches for Dataset 1
and Dataset 2. Although Periodica exhibits better efficiency than Traclus
(ST), Periodica and Traclus (ST) are both inefficient, especially when 10
seconds is used as the time interval. It becomes computationally inefficient.
Even when we use 120 seconds as the time interval, Periodica still spends
114.624196 seconds and 68.748305 seconds for Dataset 1 and Dataset 2,
respectively. Note that, our method does not need an interpolation step, and
it only requires 15.2869 seconds and 4.549142 seconds for Dataset 1 and
Dataset 2, respectively, which is much faster than Periodica and Traclus (ST),
even with the use of 120 seconds as the time interval.
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(a)

(b)

FIGURE 5.12: Comparison of the efficiency of three methods.

5.3.4 Effectiveness of Reference Spots

As previously mentioned in Chapter 3, a reference spot is a dense region
where the moving object frequently visits. The high quality of reference spot
is very important to find useful periodic pattern. In this section, we evaluate
the performance of three algorithms for place extraction. We compare them
in five ways to measure the effectiveness of reference spots: (1) number of
reference spots; (2) spatial compactness; (3) temporal compactness; (4) spatio-
temporal compactness; (5) semantic accuracy.

Number of Reference Spots

Table 5.4 shows that our method can find more reference spots than
Periodica and Traclus (ST), even when 10 seconds as the time interval is
used to find the maximum number of reference spots at the expense of
efficiency. Our approach detects the references spots detected by Periodica
and Traclus (ST) and additionally finds local clusters. Therefore, our
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approach is less vulnerable to false positive than Periodica and Traclus (ST).
One other interesting finding to note is that as the time interval decreases,
Traclus (ST) obtains more reference spots than Periodica. When more local
details and variations are captured and modelled with the use of small
interpolation intervals, it becomes important to consider the temporal and
sequential aspect in order to take sequential variations into account in
reference spot detection. Traclus (ST) tends to generate more reference spots
when a smaller interpolation interval is used.

Spatial Compactness

5.13 shows 10 single-level semantic places that are extracted from the data
owner’s activities and daily life. The green numbers and arrows indicate
i-th place. Table 5.5 lists 10 single-level semantic places of Dataset 1 with
their place names. These are major semantic places where the data owner
visits and spends most time. These places include the data owner’s home,
university buildings for studying, shopping malls for shopping activities
and dining, gym for exercise, Holiday Inn for a part-time job, and RLS for
learning activities. Trajectory nodes in the same semantic place should be
spatially concentrated and close, thus a reference spot with good quality
should exhibit a high spatial compactness and closeness value. The spatial
compactness of a semantic place is calculated by the average distance
between the centroid of place and all points in one reference spot which are
close to or covering the place (Legány et al., 2006), and the spatial
compactness of an approach is the sum of spatial compactness of all
reference spots identified by the approach, which means the smaller average
distance, the higher spatial compactness.

We use a 10 second interval for the interpolation process for Periodica
and Traclus (ST) in order for them to produce quality reference spots. We
test spatial compactness with Dataset 1 since we have the ground-truth for
the dataset. Figure 5.14 shows the superior performance of our approach. In
the figure, x-axis represents i-th semantic place and y-axis shows its
corresponding average distance. Higher average distance exhibits lower
spatial compactness. Most of reference spots obtained from our method
exhibit higher spatial compactness (lower average distance) than Periodica
and Traclus (ST). Not surprisingly, Traclus (ST) exhibits the worst
performance in spatial compactness since it not only optimises spatial
compactness but also considers temporal sequential compactness. Note that
Periodica utilises Kernel function considering spatial densities whilst
ignoring the temporal sequential aspect to find reference spots, and thus it
performs better than Traclus (ST) for all reference spots, and even for
reference spots 2, 3 and 6 where Periodica obtains lower average distance
values than our method. However, in general even though our approach
considers three essential aspects: spatial, temporal and aspatial semantic
information, it outperforms Periodica. The average spatial compactness of
Periodica for Dataset 1 is 0.00165, and for Traclus (ST) is 0.0046, whilst that
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of our method is 0.00043, which demonstrates the superiority of our
approach in this spatial compactness.

FIGURE 5.13: Semantic places in Dataset 1.

TABLE 5.5: Annotations of semantic places.

Number Semantic Places
1 Author’s Home
2 DFO (Direct Factory outlet Shopping Mall)
3 Transportation Office
4 Rusty Market (A Sunday Market)
5 Post Graduate Center (University)
6 Holiday Inn
7 RLS (A toastmaster Club)
8 Gym
9 WoolWorth (Supermarket)
10 Vice-Chancellor Building (University)
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FIGURE 5.14: Measure of spatial compactness with the three methods for Dataset 1
(average spatial compactness: 0.00165 for Periodica; 0.0046 for Traclus (ST); 0.00043

for our method).

Temporal Compactness

(a)

(b)

FIGURE 5.15: Measure of temporal compactness with the three methods for Dataset
1 and Dataset 2 (average temporal compactness: 798420 for Dataset 1 and 730956
for Dataset 2 for Periodica; 690940 for Dataset 1 and 609780 for Dataset 2 for Traclus

(ST); 334990 for Dataset 1 and 423590 for Dataset 2 for our approach.)
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Reference spots should be spatially concentrated and also temporally
aggregated, therefore in this section we measure the temporal compactness.
There are some measures to represent spread, but standard deviation is one
popular and widely used approach to measure spread. Figure 5.15 shows
the measure of temporal compactness with the three methods under study
for Dataset 1 and Dataset 2. Note that we sort the standard deviation values
in an ascending order for better comparison and visualisation. In this figure,
x-axis represents i-th reference spot for each method whilst y-axis shows a
corresponding standard deviation value for each reference spot. Higher
standard deviation exhibits lower temporal compactness. Not surprisingly,
most of the reference spots in Periodica result in higher standard deviation
values than those in Traclus (ST) and in our method. That is, Periodica
performs the worst since it does not consider the temporal sequential aspect
when detecting reference spots. Thus temporally distant points could be
grouped into the same cluster which increases the temporal spread within
clusters. This implies that Periodica could generate false positive reference
spots. Both Traclus (ST) and our approach consider the sequential aspect
producing better temporal compactness. However, our approach
outperforms Traclus (ST) by a great margin as shown in Figure 5.15.
Figure 5.15 (a) displays a temporal compactness graph for Dataset 1 where
the average standard deviation values (temporal compactness) are: 798420
for Periodica, 690940 for Traclus (ST) and 334990 for our approach. Note that
the standard deviations of half the number of reference spots in our method
are lower than those of reference spots in Periodica and Traclus (ST). The
largest standard deviation for a reference spot in our method is still lower
than most of those reference spots in Periodica and Traclus (ST). On the
other hand, Figure 5.15 (b) shows a temporal compactness graph for Dataset
2 where the average standard deviation values (temporal compactness) are:
730956 for Periodica, 609780 for Traclus (ST) and 423590 for our approach.
This clearly demonstrates the superior performance of our approach over
Periodica and Traclus (ST) with regard to temporal compactness.

Spatio-temporal Compactness

Spatio-temporal compactness combines both spatial compactness and
temporal compactness. Since both space and time have different scales, we
first normalise each compactness into the same scale ([0,1]) using the
min-max normalisation in order to avoid the unnecessary scale
effect (Bermingham and Lee, 2017). In this study, space and time are equally
important and the same weight (0.5) is assigned to each of these
compactness values, where the sum of weight values is equal to one. Thus,
spatio-temporal compactness for a reference spot is calculated by the
summation of 0.5 × min-max normalised corresponding spatial
compactness and 0.5 × min-max normalised corresponding temporal
compactness. Thus, spatio-temporal compactness for a reference spot can be
calculated by Equation 5.11. STC is spatio-temporal compactness, SC is
spatial compactness and TC is temporal compactness.
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STC = 0.5× normal(SC) + 0.5× normal(TC) (5.11)

Figure 5.16 displays the spatio-temporal compactness values of the three
methods. Our method obtains the lowest value for each semantic place
when compared to Periodica and Traclus (ST). One thing to note is that
unlike the spatial compactness performance, Traclus (ST) exhibits better
performance than Periodica in spatio-temporal compactness for each place.
This is because Traclus (ST) considers both spatial and temporal aspects.
Furthermore, our approach outperforms Traclus (ST) in this compactness
even though both approaches consider two spatial and temporal aspects
together. The average spatio-temporal compact values for Dataset 1 are:
0.8804 for Periodica, 0.7828 for Traclus (ST), and 0.3497 for our approach.

FIGURE 5.16: Measure of spatio-temporal compactness with the three methods for
Dataset 1 (average spatio-temporal compactness: 0.8804 for Periodica; 0.7828 for

Traclus (ST); and 0.3497 for our approach).

Semantic Accuracy

Since Dataset 1 has a set of semantic true positive and negative places, we
measure semantic accuracy through false positive and false negative ratio.
False positives are ones that algorithms report as stops and visiting places
but are moving rather than actually visiting semantic places. False negatives
are ones that algorithms classify as moving but are actually visiting
semantic places. We set two main parameters of DBSCAN, eps and minpts,
to reduce both false positive and false negative as far as possible. False
Positive Rate (FPR) is the ratio between the number of negative instances
incorrectly classified as positive and the total number of actual negative
instances whilst False Negative Rate (FNR) is the ratio between the number
of positive instances incorrectly classified as negative and the total number
of actual positive instances. F-measure is the harmonic mean of FNR and
FPR (Lv et al., 2016) which can be calculated by Equation 5.12. For Kernel
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function, we set p to 15% as recommended (Li et al., 2010a; Li et al., 2012)
since most parts of reference spots are detected with this value. For Traclus
(ST), as suggested by the authors, we use silhouette coefficient (Rousseeuw,
1987) to generate quality trajectory clusters.

F −measure =
2× FPR× FNR
FPR + FNR

. (5.12)

(a) (b)

(c)

FIGURE 5.17: Performance comparison of the three methods for place extraction: (a)
FPR graph; (b) FNR graph; (c) F-measure graph.

Figure 5.17(a), (b) and (c) show FPR, FNR and F-measure of the three
algorithms for Dataset 1, respectively. For Periodica and Traclus (ST), we
use a 10 seconds interpolation internal to compute FPR, FNR and F-measure
since it produces more and better references spots for these methods than
larger interpolation time intervals. For our method, we apply different eps
and minpts values to observe different performance behaviors of our
approach. In Figure 5.17, x axis represents eps for our approach whilst y axis
shows FPR, FNR and F-Measure. Note that Periodica and Traclus (ST)
exhibit a constant performance behavior across different eps values. In
Figure 5.17 (a), we compare Periodica and Traclus (ST) with our approach
against FPR. Although Traclus (ST) obtains more reference spots than
Periodica, Periodica exhibits a better performance on FPR than Traclus (ST).
Not surprisingly, our approach outperforms Periodica and Traclus (ST) with
all eps and minpts values tested. Figure 5.17(b) shows FNR for the three
methods. Traclus (ST) exhibits an extremely higher FNR than those of
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Periodica and our method. Noted that, Periodica obtains a lower FNR for
certain eps values (0.00011 and 0.00012) than our method, but in general our
approach exhibits a better performance with regard to FNR. Figure 5.17(c)
displays F-Measure for the three approaches. Traclus (ST) exhibits a higher
F-Measure than Periodica and our method. Note that, Periodica shows a
better performance in F-Measure than our approach when we use 0.00011 or
0.00012 for eps and 4 for minpts. Figure 5.17 shows the influence of two
main parameters eps and minpts with our method on FPR, FNR and
F-measure. First, it is clear to see that our method shows a better
performance on FPR, FNR and F-measure than Periodica and Traclus (ST).
The best overall performance on FPR, FNR and F-measure is obtained by eps
= 0.00013, minpts = 5. Second, setting eps to a high value results in a high
FPR since it tends to produce large clusters capturing temporally long
movements whilst setting eps to a small value ends up with a high FNR
since it tends to generate small clusters modelling only temporally short
movements (thus temporally long movements are considered to be false
negatives).

5.3.5 Effectiveness of Periods

Due to the known ground-truth for Dataset 1, in this section, we evaluate
the effectiveness of obtained periods by Lomb-Scargle periodogram and
Fourier transform and autocorrelation with regard to the ground-truth real
periods. Our aim is to prove that although Lomb-Scargle periodogram does
not need interpolation when compared to Fourier transform and
autocorrelation, it outperforms traditional Fourier transform and
autocorrelation for period detection. In order to compare the effectiveness of
period detection between Lomb-Scargle periodogram used in our approach
and the combination of FT&Auto used in (Li et al., 2010a; Li et al., 2012), we
use the same set of reference spots detected by our approach. For the
FT&Auto approach, we generate a binary sequence for each reference spot,
with 1 indicating the object is in the reference spot whilst 0 indicating it is
out of the reference spot. As stressed before, the Fourier transform and
autocorrelation approach only accepts regular time interval as input, thus,
we make a binary sequence with a regular time interval for comparison.
That is, in Figure 5.18, a trajectory starts from 9am, and then the object stays
in place 1 for 30 minutes, then stays in place 2 for 30 minutes, finally, the
trajectory ends at 11:30am. After finding place 1 and place 2 as reference
spots by our method, a binary sequence is generated as 011011110. Next, we
represent the trajectory and also to make it regular. Note that when we use
10 minutes as a time interval, then the binary sequence becomes
0001111001111000. This binary sequence can be used for the Fourier
transform and autocorrelation approach to detect regular periods.

Figure 5.19(a) displays obtained reference spots from our method for
Dataset 1 (indicated by cluster numbers and arrows). The figure clearly
shows that our method effectively finds reference spots for semantic places
that are shown in Figure 5.13. Table 5.6 displays a list of places with
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non-zero periods for Dataset 1. Numbers for references spots in Table 5.6
and Figure 5.19(a) are reference spot identification numbers shown in
Table 5.5. We compare real periods with obtained periods from
Lomb-Scargle periodogram (irregular) and Fourier transform with
autocorrelation. As in the previous experiments, we use 10, 60 and 120
seconds to interpolate binary sequences. Table 5.6 shows obtained periods
from Lomb-Scargle periodogram, and Fourier transform and
autocorrelation. Fourier transform and autocorrelation produces the same
set of periods with 10 and 60 seconds time intervals, which is close to the
ground-truth values. However, its performance deteriorates with 120
seconds, and it fails to produce non-zero periods for some places with 120
seconds as shown in Table 5.6. Lomb-Scargle periodogram performs slightly
worse than Fourier transform and autocorrelation with 10 and 60 second
intervals, but it outperforms Fourier transform and autocorrelation with 120
seconds. Note that, In Table 5.7, Fourier transform and autocorrelation
requires more time as the interpolation interval becomes smaller, and the 10
seconds interval requires over 14 times more time than the 120 seconds
interval, and the 60 seconds interval requires around two times more than
120 seconds. Noticeably, our approach requires around 40 times less time
than Fourier transform and autocorrelation with a 120 second interval but
outperforms it to a great degree. Also our approach produces near similar
results to Fourier transform and autocorrelation with 60 seconds and with
around 80 times less time.

FIGURE 5.18: An example illustrating how to make a binary sequence regular.
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TABLE 5.6: Period detection for Dataset 1.

Place Real
Period
(Hour)

Period1

(Hour)
Period2

(Hour)
Period3

(Hour)
Period4

(Hour)

Vice-Chancellor
Building (10)

168 164 165 165 0

Gym (8) 24 25 24 24 24
RSL (7) 168 171 169 169 169
Holiday Inn (6) 168 163 164 164 0
Post Graduate
Center (5)

168 164 165 165 0

WoolWorth
Shopping
Centre (9)

168 171 170 170 0

1 :Lomb-Scargle periodogram
2 :Fourier transform and autocorrelation (10 seconds)
3 :Fourier transform and autocorrelation (60 seconds)
4 :Fourier transform and autocorrelation (120 seconds)

TABLE 5.7: Efficiency comparison of period detection for Dataset 1.

LSP1 FT&A2 FT&A3 FT&A4

Running Time (seconds) 2.52 1422.86 198.48 99.93
1 :Lomb-Scargle Periodogram
2 :Fourier transform and autocorrelation (10 seconds)
3 :Fourier transform and autocorrelation (60 seconds)
4 :Fourier transform and autocorrelation (120 seconds)
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5.3.6 Effectiveness of Periodic Patterns

(a)

(b)

FIGURE 5.19: Visualisations of reference spots for Dataset 1 and Dataset 2.

We use the same method used in Traclus (ST) to find periodic patterns.
Table 5.8 shows a number of periodic patterns that Periodica and Traclus
(ST) fail to detect for Dataset 1 and Dataset 2. For instance, in Dataset 1, the
data owner regularly goes to the toastmaster club (RLS) to practice English
in place 7, then goes to a supermarket for shopping in place 9. Both place 7
and place 9 have the same time period (171 hours, almost equivalent to one
week), thus, we can get a periodic pattern place 7→0→place 9, where 0
means any point not in the list of reference spots. A periodic pattern place
1→0→place 10 shows that he goes to University (place 10) from home (place
1) for weekly meetings. Note that, there is no period for place 1, but place
1→0→place 10 is still a periodic pattern, because place 10 has an associated
regular period. The data owner always goes to place 10 from place 1. Figure
5.19(b) shows reference spots in Dataset 2 where the right figure displays a
zoomed area for the red circle in the left figure.

We do not have an associated ground-truth for Dataset 2, but we can
infer user’s behaviors. For instance, there is a periodic pattern associated
with place 1 that is a branch of the Chinese Academy of Sciences (CAS). Our
approach finds a regular period with almost 12 hours. It might be this user
comes to this place to work in the morning for a day shift and then leaves
this building after work, and he/she returns to this place again at night for a
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night shift. Furthermore, we can find he/she always goes to place 1 (a
branch of the Chinese Academy of Sciences, CAS) from place 2 (a
conference room), which indicates a regular periodic pattern from a
conference room to the branch office. Note that, place 9 is an apartment
block, and place 3 is a supermarket. There is a regular period of 71 hours for
place 9. That means, he/she goes to place 9 with a 3 days time interval as
he/she needs to do something regularly. We can also find that he/she
always goes to place 3 (a supermarket) before going to place 9. This could
mean that he/she regularly buys things before he/she goes to place 9. The
same scenario for place 3→0→ place 8 is found with a 24 hours regular
period on place 8. Although there is no annotation on the map regarding
this place 8, but we can witness that he/she visits place 8 on a daily basis.

TABLE 5.8: Periodic patterns from Dataset 1 and Dataset 2.

Reference spot period
(Hours)

Periodic
Patterns

Dataset 1 Woolworth (9) 171 7→0→9
Dataset 1 Gym (8) 25 1→0→8
Dataset 1 RSL (7) 171 1→0→7
Dataset 1 Vice-Chancellor Building (10) 164 1→0→10
Dataset 2 CAS (1) 13 2→0→1
Dataset 2 Apartment Block (9) 71 3→0→9
Dataset 2 Building (8) 24 3→0→8

We compare periodic patterns detected by Periodica and Traclus (ST)
using 10 seconds as the time interval against those identified by our
approach. Although Periodica and Traclus (ST) do not consider background
information, we can derive semantic information for some reference spots
based on known background information for comparison. Figure 5.20
shows obtained reference spots by Periodica and Traclus (ST) for Dataset 1.
Figure 5.21 displays reference spots identified from Periodica and Traclus
(ST) for Dataset 2. Table 5.9 shows some periodic patterns from Periodica
and Traclus (ST) for Dataset 1 and Dataset 2.

For Dataset 1, only reference spot 2 from Periodica obtains a correct
period of 167 hours compared to reference spot 6 in Figure 5.19(a). The
periodic pattern 6→0→2 (Periodica) is similar to 1→0→6 (obtained by our
method). The remaining reference spots do not match well with the
semantic places. For instance reference spot 3, it is too widely defined, and it
includes several semantic places, and does not match with one particular
semantic place. Also, as with reference spot 4, it is close to semantic place 3,
but does not match with it. Interpretation of the periodic patterns of Traclus
(ST) for Dataset 1 is not straightforward to interpret them because we
cannot find similar reference spots from known semantic places to compare
against. As shown in Figure 5.20(b), we see reference spots 3, 4 and 5 as
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frequent paths, but they do not completely match with known semantic
places. Similarly, reference spots 1, 2 and 6 are close to some known
semantic places, but they do not coincide with known semantic places.

For Dataset 2, Periodica suffers from the same problem as with Dataset 1.
In periodic patterns 2→0→1 and 1→0→3, the reference spot 1 is too widely
defined and it seems to be equivalent to a combination of reference spots 1,
2, 3, 8, 9 and 10 in our method, and reference spot 3 in Periodica seems to be
equivalent to reference spots 4 , 5 and 6 in our method. This means that
Periodica misses out local variations and local semantic patterns, thus
eventually failing to detect localised periodic patterns. A similar problem
occurs with Traclus (ST) that reference spot 1 is too global and widely
defined, and it corresponds to reference spots 1, 2, 3, 8, 9, and 10 in our
method. Reference spots 3 and 4 cover reference spots 4, 5 and 6 in our
method. This means that our approach detects more localised reference
spots, and able to generate semantically localised periodic patterns.
Whereas Periodica and Traclus (ST) tend to generate large and wide
reference spots that do not match with a single semantic place, but rather
encompass many semantic places while including false negative
semantically meaningless places.

TABLE 5.9: Periodic patterns for Dataset 1 and Dataset 2.

Reference
spot

period
(Hours)

Periodic
Patterns

Dataset 1 (Periodica) 2 167 6→0→2
Dataset 1 (Traclus (ST)) 4 1 4→0→3
Dataset 2 (Periodica) 1 1 2→0→1
Dataset 2 (Periodica) 3 1 1→0→3
Dataset 2 (Traclus (ST)) 1 8 2→0→1
Dataset 2 (Traclus (ST)) 3 41 1→0→3

5.4 Hierarchical Periodic Patterns

This section focuses on finding hierarchical reference spots for PPM.
HDBSCAN is a hierarchical version of traditional DBSCAN which can
handle clusters with different varying densities. Thus, we extend DBSCAN
to HDBSCAN to find hierarchical reference spots and relevant periodic
patterns based on background semantic information. In addition, we still
need to consider sequence for each hierarchical reference spot, therefore we
employ the same method as in single-level to achieve this: sequential order
should increase incrementally and a sudden increase between two points is
not permitted.
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(a)

(b)

FIGURE 5.20: Visualisation of reference spots from Periodica and Traclus (ST) for
Dataset 1: (a) Kernel function; (b) Traclus (ST).

5.4.1 Efficiency

In this section, we compare efficiency on two aspects: one is the whole
procedure of both our method and Traclus (ST) since both approaches are
hierarchical PPM approaches; the other is period detection methods which
used LSP for our approach, and FT&Auto used for Traclus (ST) and
Periodica.

Our method vs. Traclus (ST)

Figure 5.22 displays histograms of time efficiency of the whole procedure
for single-level and multi-level (hierarchical) between Traclus (ST) and our
method with Dataset 1 and Dataset 2. In our method, single-level and multi-
level approaches require around 15 seconds and 65 seconds for Dataset 1,
and take around 5 seconds and 25 seconds for Dataset 2, respectively. With
our approach, the multi-level approach requires slightly more time than the
single-level approach, but it is negligible when compared to their difference
with Traclus (ST). One important thing to note is that our approach requires
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(a)

(b)

FIGURE 5.21: Visualisation of reference spots from Periodica and Traclus (ST) for
Dataset 2: (a) Kernel function; (b) Traclus (ST).

significantly less time than Traclus (ST) which needs an interpolation process
to make irregular trajectories regular. Therefore, our approach is scalable and
well suited to GPS-collected spatio-temporal trajectories of a large scale.

Lomb-Scargle Periodogram VS Fourier Transform and Autocorrelation

Figure 5.23 shows histograms of LSP and FT&Auto with 10 seconds and 120
seconds interpolation intervals, respectively. Not surprisingly, LSP not
requiring an interpolation process only spends around 3 seconds for period
detection on all hierarchical semantic places for Dataset 1 and Dataset 2.
Due to the interpolation process, FT&Auto spends 1084.075 and 837.6898
seconds for Dataset 1 and Dataset 2 using a 10 seconds interval, respectively.
It still takes more than 45 seconds for Dataset 1 and Dataset 2 even in the
use of 120 seconds as a time interval at the expense of reference spot quality
(using this large interval will lead to many false negatives). The time
efficiency of LSP greatly outperforms that of FT&Auto (with 10 and 120
seconds time intervals) with these two datasets, which confirms that LSP is
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(a)

(b)

FIGURE 5.22: Comparison of efficiency for single-level and multi-level between our
method and Traclus (ST): (a) Efficiency with Dataset 1; (b) Efficiency with Dataset 2.

more efficient and well suited for GPS-collected irregularly sampled
spatio-temporal trajectories.

5.4.2 Effectiveness of Hierarchical Reference Spots

As is the case with single-level, because of the known ground truth in
Dataset 1, some effectiveness measures use Dataset 1 to quantitatively
compare the performance of our approach against Traclus (ST) and
Periodica, while others use Dataset 1 and Dataset 2 to provide more
comparative results. As mentioned previously, in single-level, Figure 5.13
displays real semantic places for Dataset 1, and each semantic place is
indicated with an associated number and arrow. Background semantic
names of places are shown in Table 5.5.

Table 5.10 lists some hierarchical semantic places relevant to the
single-level semantic places and also this study. Semantic places 8 & 9 are in
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FIGURE 5.23: Comparison of efficiency for LSP and FT&Auto.

‘Abbott Street Woolworth Building’ where a number of shops are hosted,
places 5 & 10 are semantic buildings of ‘James Cook University’ which is the
main tertiary education centre in Cairns, places 8, 9, & 4 are for ‘Cairns
Rusty Block’ which is located in the centre of Cairns city, places 8, 9, 4, & 7
are in Cairns CBD, places 1, & 2 are in ‘Earlville Westcourt’, places in Cairns
CBD and 3 & 6 form ‘Inner Cairns City’ which becomes ‘Outer Cairns City’
with places in ‘Earlville Westcourt’. All these single-level semantic places
are in ‘Cairns’.

TABLE 5.10: Names of multi-level semantic places for Dataset 1.

Number Semantic Places
(8, 9) Abbott Street Woolworth Building
(5, 10) James Cook University
(8, 9), (4) Cairns Rusty Block
(8, 9, 4), (7) Cairns CBD
(8, 9, 4, 7), (3), (6) Inner Cairns City
(1, 2) Earlville Westcourt
(8, 9, 4, 7, 3 , 6), (1, 2) Outer Cairns City
(8, 9, 4, 7, 3, 6, 1, 2), (5, 10) Cairns

Figure 5.24 displays single-level reference spots (semantic places) for
Dataset 1 and Dataset 2 and their corresponding dendrograms.
Figure 5.24(a) and (c) represent visualisations of single-level reference spots
for Dataset 1 and Dataset 2, respectively whilst Figure 5.24 (b) and (d) show
dendrograms generated by our approach for multi-level semantic places for
Dataset 1 and Dataset 2, respectively. These show that our approach not
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only identifies single-level semantic places, but various multi-level semantic
places as shown in Table 5.10.

(a) (b)

(c) (d)

FIGURE 5.24: Dendrograms of our approach for Dataset 1 and Dataset 2.

Figure 5.25 visualise generated single-level reference spots from
Periodica for Dataset 1 and Dataset 2. Although Periodica does not produce
hierarchical reference spots, we modify it to generate hierarchical reference
spots using the single linkage approach to be comparable to our approach.

In this section, as with single-level, we compare the effectiveness of our
approach against Periodica and Traclus (ST) with regard to: (1) number of
reference spots; (2) spatial compactness; (3) temporal compactness; (4) spatio-
temporal compactness; (5) semantic accuracy.

Number of Hierarchical Reference Spots

We still use a 10 seconds time interval for interpolation in Periodica and
Traclus (ST) to generate a greater number of more fine-tuned single-level
reference spots. Table 5.11 shows the number of hierarchical reference spots
for Dataset 1 and Dataset 2. It confirms our method can find more
hierarchical reference spots than Periodica and Traclus (ST).

Spatial Compactness

In contrast with single-level, the centroid of a hierarchical semantic place is
calculated by the mean of centroids of associated semantic places. For
example, in Figure 5.24(b), single-level semantic places 8 (gym) and 9
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(a)

(b)

FIGURE 5.25: Visulisation of Periodica for Dataset 1 and Dataset 2.

(Woolworth supermarket) are merged to a new hierarchical semantic place
(Abbott Street Woolworth Building), and the centroid of the new
hierarchical semantic place is calculated by the mean of centroids of
semantic places 8 and 9.

Figure 5.26 shows the performance of three methods in spatial
compactness. The x-axis shows hierarchical semantic places whilst y-axis
shows their corresponding average spatial distance. The larger average
distance becomes, the lower the degree of spatial compactness is noted. Not
surprisingly, our method shows higher spatial compactness (lower average
distance) than Periodica and Traclus (ST) for each hierarchical semantic
place. Periodica shows a better performance than Traclus (ST) in spatial
compactness. The average spatial compactness of Periodica is 0.0067,
Traclus (ST) is 0.0211, whilst our method is 0.0038 which demonstrates the
superiority of our method in spatial compactness.
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TABLE 5.11: The number of hierarchical reference spots for Dataset 1 and Dataset 2.

Approach Dataset 1 Dataset 2
Periodica (10 seconds) 5 3
Traclus (ST) (10 seconds) 6 4
Our Method 9 9

FIGURE 5.26: Measure of spatial compactness with the three methods for Dataset 1
(average spatial distance: 0.0067 for Periodica; 0.0211 for Traclus (ST); 0.0038 for our

method).

Temporal Compactness

Hierarchical semantic places should also be spatially close and also
temporally aggregated. We use the standard deviation to measure temporal
compactness for Dataset 1 and Dataset 2. Figure 5.27 shows measures of
temporal compactness with Periodica, Traclus (ST) and our method. Note
that, the standard deviation values are still sorted by an ascending order for
better comparison and visualisation. The x-axis represents the number of
hierarchical semantic places in each method whilst the y-axis shows a
corresponding standard deviation value for each hierarchical semantic
place. The higher the standard deviation value becomes, the lower the
degree of temporal compactness is noted. Although both Traclus (ST) and
our method consider the sequence of trajectory, our method achieves a
higher temporal compactness value (lower standard deviation) for most
hierarchical semantic places. Periodica ignores the sequence of trajectory,
not surprisingly, and it shows the lowest temporal compactness.
Figure 5.27(a) shows a temporal compactness graph for Dataset 1, where the
average of standard deviation is 867370 for Periodica, 818910 for Traclus
(ST) and 772030 for our method. In Dataset 2, the average of standard
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(a) (b)

FIGURE 5.27: Measure of temporal compactness with the three methods for Dataset
1 and Dataset 2 (average temporal distance: 867370 for Dataset 1 and 815600 for
Dataset2 for Periodica; 818910 for Dataset 1 and 699160 for Dataset 2 for Traclus

(ST); 772030 for Dataset 1 and 685128 for Dataset 2 for our approach).

deviation is 815600 for Periodica, 699160 for Traclus (ST) and 685128 for our
method as shown in Figure 5.27(b). Clearly our method has a better
performance than Periodica and Traclus (ST) in temporal compactness.

Spatio-temporal Compactness

FIGURE 5.28: Measure of spatio-temporal compactness with the three methods for
Dataset 1 (average spatio-temporal distance: 0.4842 for Periodica; 0.4446 for Traclus

(ST); and 0.4201 for our approach).

Similar to sing-level, due to different scales in spatial compactness and
temporal compactness, we normalise them into the same scale [0,1] using
min-max normalisation to handle the different scale effect. Space and time
still have the same weight (0.5).
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Figure 5.28 displays spatio-temporal compactness values of three
methods where the x-axis shows semantic places whilst the y-axis
represents a sum of normalised standard deviation value (inverse TC) and
normalised average distance (inverse SC). The higher sum average distance
value becomes, the lower the degree of STC value is noted in the y-axis. Our
method obtains the lowest distance value for each hierarchical semantic
place when compared to Periodica and Traclus (ST). Note that, although
Traclus (ST) obtains lower spatial compactness than Periodica, Traclus (ST)
gains higher spatio-temporal compactness than Periodica, which indicates
Traclus (ST) achieves a better performance than Periodica in spatio-temporal
compactness. The average spatio-temporal distance values for Dataset 1 are
0.4842 for Periodica, 0.4446 for Traclus (ST) and 0.4201 for our method. Our
method is superior to Periodica and Traclus (ST) in spatio-temporal
compactness.

Semantic Accuracy

(a) (b)

(c)

FIGURE 5.29: Performance comparison of the three methods for place extraction: (a)
FPR graph; (b) FNR graph; (c) F-measure graph.

In this section, we still measure semantic accuracy by False Positive Ratio
(FPR), False Negative Ratio (FNR), and F- measure for hierarchical reference
spots. Figure 5.29 (a), (b) and (c) display FPR, FNR and F-measure of three
algorithms for Dataset 1, respectively. Not surprisingly, our method obtains
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a better performance than Periodica and Traclus (ST) in FPR, FNR and F-
measure for each hierarchical semantic place.

5.4.3 Effectiveness of Periods for Hierarchical Semantic
Places

TABLE 5.12: Obtained periods for some semantic places for Dataset 1.

Place Obtained Period (Hour)
Vice-Chancellor Building (10) 164
Gym (8) 25
RSL (7) 171
Holiday Inn (6) 163
Post Graduate Centre (5) 164
WoolWorth (9) 171

TABLE 5.13: Obtained periods for some semantic places for Dataset 2.

Place Obtained
Period
(Hour)

A branch of Chinese Academy of Sciences (1) 13
An apartment block (9) 71
A building (8) 24
A supermarket (3) 23

Table 5.12 and Table 5.13 show some single-level semantic places which
are matched into different semantic places with non-zero periods in Dataset
1 and Dataset 2, respectively. Obviously, not all semantic places have non-
zero periods, thus, there are no periodic patterns for some semantic places
which have zero periods. For instance, there are no non-zero periods for
semantic place 4 in Dataset 1 and semantic place 5 in Dataset 2, thus there are
no periodic patterns for both semantic places. As we mentioned before, if we
consider the hierarchy of space, there might be some hierarchical semantic
places with non-zero periods. After HDBSCAN, we can obtain hierarchical
semantic places, and if these hierarchical reference spots are in some larger
semantic places, such as suburbs and cities, we can match these reference
spots to those larger semantic places.

Table 5.14 shows some hierarchical semantic places and corresponding
non-zero periods. For instance, in Dataset 1, single-level semantic place 4
has no period. In Figure 5.30(a), semantic place 4 (Rusty Sunday Market) is
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TABLE 5.14: Periods for hierarchical semantic places in Dataset 1 and Dataset 2.

Place Period (Hour)
Fig. 5.30 (a) : (8, 9) Dataset 1 23
Fig. 5.30 (b) : (8, 9, 4) Dataset 1 23
Fig. 5.30 (b) : (5, 10) Dataset 1 163
Fig. 5.30 (c) : (8, 9, 4, 7, 3, 6) Dataset 1 21
Fig. 5.30 (c) : (1, 2) Dataset 1 25
Fig. 5.31 (a) : (3, 8, 9, 10, 1, 2) Dataset 2 25
Fig. 5.31 (b) : (4, 5) Dataset 2 175
Fig. 5.31 (c) : (4, 5, 6) Dataset 2 26

(a) (b)

(c)

FIGURE 5.30: Visualisations of hierarchical semantic places using our approach for
Dataset 1.
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(a) (b)

(c)

FIGURE 5.31: Visualisations for hierarchical semantic places using our approach for
Dataset 2.

combined with semantic places (8, 9) (Abbott Stree Woolworth Buidling) in
the dendrogram forming a hierarchical semantic place, ‘Cairns Rusty Block’
(8, 9, 4), and there is a period of 23 hours. This indicates there is a periodic
pattern to ‘Cairns Rusty Block’ with a period of 23 hours. Note that
single-level semantic place 5 and semantic place 10 shown in Figure 5.30(b),
have the same period of 164 hours, thus, the hierarchical semantic place (5,
10) forming a hierarchical semantic place called ‘James Cook University’,
obtains a period of 163 hours which is very similar to the period of
single-level semantic places 5 and 10. This indicates that the data owner
lives in Cairns city, and comes to the university once a week around every
163 hours. In Figure 5.30(c), single-level semantic places 1 and 2 can be
combined as a new hierarchical semantic place, ‘Earlville Westcourt’.
Although there is no period for each of these single-level semantic places, a
period of 25 hours is obtained for ‘ Earlville Westcourt’. This implies that
the data owner periodically comes to ‘Earlville Westcourt’ where the data
owner’s home is located, regularly with around 25 hours period. Note that
it is not possible to detect these periodic patterns with hierarchical semantic
places using traditional approaches, but our proposed hierarchical approach
is able to do so.

In Dataset 2, a set of single-level semantic places (3, 8, 9, 10, 1, 2) forms
‘Zhongguancun Campus of the University of Chinese Academy of Sciences’,
semantic places (4, 5) form ‘Academic Buildings and Restaurants’, whilst
semantic places (4, 5, 6) form ‘Beijing Normal University’. In Figure 5.31(a),
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single-level semantic places 2 and 10 with zero periods can be combined
with semantic places 3, 8, 9, and 1 as a new semantic place (3, 8, 9, 10, 1, 2),
which is with a period of 25 hours. Figure 5.31(b) and (c) show single-level
semantic places 4, 5 and 6 can be combined as two new semantic places (4,
5) or (4, 5, 6). Although there are no periods for single-level semantic places
4, 5 and 6, two periods of 175 hours and 26 hours can be obtained after
merging them.

5.4.4 Hierarchical Periodic Patterns

TABLE 5.15: Hierarchical periodic patterns from Dataset 1 and Dataset 2.

Semantic Place Period
(Hours)

Periodic Patterns

Dataset 1 (5, 10) 163 (1)→0→(5, 10)
Dataset 1 (8, 9, 4, 7, 3, 6) 21 (1, 2)→0→(8, 9, 4, 7, 3, 6)
Dataset 2 (4, 5) 175 (6)→0→(4, 5)
Dataset 2 (3, 8, 9, 10, 1, 2) 25 (4, 5, 6)→0→(3, 8, 9, 10, 1, 2)
Dataset 2 (4, 5, 6) 26 (3, 8, 9, 10, 1, 2)→0→(4, 5, 6)

We use the same approach in Chapter 4 to find periodic patterns. Table 5.15
shows some interesting periodic patterns based on hierarchical semantic
places for Dataset 1 and Dataset 2. In Dataset 1, we know the ground truth,
thus we can interpret the periodic patterns with relative ease. Semantic
places 5 and 10 can be combined as the whole university campus with a
period of 163 hours. A periodic pattern (1)→0→(5, 10) means that the data
owner has a weekly meeting, thus he goes to university once every week
from his place (semantic place 1). 0 means the data owner is not in any
semantic place. Note that, there are no periods for single-level semantic
places 1, 2, 3 and 4. However, if we consider hierarchical semantic places,
semantic places (1, 2) and semantic places (8, 9, 4, 7, 3, 6) can be merged to
form two new hierarchical semantic places, Earlville Westcourt and Inner
Cairns City, respectively. There is a periodic pattern (1, 2)→0→(8, 9, 4, 7, 3,
6) with a period of 25 hours between them. (1, 2) is a part of Earlville
Westcourt, which is a suburban area of Cairns. (8, 9, 4, 7, 3, 6) is covered by
Inner Cairns City. Thus, this periodic pattern actually reveals a repeating
movement between (Earlville Westcourt) and (Inner Cairns City) with a
period of 21 hours.

In reality, considering hierarchical semantic places are of use and
importance in PPM, because (1) a single-level semantic place might have a
zero period, we cannot find a periodic pattern for the single-level semantic
place. However there could exist a non-zero period for higher level
hierarchical semantic places such as a periodic pattern (1, 2)→0→(8, 9, 4, 7,
3, 6). This kind of periodic pattern is of great use but cannot be found with
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traditional approaches; (2) we can use these hierarchical periodic patterns
for better decision-making. For example, urban planners are able to make
an overall plan for allocating limited resources to different areas according
to people’s behaviors. Obviously, periodic patterns for hierarchical semantic
places can help urban planners allocate limited resources fairly across the
region based on people’s periodic movements. In Dataset 2, semantic places
4 and 5 can be combined as a new hierarchical semantic place with a period
of 175 hours. Note that, in Table 5.13, there are no periods for single-level
semantic places 4 and 5. Semantic places 4 and 5 are annotated as buildings,
semantic place 6 is a teaching building, thus, we infer that a periodic pattern
(6)→0→(4, 5) shows the object went to semantic place 4 or 5 for a certain
aim (e.g. visiting friends) after a class in semantic place 6. Another periodic
pattern (4, 5, 6)→0→(3, 8, 9, 10, 1, 2) shows the object regularly goes to (3, 8,
9, 10, 1, 2) with a period of 25 hours, (3, 8, 9, 10, 1, 2) is the University of
Chinese Academy of Sciences and (4, 5, 6) is Beijing Normal University, thus
we infer this person might be a teacher or a student, because he/she always
moves from (4, 5, 6) (Beijing Normal University) to another place (3, 8, 9, 10,
1, 2) (Zhongguancun Campus of the University of Chinese Academy of
Sciences) and back again.

5.4.5 Comparing Traclus (ST) for Hierarchical Semantic
spots in PPM

Even though Traclus (ST) can effectively find hierarchical reference spots for
PPM, this method fails to consider background semantic information. In
this section, we compare hierarchical reference spots from our method and
hierarchical reference spots from Traclus (ST) for PPM with Dataset 1 and
Dataset 2. For a fair comparative study, we extract background semantic
information based on our approach for reference spots from Traclus (ST).
Figure 5.32 shows obtained single-level reference spots from Traclus (ST).
For Dataset 1, reference spots 3, 4 and 5 match with some road segments
instead of any meaningful semantic places. Reference spots 1, 2 and 6 seem
to only partially match with some semantic places, but not entirely match
with them. Therefore, hierarchical reference spots from Traclus (ST) do not
correctly represent semantic places, and thus fail to generate semantic
periodic patterns. Traclus (ST) for Dataset 2, reference spots 1 and 2 match
with some well-defined roads, and reference spots 3 and 4 seem to match
with Beijing Normal University. Figure 5.33 displays some hierarchical
reference spots from Traclus (ST) for Dataset 1 and Dataset 2. Table 5.16 also
shows some periodic patterns which are relevant to these hierarchical
reference spots. In Dataset 1, a periodic pattern 7→0→(1, 2) is not useful,
because reference spot 7 is not a semantic place, but it is just a section of
road. There is no special meaning for this reference spot. In addition,
although a hierarchical reference spot (1, 2) seems to match with the
university, there is a period of one hour for this pattern which is incorrect.
This is due to the fact that Traclus (ST) cannot effectively reveal semantic
places, but rather focuses on repeatedly visited paths. A periodic pattern
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5→0→(3, 4) suffers from the same problem, that is, reference spot 5 is a
section of road. For a periodic pattern (3, 4)→0→(1) in Dataset 2, our
method can find a correct semantic place (Zhongguancun Campus of the
University of Chinese Academy of Sciences), whereas, reference spot 1 from
Traclus (ST) cannot.

(a) (b)

FIGURE 5.32: Visualisations for single-level reference spots from Traclus (ST) in
Dataset 1 and Dataset 2.

(a) (b)

FIGURE 5.33: Visualisations for hierarchical reference spots from Traclus (ST) in
Dataset 1 and Dataset 2.

TABLE 5.16: Obtained periods for some reference spots using Traclus (ST) for
Dataset 1 and Dataset 2.

Reference Spot Period
(Hour)

Periodic Pattern

Dataset 1 (1, 2) 1 7→0→(1, 2)
Dataset 1 (3, 4) 5 5→0→(3, 4)
Dataset 2 (1) 2 (3, 4)→0→(1)
Dataset 2 (3, 4) 8 (1)→0→(3, 4)
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5.5 Summary

Mining periodic patterns from spatio-temporal trajectories is of great
importance since it reveals interesting and regular periodic behaviours.
There is a growing interest in efficient and effective PPM from
spatio-temporal trajectories due to the wide availability of automatic
location collecting devices. In this chapter, we identify the five special
characteristics (sequence, spatio-temporality, semantics, hierarchical nature
and irregularity) of GPS-collected spatio-temporal trajectories for PPM.

We propose a new node-based hierarchical semantic PPM approach
especially designed for spatio-temporal trajectories to successfully meet the
five requirements. Our approach first transforms raw spatio-temporal
trajectories into semantically enhanced stop episode annotated trajectories
by considering aspatial semantic background information from
OpenStreeMap. Our approach applies Lomb-Scargle periodogram to
irregular trajectories in order to efficiently handle irregular trajectories. Our
approach employs HDBSCAN to find hierarchical reference spots. We
conducted various experiments with two real datasets to demonstrate the
efficiency and effectiveness of our proposed approach. We used Geolife
dataset for exploratory mining to identify semantically interesting periodic
patterns whilst we collected our own dataset with ground-truth annotations
(this is due to the unavailability of ground-truth datasets) and used it for
confirmatory mining to evaluate the effectiveness of our approach with
known periodic patterns. In multi-level, our proposed approach is able to
detect interesting hierarchical periodic patterns that cannot be detected by
traditional approaches. These hierarchical periodic patterns could be
potentially used for further cause-effect analysis, decision-making,
hypothesis generation and intelligent planning.
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Chapter 6

Case study : Multi-level Medical
Periodic Patterns from Human
Movement Behaviors

Human movement behaviors could reveal many interesting medical patterns. Due
to the advances in location-aware devices, a large volume of human movement
behaviors has been captured in the form of spatio-temporal trajectories. These
spatio-temporal trajectories could be used to identify those people who periodically
visit medical centres for treatments (patients), working (health professionals) or
other purposes. In this chapter, we introduce a medical PPM framework that
utilises spatio-temporal hierarchical PPM approaches to find single-level and
multi-level medical periodic patterns. We utilise a widely used Geolife dataset to
test the feasibility and applicability of our framework. Section 6.1 introduces the
background of this case study. In Section 6.2, we review previous studies about
medical periodic pattern. Section 6.3 illustrates the framework and propose
approaches for medical PPM from aspatial-temporal trajectory. Experimental
results are demonstrated in Section 6.4. Finally, the last section sets out conclusion
for this case study.

6.1 Introduction

A large number of spatio-temporal trajectories delivers a new opportunity
to analyse the behavior of human movements, and it is a solid candidate to
distinguish those people who regularly visit medical centres for treatments
(patients) and for working (health professionals) from those who not.
Therefore, it could be used to identify a set of patients or health professional
from massive trajectories in order to develop micro marketing or to further
derive periodic patterns from these identified trajectories. For instance, if a
person who periodically visits a medical centre at 10am every Saturday for a
month could be seen as a patient whilst if a person who regularly comes to
the medical centre at 9am everyday could be a health professional working
in the place. Once these patients and health professionals are identified,
then they can be further mined to reveal periodic patterns.

Spatio-temporal PPM could identify who are health and medical centre
related personnel such as patients or health professionals using their
corresponding trajectories, and to find multi-level medical periodic patterns



110Chapter 6. Case study : Multi-level Medical Periodic Patterns from Human
Movement Behaviors

that reveal valuable medical behaviours. There are two main groups in the
domain of medical PPM. One is general PPM, and the other is
spatio-temporal PPM. The former includes PPM in event/sequence (Cao
et al., 2004; Huang and Chang, 2004), time series (Berlingerio et al., 2007;
Froelich and Wakulicz-Deja, 2009; Jiawei Han, 1999; Ilayaraja and
Meyyappan, 2013; Sheng et al., 2006; Yang et al., 2000; Zhang et al., 2007;
L. Zhu et al., 2012) and social networks data (Halder et al., 2017;
Parthasarathy et al., 2006) whilst the latter involves spatio-temporal
trajectories (Cao et al., 2007; Jindal et al., 2013; Li et al., 2010a; Li et al., 2012;
Li and Han, 2014). Traditional studies in PPM in medical contexts fall in the
first category, and they mine periodic patterns from health time series
datasets (Berlingerio et al., 2007; Froelich and Wakulicz-Deja, 2009; Ilayaraja
and Meyyappan, 2013), thus they fail to mine medical patterns from
spatio-temporal trajectories. In Chapter 5, we showed that our approaches
can handle irregularly sampled and noisy GPS-collected trajectories, and to
mine multi-level hierarchical periodic patterns. In this chapter, we propose
a medical PPM framework that utilises cutting-edge spatio-temporal PPM
approaches to identify a set of trajectories that exhibits periodic visits to
medical centres, and also find hierarchical medical periodic patterns.

6.2 Literature Review

There are two major groups in the domain of medical PPM: 1) general PPM,
and 2) spatio-temporal PPM. Past studies in PPM in medical contexts are
based on time series datasets (Berlingerio et al., 2007; Froelich and
Wakulicz-Deja, 2009; Ilayaraja and Meyyappan, 2013). Ilayaraja and
Meyyappan (2013) proposed a method to find frequent occurring diseases in
specific geographical area at a given time period using Apriori-based
technique. Berlingerio et al. (2007) applied time annotated sequences to
discover associative frequent patterns for describing trends of different
biochemical variables along the time dimension. Froelich and
Wakulicz-Deja (2009) applied Fuzzy Cognitive Maps (FCMs) to extract
medical concepts from temporal diabetes data for mining periodic frequent
patterns. One common drawback with these approaches is that they deal
with time series data considering the temporal dimension, but fail to
consider the spatial dimension that indicates ‘where’ periodic patterns
occur. Also, these traditional approaches are limited to single-level patterns
ignoring the inherent hierarchical nature of patterns. In data-rich medical
settings, it is important to effectively find which trajectory (user movement)
is stopping at and visiting to medical centres, and what are their multi-level
medical periodic patterns. For instance, a user ‘A’ is visiting to a clinic at
10am for an hour every morning for a period of one month could indicate
the user ‘A’ has a regular medical treatment everyday for a month to cure a
certain disease. Past studies with time series data cannot find this kind of
spatiality associated periodic pattern.

Table 6.1 compares traditional PPM approaches for medical patterns
from spatio-temporal trajectories. Traclus (ST) and semantics-based
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approach are able to detect hierarchical patterns and both equally and
simultaneously consider spatiality and temporality, thus these two
approaches will be used for this study.

TABLE 6.1: Comparison of traditional PPM approaches.

Fixed period Reference spot Traclus (ST) Semantics
Spatio-temporal X × X X

Irregularity × × × X
Hierarchical × × X X

Medical semantics × × × X
Sequence × × X X

6.3 Medical PPM Framework

Figure 6.1 depicts an overall framework of our multi-level medical PPM
from spatio-temporal trajectories. The framework first takes a set of
GPS-collected spatio-temporal trajectories, and utilises two spatio-temporal
PPM approaches: the path-based approach in Chapter 4 and the node-based
approach in Chapter 5 to identify a subset of trajectories that periodically
visit medical centres, and their corresponding multi-level medical periodic
patterns. In this chapter, a modified version of the path-based approach for
medical PPM is referred to as a spatio-temporal dominant approach whilst
that of the node-based approach is referred to as a semantics-dominant
approach in this chapter.

FIGURE 6.1: Overall framework of medical PPM from spatio-temporal trajectories.

Algorithm 4 shows a modified spatio-temporal dominant approach for
medical PPM whilst Algorithm 5 displays a modified semantics-dominant
approach. In semantics-dominant approach, we first extract medical centres
from OpenStreetMap and then apply our approach in Chapter 5 to find
periodic patterns for medical centres. Different from initial spatio-temporal
dominant approach and initial semantics-dominant approach, we only
extract medical centres from OpenStreetMap for this study which means
our method can extract different semantic places according to different
applications. Lines 8-11 in Algorithm 4 and Algorithm 5 extract reference
spots that contain medical centres for our study.
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Algorithm 4 Spatio-temporal Dominant Approach

INPUT: A spatio-temporal trajectory Traj, (〈x1,y1,t1〉,
〈x2,y2,t2〉,. . . ,〈xm,ym,tm〉,. . . ,〈xn,yn,tn〉, and a set M = {m1, . . . ,mk}
of medical centres;

OUTPUT: A set of medical periodic patterns;
1: /* make spatio-temporal trajectory with regular time interval */
2: Employ Linear interpolation to get the trajectory with a regular time

interval, ti - ti−1 = tj - tj−1 for i 6= j ∈ {1, . . . , n};
3: /* Find reference spots */
4: Extend Traclus to additional three implicit trajectory properties
〈Direction, Speed, Time〉 to find reference spots R = {r1, r2, . . . , rj};

5: /* Extract medical centres from background maps */
6: Build M from background semantic maps;
7: /* Detect periods */
8: for each reference spot ri ∈ R do
9: if ri contains any mj ∈M then

10: Detect periods for each reference spot ri, and store the periods in
Ti;

11: end if
12: end for
13: /* Find periodic patterns */
14: for each t ∈ Ti do
15: pt = {pi | t ∈ Ti};
16: Construct a symbolised sequence Q using pt;
17: Mining periodic patterns from Q;
18: end for

6.4 Experimental Results

6.4.1 Dataset

We use a real GPS dataset from Geolife and Figure 6.2(a) displays one red
trajectory, which is recorded from 26/9/2008 to 10/10/2008, has periodic
visits to medical centres (referred to as a positive trajectory in this thesis)
whilst the other, in black recorded from 25/10/2008 to 10/11/2008, does not
have periodic visits to medical centres in Figure 6.2(b)(referred to as a
negative trajectory). A set of medical centres in the study region is shown in
Figure 6.2(c).
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Algorithm 5 Semantics Dominant Approach

INPUT: A spatio-temporal trajectory Traj, and a set M of medical centres;
OUTPUT: A set of periodic patterns with associated places;

1: /* Find stopping places using HMM */
2: Find stop episodes S = {s1, s2, ..., sn};
3: /* Map matching those stopping episodes to real places */
4: for each si ∈ S do
5: Match each stop episode in S to places P = {p1, p2, ..., pn};
6: end for
7: /* Detect periods for each stopping place */
8: for each place si ∈ P do
9: if si contains any mj ∈M then

10: Detect periods for pi that matches with si, and store the periods in
Ti;

11: end if
12: end for
13: /* Mine periodic patterns */
14: for each t ∈ Ti do
15: pt = {pi | t ∈ Ti};
16: Construct a symbolised sequence Q using pt;
17: Mining periodic patterns from Q;
18: end for

(a) (b)
(c)

FIGURE 6.2: Visualisations of two user trajectories and medical centres: (a) A positve
trajectory; (b) A negative trajectory (c) Locations of medical centres.



114Chapter 6. Case study : Multi-level Medical Periodic Patterns from Human
Movement Behaviors

6.4.2 Efficiency

In this section, we compare the efficiency of the whole procedure for both
methods based on the real dataset. Figure 6.3 displays the efficiency of the
whole procedure for both methods. The left shows the running time of the
semantic dominant approach, the right presents the running time of the
spatio-temporal dominant approach. Obviously, the spatio-temporal
dominant approach spends 1817.557429 seconds whilst the semantic
dominant approach takes 5.060988 seconds for the whole procedure.
Obviously, the latter is much more efficient than the former. The main
reason is that the spatio-temporal dominant approach needs interpolation to
make irregular raw trajectories regular for subsequent period detection.
Note that, the semantic dominant approach does not need interpolation
since it is able to handle irregular trajectories for period detection.

FIGURE 6.3: Efficiency comparison between the spatio-temporal dominant approach
and the semantics dominant approach.

6.4.3 Reference Spots for Positive and Negative Trajectories

Positive trajectories having periodic visits to medical centres are of interest in
this chapter. Thus, only reference spots for the red positive trajectory shown
in Figure 6.2(a) is analysed here as an example. In this chapter, we use a time
interval of 10 seconds to interpolate irregularly sampled raw trajectories for
the spatio-temporal dominant approach. Table 6.2 shows that the semantic
dominant approach can obtain more reference spots than the spatio-temporal
dominant approach for the positive trajectory under study.

6.4.4 Medical Periodic Patterns for Positive Trajectories

In this section, we present medical periodic patterns using both algorithms,
and attempt to infer movement behaviors. Although the spatio-temporal
dominant approach does not take background semantic information into
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TABLE 6.2: Number of reference spots for the positive trajectory in red shown in
Figure 6.2(a).

Approach Number of reference spots
Spatio-temporal dominant approach 9
Semantic dominant approach 16

account in the process of reference spot detection, we can post-match
detected reference spots to nearest medical centres. Figure 6.4(a) displays 9
reference spots for the positive trajectory shown in Figure 6.2(a) whilst
Figure 6.4(b) displays 10 reference spots for the negative trajectory using the
spatio-temporal dominant approach. The 9 reference spots for the positive
trajectory contain medical centres exhibiting frequent visits to medical
centres whilst the 10 reference spots for the negative trajectory do not
intersect with medical centres.

(a) (b)

(c) (d)

FIGURE 6.4: Obtained reference spots for the positive trajectory and negative
trajectory shown in Figure 6.2 Using the spatio-temporal dominant approach: (a)
The positive trajectory; (b) The negative trajectory; (c) A zoomed area for (2,3,4,5,6)

the green circle in (a); (d) A zoomed area for the blue circle in (b).
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(a) (b)

(c) (d)

FIGURE 6.5: Obtained reference spots for the positive trajectory shown in
Figure 6.2(a): (a) Using the semantic dominant approach; (b) A zoomed area for
the red circle; (c) A zoomed area for the blue circle; (d) A zoomed area for the green

circle.

Figure 6.5 shows obtained reference spots for the positive trajectory
shown in Figure 6.2(a) using the semantic dominant approach. The arrows
and numbers indicate i-th reference spots. Figure 6.5(b), Figure 6.5(c) and
Figure 6.5(d) show zoomed areas for the red circle, blue circle and green
circle in Figure 6.5(a), respectively.

TABLE 6.3: Periodic patterns for the positive trajectory using the spatio-temporal
dominant approach.

Reference spot Period (Hours) Periodic patterns
8 2 9→ 0→ 8
7 9 6→ 0→ 7

Table 6.3 shows identified periodic patterns for the positive trajectory
shown in Figure 6.2(a) using the spatio-temporal dominant approach. As
mentioned earlier, this method fails to take background semantic
information into account, thus detected reference spots are not necessarily
matched with medical centres. In this case, two periodic patterns detected
are shown in Table 6.3. Since the spatio-temporal dominant approach
focuses on finding periodic paths, reference spots 6-9 do not necessarily
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match with the medical centres shown in Figure 6.2(c). For the periodic
pattern 9 → 0 → 8 and 6 → 0 → 7, reference spots 6-9 are parts of roads as
shown in Figure 6.4. Thus, the spatio-temporal approach is not well suited
for medical PPM for our study.

TABLE 6.4: Periodic patterns for the positive trajectory using the semantic dominant
approach (PU: Peking University; SD: Student Domitory).

Reference spot Period (Hours) Periodic patterns
Building 5 8 PU Hospital 6→ 0→ Building 5

Building 15 3 0→ Building 15
Medical centre 14 23 SD→ 0→Medical centre 14

Table 6.4 shows that obtained periodic patterns using the semantic
dominant approach. In Table 6.4, a medical pattern, Peking University
People’s Hospital 6 → 0 → Building 5, shows a periodic pattern from
reference spot 6 (Peking University People’s Hospital) to reference spot 5
(Building 5). Reference spot 5 (a building) has a period of 8 hours, which
means the user goes to reference spot 5 (Building 5) every 8 hours. 0 means
the moving object is not in any reference spot. Another periodic pattern is
reference spot 13 → 0 → reference spot 14, where reference spot 14 is
matched to a medical centre whilst reference spot 13 is a student dormitory.
This medical periodic pattern shows the user goes to the medical centre
from the student dormitory periodically with a period of 23 hours. In
addition, 0→ reference spot 15 presents a periodic pattern for reference spot
15 (a building) with a period of 3 hours.

Based on these periodic patterns, we can infer this user’s health-related
movement behaviors. There are two possible inferences: (Peking University
People’s Hospital 6→ 0 → Building 5) this user needs a periodic medical
treatment at Peking University People’s Hospital and goes to Building 5 at a
period of 8 hours. The user might have a treatment for few hours at hospital
and comes back to Building 5 for resting; (Student dormitory → 0 →
Medical centre 14) this person could be a student living in a student’s
dormitory, he/she needs to go to a medical centre regularly at a period of 23
hours. The student might need to have a light treatment everyday at the
medical centre.

To sum up, the semantic dominant approach is able to classify a user’s
movement (trajectory) into a positive trajectory or a negative trajectory, and
also it finds medical periodic patterns for the positive trajectory. These
medical periodic patterns could be used for hypothesis generation or
further inference analysis.
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6.4.5 Hierarchical Medical Periodic Patterns for Positive
Trajectories

(a)

(b)

FIGURE 6.6: Obtained dendrogram and hierarchical reference spots for the positive
trajectory shown in Figure 6.2(a) using the spatio-temporal dominant approach: (a)

Dendrogram; (b) Hierarchical reference spots.

Figure 6.6 displays hierarchical reference spots obtained from the spatio-
temporal dominant approach. Figure 6.6(a) shows an obtained dendrogram
which illustrates the hierarchical relationship between reference spots. Such
as reference spot 2, 3, 4, 5 and 6 can be merged as a reference spot (2, 3, 4, 5,
6).
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TABLE 6.5: Hierarchical periodic patterns for the positive trajectory using the spatio-
temporal dominant approach.

Reference spot Period (Hours) Periodic patterns
(8, 9) 6 7→ 0→ (8, 9)

(2, 3, 4, 5, 6) 4 1→ 0→ (2, 3, 4, 5, 6)

Table 6.5 shows identified hierarchical periodic patterns for the positive
trajectory shown in Figure 6.2(a) using the spatio-temporal dominant
approach. As mentioned earlier, this method fails to take background
semantic information into account, thus detected reference spots are not
necessarily matched with medical centres. In this case, two hierarchical
periodic patterns detected are shown in Table 6.5. Since the spatio-temporal
dominant approach focuses on finding periodic paths, similarly with
single-level reference spots, two hierarchical reference spots (2, 3, 4, 5, 6) and
(8, 9) still do not match with the medical centres shown in Figure 6.2(c). For
these two periodic patterns, two hierarchical reference spots are still parts of
roads as shown in Figure 6.6(b). Thus, the hierarchical spatio-temporal
approach is not well suited for medical PPM for our study.

Figure 6.7(a) shows an obtained dendrogram for the semantic-dominant
approach.

TABLE 6.6: Hierarchical periodic patterns for the positive trajectory using the
semantic dominant approach.

Reference
spot

Period Periodic patterns

(Hours)
(15, 16) 6 14→ 0→ (15, 16)
(10, 11, 12,
14)

12 13→ 0→ (10, 11, 12, 14)

(10, 11, 12,
13, 14, 15, 16)

12 (5, 6)→ 0→ (10, 11, 12, 13, 14, 15, 16)

(5, 6, 7, 8, 9) 8 (10, 11, 12, 13, 14, 15, 16)→ 0→ (5, 6, 7, 8, 9)

Table 6.6 shows some meaningful multi-level periodic patterns that can
match with certain medical centres. A hierarchical reference spot (15, 16) is
comprised of a conference room (sometimes, it is used for informal
conference), a supermarket and a restaurant. We can call this area
non-working area. A single reference spot 14 is one of the medical centres in
Peking University Health Science Centre. A hierarchical reference spot (10,
11, 12, 14) includes student dormitories, teaching building and medical
centre 14, we can call this area the main activity area. A hierarchical
reference spot (10, 11, 12, 13, 14, 15, 16) can be called the whole Peking
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(a) (b)

(c) (d)

(e) (f)

FIGURE 6.7: Obtained dendrogram and hierarchical reference spots for the positive
trajectory shown in Figure 6.2(a) using the semantic-dominant approach: (a) An

obtained dendrogram; (b) - (f) : Hierarchical reference spots.

University Health Science Centre. A single reference spot 6 represents the
main building in Beijing People’s Hospital whilst a hierarchical reference
spot (5, 6) is still a part of Beijing People’s Hospital. A hierarchical reference
spot (5, 6, 7, 8, 9) can be called the whole Beijing People’s Hospital,
including inpatient department. A multi-level periodic pattern 14→ 0 →
(15, 16) might show the user went to (15, 16) for food, shopping or informal
meeting from spot 14 with a period of 6 hours. In periodic pattern 13→ 0→
(10, 11, 12, 14), a single reference spot 13 is a laboratory, this is very normal
that the user has a repeating behavior among teaching building, laboratory
and medical centre, which shows the user needs to have a repeating activity
among teaching building, laboratory and medical centre with a period of 12
hours. We can call this area a medical area. A periodic pattern (5, 6)→ 0→
(10, 11, 12, 13, 14, 15, 16) and (10, 11, 12, 13, 14, 15, 16) → 0 → (5, 6, 7, 8, 9)
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shows that the user has repeating activities between Beijing People’s
Hospital and Peking University Health Science Centre with a period of 12
hours or 8 hours. Note that, we do not show periodic patterns for
hierarchical reference spots (7, 8) and (2, 3), because there are no periodic
patterns for these two hierarchical reference spots. In addition, we can infer
that the user is a student or teacher not a patient by periodic patterns with
hierarchical reference spots. Interestingly, we cannot infer this with periodic
patterns with single-level reference spots as discussed in last section.

6.5 Summary

A spatio-temporal trajectory captures a user’s movements and is a solid
candidate for mining medical periodic patterns. In this chapter, we
introduce a PPM based framework for medical pattern detection. We utilise
two spatio-temporal PPM approaches to find medical periodic patterns, and
demonstrate the feasibility and applicability of the proposed framework in
medical settings using a real-world spatio-temporal movement trajectory
dataset. Experimental results reveal that the proposed method is able to
classify a user’s trajectory into a positive trajectory (frequently visiting
medical centres) or a negative trajectory (not frequently visiting medical
centres), and also able to detect medical periodic patterns for the positive
trajectory. These detected medical periodic patterns can be used for
hypothesis generation, cause-effect analysis, and other data mining
processes. More experimental results with diverse datasets would further
validate the robustness of our approach. The semantic dominant approach
is a solid approach for our purpose, but this could be further optimised by
tightly incorporating semantic medical information into the algorithm. In
addition, we extend the single-level reference spots to multi-level reference
spots for hierarchical PPM. Experimental results demonstrate that our
framework is able to distinguish those who periodically visit medical
centres from those not, and also find single-level and multi-level medical
periodic patterns revealing interesting single and hierarchical medical
behaviours.
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Chapter 7

Conclusion

In this final chapter, we summarise the entire research and discuss its contributions
to existing studies in Section 7.1. We present our future work in Section 7.2.

7.1 Summary of This Research

In this section, we make a brief summary of each chapter of this thesis.
Existing approaches for PPM ignore six key features of spatio-temporal
trajectories, 1© the sequence of trajectory; 2© spatial and temporal aspects
together; 3© the hierarchy of space; 4© irregular trajectory; 5© background
semantic information. 6© trajectory path. In Chapter 4 and 5, we propose a
relative approach to solve these problems. Finally, in chapter 6, we present a
case study to illustrate how medical periodic patterns can be applied in a
health context.

• Chapter 4: In this chapter, we introduce the initial work of our
research, a path-based approach to identify four drawbacks from
existing PPM: then follow with the four specific drawbacks: 1© its
negligence of the sequence of trajectory; 2© its failure to jointly
consider spatial and temporal aspects together; 3© its failure to
consider the hierarchy of space. 4© its failure to consider trajectory
path. Thus, we propose a path-based approach Traclus
(spatio-temporal) to address these four drawbacks in the process of
PPM. First, we use a trajectory clustering method based on Traclus to
find reference spots. This method inherently considers the sequential
nature of trajectory automatically. Second, apart from spatial property,
we take a triple 〈direction, speed, time〉 into account when finding
reference spots. There are two reasons for this: these properties can
cover both the explicit and implicit features of trajectory in order to
obtain better behavior patterns, and also these properties can show
periodicity, such as, a moving object visiting a place regularly or at a
specific time, can show similar speed and direction in the same road
segment. Third, to obtain hierarchical reference spots, we apply
HDBSCAN, a hierarchical version of DBSCAN, which can generate
clusters with varying densities. We modify HDBSCAN to cluster line
segments in order to generate hierarchical reference spots. Finally,
experimental results indicate our approach was able to obtain more
meaningful and effective periodic patterns than existing methods in
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single-level. In multi-level, the hierarchical method was able to obtain
extra reference spots and periodic patterns with a little extra time
when compared to single-level. In addition, the results of this chapter
are periodic patterns among trajectory paths as opposed to trajectory
nodes.

• Chapter 5: In this chapter, we propose a different PPM approach to
our previous work that considers all the five crucial drawbacks of
existing spatio-temporal PPM approaches. First, we find stop episodes
which can consider the sequence of trajectory. Second, when we match
each stop episode with geographical semantic places, we not only
match each stop episode spatially but also temporally. Third, in the
path-based approach in Chapter 4, we employ an interpolation
method to make the input trajectory regular and then find reference
spots. There is no doubt that additional sampling points reduce
efficiency in the process of mining. To avoid this, we apply
Lomb-Scargle periodogram to find periods for each place from
irregular raw trajectories. Fourth, in Chapter 4, we only get regular
and repeating behaviours of a moving object, such as reference spot 1
→ reference spot 2 over 24 hours. Reference spot 1 and reference spot
2 are not attached to any aspatial semantic background information.
Thus, it is hard to infer object’s regular and repeating behaviors
without semantic background information. we cannot answer the
questions like “Why does this moving object go to that location? And
what is his/her aim?” Based on this, our approach enriches raw
spatio-temporal trajectories with meaningful semantics information
(consider aspatial semantic background information) provided by an
external aspatial semantics database (OpenStreetMap). Then, we
match each semantic episode (stop episode) to real world places. Fifth,
the hierarchy of space is considered in the presence of contextual
aspatial semantics information. We employ HDBSCAN for this aim.
To validate the effectiveness and efficiency, we use two real datasets:
that one is with known ground truth to evaluate the effectiveness of
our approach, and the other is to explore semantically meaningful and
interesting periodic patterns. Experimental results demonstrate that
our approach achieves better performance than existing approaches.
In addition, it is interpretable and effective when periodic patterns are
enriched with semantic information. In this work, we can obtain
periodic patterns with place type semantics instead of simple
designation or number notation. For example, a periodic pattern,
home→ university with 24 hours, indicates that a moving object goes
to university from home every day. It is much more readable and
understandable than A→ B with 24 hours.

• Chapter 6: In this chapter, we present a case study of mining medical
periodic patterns with real world datasets. We apply our path-based
approach and node-based approach to medical domains to find
positive and negative medical trajectories, and experimental results
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demonstrate the capability and applicability of our methods to
medical domains.

7.2 Future Work

There are several directions for future work.

1. In PPM from spatio-temporal trajectories, where they exhibit repeating
and regularly moving behaviors, the PPM research for spatio-temporal
trajectories requires a large volume of trajectory data to reveal more
reliable patterns. Thus, further experiments with larger and longer
term trajectories could be conducted to evaluate the validity of our
approach;

2. It is important to understand periodic patterns, thus a post-processing
of periodic patterns using visualisation would improve the
understandability of periodic patterns. To the best of our knowledge,
there is no systematic visualisation approach proposed in this area.
Future work could investigate a scalable visualisation approach to
help users understand those detected periodic patterns;

3. PPM is for mining patterns from a long and single trajectory, and it is
not designed for multiple trajectories. However, finding periodic
patterns from multiple trajectories is of interest in some scenarios, but
it involves complex computations. In future work, we need to extend
our approaches to handle these multiple trajectories to mine periodic
patterns from multiple trajectories. The aim of this is to find associated
periodic patterns among different users. For example, this approach
could reveal a periodic pattern such as Bob and John share an identical
university lecture timetable, and both visit the same restaurant at the
same time. It is evident that they have the same repeating and regular
moving behaviors. Furthermore, it reveals they may have a specific
relationship, as a couple or as friends;

4. This thesis provides interesting experimental results in medical
domains to prove the applicability of our approaches. Since our
approach is a general purpose framework that could be applied to
diverse disciplines. More case studies in diverse disciplines would
further validate the usefulness of our approaches. For instance,
according to moving object’s periodic behaviors, people can access to
some specific services, such as if a person regularly goes to real estate
agent, some relevant service providers can push some related
information to him/her. It is useful for him/her to make decisions for
further planning.
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