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Abstract

The colonisation of the Pacific is an important mtea in human dispersal for which
chronological control is primarily provided by radarbon {'C) dates. In this context, the ability to
reliably date shellfish is important because algue dating materials, such as charcoal and kamee,
typically highly degraded. However, the interprietatof shell**C results is not always black and
white because’C is not evenly distributed throughout the maringi@nment, with estuarine taxa
more likely to incorporate terrestrial sources afbon. Regions where water has percolated through
limestone bedrock provide an additional problenesiancient carbon is introduced into the estuarine
waters. This “hardwater” has been put forward tpl@x old 3500 cal. BP results from culturally
significant shells recovered from the site of UBapot (Bapot-1) on the island of Saipan (Petchey et
al. 2017). While arguments for (Carson and Hung72@hd against (Rieth and Athens 2017) early
settlement dates remain polarised, little attentias been given to the idea of change in the marine
C reservoir over time, or to possible species-dipeuifsets in shelf‘C.

In this paper, we further develop a tri-isotope rapph using“C, §'°C, §'°0 to identify
carbon source. To investigate which shellfish aogenprone to erroneous ages we have selected shell
taxa that cover a range of nearshore environmentsnonly found in Pacific archaeological sites;
including Anadara antiquataGafrarium pectinatunf{both estuarine) an@ridacna(marine/reef). To
test the possibility of change over time we extdradating of the site beyond the earliest occopati
layers to deposits considered to post-date thevttie mid-Holocene drawdown in sea-level.

Keywords: Reservoir offset; Radiocarbon dating;dvaaters; Mariana Islands; Colonisation

1. Introduction

The exact age of first colonisation of the Maridslands (Figure 1) is debated, with arguments split
between early (pre-3500 years BP; Hung et al. 2@htson 2014, Carson and Hung 2017) and late
(3200 years BP; Petchey et al. 2017, Rieth andmsti2017) hypotheses. This duality hinges entirely
on disparate interpretations of the same radiocadataset, in particular, whether early shell dates
from the site of Unai Bapot (Bapot-1) are, or ac, raffected by hardwater. The younger age has
significant implications for cultural developmentraughout the region (Rieth and Athens 2017,
Fitzpatrick and Jew 2018) because the oldest monerimto Western Micronesia and Lagita
movement into the West Pacific are now thoughtdouo at a similar time; this, in turn, suggests a
very rapid dispersal of people through these regiemvithin 200 years. It also raises the possybilit
that the formative years of Lapita in the Bismaregion are even later than currently thought, which
has consequences for theories about cultural dewelot in that region and beyond (Montenegro et
al. 2016, Rieth and Athens 2017). Moreover, recsggphias possibly the longest ocean voyage of its
time (over 2000 km) we are no closer to understandihy these seafaring people subsequently and
inexplicably remained in isolation in the Marian&s more than 2000 years (Huegal. 2011; Vilar

et al. 2012; Fitzpatrick and Callaghan 201Buring this time the islands were affected by hydro
isostatic and tectonic changes which resulteddnla75m drop in sea-level — only stabilising ambun

1
The Lapita Cultural Complex stretched from the Bistk archipelago to Samoa (around 3500 to 240G yagw) (Green 1979).



1500 years ago (Dickinson 2000, Athens et al. 2004hn and Carson, 2015). The impact of this
process is considered to be evident in the dedlireertain shell taxa found in early midden depsosit
(Butler 1995, Amesbury 2007, Carson and Hung 2017).

Clearly, our understanding of the most fundameaiaracteristics of the initial movement
into Remote Oceania is poor and requires re-evialuathe solution to this dilemma is to establish
the exact timing of first settlement and subsegaetvities throughout the Mariana Archipelago and
beyond. This means our understanding of ‘i@ variation of the most common element in these
archaeological sites — shell — has to be improkéateover, with flood levels predicted to rise by
1.98m by 2070 (https://coast.noaa.gov/digitalcesmties/CNMI-SLR.html) and reefs in the region
now threatened by sedimentati(van Beukering et al. 2006) it is important that fuly understand
the impact such changes have on these small isleog)stems.

The isotopic composition of mollusc shells primarieflects the environment they live in.
Shells recovered from archaeological sites, theeefgive us a way to study paleoclimate and paleo-
environmental change that is directly correlatedhionan activity (Prendergast and Stevens 2014).
Molluscs are widely distributed across a wide raofyenvironments, occur at all latitudes, and offer
greater potential for high-resolution chronometaitd geospatial analysis than most other paleo-
environmental proxies used today. They are, howewsz of the most complex proxies to interpret;
in the more restrictive coastal lagoon and esteasettings, carbon from a range of sources can
impact on the shells, resulting in both marine aamcestrial inputs anfC ages that appear either too
young or too old. Careful selection of shell taxgpending on habitat and diet can help, but species-
specific diversity and the ability of some animtdsadapt to a variety of environmental conditions
leads to problems when interpreting shell datese €wncern is the presence of bicarbonate ions —
generated by seepage through calcareous stratach wéin become incorporated into the shells of
animals living in the water, and result iftC ages that are too old. This possibility for Saipeas
recognised more than 50 years ago by the radiosadzon at Chicago. They suggested a 1500-year
correction to an oyster shell date (C-669; 3479+B®&) from the site of Chalan Piao (Cloud et al.
1956:4), but this was never investigated further.



“ | Mariana Islands

e

§ ISEA

¢ Salpan
‘

Guam L")‘

o Block A
—=] Ulakatal 010

NG

Bapol

o

Figure 1. Map of the North-western Pacific showigavations undertaken at Bapot-1 on Saipan in
the Mariana Archipelago.

Petchey and Clark (2011) suggested that it mayodssiple to predict “hardwater” offsets in
shellfish by combiningg®®0 and§**C with the **C results; in the tropic8®O records change in
salinity (less-saline waters are typically terr@stm origin), while thed**C value of marine shells
predominantly reflects water source (low produtyivterrestrial waters have deplet&€ values).
Moreover, they suggested that isotopic change timer may reflect changing nearshore conditions in
regions affected by deforestation, tectonic movdnoensea-level change (Petchey et al. 2013:77).
Further support for these hypotheses was obtaihéukessite of Bapot-1, on Saipan in the Mariana
Islands, where estuarifénadara antiquatashells from the earliest archaeological deposiis'fC
offsets of up to 300 years, aBtfC values significantly different to reef dwellingimals (Petchey et
al. 2017). Petchey et al. (2017:123) also suggesiadthis hardwate'C offset could be variable in
response to a drop in sea-level over the last 48@6s as indicated by a change in the archaeologica
shellfish remains, and the palynological and geickigevidence (Butler 1995, Dickinson 2000,
Amesbury 2007).

While changing'C reservoirs and multiple carbon sources may seefate obvious
problems for our ability to develop precise sheldiocarbon chronologies for archaeological,
geological and paleo-environmental research, therse may in fact be true. Identification of isatop
anomalies may prove to be immensely useful for d@suing environmental change, while sites
affected by hardwater should increase our abilitydetect™’C offsets that would normally go
undetected when evaluating animals that are inlibgjum with the global mariné“C reservoir.
Moreover, by studying specific taxa that adapt &dew conditions, rather than those that have narrow
habitat tolerances, we can track change over tirhes paper presents the first systematic study of



marine and estuarirtéC variation for bivalves from Bapot-1, and thetfstudy investigating isotopic
response to sea-level changes over the first 18865yf Mariana settlement.

1.1. Mariana Islands: environmental and archaeobadjievidence.

The site of Bapot-1 is located in Lao Lao Bay oe fioutheast coast of Saipan, Northern
Mariana Islands (Figure 1). To the east of the kayst limestone bedrock dominates, while volcanic
soils and bedrock are found to the west (Cloud L98®st of the available fresh groundwater on
Saipan comes from the Mariana Limestone aquiferwater level of which can fluctuate in response
to tide and other changes in sea-level (Carrutt8p@onventional understanding of reservoir offsets
(Stuiver et al. 1986, Petchey et al. 2008) woulggest that water in Lao Lay Bay — well washed by
northeast trade wind-generated waves (Houk et0dl1:8) — should have dissolved inorganic carbon
(DIC) *C values in equilibrium with the open ocean. Howewveodern salinity profiles across the
bay display a freshwater content that changessiporese to tides and rainfall (Houk et al. 2011:4-5)

Saipan has undergone both tectonic and hydro-tswstea-level change. Dickinson
(2000:737) estimated an average of 1.75m emergehtee island since the mid-Holocene due to
hydro-isostatic uplift in the interval between 47&td 2250 BP. Athens and Ward (2005:53), refined
this observation using radiocarbon dates and pallewes from Lake Susupe, southwest Saipan.
They placed the highstand at c. 3,000 BP, follolgdapid sea-level fall after c. 2,500 BP, finally
reaching modern heights by about 1,500 years agdat& of 2455-2298 cal. BP (68% prdb.)
obtained from sediments on top of coral (the Mehizestone that formed during the mid-Holocene
highstand in Guam), indicated that reef buildind daclined and coastal infilling had begun (Athens
and Ward 2005:26). This lowering sea-level almastainly impacted on the local aquifers and has
been cited as a causal factor behind changing swilemains in archaeological sites (Carson and
Hung 2017), of note being an early dominancAmdidara antiquatdollowed byStrombusspecies c.
AD 1000 (Butler 1995, Graves and Moore 1985; Leidem1980). Amesbury (2007) attributed this
shift to associated changes in the distribution nadngroves, which would have impacted
detrimentally on thénadara antiquatdiving in these silty habitats.

1.2. Shell Isotopes

Most shellfish precipitate their shells in equilibon with the isotopic signature of DIC from the
waters they live in (marine carbona8C = 0-2%.; Gupta and Polach 1985:114). This can kewe
be complicated by “vital effects” (i.e., growthetliand respiration) and specific habitat charasties
(McConnaughey et al. 1997; Lorrain et al. 2004)péiticular, a small amount of carbon in shells
(<10%} is dietary in origin (McConnaughey et al. 1997, Gdnnaughey and Gillikin 2008). For
most studies, these effects are assumed to hdeeslignificant impact on th&*C ands'®0 since
DIC dominates and dietary sources of carbon arecdilp in equilibrium with the consumer’s
environment. It is, therefore, assumed that ingureshwater within an ocean environment should
result in the depletion of shéfic and*®0 (Swart et al. 1983; Gat 1996:241, 255; Goeweat.2007;
McConnaughey and Gillikin 2008), while increaseddurctivity and CQ atmospheric absorption in
reef/intertidal locations may result in enrichmant®C (Weber and Woodhead 1971; Watanabe et al.
2006).

The impact ort“C, however, is potentially more dramatic. The stefacean DIC (down to
around 200 m depth) has an apparé@tage that is, on average, 410 years older thasciassd
terrestrial materials (Stuiver et al. 1986). Consadly, in estuarine environments the introductbn
terrestrial sources of DIC or particulate carboonfrthe absorption of atmospheric £@r the
incorporation of freshwater from rivers, typicaftlgsults in small shifts towards younger ages @. -4
years for 10% contribution from “modern®C) (Stuiver and Braziunas 1993; Southon et al. 2002
Guilderson et al. 2000). This shifAR) from the global marine reservoir is often undeble in
archaeological chronologies. Conversely, 10% “dé4@”added to a modern shell will increase the
age by c. 770 years. Old ages, caused by hardeatke upwelling of“C-depleted water, is a long-
recognised area of concern (Stuiver and Braziurg3,1Dye 1994, Ingram and Southon 1996,

2 This date includes a regional reservoir correctiR) of 115+ 50 **C years. Coral debrimfilling the coral gave a conventional
radiocarbon age (Beta-129463) of 2800 +&Dyears BP (Athens and Ward 1999:141). UsingMReof -55+ 27 1“C years calculated for
marine DIC from the Bapot-1 research, Beta-129488 calibrates to 2760-2400 cal. BP (95% prob.).

% Considerably uncertainty in this value exists. MoBaughey and Gillikin (2008:292) note that est@aatnge up to 90%.



Spenneman and Head 1998, Anderson et al. 2001etGullet al. 2006, Petchey and Ulm 2010,
Petchey and Clark 2011, Holmquist et al. 2015).sLeell-studied is the increase mobilization of
aged carbon caused by human disturbance (Butnanz614).

Old shell**C ages can be caused by a multitude of factorydimg the incorporation of
older “natural” shell deposits, disturbance of lgyand upwelling of ancient marine waters. In the
Pacific c. 25 percent of islands are limestone mastone composite (Nunn et al. 2016). However,
the exact magnitude of error introduced by hardwisteconsidered to be dependent on the rate of
water exchange with the open ocean (the “residdime”) and therefore on current flow, the
presence of bays and lagoons, freshwater hydrodogl geology (Gomez et al. 2008, Petchey et
al. 2008) and cannot be predicted by the presefdanestone alone. Moreover, the impact on
shellfish depends on the habitat and dietary peefars of specific species and their tolerances for
low salinity waters (Ascough et al. 2005, Petchegl€2012, 2013, Holmquist et al. 2015, Lindauer e
al. 2017). Estuarine shellfish are more likely te mfluenced by hardwater because of their
preference to inhabit sheltered bays with reducatemwexchange with the open ocean, but many
mollusc species are tolerant of a range of wateditions (Reimer 2014, Hogg et al. 1998) and it can
be difficult to determine what samples to date @whdtAR is appropriate.

In environments where extraneous influences*@h are possible, shed'®0 and™C in
combination with*’C can help identify the cause of this offset. Timsltiproxy approach to age
determination is especially important when evahgtiardwater impact becaus€C approximates
that of the source rocks (i.6°C = 0%o) and is therefore masked, but decreaseuityadind negative
8"°C values can be used to identify any non-marintuénice on shellfish and, with older than
expected™C ages, confirm a hardwater effect. Using a ranigeroxy data, short-term localised
changes td“C have been documented in estuaries due to antjeafinterference (Sabatier et al.
2010), rainfall (Culleton et al. 2006, Philippsena¢ 2013), changes to groundwater drainage and
land usage (Gémez et al. 2008), upwelling (Petotexal. 2008b), and to infer hardwater input
(Petchey and Clark 2011).

Longer term shifts in mariné'C between 4000- and 1900-years BP have been littked
changes in ocean circulation (Yu et al. 2010, Hual.€2015, Komugabe-Dixson et al. 2016), but are
poorly studied over the period of human settlentdrihe Pacific. Consequently, modern validation
studies and reservoir correction values (Hogg .€1298, Cook et al. 2004, Petchey and Clark 2010)
may not be applicable to archaeological materiafodunately, the use of archaeological “paired”
terrestrial (charcoal) and marine samples to tesergial marine offsets (e.g., Clark et al. 2010,
Carson 2010, 2017) and Bayesian approachARtcalculation (Macario et al. 2015) are complicated
by site disturbance, poorly consolidated sandy sigpand beach slopes with areal spread, variation
in hydrology and coastline morphology (Petcheyl.e2@17).

2. Methodology

In complicated situations whesR is likely to change regionally, over time and fayxa, a new
methodology for dating sites is essential. Herérwestigate the potential of a two-tiered approtach
dating the site of Bapot-1. The first section irtiggges stable isotope variation in shell over tiifiee
second involves selection of samples for datingetham the hypothesis th&C ands'®0 can help
detect estuarine versus marine influence on staails be used to establish a marine and estuARne
offsets for the site.

2.1. Sample selection

Shells fors'*C, 5'%0 and'“C analysis were obtained from Unit 4, Block A exatons
undertaken in 2008 (Figure 2). Radiocarbon ages fias unit range from 510 BP to 3810 BP (Clark
et al. 2010). Shells were selected from archivedpbas excavated by 10cm spits that followed the
deposition layers; Layer | (Cat #22; depth 48/50e8Y, Layer Il (Cat #40, 49; depth 80-100 cm),
Layer IV (Cat #67, 76, 84; depth 110-140 cm), LaydCat #100, 108, 124, 132, 141; depth 150-210
cm), Layer VI (Cat #149; depth 210-220 cm) and Layk (Cat #163, 166, 169, 174; depth 230-260
cm). No samples from Layer Il were analysed. Thdduso remains are discussed by O’Day (2015).
The species selected includ&afrarium pectinatum Anadara antiquata Quidnipagussp. and



Tridacnasp. [bivalves]:Trochussp. (probably Tegulidae familyJurbo sp.,Monetaria monetarig
andCanarium mutabulfs[gastropods].
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Figure 2:Stratigraphy of Block A, Bapot-1, North profile il 1-Unit 3).

Several of these taxa are considered problemati¢'® analysis especially in limestone
locations because of the ingestion of carbonatberedirectly or indirectly via algal grazing. Tles
include Quidnipagussp. (Tellind) (Dye 1994, Hogg et al. 1998}ypraeasp. (Dye 1994)Strombus
(Petchey et al. 2012, 2013Jrochusand Turbo spp. (Petchey et al. 2015). The interpretatio’'©f
results obtained from these algal grazing and defeeding shellfish is complex; ingesting c. 10%
ancient carbonate could impact on their age eveugth their shell carbonate primarily comes from
the marine waters they live in. Thus, their shedtopes would appear marine but the shell could sti
be influenced by old sources of carbon. Althoughigenous sediment found in Lao Lao Bay is
derived from volcanic sources (Randall 1991), litnese rocks are exposed on the coast less than 1km
from Bapot-1. We have included these taxa in&{® and"C analyses for comparison purposes,
but do not consider here al{ results on these animals.

Gafrarium and Anadara occupy similar environmental nichessafrarium spp. are
preferentially found in inner-lagoon and high ikl regions within seagrass beds and mangrove
forests (Baron and Clavier 1992; Tebano and Pa2@f)0:9-10). A. antiquataare found in waters
that are regularly exposed and submerged by titlesy also prefer less saline estuarine waters, but
the taxa as a whole occupy niches in many diffeeemironments (Broom 1985:6-7). However, as
individual species they do not tolerate change guoitkly die once the environment changes
(Davenport and Wong 1988hafrariumis much more tolerant of changing environmentalditons
and has a lower salinity tolerance thamadara(Davenport and Wong 1986, McMahon 2003:488).
Tridacninae are found in reef locations and prefdirstrength, clear seawater and will quickly die i
exposed to brackish or freshwater for long perilis 1999, Hart et al. 1998). Petchey and Clark
(2011) theorised that adult Tridacninee may haveatdel (i.e., younger}'C values because in
addition to filter-feeding they also obtain enefgym photosynthetically derived carbohydrate via a
symbiotic relationship with zooxanthellae. Unforately, we were not able to identify species in the
Bapot-1 specimens, but all are small (<10cm) aecpasbably juveniles.

To obtain a representative indication of isotogicead across the estuarine and reef/marine
environment, five shells of each taxa were samfitan every second spit f&°0 and$**C analysis.

4 Also known aypraea monetaria.
5 Also known asStrombus mutabulis mutibulis.



After stable isotope evaluation, specific shell pis were selected fofC based on a prediction of
estuarine or marine origin. Twenty-nine shell saraplere taken fof'C analysis from throughout
Unit 4 (layers I, IV, V and VI). Clark et al. (A®) and Petchey et al. (2017) have already reparted
number of'“C dates from Layer VII of Unit 4 (230-260cm), ather 2 charcoal dates were also
obtained for comparison from Layer V (180-190cmil &layer IV (130-140cm). This brings the total
number of dates from Unit 4 to 42. The total inésghort-lived charcoal (n=2), charcoal of unknown
species (n=3), bird bone (n=Bnadara(n=17),Gafrarium (n=13), Tridacha(n=5) and a&onusring
artefact (n=1).

2.2. Pretreatment

Bivalve shell is grown by successive addition dticem carbonate from the umbo (hinge)
to the ventral (lip) margin. Gastropod growth stat the apex with the youngest material at thé she
lip and several years of growth is concentrateth@callus and columefigoroviding well-averaged
samples (Culleton et al. 2006:396). Ideally, datithg last few growth rings of bivalves or the
callus/columella of gastropods will provide tH€ age at death. Where possible a sample c. 10 mm-
long and 4 mm-wide was taken parallel to the mdligiof each shell using a Dremel® 3000 Rotary
Tool fitted with a diamond wheel. This selectiomgess is designed to avoid seasonal variation and
give an average value comparable to the decadalutes of the'“C calibration curves (Culleton et
al. 2006, Petchey et al. 2008). Many of the gasiicggamples from Bapot-1 were fragmentary and it
was not possible to follow this sampling protoacolall instances. All shells sampled are naturally
deposited as aragonite — avoiding isotopic diffeesrbetween aragonite and caléite.

2.3. Stable Isotope Analysis.

8"°C andd™0 values were measured at the University of Waikesiag a cavity ring-down
CO, isotope analyser (CRDS) (Los Gatos Research mo@&\-@6). Phosphoric acid (102%) was
added to each ground shell sample (0.42-0.5 mgyaodve CQ. Samples were heated (€2 >1 hr)
to promote hydrolysis before stable isotope anslyBressure corrections were made using an in-
house standard of ground pipi shé&hphies australis IAEA (International Atomic Energy Agency)
standards NBS-18 (calcité’C=-5.014%0,3"°0 =-23.2%0) and NBS-19 (limeston&-C=1.95%,
5'%0=-2.20%0) were used to construct a two-point iseteplibration curve and further evaluated
using BDH §'%C=-24.95%0,5"%0 =-13.99%0) and Sigma>{’C=-14.18%0,5"°0 =-20.07%.) synthetic
CaCQ standards (Beinlich et al. 2017, Table 2). A drdtrection was made after every two samples
using 1500 ppm C{reference gas$°C ands'®0 values are reported as %o V-PDB, and the standard
deviation of 0.4%. was determined using sample myeibility of duplicate measurements. Where
possible all5*®0 and3™C results previously reported in Clark et al. (2040d Petchey et al. (2017)
run by IRMS (Isotope Ratio Mass Spectrometry) wereneasured by CRDS to ensure consistency.

2.4. Radiocarbon Dates

Samples for“C were prepared in the AMS facility at the Radibear Dating Laboratory,
University of Waikato. Shell (< 3 mm fragments, 85-mg) were etched in 0.1M HCI at 80°C to
removec. 45% of the surface (Burr et al. 1992), and thetetefor recrystallization by Feigl staining
(Friedman 1959) to make sure only aragonite wasentein the shell. CQwas collected from shells
by reaction with 85% HPQ, and cryogenically separated €®as reduced to graphite with, kit
550°C using an iron catalyst. Pressed graphite arzdysed at the Keck Radiocarbon Dating
Laboratory, University of California (Southon andnos [2007] and references therein). Six primary
Oxll standards were used to set up and tune the Ay¢&m as well as to normalize {i@/*C ratios
(c.f., Santos et al. 2007). One blank [in-houser&armarble blank (Fm = 0.002)] and an in-house
shell (Tridacna) standard (Fm = 0.686; c. 3028-y&f) were used for background correction and

® Callus is the thick, shiny secondary deposit @llsiround the opening. Columella is the centrdlrpaxis of the shell.

" A difference ind'®0 between calcite and aragonite occurs in soméfishehat deposit CaC{n both forms (Rick et al. 2006). This has
been attributed to differential equilibrium condiis between the interior and exterior of the stather than to shell chemistry (Keith et al.
1964).



quality control. All*'C results were fractionation-corrected using thinemAMS &"°C values which
are not reported.

3. Results

259 shells were sampled f§0 and™*C. Results are summarised in Table 1 and Figure 3
with individual values given in Supplementary Table and 2. Radiocarbon dates from Unit 4 are
given in Supplementary Table 3 and summarisedgnr€i5. All radiocarbon dates were calibrated in
OxCal v4.3 (Bronk Ramsey 1995) using the Marined@® kntcall3 calibration curves (Reimer et al.
2013).
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Layer | I 111 IV vV VI VI
Species Anadara antiquata

Average &C (%o) -1.55 - -1.22 -1.22 -0.43 -0.47 -0.46
§°C Standard Deviation 0.82 - 0.85 1.01 0.71 0.73 0.88
Average &0 (%o) -0.24 - -1.22 -0.88 -0.36 0.07 -0.35
§'°0 Standard Deviation 0.50 - 0.31 0.77 0.57 0.88 0.63
Number of Samples 2* - 7 10 10 5 23%**
Species Gafrarium pectinatum

Average §°C (%o) 1.58 - 1.44 0.42 1.46 2.27 1.00
§"°C Standard Deviation 0.47 - 1.17 1.91 0.10 0.78 1.46
Average &0 (%o) -1.44 - -1.92 -1.41 -1.41 -1.30 -1.31
&'°0 Standard Deviation 0.62 - 0.58 0.61 0.62 0.29 0.48
Number of Samples 5 - 10 10 10 5 5
Species Quidnipagus palatam

Average §°C (%o) 0.93 - 0.39 -0.29 -0.21 0.07 -0.61
&“C Standard Deviation 1.15 - 1.37 0.21 0.73 1.40 0.51
Average O (%o) -1.37 - -1.52 -1.07 -0.81 -1.50 -1.20
§'°0 Standard Deviation 0.50 - 0.74 0.21 0.76 0.41 0.33
Number of Samples 5 - 5 2 5 5 5
Species Tridacna sp.

Average §°C (%o) 2.94 - - 2.38 2.09 - 1.89
&°C Standard Deviation 0.27 - - 0.37 0.38 - 0.13
Average &0 (%o) -0.58 - - -0.74 0.25 - -0.39
§'°0 Standard Deviation 0.37 - - 0.51 0.31 - 0.31
Number of Samples 2 - il 3 1 - 1
Species Monetaria monetaria

Average §°C (%o) 1.01 - 2.65 1.29 2.33 - 2.20
§"°C Standard Deviation 0.46 - 0.90 0.64 0.90 - 1.10
Average &0 (%o) -0.43 - -0.36 -0.50 -0.11 - -0.94



§'°0 Standard Deviation 0.38 0.44 0.30 0.52 0.80
Number of Samples 1 4 4 10 10
Species Canarium mutabulis

Average §°C (%o) 1.36 2.04 1.29 1.44 1.97
§°C Standard Deviation 1.20 0.76 0.79 0.94 0.95
Average &0 (%o) -0.63 -0.19 -0.76 -0.16 0.0
§'°0 Standard Deviation 0.41 0.47 0.47 0.55 0.70
Number of Samples 5 6 10 14 10
Species Trochus sp.

Average §°C (%o) - 2.34 3.86 1.85 1.95
§"°C Standard Deviation 0.41 0.90 0.54 0.36
Average &0 (%o) 0.12 -0.55 -0.69 0.08
&'°0 Standard Deviation 0.30 0.80 1.01 0.39
Number of Samples - 1 3 4 1
Species Turbo sp.

Average §°C (%o) 3.19 3.55 3.21 2.80 3.89
&"°C Standard Deviation 0.35 0.70 0.59 0.96 0.49
Average &0 (%o) -0.14 -0.10 -0.10 -0.52 -0.13
& **0 Standard Deviation 0.34 0.78 0.46 0.68 0.52
Number of Samples 5 9 10 13 3

Table 1: Averaged™*C and3*®0 and associated standard deviations for eachtshalirecovered from layers | to VII.
* 14C dates on both samples indicate they do not aigifrom this layer and probably come from layert® WII.

** Tridacnawas found in this layer but none were availabteaftalysis.

** Additional Anadarashells were sampled from Layer VI to try and itifigrshells with highes**C values.

Disturbance in the top c. 1.5m of the site (lay®sand above) presented difficulties when
evaluating change ifO and**C over time. However, pockets of indurated samdt &ncountered in
Layer Il and increasing in induration downwardsotigh VI and VII, would have limited mixing
between earlier and later activities. This is sufgmbby ceramic finds within these layers (Winter
2015); thin red-slipped pottery from carinated jargluding some “Achuago Incised” and “San
Roque” sherds, were found in layers V, VI and ¥Thick-walled, red-slipped ceramics and grey
thick-walled ceramics from flat based trays starappear in the upper levels of Layer IV (c. 150cm)
(Winter 2015:174, Figure 59). Increasing quantitighick-walled/red ceramics start to appear in
layers Il and II, but only a handful of early tinare ceramics were recovered (Winter 2015; Table 3)
indicating minor upward displacement of this eanlgterial. We, therefore, conclude that these lower
layers are uncontaminated by younger material amdbe used to evaluate hardwater and species-
specific offsets.

Shellfish taxa also change over timfnadara antiquatanumbers drop significantly from
Layer Il (100cm) upwards, and are rare by Lay& Values in Layer | [4.2% of shells in layer], 25
valves [18%] in Layer Ill, 109 valves [12%] in LayB/, 521 valves [27%] in Layer V; 185 valves
[26%] in Layer VI, and 108 valves [21%] in Layerl)/(O’'Day 2015). Throughout the sequence, the
number of individual specimens (NSIP) of gastropaald bivalves tend to show a similar trend with a
trough at c. 170-190cm (lower spits of Layer IV).cAange was also found in the upper levels of
Layer IV (110-140cm) where bivalves — primariBafrarium spp. — become dominant (Figure 4),
while shellfish numbers generally drop by half (@P2015:182). The possibility that a high
proportion of the shell material in the upper lay@ayers Il to 1) could have been re-depositexnhir
the earlier layers, was not apparent uftl dates were obtained. Consequently, the following
evaluation of shellfish isotopes and magnitudeastitvater offset concentrates on layers V to VII.

8 San Roque decoration consists of stamped circlesu#@go ceramics may be slipped in red, black df; betoration consists of parallel
incised lines in rectilinear or curved patternsuaic the neck of the pot with spaces filled withhgted circles or punctuations. Both styles
had lime filled decoration and similar vessel stlsapeound bottoms with small carinatiorésid everted rims. The relationship between
both styles is unclear, but Rainbird (2004:82-88)sidered it likely that San Roque ceramics werenger because the decorative elements
continue into the later ceramic period.
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Figure 4: Shellfish number of individual specimgh8SP) for all units, Bapot-1. A) Change over
time inAnadarashells. B) Change over time in bivalves relativgastropods (univalves).

3.1. Layers V to VIi

The gastropodsdanarium mutabulisTrochussp., Turbo sp., andMonetaria monetaripare
found in sandy and rocky shore sub-tidal and remfesenvironments, and are herbivorous animals
that could potentially ingest sediment (Poutier88,9Dumas et al. 2017). TR*C values ofTurbo
and M. monetariashells are enriched by 1-2%. relative to ocean weatdues (3.99+0.96%. and
2.27+0.95%o0 respectively; see Figure 3), in keepiuity) reported enrichment for shells from lagoons
with high productivity (Romanek et al. 1992)rochusand C. mutabulishave lower averagd-C
values (1.87+0.37%0 and 1.63+0.92%o. respectivelyer€&hs no obvious change between layers V to
V11, though3*C values for all the gastropod taxa tend to be maar@ble than the bivalves (Table 1)
and may reflect diet, seasonality, daily change@ated with phytoplankton bloom and decay,
habitat preferences and/or possible age-relatefgrpreces (adultgersusjuveniles). The gastropod
80 values cluster around -0.39%. indicating a coasisand more saline habitat temperature for
these animals.

The Tridacnaspp. results (average = 1.91+0.14%o) are also hitjtae the ocean waté°C.
JuvenileTridacnaget most of their metabolic carbon from filter de®y, so it is unlikely that there
was any significant influence from atmospheric,G@® is possible in larger clan?0 values are
also uniform (average = -0.07+0.45%0) and suppatmtin in a marine habitat.

Overall, the3'®0 values forA. antiquataaverage -0.30£0.56%o (ranging from -1.67%o to
0.94%0); similar to the reef shellfistAnadara are the most®C depleted of all shellfish studied
(average = -0.45+0.75%0; ranging from -1.45 to 1.§1%his may be explained by their tendency to
favour mangrove locations where increa&@ifrom the decay of organic matter could have tedul
in more negatived>C values; only one individual out of 38 hadddC equivalent to the average
ocean value (1.3-1.7%o) for this location (Wk-456t6m Layer VII; 8°C = 1.61+3.5%0,6'%0 = -
0.11+4.0%o).

The isotope composition @afrarium pectinatunis very different to the other bivalves. The
5'°0 values (average = -1.35+0.42%0) are indicativies$ saline waters. TI’C value ranged from
-0.99%o t0 2.72%o (average = 1.55+1.13%0), with 11 ofi20 shells sampled havingd&’C above
1.7%o. Quidnipagushave similard'®0 values (average = -1.17+57%o) @afrarium but lowerd'*C
(average = -0.25+86%o; ranging from -1.45%. to 2.31B&lptive to the average ocean value, with
only one value above 1.3%.. These taxa are fourndanse sandy environs (Poutiers 1998), and have
deposit-feeding behaviours which may be responéiblthe observed'*C.

Using the average ocealC value of 1.3-1.7%o. (after Tagliabue and Bopp 28} divider
between “estuarine” and “marine” water DIC values selected for dating two “estuaring.
pectinatum(Wk-45922,5C = -0.99%0; Wk-459045"*C = 0.97%0) and two “marineG. pectinatum
valves (Wk-459195"C = 2.23%0; Wk-459035"°C = 2.09%0) and one indeterminate (Wk-45888,
&"°C = 1.47%0)G. pectinatumvalve. SixA. antiquatashells have previously been dated from these
lower layers (Clark et al. 2010, Petchey et al.73Gind all havé™C values below the ocean average
and are considered here to be “estuarine” (see=Thlind Figure 5). We obtained a further thkee




antiquata’C dates withd"°C values ranging from the lowest (-1.45%o, Wk-4561®)the highest
available (1.61%., Wk-45616). Twbridacnashells considered to represent marine water dondit
were also dated; Wk-45892 from Layer ¥%C = 2.09%.) and Wk-45928 from Layer V&'(C =
1.89%0). A previously date@onussp. ring (Wk-23771) has &°C value of 0.57%. but is excluded
from this comparison. This selected division betwe®rine and estuarine DIC may be too low given
the likely seawater-shell (aragonite) enrichmentstrells (Romanek et al. 1992) and a decline (<1%o)
in modern marine surfad®>C DIC caused by the burning of fossil fuels in 118 century onwards
(the Suess effect) (Bohm et al. 1996).

Three charcoal dates are available from Unit Zray to VII; Wk-23768, SANU-55717 and
SANU-11619. All three are statistically indistinghable (2958+18 Bsz 2005 = 4.31 < 5.99;
GSD=44.75), but only SANU-11619 is a date on a tsi@d nut suitable for reservoir age
comparison. Using this nutshell age of 2985 + 3Q BRR for each shell species was calculated
(Table 2). Figure 5 shows theR “C values for all three shellfish species plottedimast5*C. The
two “marine” Gafrarium (Wk-45919 and Wk-45903) haweR values in-keeping with our marine
hypothesis as do thEidacnashells andAnadarashell; Wk-45616. Combined, these marine samples
have aAR of -55+27%C years, which is equivalent t&R values obtained from corals for the period
between 2500 and 3000 BP for the eastern Austratiastline (average 21 values = #8469 “C
years) (Hua et al. 2015, Komugabe-Dixson et al.6201sing thed"*C division we calculate an
average “estuarine” value of 197+4%C years. This suggests a c. 250-year differencevemest
estuarine and open ocean (marine) shells. Wher ttedlfish were alive the input of ancient DIC
into the Lao Lao Bay would have had to be less &tanto shift the ages by this much (5% addition
of “dead” carbon would shift the age by c. 390 ggar

Shellfish AR Chi squared statisticg Environmental | Environmental AR
(yrs) division
Anadara “estuarine”™C”  203+15  x?g005= 14.46 < 16.92; GSD = Estuarine AR=197#12; X* 12005 =
31.83 12.16<21.03; GSD = 42.83
Gafrarium “estuarine” 181+24 X% 2005 = 7.02 < 5.99; GSD =
13Cu 7702
Gafrarium “marine 13C” -51+29 X% 1005 = 0.03 < 3.84; GSD = Marine AR=-55+18; X*> 4005 =
7.07 1.75<9.49; GSD = 26.74
Anadara “marine**C” -32+42
Tridacna -70+28 %2 1005 = 1.13 < 3.84; GSD =
42.43

Table 2: Averag@R for each shellfish taxa studied from Bapot-1,tUdnilayers VI to VII.AR calculated using
http://calib.org/deltar/ (Reimer and Reimer 2017).

° ThreeAR values on pre-AD 1950 shells are recorded forMagiana Islands (Petchey and Clark 2010), butadl gastropods and are
questionable due to limited documentation and p@sshgestion of limestone and are, therefore, iclamed unsuitable for calculating a
reservoir offset at Bapot-1.
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3.2. Layer IV
A similar isotope pattern for the reef gastropai$éound in Layer IV (Table 1 and Figure 3urbo

andTrochushave highe5'C values (average = 3.21+0.56%o and 3.86+0.73%o)nonetariaandC.
mutabulis "°C values are, however, low (average = 1.28+0.65%01a89+0.77%0) compared to the
average ocean valudridacna results are similarly elevated relative to oceamtewdC with
comparable values to the earlier layers (avebéife= 2.38+0.37%o; averageé O = -0.74+0.52%o).

The G. pectinatumshells from Layer IV are more depleted fC (3'*C average =
0.42+1.96%o0) than lower layers, with an extreme eanfvalues (5.35%0 to -1.45%o). If the extreme
positive 3°C is excluded the average value is -0.13+0.97%o wiscsimilar to those obtained @n
antiquata(average = -0.45+75%o) in layers V to VII. Therenis significant change i&'0 (average
= -1.40+0.50%o0). Suspecting instrument drift, wesesapled these shells and the isotope results were
confirmed (Supplementary Table 3). This isotopitsé short-lived and only found in Layer IV and
only in the Gafrarium shells (Figure 3). The avera@&’C value forAnadarafrom Layer IV is -
1.22+87%o0, which is slightly lower than shells frdayers V to VII. Again, there is no significant
change ™0 (-0.88+54%0). The two valves Giuidnipagushavesimilar isotope results to the upper
layers $°C = -0.29+0.15%05'%0 = -1.07+0.14%o).

Using the same “marine” and “estuarin®°C division as before, only or@afrarium was
clearly marine (Wk-4585%"*C = 5.35%0). One sample, (Wk-45684) was borderldt&0( = 1.45%o).
The remaining eight had estuarine values. Wk-45886,45684, Wk-45861&3C = -1.19%0) and
Wk-45862 §C = -0.76%0) were selected for dating ak@ calculation. None of thAnadarashells
from Layer IV had marin&"C signatures, but singgnadarafrom this layer had not previously been
dated we selected two witht*C extremes for comparison (Wk-458@°C = 0.71%0; Wk-45867,
&"C = -2.27%o). TwoTridacnashells considered to represent marine conditicerealso dated; Wk-
45847 B*°C = 2.13%0) and Wk-45866°C = 2.81%0).Only one charcoal value was available from
Unit 4, Layer IV for comparison (SANU 2445+31BPhd absence of a short-lived charcoal sample



for comparison is not ideal, but th% age is comparable to charcoal dates from simatexts in
neighbouring excavation units (Figure 8).

Three of theGafrarium valves with estuarind™C values have elevatetR (Wk-45861 =
322476, Wk-45862 = 195+76 and Wk-45864 = @6® '“C years). Similarly, thé\nadaravalves
haveAR values of 304+76 (Wk-45867) and 533 +74 (Wk-4587C years. Two of thes&R offsets
are much largerAnadarg Wk-45871 andGafrariumy Wk-45864) than those calculated for shells
from layers V to VII. The cause of these two exteemalues is difficult to evaluate. This variation,
may reflect the unstable reservoir situation asleseal dropped, mobilising old sediment and
drainage of the Mariana Limestone aquifer, and disulggest some variability in the hardwater input
at this time. However, while a hardwater offset barevoked, evidence from the site suggests mixing
with earlier (layers V to VII) activity is possibl&Vk-45864 and Wk-45871 both come from 130-
140cm depth; initial signs of disturbance were rded in the field at the 140cm interface with
material from Layer V. Upward displacement is cetesit with material evidence elsewhere in the
site. Excluding the two extremes the average dsmiaR value (2741“44;(2 2005 = 1.64 < 5.99;
GSD=68.72) is comparable to that calculated foelday to VIL

Two TridacnahaveAR offsets of -82+76 and -44+74C years. Combined with the “marine”
Gafrarium sample (Wk-45855; -39+75C years) we calculate a value of -55#4@ years X° 2005 =
0.19< 5.99; GSD=30.41) in-keeping with the marimerection value for layers V to VII. This
suggests there has been no noticeable change apéinemarine reservoir.

4. The Chronology of Bapot-1

4.1. Shell chronology with marine/estuariti@

Figure 6a highlights the problem of applying a amfi AR correction (in this instance 0) to all shell
dates from Bapot-1, Unit 4. In this example, theoablogy of the earliest deposits is spread over c.
500 years with later deposits (Layer IV upward)veing greater spread in ages. Without careful
evaluation of the site and material culture it asgible to argue that these deposits are disturbed.
However, if we apply the estuarine and markie values tdGafrariumandAnadarashells based on
5"C, the chronology changes dramatically. Figure l&iws the revised chronology of Unit 4 where
Bayesian modelling has been undertaken. Here dtes been arranged in phases corresponding
with the depositional layers (Bronk Ramsey 2008a3equential boundary separates layers IV and V
corresponding to a gap in tH€ ages and the major ceramic change identified byaN(2015). The
internal consistency of the calibrated ages watedessing a General t-type Outlier Model that
enables outliers to be either too young or too altl down-weighs their influence in the model
(Bronk Ramsey 2009b). All dates were assigned @r jutlier probability of 0.05. Calibrated ages
before the model parameters have been appliedo(“priobability values”) are shown as unfilled
outlines. Posterior probability values after thedelohas been applied are shown in black. All
calibrated dates given in the text are report€db& probability unless otherwise stated.
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Figure 6. Charcoal and shell radiocarbon dates feomt 4. A) Uncorrected foAR. B) Bayesian
sequence model showing shell calibrated ages uSiiiydetermined average “estuarine” (<) and
“marine” (>) AR values of 197+43'C years and -55+2%C years. 68% and 95% error margins are
indicated by bars under each age distribution. Thb&ation [O:2/5] indicates a 2% posterior
probability of being an outlier in the model. CombiAnadara* = SANU-11901 + SANU-11748;

Combine Anadara** = SANU-11750 + SANU-11902.

In this model (Figure 6b), only charcoal date Wk:@8 from Layer VIl is identified as an outlier
(7%). This result is slightly younger than the a&$sted shell and bird dates. Rather than reflecting
stratigraphic displacement, this offset could basea by the large number of shell ages influenged b
hardwater. This result has minor impact on the rhauehese lower layers as indicated by high
convergence values (>95%) for boundaries and iddali dates generated by the OxCal MCMC
algorithms. However, by Layer IV major issues wilie chronology start to appear. Two major
(>20%) outliers (Wk-45871; 52% and Wk-45864; 71%)d one minor outlier (Wk-45862; 13%) are
identified (Supplementary Table 4). By Layer Illdwnajor outliers are excluded from the model
100% of the time (Wk-45837 and Wk-45834). Thesdianst all appear to be of similar age to the
earliest shell dates and upward movement of objsdtskeeping with other material finds at theesit
These outliers have a major impact on the convegealues for the boundary ages (End 1V/Start IlI
= 84.6%; End lll/Start | = 84.9%) indicating manifferent incompatible solutions to the model at
these points (Supplementary Table 4).

Removing the five major (>20%) outliers from thedweb(i.e., Wk-45819, Wk-45834, Wk-
45837, Wk-45864 and Wk-45871) improves the convergevalues (Supplementary Table 5).
Overall, these results suggest two major periodssef(Figure 7 and Table 3); the first represehted
layers VII, VI and V dated to 3240-2910 cal. BFl|dwed by a period of at least 140 years with no
evidence of activity in this unit. The second pdriaf activity is represented by layers IV and I,
starting ¢. 2830 cal. BP and ending around 2400R#l Dates from Layer | display considerable
variability with ages congruent with earlier layexrs well as material dating to 1550-1390 cal. BP

(Wk-23751) and 610-320 BP (Wk-45820, and Wk-45824).
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Figure 7: Bayesian sequence model for Unit 4, Bapot-1 exalydnajor (>20%) outliers. Highstand
and sea-level stabilisation dates based on Athed3\ard (2005). Merizo infill coral date = 2760-

2400 cal. BP.
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Boundary Start Layer VII | 3200-3140 32403130

Boundary Layer VII/VI 3170-3120 3190-3100

Boundary Layer VI/V 3160-3100 3170-3080

Boundary End Layer V 3130-3030 31602910

Interval 290 to 440-year gap 140 to 510-year gap
Boundary Start Layer IV | 2760-2670 28302590

Boundary Layer IV/III 2650-2540 2670-2470

Boundary Layer /I 2590-2460 26402400

Wk-23751 nut 1530-1410 1550-1390
WKk-45824Tridacna 480-390 490-320




Wk-45820Gafrarium 550-490 610-460

Boundary End Layer | 460-110 490-0

Table 3: Chronology for Unit 4, Block A excavatidieowing exclusion of major (>20%) outliers.

4.2 Charcoal chronology

If the chronological model for Unit 4 based largetyshell dates suggest the earliest occupatiots sta
in the interval 3240-2910 cal. BP with renewed\distibeginning around 2830 cal. BP, can this time
gap be corroborated using other dating evidenaa fither excavation units at Bapot-1?

Figure 8 shows calibrated charcoal dates from20@8 Block A excavations (includes
unpublished charcoal dates (Clark unpublished dasajvell as values reported in Petchey et al.
[2017] and Clark et al. [2011]). These charcoakdatre grouped into four “phases” based on age and
approximate stratigraphic relationship; the locsedy soil, vertical movement of small samples, and
possible inbuilt age in the charcoal, complicatesdorrelation between different excavation urits.
this chronological model, three dates are idemtiis minor outliers with little impact on the model
convergence values; Wk-23751 (6%), Wk-23752 (6%4) \Wk-23760 (6%) (Supplementary Table 6).
The earliest occupation starts 3290 cal. BP and é1yd2940 cal. BP, which corresponds to the
modelled shell ages for layers VIl to V. This idldaved by a short hiatus of at least 320 years with
renewed activity indicated after 2690 cal. BP. Sujoent activity starts 1890 cal. BP, and continues
up until 510 cal. BP (modelled boundary rangesgaren in Table 4).

This chronological pattern is similar to that mdeeélfor Unit 4 which is based mainly on
shell ages, except that the second phase of gcfreipresented by Layer 1V) occurs after 2830 cal.
BP (Figures 7 and 8). This additional c. 140-yedfeence between the shell and charcoal
chronologies could be caused by an increase irh&éhéwater offset; two dates dmidacna (Wk-
45847 and Wk-45866) are the only non-estuarinelfiieldated from this layer and they give
unmodeledAR corrected ages of 2670-2370 cal. BP and 2700-244BP. This lends support to a
slightly later date for the second phase of agtigitd suggests that the recorded negative shift and
increased variability in5**C for Gafrarium shells in Layer IV reflects changes in the neamsho
environment that have resulted in an under-cowacfior hardwater input at this time. This
observation requires further testing.
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Table 4: Modelled charcoal chronology for all cluaicdates obtained from the Bapot-1 Block A
excavations.

5. Discussion

This research has a number of significant findinfjanterest to those studying the age of first
colonisation of Remote Oceania, and to researciverfdwide who use shells for chronological
control:

1. Our results indicate thdfC is a useful tool to differentiate between maramel estuarine
influence on tropical filter-feeding bivalves. Aapot-1 thes&"C differences are likely to be
caused by uptake of DIC derived from decayed plardtter within the mangrove
environment thafnadaraandGafrarium favour. Conversely, reef bivalves suchTaglacna
sp. primarily incorporate DIC from ocean water. @esearch suggests a minimum value of
1.7%0 to separate estuarine and marine influencéhén Bapot-1 shells. On&afrarium
pectinatumsample from Layer Ill (Wk-4583%°C = 1.90%0, 3442+15 BP) does not conform

to the proposed**C/*“C division. If a mariné\R correction is applied the resultant calibrated
age would make it the oldest shell recovered (3B cal. BP). We conclude that this
sample is most likely displaced from layers V td & from a natural source.

2. 50 is a useful indicator of major freshwater inpbitit interpretation is complicated by
temperature fluctuations in these near-shore enriemts.

3. An apparent estuarin&°C value for shellfish, even in limestone environtserdoes not
necessarily guarantee a hardwater effect — thigdhae based on the weight of geological,
archaeological and hydrological evidence as welltlas ecology of the shells dated.
Moreover, in regions where there is no limestoié,térrestrial (modern) carbon (resulting in
an offset of c. -20 years) would be masked by tte grecision.

4. Based on shell isotopes and geological and hydicdbgbservations, it is probable that
“hardwater” has influenced the Bapot-1 estuarinellBbh. This conclusion remains
unchanged from that given in Petchey et al. (20B&tause mangroves hold any freshwater
discharge from the aquifer close to the coastlinis likely that water conditions will be
highly specific to the immediate environment (Mikla2011:40). This, combined with the
mix of limestone and volcanic geologies across Maiana Islands and variable drainage

(Mink & Vacher 1997; Stafford et al. 2005), negateuniformAR value across the region
for any shellfish in the estuarine zone.
5. Open marine filter-feeding species suclTdadacna,which do not tolerate freshwater, have a

AR (-55+27*C years) that differs little from the Pacific avgeaof -84+ 69*‘C years for the
period between 2500 and 3000 cal. BP (Komugabeebies al. 2016). Our research suggests
AR will be more uniform for bivalves that prefer nmar habitats, but this has yet to be tested
across multiple islands.

6. We calculate an average “estuarildR offset of 197+43“C years at c. 3200 cal. BP. This
250-year difference between estuarine and opemagearine) shells is equivalent to c. 3%
input of ancient DIC into the Lao Lao Bay. By c.9B6years ago there is a change in the
estuarine reservoir as indicated by shiftdidC of Gafrarium shells and an increased offset
between charcoal andinadaraand Gafrarium dates. This ties in with C date on the
Merizo limestone infill interpreted by Athens andaWd (1999) to indicate that reef building
had declined and coastal infilling had begun foltaya rapid drop in sea-level.

7. We have identified little change over time in theadaraantiquatad'*C values Anadarasp.
do not tolerate change (Davenport and Wong 1986@) iarthey quickly die once the
environment changes as hypothesised, it makes Hesistiney will disappear before isotopic
signals of change can be detected. By Layer I\htirabers ofAnadaraare dropping and by
Layer Il they are largely extirpated from this &ion, though occasional harvesting is still

possible as indicated by ANU-4771 (1040+110 BBC =0.9%o) reported by Bonhomme and
Craib (1987).



8. Gafrarium sp. are more tolerant of changing environmentalditions and have a higher
tolerance to low salinity waters (McMahon 2003)s$muld give us a greater potential for

tracking change in the nearshore environm@afrarium pectinatumd*°C values from Layer
IV are on average more negative and varied tharedadeposits, indicating a significant
change to their habitat after 2830 years ago; & tmhen they begin to dominate over

Anadara Similar shifts towards more negati®C values have been attributed to change in
vegetation type (Surge et al. 2003), the decayhgfgplankton (Hong et al. 1996), or changes
to local water source (Swart et al. 1996, Surgealet2003). Theoretically, the loss of

mangrove habitats caused by declining sea-levelldh@ve resulted in a movement to more

positive3'*C values as mangroves'{C =-27%.) were replaced by seagra8S¢ =-16.3 to -
7.3%o) (values taken from Surge et al. 2003). Thosileh result in a gradual change to isotopic
conditions in the nearshore environment. Additibrmuantities of freshwater could result in
eutrophic conditions due to the decomposition ehplmaterial, but seems less plausible in
the wide-open Lao Lao Bay. If there was a significehange in the amount of rainfall or
drainage of the limestone aquifer, a concomitaift 53?0 would be expected, which is not
the case for the shells from Bapot-1. However, rdigancy between estuarine shell and
charcoal dates c. 2500 years ago (Layer IV/Phassu@ports the hypothesis of changing
nearshore conditions.

9. There is disturbance at Bapot-1 but this is rasimico the upper spits of Layer V and above
and does not appear in the artefact distributioshetflfish ages until Layer IV.

10. A comparison of shell and charcoal dates suggestes use of the site started after 3290
years ago, similar to the 3230-3085 cal. BP (95%baiility) earliest settlement age
calculated by Rieth and Athen’'s (2017) for the Maa Islands as a whole. After a short
hiatus of at least 140 years this was followed wathewed activity at Bapot-1 during a time
when the offshore reefs were declining and coasfdling was underway as sea-level fell
rapidly (Figures 7 and 8).

11. The use 08'°0 and3"*C evaluation beforé’C measurement is more cost-effective than the
usual hit and miss process of dating shellfish dhase habitat and species assumptions,
especially in problematic environments affectechbydwater. Stable isotopic data also adds
to our understanding of processes impacting orp#ople living at the site and is a valuable
addition to the archaeological interpretation.

6. Conclusion

Our research has reaffirmed that shells with kn@stuarine ecologies, such Asadara antiquata
and Gafrarium pectinatumgould be affected by sources of terrestrial canvbich could adversely
affect Pacific archaeological chronologies. Thetahility of these shellfish for*C dating can,
however, be assessed usid§O andd™C. In areas where limestone is present, selectietissthat
reflect oceanic isotopic conditions provides thstlmeans to obtain reliable ages.

Isotopic and species habitat and dietary inforomatombined with hydrological, geological
and oceanographic information support the conchssiof Petchey et al. (2017) that hardwater
affected bothAnadaraand Gafrarium shells from the early contact site of Bapot-1 be island of
Saipan. This late chronology has multiple and émehing implications for our theories about
population origins, movement and health, technaol&lgrhdaptation, domestication, and environmental
impact throughout Oceania. With appropriate resergorrections for marine and estuariffe€
reservoirs, both charcoal and shell chronologie®fpot-1 are brought into congruence and indicate
that first settlement occurred after 3290 years, &gtowed by a short hiatus and renewed activity
after 2690 years ago.

Evaluation of theéd"°C of different shellfish taxa over time has alsal@ad us to recognise a
significant change to the nearshore environmenmtirsgac. 2690 years ago, most likely associated the
loss of mangrove habitats and draining of freshiveiten the island limestone aquifer, as sea-level
fell during the mid-Holocene. While most shellfisbund these conditions intolerabl&afrarium
pectinatumwere able to survive and become the dominantf&eljathered, providing a means by
which we can now track changes over time in theghese environment.
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HIGHLIGHTS

The suitability of estuarine shellsfor **C dating is assessed using *0 and *°C.
We calculate amarine AR of -55 + 26 *C years for the region c. 3300 years ago.
Hardwater had caused c. 250 years error in estuarine shellfish.

The settlement of the Mariana Islands had taken place by 3290 cal. BP.

By 2690 years ago estuarine conditions change due to lowering sea-level.
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