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INTRODUCTION

Tumors, or neoplasias, throughout the metazoa re -
sult from uncontrolled proliferation of genetically
altered cells and can be benign or malignant (Robert
2010). Causes include physical (e.g. radiation), chemi-
cal (carcinogens) or infectious agents (Robert 2010,
Newton & Lewbart 2017) and the presence of a tumor
can increase mortality risk and reduce fe cundity
(e.g. in the softshell clam Mya arenaria; Brousseau &
Baglivo 1991), indicating a fitness cost. Immune re -
sponses mitigate and eliminate tumorous tissue
 (Pastor-Pareja et al. 2008, Hauling et al. 2014), but are
costly to up-regulate and maintain (Sadd & Schmid-
Hempel 2009). Given a finite access to energy, in -

vestment into immunity is likely to involve a re duced
investment in other vital processes such as growth
and reproduction (Sadd & Schmid-Hempel 2009,
Palmer et al. 2010).

Tumor-like growths occur in numerous coral spe-
cies (e.g. Bak 1983, Peters et al. 1986, Gateño et al.
2003, Domart-Coulon et al. 2006, Aeby et al. 2011).
These tumor-like growths are often referred to as
growth anomalies (GAs) because it is not always pos-
sible to distinguish between hyperplasia (a normal
proliferation response to stimulus) and genetically
altered cell growth of neoplasia (Work et al. 2008).
GAs affect coral fitness by reducing growth (Bak
1983) and fecundity (Peters et al. 1986, Yamashiro et
al. 2000, Work et al. 2008, Burns & Takabayashi 2011)
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ABSTRACT: Coral growth anomalies (GAs) are chronic diseases that adversely affect organism
health and fitness. We investigated immunity and fecundity within and among GA-affected and
visually healthy control colonies of the reef-building coral Acropora hyacinthus. Compared to con-
trols, GAs had higher activity of the key immunity enzyme phenoloxidase (PO), suggesting a
localised immune response within the GA. Both GAs and healthy tissue of GA-affected colonies
had significantly greater total potential PO (tpPO) — PO activity inclusive of the activated latent
PO, prophenoloxidase — than control colonies. Higher tpPO activity in GA-affected corals sug-
gests elevated constitutive immunity compared to visually healthy controls. Additionally, fewer
GA-affected colonies produced gametes, fewer polyps had oocytes (p < 0.001) and the number of
oocytes per polyp was lower. Therefore, GAs in A. hyacinthus might induce, or represent a shift in
resource investment towards immunity and away from reproduction. While the effect on popula-
tion growth is likely to be small, reduced fecundity in GA-affected colonies does suggest a selec-
tive pressure against GAs.
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and causing partial mortality (Peters et al. 1986,
Work et al. 2008). GAs can also alter immune activity
(Kelly et al. 2016).

Corals possess a suite of innate immune mecha-
nisms that respond to infection and tissue disruption
(Palmer & Traylor-Knowles 2012), including multiple
melanin-synthesis pathways (Mydlarz & Palmer 2011,
Palmer et al. 2012), which are considered the main-
stay of invertebrate immunity (Cerenius et al. 2010).
Anthozoans likely have multiple types of phenoloxi-
dases (POs) — the activators of melanin-synthesis —
including mono-phenoloxidase, para-diphenoloxidase
(laccase-type) and ortho-diphenoloxidase (tyrosi-
nase-type), as well as 2 prophenoloxidases (PPOs;
laccase and tyrosinase types; Mydlarz & Palmer
2011, Palmer et al. 2012). In arthropods, PPOs are the
inactive, stored zymogen form of PO, and indicate
constitutive levels of immunity, however the storage
system for coral phenoloxidases is unknown. PPO is
inactive, and therefore it cannot be measured enzy-
matically. The standard immunological measure-
ment of this latent PO is referred to as total potential
PO (tpPO; e.g. van de Water et al. 2015).

Highly cytotoxic tyrosinase-type PO activity and
PPO (Cerenius et al. 2010) are negatively correlated
with disease susceptibility of healthy corals, demon-
strating an advantage of investment in constitutive
immunity (Palmer et al. 2010). Of 22 Indo-Pacific
anthozoan species investigated, Acropora hyacinthus
has amongst the lowest PO activity and PPO levels,
suggesting low investment into immunity under
healthy conditions, and thus a high susceptibility to
disease (Palmer et al. 2010). The colonial nature of
corals offers an ideal system with which to investi-
gate the possible localized (within-colony) and
whole-organism regulation of immunity, and fitness,
in response to GAs.

METHODS AND MATERIALS

Sampling design

Five Acropora hyacinthus colonies with GAs (Fig. 1)
were located at between 1 and 2 m depth on the reef
crest of Trimodal Reef, Lizard Island, Great Barrier
Reef (14.6996° S, 145.4482° E), Australia, in Novem-
ber 2010. One GA was collected from each affected
colony plus a 2nd fragment (between 10 and 80 cm2)
from an apparently healthy area of the same colony
at least 20 cm distance from the GA (hereafter
‘healthy’). Similar sized fragments were collected in
the same locality from 5 visibly healthy A. hyacinthus

colonies (control). GAs tended to form in the centre of
colonies (Fig. 1), and control fragments were there-
fore also taken from the centre of healthy colonies.
All samples were immediately halved and fixed in
either 10% seawater formalin for histology or liquid
nitrogen for biochemical analyses. All colonies sam-
pled were larger than the ~300 cm2 size at first repro -
duction of A. hyacinthus, above which per-polyp
fecundity does not significantly vary with size
(Álvarez Noriega et al. 2016). GAs covered less than
1% of the surface area of all affected colonies.

Biochemistry

Tissue was airbrushed from frozen samples over
ice with extraction buffer containing 50 mM phos-
phate buffer with 0.05 mM dithiothreitol, at pH 7.8.
This low concentration of dithiothreitol has been
found to minimally affect phenoloxidase activity,
while helping to stabilise total protein, and is used as
standard in coral immunity enzyme assays (e.g.
Palmer et al. 2010). Tissue slurries (i.e. tissue−buffer
mixture) were homogenized for 30 s (Power Gen 12;
Fisher Scientific) and left on ice for 5 min before cen-
trifuging at 4°C, 1900 × g for 5 min. The supernatant
was stored in liquid nitrogen for transport to the
mainland. To determine tyrosinase-type PO activity
and tpPO (activity of both PO and latent PO, i.e.
PPO), 40 µl of phosphate buffer (50 mmol l−1, pH 7.8)
was added to 20 µl of sample, in triplicate, in a 96
well microtiter plate. For the PO assay, 25 µl of dou-
ble distilled water was added and 25 µl trypsin

78

Fig. 1. A growth anomaly on a tabular Acropora colony typical 
of that used in this study



Palmer & Baird: Coral growth anomalies induce immune response

(0.1 mg ml−1 in deionized water) for the tpPO assay
and incubated at room temperature for 20 min
(Palmer et al. 2011a, Kelly et al. 2016). Then, 30 µl of
a 10 mmol l−1 solution of dopamine hydrochloride
(Sigma-Aldrich H8502) was added and absorbance
at 490 nm recorded every 5 min for 25 min (Palmer et
al. 2011a). Peroxidase activity was determined as per
Palmer et al. (2011a); briefly, 10 µl sample extract
with 35 µl phosphate buffer (10 mmol l−1, pH 6.0) was
aliquoted for each sample in triplicate. Then, 40 µl of
guaiacol (Sigma G5502; 25 mmol l−1) was added, and
25 µl of hydrogen peroxide (H2O2; 20 mmol l−1) used
to initiate the reaction. Absorbance at 470 nm was
recorded over 45 min. For both tyrosinase-type PO
and tpPO activities and peroxidase, a Spectramax
M2 (Molecular Devices) spectrophotometer was used
to measure absorbance. The change in absorbance
for the linear portion of the reaction curve was used
to determine enzyme activities. All enzyme activities
were normalised to sample total protein (mg−1) as
determined using Red 660 total protein assay, as per
manufacturer’s instructions (G-Biosciences).

Determination of fecundity

After 24 h, samples were transferred from 10%
seawater formalin into 25% ethanol for transport and
decalcified in 10% formic acid, then stored in 10%
seawater formalin.

To estimate per-polyp fecundity in the control and
apparently healthy treatments, 6 polyps were chosen
at random from below the sterile zone (Wallace 1985)
in 4 randomly selected branches from each fragment.
Decalcified branches were placed under a dissecting
microscope at 10× magnification. Individual polyps
were cut out of branches and split open with a needle
to reveal the oocytes (following Tan et al. 2016).
Oocytes were then teased out of the polyp and the
number per polyp was counted. Since there was no
branch structure in the GAs, 6 to 24 polyps were ran-
domly selected and dissected. Oocyte size was meas-
ured using an eyepiece micrometre at 20× resolution,
calibrated to a stage micrometre, on a dissecting
microscope. A total of 20 oocytes from each treatment
group were selected at random from oocytes dis-
sected out of the polyps.

Statistical analysis

One-way ANOVA was used to test for differences
in mean PO and tpPO activity among samples using

log-transformed data. A non-parametric Kruskal-
Wallis test was used to compare peroxidase activity
among health categories. The association between
health status and the number of polyps with oocytes
was tested using a chi-squared contingency test. We
used Bonferroni adjustment, giving a revised p-value
of 0.01 to indicate statistical significance.

RESULTS AND DISCUSSION

Growth anomalies of Acropora hyacinthus from
Trimodal Reef, Lizard Island, Great Barrier Reef,
had higher immunity-associated enzyme activities
than healthy tissue, both within and among colonies.
Tyrosinase-type PO activity varied with health sta-
tus, with the lowest activity in control colonies and
the highest, by 1.5-fold, in GAs (Fig. 2a). Concomi-
tant with the cytotoxicity of the tyrosinase-type
melanin synthesis pathway, the mean activity of
the antioxidant enzyme peroxida se was more than
20-fold higher in the GA than in control tissues.
Increased PO activity in GA-affected A. hyacinthus
tissue compared to the controls is consistent with
findings of white syndrome-diseased A. millepora
(Palmer et al. 2011a). How ever, investigations of
plaque-like GAs in A. muricata found no difference
in PO activity among healthy controls and GA tis-
sue (Kelly et al. 2016). The increased PO activity
in A. hyacinthus GAs suggests an increase of
melanin-synthesis pathways in GAs compared to
healthy tissue, which is consistent with studies of
compromised coral tissue (Palmer et al. 2008).
These disparate immune acti vities among corals
likely indicate variable pathologies or specific
responses to GAs.

The tpPO (PPO-activated to measurable PO with
the addition of trypsin) was highest in both GA and
apparently healthy tissue of GA-affected colonies,
and lowest in control colonies (F2,24 = 18.33, p < 0.001;
Fig. 2b). These differential levels of tpPO activity
 further suggest a different use of the coral immune
repertoire by GA-affected colonies. Generalised
heightened constitutive immunity in corals with GAs
raises the intriguing question of what is activating
the immune system, and whether immunity was
heightened before or after the formation of the GA.
These questions may be addressed by long-term
immunological monitoring of corals

Only 60% (n = 5) of GA-affected coral colonies
 produced gametes, compared to 100% of control
colonies. All polyps in the control colonies produced
oocytes (n = 120) compared to 75% (n = 72) in
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the healthy branches of GA-affected colonies, and
33% of polyps in the GAs (n = 36) (χ2 = 84.9, p <
0.001). In addition, the number of oocytes in polyps
that did have gametes was lower in GAs than in
healthy polyps or controls (Fig. 2c). Indicators of
reduced fecundity in tumorous tissue is consistent
with most previous research (Yamashiro et al. 2000,
Work et al. 2008, Burns & Takabayashi 2011, Kelly et
al. 2016).

Despite these effects on reproductive output at the
colony level, the effect on the population is likely to
be minor. We estimate that less than 1% of A.
hyacinthus colonies at Lizard Island had GAs, so
even if none of these colonies developed gametes,
the effects on population growth is unlikely to be sig-
nificant. Our results further suggest that the propor-
tion of the population producing gametes, and the
proportion of polyps contributing to colony fecundity
are important variables to consider when evaluating
the effect of stressors on coral reproductive output.
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