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Abstract 

In the last two decades, the aquaculture industry has grown significantly, 

providing fish, molluscs and crustaceans to the global market. Microbial pathogens are 

the principal cause of massive financial losses in many fish and crustacean farms. 

Disinfection using ozone, chlorine or UV irradiation are expensive and leave toxic by-

products. Biosecurity threats through the introduction of wild brood-stock and live 

feed is a major concern for the aquaculture industry. Microalgae and/or Artemia 

nauplii (brine shrimp), have been identified as potential vectors for microbial 

pathogens that can result in high mortalities, particularly in hatcheries. Bacteria can 

proliferate rapidly in intensive aquaculture productions due to the high density of 

target animals, live feed organisms and build-up of biological waste that generate ideal 

conditions for many potential pathogens. The current inability to bio-secure farmed 

aquaculture animals through appropriate disinfection strategies of live feed without 

altering the quality of the final product is an area requiring urgent research, as it is the 

main barrier to cost-effective product development; the main hurdle to competitive 

expansions into national and international markets.  

Recently, photodynamic antimicrobial chemotherapy (PACT) has emerged as a 

promising water sterilisation technique. PACT uses the activation of photosensitisers 

by light to generate highly reactive oxygen species (ROS), which indiscriminately 

oxidises cell wall and cell membrane components (i.e. lipids, proteins, carbohydrates). 

After entry of the photosensitiser into cells, produced singlet oxygen also targets 

intracellular components such as organelles, membrane compartments, and nucleic 

acids (i.e. DNA and RNA). Due to the indiscriminate action of 1O2, resistance cannot 

develop, unlike in the case of antibiotics. The choice of photosensitiser is crucial, and 

compounds that photobleach with time are preferred for aquaculture purposes to 

avoid build up in water or the farmed animal. Porphyrins are a group of natural or 

synthetic compounds that fit the photobleaching requirement, but to date no research 

has specifically investigated porphyrin-based sterilisation efficiency in prawn 

hatcheries. In addition, the porphyrin-based antimicrobial efficiency for the ones used 

in this research has not been tested against luminescent virulent strains of Vibrio 
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harveyi-related species, the main causative agents for luminescent vibriosis, which 

causes large losses for finfish, bivalves and prawn industries.  

Each chapter of this thesis addresses specific objectives that, in conjunction 

with the other chapters, contribute to the principal aim of the research: investigate the 

potential of using PACT to control Vibrio bacteria in aquaculture. Chapter 2 details 

objectives relating to method development to select a suitable Vibrio harveyi-related 

strain to be used in the following chapters.  

While Chapter 1 reviews PACT history and its application with special interest 

to aquaculture, the method development chapter (chapter 2), pathogenicity towards 

prawns after injection and luminescence intensity of two selected Vibrio strains were 

evaluated. Challenge experiments were performed with Penaeus monodon and Koch’s 

postulates were fulfilled. Precise identification was obtained using molecular 

techniques including multiplex PCR, housekeeping gene analysis and construction of a 

phylogenetic tree. The strongly luminescent Vibrio sp ISO7, was demonstrated to be 

highly virulent towards P. monodon, killing 100% of the injected animals and molecular 

techniques revealed that this species belongs to the V. campbellii group. In contrast, V. 

owensii 47666-1, previously described as a luminescent prawn larvae pathogen, 

caused only 25% mortality in the first challenge experiment. Pathogenicity was 

regained in bacteria re-isolated from sick prawns, with 100% mortality of P. monodon 

obtained in a second challenge experiment, however the strain was found to be not 

luminescent. Hence, V. campbellii ISO7 was selected as the model bacterium based on 

its high virulence after injection and strong luminescence signal, making it suitable for 

the development of a fast luminescence-based assay to determine the efficiency of 

different porphyrin treatment protocols.  

In chapter 3, the objectives were 1) to compare the photostability of the tetra-

cationic 5,10,15,20-tetrakis (1-methyl-4-pyridinio) porphyrin tetra (p-toluenesulfonate) 

[TMPyP] and the tetra-anionic 4,4′,4′′,4′′′-(porphine-5,10,15,20-tetrayl) tetrakis 

(benzenesulfonic acid) tetrasodium salt hydrate [TPPS4] porphyrins in seawater to 

confirm their suitability for aquaculture purposes and 2) to investigate the capacity of 

TMPyP and TPPS4 to inactivate the model bacterium Vibrio campbellii ISO7.  
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For the first objective, the photostability of the cationic TMPyP and the anionic 

TPPS4 porphyrins were investigated by recording their full light spectra between 350 

and 750 nm after irradiating seawater containing different porphyrin concentrations 

(1, 5, 10 and 20 μM) of porphyrins with high power 150 W LED lights. Results obtained 

using the maximum peak of absorbance for each porphyrin, showed porphyrin 

degradation (photobleaching) for both the cationic and the anionic porphyrin within 24 

h of irradiation. In addition, the dark control (samples not irradiated) did not 

photobleach, confirming that porphyrin degradation was due to exposure to light. The 

results confirmed that both porphyrins were good candidates for aquaculture 

applications based on their photobleaching properties showing relatively fast 

degradation(within 24-h at concentration of 1 μM and more than ¼ of absorbance 

reduction at the concentration of 20 μM).  

Antimicrobial activity of the porphyrins was investigated using dose-response 

and time-course experiments. Twenty μM of the cationic porphyrin achieved 100% 

lethality in the model bacterium (start concentration of V. campbellii ISO7 ~107 

CFU∙mL-1) after five hours, which was validated using biological activity (luminescence), 

growth experiments (CFU, absorbance) and 7-day regrowth experiments. Consistent 

with previous reports, the anionic photosensitizer did not achieve inactivation of the 

model bacterium and was therefore not investigated further. As demonstrated, water 

sterilization was achieved after between five and twelve hours depending on the 

concentration of the cationic porphyrin; however, the effectiveness of sterilization in 

mixed culture with live feed organisms still needed to be confirmed.  

In chapters 4 and 5, the potential of using the TMPyP porphyrin to reduce 

bacteria loads of microalgae cultures (free of the model bacterium) and Artemia cysts 

was investigated including an evaluation of possible toxic effects caused by singlet 

oxygen generated during PACT towards the live feed organisms themselves. In chapter 

4, the viability of microalgae cells was first evaluated using flow cytometry based on 

chlorophyll fluorescence and the live-dead stain Propidium Iodide (PI) during a six-hour 

dose-response treatment with the porphyrin. The treatment time was chosen based 

on bacterial disinfection results shown in chapter 3. Sensitivity to 1O2 was species-

specific and related to cell wall characteristics. Of the five different microalgae used, 
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only Nannochloropsis oculata was highly resilient to the six-hour treatment with up to 

50 μM of the cationic porphyrin. The results were unexpected, as photosynthetic 

microorganisms possess detoxification systems for 1O2 and other reactive oxygen 

species (ROS). However, 1O2 produced externally to the cell may be able to 

photooxygenate and destabilize cell membrane components, leading to cell death. The 

thick cell wall of N. oculata most likely protected the cell membrane from fast 

photooxidation. The highly resilient microalga, N. oculata was therefore used in mixed 

culture with the model pathogen and treated with 20 μM final concentration of the 

TMPyP porphyrin. Complete inactivation of the model bacterium was successfully 

achieved, as verified by absence of luminescent CFUs on agar plates and a species-

specific molecular technique that can detect the model organisms with high sensitivity 

(Multiplex PCR combined with Most Probable Number enrichment).  

In chapter 5, possible toxicity of the cationic porphyrin and 1O2 against two 

different types of Artemia cysts (magnetic and unmodified) was tested in dose-

response experiments using percentage of cyst hatching as the measured variable. 

Surprisingly, magnetic cysts showed improved hatching under sub-optimal hatching 

conditions in the presence of porphyrin-generated ROS and the porphyrin TMPyP 

alone (i.e. independent to the production of 1O2) relative to the controls. In contrast, 

dose-response experiments with unmodified cysts showed a positive hatching 

response only to TMPyP-generated 1O2 but not TMPyP itself. Further investigations 

showed that when magnetic cysts were mixed with the model pathogen, complete 

pathogen inactivation was achieved after six hours of incubation with 20 μM of TMPyP 

in the light.  

In conclusion, my research demonstrated that PACT is suitable as an additional 

(or alternative) sterilization method in prawn hatcheries and potentially for 

aquaculture water treatment in general.  
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1.1 Introduction 

The Food and Agriculture Organisation of the United Nations (FAO) and 

Coordinating Working Party on Fishery Statistics (CWP) describe aquaculture as “the 

farming of aquatic organisms: fish, molluscs, crustaceans, aquatic plants, crocodiles, 

alligators, turtles, and amphibians” (FAO, 2013). Nowadays, different culture methods 

are used to obtain the best product from farmed animals. For instance, ponds (i.e. 

prawns, fishes, eels, crayfish), tanks (i.e. prawn brood stock tank, prawn culture tank), 

sea cages (i.e. salmon, tuna, snapper, mulloway), long line (i.e. pearl oyster), raceways 

(i.e. abalone, oyster, algae) and hatcheries (where newborn organisms are grown) are 

the most common methods used worldwide (FAO, 2013).  

Continued fishing and overfishing of natural resources has reached 

unsustainable levels, causing a decrease in natural fish stocks (FAO, 2012, 2016). 

Aquaculture is the fasted growing food production sector; in 2014, the aquaculture 

industry provided nearly 73.8 million tonnes (total value of US$ 160.2 billion) of fish 

globally and 27.3 million tonnes of aquatic plants (total value of US$ 5.6 billion) (FAO, 

2016). Progress has been made in the last decades to reduce the environmental 
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footprint of the aquaculture industry. For instance, research showed that plant-based 

feed has potential for replacing fishmeal, reducing fisheries pressure on the 

environment (Chiu et al., 2016; Geurden et al., 2013). Currently, up to 80% fishmeal 

can be substituted, depending on plant-based feed and animal farmed (Kader and 

Koshio, 2012; Sarker et al., 2012). For example, one hundred percent of replacement 

of fish meal with terrestrial eco-friendly alternatives led to reduction of expression of 

several genes involved in myogenesis and muscle growth, weight, fish length and 

induced hepatocellular lesions (Rhodes et al., 2016). Therefore, aquaculture still largely 

depends on wild-caught fish for fishmeal and fishoil (Tacon et al., 2009).  

There is room of improvement in aquaculture, not only in relation to feed 

quality, but also in regards to prophylactic measures for maintaining healthy animals 

and avoiding massive losses due to disease. As in other farming industries, infectious 

disease relating to pathogens, that live and proliferate at the expense of the host 

organism, is also an enormous problem in aquaculture (Saravanan et al., 2013). 

Different biological agents, such as bacteria, viruses, protists, helminths (worm-like 

polyphyletic group of eukaryotic pathogens) oomycete and fungi are responsible for 

animal diseases. Bacterial infections are responsible for heavy financial losses on 

aquaculture farms (Almeida et al., 2009; Austin and Austin, 2012; FAO, 2012; 

Saravanan et al., 2013), causing up to 22% of losses in the prawn farming sector (FAO 

2014). Bacterial pathogens have been linked to food poisoning (Lozano-Leon et al., 

2003) and mass mortality of larval and post larval stages of crustaceans (Cano-Gomez 

et al., 2010; Jithendran et al., 2010; Karunasagar et al., 1994; Payne et al., 2006; Saoud 

et al., 2013), fish (Austin, 2011; Romalde, 2002; Saravanan et al., 2013; Toranzo et al., 

2005; Wang et al., 2016) and molluscs (Muroga, 2001; Tubiash et al., 1965) and were 

therefore selected as the main focus of the current study.  

1.2 Bacteria Induced Diseases in Aquaculture 

Like other organisms, bacteria can be divided into two groups based on their 

habitat source: indigenous and non-indigenous. While organisms belonging to the first 

group are part of the native flora of that particular environment (i.e. Vibrio 

anguillarum, Vibrio vulnificus, Aeromonas hydrophila, Aeromonas salmonicida, 

Photobacterium damselae etc.), non-indigenous bacteria are introduced via 
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contamination, most commonly by animal excreta and human waste (i.e. Salmonella 

spp. and Escherichia coli) (Fukuda et al., 1996; Muroga et al., 1986; Muroga et al., 

1987; Nakai and Park, 2002). During an outbreak, both indigenous and non-indigenous 

bacteria might cause either “acute disease”, which progresses quickly and generally 

results in high mortality, or “chronic disease”, which progresses slowly with a low 

mortality rate but lasts for a longer period (Austin and Austin, 2012). Pathogens are 

generally introduced to culture system and/or the host organism via vectorial transfer 

(Olafsen, 2001) (non-indigenous microorganisms) or they proliferate to levels beyond 

normal in the host because of high stress levels (mostly indigenous). When animal 

population density increases (i.e. intensive/super intensive aquaculture production), 

high-stocking density-induced stress leads to increased mucus secretion (Olafsen, 

2001), compromised immune systems and decreased disease resistance of the animal 

farmed (Ndong et al., 2007; Rotllant et al., 1997). These stress symptoms are often 

linked to reduced water quality, which might create favourable conditions for a 

bacterial epidemic (Sung et al., 2011).  

Among the different bacterial diseases in marine aquaculture (for a 

comprehensive list of fish diseases we suggest Austin and Austin (2012) and Saravanan 

et al. (2013)), Vibriosis and fish Pasteurellosis (Photobacteriosis) are important 

diseases in natural as well as in commercial production systems worldwide. These 

diseases can cause mass mortality events in aquaculture farms, with up to 100% 

mortality rates (Almeida et al., 2009; Karunasagar et al., 1994; Pizzutto and Hirst, 1995; 

Romalde, 2002; Toranzo et al., 1991; Zhang et al., 2014b). Vibriosis is associated with 

species of the closely related genera Vibrio and Photobacterium, including 

Photobacterium damselae subsp. damselae, V. anguillarum, V. vulnificus, V. 

alginolyticus, V. parahaemolyticus, V. salmonicida, V. owensii, V. harveyi etc. (Almeida 

et al., 2009; Austin and Austin, 2012; Saravanan et al., 2013). In contrast, Pasteurellosis 

is caused by Photobacterium damselae subsp. piscicida, formerly known as Pasteurella 

piscida (Almeida et al., 2009; Austin and Austin, 2012; Saravanan et al., 2013; Toranzo 

et al., 1991).  
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Table 1.1: Common bacterial prawn diseases. 

Name of 
disease Bacterial species Organs affected/ 

symptoms References 

Acute 
hepatopancreatic 
necrosis disease 
(AHPND) 

Vibrio 
parahaemolyticus 

Atrophied hepatopancreas 
(HP) and an empty stomach 
and midgut 

(Nunan et al., 2014) 

Bacterial necrosis Vibrio spp, 
Pseudomonas spp, 
Aeromonas spp and 
Spirillium spp 

Breakdown of chitin in the 
exoskeleton, leading to 
erosion and melanisation 

(Jithendran et al., 
2010) 

Bolitas  Intestine and hepatopancreas (FAO, 2007) 
Epibiont fouling  Exoskeleton (head and body) 

and around the gills 
(FAO, 2007) 

Luminescent 
bacterial disease 

Vibrio harveyi-clade 
bacteria 

Luminescent coloration of 
animals in the dark 

(Chrisolite et al., 
2008; Karunasagar et 
al., 1994; Wang et al., 
2015) 

White patch 
disease (WPD) 

Bacillus cereus White opaque patches in the 
carapace, necrosis, whitish 
blue coloration, loss of 
appetite and pale white 
muscles 

(Velmurugan et al., 
2015) 

Vibrio species are a widely distributed group of bacteria living in animal (and 

human) intestinal tracts (Thompson et al., 2004; Zanetti et al., 2001) and also occur in 

estuaries, marine coastal waters and sediments (Thompson et al., 2004). They are 

Gram-negative bacteria belonging to the Gammaproteobacteria (Thompson et al., 

2004), characterised by curved rod shapes. They are usually motile (i.e. possess at least 

one flagellum), facultative anaerobes; meaning that they use aerobic respiration if 

oxygen is present but have the capacity to switch to anaerobic fermentation if 

necessary (Lozano-Leon et al., 2003; Thompson et al., 2004). Some of the most 

problematic illnesses in prawn farming are caused by Vibrio bacteria (Table 1.1), 

responsible for high mortality rates in larval stages as well as adults (Martin et al., 

2004). The term ‘Vibrio disease’ includes diseases referred to as vibriosis, bacterial 

disease, penaeid bacterial septicaemia, penaeid vibriosis, luminescent vibriosis or red-

leg disease (Aguirre-Guzmán et al., 2004; Wang et al., 2015).  

Luminescent vibriosis (Table 1.1) is caused by V. harveyi-like bacteria and leads 

to catastrophic losses in prawn farms (Lio-Po et al., 2005). Bacteria belonging to the 

harveyi-clade, are capable of producing phenotypes controlled by a quorum sensing 
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system such as natural luminescence and the production of several virulence factors 

(Defoirdt et al., 2007a). The large strain-to-strain variation in pathogenicity and 

luminescence should be noted and there seems to be no link between the degree of 

luminescence and the virulence of a given strain (Defoirdt et al., 2008).  

1.3 Biosecurity 

Biosecurity is a recognised major concern for aquaculture industries and 

includes the practices, procedures and policies used to avoid the introduction and 

spread of pathogens (e.g., bacteria, viruses, fungi, other parasites) responsible for 

transmitting infections to farmed animals (Lee and O'Bryen, 2001).  

Prevention and control of infections are not easily managed in aquaculture, due 

to the following pathogen characteristics: widespread, rapid growth (Almeida et al., 

2009) and difficulties in disease outbreak prediction. Pathogens may be introduced 

with the use of wild brood stock, water, live food and by external predators (mainly 

birds in open ponds) (Department of Primary Industries and Fisheries, 2008; Shrimp 

News International, 2014). For example, microalgae and/or Artemia nauplii (brine 

shrimp) are commonly used globally as live feed and have been identified as microbial 

pathogen carriers and vectors (Defoirdt et al., 2006; Goulden et al., 2012; Han et al., 

2007; Interaminense et al., 2014; Puente et al., 1992; Quiroz-Guzman et al., 2013). The 

use of routine biosecurity measures can reduce the risk of pathogen introduction, but, 

once introduced, effective pathogen control treatments need to be applied to limit 

infection of the farmed animals (Lee and O'Bryen, 2001). For instance, within the 

hatchery compartment of aquaculture farms, infections can start with bacteria 

colonising hatched eggshells or via live feed carriers. Indeed, Vibrio spp are associated 

with shell disease and midgut infections, but causes are not well understood and are 

attributed mainly to stress and environmental factors (Martin et al., 2004). When eggs 

hatch, opportunistic bacteria present in the system might use egg yolk as a carbon 

source, leading to exponential population growth (Martin et al., 2004; Quiroz-Guzman 

et al., 2013). Alternatively, as newly hatched larvae rely on egg yolk for initial nutrition 

(Sorgeloos et al., 1998), they inadvertently might ingest the colonising bacteria (Martin 

et al., 2004). Studies demonstrated that pathogenic Vibrio spp (V. harveyi-like bacteria) 

adhere to egg shells and, after prawn hatching, use the yolk reserve to proliferate 
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(Martin et al., 2004; Sung et al., 2001; Vandenberghe et al., 1999). Vectors such as live 

feed (microalgae or Artemia) have been identified as being important in the 

progression and the severity of the infection (Defoirdt et al., 2006; Interaminense et 

al., 2014; Martin et al., 2004; Puente et al., 1992). Interactions between algae and 

bacteria include commensalism, competition and parasitism (Natrah et al., 2014; 

Pintado et al., 2014; Salvesen et al., 2000; Unnithan et al., 2014). These interactions 

are regulated by production of metabolites such as organic exudates, toxins and other 

signalling molecules (Duff et al., 1966; Joint et al., 2002; Kogure et al., 1979). When the 

microalgae are moved from one environment (i.e. algae culture water) to another with 

different chemical and physical factors, the chemical composition of microalgae also 

changes (Reitan et al., 1994; Salvesen et al., 2000). Therefore, bacterial growth might 

(or might not) proliferate (Salvesen et al., 1999; Skjermo and Vadstein, 1993; Tubiash 

et al., 1965) and/or bacteria associated with microalgae cultures (Salvesen et al., 2000) 

could be ingested by farmed animals, especially when present in high concentrations.  

Artemia spp. (brine shrimp) also seem to be an excellent carrier and vector for 

infections and perhaps the main route for vectorial transfer of pathogenic bacteria to 

crustacean and fish hatchery ponds, causing mass mortalities (Halet et al., 2007). 

Indeed, brine shrimp feed naturally on bacteria from development stage Instar II (8-12 

h after hatching) (FAO, 2007; Sorgeloos et al., 1998), and vectorial transfer to the 

larvae occurs if they ingest brine shrimp with contaminated gut content (Goulden et 

al., 2012; Halet et al., 2007).  

1.4 Choice of Study Organisms  

1.4.1 Prawns  

Prawns are crustaceans belong to the family Penaeidae. Of the 70 prawn 

species in Australia, ten are of commercial interest, with banana and tiger prawns 

being most commonly farmed in Queensland (Department of Agriculture Fisheries and 

Forestry, 2013). Mature prawns produce 50,000 to 1,000,000 eggs, with spawning 

normally occurring at night. Nauplii (first larval stage) hatch within 24 h and feed on 

their egg reserves for the first two days before metamorphosing into the second larval 

stage (zoea) (Shrimp News International, 2014). Zoea feed on algae for about 5 days 

before metamorphosing into mysis (final larval stage), which feed on both microalgae 
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and zooplankton (mainly Artemia nauplii) for almost four days before reaching the 

post-larval development stage.  

1.4.2 Microalgae 

Algal species such as Tisochrysis lutea (T-iso), Nannochloropsis oculata, 

Tetraselmis chui, Picochlorum atomus and Chaetoceros muelleri, are used worldwide 

as live feed for crustacean and fish larvae-culture (Brown and Blackburn, 2013; FAO, 

2007; Salvesen et al., 2000). Their high protein -, amino acid -, carbohydrate - and 

polyunsaturated fatty acids (PUFA) content is of immense interest to the aquaculture 

industry. Macromolecular content in microalgae is highly variable, to a degree species-

dependent (Finkel et al., 2016) and influenced by growth conditions (Guedes et al., 

2010; Renaud et al., 2002; Thompson et al., 1992). When nutrients are not limited 

(standard growth conditions), macromolecule content can range from 25 and 50 % of 

dry weight for protein, between 5 and 40 % for carbohydrate, from 10 and 30 % for 

lipid and between 5 and 40 % for ash (Knuckey et al., 2002; Martinez-Fernandez et al., 

2006; Renaud et al., 1999; Whyte, 1987). Microalgae have also other application such 

as high-energy food for human and animal consumption (Liu and Chen, 2016), biofuel 

(Borowitzka and Moheimani, 2010; Islam et al., 2013; Liu and Chen, 2016; Pandey et 

al., 2014; Sing et al., 2013), and for cosmetic applications (Fernandes et al., 2015).  

1.4.3 Artemia 

Artemia, known as brine shrimp, are small crustaceans belonging to the 

Artemiidae family. This small crustacean is capable to adapt to and survive in 

extremely unstable abiotic conditions (i.e. salinity, temperature, oxygen concentration, 

UV irradiation etc.) (Sorgeloos, 1980; Van Stappen, 1996, 2002). Survivor adaptation of 

this specimen to environmental stressors is evident in females via production of 

swimming larvae (nauplii) or encysted gastrulae (cysts) (MacRae, 2003). Cyst 

production aids to tolerate adverse environmental conditions, where the embryo is 

subjected to reversible physiological condition that cause suspension of development 

and a reduction in metabolism known as diapause (MacRae, 2003; MacRae, 2005). 

However, when cysts are hydrated, the embryo emerges from the diapause state 
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indicated by increased metabolism and ultimately excystment (Drinkwater and Clegg, 

1991; Nambu et al., 2008).  

Artemia is used in aquaculture worldwide due to the ability to produce cysts 

(Daintith, 1996). Indeed, cysts may be stored for long periods and hatched on demand 

to provide a convenient form of live feed for larval fish and crustaceans (Daintith, 

1996). They are highly nutritive providing about 53% of protein, 20% lipids, 15% 

carbohydrates and 10% of ash to larvae and adults (Léger et al., 1987). Although 

hatching of Artemia cysts is relatively easy and simple (El-Magsodi et al., 2014; 

Sorgeloos et al., 2001), handling and growth conditions such as de-capsulation, 

disinfection, temperature, dissolved oxygen, pH and salinity can affect hatching rates, 

maximum performance and production cost (Lavens and Sorgeloos, 1996).  

1.5 Traditional Methods to Prevent Disease in Aquaculture  

1.5.1 Antibiotics and Vaccines  

Diseases in aquaculture are a serious problem and different methods are used 

to prevent or to cure disease. Once farmed adult animals show signs of infection, 

antibiotics are often used (Bermúdez-Almada and Espinosa-Plascencia, 2012), 

however, to avoid mass mortalities in adult animals, vaccines are applied as a 

prophylactic measure. Despite the benefit of vaccines, they are limited to certain 

hatchery compartments as larvae have undeveloped immune systems (Bentzon-Tilia et 

al., 2016; Vadstein, 1997) and are almost too small and fragile for handling, especially 

on mass (Vadstein, 1997). On the other hand, while antibiotics are currently used (or 

overused) in adults and larvae (Bermúdez-Almada and Espinosa-Plascencia, 2012), 

their application in aquaculture should be restricted as they can induce bacterial 

resistance, induce human health problems (i.e. allergies) and accumulate in aquatic 

environments (Bermúdez-Almada and Espinosa-Plascencia, 2012; Cabello, 2006; Ma et 

al., 2006). The main concern is the potential for the development of antibiotic-

resistance in bacterial pathogens, the likely transfer of resistance to land pathogens 

and modifications of bacterial flora in sediments and water (Cabello, 2006; Ma et al., 

2006). Vibrio bacteria have the ability to attain resistance to antibiotics. Karunasagar et 

al. (1994) demonstrated that a V. harveyi antibiotic-resistant luminescent strain caused 

100% prawn larvae mortality, and the microorganisms showed signs of luminescence 
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and a high concentration of bacteria in the haemocoel of larvae. Wang et al. (2015), 

also, observed that the antibiotic-resistant strains, CAIM 333 and CAIM 372, of V. 

campbellii were pathogenic to the zoea stage of Litopenaeus vannamei.  

Hence, larvae are more vulnerable to microbial infections and the development 

of good husbandry practices and alternative microbial management methods are 

essential for successful hatchery operations.  

1.5.2 Water Treatment  

Aquaculture water has been identified as the main carrier of potentially 

infectious microbial pathogens (Fernandes et al., 2010; Kim and Lee, 2017). Ultra violet 

(UV-C) radiation (direct photolysis), ozone (O3) and chlorine (Cl2) are commonly used 

treatments for sterilising aquaculture water (Acher et al., 1997). The advantage of 

direct photolysis is that the high energy of the UV-C wavelengths is used for 

disinfection and no other chemical additives are required. On the other hand, the light-

quenching properties of organic substances, can significantly reduce the efficiency of 

direct photolysis (inner filter effect) and this can be a significant problem for 

aquaculture water which often have a high organic load. In addition, direct photolysis 

technologies are expensive (resource- and energy-demanding: e.g. electricity, short life 

time of UV-C lamps and quartz sleeves) due to the large volumes of recirculated water 

within aquaculture ponds. Sterilisation of seawater using ozone and chlorine can have 

a positive effect on animal health (Wietz et al., 2009), however due to sensitivity of 

larvae to toxic by-products, uncontrolled applications can cause deformities and death 

to farmed animals (Hall et al., 2013; Jensen et al., 2011). Additionally, energy-intensive 

(ozone) and resource-intensive (ozone and chlorine), are discouraged in a fossil-fuel-

constrained economy (Royal Society of Chemistry, 2007).  

As a consequence, novel environmentally friendly water treatment 

technologies are required to make aquaculture more sustainable in a fossil-fuel 

constrained economy. Indeed, using effective and low cost technologies would help to 

reduce industry costs, consequently, the final price of the product. Alternative water 

treatment technologies that have been investigated for use in aquaculture are 
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described in Table 1.2 and grouped based on whether they target specific pathogenic 

bacteria (“pathogen-specific”) or not (“non-specific”).  

Details of other novel sterilisation techniques will not be covered in this review 

as photodynamic antimicrobial chemotherapy (PACT) was the main focus of the 

current thesis and Table 1.2 below reports a comparison of alternative water 

treatment technologies.  

Table 1.2: Selected novel water treatment technologies.  

Technology Type of action 
on organisms Reference 

Addition of short-chain fatty acids Non-specific (Defoirdt et al., 2006; Shivu et al., 2007) 
Microalgae Non-specific (Ali et al., 2016; Defoirdt et al., 2010; Defoirdt 

et al., 2006; Lio-Po et al., 2005) 
Quorum-sensing disruption Pathogen-

specific 
(Defoirdt et al., 2010; Halet et al., 2007; 
Zhang and Li, 2016) 

Phage therapy Pathogen-
specific 

(Almeida et al., 2009; Busico-Salcedo and 
Owens, 2013; Oliveira et al., 2012; Pereira et 
al., 2017) 

Photodynamic Antimicrobial 
Chemotherapy 

Non-specific (Alves et al., 2015b; Kanyal et al., 2016) 

Polyhydroxyalkanoates Non-specific (Halet et al., 2007; Laranja et al., 2014; Lio-Po 
et al., 2005) 

Probiotics Non-specific (Lakshmi et al., 2013; Newaj-Fyzul et al., 
2014; Pintado et al., 2014; Prado et al., 2010) 

1.6 Photodynamic Antimicrobial Chemotherapy (PACT)  

1.6.1 What is PACT?  

In the last decade, research has shifted attention to new technologies able to 

replace (or add to) the more traditional water treatment in aquaculture. Photodynamic 

Antimicrobial ChemoTherapy (PACT) showed a great potential as a non-specific 

method to kill microorganisms without harming the farmed animal (Alves et al., 2011a; 

Carey, 1992; Jori and Brown, 2004; Magaraggia et al., 2006).  

PACT is achieved by photoexcitation of an organic dye (photosensitiser (PS)) 

producing reactive oxygen species (ROS) and radicals such as singlet oxygen (1O2), 

hydrogen peroxide (H2O2), superoxide (O2−•) and hydroxyl radical (HO•) in a series of 

photophysical reactions (Alves et al., 2015b; Jori and Coppellotti, 2007; Kanyal et al., 

2016; Stojiljkovic et al., 2001). Molecular oxygen exists as a biradical when it is in a 

ground state (O2) but, due to its spin-multiplicity, it is referred to as triplet oxygen 
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(3O2). Absorption of light by the PS generates an excited singlet state (1[PS]*), which 

rapidly loses energy, returning to singlet ground state with fluorescence production or 

undergoes in intersystem crossing (ISC, Figure 1.1a) to its corresponding long-lived 

triplet excited state (3[PS]*, Figure 1.1a) (Alves et al., 2015b; Benov, 2015; Denis et al., 

2011; Ochsner, 1997; Stojiljkovic et al., 2001). The triplet excited state can produce 

phosphorescence and returning to ground state (Alves et al., 2015b; Benov, 2015; 

Denis et al., 2011; Sperandio et al., 2013; Yoon et al., 2013). Another possibility is that 

electrons can be transferred from or to a substrate. Electron transfer from 3[PS]* to 
3O2 produces O2−• (Type I pathway), which is a radical intermediate and can yield 

formation of other ROS such as H2O2, and HO• (Alves et al., 2015b; Benov, 2015; Denis 

et al., 2011; Ochsner, 1997; Sperandio et al., 2013; Stojiljkovic et al., 2001; Yoon et al., 

2013). Alternatively, the energy can be transferred from 3[PS]* through collision with 
3O2, which induces structural modifications (i.e. change in spin orientation in O2) and 

leads to the formation of the higher-energy 1O2 state (Type II pathway), returning the 

PS to its ground state (Figure 1.1a and b) (Alves et al., 2015b; Benov, 2015; Denis et al., 

2011; Jori and Coppellotti, 2007; Ochsner, 1997; Sperandio et al., 2013; Stojiljkovic et 

al., 2001; Yoon et al., 2013). Although both pathways (type I and II) occur 

simultaneously, the Type II reaction and formation of 1O2 is widely considered as 

primarily responsible for the photoinactivation of organisms using porphyrins as PS but 

depends on the experimental conditions (Foote, 1991; Hadjur et al., 1998; Maclean et 

al., 2008; Maisch et al., 2005; Muller-Breitkreutz et al., 1995; Nitzan et al., 1989; 

Ochsner, 1997). Singlet oxygen, depending on its concentration, is also toxic to most 

cells (i.e. photoinactivation) (Alves et al., 2011a; Dahl et al., 1987; Magaraggia et al., 

2006; Snyder et al., 2006) and therefore information presented here take in 

consideration mainly the type II pathway.  

1.6.2 Photosensitisers  

Generally included in the term photosensitiser (PS) are molecules that are 

activated (“excited”) when exposed to a light source and able to interact with O2 and 

producing ROS. The principal characteristic of PS is that its absorption spectrum has to 

coincide with the wavelength of the chosen light source. It also should show a high 

efficiency in producing 1O2 (DeRosa and Crutchley, 2002; Jori and Brown, 2004), which 
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is expressed in the quantum yield (Φ-1O2). Many classes of photosensitisers have been 

utilised for 1O2 disinfection, in particular organic dyes (rose bengal, eosin, and 

methylene blue), synthetic dyes such as fullerenes (Mroz et al., 2007) and natural-

derivate dyes (porphyrins, phthalocyanines and related tetrapyrrolic macrocycles) 

(Almeida et al., 2009). Among the various known PS-dyes, porphyrins have been 

efficiently used for disinfecting drinking water (Bonnett et al., 2006), waste water 

(Carvalho et al., 2009; Jemli et al., 2002) and aquaculture water (Alves et al., 2011a; 

Magaraggia et al., 2006).  

Porphyrins are heterocyclic molecules composed of tetrapyrrole rings joined by 

a methine bridge (=CH). Porphyrins can be of natural origin or be prepared in the 

laboratory and, depending on the overall charge, they can be cationic, anionic or 

neutral. The properties of these dyes depend on the different molecular structure and 

presence or absence of a metal ion in the centre of the tetrapyrrole ring structure, 

affecting absorption spectra and spectral ranges (from 390 to 650 nm) (Pavinatto et 

al., 2008). The best known class of tetrapyrroles produced naturally by plants and 

algae are the chlorophylls (Wohllebe et al., 2012). Natural porphyrins play important 

roles in photosynthesis (e.g. chlorophylls), oxygen transport (e.g. haemoglobin) and 

redox-reactions (e.g. cytochrome P450) (Almeida et al., 2009). Most porphyrins 

themselves, at micromolar (µM) concentration, are non-toxic to fish (Almeida et al., 

2011; Magaraggia et al., 2006) and to humans (Almeida et al., 2011; Maisch, 2009; 

O'Connor et al., 2009; Ortner, 2009; Smith et al., 2009) and, as a result, are found in 

foods (European Union, 1989). Unlike antibiotics, porphyrins are improbable to 

accumulate in aquatic environments due to photobleaching when exposed to 

irradiation (Bonnett and Martıńez, 2001; Kuznetsova et al., 2010; Rotomskis et al., 

1997).  
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Figure 1.1: Graphic representation of PS excitation and singlet oxygen (1O2) production during 
PACT. a) equation of singlet oxygen (1O2) production, PS = photosensitizer in ground state, 
1[PS]* = photosensitizer in a singlet excited state, 3[PS]* = photosensitizer in a triplet excited 
state, 3O2 = triplet oxygen and 1O2 = singlet oxygen; b) Schematic illustration of singlet oxygen 
(1O2) production using porphyrins when the PS is irradiated by visible light.  

Not many studies have been conducted using porphyrins in aquaculture; 

however, isolated examples of aquaculture applications have been reported (Figure 

1.2). For instance, 1O2 disinfection of pond water showed outstanding performance for 

preventing fish infections (Jemli et al., 2002). Saprolegnia infection (a pathogenic 

fungus) in rainbow trout was also cured using cationic porphyrins and low intensity 

visible light irradiation (Magaraggia et al., 2006). Alves et al. (2011b) demonstrated 

that the natural luminescent Vibrio fisheri was photoinactivate using cationic 

porphyrins in aquaculture water and how the seasonal difference in aquaculture water 

quality affected the efficiency of the method. Malara et al. (2017b) completely 

inactivated V. owensii and V. parahaemolyticus, known pathogens for lucrative 
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aquaculture organisms (Aguirre-Guzman et al., 2010; Cano-Gomez et al., 2010), using 

both a cationic and a neutral porphyrin after 24 h of continuous irradiation of the 

bacteria in the culture medium. Therefore, 1O2 may be a promising approach to control 

Vibrio pathogen loads in aquaculture water on industrial-scales (Maisch, 2007).  

1.6.3 Mechanism of Photosensitized Singlet Oxygen Production  

The 1O2 has a lifetime of about 3-4 μs in aqueous - (Ochsner, 1997; Rodgers and 

Snowden, 1982) and ~10 μs in lipid environments (Jori and Coppellotti, 2007; Ochsner, 

1997), which is long compared to other reactive oxygen species such as HO• (<10 ns) 

(Roots and Okada, 1975), allowing it to diffuse over relatively longer distances (Foote, 

1991; Ochsner, 1997). Singlet oxygen can penetrate through cell membranes, although 

this process is less efficient (Skovsen et al., 2005). More importantly, the PS actively 

interacts with cell walls and cell membranes and, upon irradiation, produces 1O2 in 

proximity of the cell wall or membrane.  

Generally, the outer wall and cytoplasmic membrane structure of Gram-

positive and Gram-negative bacteria play a crucial role in protecting the cell. Based on 

their charge, PS are capable of cell adherence inducing cellular photooxidation (Zeina 

et al., 2001). The peptidoglycan cell wall of Gram-negative bacteria is covered by  a 

highly organised and negatively charged outer membrane composed of phospholipids, 

lipopolysaccharides, polysaccharides, proteins and lipoproteins (Maisch et al., 2004), 

making it impermeable to molecules larger than 700 Da (Jori and Coppellotti, 2007; 

Jori et al., 2006). Commonly used PS during PACT application have molecular weights 

not exceeding 1,800 Da (Jori et al., 2006) thus, cationic porphyrins might interact first 

with negatively charged compounds in the outer membrane of Gram-negative bacteria 

(electrostatic attraction) and could also be taken up by a postulated self-promoting 

uptake pathway despite their heavy weight (Jori and Coppellotti, 2007). In contrast, 

free transport across membranes is discouraged for negatively charged porphyrins that 

are electrostatically repelled (Benov, 2015; Jori and Coppellotti, 2007) and neutral 

porphyrins being nonpolar might (or might not) penetrate the negatively charged 

lipopolysaccharide outer membrane (Jori and Coppellotti, 2007). Anionic PS, however, 

might be able to diffuse across membrane when the number of charges is two as 

lipophilicity increases (Benov, 2015; Castano et al., 2004). Higher numbers of negative 
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charges (more than two) impede active transport of anionic porphyrins (Boyle and 

Dolphin, 1996; Castano et al., 2004). In contrast to Gram-negative bacteria, molecules 

of molecular weight up to 60,000 Da are able to diffuse through the porous 

peptidoglycan layer containing bridging lipoteichoic and teichuronic acids in the outer 

membrane of Gram-positive bacteria (Friedrich et al., 2000; Jori and Coppellotti, 2007; 

Jori et al., 2006). Therefore, it is generally accepted that cationic compounds are more 

efficient against Gram-negative and -positive bacteria, while anionic and neutral ones 

are effective mainly against Gram-positive microorganisms (Hamblin and Hasan, 2004; 

Maisch et al., 2004; Malik et al., 1990; Merchat et al., 1996a; Merchat et al., 1996b; 

Nitzan et al., 1992). Merchat et al. (1996a) showed that a tetra-cationic porphyrin was 

more efficient than the anionic counterpart against Enterococcus seriolicida, (Gram-

positive), and Vibrio anguillarum, (Gram-negative). In contrast, isolated studies 

showed efficient anti-bacterial effects of a neutral (Malara et al., 2017b) and a cationic 

porphyrin against Gram-negative bacteria, leading to the conclusion that light, 

exposure time, nature of the aqueous media and/or cell concentration might play an 

important role in the efficiency of the selected compound (Alves et al., 2015b; 

Coppellotti et al., 2012; Jori et al., 2011; Vatansever et al., 2013).  

1.6.4 Singlet Oxygen Cellular Damage  

The efficiency of PACT during the photosensitization depends on the physical 

PS localization and the abundance of target biomolecules (Bacellar et al., 2015; 

Vatansever et al., 2013). Singlet oxygen in proximity to biological macromolecules can 

cause hydroperoxides to react with unsaturated double bonded carbon-carbon or 

endoperoxides to react with conjugated diene systems (Glaeser et al., 2011; Ryter and 

Tyrrell, 1998). Singlet oxygen is also able to react with alkenes (containing sulfur- or 

nitrogen), phenol or sulphides producing 1,2-dioxetanes, hydroperoxydienones and 

sulfoxides, respectively (Glaeser et al., 2011; Ryter and Tyrrell, 1998).  

Table 1.3 summarises major cellular targets of singlet oxygen with proteins 

(amino acid such as histidine, tryptophan, tyrosine, cysteine, and methionine) being 

one of the principal target due to cellular abundance (Alves et al., 2015a; Benov, 2015; 

Davies, 2004; Glaeser et al., 2011). Protein oxidation leads to a decrease in amino acid 
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abundance and subsequent accumulation of toxic, un-stable substances (peroxides) or 

stable products such as kynurenine or sulfoxides (Davies, 2003).  

 

Figure 1.2: Example of PS used in aquaculture related studies. a 5,10,15-tris (1-
methylpyridinium-4-yl)-20-(pentafluorophenyl) porphyrin tri-iodide (Alves et al., 2011b; 
Arrojado et al., 2011); b meso-tri (N-methyl-pyridyl) mono (Ndodecyl-pyrydyl) porphine (C12) 
(Fabris et al., 2012; Schrader et al., 2010); c Tri-meso (N-methyl-pyridyl), meso (N-tetradecyl-
pyridyl) porphine (C14) (Magaraggia et al., 2006); d Tetra-meso (N-methyl-pyridyl) porphine 
(C1) (Magaraggia et al., 2006); e 2,17-bis-sulfonato-5,10,15-tris (pentafluorophenyl) corrolato 
(oxo) antimony(V) (Pohl et al., 2015); f 2,17-bis-sulfonato-5,10,15-tris (pentafluorophenyl) 
corrolato (trans-dihydroxo) phosphorus(V) (Pohl et al., 2015); g 5,10,15-tris-(N-methyl-o-
pyridylium) corrolato (oxo) antimony(V) (Pohl et al., 2015); h 5,10,15-tris-(N-methyl-o-
pyridylium) corrolato (trans-dihydroxo) phosphorus(V) (Pohl et al., 2015); i 5,10,15,20-tetrakis 
[N-methyl-4-pyridyl) porphyrin (Malara et al., 2017b); l 5,10,15,20-tetrakis (4-sulfonatophenyl) 
porphyrin (Malara et al., 2017b).  
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Another main target of 1O2 are the membrane lipids especially unsaturated 

fatty acid (Girotti, 2001; Girotti and Kriska, 2004). Oxygen has a high solubility in lipid 

environments, providing more opportunity for PS localized in vicinity to lipid 

membrane to encounter oxygen and generate 1O2 compared to the aqueous 

environment (Benov, 2015). When 1O2 is generated, the reaction with unsaturated 

fatty acids produce lipid peroxides (Girotti and Kriska, 2004) causing a destabilization 

of the cell membrane and eventually death of the targeted microorganisms.  

Table 1.3: Effect of 1O2 on cell biomolecules. 

Target Bio-
macromolecules 

1O2 effect Reference 

Amino acids Histidine (oxygen addition),  
Tryptophan (oxygen addition) 
Cysteine (disulfide)  
Methionin (sulfoxide) 

(Davies, 2003) 

Cholesterol 7-hydroperoxides (Girotti, 2001; Girotti and Kriska, 
2004) 

Lipids Lipid hydroperoxides (Girotti, 2001; Girotti and Kriska, 
2004) 

Nucleic acids 8-oxo-7,8-dihydroguanosine (Cadet et al., 2010; Cadet et al., 
2006) 

Proteins  Cross-linking,  
Proteolysis 

(Davies, 2003, 2004) 

While nucleic acids are not the main target of 1O2 (Alves et al., 2013; Awad et 

al., 2016; Bertoloni et al., 1992; Nitzan and Ashkenazi, 2001; Schafer, 1998), oxidation 

of DNA results in genotoxicity and mutagenicity (Castano et al., 2005) and can lead to 

cell death (Benov, 2015). Singlet oxygen with nucleic acids is highly selective (Epe, 

1991), showing preference for guanine bases (Cadet et al., 2010) oxidising guanine to 

8-oxo-7,8-dihydro-20-deoxyguanosine (Cadet et al., 2010; Cadet et al., 2006).  

1.6.5 PACT Application  

PACT was accidentally discovered at the beginning of 1900 when, for the first 

time, acridine hypochlorite dye in combination with visible light showed a lethal effect 

on the eukaryotic protist Paramecium infusoria (Raab, 1900). Following his student 

experiments, Professor Von Tappeiner (1904, 1909) used fluorescent dyes and light to 

inactivate the bacterium Proteus vulgaris. Von Tappeiner, named this process for the 

first time as “photodynamic action” (Von Tappeiner, 1904, 1909). Other studies by Von 
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Tappeiner were conducted to treat cutaneous diseases (i.e. condylomata lata, lupus 

vulgaris, psoriasis, stage II syphilis, and non-melanoma skin cancer) using eosin red 

solution as a PS and light (Szeimies et al., 2001). However, interest in PACT application 

in medical and clinic studies increased only in the second half of 1900 (Table 1.4) due 

to the discovery of the hematoporphyrin derivative (HpD) successively commercialized 

as Photofrin (Yoon et al., 2013). Only recently, less than 30 years ago, PACT was 

clinically approved as a non-invasive, highly selective method for killing undesirable 

cells and tissues and referred to as photodynamic therapy (PDT). For instance, in 

oncology, PDT was successfully used to treat selected tumours (Dougherty et al., 1998; 

Mitton and Ackroyd, 2008). Since then, PDT has been applied in other medical areas 

such as cardiology, immunology, ophthalmology, urology, dentistry and dermatology, 

as well as in the cosmetics industry (Babilas et al., 2010; Bozzini et al., 2012; Cotter, 

2009; Konopka and Goslinski, 2007; Lee and Baron, 2011; Meisel and Kocher, 2005; 

Michels and Schmidt-Erfurth, 2001; Silva et al., 2008; Szeimies et al., 2013; Taub, 2012; 

Waksman et al., 2008; Wan and Lin, 2014; Woodburn et al., 1996). PACT was also 

tested against pathogens in blood products and for disinfection and sanitation of 

surfaces (Berg et al., 2007; Brovko, 2010; Maisch et al., 2012; Marciel et al., 2017; 

Wainwright, 2002). The interest in using PACT to cure microbial infections and lesions 

started only at a later stage, coinciding with the end of “antibiotic Era”. The idea to use 

an innovative method that would be non-toxic to mammalian cells and could kill 

microorganisms in quickly without creating resistant strains encouraged scientists to 

investigate possible PACT applications (Hamblin and Hasan, 2004; Jori et al., 2006). As 

described in Table 1.4, PACT was not only tested against antibiotic-resistant bacterial 

but also viral and fungal infections (Arenas et al., 2013; Calzavara-Pinton et al., 2012; 

Carre et al., 1999; Cormick et al., 2009; Costa et al., 2012; Felgentrager et al., 2013; 

Paz-Cristobal et al., 2014; Pereira Gonzales and Maisch, 2012; Sperandio et al., 2013; 

Wainwright, 2003). The transition from medical to veterinary applications was quick 

(Table 1.4) and focussed primarily on curing cancer, as the PS accumulates near the 

tumour cells and, once activated by the light, destroys the cancer cells (Buchholz and 

Walt, 2013). Despite the oncological application, dermatologic diseases were also 

successfully in vitro (Wardlaw et al., 2012) and in vivo as demonstrated recently by 
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applying PACT to cure pododermitits in penguins (Nascimento et al., 2015; Sellera et 

al., 2014).  

Table 1.4: Examples of studies in medical, veterinary, and environmental applications using 
PDT or PACT.  

Field of 
application 

Area of 
application References 

Medical/ 
clinical 

Oncology (Dougherty et al., 1998; Mitton and Ackroyd, 2008) 
Cardiology (Waksman et al., 2008; Woodburn et al., 1996) 
Urology (Bozzini et al., 2012) 
Immunology (Cotter, 2009) 
Ophthalmology (Michels and Schmidt-Erfurth, 2001; Silva et al., 2008) 
Dentistry (Konopka and Goslinski, 2007; Meisel and Kocher, 2005) 
Dermatology (Babilas et al., 2010; Lee and Baron, 2011; Wan and Lin, 2014) 
Cosmetics (Szeimies et al., 2013; Taub, 2012) 
Surfaces sanitation (Berg et al., 2007; Brovko, 2010; Maisch et al., 2012) 
Blood disease (Wainwright, 2002) 
Viral disease (Costa et al., 2012; Wainwright, 2003) 
Bacterial disease (Arenas et al., 2013; Sperandio et al., 2013)  
Fungal disease (Calzavara-Pinton et al., 2012; Carre et al., 1999; Cormick et al., 

2009; Felgentrager et al., 2013; Paz-Cristobal et al., 2014; Pereira 
Gonzales and Maisch, 2012) 

Veterinary Oncology (Buchholz and Walt, 2013; Wardlaw et al., 2012) 
Pondodermatitis in 
penguins 

(Nascimento et al., 2015; Sellera et al., 2014) 

Environmental Anti-parasite (De Souza et al., 2014; Dondji et al., 2005; El-Tayeb et al., 2013; 
Erzinger et al., 2011; Kessel and Smith, 1989; Lucantoni et al., 2011; 
Robinson, 1983) 

Anti-viral (Costa et al., 2012; Floyd et al., 2004) 
Anti-fungal (Calzavara-Pinton et al., 2012; Carre et al., 1999; Cormick et al., 

2009) 
Anti-bacterial (Alves et al., 2009; Alves et al., 2011a; Alves et al., 2014; Demidova 

and Hamblin, 2004; Egles et al., 2010; Grinholc et al., 2015; Harris 
and Pierpoint, 2012; Jori and Brown, 2004; Komerik et al., 2000; 
Mesquita et al., 2014; Sperandio et al., 2013; Valkov et al., 2014) 

Algaecidal (Drabkova et al., 2007; Jancula et al., 2008; McCullagh and 
Robertson, 2006a; McCullagh and Robertson, 2006b, c; Pohl and 
Röder, 2015; Pohl et al., 2015; Schrader et al., 2010) 

Aquaculture 
treatment 

(Bonnett et al., 2006; Carvalho et al., 2009; Coppellotti et al., 2012; 
Jori et al., 2011; Likodimos et al., 2010; Magaraggia et al., 2006; 
Pansonato et al., 2011) 

Aquaculture Wastewater 
treatment 

(Alves et al., 2008; Alves et al., 2009; Alves et al., 2011b; Arrojado 
et al., 2011; Costa et al., 2008; Tavares et al., 2011) 

Fish infections (Magaraggia et al., 2006; Wohllebe et al., 2012) 
Prawn infections (Suzuki et al., 2000) 
Feed disinfection (Asok et al., 2012; Fabris et al., 2012; Pellosi et al., 2013; Peloi et 

al., 2008) 
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The discover of photobleaching properties of dye-based PS in the middle of 

1980s (Moan, 1986) opened new fields of applications, such as in the environment and 

in aquaculture. The possibility to use a substance that after application disappears 

from the solution was the main reason to apply PACT to sterilize or disinfect water 

including drinking water and wastewater (Bonnett et al., 2006; Carvalho et al., 2009; 

Coppellotti et al., 2012; Jori et al., 2011; Likodimos et al., 2010; Magaraggia et al., 

2006; Pansonato et al., 2011). Environmental studies also investigated the killing effect 

on virus, bacteria and fungi that were not of medical concern (Alves et al., 2009; Alves 

et al., 2011a; Alves et al., 2014; Calzavara-Pinton et al., 2012; Carre et al., 1999; 

Cormick et al., 2009; Costa et al., 2012; Demidova and Hamblin, 2004; Egles et al., 

2010; Floyd et al., 2004; Grinholc et al., 2015; Harris and Pierpoint, 2012; Jori and 

Brown, 2004; Komerik et al., 2000; Mesquita et al., 2014; Sperandio et al., 2013; Valkov 

et al., 2014), but the innovative and interesting PACT applications are those against 

parasites and algae (De Souza et al., 2014; Dondji et al., 2005; Drabkova et al., 2007; El-

Tayeb et al., 2013; Erzinger et al., 2011; Jancula et al., 2008; Kessel and Smith, 1989; 

Lucantoni et al., 2011; McCullagh and Robertson, 2006a; McCullagh and Robertson, 

2006b, c; Pohl and Röder, 2015; Pohl et al., 2015; Robinson, 1983; Schrader et al., 

2010). PACT was only investigated in aquaculture in the last 15 years (Table 1.4), 

showing interesting results to cure infection in farmed animals (Magaraggia et al., 

2006; Suzuki et al., 2000; Wohllebe et al., 2012), disinfect feed (Asok et al., 2012; 

Fabris et al., 2012; Pellosi et al., 2013; Peloi et al., 2008) and for water treatment (Alves 

et al., 2008; Alves et al., 2009; Alves et al., 2011b; Arrojado et al., 2011; Costa et al., 

2008; Tavares et al., 2011).  

1.7 Aims and Objectives  

The principal aim of the present work was to investigate the possible 

applicability of PACT to aquaculture hatchery farming of P. monodon. To the best of 

my knowledge, application of PACT related to hatcheries of prawn farms and 

specifically to harveyi-like bacteria as model organism have never been investigated. 

To achieve this principal aim, experiments were designed to investigate 1) the 

potential sterilization of hatchery water seeded with the chosen model bacterium 

(chapters 2 and 3) and 2) the sensitivity of and sterilization potential of the cationic 
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porphyrin for live feed organisms (microalgae and Artemia) in mixed culture with the 

model bacterium (chapter 4 and 5).  

In the method development chapter (chapter 2), the aim was to select the 

model bacterium to be used in the following chapters based on the potential 

pathogenicity towards P. monodon after injection and luminescence intensity.  

In chapter 3, TMPyP and TPPS4 porphyrins were used to 1) confirm their 

suitability for aquaculture purposes comparing their photostability in seawater and 2) 

investigate their capacity to inactivate and kill the model bacterium.  

In chapter 4, porphyrin toxicity towards microalgae during a six-hour dose-

response treatment with TMPyP were first evaluated and only PACT-resilient 

microalgae were tested in mixed culture with the model bacterium. Viability of 

microalgae cells was evaluated using flow cytometry based on chlorophyll auto 

fluorescence and the live-dead stain Propidium Iodide (PI). The treatment time was 

chosen based on bacterial disinfection results shown obtained in the previous chapter 

(chapter 3). The PACT-resilient microalga, N. oculata was selected and used in mixed 

culture with V. campbellii ISO7 to investigate sterilization success in a contaminated 

feed algal culture.  

In chapter 5, two different Artemia cysts (magnetic and unmodified) were 

tested for possible toxicity of the cationic porphyrin. Additionally, investigations 

explored antimicrobial efficiency of TMPyP in experiments where magnetic cysts were 

mixed with the model bacterium.  
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2 Chapter 2: 2 Selection of Model Organism via Vibrio Challenge 

 

Danilo Malara a, Lone Høj b, Kirsten Heimann a, Michael Oelgemöller a 

 

a College of Science and Engineering, James Cook University, Townsville, QLD 4811, 

Australia, danilo.malara@my.jcu.edu.au; kirsten.heimann@jcu.edu.au. 

michael.oelgemoeller@jcu.edu.au.  

b Australian Institute of Marine Science, PMB 3, Townsville MC, Queensland, 4810, 

Australia, l.hoj@aims.gov.au.  

2.1 Introduction 

Some of the most pathogenic bacteria for aquatic vertebrates and 

invertebrates belong to the Harveyi clade (Busico-Salcedo and Owens, 2013; 

Darshanee Ruwandeepika et al., 2012; Nunan et al., 2014; Vanmaele et al., 2015). 

Species comprising the Harveyi clade include V. alginolyticus, V. azureus, V. campbellii, 

V. harveyi, V. jasicida, V. mytili, V. natriegens, V. owensii, V. parahaemolyticus, V. 

rotiferianus, V. sagamiensis (Urbanczyk et al., 2013). Within the Harveyi clade, species 

closely related to Vibrio harveyi include strains that express luminescence and cause 

luminescent vibriosis disease in crustacean (mainly prawn) hatcheries (Busico-Salcedo 

and Owens, 2013).  

The virulence mechanisms of species closely related to Vibrio harveyi are poorly 

understood partly due to multiple virulence factors, high genome plasticity, multiple 

host species, and previous misidentification of strains (Austin and Zhang, 2006; Cano-

Gomez et al., 2009; Cano-Gomez et al., 2011; Owens and Busico-Salcedo, 2006). 

Bacterial pathogenicity is highly strain-dependent and strains of the same species may 

have different host ranges (Austin and Zhang, 2006).   

                                                      

2 Experiment with V. campbellii ISO7 published in: Malara, D., Høj, L., Heimann, K., Citarrella, G., 
Oelgemöller, M., 2017a. Capacity of cationic and anionic porphyrins to inactivate the potential 
aquaculture pathogen Vibrio campbellii. Aquaculture. 473, 228-236. 

mailto:danilo.malara@my.jcu.edu.au
mailto:kirsten.heimann@jcu.edu.au
mailto:michael.oelgemoeller@jcu.edu.au
mailto:L.Hoj@aims.gov.au
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To establish if a microorganism is a potential virulent strain towards a specific 

host, experimental challenge experiments using the pure culture can be conducted. In 

challenge experiments, infections are often induced via injection, immersion or oral 

administration using feed or vectors (Saulnier et al., 2000). Scientists rely on Koch’s 

postulate to confirm the pathogenicity of a specific strain. The original postulates 

included three important points that has been translated by Rivers (1937): “first that 

the parasite occurs in every case of the disease in question, and under circumstances 

which can account for the pathological changes and clinical course of the disease; 

secondly, that it occurs in no other disease as a fortuitous and non-pathogenic 

parasite; and thirdly, that it, after being fully isolated from the body and repeatedly 

grown in pure culture, can induce the disease anew; then the occurrence of the 

parasite in the disease can no longer be accidental, but in this case no other relation 

between it and the disease except that the parasite is the cause of the disease can be 

considered”. Only in later stages was a fourth postulate introduced requiring that the 

microorganism needed to be re-isolated from a “clinically inoculated host” (Fredricks 

and Relman, 1996). According to Fredricks and Relman (1996) , Koch’s postulates 

present some limitations especially if considering viral disease but also clinical diseases 

in general. Even Koch was not able to fulfil the postulate with some infectious agents 

such as Vibrio cholerae, failing to validate the third postulate (Evans, 1976). Nowadays, 

using molecular techniques and better knowledge on virulence mechanisms, we are 

able to precisely identify microorganism associated with a diseased animal and to 

understand possible failing causes.  

In this chapter, I aim to find a suitable model bacterial strain that is virulent to 

P. monodon, using virulence and bioluminescence as key factors that can be used in 

the subsequent chapters. An ideal model bacterium would be luminescent, so that it 

can be used in rapid luminescence-based assays, and is virulent to prawns to ensure 

relevance to a major aquaculture sector. The two strains tested were both originally 

isolated from diseased invertebrate larvae and reported as luminescent: Vibrio sp. 

ISO7 (personal communication) and V. owensii 47666-1 (Harris, 1993; Muir, 1991; 

Pizzutto and Hirst, 1995). Here, the strains were identified using molecular techniques, 
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luminescence was tested, and infection experiments were performed with prawns to 

confirm Koch’s postulates.  

2.2 Materials and Methods  

2.2.1 Origin of Penaeus monodon  

Penaeus monodon post-larvae (PL 55) were donated by Crystal Bay Prawn Farm 

in Cardwell, (North) Queensland, Australia. The experimental tanks (see 2.2.2) were 65 

L glass aquaria filled with ~35 L of filtered and UV-sterilized seawater. Healthy-looking 

prawns of similar size (3 g) were randomly selected and divided into 3 groups of 4 

animals and assigned to separate experimental tanks. Another 30 prawns were kept in 

captivity to be used for subsequent challenge experiments and transferred to a holding 

tank (65 L glass aquaria with lid, Blue Planet, Chicago, Illinois, USA) filled with ~50 L 

filtered and UV-sterilized seawater (MARFU, James Cook University, Townsville, 

Australia).  

2.2.2 Aquaria Set up, Water Quality and Feeding  

Aquaria were set up in a controlled temperature room (28 ± 1 ˚C) with a 12/12 

h photoperiod in the North Queensland Algae Identification Facility (NQAIF, James 

Cook University, Townsville, Australia). Air pumps (4-outlets, Blue Planet) were used 

for aeration. To avoid cannibalism in the experimental tanks, tank dividers, made from 

plastic sliding bars and marine flyscreen, were used to separate the prawns. Prawns 

were fed twice daily with commercial feed pellets (Prawn MR Ridley diet, Ridley Aqua 

Feed, Melbourne, Victoria, Australia). To avoid nutrient build-up, aquaria were 

siphoned and water was batch exchanged (~75%) daily. Water quality (NH4+, PO43-, 

NO32- and NO22-) and pH was monitored daily using commercial aquaria kits (API, 

Aquarium Pharmaceuticals, Product #LR1800) and a pH meter (OAKTON, Eutech 

Instruments, Vernon Hills, Illinois, USA), respectively.  

2.2.3 Bacterial Strain and Culture Media  

The prawn challenge experiment was authorized under the Animal Ethics 

Approval Number A2062 by JCU’s Animal Ethics Committee. The naturally 

bioluminescent Vibrio sp. strain ISO7 was originally isolated from diseased larvae of 
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the oyster Saccostrea glomerata in the Veterinary Science Laboratory at James Cook 

University in 2002. At the start of this study the strain had not been precisely identified 

using molecular methods and was referred to as V. harveyi ISO7 (personal 

communication). Its virulence had not been confirmed in infection studies.  

Table 2.1: Media components.  

Media Components (g∙L-1) 

Artificial seawater (ASW)1 CaCl2.2H2O (1.5), KCl (0.75), MgCl2.6H2O (5.18), 
MgSO4.7H2O (6.2) and NaCl (17.5) 

Marine Basal Medium (MBM)2 1M Tris buffer, pH 7.5 (20 mL), C6H8FeNO7 (0.025), 
K2HPO4 (0.07) and NH4Cl (1) 

Luminescent broth Medium (LM)3 Glycerol (3 mL), yeast extract (5) and trypton (5) 
Luminescent Agar (LA)4 Bacteriological agar (40) 
Seawater Nutrient Medium (SWNM)2 Yeast extract (5), trypton (1) 
Seawater Nutrient Agar (SWNA)5 Bacteriological agar (30) 
Thiosulfate-Citrate-Bile-Sucrose (TCBS) agar 265020 - BD Difco™ TCBS Agar  

1 DI water (1L), 2ASW (1L), 3MBM (1L), 4LM (1L) or 5SWNM (1L)  

The V. owensii 47666-1 isolate, was originally isolated from diseased prawn 

larvae (Harris, 1993), and demonstrated to be virulent to prawn larvae (Pizzutto and 

Hirst, 1995). This strain was described as a luminescent V. harveyi strain (Harris, 1993; 

Muir, 1991; Pizzutto and Hirst, 1995). More recently, it was identified as belonging to 

the new species Vibrio owensii using multi-locus sequencing (Cano-Gomez et al., 2010; 

Cano-Gomez et al., 2011) and whole genome sequencing (Espinoza-Valles et al., 2015).  

Colony morphology and luminescence observations were performed for both 

strains using the following growth media: Luminous broth (LM), Luminous agar (LA), 

Seawater Nutrient broth Medium (SWNM), Seawater Nutrient agar (SWNA) and 

Thiosulphate Citrate Bile Salts Sucrose (TCBS) agar (Table 2.1). Luminescence was 

recorded using a Vilber Lourmat Chemismart 3000 camera and Chemic Capt 3000 

software (Eberhardzell, Germany).  

2.2.4 Challenge Experiment 1 setup 

Immediately before the experiment, both bacteria were streak-plated from 

cryo-preserved stocks onto TCBS agar, and incubated at 28 ˚C for 24 h. One colony of 

Vibrio sp ISO7 was resuspended in LM and the overnight culture (28 ˚C, 200 rpm) was 

diluted 100-fold in LM and incubated further until an OD570 = 0.11 was reached 

https://pubchem.ncbi.nlm.nih.gov/search/#collection=compounds&query_type=mf&query=C6H8FeNO7&sort=mw&sort_dir=asc
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(Enspire 2300, Perkin Elmer, Waltham, Massachusetts, USA). Plating on LA showed 

that this OD corresponded to ~ 1 x 107 CFU∙mL-1. Similarly, one colony of V. owensii 

47666-1 was suspended in SWNM and incubated at 28 ˚C overnight (~18 h, 200 rpm). 

The culture was 100-fold diluted in SWNM and incubated (28 ˚C, 200 rpm) until an 

OD570 = 0.22 was reached (Enspire 2300, Perkin Elmer, Waltham, Massachusetts, USA). 

This OD correspond to ~ 1 x 107 CFU∙mL-1 when plated on SWNA.  

 
Figure 2.1: Injection in the 3rd segment in P. monodon.  

For each bacterium, 1 mL of the culture was centrifuged (Sigma 1-14, John 

Morris Scientific, Willoughby, NSW, Australia) at 10,000 g for 10 min and the pellet 

washed twice before resuspension in 1 mL of 2% NaCl Phosphate Buffer Saline (PBS) 

(Cano-Gomez, 2012). Sterile syringes with small needles (Terumo U-100 insulin, 1 mL 

29 Gx1/2 inc, Tokyo, Japan) were used for intramuscular injections and to collect the 

haemolymph from dead prawns.  

 
Figure 2.2: Example of haemolymph collection.  

Prawns were acclimated for 48 h in the new environment before starting the 

experiment. One separate tank was used for each treatment (Vibrio sp ISO7, V. owensii 

47666-1, 2% PBS control), with 4 prawns per tank. The freshly prepared bacterial 
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suspension (0.1 mL corresponding to ~ 1 x 106 CFU∙mL-1) was intramuscularly injected 

into the third abdominal segment anterior to the telson (Figure 2.1) (Cano-Gomez, 

2012; Harris and Owens, 1999). Control prawns were injected with 0.1 mL of sterile 2% 

NaCl PBS. The animals were monitored every hour for 6 h and then again after 12 h 

and every 12 hours afterwards. When death occurred, haemolymph was collected 

from the pleopod base of the first abdominal segment (Figure 2.2) (Vargasalbores et 

al., 1993). Control prawns were monitored for 7 days after injection and on Day 7 

haemolymph of a control prawn was collected. Haemolymph from dead prawns and 

selected healthy control prawns were streaked on TCBS agar, incubated at 28 ˚C for 24 

h and analysed for luminescent colonies as described above. One TCBS agar plates with 

haemolymph from a recently dead challenged prawn and a corresponding plate from a 

sacrificed control prawn were selected randomly, and colonies picked and purified.  

2.2.5 Challenge Experiment 2 setup 

The aim of the second experiment was to investigate if the pathogenicity of V. 

owensii 47666-1 could be stimulated after passage through prawns in the first 

experiment (Cano-Gomez, 2012; Egidius et al., 1986). The second challenge 

experiment was carried out immediately after the first experiment using prawns from 

the same batch as used in the first challenge experiment. Their total time in the 

holding tank before transfer to experimental tanks was 9 days followed by 48 h 

acclimations in experimental tanks as described above (2.2.4). A strain isolated from 

dead prawns in the first challenge experiment and identified as V. owensii using 

multiplex PCR (see 2.2.6), was cultured and injected into prawns as described for V. 

owensii 47666-1 in 2.2.4.  

2.2.6 Multiplex PCR  

A multiplex PCR protocol, that can identify and discriminate between the four 

closely related species V. campbellii, Vibrio harveyi, V owensii, and Vibrio rotiferianus 

(Cano-Gomez et al., 2015), was used to screen bacteria isolated from both challenge 

experiments in order to select representative strains for sequencing. Cells picked from 

overnight colonies were suspended in 500 μL of TE (10 mL of 0.5 M Tris HCl + 1 mL of 

0.5 M Na2EDTA), and DNA was released by placing samples in boiling water for 10 min. 
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The PCR mastermix and cycling conditions were as described previously for DNA 

extracts (Cano-Gomez et al., 2015), except that the HotStar Taq DNA polymerase 

(Qiagen) concentration was adjusted to 0.035 U μL-1 and the final reaction volume was 

20 μL. Controls consisted of purified DNA of Vibrio fortis (negative control), PCR water 

(blank), as well as a mixture of purified DNA from V. campbellii, V. harveyi, V. owensii 

and V. rotiferianus (positive controls). PCR products were separated on a 2.5% agarose 

gel with ethidium bromide (0.5 μg mL-1, MO BIO Laboratories, Carlsbad, CA, USA) at 80 

V for 80 min (Figure 2.4, Figure 2.6 and Figure 2.7).  

Table 2.2: Sequence accession numbers of target genes from selected type-strains (T) and 
strains previously identified by multilocus sequence analysis (MLSA).   

Type-strain topA mreB 
Photobacterium. damselae subsp. damselae ATCC33539T DQ907458 DQ907386 
Photobacterium. damselae subsp. damselae JCM8968T DQ907460 DQ907388 
Photobacterium phosphoreum IAM14401T DQ907465 DQ907393 
Vibrio alginolyticus LMG4409T DQ907472 DQ907405 
Vibrio campbellii LMG11216T DQ907475 DQ907408 
Vibrio campbellii LMG112571 JF930502 JF930413 
Vibrio campbellii LMG213621 JF930493 JF930418 
Vibrio campbellii Oz072 HQ449879 HQ449951 
Vibrio harveyi LMG4044T DQ907488 DQ907422 
Vibrio owensii DY05T GU111255 GU111259 
Vibrio owensii 47666-13 GU111254 GU111258 
Vibrio parahaemolyticus LMG2850T DQ907509 DQ907440 
Vibrio rotiferianus LMG21460T DQ907515 DQ907445 

1 Hoffmann et al. (2012); 2 Cano-Gomez et al. (2011); 3 (Cano-Gomez et al., 2010)  

2.2.7 Gene Sequencing  

For selected strains, one colony was used to inoculate a 5 mL culture in alkaline 

peptone water (APW; Peptone 1%, NaCl 3%, MQ water, pH 8.5) and incubated 

overnight (28°C, 200 rpm). Extraction of DNA from overnight cultures was performed 

using the Wizard® Genomic DNA Purification Kit (Promega) following the 

manufacturer’s guidelines for Gram-negative bacteria. For each strain, two different 

PCRs were performed; one to amplify the topA gene and one to amplify the mreB 

gene. The PCR mastermix and cycling conditions were as described previously (Cano-

Gomez et al., 2011), except that the primer concentrations were adjusted to 0.4 μM, 

the HotStar Taq DNA polymerase (Qiagen) concentration was adjusted to 0.05 U μL-1 
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and the final reaction volume was 50 μL. The PCR products were electrophoresed on a 

1% agarose gel with ethidium bromide (0.5 μg mL-1, MO BIO Laboratories, Carlsbad, 

CA, USA) for 80 min at 80 V to confirm that fragments of the expected size were 

amplified for samples and positive controls only; milli-Q water was used as a negative 

control (Figure A2.1, Figure A2.2 and Figure A2.3). Samples were sent to Macrogen Inc. 

(Seoul, Republic of Korea) for sequencing in both directions using the same primers as 

for the original amplification reactions.  

2.2.8 Sequence Analysis and Phylogenetic Tree  

Gene sequences were analysed, aligned and phylogenetic trees constructed 

using CLC Main Work bench 7.6. For each sample, contigs of the mreB and topA 

sequences were created. The corresponding sequences of selected type strains (Table 

2.2) were obtained from the NCBI website. Sequences were aligned using CLUSTAL 

v2.1 Multiple Sequence Alignments and a phylogenetic tree constructed using the 

Maximum Likelihood function (Figure 2.5 and Figure 2.8). 

2.3 Results and Discussion  

Both Vibrio sp. ISO7 and Vibrio owensii 47666-1 grew in all the tested media 

(Figure 2.3), but bioluminescence was only observed for Vibrio sp. ISO7 (data not 

shown). While V. owensii 47666-1 was originally described as luminescent (Harris, 

1993; Muir, 1991; Pizzutto and Hirst, 1995), this was not confirmed in more recent 

studies by (Cano-Gomez et al., 2010) and in the current study. 

 
Figure 2.3: V. owensii 476661 (left) and V. harveyi ISO7 (right) streak-plated in TCBS agar. V. 
owensii 47666-1, a sucrose-fermenter, produced yellow colonies. Vibrio sp ISO7, on the other 
hand, is a non-sucrose-fermenting strain that produces green colonies.  
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2.3.1 Challenge Experiment 1  

Vibrio sp ISO7 induced 100% mortality between 6 and 16 h after injection, 

while control prawns injected with sterile 2% NaCl PBS remained healthy. This 

demonstrates that the buffer itself was non-toxic and animals were not affected by 

handling procedures. In contrast, in challenge experiments with V. owensii 47666-1, 

one prawn died within 1 h after injection, most likely due to stress and not bacterial 

pathogenicity, one prawn died between 6 and 16 h after injection, and 2 prawns 

remained healthy for the entire experiment (7 days). These results are comparable to 

those from Cano-Gomez (2012), where V. owensii 47666-1 was shown to have limited 

virulence in P. monodon juveniles, but in contrast to Harris (1993) and Pizzutto and 

Hirst (1995), who described this specie as highly virulent towards prawn larvae. It is 

also possible that the life stage of the animals influenced disease susceptibility since 

juveniles do not possess an adaptive immune system (Hauton et al., 2015; Kumaresan 

et al., 2016; Rowley and Pope, 2012). Alternatively, the pathogenicity of the bacterium 

might have been lost or reduced after multiple passages in artificial culture media and 

a long cryo-preservation time. In the latter case, virulence may be restored through 

multiple passages of the bacterium in the original host (Egidius et al., 1986). 

 
Figure 2.4: Multiplex PCR challenge experiment 1. Colonies picked from plated haemolymph of 
dead (P1 to P4) or sacrificed (control) prawns. Positive control consists of (from the bottom to 
top) V. owensii (85 bp), V. harveyi (121 bp), V. campbellii (294 bp), and V. rotiferianus (489 bp); 
DNA ladder (100 bp) on the edge of the gel.  

Multiplex PCR from the first experiment suggested that Vibrio sp ISO7 belongs 

to the V. campbellii species (Figure 2.4: Vibrio sp ISO7 lanes 1, 3 and 4) and that V. 
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owensii 47666-1 belongs to the V. owensii species (Figure 2.4: V. owensii 47666-1 lanes 

2, 6, 8, 9 and 10). Indeed, the originals strain and all the isolates from injected prawns 

with Vibrio sp ISO7 or V. owensii 47666-1 produced an amplification product at a site 

expected for V. campbellii (Figure 2.4: Vibrio sp ISO7 lanes 1, 3 and 4) or V. owensii 

(Figure 2.4: V. owensii 47666-1 lanes 2, 6, 8, 9 and 10), respectively. The identity was 

confirmed by using phylogenetic tree analysis (Figure 2.5) since the strains clustered 

with the V. campbellii or V. owensii type strains. These results in combination with the 

phylogenetic tree analysis fulfil Koch’s postulate (Fredricks and Relman, 1996; Rivers, 

1937).  

 

Figure 2.5: Phylogenetic tree using concatenated topA and mreB gene sequences from 
selected type strains (*; Table 2.2), reliable strains (**; Table 2.2) and colonies collected from 
challenge experiment 1. Red arrows show the position of V. campbellii ISO7 before the 
injection and after successful recollection from dead prawns. Yellow arrows point to V. owensii 
before injection, and after successful recollection from dead prawns and the reference 
sequence of V. owensii 47666-1 (Table 2.2), to which both were identical.  

Strains isolated from a sacrificed control prawn (Figure 2.4: lane 11) did not 

produce an amplification product in the Multiplex PCR, confirming bacteria present 

were not identical to any of the four-target species (V. owensii, V. harveyi, V. 
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campbellii, and V. rotiferianus; Figure 2.4: lane 5) and demonstrating that the injected 

strains were not present in the control prawns. In addition, one colony from a prawn 

injected with V. owensii 47666-1 (Figure 2.4: lane 7) did not amplify suggesting that the 

colony selected (randomly) belonged to a bacterial species different to the four-target 

species investigated (V. owensii, V. harveyi, V. campbellii, and V. rotiferianus; Figure 

2.4: lane 5). 

In conclusion, these results showed that the same strain could be reisolated 

from dead individuals after challenge experiments confirming Koch’s postulates. Gene 

sequences of the topA and mreB genes from Vibrio campbellii ISO7 have been 

submitted to GenBank, with accession numbers KY11. 

2.3.2 Challenge Experiment 2  

A colony isolated from a prawn that died 6 h after injection in the first 

challenge experiment and identified as V. owensii by Multiplex PCR (Figure 2.4: lane 

10) was purified and re-injected in P. monodon. Subsequently, 2-loci MLSA confirmed 

that the purified strain was V. owensii 47666-1 (Figure 2.5). 

 

Figure 2.6: Multiplex PCR challenge experiment 2 (injected prawns). Alive prawns (P1 to P4) 
were intramuscular injected with V. owensii 47666-1 and colony picked from plated 
haemolymph of dead prawns. Positive control consists of (from the bottom to top) V. owensii 
(85 bp), V. harveyi (121 bp), V. campbellii (294 bp), and V. rotiferianus (489 bp); DNA ladder 
(100 bp) on the edge of the gel.  

While all injected prawns died during the experimental period, there was a 

large variability in time to mortality (1 h, 6-16 h, 6-16 h and 6 days). Colonies isolated 
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from prawns injected with V. owensii 47666-1 that died 6-16 h after injection 

confirmed the amplification product to be identical to V. owensii by multiplex PCR 

(Figure 2.6) and clustering with the reference V. owensii type strain in the phylogenetic 

tree (Figure 2.8). Therefore, Koch’s postulate was successfully fulfilled and new stock 

of V. owensii 47666-1 was cryopreserved in 30% glycerol.  

In addition, in this experiment one of the control prawns died after injection. 

Multiplex PCR, revealed that colonies isolated from hemolymph of control prawns 

belonged to V. harveyi (Figure 2.7: lanes 1, 2, 3, 4 and 5) showing that likely, stress 

condition due to long captivity (> 9 days) created favourable conditions for 

opportunistic bacterial to grow and causing death.  

 
Figure 2.7: Multiplex PCR challenge experiment 2 (control prawns). Colony picked from plated 
haemolymph of control prawns (P1 to P4). Positive control consists of (from the bottom to top) 
V. owensii (85 bp), V. harveyi (121 bp), V. campbellii (294 bp), and V. rotiferianus (489 bp); DNA 
ladder (100 bp) on the edge of the gel.  

We also noticed that V. owensii (Figure 2.7: lanes 6, 7, 8, 9 and 10) was present 

in the healthy control prawns that were sacrificed. However, the phylogenetic tree 

(Figure 2.8) based on 2-loci MLSA showed that those colonies although belonging to V. 

owensii group but were not identical to the injected V. owensii 47666-1. The 

hypothesis is that prawns already had this bacterium in their tissues/hemolymph and it 

proliferated while prawns were kept in holding tanks or that it was introduced into the 

tank during water exchanges.  

In conclusion, these results suggest that even in the second experiment the 

injected bacterium was successfully re-isolated from the diseased prawns, fulfilling 
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Koch’s postulates. Occurrence of bacteria belonging to the V. owensii group in the 

second challenge experiment suggests that these bacteria can proliferate if animals are 

kept in holding tanks for prolonged times, which may affect survival of control animals. 

It was also evident that the second challenge experiment did not increase the boost 

effect leading to the conclusion that V. campbellii ISO7 was the best candidate for a 

model bacterium due to natural luminescence and potential pathogenicity towards P. 

monodon.  

 
Figure 2.8: Phylogenetic tree using concatenated topA and mreB gene sequences from 
selected type strains (*; Table 2.2), reliable strains (**; Table 2.2) and colonies collected from 
challenge experiment 2. Yellow arrows indicated the V. owensii before the injection was 
successfully recollected from dead prawns and the sequence was identical to the reference 
sequence of V. owensii 47666-1 (Table 2.2).  

2.4 Summary  

The aim of this study was to identify whether Vibrio sp ISO7 or V. owensii 

47666-1 were suitable model prawn pathogens, in order to use a reliable and well 

characterised Vibrio prawn pathogen in the subsequent chapters of this thesis. Both 
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strains were originally reported as luminescent, Vibrio sp. ISO7 was isolated from 

diseased oyster larvae while V. owensii 47666-1 strain was isolated from diseased 

prawn larvae. The infection experiment successfully caused disease in injected 

animals. The results from multiplex PCR and gene sequencing confirmed that Koch’s 

postulates were fulfilled for Vibrio sp. ISO7 (previously V. harveyi ISO7) and V. owensii 

47666-1, with bacteria injected and those collected from dead prawns being identical. 

In addition, Vibrio sp ISO7 was identified as belonging to V. campbellii species and 

showed a natural bioluminescence while V. owensii 47666-1 was not luminescent. The 

V. campbellii ISO7 strain was more highly virulent in the first experiment when 

compared to V. owensii 47666-1. Indeed, V. owensii 47666-1 required a second 

infection experiment. The boosting step successfully produced a sub-culture with 

enhanced virulence relative to the original cryo-preserved stock culture but V. owensii 

47666-1 continued to be not as virulent as V. campbellii ISO7. In the light of these 

results and the aim of this experiment, V. campbellii ISO7 was chosen as model 

bacterium for the following chapters.  
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3.1 Introduction  

Aquaculture water is considered one of the most important carriers of 

microbial pathogens (Meyer, 1991). Currently, direct photolysis (UV sterilization), 

ozonation (O3) and chlorination (Cl2) are the most widely used water sterilization 

treatments (Acher et al., 1997; Jensen et al., 2011; Jorquera et al., 2002). Despite their 

efficiencies, these techniques all have a variety of drawbacks, including the handling of 

large volumes of health- and environmentally hazardous solutions (Cl2), production of 

toxic by-products (O3) (Hall et al., 2013; Jensen et al., 2011), and high energy 

requirements (UV and O3). To make aquaculture more environmentally and 

economically sustainable, novel water treatment technologies are therefore urgently 

required. An alternative to traditional sterilization methods is photodynamic 

antimicrobial chemotherapy (PACT), which relies on the use of catalytic amounts of 

photosensitisers (PS), light and dissolved oxygen. Photosensitisers can be synthetic or 

natural compounds (Alves et al., 2015b), typically dyes, that when exposed to light and 

oxygen create ROS (Alves et al., 2015b; Arrojado et al., 2011; Carvalho et al., 2009; Jori 
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and Coppellotti, 2007; Kanyal et al., 2016; Maisch, 2015a; Sabbahi et al., 2013; 

Sperandio et al., 2013; Vatansever et al., 2013; Yoon et al., 2013), which through multi-

target action on cellular macromolecules (i.e. lipopolysaccharides, proteins and fatty 

acids), damage organisms leading to death (Alves et al., 2015a; Alves et al., 2015b; 

Bacellar et al., 2015; Benov, 2015; Stojiljkovic et al., 2001). Porphyrins produce mainly 
1O2 as ROS but it depends on the experimental condition (Alves et al., 2015b; Arrojado 

et al., 2011; Carvalho et al., 2009; Jori and Coppellotti, 2007; Kanyal et al., 2016; 

Maisch, 2015a; Sabbahi et al., 2013; Sperandio et al., 2013; Vatansever et al., 2013; 

Yoon et al., 2013). Due to the indiscriminate action of 1O2, acquisition of resistance per 

se is not possible for PACT (Tavares et al., 2010). However, sub-lethal 1O2 treatments 

activate reactive oxygen defence mechanisms in bacteria (Maisch, 2015b), making 

them more tolerant to 1O2 levels. Bacteria are generally more vulnerable to 1O2 

compared to mammalian cells (Demidova and Hamblin, 2004; Hamblin and Hasan, 

2004; Jori and Coppellotti, 2007), enabling the use 1O2 as antimicrobial tools. PACT-

generated 1O2 has been shown to destroy virulence factors and can be classified as an 

antimicrobial and anti-virulence factor therapy (Hamblin and Hasan, 2004; Komerik et 

al., 2000).  

Photosensitizers are divided into cationic, anionic or neutral, based on the 

presence of positive, negative or neutral charges, respectively (Stojiljkovic et al., 2001). 

Porphyrins are a sub-group of PS that often photobleach rapidly, thereby limiting the 

duration of their activity (1O2 generation) and making them environmentally-friendly 

and ideal in applications for environmental studies and aquaculture (Alves et al., 

2011b). Many types of porphyrins have been synthetized and tested (Castano et al., 

2004; Nyman and Hynninen, 2004; Oliveira et al., 2009; Philippova et al., 2003). With 

regards to effectiveness and compound charge, cationic porphyrins appear 

advantageous for eradicating Gram-negative bacteria (Alves et al., 2015b; Ragas et al., 

2013; Stojiljkovic et al., 2001) compared to anionic and neutral porphyrins, however, 

some exceptions have been demonstrated previously (Malara et al., 2017b). 

Antimicrobial efficiency of PACT using porphyrins (i.e. cationic) seems to depend on 

number of charges (Lazzeri et al., 2004) and the proximity to the target organism, with 

best results obtained if the dye electrostatically interacts with the outer membrane of 
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Gram-negative bacteria and when taken up by the cells (Alves et al., 2015b; Benov, 

2015; Gsponer et al., 2015; Wikene et al., 2015).  

While the bulk of studies on the use of PS have targeted their potential use in 

cancer treatment, there have been some encouraging results for the eradication of 

water-borne pathogens in wastewater and drinking water (Bonnett et al., 2006; 

Carvalho et al., 2007; Carvalho et al., 2009; Jemli et al., 2002). Only a few studies to 

date have explored the potential use of PACT in an aquaculture context (Alves et al., 

2011b; Arrojado et al., 2011; Magaraggia et al., 2006; Schrader et al., 2010). In 2006, 

Magaraggia et al. (2006) explored the use of PACT for preventative and curative 

treatment of the freshwater mould Saprolegnia spp on rainbow trout. Later, in 2010, 

Schrader et al. (2010) tested the antibacterial activity of a patented, commercially 

available porphyrin product in vitro against bacteria that are pathogenic to channel 

catfish, Ictalurus punctatus. Two studies have explored the use of porphyrins in PACT 

in anti-microbial treatments in seawater (Alves et al., 2011b; Arrojado et al., 2011). 

Alves et al. (2011b) used the naturally luminescent marine bacterium Vibrio fischeri to 

demonstrate that a tri-cationic porphyrin could photoinactivate V. fischeri under a 

range of different physico-chemical conditions. In addition, Arrojado et al. (2011) 

showed the effect of a tri-cationic porphyrin on reducing cell numbers for a range of 

marine bacteria including both Gram-negative and Gram-positive species in phosphate 

buffered saline (PBS). Recently, our group tested the efficacy of photolytic and 

photodynamic disinfection protocols using one tetra-cationic and one neutral 

porphyrin and two pathogenic Vibrio species, Vibrio parahaemolyticus and Vibrio 

owensii in marine broth used for their cultivation (Malara et al., 2017b).  

The main aims of this study were to effectively sterilize prawn hatchery water 

using porphyrin-enabled PACT. To achieve the main aim, the objectives were to test 1) 

suitability of the tetra-cationic porphyrin 5, 10, 15, 20-Tetrakis (1-methyl-4-pyridinio) 

porphyrin tetra (p-toluenesulfonate) (TMPyP) and the tetra-anionic porphyrin 4, 4′, 4′′, 

4′′′-(Porphine-5, 10, 15, 20-tetrayl) tetrakis (benzenesulfonic acid) tetrasodium salt 

hydrate (TPPS4) in direct aquaculture applications via photobleaching experiments and 

2) efficacy of both porphyrins to photoinactivate and kill the naturally luminescent 
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bacterium Vibrio campbellii ISO7 when suspended in seawater collected from an 

aquaculture farm.  

Vibrio campbellii ISO7 belongs to the Harveyi-clade (Urbanczyk et al., 2013), 

which include many strains that cause luminescent vibriosis (Busico-Salcedo and 

Owens, 2013; Wang et al., 2015) and heavy financial losses in the aquaculture industry 

worldwide (Cano-Gomez et al., 2015; Defoirdt et al., 2007b; Defoirdt and Sorgeloos, 

2012; Karunasagar et al., 1994). The bacterium was chosen as model for this 

experiment based on results presented in chapter 2 (section 2.3 for details). The 

photobleaching experiment used absorbance as a measure to detect the degradation 

of the porphyrins over 24 h. Detailed photoinactivation experiments were also carried 

out, using four different methods to evaluate the treatment effect on the bacterium in 

order to discriminate between inactivation and eradication.  

3.2 Materials and Methods  

3.2.1 Porphyrins  

Two water soluble porphyrins were chosen for the PACT experiments: the 

tetra-cationic 5,10,15,20-tetrakis (1-methyl-4-pyridinio) porphyrin tetra (p-

toluenesulfonate) [TMPyP] (Product # 323497, Sigma-Aldrich, Castle Hill NSW, 

AUSTRALIA) (Figure 3.1a) and the tetra-anionic 4,4′,4′′,4′′′-(porphine-5,10,15,20-

tetrayl) tetrakis (benzenesulfonic acid) tetrasodium salt hydrate [TPPS4] (Product # 

88074, Sigma-Aldrich) (Figure 3.1b). For each porphyrin, a stock solution of 500 µM 

was prepared in 100% dimethyl sulfoxide (DMSO).  

3.2.2 Bacterial strain and growth conditions  

The naturally luminescent bacterium V. campbellii ISO7 was streak-plated on LA 

from cryo-preserved stock and incubated at 28°C as described below (Section 3.2.3). 

After 24 h, one colony was resuspended in 30 mL of LM and grown for 12 h (28°C, 200 

rpm). Afterwards, the culture was diluted 1:1 x 106 in LM to a final volume of 10 mL 

and grown under the same conditions for up to 11 h. Optical density was measured at 

570 nm (OD570) in a 96-well plate (IsoplateTM-96 TC, Perkin Elmer, Product # 6005070) 

and the OD570 was adjusted to ~0.3 using sterile LM (Multimode plate reader, Enspire 

2300, Perkin Elmer). The OD-adjusted culture was diluted 10-fold in aquaculture water 
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containing porphyrins to a final concentration of bacteria of ~1 x 107 CFU∙mL-1. The cell 

concentration at the start of the experiment (T0) was verified by streak-plating (n=3) 

each sample on LA plates.  

 

Figure 3.1: Molecular structures and ABS scans (350-750 nm) of 20 µM TMPyP (a) and TPPS4 
(b) porphyrins in aquaculture water.  

3.2.3 Experimental setup  

Identical experimental setups were used to evaluate both photobleaching 

properties and phototreatment. Seawater was collected from the prawn hatchery at 

Crystal Bay Prawn Farm (18°16′04.9″S 146°01′48.8″E). The seawater was sand-filtered 

(1 µm), ozone-sterilized (ORP reading > 700 mV), passed through a carbon filter 

followed by a 1 µm polishing filter before UV sterilization. The water was autoclaved 

immediately prior to the start of experiments.  

Porphyrins were diluted in autoclaved seawater to obtain 0, 1, 5, 10 and 20 µM 

final concentrations at a bacterial concentration of ~1 x 107 CFU∙mL-1. Each sample (4 

mL) was placed in a 12 well tissue culture plate (Beckton Dickinson, Franklin Lakes, 

New Jersey, USA, product # 353043) (n=3 independent samples per porphyrin 

https://en.wikipedia.org/wiki/Franklin_Lakes,_New_Jersey
https://en.wikipedia.org/wiki/Franklin_Lakes,_New_Jersey
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concentration). To account for possible effects of light only or porphyrin only, light 

controls (0 µM porphyrin) and dark controls (20 µM porphyrin, plates wrapped in 

aluminium foil) were irradiated at the same time. Blank samples (including light and 

dark controls) were created using the same concentrations of porphyrins but sterile 

LM was added instead of the bacterial inoculum.  

 
Figure 3.2: Experimental set-up: schematic (a) and example of well-plate under continuous 
illumination on an orbital shaker (b).   

Samples, controls and blanks were incubated in the dark for 20 min under 

continuous agitation (150 rpm; AROS 160, Thermolyne, Thermo Fisher Scientific, 

Waltham, USA) to allow porphyrins to bind bacterial cells. Successively, they were 

irradiated for 24 h with high power 150 W cool white LED floodlights (with an emission 

spectrum between 400 and 700 nm and characterised by a large narrow emission peak 

at 465 nm and a broad emission peak from 500-700 nm) positioned 47 cm above the 

samples (Figure 3.2). Samples were exposed to a photon flux density of 223.8 µmol m-

2s-1 as measured using a light meter (LI-250, Li-Core, Lincoln, Nebraska, USA). This 

corresponded to 1.179 mW cm−2 based on the conversion reported by Alves et al. 

(2015b): 9.5 × 10−3mW cm−2 ≈ 1.8 µmols m−2s−1. The well plates were placed on an 

orbital shaker (AROS 160, Thermolyne, Thermo Fisher Scientific) at 150 rpm to keep 

the samples homogeneously suspended.  
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3.2.4 Photobleaching evaluation  

For both porphyrins, samples without bacteria (sterile) were scanned over the 

full light spectrum (350-750 nm) after 0, 6, 12 and 24 h to evaluate possible 

photobleaching of the porphyrin and possible water evaporation. Subtraction of the 

seawater absorbance was necessary to investigate porphyrin degradation.  

3.2.5 Bacterial viability evaluation  

Four different methods were used to evaluate the activity and viability of V. 

campbellii ISO7: luminescence signal, absorption at 570 nm (ABS570), CFU counts and a 

regrowth assay. Samples (150 µL) were collected and transferred to white framed, 

clear bottom 96 well plates (IsoplateTM-96 TC, Perkin Elmer, Product # 6005070). The 

ABS570 and luminescence (Relative Light Units (RLU)) were determined every 30 min up 

to 6 h and then at time 12 h and 24 h using a plate reader (Multimode plate reader, 

Enspire 2300, Perkin Elmer). Before the luminescence reading, a white back seal 

(BackSeal-96/384, PerkinElmer Pty Ltd, cat. # 6005199) was added to the plate. CFU 

counts and regrowth assays were carried out to discriminate between 

photoinactivation and eradication of V. campbellii ISO7. CFU counts were obtained by 

streak-plating 100 µL of sample in triplicate on LA and incubating the plates at 28°C for 

24 h. Regrowth assays were performed in triplicate by inoculating 100 µL of sample 

into 1 mL LM and incubating the tubes at 28°C, 200 rpm for up to 7 days as described 

previously (Malara et al., 2017b). For both porphyrin experiments, CFU counts and 

regrowth assays were carried out at the start of the experiment (time 0) and as soon as 

the luminescence detection limit was reached for a sample and at every time point 

thereafter.  

3.2.6 Statistical analysis  

Statistical analyses were performed using R-Studio (RStudio Team, 2015) 

setting the significance level α=0.05.  

For the photobleaching (Figure A3.1 : Figure A3.4; Table A3.1 :Table A3.4), 

photoinactivation (Figure A3.5 : Figure A3.8; Table A3.5 : Table A3.8) and absorbance 

experiments (Figure A3.9 and Figure A3.10; Table A3.9 and Table A3.10), normality and 

equal variance of data were assessed using the Shapiro-Wilk test and Levene’s test 
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(Rcdrm package, v.2.3) (Fox, 2005, 2007), respectively. The analysis of variance 

(ANOVA) or Kruskal-Wallis’ test (stats package, v.3.2.5) (Hollander and Wolfe, 1973; R 

Core Team, 2015) was used to detect significant differences between treatments 

and/or time.  

In the photoinactivation experiment, Dunnett T3 test, which is a modified 

Tukey-Kramer pairwise multiple comparison post-hoc test adjusted for unequal 

variances and unequal sample sizes, was used to identify which treatments and/or 

time points were significantly different (DTK package, v.3.5) (Dunnett, 1980; Lau, 

2013).  

For the luminescence data, a time-course model was created using treatments 

(porphyrin concentration) as a grouping factor (drc package, v.3.0.1) (Ritz et al., 2015; 

Ritz and Strebig, 2016; Ritz and Streibig, 2005). We used the “mselect” function to 

select the best fitting model based on the Akaike Information Criterion (AIC) (Ritz et al., 

2015). Time effects were determined by comparing the time-course model with a 

simple linear regression model with slope 0 (no time effect) using a Chi-square (Χ2) test 

(Ritz et al., 2015). Lastly, the created model, was used to determine the time necessary 

to obtain 50% of luminescent inhibition (hereafter T-IC50) and relative potencies (Ritz 

et al., 2015; Ritz et al., 2006). The relative potencies of different treatments (ratio 

between pairwise T-IC50 values) were used to compare the effectiveness of treatments.  

3.3 Results and Discussion  

3.3.1 Photobleaching and photoinactivation experiments  

Photobleaching of porphyrins can be beneficial in aquaculture water 

treatments containing farmed animals, as the build-up of porphyrins in animal tissues 

would be avoided. The photostability of TMPyP and TPPS4 was affected by irradiation 

showing a time-dependent photobleaching effect over 24 h light exposition (TMPyP: 

Figure 3.3 and TPPS4: Figure 3.4, respectively). As expected, due to the absence of 

light, the dark control did not photobleach showing continued high absorption at the 

respective absorption maximum (TMPyP: 425 nm in Figure 3.3; TPPS4: 414 nm in Figure 

3.4). A slight increase in absorption with time was apparent in the dark control, which 

could be due to evaporation caused by continuous irradiation (temperature under 



44 

LEDs ~25.5°C) and relatively small volumes of sample (4 mL). It was less evident in 

TMPyP, where time points were found not significant different (Kruskal-Wallis χ2= 2.28, 

df = 3, p = 0.52), than in TPPS4 (Kruskal-Wallis Χ2= 9.58, df = 3, p = 0.02) where, at the 

end of the experiment, a slightly higher increase in absorbance in the dark control was 

observed. The light control did not absorb at the used wavelength (data not shown), as 

it contained no porphyrin confirming that the wavelengths used for detection of 

TMPyP or TPPS4 were specific. The photobleaching properties supported the potential 

use of both porphyrins in aquaculture, as they remained non-degraded in solution for 

a limited time avoiding any accumulation in the environment or possibly in animals.  

 
Figure 3.3: 24 h-time-course of photobleaching of the TMPyP porphyrin determined at the 
absorption maximum of 425 nm. Error bars show model-based standard errors (n=3) (Ritz and 
Strebig, 2016).  

Bacterial luminescence has been successfully used in ecotoxicological assays 

(Alves et al., 2011a; De Zwart and Slooff, 1983) and has been described as a rapid tool 

to assess bacterial metabolic activity (Alves et al., 2011a; Demidova et al., 2005). 

However, bacterial luminescence depends on a range of environmental variables 

including nutrient and oxygen availability, which limits the incubation period as the 

luminescence signal is also ultimately reduced in untreated controls. Moreover, 

although reduction of bioluminescence below the detection limit is correlated with a 
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loss of bacterial activity, it does not provide unambiguous evidence regarding the 

lethality of the treatment. In the current study, we therefore included additional 

assays to also investigate the effect of porphyrin treatment on bacterial growth activity 

in seawater (ABS570) and on agar plates (CFU counts), as well as an assay to investigate 

if growth in liquid culture could recover within 7 days (regrowth assay).  

 
Figure 3.4: 24 h-time-course of photobleaching of the TPPS4 porphyrin determined at the 
absorption maximum of 414 nm. Error bars show model-based standard errors (n=3) (Ritz and 
Strebig, 2016).  

Table 3.1: Time at which the luminescent signal decrease of 50% (T-IC50) and 90% (T-IC90) for 
each porphyrin-generated singlet oxygen treatment (porphyrins concentrations) and their 
relative Standard Errors (SE).  

Treatment Time-IC50 [h] Time-IC90 [h] 
Dark control 8.12 ± 0.23 12.44 ± 0.57 
Light control 7.34 ± 0.19 12.06 ± 0.68 
1 µM 5.76 ± 0.10 10.51 ± 0.58 
5 µM 3.13 ± 0.04 4.88 ± 0.14 
10 µM 2.12 ± 0.02 2.81 ± 0.08 
20 µM 1.62 ± 0.01 2.00 ± 0.04 

Ideally, a good PS, should not cause toxicity in the dark (Detty et al., 2004; Mroz 

et al., 2007; Sharma et al., 2011). Both porphyrins used in this work (TMPyP: Figure 3.5 

and TPPS4: Figure 3.6), demonstrated that porphyrins-generated singlet oxygen 
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showed no toxicity per se (dark control) and did not cause bacterial luminescence 

signal reduction. In addition, no toxic effects of light irradiation alone were recorded in 

the light control.  

 
Figure 3.5: Time-course of photoinactivation of the luminescence signal of V. campbellii ISO7 
using the tetra-cationic porphyrin (TMPyP). Error bars show model-based standard errors (n=3) 
(Ritz and Strebig, 2016).   

The luminescence signal of V. campbellii ISO7 treated with the tetra-cationic 

porphyrin (TMPyP) showed a clear time-dependent dose-response of decreasing signal 

strength with increasing porphyrin concentration when exposed to light source (Figure 

3.5, Table 3.1). The created model described dose- and time dependency of the 

treatments accurately (Cedergreen-Ritz-Streibig model; Lack-of-Fit-F-test: F-

value=0.96, p =0.56, DF=60). Pairwise comparison between treatments required to 

reach a 50% (T-IC50) of luminescent inhibition are presented in Table 3.2, respectively. 

The luminescence signal for the 1 µM porphyrin treatment declined to 50% ~1.4 and 

~1.3 times more rapidly than seen for the dark and light controls, respectively (Table 

3.2). In comparison, the luminescence signal of the 20 µM porphyrin treatment was 

reduced to 50% about 5 times more rapidly when compared to control groups. Both 

dose and time significantly affected the luminescence signal (Kruskal-Wallis χ2= 45.21, 

df = 5, p = 1.32 x 10-08, χ2=194.03, Df =14, p < 2.2 x 10-16, respectively). Dunnett T3 test 

confirmed that samples treated with porphyrin concentrations of 5 µM or higher were 
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significantly different to the control groups Figure 3.7. However, while there was a 

small difference between luminescence curves for the lowest porphyrin concentration 

(1 µM) and the controls, this difference was not significant (Figure 3.7).  

 
Figure 3.6: Time-course of photoinactivation of the luminescence signal of V. campbellii ISO7 
using the tetra-anionic porphyrin (TPPS4). Error bars show model-based standard errors (n=3) 
(Ritz and Strebig, 2016).   

Treatments using the tetra-anionic porphyrin (TPPS4) did not induce a dose-

dependent luminescence decline (ANOVA: Df = 5, Sum2 = 261, Mean2 = 52.3, F-value = 

0.053, Pr(>F) = 0.998) when exposed to light irradiation (Figure 3.6), and hence CFU 

counts and regrowth assays were not performed for these treatments. This result 

agreed with published data on antimicrobial activity of anionic photosensitisers against 

Gram-negative bacteria (Alves et al., 2009; Benov, 2015; Ergaieg and Seux, 2009; 

Gsponer et al., 2015; Jori and Coppellotti, 2007; Sperandio et al., 2013; Vatansever et 

al., 2013; Wikene et al., 2015).  

The luminescence signal naturally declined in our assay after about 6 h, in both 

the light and dark controls (Figure 3.5). This was most likely due to nutrient and oxygen 

limitations (De Zwart and Slooff, 1983). This natural signal decline limits the usefulness 

of luminescence assays as a reporter tool for cytotoxicity assessments to shorter time 

frames; this is also reflected in the short incubation time (4.5 h) used in the study by 

Alves et al. (2011b). In order to increase the sensitivity and extend the treatment times 
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in our study, we included additional assays (absorbance measurements, CFU counts 

and regrowth assays) that could complement the rapid bioluminescence assay.  

While the toxic effect of light irradiation alone and presence of porphyrins in 

the dark were investigated using reduction of luminescent signal in presence of TMPyP 

or TPPS4, more detailed investigation was conducted using TMPyP and absorbance 

(570 nm) to detect bacterial biomass. As shown in Figure 3.8, absorbance of dark 

controls increased, reflecting growth. Porphyrin-treated bacterial suspensions exposed 

to light showed an initial small increase in absorbance indicative of initial growth, but 

this effect was inversely correlated with porphyrin concentration and not sustained 

over time (Figure 3.8). There were significant differences between the ABS570 

treatments (Kruskal-Wallis χ2= 107.62, df = 4, p < 2.2 x 10-16) confirming a dose-effect 

but no time dependent effect (Kruskal-Wallis χ2= 22.646, df = 14, p = 0.07). A post-hoc 

Dunnett T3 test showed no significant difference between dark control and lowest 

porphyrin concentrations (data not shown).  

 
Figure 3.7: Dunnett T3 test result for the mean different %Log luminescence reduction 
between treatment groups. Point = mean difference, bars = confident interval, Red bars = 
significant difference, Black bars = no significant difference, α = 0.05.   

The CFU counts and 7-day regrowth assays demonstrated 100% lethality to V. 

campbellii ISO7 when exposed to 20 µM of the tetra-cationic porphyrin TMPyP and an 

irradiation of 223.8 µmol m-2s-1 for 5 h (e.g. no regrowth after 7 days), whereas 12 h, 

12 h and 24 h treatment times were required to achieve a corresponding lethal effect 
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at TMPyP concentrations of 10 µM, 5 µM and 1 µM porphyrin, respectively (Figure 

3.8).  

Table 3.2: Pairwise comparison (α=0.05) of time effect (T-IC50) to examine relative potential 
(RP) of treatments. RP is calculated as ratio between T-IC50 treatment 1 and 2 (Tr1 against Tr2). 
RP = 1, treatment has the same rate of luminescent signal decline rate. RP > 1, in Tr1 the signal 
declined less rapidly than in Tr2. RP <1, in Tr1 the luminescent signal declines faster than in Tr2. 

IC50 comparisons RP estimate t-value p-value 
1 µM/10 µM 2.71 ± 0.06 30.26 < 2.2 x 10-16 
1 µM/20 µM 3.54 ± 0.07 34.91 < 2.2 x 10-16 
1 µM/5 µM 1.84 ± 0.04 20.32 < 2.2 x 10-16 
1 µM/Dark control 0.71 ± 0.02 -12.08 < 2.2 x 10-16 
1 µM/Light control 0.78 ± 0.02 -9.26 < 2.2 x 10-16 
10 µM/20 µM 1.31 ± 0.02 17.13 < 2.2 x 10-16 
10 µM/5 µM 0.68 ± 0.01 -28.95 < 2.2 x 10-16 
10 µM/Dark control 0.26 ± 0.01 -93.28 < 2.2 x 10-16 
10 µM/Light control 0.29 ± 0.01 -88.27 < 2.2 x 10-16 
20 µM/5 µM 0.52 ± 0.01 -57.84 < 2.2 x 10-16 
20 µM/Dark control 0.20 ± 0.06 -132.79 < 2.2 x 10-16 
20 µM/Light control 0.21 ± 0.01 -127.25 < 2.2 x 10-16 
5 µM/Dark control 0.38 ± 0.01 -50.76 < 2.2 x 10-16 
5 µM/Light control 0.43 ± 0.01 -46.30 < 2.2 x 10-16 
Dark control/Light control 1.11 ± 0.04 2.47 0.012 

 
Figure 3.8: Time course of absorbance at 570 nm of V. campbellii ISO7 treated with the tetra-
cationic porphyrin (TMPyP). Error bars show model-based standard errors (n=3)(Ritz and 
Strebig, 2016).  
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As expected, rapid regrowth occurred in the tested 24 h samples of the light 

and dark controls, supporting our hypothesis that the observed reduction in 

luminescence in these samples was due to limiting factors such as oxygen or nutrients. 

This highlights that the sensitivity of the luminescence assay to such limiting conditions 

needs to be considered in cytotoxicity assays. In addition, the results showed that CFU 

counts and the regrowth assays have their own limitations, as positive detection relies 

on chance, which is 10 cells∙mL-1 per plate or tube. For instance, with 20 µM porphyrin 

the luminescence signal reached its detection limit after 4 hours and no colonies were 

formed on any of the three agar plates, suggesting 100% lethality of the treatment. 

However, one of the three replicates in the regrowth assay showed turbidity 

(luminescent cells), suggesting that at least 1 cell was alive in the inoculum used for 

that tube, although contamination could not be 100% excluded.  

Table 3.3: Regrowth assays (n=3) and CFU counts (n=3) performed when the luminescence 
signal reached the detection limit.  

 Time (h)  

Porphyrin (µM) 4 5  6 12 24 
20 1(0) 0(0) 0(0) 0(0) 0(0) Regrowth assay* 

((CFUs∙mL-1)) ** 
10  2(0) 1(0) 0(0) 0(0) 

5   3(8.8 x 10-1) 0(0) 0(0) 

1    3(>300) 0(0) 

0     3(>300) 

Dark control     3(>300) 

* Number out of 3; * Colony forming units >300 CFUs∙mL-1 (upper detection limit) were 
considered as uncountable.  

According to our assays, complete inhibition of bioluminescence activity was 

achieved for 10 and 20 µM porphyrin (TMPyP) irradiated at 223.8 µmol m-2s-1 

(corresponding to 1.179 mW cm-2) for 5 h, and complete lethality was achieved for the 

20 µM porphyrin treatment under these conditions. In comparison, Alves et al. 

(2011b), demonstrated a complete inactivation of the natural luminescent Vibrio 

fischeri after ~4.5 h under 4 mW cm-2 irradiation in the presence of 10, 20 and 50 µM 

of 5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin tri-iodide 

(Tri-Py+-Me-PF) porphyrin diluted in filtered (0.22 µm) aquaculture water. We note 

that we achieved similar inhibition of bioluminescence using four times lower 



51 

irradiation. It appears that the tetra-cationic porphyrin TMPyP generated more 1O2 per 

photon absorbed (higher quantum yield) and may hence be more suitable for 

aquaculture purposes. 1O2 quantum yield for Tri-Py+-Me-PF and TMPyP remain to be 

established under identical conditions to validate this hypothesis. In another study, the 

effect of 1 µM of the cationic porphyrins 5, 10, 15, 20-tetrakis(4-(N-(trimethyl) 

ammonio) phenyl)-21H, 23H-porphine tetrakis(p-toluenesulfonate) (TTMAPP) or 

TMPyP on the survival of Escherichia coli was determined by CFU counts. 32 ± 21% and 

30 ± 5% reductions in growth were achieved after 10 min of treatment with 25 mW 

cm-2 irradiation using a 400 W halogen lamp, respectively (Komagoe et al., 2011). Our 

culture-based assays were not designed to detect such high cell numbers (30% survival 

would correspond to 3.3 x 106 cells∙mL-1), hence the results from the two studies are 

not directly comparable. To achieve the same level of irradiance for the TMPyP used 

here and in Komagoe et al. (2011), we need to multiply the treatment time of 10 min 

by 24. This corresponds to a treatment time of 4 h under our treatment conditions. We 

observed a reduction in bioluminescence of ~37% for the 1 µM TMPyP treatment 

which correlates well with the data of Komagoe et al. (2011). As evidenced, light 

intensity and exposure duration determine effectiveness of the treatments which 

needs to be considered in on-farm approaches for achieving 100% lethality to avoid 

activation of ROS defence mechanisms and the need of higher dosages. The results 

demonstrate the suitability of TMPyP for in situ treatment in aquaculture, whereas 

photobleaching avoids its build-up in water and animals, making it a suitable 

photosensitizer for environmentally friendly PACT treatment.  

3.4 Summary 

Photodynamic Antimicrobial Chemotherapy (PACT) has emerged as a promising 

method for pathogen eradication and control. PACT uses light excitation of non-toxic 

photosensitisers to produce singlet oxygen (1O2), which in turn damages and 

eradicates microbial cells. In the present study, a naturally luminescent Vibrio 

campbellii strain ISO7 (V. campbellii ISO7) was used as a model aquaculture pathogen 

to test the suitability of two porphyrin compounds, the tetra-cationic TMPyP and the 

tetra-anionic TPPS4, for the treatment of aquaculture water. Initial photobleaching 

tests demonstrated natural degradation of both porphyrins after continuous 
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irradiation, making them suitable as ‘self-destructive’ photosensitizers for in situ 

treatment of aquaculture waters, as they do not accumulate in the water. In separate 

time-course experiments, the two photosensitisers were diluted in aquaculture water 

seeded with the indicator bacterium and samples were irradiated for 24 h using 150 W 

white LED light. Luminescence assays, growth and regrowth experiments 

demonstrated that the cytotoxicity of generated 1O2 was both time- and dose-

dependent, and confirmed that light or porphyrins alone were not toxic. Continuous 

irradiation in the presence of 20 µM cationic porphyrin for 5 h or 1 µM for 24 h 

achieved complete lethality of the indicator bacterium. Consistent with previous 

reports, the tested anionic porphyrin did not impact on the survival of the bacterium, 

causing only a slight decline in the luminescence signal. Although photobleaching 

indicated potential of using both porphyrins in aquaculture, the result obtained from 

the time-course experiment suggest that the TMPyP porphyrin is the better candidate 

and was therefore used in the following chapters.   
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4.1 Introduction  

Marine microalgae are at the base of most marine food webs and are a key 

determinant for the primary productivity on the planet. Other than their ecological 

relevance, microalgae are increasingly becoming an important resource in today’s 

economy. Rapid cell division and high specific nutritional values (i.e. fatty acid -, 

protein -, carbohydrate - and anti-oxidant contents) typical of microalgae are among 

the reasons for growing interest in commercial production (Natrah et al., 2014; 

Salvesen et al., 2000; Zhang et al., 2014a). Biomass of marine microalgae is produced 

for multiple purposes: high-energy food for human and animal consumption (Liu and 

Chen, 2016), environmental clean-up (Umamaheswari and Shanthakumar, 2016), 

cosmetic applications (Fernandes et al., 2015) and could potentially be used for biofuel 

production (Borowitzka and Moheimani, 2010; Islam et al., 2013; Liu and Chen, 2016; 

Pandey et al., 2014; Sing et al., 2013). Today, demand for microalgal biomass is 

primarily driven by use in the aquaculture industry, where it is used as live feed for a 

                                                      

4 This chapter will be submitted to “Journal of Applied Phycology”. 
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wide range of organisms including molluscs, crustaceans and fish, including zoo-

plankton enrichment (Salvesen et al., 2000; Zhang et al., 2014a).  

Phytoplankton could act as vectors, transferring pathogenic bacteria to 

hatcheries or grow-out ponds when used as feed. Therefore, microalgal biomass may 

present a major threat with regards to biosecurity for the industry when produced and 

used as feed in aquaculture facilities. Bacteria can network with microalgae in a mutual 

or parasitic interaction (Natrah et al., 2014; Pintado et al., 2014; Unnithan et al., 2014). 

This interaction can have positive or negative effects on opportunistic bacteria, 

stimulating or inhibiting bacterial growth via algae exudate production (Natrah et al., 

2014; Pintado et al., 2014; Unnithan et al., 2014). Generally, bacterial biomass 

increases when microalgae growth rates decrease (stationary phase) (Salvesen et al., 

2000). In addition, algae are able to produce antibacterial substances that affect 

bacterial flora (Duff et al., 1966; Lam et al., 2008; Nagayama et al., 2002; Unnithan et 

al., 2014). However, antibacterial substances are more efficient against opportunistic 

bacteria in combination with increased competition for nutrients when microalgal 

cultures are in early stationary growth phase, as in this phase, both algal and bacterial 

biomass increase (Borowitzka, 1995). Surprisingly, opportunistic bacteria belonging to 

the genus Vibrio are not efficient competitors and less abundant in the stationary 

phase of algae cultures (Salvesen et al., 2000). Vibrio spp are, also, a group of bacteria 

that contain pathogenic species and highest bacterial densities occur when nutrients 

are available (Colwell, 1984).  

In aquaculture, microalgae cultures are added as feed for animals at regular 

intervals which may result in a continuous bacterial inoculum into the animal culture 

system. Approximately 108 CFU of bacteria per algae supplement per litre of bivalve 

larval culture have been estimated to be introduced (Murchelano and Brown, 1969; 

Nicolas et al., 2004; Salvesen et al., 2000). While the recurrent introduction of bacterial 

flora might have positive effects on the bacterial community of larval system, the 

introduction of highly opportunistic bacteria in high nutrient environments, however, 

should be avoided (Salvesen et al., 1999). Pathogenic bacteria associated with 

microalgae feed in an aquaculture facility could potentially lead to disease outbreak 

which can have severe repercussion for the business (Natrah et al., 2014; Pintado et 
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al., 2014; Unnithan et al., 2014). For example, Gomez-Gil et al. (2002) reported that 

ideal growth conditions for Vibrio alginolyticus, a potential aquaculture animal 

pathogen, occur in cultures of the widely used microalga Chaetoceros muelleri. 

Salvesen et al. (2000) counted up to 103 CFU∙ml−1 of Vibrio bacteria in cultures of 

Pavlova lutheri. Thus, intensive aquaculture operations allocate large resources to 

controlling bacterial loads in microalgal cultures, with new technologies being 

continuously developed (Pintado et al., 2014). Creating and maintaining axenic 

microalgae cultures on a large scales is not only challenging and often unrealistic 

(Pintado et al., 2014), but carry the risk of slowed microalgae production (Cho et al., 

2015; Watanabe et al., 2005), as phytohormones, macro- and micronutrients produced 

by bacteria increase algae growth rate (Bolch et al., 2011; Croft et al., 2005; Kazamia et 

al., 2012; Kim et al., 2014; Kuo and Lin, 2013; Ramanan et al., 2016; Teplitski and 

Rajamani, 2011). Hence new strategies are needed to minimise the presence of 

potential pathogenic bacteria and ideally create axenic “ready to feed” algae-inoculi in 

aquaculture.  

Although a wide array of sterilization techniques has been developed 

specifically for the reduction of bacteria in aquaculture, each technology has its own 

limitations as discussed previously (1.5). The production of ROS, such as 1O2, during 

PACT is considered an innovative sterilization method within the aquaculture industry, 

as it creates a toxic environment for microorganisms, including pathogenic bacteria 

that lack specific 1O2 detoxification system (Maisch, 2015b). Generally, bacteria might 

express enzymes such as superoxide dismutase, catalase and peroxidase (ROS 

detoxification system) that increase cell survival when exposed to sublethal PS 

dosages. These ROS-detoxifying enzymes are, however, less efficient in combating 

ROS-damage afflicted externally (i.e. cell wall and cell membrane) (Maisch, 2015b). 

Therefore, bacterial cells are usually unable to tolerate ROS and 1O2 build-up in the 

environment. Furthermore, superoxide dismutase, catalase and peroxidase are not 

able to quench 1O2  (Wainwright and Crossley, 2004) and are degraded by 1O2 (Kim et 

al., 2001). Photosynthetic microorganisms, on the other hand, have specific defence 

mechanisms to protect themselves from possible damage by internal ROS and 1O2. The 

algal antioxidant defence system is composed of both antioxidant enzymes such as 
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superoxide dismutase, catalase, guaiacol peroxidase, enzymes of the ascorbate-

glutathione cycle ascorbate peroxidase (mono-dehydroascorbate reductase, 

dehydroascorbate reductase and glutathione reductase) and non-enzymatic 

components such as cellular oxido-reduction buffers (ascorbate and glutathione) and 

compounds (tocopherols, phenols and carotenoids), with the latter being capable of 

quenching 1O2, while the enzymes fulfil the same ROS-detoxification function as in 

animal -, plant - and bacterial cells (Glaeser et al., 2011; Noctor and Foyer, 1998; 

Sharma et al., 2012; Vatansever et al., 2013). Few studies have been conducted to 

confirm the higher tolerance of photosynthetic organisms to ROS and 1O2 build-up. For 

instance, Drabkova et al. (2007) showed that microalgae and cyanobacteria are both 

sensitive to singlet oxygen. Furthermore, Pohl et al. (2015) showed that green algae 

are sensitive to cationic PS but not to anionic ones. However, the current paucity of 

evidence on microalgal resistance to PACT makes it difficult to estimate how effective 

these techniques could be for aquaculture microalgal feed sterilisation purposes.  

The aims of the present study were 1) to test the toxicity of 1O2 generated by 

the cationic PS TMPyP during PACT (3.2.1) towards the commonly used microalgal 

aquaculture species: Tisochrysis lutea (T-ISO) (NQAIF001), Nannochloropsis oculata 

(NQAIF283), Tetraselmis chui (NQAIF289), Chaetoceros muelleri (CS-176) and 

Picochlorum atomus (NQAIF284); and 2) select one or more PACT-resilient microalgal 

species to test in mixed culture with the model bacterium V. campbellii ISO7 (2.3.1). 

This study represents the first documentation of porphyrin-generated 1O2 toxicity on 

aquaculture phytoplankton species.  

4.2 Materials and Methods  

4.2.1 Toxicity test  

 Algae strain and growth condition  

Marine microalgae used in this experiment were obtained from the North 

Queensland Algae Identification Facility (NQAIF, James Cook University; Table 4.1) 

[Tisochrysis lutea (T-iso) (NQAIF001), Nannochloropsis oculata (NQAIF283), Tetraselmis 

chui (NQAIF289) and Picochlorum atomus (NQAIF284)] and from AIMS (Australian 
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Institute of Marine Science, Townsville, Australia) [Chaetoceros muelleri (CS176)]. Cell 

sizes of these microalgal species varied and are reported in Table 4.1.  

Microalgae species were selected based on their hatchery application in 

aquaculture to 1) feed animal larvae (Brown and Blackburn, 2013; FAO, 2007), 2) their 

cell wall composition and 3) their fatty acid profiles and lipid content.  

Microalgae were either cultured in modified L1 liquid medium (Guillard and 

Hargraves, 1993) or f/2 medium (Guillard, 1975). The medium was sterile filtered 

rather than autoclaved to avoid precipitation and high background noise in the 

subsequent flow cytometer analysis. In the modified protocol, seawater was filtered 

through a 0.22 µm Durapore membrane filter (Millipore, North Ryde, Australia) and all 

culture media components were filtered through a 0.22 µm syringe filter (Minisart 

high-flow membrane filter, Sartorious Stedin Biotech, Göttingen, Germany).  

Table 4.1: Cell size and culture collection accession numbers of microalgal species used. 
*Previously described as Isochrysis affinis galbana (Bendif et al., 2013).  

Specie Cell size (μm) Accession 
number 

Reference 

P. atomus 2-3 NQ284 Butcher (1952); Henley et al. (2004) 
N. oculata 2-4 NQ283 Beacham et al. (2014); Hibberd 

(1981); Yamamoto et al. (2003) 
T. lutea (T-iso)* 4.5–7.5 long and 3–6 wide NQ001 Bendif et al. (2013) 
C. muelleri 8 long and 5 wide CS176 Martinez-Fernandez et al. (2006) 
Te. chui 12-16 long and 7-10 wide NQ289 Butcher (1959); Hori et al. (1986) 

 Photosensitizer  

The PS used in this work was the cationic porphyrin TMPyP described 

previously (3.2.1). Before the experiment, a stock solution was prepared by diluting 

the PS in 100% dimethyl sulfoxide (DMSO) to a concentration of 10 mM (stock 

solution), which was stored in 2 mL Eppendorf tubes containing 1.5 mL of stock 

solution at 3-4 °C. Aluminium foil was used to shield the PS from any light exposure. At 

the start of experiments, the PS stock solution was diluted in L1 or f/2 medium (data 

not shown as similar to L1 medium) at the concentration described in 4.2.1.3. Figure 

4.1 presents the molecular structure and full absorbance spectra (350 and 750 nm) of 

TMPyP diluted in L1 medium at concentrations between 0 and 20 µM.  
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Figure 4.1: Molecular structure and absorbance spectra (350-750 nm) of TMPyP porphyrins 
diluted to final concentrations of 20, 10, 5 and 0 µM in L1 medium.  

 Microalgae viability evaluation  

Microalgae viability was evaluated using a flow cytometer (InCyte, benchtop 

Merk Millipore, Bayswater, VIC, Australia) and the dye Propidium Iodide (PI). The 

advantage of using PI is that it does not pass through cell membranes and can 

therefore bind nucleic acids only when cells are damaged (dead) (Berney et al., 2007; 

Darzynkiewicz et al., 1994). Propidium Iodide (Aldrich, Australia) was diluted in 

Phosphate Buffer Saline (PBS) at a concentration of 3.5 mg PI in 1 mL PBS and stored at 

4°C in the dark for the entire experiment. The protocol was adjusted for each 

microalgal species by modifying the counting box based on cell size [forward scatter 

(FSC), chlorophyll auto red fluorescence (RF) and/or side scatter (SSC) (Veldhuis and 

Kraay, 2000)]. To avoid issues with overlapping RF signals from algae auto-florescence 

and PI (Olson and Chisholm, 1986; Van Bleijswijk and Veldhuis, 1995), the yellow 

channel (yellow florescence [YF]) was used to detect the PI signal (details on PI 

fluorescence excitation and emissions can be found on www.invitrogen.com). Before 

each experiment and for each microalgal species, the protocol was optimised as 

follows: 1) one aliquot (4 mL) of fresh microalgal culture was split into 2 equal volume 
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samples before each experiment, one of which was untreated (live cells) and the other 

was placed in boiling water for 20-30 min (dead cells); 2) cells were selected using 

SSC~FFC or RF~FFC plots and gated in the final plot RF~YF where live and dead 

counting box were created (Figure 4.2).  

 

Figure 4.2: Flow cytometer determination of live and dead (by heating) cell determination of 
C. muelleria, T. luteab, N. oculatac, P. atomusd and Te. chuie at the start of the experiment using 
the dye PI.  

 

 TMPyP-generated photoinactivation of microalgae used in aquaculture  

Considering the difference in cell size of the five microalgae species used, we 

normalised culture inoculation for each species using dry weight rather than cell 

number. Table 4.2 shows the equations used to transform cell number to dry weight 

(g∙L-1) for each organism. Microalgal culture were maintained in L1 medium, with the 

exception of C. muelleri cultures, which was maintained in f/2 medium to a final dry 

weight concentration of ~0.04 g∙L-1. Final concentrations of the porphyrin TMPyP were 

50, 20, 10, 5 and 1 µM with final DMSO concentration kept constant for all treatments 

(0.5%). Preliminary experiment using T. lutea, demonstrated that DMSO showed 

toxicity at concentration higher than 1% (data not shown). Possible solvent toxicity 
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effects were monitored for all microalgae species during using controls with DMSO 

(0.5%) but no porphyrin (light control; Figure 4.3).  

Samples (2.5 mL) were placed in 12 well tissue culture plates (product # 

353043, Beckton Dickinson, New Jersey, USA) (n=3 independent samples). For both 

samples and control, 3 independent samples were used as outlined in Figure 4.3. The 

light control (0 µM) was void of TMPyP, but contained 0.5% DMSO to monitor 

potential solvent toxicity and produced baseline response data for the microalgae. 

Dark controls received the highest porphyrin concentration (50 µM) and no addition of 

porphyrins (0 µM) and were wrapped in aluminium foil for protection from light. They 

were used to assess the toxicity of the PS (50 µM) and to test if the absence of light 

had negative effect of the microalgae population (0 µM).  

 

Figure 4.3: Schematic of the experimental design used in dose-response and time-course 
experiments.  

Samples were incubated for 20 min in the dark to promote porphyrin-binding 

to the cells and were subsequently exposed to continuous light as reported in 3.2.3 for 

6 h. Well-plates containing samples were placed on an orbital shaker as previously 

described in 3.2.3.  



61 

Unless stated otherwise (Table 4.2), dry weight calibration curves were 

obtained by diluting fresh cultures of each microalgal species (n=3) in 20% dilution 

steps using L1 or f/2 medium. 100% cultures received no dilution and media blanks (no 

culture addition) served as 0% calibration standards. Each replicate and dilution were 

filtered onto glass fibre filters (previously labelled, dried at 100 °C overnight, followed 

by pre-ashing at 500 °C overnight and weighing after cooling to room temperature in a 

desiccator).  

Table 4.2: Regression equations for calculating dry weight from cell number (cells mL-1) and or 
transmittance. DW= Dry weight, Cell#= cell number (cells mL-1), T= Transmittance.  

Specie Equation Reference 

C. muelleri DW = ((6 x 10-08 x Cell #) + 0.0039) Dry weight determination created 
in this study* 

P. atomus DW = ((-0.0051 x T) – 0.5015) 
Cell # = ((-2 x 1008 x T) + 2 x 1010)) 

Indirect methods for culture 
growth determination as described 
by von Alvensleben et al. (2013) 

T. lutea DW = ((6.91 x 10-08 x Cell #) + 0.033) Provided by Dr. Roger Huerlimann 
as part of his research in our 
laboratory (unpublished) 

Te. chui DW = ((6.58 x 10-07 x Cell #) + 0.0056) Dry weight determination created 
in this study* 

N. oculata DW = ((6.26 x 10-09 x Cell #) + 0.0015) Provided by Dr. Roger Huerlimann 
as part of his research in our 
laboratory (unpublished) 

An aliquot (200 μL) was used to determine cell number using the flow 

cytometer (see 4.2.1.3 for details). After each filtration, filters were washed with 

ammonium formate (0.5 M, pH 8.0, adjusted with 1M NaOH) at the rate of 2:1 

(Volume of culture filtered: ammonium formate). Each filter was placed in a drying 

oven (model FD 23, Tuttlingen, Germany) for 24 h at 100 °C. After 24 h, the weight of 

each filter was recorded (in triplicate and after cooling to room temperature in a 

desiccator) and the average weight was subtracted from the average of the filter 

weight before the filtration process and divided by the volume (mL) of algae filtered.  

4.2.2 Simulation of microalgal culture contamination with model bacterium V. 

campbellii ISO7  

The model bacterium used was the natural luminescent Vibrio campbellii ISO7 

that showed virulency against P. monodon when injected (see section 2.3 for detail). 
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The bacterium was streak-plated on LA from cryopreserved stocks and incubated at 

28°C for 24 h. After this time, one colony was resuspended in LM (30 mL) and grown as 

described in 3.2.2.  

 

Figure 4.4: Experimental design of the simulation algae culture contamination.  

This experiment used the PACT-resilient microalga N. oculata as a model and 

growth conditions were as reported in 4.2.1.1. The experimental design is presented in 

Figure 4.1. A fresh culture of N. oculata was diluted to a final concentration of ~0.04 

g∙L-1 in L1 medium in the presence of 20 μM of TMPyP, except for the light control and 

the 0 µM dark control, and inoculated with different final concentrations of V. 

campbellii ISO7 (approximately 103, 105 and 107 CFU∙mL-1). Samples (2.5 mL) were 

added to a 12-well tissue culture plate (product # 353043, Beckton Dickinson, New 

Jersey, USA) (n=3 independent samples) and exposed to light irradiation as described 

in 4.2.1.1. At the start and end of the experiment (time 0 and 6 h), samples were taken 

for CFUs count and species-specific most probable number (MPN; 1.5 mL) 

determination. The number of CFUs on LA was determined by spread plating (0.1 mL, 

n=3) aiming to detect the luminescent signal from the bacterium. While a MPN-

multiplex PCR strategy was used to estimate the number of V. campbellii ISO7 in mixed 
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cultures with N. oculata before and after PACT treatment. Each sample (1.5 mL) was 

centrifuged at 10000 rpm (rotor Eppendorf F45-30-11) for 15 min (Eppendorf 5810 R, 

Thermo Fisher Scientific Ltd, Australia) and washed with sterile L1 medium, followed 

by resuspension in 5 mL of Peptone Salt Solution (3% NaCl, 0.1% bacteriological 

peptone) and a final 1:10 mL diluted in Alkaline Peptone Water (mAPW; 1% 

bacteriological peptone, 3% NaCl). The DNA was extracted and amplified as previously 

reported (see 2.2.6).  

4.2.3 Statistics analysis  

Statistical analysis and graphs are presented in details in section A4. All 

analyses were performed using R-studio (v. 0.99.896) (RStudio Team, 2015), setting 

the significance level α to 0.05 and testing for normality and equal variance (Rcdrm 

package, v.2.3), using the Shapiro-Wilk test and the Levene’s test, respectively (Fox, 

2005, 2007).  

For each microalgal species, treatment (porphyrin concentration) and time 

effects was investigated using either ANOVA (Chambers et al., 1992) or Kruskal-Wallis’s 

test (Hollander and Wolfe, 1973; R Core Team, 2015) when ANOVA assumption were 

violated (stats package v.3.2.5). A pairwise post-hoc analysis (PMCMR package, V. 4.1) 

was used to investigate possible differences between time points (i.e. start and end of 

the experiment) or treatments (i.e. comparing control groups to treatment groups), 

specifically Tukey Honestly Significant Differences (Rupert G, 1981) was used for 

ANOVA-based statistics and a Dunn rank test after Kruskal-Wallis’s statistical analysis 

(Dunn, 1964; Pohlert, 2014).  

Dose-response analysis (drc package v.3.0.1) was conducted to identify which 

of the microalgal species was more sensitive to PACT treatment after 6 h of irradiation. 

Therefore, at the end of the experiment (time 6 h), the live cell proportion for each 

phytoplankton population was modelled against porphyrin concentration (0, 1, 5, 10, 

20 and 50 μM). For each phytoplankton sample, Akaike's Information Criterion (AIC) 

was used to select the best fitting model over all possible candidates. The created 

models were used to identify the Inhibitory Concentration of 50% (IC50) for the 

microalgal population after 6 h of irradiation (6-h IC50) and establishing the relative 
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potency (RP) “interpreted as a measure for quantifying the strength” of one microalgal 

species over another (Ritz et al., 2015).  

4.3 Results and discussion  

4.3.1 Toxicity test  

In general, porphyrin treatment (50 µM) in the absence of light and dark-

exposure in the absence of the porphyrin TMPyP had no significant effect (p > 0.05; 

Figure A4.3) on population size (live, dead cells) of any of the five microalgae tested 

(Figure 4.5), proving that the porphyrin itself was not cytotoxic over the 6 h exposure 

and that the dark condition itself did not result in death of the microalgae. 

Furthermore, the light source used did not photodestroy any of the microalgal species, 

as both control samples without porphyrin (0 μM) in the light and in the dark showed 

no significant difference (p > 0.05; Figure A4.3).  

Table 4.3: ANOVA and Kruskal-Wallis rank sum table for detecting possible treatment effect.  

Species Df χ2/Sum2 Mean2 F-value p-value/ Pr(>F) 

N. oculata 7 73.2 10.46 1.248 0.28 

P. atomus  7 95.87   < 2.2 x 10-16 
C. muelleri 7 93.56   < 2.2 x 10-16 
Te. chui 7 114.88   < 2.2 x 10-16 
T. lutea 7 76.52   7.10 x 10-14 

In contrast, TMPyP concentration and exposure time affected four of the five 

microalgae tested (Figure A4.3). Only N. oculata showed no significant effect on 

population size at any of the TMPyP concentration over the entire time series (p > 

0.05; Figure 4.5). A slight time effect at 6 h was detected by a small decrease in 

population size (Figure 4.5; Table 4.3 and Table 4.4), but this was not statistically 

significant (Figure A4.3).  

Unlike N. oculata, P. atomus, C. muelleri, Te. chui and T. lutea generally showed 

high mortality when exposed to light in the presence of the cationic porphyrin TMPyP 

(Figure 4.5). Treatment responses together with all controls demonstrate that 

photooxidative damage was driven by TMPyP-generated 1O2 (Figure A4.3 and Figure 

A4.4). Time and porphyrin dosage significantly decreased live cell density (time 0 and 6 

h, p < 0.05, Figure A4.3), which were significantly lower than in controls (p < 0.05, 
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Figure 4.5, Figure A4.3). Tisochrysis lutea and Te. chui showed no significant 

differences to control groups (p > 0.05; Figure A4.4) at 1 µM TMPyP, demonstrating 

their ability to cope with low amounts of PACT-produced 1O2.  

Table 4.4: ANOVA and Kruskal-Wallis rank sum table for detecting possible time effect. 
Samples were divided into 1) TMPyP (1, 5, 10, 20 and 50 μM) + irradiation and 2) controls (light 
and dark controls).  

Species Samples Df χ2/Sum2 Mean2 F-value p-value/ Pr(>F) 

N. oculata 
 

TMPyP irradiated 6 429 71.50 22.96 < 2.2 x 10-16 
Controls 6 465 77.50 25.76 1.9 x 10-14 

P. atomus TMPyP irradiated 6 69.488   5.2 x 10-13 
Controls 6 41.009   2.9 x 10-7 

C. muelleri TMPyP irradiated 6 76.026   2.4 x 10-14 
Controls 6 4.7497   5.8 x 10-1 

Te. chui TMPyP irradiated 6 22.093   1.2 x 10-3 
Controls 6 6.4924   3.7 x 10-1 

T. lutea TMPyP irradiated 5 41.839   6.4 x 10-8 
Controls 5 4.0298   5.5 x 10-1 

Dose-response analyses after 6 h of continuous irradiations showed a species-

specific response to porphyrin concentration (0, 1, 5, 10, 20 and 50 μM; Figure 4.6). 

After 6-h of continues irradiation sensitivity to TMPyP-produced 1O2 decreased in the 

following order; P. atomus ≥ C. muelleri > Te. chui > T. lutea > N. oculata (no effect), 

making the chlorophytes and bacillariophyte the most sensitive species. This was 

confirmed by pairwise species comparison using relative potency calculations based on 

the ratio of 6 h-IC50 concentrations (Table 4.6). Furthermore, all porphyrin treatments 

for these microalgal species were significantly different to light controls (0 µM; p < 

0.05), supporting the conclusion that these microalgae are highly sensitivity to TMPyP-

produced 1O2 (Figure 4.6). Tetraselmis chui and T. lutea where intermediate: these 

species did not show mortality when incubated with 1 and 5 µM of TMPyP but 

populations exposed to higher TMPyP concentrations were significantly different from 

controls (p < 0.05) (Table 4.5: 6 h-IC50=~4; Table 4.6: RP > 1).  

Based on results, TMPyP-generated 1O2 showed species-specific toxicity against 

microalgal cells. For hatcheries, TMPyP-based PACT sterilization of the investigated 

microalgal feeds is only suitable for N. oculata. Lower dosages and shortened time 
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frames could be used for the other species, provided that time and dosage used would 

eradicate bacterial pathogens.  

 

Figure 4.5: Effect of exposure time – and TMPyP concentration on population size (% of Live 
cells) of P. atomusa, C. muellerib, Te. chuiic, T. lutead and N. oculatae. For each species, the best 
fitting model of all possible candidates was selected based on AIC values.  

Except for N. oculata, the sensitivity of the other four microalgal species to 

TMPyP-produced 1O2 was surprising and not consistent with our understanding of 

microalgal ROS and 1O2 detoxification systems (Glaeser et al., 2011). Studies by Pohl et 

al. (2015) suggest a potential explanation for these unexpected results. Singlet oxygen 

produced by cationic porphyrins have been shown to degrade algal cell walls (Pohl et 

al., 2015). Results obtained in this study are consistent with published data, as no cell 

death occurred in the dark controls at 50 µM of the porphyrin TMPyP for any of the 

species. The observed species-specific sensitivity to 1O2 produced by the cationic 

porphyrin TMPyP can be explained by differences in the biochemical nature and 

organization of their cell coverings (Table 4.7).  

Nannochloropsis oculata is a member of the Eustigmatophyceae and all 

representatives of the genus are characterized by a rigid bilayered cell wall, consisting 

of an inner cellulose and outer hydrophobic algaenan layer (Table 4.7) (Geldin et al., 
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1999; Scholz et al., 2014). Our data suggest that the hydrophobic straight 

hydrocarbons chain that comprise the outer layer of the Nannochloropsis cell wall 

would yield the organism resilient to oxidation by the cationic porphyrin TMPyP-

produced 1O2.  

Table 4.5: Inhibitory concentration of 50% of population size after 6 h of irradiation (6 h-IC50 ± 
SE) for each microalgal species in a dose-response model. N. oculata returned infinite values 
and was not included.  

Species 6 h-IC50 

P. atomus  1.02 ± 0.06 
C. muelleri 1.27 ± 0.07 
Te. chui 4.04 ± 0.39 
T. lutea  11.21 ± 0.28  

Picochlorum atomus (syn. Nannochloris atomus) is a unicellular coccoid green 

alga belonging to the Trebuxiophyceae. The cell walls of the Trebouxiophyceae 

typically consist of cellulose, algaenan, and structural proteins (Table 4.7), whose 

disulphide linkages require reduction to weaken the cell wall (Porra, 2011). Since the 

cell wall of Picochlorum is thin (Table 4.7), it is possible that oxidation of structurally 

important proteins could allow TMPyP-produced 1O2 to oxidise plasma membrane 

constituents, e.g. fatty acids, leading to the observed highest vulnerability to PACT. The 

frustule of diatoms is composed of three layers, an organic plasma membrane-

associated layer (diatopetum), a mineralized silicified wall, which contains organic 

matter and the outmost cell wall-bound exopolysaccharide (EPS) layer (Gügi et al., 

2015). Chaetoceros muelleri has been described as weakly silicified (hyaline), bearing a 

long seta at each corner of the cell, which has spirally arranged pores (puncta) with no 

opening at the end (Lemmermann, 1898; Reinke, 1984). The amount and 

monosaccharide composition of extracellular carbohydrates is influenced by pH 

(Thornton, 2009) and environmental conditions. In general, a glucuronomannan, i.e. 

blocks of 3-linked mannans substituted with glucuronic acid or sulphate groups in 

position 2 of the main chain are assumed common for diatoms (Gügi et al., 2015). To 

our knowledge, the frustule-associated polysaccharide composition and that of the EPS 

has not been characterized for Chaetoceros muelleri, but based on information 

obtained for several Chaetoceros species (Table 4.7), the cationic porphyrin is highly 

likely to complex tightly with frustule components, generating 1O2 in very close 
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proximity to the cell, potentially destabilizing the thin and fragile frustule and plasma 

membrane phospholipids of the organism.  

 

Figure 4.6: Dose-response curve of N. oculata, P. atomus, C. muelleri, Te. chui and T. lutea at 
time 6h. Model obtained using R-studio (version 0.99.01) and “drc” package.  

As a prasinophyte, the theca of Tetraselims chui is characterized by dominance 

of 2-keto sugar acids over neutral sugars (Table 4.7). Our culture pH (~8-9) would have 

induced a high density of negative surface charge on the Te. chui theca, enabling 

complexation of cationic porphyrin at higher concentration. This would have led to 1O2 

production in close proximity to the plasma membrane, explaining the observed 

sensitivity of this organism to TMPyP-generated 1O2 of the organism studied.  

The cell surface of the haptophyte Isochrysis aff. galbana (T-iso, Tahitian 

isolate), recently reclassified as Tisochrysis lutea (Bendif et al., 2013), is covered with 

thin non-mineralised organic scales bound together by acidic polysaccharides which 

are also thought to connect the cellulose microfibrils (Table 4.7). We hypothesise that 

the cationic porphyrin TMPyP could bind to these acidic polysaccharides destabilizing 

the organization of the cellulosic microfibrils. Singlet oxygen generation could then 

lead to oxidation of the underlying plasma membrane. Given the dense nature of these 
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organic scales, it is likely that the acidic polysaccharides are not easily accessible to 

TMPyP, which explains the lower sensitivity to TMPyP-generated 1O2 and the longer 

time frames required for reduction in population size to occur.  

Table 4.6: Relative potency (RP) calculated as the ratio of 6 h-IC50 between microalga n.1 / 
microalga n.2. RP > 1, the microalga n.1 is less sensitive to the treatment than the microalga 
n.2. RP < 1, microalgae n.1 is more sensitive to the treatment than microalgae n.2. N. oculata 
was not included.  

Pairwise comparison Relative potencies (RP) P-value 

C. muelleri/P. atomus 1.26 ± 0.10 1.0 x 10-2 
C. muelleri/Te. chui 0.32 ± 0.04 2.1 x 10-31 
C. muelleri/T. lutea 0.11 ± 0.01 8.3 x 10-91 
P. atomus/Te. chui 0.25 ± 0.028 6.0 x 10-40 
P. atomus/T. lutea 0.09 ± 0.01 8.2 x 10-97 
Te. chui/T. lutea 0.36 ± 0.04 7.0 x 10-29 

Our results showing a higher sensitivity of green microalgae to PACT are 

consistent with results by Drabkova et al. (2007), who compared the toxicity of 

phthalocyanines, methylene blue, tetraphenylporphyrine (S4) and hydrogen peroxide 

between the chlorophytes (Pseudokirchneriella subcapitata, Scenedesmus quadricauda 

and Chlorella kessleri) and cyanobacteria (Synechococcus nidulans, Microcystis incerta 

and Anabaena sp.). Although they did not report data for dark toxicity controls, they 

demonstrated that the green microalgae, especially S. quadricauda, were more 

sensitive to singlet oxygen then cyanobacteria.  

Dark controls used in the presented study confirmed that the cationic 

porphyrin TMPyP was not cytotoxic to the selected microalgae. This finding is 

consistent with reports on bacterial cells (Malara et al., 2017b) and with previous 

studies on phytoplankton cells (McCullagh and Robertson, 2006b, c). In contrast Pohl 

et al. (2015) demonstrated that cationic corrols were cytotoxic, as negative effects on 

population size was evident in dark controls. They also showed that corrols induced 

not only reduction in phytoplankton population size when exposed to light but they 

also observed intracellular photoxidation of chromophore (bleaching), concluding that 

PS might have an effect on photosynthetic organelles.  



 

70 

Table 4.7: Cell surface organization and biochemical composition of the genera Tetraselmis, Isochrysis, Chaetoceros, Picochlorum and Nannochloropsis.  

Cell Surface 
Organisation 

Phylum/ Class Species Cell wall biochemical composition References 

Theca (non-
mineralized) 
Flagellar scales 

Chlorophyta/ 
Prasinophyceae 

Tetraselmis 
tetrahele;  
T. striata 

mol% of theca carbohydrates: 
Kdo: 54-60; MeKdo: 4; Dha: 6-8; GalA: 18-21; Ara: 1; Gal: 7; Gul: 3-4 

(Becker et al., 1991; 
Becker et al., 1994) 

Cell wall Chlorophyta/ 
Trebouxiophyceae 

Chlorella sp.; 
Trebouxia sp. 

Cellulose; Algaenans (aliphatic polymethylenic polymer chains) conjugated 
with amides and N-alkyl-substituted pyrroles (Chlorella sp.) or β-
galactofurans (Trebouxia) 

(Brown and Elfman, 1983; 
Domozych et al., 2012) 

Picochlorum 
atomus 

Cell wall 70 nm thin, homogenous appearance; Plasma membrane-associated 
side more electron dense; Contains structural proteins with disulphide bonds 

(Porra, 2011) 

Organic scales Haptophyta/ 
Prymnesiophyceae 

Isochrysis sp.; I. 
galbana; 

Oligo-mannose-type N-glycans and/ or hybrid-type N-glycans 
Scales contain cellulosic microfibrils joined by acidic polysaccharides 

(Espinosa et al., 2010) 

Silicified 
frustule 

Ochrophyta/ 
Bacillariophyceae 

Chaetoceros 
fusiformis; 
C. affinis; 
C. curvicetus;  
C. decipiens;  
C. debilis;  
C. sociales 

Cell wall silica associated with proteins (frustulins, pleurfins, silaffins), 
polyamines and polysaccharides; 
Frustule polysaccharides [mol%]: 
Alkali-soluble: Fuc: 4-18; Gal: 7-31; Glc: 1-6; Man: 6-32; Rha: 16-52; Rib: 0-23; 
Xyl: 4-15 
EPS polysaccharides [mol%]: Heteropolysaccharides, which can be sulphated; 
Fuc: 30-39; Rha: 3-35; Gal: 0-17; Man: 0-10; Xyl: 0-9; Glc: 0-5 

(Gügi et al., 2015) 

Cell wall Ochrophyta/ 
Eustigmatophyceae 

Nannochloropsis 
gaditana;  
N. oculata;  
N. salina 

Rigid bilayered cell wall; Amino acid content: ~6% 
Inner part: cellulose (75% of mass balance); Dominant sugar is glucose with 
trace amounts of terminal sugars (Rha, Fuc, Man, NAcGlu, Gal) for 
crosslinking of cellulose fibrils. 
Outer part: 20 nm thick trilaminar sheath of algaenans, which are aliphatic 
C30-straight-chain saturated hydrocarbons joined by ether bonds at terminal 
or one or two mid chain positions. 

(Geldin et al., 1999; Scholz 
et al., 2014) 

Abbreviations: Dha: 3-deoxy-lyxo-2-heptulosaric acid, EPS: exopolysaccharides, Fuc: fucose, Gal: galactose; GalA: galacturonic acid, Glc: glucose, Gul: gulose, Kdo: 3-deoxy-
manno-2-octulosonic acid, Man: mannose, MeKdo: 3-deoxy-5-O-methyl-manno-2-octulosonic acid, NAcGlu: N-acetylglucosamine; Rha: rhamnose, Xyl: Xylos
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4.3.2 Simulated algae culture contamination  

Axenic microalgae cultures are commonly used in commercial application for 

high-value products (Olaizola, 2003; Wilkie et al., 2011) but are a less adopted practice 

in aquaculture, as the absence of bacteria might reduce culture growth (Cho et al., 

2015; Watanabe et al., 2005) and thus, microalgal cultures can contain pathogenic 

bacteria. To avoid the introduction of potential pathogenic bacteria, especially in 

hatchery sectors where larvae aremore sensitive to infections, it would be 

advantageous, if bacteria-free microalgae culture could be produced immediately 

before feeding (Vadstein, 1997).  

Different methods are used to obtain an axenic microalgae culture including 

subculturing, serial dilution, ultrasonication, micropipetting, chemicals, ultraviolet 

radiation, phototaxis, osmotic pressure, electrolysis, antibiotics and most recently a 

combination of ultrasonication, fluorescence-activated cell sorting and micropicking 

(Bowyer and Skerman, 1968; Brown, 1982; Carmichael and Gorham, 1974; Connell and 

Cattolico, 1996; Divan and Schnoes, 1982; Gasulla et al., 2010; Hoshaw and Rosowski, 

1973; Jorquera et al., 2002; Suga et al., 2011; Sykora et al., 1980; Watanabe et al., 

2005; Wiedeman et al., 1964; Yim and Lee, 2004). While antibiotics is the most 

commonly used method, it is difficult, not economic, time-consuming (Yim and Lee, 

2004) and can be toxic to microalgae cell (Sensen et al., 1993; Seoane et al., 2014; Yim 

and Lee, 2004; Youn and Hur, 2007). In addition, antibiotics in aquaculture should be 

avoided due to the potential accumulation in the environment, resistance of 

microorganisms and human health concerns (Alves et al., 2011a; Arijo et al., 2005; 

Bermúdez-Almada and Espinosa-Plascencia, 2012; Peggy and Francis-Floyd, 1996; 

Romalde, 2002).  

The simulated microalgae culture contamination experiment presented here 

used different concentrations of the model bacterium V. campbellii ISO7 and the 

TMPyP-PACT-tolerant microalga N. oculata. Six hours of irradiation in the presence of 

20 μM TMPyP completely inactivated the luminescent signal generated by the V. 

campbellii ISO7 and killed the potential pathogen even in presence of high bacterial 
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loads (Figure 4.7). Plates containing CFUs showed a high diversity of colonies therefore 

photographic documentation of luminescence was necessary.  

 

Figure 4.7: LM agar plate (I and III) and luminescent signal (II and IV) of microalgae incubated 
with V. campbellii ISO7 and 20 μM of TMPyP at the start of the experiment (I and II) and at the 
end (III and IV). Nannochloropsis oculata was mixed with V. campbellii ISO7 at different 
bacterial loads a, e) 103 CFU∙mL-1; b) 105 CFU∙mL-1, and c, d) 107 CFU∙mL-1 of V. campbellii ISO7. 
Samples a-d) contained 20 µM of TMPyP and samples a-c) were irradiated, while sample d) 
served as the dark control. Sample e) contained no TMPyP and served as the light control.  

In the presence of N. oculata, the luminescent signal of the model bacterium 

appeared to be confined to the edge of the agar plate (Figure 4.7). This unusual 

behaviour might be explained by respiration by N. oculata in the dark, potentially 
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leading to partial oxygen depletion, which could suppress the luminescence signal. 

Hence, MPN-multiplex PCR in combination with APW (Vibrio-selective medium) 

cultivation were used for detection of Vibrio bacteria present in the mixed culture with 

N. oculata. Regrowth did not occur in APW (data not shown) and multiplex PCR 

confirmed the complete inactivation of the bacterium in samples irradiated in 

presence of TMPyP (Figure 4.8). As expected, samples at the start of the experiment 

(Figure 4.8 a and b) and control samples (start and end of experiment; Figure 4.8 b, c 

and d) showed the presence of the model bacterium. In contrast, samples irradiated 

for 6 h in presence of TMPyP showed not regrowth (data not shown) and no DNA 

amplification (Figure 4.8 d).  

 

Figure 4.8: Amplification of Vibrio bacteria using multiplex PCR after irradiation treatments in 
the presence of 20 μM TMPyP and MPN from N. oculata cultures mixed with V. campbellii ISO7 
at different cell densities. For each gel, 9 = positive controls: 9I = Vibrio rotiferianus, 9II = Vibrio 
campbellii, 9III = Vibrio harveyi, 9IV = Vibrio owensii; 10 = negative control: Vibrio fortis; 11 = 
MilliQ water; All other treatments are described in below each gel.  

The utilization of photosensitisers producing singlet oxygen represent, based 

on my knowledge, a unique study to investigate sterilization of phytoplankton for 

aquaculture purposes. The method used here appear to be more suitable for 

aquaculture purpose than the proposed method by Cho et al. (2013). In their study, 
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axenic culture of C. vulgaris, C. sorokiniana and Scenedesmus sp. were obtained after 

ultrasonication, fluorescence activated cell sorting (FACS), and micropicking. However, 

micropicking, required to grow the isolated cells in agar plate for 7 day. This is a very 

long period of time for the aquaculture industry considering that microalgae are used 

daily to feed animals.  

4.4 Summary  

Marine microalgae (and other microorganisms) are at the base of marine food 

webs and highly nutritional microalgal species are extensively used in aquaculture as 

live feedstock. However, difficulties in maintaining microalgae in axenic conditions 

make them a potential pathogen carrier and disease vectors in aquaculture ponds, 

which can lead to hypoxia, animal death and human intoxication. The production of 
1O2 and ROS in the media is a promising technique to reduce pathogens in microalgal 

cultures, as it creates a hostile environment for pathogenic bacteria. While 

photosynthetic microalgae possess ROS detoxification mechanisms, their tolerance 

threshold to soluble porphyrins and extracellularly generated 1O2 has rarely been 

assessed. Therefore, the aims of this study were to test the sensitivity of aquaculture-

related microalgae towards the cationic photosensitiser (TMPyP) to elucidate possible 

sterilization treatment of the prawn-virulent bacterium Vibrio campbellii ISO7. In dose- 

and time course response experiments, microalgae cultures were incubated with final 

concentrations of the soluble cationic porphyrin TMPyP of 50, 20, 10, 5, 1 and 0 µM 

and irradiated for up to 6 h. Light (0 µM TMPyP) and dark controls (0 and 50 µM 

TMPyP) were included in both dose- and time course experiments, showing that 

neither the irradiation conditions nor presence of TMPyP were detrimental to culture 

survival. Results of irradiated treatments showed that Nannochloropsis oculata was 

resilient to 1O2-produced by TMPyP even at highest dosage, whereas the entire 

population of Tisochrysis lutea (T. lutea), Tetraselmis chui (Te. chui), Chaetoceros 

muelleri and Picochlorum atomus were killed at treatment times of 6 h. Singlet oxygen 

sensitivity was highest in the green microalgae (Te. chui, P. atomus), followed by the 

diatom (C. muelleri), then the haptophyte (T. lutea) and no sensitivity in the 

eustigmatophyte (N. oculata). This indicates that microalgae cell wall biochemical 

composition and organisation might be responsible for the observed species-specific 
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1O2 sensitivity. Cell wall characteristics indicate that the theca of Te. chui could bind 

large amounts of the cationic porphyrin TMPyP due to the highly negative surface 

charge density generated by dominance of 2-keto sugars. Therefore, large quantities of 
1O2 would be generated within the theca, rendering this organism most vulnerable to 
1O2 treatment. In contrast, a thick covering with aliphatic C30 hydrocarbons crosslinked 

by ether bonds offers almost no binding sites for TMPyP, which explains the resilience 

of N. oculata to TMPyP-generated 1O2 treatment. A simulated algae culture 

contamination experiment used the 1O2-resilient N. oculata and V. campbellii ISO7 at 

103, 105, and 107 CFU∙mL-1 in the presence of 20 μM TMPyP and demonstrated 

complete inactivation of the free-living bacterium. This confirms the potential 

application of TMPyP-based PACT as a novel water treatment in aquaculture, but the 

suitability for sterilising microalgal feed cultures is limited to TMPyP-generated 1O2-

resilient microalgae, like N. oculata. The TMPyP-generated 1O2 treatment is not 

suitable for other commonly used species T. lutea, Te. chui, C. muelleri and P. atomus 

at TMPyP concentrations and treatment times suitable for eradicating the model 

bacterial pathogen.  
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5 Chapter 5: 5Suitability of PACT for Sterilisation of Artemia Cysts  
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5.1 Introduction  

Intensive aquaculture production generates water with high organic loads, 

ideal for fast proliferation of pathogenic bacteria. Prophylactic measures adopted to 

date do not efficiently prevent devastating outbreaks. Indeed, aquaculture farms 

experience substantial financial losses caused by bacterial contamination (Almeida et 

al., 2009; Austin and Austin, 2012; FAO, 2012; Saravanan et al., 2013) responsible for 

food poisoning (Lozano-Leon et al., 2003) and mass mortalities in early life stages of 

invertebrates (Cano-Gomez et al., 2010; Jithendran et al., 2010; Karunasagar et al., 

1994; Muroga, 2001; Payne et al., 2006; Saoud et al., 2013; Tubiash et al., 1965) and 

vertebrates (Austin, 2011; Romalde, 2002; Saravanan et al., 2013; Toranzo et al., 2005; 

Wang et al., 2016). Potential bacterial pathogens may already be present in 

aquaculture water or they may be introduced via carriers such as live feed organisms 

(e.g. microalgae, brine shrimp, copepods) (Avila-Villa et al., 2011; Doucette, 1995; 

Pintado et al., 2014; Quiroz-Guzman et al., 2013; Tolomei et al., 2004; Verdonck et al., 

1997). Artemia are commonly used in hatcheries due to their high nutritional value 

and commercial availability of storable cysts (Léger et al., 1987), but they are also 

considered a potential pathogen carrier in aquaculture facilities (Avila-Villa et al., 2011; 

Lopez-Torres and Lizarraga-Partida, 2001; Quiroz-Guzman et al., 2013; Tolomei et al., 
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2004). Potential pathogens have been shown to colonise Artemia cysts (Austin and 

Allen, 1982; Igarashi et al., 1989) and/or to proliferate after hatching of the nauplii 

(Lopez-Torres and Lizarraga-Partida, 2001).  

Traditional hatching protocols for Artemia cysts involve a time consuming de-

capsulation process using various chemicals such as sodium hypochlorite, which act as 

a decontaminant as well as an agent to remove the chorion (Bruggeman et al., 1980; 

FAO, 2007; Sorgeloos et al., 2001). A more recent approach that was recently 

commercialised utilises a magnetic coating around the chorion to enable collection of 

hatched cyst shells and unhatched cysts. This approach avoids use of the hypochlorite 

solution and eliminates the generation of toxic co-products and their discharge into 

the environment (Dhont et al., 2013).  

Research on disinfection of Artemia has predominantly focused on chemical 

treatments (Douillet, 2000; Giménez et al., 2006; Høj et al., 2009; Sahul Hameed and 

Balasubramanian, 2000; Suantika et al., 2001; Tolomei et al., 2004), ultraviolet light 

(Munro et al., 1999), and administration of probiotics (Interaminense et al., 2014; 

Makridis et al., 2001; Makridis et al., 2000) or algae (Austin et al., 1992; Kogure et al., 

1979; Olsen et al., 2000; Tolomei et al., 2004). Most of these methods have limitations. 

For example, antibiotics can be effective against most bacteria associated with Artemia 

but encourage selection and propagation of resistant bacterial strains. An alternative 

prophylactic measure to reduce the Vibrio load of Artemia is freezing nauplii for up to 

48 h (Interaminense et al., 2014). However, the ability of Vibrio to enter a viable but 

not cultivable (VBNC) state during unfavourable environmental conditions, such as 

short exposure to freezing, is well known and can be followed by quick recovery when 

conditions become favourable again (Jiang and Chai, 1996; Johnston and Brown, 2002). 

Surprisingly, Høj et al. (2009) found that while antimicrobial treatment (formalin, 

Virkon® S and a mixture of antibiotics) of Artemia reduced their load of cultivable 

Vibrio spp, this was accompanied by a relative increase of Vibrio-DNA in the bacterial 

DNA pool, suggesting that vibrios were relatively robust to the treatment. A low-level 

but Vibrio dominated bacterial community represents a clear biosecurity risk for 

aquaculture hatcheries. Moreover, glycerol-associated with Artemia cysts can be 

utilised by some opportunistic bacteria including many vibrios, which can lead to their 
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exponential proliferation (Interaminense et al., 2014). Hence, the development of 

more efficient methods for disinfection of Artemia cysts and cultures is clearly needed.  

Photodynamic antimicrobial chemotherapy (PACT), is a novel and non-specific 

method to kill microorganisms that is reportedly harmless to aquaculture target 

animals (Alves et al., 2011a; Carey, 1992; Jori and Brown, 2004; Magaraggia et al., 

2006). As described in Chapter 1, PACT involves photoexcitation of a photosensitiser 

(PS), which triggers a sequence of photo-physical reactions that produce reactive 

oxygen species (ROS). 

Among the various known PS that generate 1O2, porphyrins have been 

efficiently used for disinfection of water, including drinking water (Bonnett et al., 

2006), waste water (Carvalho et al., 2009; Jemli et al., 2002) and aquaculture water 

(Alves et al., 2011a; Malara et al., 2017a). Most porphyrins themselves, are not toxic to 

aquatic organisms (i.e. fish, prawns, Artemia) at photochemical doses (µM 

concentrations) (Almeida et al., 2011; Asok et al., 2012; Fabris et al., 2012; Magaraggia 

et al., 2006; Suzuki et al., 2000) or to humans (Almeida et al., 2011; Maisch, 2009; 

O'Connor et al., 2009; Ortner, 2009; Smith et al., 2009). Porphyrins are also unlikely to 

accumulate in the environment as a result of photobleaching after irradiation exposure 

(Bonnett and Martıńez, 2001; Kuznetsova et al., 2010; Rotomskis et al., 1997).  

The overall aim of this study was to create axenic Artemia cysts using PACT 

technology. The objectives were 1) to test and evaluate the possible concentration-

dependent toxicity of PS towards Artemia franciscana cysts (unmodified and magnetic 

coated) as measured by hatching success, and 2) to test whether 20 µM of TMPyP can 

sterilize magnetic Artemia cysts seeded with the potential prawn pathogen V. 

campbellii ISO7.  

5.2 Materials and Methods 

5.2.1 Photosensitizer, light source irradiation condition  

The PS used in this work was the cationic porphyrin TMPyP as described in 

previous chapters (3.2.1). Before each experiment, working stock solutions were 

prepared as reported in 4.2.1.2. Samples in well-plates were placed 47 cm below the 

light source on an orbital shaker at 150 rpm and were irradiated with continuous light 
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(LED 150W floodlight, irradiation of 223.8 µmol m-2s-1) for 24 h as describe previously 

(3.2.3).  

5.2.2 Toxicity test  

 Artemia franciscana and growth condition  

Dose-response experiments to asses toxicity of PS towards A. franciscana cysts 

were conducted using two types of cysts: 1) unmodified (GSL Artemia Cysts, premium 

quality, INVE, Hoogveld, Dendermonde, Belgium), and 2) magnetically coated (SEP-Art 

GSL Magnetic Artemia Cysts A Grade, INVE).  

Unmodified Artemia cysts, which are still used in the aquarium and aquaculture 

industries, require a de-capsulation step using hypochlorite solutions to dissolve the 

chorion before hatching (Dhont et al., 2013). This process also disinfects the cysts 

(Bruggeman et al., 1980; Sorgeloos et al., 1977; Sorgeloos et al., 2001). After hatching, 

nauplii are separated from hatched and unhatched cyst shells by passing the water, 

from the conical hatching tank through a 100 µm mesh where nauplii are washed and 

collected (FAO, 2007). On the other hand, magnetically coated Artemia cysts, which 

are commonly used nowadays in aquaculture farms (i.e. prawn hatcheries), have been 

created to comply with new regulations that limit discharge of toxic products such as 

hypochlorite solution into the environment (Dhont et al., 2013). For these cysts, it is 

not necessary to dissolve the chorion before hatching and cysts (hatched and 

unhatched) are easily separated from the nauplii using a powerful magnet (for details 

see www.primo.net.au).  

 Experimental set up  

About 550 (0.0024 g) of either unmodified or magnetically coated cysts were 

hydrated in 5 ml fresh water for 1 h before 0.5 mL (~55 cysts) was transferred to 50 mL 

sterile centrifuge tubes (Greiner Bio-One GmbH, Austria) containing 0.22 μm filtered 

seawater (9.5 mL) with and without porphyrins. Final concentrations of TMPyP were 

50, 20, 10, 5, 1 and 0 μM. Each tube was well homogenised before transfer of 2 mL to 

a 24 well tissue culture plate (product # 353043, Beckton Dickinson, Franklin Lakes, 

New Jersey, USA) (n=5) and incubated in the dark (20 min) to facilitate porphyrin 

binding cysts surface and exposure to continuous light irradiation for 24 h on a rotary 

http://www.primo.net.au/
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shaker at 150 rpm. The final Artemia cysts concentration per well was approximately 

5500 nauplii∙L-1.  

Controls were created as per Table 5.1, to evaluate the possible effect of the 

solvent DMSO, TMPyP itself, and seawater (no DMSO) after light exposure or dark 

incubation. All treatments and controls were subjected to the same physical conditions 

during the experiment, except that dark controls were completely shielded from direct 

light irradiation using aluminium foil.  

After 24 h incubation, newly hatched nauplii were killed by freezing and wells 

counted using an inverted microscope (Olympus CKX41). The average hatching success 

was expressed as a percentage based on counts of the number of nauplii and the total 

number of cysts (hatched and unhatched).  

Table 5.1: Experimental design for controls used in the dose-response experiment.  

Name Porphyrin (μM) Light exposition DMSO (0.5%) 
0 μM + DMSO 0 Yes Yes 
0 μM no DMSO 0 Yes No 
0 μM + DMSO (dark control) 0 No Yes 
0 μM no DMSO (dark control) 0 No No 
50 μM (dark control) 50 No Yes 

5.2.3 PACT disinfection of Artemia cysts  

 Bacterium strain and growth condition  

The natural bioluminescent Vibrio campbellii ISO7 that showed virulence 

against P. monodon after injection as reported in 2.3.1, was used as the model 

bacterium. Growth conditions and media preparation were accordingly to section 3.2.2 

and Table 2.1, respectively.  

 Experimental set up  

Artemia franciscana cysts used in this experiment were the magnetically 

modified strain described in 5.2.2.1. An overnight culture of V. campbellii ISO7 with 

OD570 adjusted to ~0.3 using sterile LM as described in 5.2.3.1 was diluted in seawater 

to produce final bacterial concentrations of 103, 105 and 107 CFU∙mL-1 before adding 

porphyrins (final concentration 20 μM) and A. franciscana magnetic cysts (hydrated 

and diluted as described previously in 5.2.2.1). The spread-plate method (n=3) on LA 



 

81 

was used to verify bacterial concentrations at the start of the experiment as well as to 

assess bacterial viability at the end of the treatment period.  

5.2.4 Statistical analysis  

Statistical analyses were performed using R-Studio (RStudio Team, 2015). For 

all experiments, normality was assessed using the Shapiro-Wilk test (Figure A5.1 ) and 

homoscedasticity using the Levene’s test (Rcdrm package, v.2.3; Figure A5.2) (Fox, 

2005, 2007). For dose-response experiments, possible treatment (porphyrin dose) 

effects were investigated using Van der Waerden's normal scores test (package 

PMCMR version 4.1), which is an alternative to ANOVA when normality and 

homogeneity of variance assumptions are violated (Conover and Iman, 1979). 

Differences between treatments and controls (or time) were assessed using pairwise 

multiple comparisons post-hoc test according to Van der Waerden (Conover and Iman, 

1979). 

5.3 Results and discussion  

5.3.1 Toxicity test  

Dose-dependent effects on cyst hatching success were seen for both 

unmodified (Figure 5.1) and magnetically coated (Figure 5.2) Artemia cysts (p < 

0.00001 and p < 0.0001, respectively). Light and dark controls (0 μM, no DMSO) of 

unmodified and magnetically coated cysts showed low hatching success (< 40%) after 1 

h rehydration followed by incubation in seawater only (Figure 5.1 and Figure 5.2, 

respectively). This is indicative of non-optimal hatching conditions as non-

decapsulated cysts generally hatch within 24 h albeit at a somewhat lower rate than 

decapsulated cysts (Lavens and Sorgeloos, 1987; Lavens et al., 1986; Tunsutapanich, 

1979). The low hatching rates of control cysts in the current experiment could 

potentially be related to insufficient resuspension of the samples leading to poor water 

oxygenation and/or poor cyst quality.  
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Figure 5.1: TMPyP-dose response effect on hatching rates of unmodified Artemia franciscana 
cysts in TMPyP-generated 1O2 treatments and light and dark controls. The response for each 
treatment was calculated as percentage of the number of nauplii of each replicate divided by 
the total number of cysts. Error bars shows standard deviation.  

For unmodified cysts exposed to 50 uM TMPYP, light irradiation improved 

hatching success significantly compared to the corresponding dark control (p < 0.001; 

Figure 5.1). While DMSO seemed to slightly increase hatching of unmodified Artemia 

cysts, however, the effect was not significant (p > 0.05; Figure 5.1). The ROS produced 

during PACT increased hatching success in presence of porphyrins (> 5 µM) which was 

significantly higher than in presence of the solvent DMSO alone (p < 0.01; Fig. 5.1). 

Hypothetically, gasses, such as 1O2 and other ROS could penetrate the multi-layered 

chitinous structure of the cyst’s shell (Robbins et al., 2010), which prevents the 

passage of larger molecules (Clegg et al., 1996). Therefore, it is possible that ROS 

produced removed or reduced the thickness of the chorion, making it easier for the 

nauplii to hatch in sub-optimal conditions. Similarly, an increase in hatching success 

was previously reported after incubating cysts with different chemicals (Bogatova and 

Erofeeva, 1985; Bogatova and Shmakova, 1980; Bruggeman et al., 1980; Lavens and 

Sorgeloos, 1987; Lavens et al., 1986; Robbins et al., 2010; Tazawa and Iwanami, 1974; 
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Van Stappen et al., 1998) including the ROS hydrogen peroxide (H2O2), which, similar 

to 1O2, leads to oxidation of organic materials (Bogatova and Shmakova, 1980).  

 

Figure 5.2: TMPyP-dose response effect on hatching rates of magnetic Artemia franciscana 
cysts in TMPyP-generated 1O2 treatments and light and dark controls. The response for each 
treatment was calculated as percentage of the sum of nauplii in each replicate divided total 
number of cysts. Error bars shows standard deviation.  

For magnetically coated cysts, both TMPyP-generated ROS (5-50 µM, light) and 

TMPyP itself (50 µM dark control) significantly improved hatching success relative to 

light and dark controls with no TMPyP (0 µM + DMSO) (p < 0.00001; Figure 5.2). When 

irradiated, the hatching success increased in a dose-dependent manner in the 

presence of TMPyP (Figure 5.2). The positive effect of porphyrin without light 

activation was unexpected, with nearly 80% of cysts hatched in the “50 µM” dark 

control with no significant difference (p = 0.27) to the corresponding light treatment 

(50 µM; Figure 5.2). A possible DMSO effect can be excluded, as DMSO controls (0 µM, 

+DMSO) decreased rather than increased hatching rates relative to the no DMSO 

control (Figure 5.2). These results suggest that the porphyrin per se has a positive 

effect on hatching success of magnetic cysts, however, the TMPyP-generated 1O2 could 

potentially enhance hatching success further (~100%; Figure 5.2). TMPyP could bind to 
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the magnetic coating via static or magnetic attraction, causing destabilization of cyst 

membranes and thereby facilitating hatching. Another possible scenario is that the 

PACT reaction increased pH. This would be consistent with previous observations of 

increased hatching rates of Artemia sinica at pH 8.2 compared to lower pH levels 

(Zheng et al., 2015).  

This study demonstrated that TMPyP was not toxic to Artemia cysts under the 

used experimental conditions. Previous studies of PACT treatment of Artemia nauplii 

have shown differing results. For example, no toxicity of ROS production was reported 

for Artemia nauplii exposed to rose bengal (up to 250 µM of PS, 180 min irradiation) 

(Asok et al., 2012); and low toxicity (below 20% mortality) was reported for nauplii 

exposed to the porphyrin C12 (up to 10 µM PS, 1 h irradiation) (Fabris et al., 2012) or 

to fluorescein (up to 250 µM of PS, up to 3 h irradiation) (Pellosi et al., 2013). Other 

studies have, however, reported dose- and time-dependent mortality rates of more 

than 20% when nauplii were exposed to 25 and 250 µM of rose bengal B, erythrosine 

B, eosin Y (all 1O2 producers) and irradiated up to 3 h (Pellosi et al., 2013) or when 

exposed to 13 – 669 μM of methylene blue and irradiated for up to 1 h (Peloi et al., 

2008). This suggest that sensitivity of Artemia nauplii to PACT is related to the nature 

and dose of the PS, the light type and the exposure time.  

5.3.2 PACT disinfection Artemia cysts  

After 6 h of irradiation, bacteria at concentrations up to 105 CFU∙mL-1 were 

completely photoinactivated (p < 0.0001; Table 5.2) and no luminescent colonies were 

seen on LA plates. For the highest bacterial concentration (2 x 107 CFU∙ml-1), the 

bacterial load was reduced to less than 10 CFU/ml (99.999% reduction). Complete 

sterilization was however not achieved as demonstrated by bacterial colonies, which 

were all luminescent on some plates. This is in contrast to the results presented in 

4.3.2 where, with N. oculata as the model live feed organism, 107 CFU∙mL-1 of V. 

campbellii ISO7 was completely eradicated after 6 h of irradiation in presence of 20 

µM of TMPyP. A possible explanation could be the difference in size between cysts and 

microalgae and insufficient homogenization of the samples. Indeed, magnetically 

coated cysts are heavier than microalgae cells and therefore require more powerful 

movement. Cysts, also having a greater size, might have created a shade effect on 
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some bacteria adjacent to the magnetic cysts and the number of PS molecules 

available to bind microbial cells might have been reduced due to the larger contact 

surface. The dark controls (+ 20 µM TMPyP) run in parallel with TMPyP light 

treatments did not show a reduction in number of bacteria after 24 h irradiation in the 

current experiment with Artemia (data not shown) or in the experiment with N. 

oculata (3.3).  

This study has demonstrated that PACT has potential as a prophylactic method 

to sterilize Artemia cysts to use directly as a food source or to produce hatched nauplii. 

Decapsulated unhatched cysts are used to feed larvae of farmed animals (Celada et al., 

2013; Kouba et al., 2011; Kuban et al., 1983; Ribeiro and Jones, 1998; Stael et al., 1995; 

Tye et al., 2014; Vandekerkhove et al., 2009), while nauplii are mainly used to feed 

adult animals (as live feed) or larvae (newly hatched and frozen killed nauplii) (FAO, 

2007; Robertson, 2006). Killing of newly hatched Artemia nauplii before feeding to 

larvae is required mainly to limit introduction of pathogens and to facilitate predation 

as some larvae are not able to swim as fast as live Artemia nauplii (FAO, 2007; 

Robertson, 2006). Decapsulated unhatched cysts used as food are generally preferred 

to nauplii as they are less labour intensive and expensive (Bruggeman et al., 1980; Van 

Stappen, 1996) and have higher nutritional values (Vanhaecke et al., 1983).  

Table 5.2: Bacterial CFU counts (CFU∙mL-1; ± Standard Deviation) in mixed culture with Artemia 
cysts and 20 μM TMPyP irradiated for 6 h. For each treatment CFU were counted at the start 
of the experiment (Time 0 h) and at the end (Time 6 h). P-values were obtained by comparing 
bacterial loads at the start and end of experiment, significant codes: 0 ‘***’.  

Time (h) Treatments with 20 μM TMPyP (CFU∙mL-1) 

 A B C 
0 5.3 ± 1.0 x 103 2.7 ± 1.8 x 105  2.0 ± 0.5 x 107 
6 0 ± 0 0 ± 0 4.3 ± 5.4 

p-value *** *** *** 

To the best of my knowledge, no previous studies have investigated PACT 

sterilisation of magnetic Artemia cyst seeded with Vibrio bacteria. However, Asok et al. 

(2012) demonstrated that incubation of Artemia nauplii with 30 µM of rose bengal in 

presence of V. harveyi (105 CFU∙mL-1) and subsequent irradiation of samples with a 

150W halogen lamp caused a decrease in Vibrio population of about 91% after 30 min 
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of light exposition. Unfortunately, we cannot directly compare our result with Asok et 

al. (2012) because the authors did not include further details of the irradiance.  

Sterilization of Artemia cysts using PACT would be less laborious than 

traditional methods used for unmodified cysts as it requires only the addition of 

porphyrins in the Artemia growing media (seawater), which will naturally degrade due 

to photobleaching. Currently, unmodified Artemia cysts require decapsulation steps 

with sodium hydroxide (NaOH) or calcium oxide (CaO) and calcium hypochlorite 

[Ca(ClO)2], and addition of sodium thiosulphate (Na2S2O3) to neutralize the chlorine 

and terminate the reaction (Bruggeman et al., 1980; FAO, 2007; Sorgeloos et al., 2001). 

This process does not sterilize but only disinfects the cysts (Bruggeman et al., 1980; 

Sorgeloos et al., 1977; Sorgeloos et al., 2001). Additionally, toxic by-products of the 

decapsulation protocol can accumulate in the water and subsequently in the 

environment (Dhont et al., 2013). In response, magnetic cysts were designed to 

comply with new regulations that limit discharge of such environmental contaminants 

(i.e. hypochlorite solution) (Dhont et al., 2013). While it is not necessary to dissolve the 

chorion of magnetic cysts before hatching and cysts (hatched and unhatched) are 

easily separated using a powerful magnet, this process does not completely sterilize 

the cysts (visit the following website for detailed information: www.primo.net.au). The 

photobleaching property of porphyrin used in this work prevents accumulation in the 

environment (Rotomskis et al., 1997). Another advantage of using porphyrins over 

traditional disinfection methods is that porphyrins are considered not toxic to animals 

at photochemical concentrations (µM) (Almeida et al., 2011; Magaraggia et al., 2006) 

and higher dosages (mM range) are required to cause damage in eukaryotic cells 

(Alves et al., 2009; Costa et al., 2008; Jemli et al., 2002; Maisch et al., 2004; Oliveira et 

al., 2009).  

5.4 Summary  

Diseases in aquaculture cause heavy financial losses and can kill the entire 

population of farmed animals. Live feed organisms have been recognized as one of the 

most important carriers of pathogens into hatchery tanks. The risk of introducing 

pathogenic and opportunistic bacteria such as Vibrio sp., can be minimized by using 

new antimicrobial techniques such as PACT. The advantage of using PACT is in the 

http://www.primo.net.au/
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economy and efficiency of the method and the photobleaching properties of the used 

porphyrin dyes. In the present study, meso-substitute porphyrin (TMPyP) was used as 

the photosensitizer and Artemia franciscana cysts as the model live feed organism. 

Possible toxic effects of TMPyP against unmodified and magnetically coated cysts was 

assessed by cyst hatching success (percentage) after 24 h irradiation using different 

porphyrin concentrations. TMPyP-generated 1O2 treatment showed a dose-dependent 

increase in hatching success of unmodified Artemia cysts, while hatching success of 

magnetic cysts was additionally increased in the presence of TMPyP in dark controls. 

PACT can be also used as a disinfectant treatment for Artemia cysts, in fact, higher 

hatching success was obtained in suboptimal conditions. The disinfection capacity of 
1O2-generated by TMPyP was time and bacterial load-dependent. Singlet oxygen 

generated by 20 μM of TMPyP completely sterilized magnetic Artemia cysts in the 

presence of 103 and 105 CFU∙mL-1 of the model bacterium Vibrio campbellii ISO 7 after 

6 h of irradiation. Even at a higher bacterial concentration of 107 CFU∙mL-1, a more 

than 106 CFU∙mL-1 reduction of bacterial load was achieved, confirming the high 

potential of PACT as a novel water treatment method in prawn hatcheries.   
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6 Chapter 6: General Discussion  

6.1 Major findings and methodological considerations  

This project investigated the potential of using PACT to control Vibrio bacteria 

in aquaculture. Specifically, I investigated the performance of PACT using porphyrins as 

a method to disinfect prawn hatchery water and common aquaculture live feed 

organisms such as microalgae and Artemia. In general, this research ascertained that 

PACT can be used as a substitute for, or complementary to, traditional prophylactic or 

preventative methods to reduce bacterial loads in aquaculture.  

One of the criteria for selecting one PS in PACT studies over other compounds, 

is that the chosen PS should cause very limited (or no) toxicity in the dark (Detty et al., 

2004; Mroz et al., 2007; Sharma et al., 2011). The PS chosen in this work (TMPyP) 

suggested to be a good candidate for the aquaculture industry as it was demonstrated 

to be not cytotoxic itself against different classes of organisms such as bacteria 

(chapter 3), microalgae (chapter 4) and Artemia cysts (chapter 5). Moreover, it was 

demonstrated (chapter 3) that the cationic TMPyP, as well as the tested anionic 

porphyrin TPPS4, decreased in concentrations over 24 h, which was due to 

photobleaching. Photobleaching (photodegradation) due to the ROS produced after 

light exposure has been demonstrated for many porphyrins, and this prevents 

accumulation of these PS in the environment (Bonnett and Martıńez, 2001). This also 

suggests that accumulation in animal tissues and associated acute cytotoxicity are 

unlikely to occur. However, cytotoxicity could be caused also by long term exposure 

(chronic) to toxic substances (i.e. porphyrins themselves or porphyrin-generated 1O2) 

and such conditions could arise in continuous treatment applications. Consistent with 

previous reports (Alves et al., 2009; Benov, 2015; Ergaieg and Seux, 2009; Gsponer et 

al., 2015; Jori and Coppellotti, 2007; Sperandio et al., 2013; Vatansever et al., 2013; 

Wikene et al., 2015), the tested anionic porphyrin did not impact on the survival of the 

model bacterium (Chapter 3), causing only a slight decline in the luminescence signal. 

Hence, only the cationic porphyrin was used for subsequent detailed studies.  

Photodynamic antimicrobial therapy is considered a non-selective method to 

kill organisms due to the production of 1O2 as the main ROS when porphyrins are used 

as photosensitisers (Alves et al., 2011a; Carey, 1992; Jori and Brown, 2004; Magaraggia 
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et al., 2006). Like other ROS, 1O2 oxidises cellular components (proteins, lipids, nucleic 

acids, carbohydrates) in all organisms (Skovsen et al., 2005), but effectiveness is 

influenced by treatment time, light intensity and spectrum, concentration, type of PS 

used and the ability of target organisms to withstand the toxic effect of 1O2. Based on 

this, results presented here are subject to the conditions and concentration of the 

porphyrins used. Therefore, the susceptibility of a model organism such as V. 

campbellii ISO7 to PACT could differ if one or more parameters (i.e., PS concentration, 

light source, etc.) are modified.  

Selecting a relevant model microorganism is crucial for evaluating the 

suitability of PACT technology for treating prawn hatchery water and feed organisms. 

Bioluminescence production and potential pathogenicity to target farmed animals 

were the selection criteria for choosing the best candidate bacterium from the Harveyi 

group (chapter 2). To demonstrate the virulence of bacteria towards a host animal and 

to verify Koch’s postulates, infection experiments are often performed using oral 

administration, immersion or intramuscular-injection of high bacterial density 

suspensions (Saulnier et al., 2000) followed by re-isolation of bacteria from diseased 

individuals. In the current work, Koch’s postulates were verified after infection 

experiments using intramuscular injection in prawns (Chapter 2) and identification of 

bacterial isolates via 2-gene MLSA, as recommended for identification of Vibrio 

harveyi-related species (Sawabe et al., 2007; Thompson et al., 2005). The selection of 

Vibrio campbellii ISO7 as the model bacterium was based on its virulence towards P. 

monodon after intra-muscular injection and its bioluminescence on LA agar.  

To accurately evaluate the efficacy of the PACT treatment and ensure any 

cytotoxic effects of the porphyrins were detected different viability tests for bacteria 

and microalgae were investigated in this research. It was demonstrated that each of 

the investigated viability tests had advantages and limitations.  

Luminescence and absorbance measurements are fast and relatively 

inexpensive (Alves et al., 2011a; Demidova et al., 2005). However, the methods are 

limited to short treatment times (natural decay of the luminescent signal; chapter 3) or 

require higher than naturally encountered numbers of bacteria to detect a significant 

signal at a specific wavelength (absorbance; chapter 3). CFU counts are reliable and 
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commonly used as viability tests but do not detect bacteria that are viable but not 

cultivatable (VBNC), potentially leading to underestimation of live bacteria (chapter 3). 

Furthermore, the reliability of CFU counts is limited to a range of 30 and 300 CFU per 

plate, hence a high number of dilutions and plates are required to ensure that accurate 

results are produced. In contrast, 7-day regrowth experiments are more sensitive and 

can detect the presence of 1 cell in the VBNC state per tube, but they are inherently 

time-consuming.  

For many microalgae, flow cytometry based on the chlorophyll a auto-

fluorescence signal is a suitable technique to identify microalgal populations (Sensen et 

al., 1993). Flow cytometry analysis requires customized settings of the parameters 

based on dimension of cells using forward scatter and side scatter to reduce 

background noise and identify the cells. This process cannot be used as a species-

specific taxonomic method (Veldhuis and Kraay, 2000) but can be used to isolate single 

phytoplankton cells from environmental noise and bacteria present in the samples 

(chapter 4). In addition, it was shown that filtering the growth media reduced noise 

and avoided enumeration of false positives. Furthermore, the chlorophyll auto-

florescence signal from microalgae overlaps with the PI signal when using the “red 

channel” (Olson and Chisholm, 1986; Van Bleijswijk and Veldhuis, 1995). It was 

demonstrated here, that use of the yellow fluorescence emission (583/26 nm) 

produced after excitation with the blue laser (488 nm) (chapter 4) allowed to 

accurately quantify the PI signals.  

Irradiation time, intensity and spectrum, as well as the nature and 

concentration of the PS affect the efficiency of PACT to inactivate microorganisms 

(Alves et al., 2015b; Coppellotti et al., 2012; Jori et al., 2011; Vatansever et al., 2013). 

The research presented here showed that the killing effect of TMPyP-generated 1O2 

against bacteria and microalgae (chapters 3 and 4, respectively), as expected, were 

both dose- and time-dependent. Metabolic activity expressed as natural luminescence, 

as well as regrowth experiments, demonstrated that 100% lethality was achieved in 

the model Gram-negative bacterium V. campbellii ISO7 at treatment times of ~5 h or 

~24 h for 20 and 1 µM TMPyP, respectively (chapter 3), while the DNA stain PI in 

combination with flow cytometer analysis showed that 6-h of treatment were 
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necessary to completely inactivate four species of microalgae (P. atomus, C. muelleri, 

Te. chui and T. lutea, chapter 4) as discussed in detail below.  

Microalgal – and Artemia feed are often vectors for pathogenic bacteria in 

aquaculture (Lopez-Torres and Lizarraga-Partida, 2001; Murchelano and Brown, 1969; 

Nicolas et al., 2004; Salvesen et al., 2000), with hatcheries being particularly vulnerable 

due to non-specific immunity system (Bentzon-Tilia et al., 2016; Vadstein, 1997). 

Therefore, five microalgal species commonly used in aquaculture hatcheries were 

tested for their sensitivity to TMPyP itself and the TMPyP-generated 1O2. Despite our 

understanding of microalgae ROS detoxification systems, surprisingly, four of the five 

microalgal species tested were highly sensitive to PACT-generated 1O2, showing 

reduction of population size, whilst TMPyP alone was not cytotoxic (chapter 4). These 

results corroborate previous studies investigating toxicity of phthalocyanines 

(Drabkova et al., 2007; Jancula et al., 2008), tetraphenol porphyrine (Drabkova et al., 

2007), methylene blue (Drabkova et al., 2007) and cationic and anionic corrols (Pohl et 

al., 2015) towards green algae [Pseudokirchneriella subcapitata (Drabkova et al., 2007; 

Jancula et al., 2008) Stichococcus bacillaris (Pohl et al., 2015), Chlorella fusca var. 

vacuolata (Bornhütter et al., 2016; Pohl et al., 2015), Scenedesmus quadricauda 

(Drabkova et al., 2007) and Chlorella kessleri (Drabkova et al., 2007)] and 

cyanobacteria [Synechococcus nidulans (Drabkova et al., 2007; Jancula et al., 2008), 

Microcystis incerta (Drabkova et al., 2007), and Anabaena sp. (Drabkova et al., 2007)].  

In my study, the eustigmatophyte, Nannochloropsis oculata, was the only 

microalga tested that was resilient to TMPyP-generated 1O2, most likely due to the 

nature of its cell wall with the outermost layer being composed of hydrophic straight-

chain hydrocarbons, preventing the cationic porphyrin from interacting effectively with 

the organisms cell wall (see Table 4.7). Recently, intra-cellular localization (using 

fluorescence techniques) of TMPyP in Chlorella fusca var. vacuolata cells during PACT 

was demonstrated (Bornhütter et al., 2016). Therefore, the species-specific microalgal 

susceptibility to TMPyP-generated 1O2 in my work was likely to be influenced by the 

chemical nature of the microalgal cell walls. Similarly, this study also demonstrated 

that the cationic porphyrin TMPyP at concentrations of up to 50 µM was not cytotoxic 

to unmodified and magnetic A. franciscana cysts and that TMPyP-generated 1O2 did 
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not adversely affected cyst hatching success, but surprisingly enhanced it under sub-

optimal hatching conditions (chapter 5). These results are similar to findings by Asok et 

al. (2012) and Fabris et al. (2012) who demonstrated resistance of Artemia nauplii to 

PACT using xanthene dyes and porphyrins, respectively.  

In contrast, TMPyP-generated 1O2 did not cause toxicity to Artemia cysts 

confirming its non-toxicity to complex organisms at applied photochemical doses 

(Almeida et al., 2011; Magaraggia et al., 2006; Maisch, 2009; O'Connor et al., 2009; 

Ortner, 2009; Smith et al., 2009). This result is also in agreement with studies 

demonstrating resilience of Artemia nauplii to the ROS-generating dyes rose bengal 

and the porphyrin C12 (Asok et al., 2012; Fabris et al., 2012). Under the conditions of 

the research carried out in this thesis, hatching of both non-decapsulated unmodified 

and magnetic cysts of A. franciscana was facilitated by PS dosages of > 5 µM under 

sub-optimal hatching conditions, but PS action differed between the two types of cysts 

(chapter 5). Improved hatching success was mainly due to TMPyP-generated 1O2 in 

unmodified cysts, which is comparable to results on termination of diapause in 

Artemia when exposed to H2O2 (Bogatova and Erofeeva, 1985; Bogatova and 

Shmakova, 1980; Lavens et al., 1986; Robbins et al., 2010). In contrast, the porphyrin 

TMPyP per se improved hatching success in magnetic cysts (i.e. in dark controls) and 

due to TMPyP-generated 1O2 (i.e. light controls). Generally, 100% hatching success is 

rarely achieved even under optimal conditions, as some unhatched cysts are 

commonly found in Artemia hatchery water after the hatching process (Robertson, 

2006). In this context, it is noteworthy that TMPyP and TMPyP-generated 1O2 achieved 

~20 and ~40% under sub-optimal hatching conditions, respectively, suggesting that 

TMPyP-based PACT treatment can improve hatching success in sub-optimal conditions. 

Consequently, PACT, could be used as an alternative to the de-capsulation process 

currently adopted for unmodified Artemia cysts (Bruggeman et al., 1980; FAO, 2007; 

Sorgeloos et al., 2001).  

The results presented here indicate that PACT may have promising applications 

for sterilising live feed organisms (Artemia cyst hatching experiment) in aquaculture, 

but as shown here for microalgae, the efficiency is species-specific based on the ability 

of live feed organisms to resist oxidative damage by 1O2 produced during PACT, which 
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in the case of the microalgae chosen was demonstrated to be strongly influenced by 

the nature and architecture of their cell walls (Table 4.7). The TMPyP-based results 

suggest that PACT using cationic porphyrins could be used as an algicidal treatment in 

aquaria and aquaculture similar to published applications of the cationic porphyrin 

aquafrin (Schrader et al., 2010). This, however, requires more research using 

opportunistic and toxic species to confirm this potential. The PACT-resilient strain N. 

oculata was chosen to test possible sterilization for creating gnotobiotic algal cultures, 

which was previously considered as unrealistic or very difficult to obtain (Pintado et al., 

2014). It was demonstrated here that a six-hour exposure to 20 µM TMPyP-generated 
1O2 resulted in 100% lethality of the model bacterium V. campbellii ISO7 and complete 

sterilization of the model live feed organisms N. oculata in mixed microalga-bacteria 

incubation experiments (chapter 4). In addition, the DNA of the model bacterium was 

not detected using molecular techniques, therefore, as DNA is not the primary target 

of 1O2 (Almeida et al., 2015; Bonnett and Berenbaum, 2007; Dosselli et al., 2012; 

Maisch, 2007; Sperandio et al., 2013; Tavares et al., 2011), the absence of nucleic acids 

in the Multiplex PCR indicates irreversible damage to the bacterial cells.  

PACT could potentially be used to sterilize Artemia cysts; unhatched cysts are 

used to feed farmed animals (Celada et al., 2013; Kouba et al., 2011; Kuban et al., 

1983; Ribeiro and Jones, 1998; Stael et al., 1995; Tye et al., 2014; Vandekerkhove et 

al., 2009) or hatched in aquaculture facility to feed adults animals as live Artemia 

nauplii or freshly hatched and frozen killed for larval feeds (FAO, 2007; Robertson, 

2006). Killing freshly hatched Artemia cysts is required mainly to limit contamination 

caused by casual introduction of pathogens and to facilitate predation as some larvae 

are not able to swim as fast as live Artemia nauplii (FAO, 2007; Robertson, 2006). The 

complete sterilization of V. harveyi by 1O2 generated by rose bengal in mixed culture 

with Artemia nauplii was previously reported (Asok et al., 2012). In the current thesis 

(chapter 5), complete sterilization was obtained in irradiation experiments of mixed A. 

franciscana magnetic cysts and up to 105 CFU∙mL-1 of the model pathogen V. campbellii 

ISO7 in the presence of 20 µM of TMPyP. Only very high concentrations of the 

bacterium (107 CFU∙mL-1) were not sterilized, but cell numbers were substantially 

reduced by up to 106 CFU∙mL-1. Cyst size itself, could have led to a self-shading effect, 
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sheltering bacteria attached to (or near) the cysts from irradiation in poorly suspended 

culture set-ups (chapter 5). This result contrasts with findings on mixed V. campbellii 

ISO7 and N. oculata treatments (chapter 4), where at the same bacterial 

concentration, PACT completely killed the model bacterium. Differences in the size of 

cysts and microalgae and the in homogenous suspension of cysts in the experimental 

set-up could explain the difference in outcomes. As cationic porphyrins are recognised 

to bind to Gram-negative bacterial cell walls (Demidova and Hamblin, 2005; Jori and 

Coppellotti, 2007; Pavani et al., 2009), higher TMPyP binding on the bigger magnetic 

contact surface of these cysts cannot be excluded, which would result in lower PS 

concentrations available for interacting with microbial cell walls.  

6.2 Limitations of the research  

Despite the novelty and findings discussed in section 6.1, this thesis presented 

some limitations primarily due to the time constraints of a PhD project and the 

requirement to prioritise research questions that could be addressed within the 

allocated time frame. Firstly, the project was limited to two potential porphyrins, one 

model bacterium, and five microalgae species, and as discussed below an extension of 

each of these groups would have enabled more general conclusions to be drawn. 

Secondly, the experiment targeting disinfection of Artemia cysts would have benefited 

from including regrowth assays to confirm complete sterilization. It would also have 

been interesting to extend the Artemia study to include not only cysts but also newly 

hatched and ongrown Artemia nauplii.  

With regards to the range of bacterial strains, this study adds the common 

aquaculture pathogen Vibrio campbellii to the list of bacteria shown to be sensitive to 

PACT, which already includes Aeromonas salmonicida (Arrojado et al., 2011), 

Enterobacter sp. (Arrojado et al., 2011), Enterococcus faecalis (Arrojado et al., 2011), 

Escherichia coli (Arrojado et al., 2011), Photobacterium damselae subsp. damselae 

(Arrojado et al., 2011), Photobacterium damselae subsp. piscicida (Arrojado et al., 

2011), Pseudomonas sp. (Arrojado et al., 2011), Staphylococcus aureus (Arrojado et al., 

2011), Vibrio anguilarum (Arrojado et al., 2011), V. fisheri (Alves et al., 2011b), V. 

owensii (Malara et al., 2017b), V. parahaemolyticus (Arrojado et al., 2011; Malara et 

al., 2017b), Flavobacterium columnare (Schrader et al., 2010) and Edwardsiella ictaluri 
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(Schrader et al., 2010). It would be interesting to include microbial community 

analyses in future studies to investigate how PACT influences bacterial communities 

that are naturally associated with live feeds and the gastrointestinal and skin 

microflora of aquaculture target organisms.  

The phytoplanktonic species chosen in this work represent commonly used live 

feed species in prawn farms (Brown and Blackburn, 2013; FAO, 2007), but do not 

represent the entire range of microalgae used as feed in aquaculture. Therefore, 

future PACT studies should extend to other commonly used species such as 

Thalassiosira sp. or Skeletonema sp. etc. to investigate their resilience or otherwise to 

TMPyP and TMPyP-generated ROS. In addition, future work should profile sterilisation 

effects of different classes of cationic porphyrins using the same model species and 

approach. A structured screening approach would allow building a PS, feed species and 

microbial data base, which the industry could draw from in making informed decisions 

on likely success of the application if adopted under their specific circumstances. For 

instance, there is a clear need to test the effect of different PS per se and their 

generated ROS in order to select those with lowest toxicity against microalgal feed 

species such as T. lutea, Te. chui and C. muelleri, which were shown to be sensitive to 

TMPyP-generated ROS.  

In this study, PACT increased the hatching percentage of Artemia cysts that 

were incubated under suboptimal conditions. However, currently, there is no evidence 

that PACT would enhance Artemia hatching rates also under optimal conditions. 

Moreover, optimal Artemia cysts incubation conditions require continuous aeration 

(Sorgeloos, 1980; Sorgeloos et al., 1977; Van Stappen, 1996), which could lead to 

higher ROS production during PACT application than in the experiment described here 

and it would have to be investigated if higher levels of ROS could be toxic to cysts 

(lower hatching success) or lead to premature hatching (<18 h).  

It would be interesting to extend the TMPyP Artemia experiments to include 

newly hatched nauplii and ongrown Artemia on their own and when seeded with a 

model bacterium. Artemia nauplii are resilient to various chemical treatments 

(GomezGil-Rs et al., 1994) and have been shown to adapt to extreme conditions and 

physiological stresses (MacRae, 2003). There is a need to find the optimal PS for 
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Artemia treatment, with low or no toxicity to Artemia nauplii, to be used in 

aquaculture environments. Previous studies have shown that Artemia are able to 

withstand the toxic effect of 1O2 produced during PACT with different classes of PS at 

concentrations below 50 µM, including rose bengal (Asok et al., 2012) and porphyrins 

(C12; Figure 1.2b) (Fabris et al., 2012). However, higher concentrations (>50 µM) of PS 

such as rose bengal and other xanthene derivative dyes (Pellosi et al., 2013) and 

methylene blue (Peloi et al., 2008) caused nauplii mortality. This suggests that the 

nature and dose of PS, light type and exposure time influence the sensitivity of the 

target organisms.  

6.3 Future directions  

This thesis has demonstrated a potential for prophylactic PACT application 

using the cationic porphyrin TMPyP for the aquaculture industry, specifically prawn 

hatcheries. As a first of this kind of exploration, experiments were conducted on a 

small scale under controlled laboratory conditions. More research is needed to test 

PACT using TMPyP and other PS in a more realistic aquaculture environment (i.e. 

hatchery tanks and ponds), before a decision on the general usefulness of porphyrin-

based PACT for the aquaculture industry can be reached.  

While the thesis mainly considered use in prawn hatcheries, the technology can 

also be considered for use in grow-out prawn facilities (ponds). In this specific case, 

different factors need to be taken in account. Grow-out ponds are generally built in 

open environments where aeration is added in intensive and super-intensive farms 

(Robertson, 2006). Generally, prawns can survive at salinities between 1 and 35 g∙L-1, 

but optimal water salinity in ponds are 15 to 25 g∙L-1 with pH ranging from 7.5 to 8.5 

(Robertson, 2006). PACT efficiency was shown to not be significantly different between 

20 and 40 g∙L-1 of salinity (Alves et al., 2011b) and pH of 5 to 8 (Alves et al., 2011b; 

Bertoloni et al., 1989; Watts et al., 1995), suggesting that water quality might support 

PACT application in ponds. However, since ponds are open environments, seasonal 

precipitation or evaporation could put salinity and/or pH values outside optimal ranges 

with unknown effects on PACT efficiency. In addition, increased water temperatures 

can lead to decreased levels of dissolved oxygen (Deutsch et al., 2015; Fry, 1947; 

Pörtner and Knust, 2007; Withers, 1992). It has been reported that PACT technology 



 

97 

requires a minimum of 2 mg∙L-1 of dissolved oxygen to be effective (Acher et al., 1994), 

and there is evidence that variation in oxygen concentration can interfere with the 

effectiveness of PACT (Alouini and Jemli, 2001). With regards to the effect of dissolved 

oxygen levels on PACT efficiency, PS concentrations < 5 µM showed no effect at about 

5 mg∙L-1 (Alves et al., 2011b). For aquaculture animals, optimal oxygen concentration in 

ponds is 4-5 mg∙L-1 (Robertson, 2006) confirming again that PACT could be potentially 

applied to grow-out ponds but dissolved oxygen levels need to be monitored during 

PACT application to avoid mortality of farmed animals due to oxygen depletion. During 

an in vitro study, Jarvi et al. (2011), observed that > 60% of 3O2 was consumed during 

PACT when meso-tetra(hydroxyphenyl)chlorin (mTHPC) PS was irradiated at a fluence 

rate of 55.11 mW∙cm-2 for about 6 min (from 0 to 20 J∙cm-2). It is, however, difficult to 

generalize and estimate (in vivo) 3O2 depletion during the PACT process, as it is related 

to PS characteristics such as quantum yield, triplet state etc. (Jarvi et al., 2011) and also 

influenced by animal respiration, temperature, other organisms metabolic activity (i.e. 

micro-and picoplankton) and natural decay.  

Water turbidity also affects the efficiency of PACT, as suspended solids reduce 

light penetration, and can absorb and deactivate PS (Acher et al., 1994). Therefore, 

under turbid conditions (seasonally changes are possible), higher concentrations of PS 

are required to achieve the same efficiency (Alves et al., 2011b). Photosensitizer-PACT-

based 1O2 generation has been reported to work at turbidity of over 25 NTU (Acher et 

al., 1994), which is within in the range of optimal turbidity in prawn ponds [20-30 cm 

Secchi disk is equivalent to 40-25 NTU; converted from (Myre and Shaw, 2006)] 

(Robertson, 2006). Application of PS-based PACT in open ponds is not dissimilar in 

design to the “sunlight disinfection plant” for wastewater effluents (Acher et al., 1994), 

but more studies need to be carried out in prawn outdoor ponds facilities to 

demonstrate similar efficiencies.  

Photobleaching of PS raises questions as to whether PS break down might 

generate toxic products in particular under marine conditions, but there is a paucity of 

information in this regard. Singlet oxygen produced during PACT is associated with the 

photobleaching property of the PS (Bonnett and Martıńez, 2001). While non- toxicity 

of porphyrins to animals and humans at micromolar concentrations is widely accepted 
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(Alves et al., 2011a; Carey, 1992; Jori and Brown, 2004; Magaraggia et al., 2006), more 

studies are needed to investigate possible toxic effect of by-products produced during 

photobleaching on larval stages of crustaceans, fish, and also feed organisms such as 

Artemia, other zooplankton and microalgae. Furthermore, as photobleaching is a time-

dependent process, photosensitiser activity will also decrease with illumination time, 

limiting effectiveness of dosages with time. If 100% lethality on pathogenic bacteria is 

not achieved during the active period of the PS, re-dosing of the PS would be required, 

which might cause chronic toxicity in farmed animals, if treatments are performed 

continuously for extended periods. Therefore, PACT treatment should be carefully 

designed to ensure LC100 dosages of 1O2 are achieved.  

Bioaccumulation of toxic products or hypothetically photobleaching by-product 

in farmed animals cannot be completely excluded but could be limited by applying a PS 

attached to a solid support. Some examples of suitable solid supports include magnetic 

carriers, polycationic chitosan-conjugated for anionic PS, polyacrylates, porous silica, 

gold nanoparticles, polyacrylamide resins, silica, porous monolithic polymers etc. 

(Burguete et al., 2009; Manjón et al., 2010; Manjón et al., 2008; Shrestha and Kishen, 

2012). However, the efficiency of this method is subject to the surface contact of the 

solid support with the water layers or column. Indeed, when PS are attached to a solid 

support, chance of binding to microbial cell walls and penetration of bacterial cells is 

limited (Alves et al., 2015b). PACT efficiency is not only related to binding and uptake 

properties of the PS (Feese et al., 2011), but also to the proximity of the generated 1O2 

molecules to the target organisms to be eradicated (Krouit et al., 2006; Krouit et al., 

2008). Therefore, to achieve similar results as reported here for suspension-based PS 

applications, concentrations of PS on solid supports need to be higher than for the 

dissolved PS (Feese et al., 2011), as diffusion of 1O2 is limited to relatively short 

distances (less than 200 nm) (Krasnovsky, 1998; Kuznetsova et al., 2011; Moan, 1990) 

and 1O2 has a short half-life in aqueous media (Ochsner, 1997; Rengifo-Herrera et al., 

2005; Rodgers and Snowden, 1982). Therefore, to eradicate an acceptable level of 

microbial cells, close proximity of target cells with the immobilised PS is essential 

(Carpenter et al., 2012; Feese et al., 2011). Hence, powerful water circulation is 

required to avoid any “dead space” in hatchery tanks, if the immobilised PS is added to 
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the tanks, or alternatively, if hatchery or pond water is recirculated via a PACT column, 

the design of the column has to ensure sufficient contact time matched to bacterial 

loads. Clearly, these larger-scale experiments are required prior to applying PACT in 

the industry.  

Moreover, PACT does not discriminate between “good” and “bad” bacterial 

communities and no information relating to the possible effect of PACT on the 

bacterial community associated with the larval gastro-intestinal system and 

downstream possible adverse health effects exists. This needs to be considered when 

PACT is applied directly to hatchery tanks (or ponds), as the bacterial community could 

change after PACT application. Addition of probiotics has been shown to restore 

beneficial bacterial communities in the digestive tract of farmed animals (Jöborn et al., 

1997; Korkea-aho et al., 2012; Lazado et al., 2011; Macey and Coyne, 2006; Newaj-

Fyzul et al., 2014), but PACT might require increasing the application frequency of 

probionts, which also requires more research. Alternatively, PACT could be applied in a 

separate “PACT treatment tank” for ad hoc treatment, followed by transfer of the 

larvae (or adult animals) to normal hatchery tanks (or grow-out ponds).  

When considering the application of PACT to treat live feed organisms, TMPyP-

generated 1O2 killed four of the five microalgae, commonly used as feed in aquaculture 

potentially through direct interaction of TMPyP with their cell walls, generating 1O2 in 

immediate proximity to the cells. Further investigations should aim to confirm direct 

binding and/or uptake of TMPyP (Bornhütter et al., 2016) and should also investigate 

potential biochemical changes in the feed microalgae, as this could affect their 

nutritional value. As many microalgae appear to be as sensitive as the bacterial 

pathogen to TMPyP-generated 1O2, effective sterilisation of live feed organisms using 

other PS should be examined. The high sensitivity of microalgae to TMPyP-generated 
1O2 leads to the suggestion that PACT could be more useful to reduce the risk of 

opportunistic or harmful algae in the aquaculture and aquaria industry but more 

research is needed.  

As discussed above (section 6.2), effects of PACT treatment on Artemia nauplii 

appear to be PS dependent. Therefore, studies of how PACT can cause mortality in 

nauplii and/or changes in Artemia nutritional value (i.e. lipid content) requires 
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expansion to different PS to understand the chemical nature of the interactions of the 

dye with the organism to explain the different outcomes. In addition, as pointed out by 

Interaminense et al. (2014), glycerol released from Artemia cysts during hatching can 

support quick proliferation of opportunistic or pathogenic bacteria that can represent 

a potential threat for farmed animals. As the bacterial flora associated with Artemia 

cysts is diverse (Lopez-Torres and Lizarraga-Partida, 2001), it will be critical to evaluate 

a range of PS and their influence on the associated natural flora. Such data are 

required to make an informed decision by industry, as to whether or not PACT is a 

suitable treatment option and, if so, for which parts of the industrial process and under 

what conditions.  

Another point that requires special attention relates to cost-benefit evaluation 

of potential PACT applications in the aquaculture industry. More than 20 years ago, 

Acher et al. (1994) estimated that a “sunlight disinfection plant” designed for 

wastewater treatment using methylene blue could cost about US$ 3.95 to produce 100 

m3 of disinfected water. This estimation was done considering an operation time of 8 h 

a day for 250 days per year and production of 200 m3∙h-1 of disinfected water at about 

2 bar of pressure (Acher et al., 1994). However, while data generated in this research 

support potential benefits of PACT usage, particularly in hatcheries, the cost of the 

material is difficult to quantify. As mentioned previously, the efficiency of this method 

depends on PS dosage, the photobleaching properties of the PS, light irradiation 

(wavelength spectrum and intensity) and sensitivity of the target organisms. 

Therefore, costs of the PS relates to the quantity and efficiency of the chosen PS. For 

example, if irradiation were to be provided for shorter periods, a PS could stay in 

solution for a longer period than described for the TMPyP used here [photobleaching is 

irradiation time-dependent as demonstrated in 3.3.1 and by Bonnett and Martıńez 

(2001); Hadjur et al. (1998); Kuznetsova et al. (2010); Magaraggia et al. (2006)]. 

Additionally, the cost of PACT in regards to PS costs could be reduced by using nano-

magnet coated with porphyrins, which are retrievable from solutions, offering 

potential for effective recycling (Alves et al., 2014). While it is pre-mature to conduct 

techno-economic analyses on this new water treatment technology in aquaculture, the 

data generated in this PhD research show a clear bactericidal outcome and the 
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potential to sterilise specific microalgae and Artemia cysts, which has real potential to 

prevent bacterial outbreaks. These benefits may justify potentially higher costs (if any) 

associated with materials (PS, water treatment process, e.g. external tank 

photoreactor treatments etc.). 
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Appendices 

A2 APPENDIX CHAPTER 2  

 
Figure A2.1: Separation of PCR product in agarose gel after topA and mreB genes amplification 
from selected sample in challenge experiment 1. DNA ladder (1kbp) in the edge of the gel.  

 

 

Figure A2.2: Product separation in agarose gel after topA gene amplification from selected 
sample in challenge experiment 2. Selected colonies of plated haemolymph from prawns (P1 
to P4) in Figure 2.6 and Figure 2.7. The DNA was extracted and gene amplified as described in 
2.2.7. DNA ladder (1k bp) at the edge of the gel. 
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Figure A2.3: Product separation in agarose gel after mreB gene amplification from selected 
sample in challenge experiment 2. Selected colonies of plated haemolymph from prawns (P1 
to P4) in Figure 2.6 and Figure 2.7. The DNA was extracted and gene amplified as described in 
2.2.7. DNA ladder (1k bp) at the edge of the gel.  
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A3 APPENDIX CHAPTER 3  

A3.1 PHOTOBLEACHING EXPERIMENT  

Table A3.1: Shapiro-Wilk normality test of each treatment in the photobleaching experiment 
(ABS425) over 24 h of irradiation time using TMPyP porphyrin.  

Treatment W p-value 
20 µM 0.86 4.53 x 10-02 
10 µM 0.83 2.27 x 10-02 
5 µM 0.85 3.87 x 10-02 
1 µM 0.84 2.87 x 10-02 
Dark control 0.69 7.41 x 10-04 

 
Figure A3.1: Graphic representation of normality distribution of each treatment in the 
photobleaching experiment (ABS425) over 24 h of irradiation time using TMPyP. Top = Q-Q plots 
of sample quintiles against theoretical quantiles, Bottom = Histogram using frequency against 
response. Treatment: a = 20 µM, b = 10 µM, c = 5 µM, d = 1 µM, e = Dark control (20 µM in the 
dark).  

Table A3.2: Levene's Test results in photobleaching experiment (ABS425) using TMPyP. 
Independent variables: Treatment (over 24 h) and time for each porphyrin concentration.  

Treatments Variable Df F-value Pr(>F) 
 Treatment 4 4.86 1.99 x 10-03 
20 µM Time 3 3.83 5.72 x 10-02 
10 µM Time 3 2.91 0.10 
5 µM Time 3 4.30 4.39 x 10-02 
1 µM Time 3 1.77 0.23 
Dark control (20 µM) Time 3 5.27 2.68 x 10-02 
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Figure A3.2: Boxplot showing homogeneity of variance in photobleaching experiment (ABS425) 
using TMPyP. Independent variables: time (a-f) and treatments (g). Figure: a = 20 µM, b = 10 
µM, c = 5 µM, d = 1 µM, e = Light control (0 µM), f = Dark control (20 µM in the dark), g = all 
treatment over 24 h.  

Table A3.3: Shapiro-Wilk normality test of each treatment in the photobleaching experiment 
(ABS414) over 24 h of irradiation time using TPPS4 porphyrin.  

Treatment W p-value 
20 µM 0.95 0.57 
10 µM 0.90 0.17 
5 µM 0.91 0.23 
1 µM 0.87 0.07 
Dark control 0.94  0.53 
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Figure A3.3: Graphic representation of normality distribution of each treatment in the 
photobleaching experiment (ABS414) over 24 h of irradiation time using TPPS4. Top = Q-Q plots 
of sample quantiles against theoretical quantiles, Bottom = Histogram using frequency against 
response. Treatment: a = 20 µM, b = 10 µM, c = 5 µM, d = 1 µM, e = Dark control (20 µM in the 
dark).  

Table A3.4: Levene's Test results in photobleaching experiment (ABS414) using TPPS4. 
Independent variables: Treatment (over 24 h) and time for each porphyrin concentration.  

Treatments Variable Df F-value Pr(>F) 
 Treatment 4 9.74 4.96 x 10-06 
20 µM Time 3 3.15 0.09 
10 µM Time 3 0.30 0.82 
5 µM Time 3 0.49 0.70 
1 µM Time 3 1.64 0.26 
Dark control (20 µM) Time 3 0.65 0.60 
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Figure A3.4: Boxplot showing homogeneity of variance in photobleaching experiment (ABS414) 
using TPPS4. Independent variables: time (a-f) and treatments (g). Figure: a = 20 µM, b = 10 
µM, c = 5 µM, d = 1 µM, e = Light control (0 µM), f = Dark control (20 µM in the dark), g = all 
treatment over 24 h.  

A3.2 PHOTOINACTIVATION EXPERIMENT  

Table A3.5: Shapiro-Wilk normality test of each treatment in the photoinactivation experiment 
over 24 h of irradiation time using TMPyP porphyrin.  

Treatment W p-value 
20 µM 0.63 2.13 x 10-09 
10 µM 0.71 4.89 x 10-08 
5 µM 0.85 4.01 x 10-05 
1 µM 0.83 1.43 x 10-05 
Light control 0.67 8.33 x 10-09 
Dark control 0.63 1.92 x 10-09 
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Figure A3.5: Graphic representation of normality distribution of each treatment in the 
photoinactivation experiment over 24 h of irradiation time using TMPyP. Top = Q-Q plots of 
sample quintiles against theoretical quantiles, Bottom = Histogram using frequency against 
response. Treatment: a = 20 µM, b = 10 µM, c = 5 µM, d = 1 µM, e = Light control (0 µM), f = 
Dark control (20 µM in the dark).  

Table A3.6: Levene's Test results in photoinactivation experiment using TMPyP. Independent 
variables: Treatment (over 24 h) and time for each porphyrin concentration.  

Treatments Variable Df F-value Pr(>F) 
 Treatment 5 3.12 9.35 x 10-3 
20 µM Time 14 4.57 2.38 x 10-4 
10 µM Time 14 7.82 1.37 x 10-06 
5 µM Time 14 5.28 6.69 x 10-05 
1 µM Time 14 2.85 7.88 x 10-3 
Light control (0 µM) Time 14 5.34 5.97 x 10-05 
Dark control (20 µM) Time 14 2.37 2.31 x 10-2 
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Figure A3.6: Boxplot showing homogeneity of variance in photoinactivation experiment using 
TMPyP. Independent variables: time (a-f) and treatments (g). Figure: a = 20 µM, b = 10 µM, c = 
5 µM, d = 1 µM, e = Light control (0 µM), f = Dark control (20 µM in the dark), g = all treatment 

over 24 h.  

 

Table A3.7: Shapiro-Wilk normality test of each treatment in the photoinactivation experiment 
over 24 h of irradiation time using TPPS4 porphyrin.  

Treatment W p-value 
20 µM 0.63 2.13 x 10-09 
10 µM 0.71 4.89 x 10-08 
5 µM 0.85 4.01 x 10-05 
1 µM 0.83 1.43 x 10-05 
Light control 0.67 8.33 x 10-09 
Dark control 0.63 1.92 x 10-09 

 

 

Figure A3.7: Graphic representation of normality distribution of each treatment in the 
photoinactivation experiment over 24 h of irradiation time using TPPS4. Top = Q-Q plots of 
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sample quintiles against theoretical quantiles, Bottom = Histogram using frequency against 
response. Treatment: a = 20 µM, b = 10 µM, c = 5 µM, d = 1 µM, e = Light control (0 µM), f = 
Dark control (20 µM in the dark).  

 
 

Table A3.8: Levene's Test results in photoinactivation experiment using TPPS4. Independent 
variables: Treatment (over 24 h) and time for each porphyrin concentration.  

Treatments Variable Df F-value Pr(>F) 
 Treatment 5 0.03 0.99 
20 µM Time 14 2.05 4.91 x 10-2 
10 µM Time 14  1.89 7.11 x 10-2 
5 µM Time 14 3.04 5.20 x 10-3 
1 µM Time 14 5.31 6.29 x 10-05 
Light control (0 µM) Time 14 12.46 7.02 x 10-09 
Dark control (20 µM) Time 14 6.09 1.74 x 10-05 
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Figure A3.8: Boxplot showing homogeneity of variance in photoinactivation experiment using 
TPPS4. Independent variables: time (a-f) and treatments (g). Figure: a = 20 µM, b = 10 µM, c = 5 
µM, d = 1 µM, e = Light control (0 µM), f = Dark control (20 µM in the dark), g = all treatment 
over 24 h.  

A3.3 ABSORBANCE (ABS570) EXPERIMENT  

Table A3.9: Shapiro-Wilk normality test for each treatment in the absorbance experiment 
(ABS570) over 24 h of irradiation time using TMPyP porphyrin.  

Treatment W p-value 
20 µM 0.96 8.39 x 10-02 
10 µM 0.98 0.8 
5 µM 0.97 0.21 
1 µM 0.98 0.45 
Light control 0.92 4.02 x 10-03 
Dark control 0.92 4.38 x 10-03 
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Figure A3.9: Graphic representation of normality distribution of each treatment in the 
absorbance experiment (ABS570) over 24 h of irradiation time using TMPyP. Top = Q-Q plots of 
sample quintiles against theoretical quantiles, Bottom = Histogram using frequency against 
response. Treatment: a = 20 µM, b = 10 µM, c = 5 µM, d = 1 µM, e = Light control (0 µM), f = 
Dark control (20 µM in the dark).  

 

 

Table A3.10: Levene's Test results in ABS570 experiment using TMPyP. Independent variables: 
Treatment (over 24 h) and time for each porphyrin concentration.  

Treatments Variable Df F-value Pr(>F) 
 Treatment 4 89.41 < 2.22 x 10-16 
20 µM Time 14 3.22 3.49 x 10-03 
10 µM Time 14 6.94 4.78 x 10-06 
5 µM Time 14 3.34 2.72 x 10-03 
1 µM Time 14 3.57 1.70 x 10-03 
Light control (0 µM) Time 14 3.48 2.02 x 10-03 
Dark control (20 µM) Time 14 5.04 1.01 x 10-04 
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Figure A3.10: Boxplot showing homogeneity of variance in ABS570 experiment. Independent 
variables: time (a-f) and treatments (g). Figure: a = 20 µM, b = 10 µM, c = 5 µM, d = 1 µM, e = 
Light control (0 µM), f = Dark control (20 µM in the dark), g = all treatment over 24 h.  
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A4 APPENDIX CHAPTER 4  

Table A4.1: Shapiro-Wilk normality test results of the time-course experiment.  

Species W p-value 
C. muelleri 0.75  1.76 x 10-15 
T. lutea 0.67  < 2.20 x 10-16 
N. oculata 0.98 7.00 x 10-3 
P. atomus 0.72  < 2.20 x 10-16 
Te. chui 0.71  < 2.20 x 10-16 

 

 

Figure A4.1: Graphic representation of normality distribution in time-course experiment. Top = 
Q-Q plots of sample quintiles against theoretical quantiles, Bottom = Histogram using 
frequency against response. N. oculataa, P. atomusb, C. muelleric, Te. chuid, T. luteae.  

Table A4.2: Levene's Test for Homogeneity of Variance using Time and Treatment as 
independent variables in time-course experiment.  

Species  Df F-value Pr(>F) 
C. muelleri Time 6 40.22 < 2.20 x 10-16 

Treatment 7 9.13 1.80 x 10-09 
T. lutea Time 5 6.76 1.14 x 10-05 

Treatment 7 21.67 < 2.2 x 10-16  
N. oculata Time 6 4.59 2.52 x 10-04 

Treatment 7 0.49  0.84 
P. atomus Time 6 18.15 4.95 x 10-16 

Treatment 7 11.75 5.00 x 10-12 
Te. chui Time 6 8.84 2.45 x 10-08 

Treatment 7 5.30 1.80 x 10-05 
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Figure A4.2: Boxplot of time-course experiment showing homogeneity of variance of N. 
oculataa, P. atomusb, C. muelleric, Te. chuid, T. luteae. Top homogeneity of variance based on 
time. Bottom: homogeneity of variance based on treatments. Treatments: A = 0 µM, B = 1 µM, 
C = 20 µM, D = 5 µM, E = 10 µM, F = 50 µM, G = Dark control (0 µM) and H = Dark control (50 
µM).  

 

 

Figure A4.3: Graphic representation of p-values for each treatment after comparing start (0 h) 
and end (6 h) of the time-course experiment in N. oculataa, P. atomusb, C. muelleric, Te. chuid, 
T. luteae. Red dots represent significant difference, while blue dots represent no significant 
difference. Significant level = 0.05 (Dashed line).  
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Figure A4.4: Graphic representation of p-values after pairwise comparison of each treatment 
in time-course experiment of N. oculataa, P. atomusb, C. muelleric, Te. chuid, T. luteae. Red dots 
represent significant difference, while blue dots represent no significant difference. Significant 
level = 0.05 (Dashed line).  

 

Table A4.3: Shapiro-Wilk normality test results of the dose-response at time 6 h.  

Species W p-value 
C. muelleri 0.68  4.51x10-05 
T. lutea 0.82 3.13x10-03 
N. oculata 0.98  0.89 
P. atomus 0.68 4.59x10-05 
Te. chui 0.72  1.35x10-04 
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Figure A4.5: Graphic representation of normality distribution at time 6-h of N. oculataa, P. 
atomusb, C. muelleric, Te. chuid, T. luteae. Top = Q-Q plots of sample quintiles against 
theoretical quantiles, Bottom = Histogram using frequency against response.  

Table A4.4: Levene's Test for Homogeneity of Variance using Treatment at time 6 h as variable. 

Species Df F-value Pr(>F) 
C. muelleri 5 6.31 4.28x10-03 
T. lutea 5 9.78 6.53x10-04 
N. oculata 5 1.35 0.31 
P. atomus 5 7.92 1.67x10-03 
Te. chui 5 9.53 7.34x10-04 

 

Figure A4.6: Boxplot showing homogeneity of variance of N. oculataa, P. atomusb, C. muelleric, 
Te. chuid, T. luteae of treatments at time 6-h.  
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A5 APPENDIX CHAPTER 5  

 

Figure A5.1: Graphic representation of normality distribution at time 6-h of magnetic (a) and 
unmodified (b) cysts. Top = Q-Q plots of sample quintiles against theoretical quantiles, Bottom 
= Histogram using frequency against response (%). Shapiro-Wilk normality test: magnetic cysts 
(W = 0.90, p = 6.74x10-04); unmodified cysts (W = 0.80, p = 9.03x10-07).  

 

 

Figure A5.2: Boxplot showing homogeneity of variance at time 6-h of magnetic (a) and 
unmodified (b) cysts. Treatments A:G light expose, H:L dark exposed. Treatments= A = 50 µM, 
B = 20 µM, C = 10 µM, D = 5 µM, E = 1 µM, F = 0 µM + DMSO (Light control), G = 0 µM no 
DMSO (Light control), H = 0 µM + DMSO (Dark control), I = 0 µM no DMSO (Dark control) and L 
= 50 µM (Dark control). Levene test results: Magnetic cysts [Df = 9, F value = 2.20, Pr(>F) = 
0.042]; Norml cysts [Df = 6, F value = 6.07, Pr(>F) = 1.15x10-4].  
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