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INTRODUCTION

Heightened interest in high latitude coral assem-
blages arose in the mid-1990s following the sugges-
tion that high latitude reefs can provide potential
sites of refuge from ocean warming (Glynn 1996).
Specifically, Glynn (1996) suggested that reefs at
high latitudes, moderate depths or in areas with
strong currents could provide respite from thermal
stress associated with rising ocean temperatures, and
thus allow for the persistence or expansion of tropical
coral reef species. Indeed, rates of ocean warming
since the mid-1990s have remained constant at 1.5°C
per 100 yr (Hobday & Pecl 2014) and there is evi-
dence of an associated poleward shift in some tropi-
cal and subtropical coral reef species (Verges et al.
2014, Wernberg et al. 2016), including scleractinian
corals (Thomson 2010, Yamano et al. 2011, Baird et
al. 2012). However, there is also evidence that coral

assemblages on high latitude reefs do not conform to
the same rules of assembly as corals on low latitude
coral reefs (Bellwood & Hughes 2001, Sommer et al.
2014), and recent research has demonstrated not just
a poleward shift in the distribution of tropical coral
species, but an increasing abundance of resident
coral species on some high latitude reefs (Tuckett et
al. 2017). Therefore, a better understanding of the
biology of species on high latitude reefs is required to
assess their potential as sites of refuge from ocean
warming.

The reproductive biology of high latitude corals is
also of interest because many of these reefs are iso-
lated and are therefore hypothesised to be reliant on
self-recruitment or irregular inputs from upstream
reefs to sustain populations (Ayre & Hughes 2004,
Noreen et al. 2009, Hoey et al. 2011, Markey et al.
2016, Thomas et al. 2017). Yamaguchi (1986) hypoth-
esised that cooler sea temperatures at high latitudes
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ABSTRACT: Research on coral reproduction has increased dramatically in recent times; however,
there remain significant regions, in particular high latitude reefs, where research is limited. For
example, the reproductive biology of species in the coral assemblage at Hall Bank, a high latitude
site (32° S) in southern Western Australia, remain unknown. Here, reproductive traits and the
likely time of spawning for 12 of the approximately 16 species that occur at Hall Bank were estab-
lished using histology between March 2009 and March 2011 at 7 discrete time points. Peak repro-
ductive activity most likely occurs in February, as 7 of the 10 species sampled in this month had
colonies with mature gametes. The sexuality, mode of larval development and transmission of
symbionts were, as expected, consistent with previous work. The reproductive biology of the
corals at Hall Bank is consistent with other regions of the Indo-Pacific, supporting the hypo thesis
that reproductive traits such as sexuality and mode of larval development are evolutionarily con-
served and do not vary biogeographically.
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could prevent sexual reproduction in corals. How-
ever, corals living in areas exposed to upwelling,
such as the Galapagos Islands (Glynn et al. 1996,
2000) and at high latitudes such as Amakusa, Japan
(31° N) (Nozawa et al. 2006, Mezaki et al. 2007), Lord
Howe Island (31° S) (Baird et al. 2015) and Bermuda
(32° N) (Wyers et al. 1991) are now known to success-
fully reproduce. Reproduction also occurs in areas
considered marginal due to large fluctuations in tem-
perature and salinity, such as the Persian Gulf (Bau-
man et al. 2011). Nonetheless, there are still many
marginal reef areas for which there is no information
on coral reproductive biology.

A lack of basic biological data limits our capacity to
project the effects of climate change on coral reef
assemblage structure and ecosystem function (Keith
et al. 2015, Madin et al. 2016b). In particular, there
are a number of reproductive traits important in the
 ecology, evolution and biogeography of corals (Baird
et al. 2009b), including sexuality (gonochore or her-
maphrodite), mode of larval development (brooding
vs. broadcast spawning) and mode of larval nutrition
(autotrophic or lecithotrophic). For example, broad-
cast spawning species have an obligate planktonic
period of between 1 and 3 d and are therefore more
likely to be dispersed away from their reef of origin
than brooding species that can settle as soon as they
are released (Ayre & Hughes 2004, Figueiredo et al.
2013). Nutritional mode can also influence dispersal,
because species with autotrophic larvae can survive
for longer in the plankton than species with leci tho -
trophic larvae (Richmond 1987, Marshall & Keough
2003). Many of these reproductive traits are highly
conserved phylogenetically and do not vary among
locations (Baird et al. 2009b, Kerr et al. 2011). None-
theless, there is a dearth of data from some locations,
particularly high latitude reefs. Furthermore, high
latitude reefs are isolated, marginal and at the range
limits of species distributions, and it is unknown if

these conditions foster different ecological traits
(Keith et al. 2015).

Understanding the timing of coral reproduction is
particularly important for the management and ecol-
ogy of coral reefs. For example, the effects of human
activities such as dredging, coastal construction or
the discharge of industry waste on the reproductive
success of corals can only be minimised if the repro-
ductive season is known (Baird et al. 2010, 2011). In
addition, because many reef fishes and other inverte-
brates time their reproductive cycles to coincide with
the time that corals release larvae into the water col-
umn (McCormick 2003), knowledge of coral repro-
ductive cycles may also allow for the implementation
of management strategies which benefit not just
corals, but many reef taxa. Despite the recognised
importance of understanding coral reproductive pro-
cesses, there remain very few studies documenting
the timing of coral reproduction on high latitude reefs
(Gilmour et al. 2016).

Research on the reproductive biology of corals in
southern Western Australia is limited (Table 1).
Crane (1999) investigated the reproductive biology
and seasonality of reproduction of 8 species on Rott -
nest Island. All of these species were observed or
inferred to release propagules over a period of 1 to 3
consecutive months between January and May 1998
(Table 1). In addition, Pocillopora damicornis was
inferred to release planula larvae from February to
April (Ward 1992). Therefore, the peak month of
reproductive activity in southern Western Australia
appears to be February, when 5 of the 9 species stud-
ied to date release propagules (Table 1). This is 1 mo
earlier in the year than reefs to the north, such as the
Houtman-Abrolhos, where peak reproductive activ-
ity is in March (Babcock et al. 1994, Gilmour et al.
2016).

In this study, we documented aspects of the repro-
ductive biology for 12 of approximately 16 coral spe-
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Species Sex Mode Reproductive information Reference

Paragoniastrea australensis H S Mature gametes and spawning in January and February Crane (1999)
Coelastrea aspera H na Mature gametes in February and March Crane (1999)
Porites lutea G na Mature oocytes in March and April Crane (1999)
Australophyllia wilsoni H S Mature gametes and spawning in February Crane (1999)
Montipora mollis H na Mature gametes in April Crane (1999)
Turbinaria reniformis G na Possible mature gametes in April and May Crane (1999)
Alveopora fenestrata H B Planulae in colonies from February to March Crane (1999)
Acropora sp. H na Mature oocytes in May Crane (1999)
Pocillopora damicornis H B Planulae in colonies from February to April Ward (1992)

Table 1. Summary of research into the reproductive biology of coral species in south Western Australia. Sex: sexuality; mode:
mode of larval development; H: hermaphrodite; G: gonochore; S: broadcast spawner; B: brooder; na: could not be determined
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cies found at Hall Bank, a small (total area ~2 ha)
high latitude reef (32° 2.002’ S, 115° 42.957’ E) with
high coral cover (mean = 52.6 ± 0.45%) located 20 km
west of the city of Perth (population 1.67 million)
(Thomson 2010, Thomson & Frisch 2010).

MATERIALS AND METHODS

Reproductive traits

Many reproductive traits of relevance to the ecol-
ogy and evolution of corals can be determined using
histology, including the sexuality, mode of larval
development and mode of transmission of symbionts.
If both types of gametes (i.e. oocytes and sperm) are
present in the histological sections, either in the same
polyp or separate polyps, then the colony is a her-
maphrodite; if only one type of gamete is present and
those gametes are mature, the colony is classified
as a gonochore. Larvae can be distinguished from
oocytes because there are distinct layers of cells in a
larvae, i.e. an endoderm and an ectoderm. If larvae
are observed in the sections then the colony is a
brooder. Symbiotic algae are also visible in histology
sections; if they are present in in the oocytes the spe-
cies is said to have vertical transmission of the sym-
bionts (symbionts acquired from parent). If not, it has
horizontal transmission (symbionts acquired from the
environment). 

Timing of reproduction

To determine the reproductive condition of
colonies, one 5 cm branch or 25 cm2 nubbin was col-
lected from each colony on several dates over a 2 yr
period commencing in March 2009. Sampling was
opportunistic, with different colonies, a different
number of colonies and different number of species
sampled on each occasion (see Table 2 for dates,
species and sample size of the various collections).
Samples were preserved in 10% seawater formalin,
then decalcified in a mixture of 90% water and 10%
formic acid and preserved in 70% ethanol. Sections
of the decalcified samples were embedded in wax
following dissections, sectioned at 7 µm thickness
and 3 to 4 sections approximately 50 µm apart were
mounted on slides. Slides were stained using
Mayer’s haematoxylin and Young’s eosin-erythro-
sine, and gametes were classified as mature (stage
IV) or immature (stage I to III) following Baird et al.
(2011).

Environmental variables associated with coral
spawning

Environmental variables hypothesized to serve as
proximate cues to synchronise spawning (see Keith
et al. 2016) were collated and their association with
the timing of spawning on Hall Bank illustrated
graphically. These variables were daily in situ water
temperatures (°C), solar radiation (MJ m−2), rainfall
(mm), and wind speeds (km h−1). These data were
obtained for the Fremantle station (located approxi-
mately 2 km east of Hall Bank) for the period 1890
to 2000 from the Australian Bureau of Meteorology
(www. bom. gov. au/ climate/ averages/ tables/ cw_ 009017.
shtml).

Species identifications

Species were identified in the field following Veron
(2000). The currently accepted names for these spe-
cies were then determined using either the World
Register of Marine  Species (Hoeksema 2018) or the
most recent peer-reviewed research (e.g. Arrigoni et
al. 2014).

RESULTS

Reproductive traits and timing of gamete release

Australophyllia wilsoni was sampled on 2 occasions.
In February 2010, 1 of the 4 colonies sampled had ma-
ture ooctyes and spermaries in the same polyp, from
which it was determined that it is a hermaphrodite
(Table 1, Fig. 1 a). Coelastrea palauensis was sampled
on 4 occasions and no gametes were observed in any
colonies, including all 6 colonies sampled in February
2010. Therefore, it was not possible to determine
when C. palauensis spawns or any other aspect of its
reproductive biology. Coscinaraea mcneilli was sam-
pled once in February 2010 when all 3 colonies con-
tained either mature oocytes or mature testes, indict-
ing the species is a gonochore (Table 2, Fig. 1b).
Cyphastrea serailia was sampled once and 5 of the 6
colonies contained immature ooctyes and spermaries
(Table 2, Fig. 1c). Dipsastraea amicorum was sampled
once in February 2010 when all 4 colonies contained
mature oocytes and spermaries (Table 2, Fig. 1d).
Duncanopsammia peltata was sampled on 2 occa-
sions. In February 2010, 1 of the 2 colonies sampled
had mature spermaries suggesting the species is a
gonochore (Table 2, Fig. 1e). Goniopora pendulus was
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sampled once in February 2010 and the one colony
sampled had mature spermaries, suggesting the spe-
cies is a gonochore (Table 2, Fig. 1f). Montipora mollis
was sampled once in February 2010 and the one
colony sampled had mature oocytes and spermaries,

suggesting the species is an hermaphrodite (Table 2,
Fig. 2a). Paragoniastrea australensis was sampled on
4 occasions. No mature gametes were observed; how-
ever, 4 of the 13 colonies sampled in December 2009
had immature gametes and the stage of development

58

Fig. 1. Light micrographs illustrating the gametes of the species examined with histology. (a) Australophyllia wilsoni, (b)
Coscinaraea mcneilli, (c) Cyphastrea serailia, (d) Dipsastraea amicorum, (e) Duncanop-sammia peltata and (f) Goniopora 

pendulus. o: ooctyes; s: spermaries
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suggested they would spawn sometime in the next 1
or 2 months (Table 2, Fig. 2b). Plesiastrea versipora
was sampled on 4 occasions (Table 2) and had imma-
ture gametes on each oc casion except in May 2009,
when all 14 colonies sample had either mature
oocytes (Fig. 2c) or spermaries (Fig. 2d) indicating the
species is a gonochore. One colony had mature
oocytes in August 2009, indeed, 2 distinct stages of
oocyte development were visible in the oocytes of
this colony (Fig. 2c). Pocillopora damicornis was
 samples once in February 2009 and no  gametes
were ob served. Turbinaria mesenterina was sampled
twice; mature spermaries (Table 2, Fig. 2f) and
oocytes (Table 2, Fig. 2f) were observed in Febru-
ary 2009 (Table 2, Fig. 2f), indicating the species is
a gonochore.

No larvae were observed in the sections of those
species for which mature gametes were detected.
Symbiodinium were only observed in the oocytes of
M. mollis (Fig. 2a), suggesting all but this species
have horizontal transmission of symbionts.

Environmental conditions during spawning

The peak of gamete maturity in February coin-
cided with the highest sea temperature (Fig. 3a),
high solar radiation (Fig. 3b), low rainfall (Fig. 3c)
and low morning wind speeds (Fig. 3d).

DISCUSSION

We documented the reproductive biology of 12 of
the approximately 16 coral species at Hall Bank,
Western Australia. Peak reproductive activity at Hall
Bank occurs in February, with 7 of the 10 species
sampled in this month found to contain mature ga-
metes. These data are in strong agreement with those
from nearby Rottnest Island, where 5 of the 9 species
examined to date release propagules in February
(Table 1). The peak month of reproductive activity is
approximately 1 mo earlier than on reefs further
north in Western Australia (Babcock et al. 1994,
Gilmour et al. 2016). This is in contrast to patterns on
the east coast of Australia (Baird et al. 2015) and in
Japan (Baird et al. 2009a), where peak spawning on
high latitude reefs is typically 1 mo later than on low
latitude reefs. The peak in gamete maturity coincided
with high sea temperature and solar ra diation, and
low morning wind speeds and rainfall (Fig. 3). This
peak in gamete maturity is in strong agreement with
recent research on the high latitude reefs of Rapa Nui
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in the eastern Pacific, where 2 species of broadcast
spawning corals were observed to spawn at times of
low wind speeds and prior to the summer maximum
seawater temperatures (Buck-Wiese et al. 2018). One
explanation for the difference in latitudinal patterns

of spawning on the east and west coast might be the
contrasting changes in water temperature and solar
radiation between spring and autumn. For example,
on the east coast of Australia and in Japan, peak
spawning period occurs when water temperatures

60

Fig. 2. (a) Montipora mollis, (b) Paragoniastrea australensis, (c) Plesiastrea versipora male, (d) Plesiastrea versipora female, (e) 
Turbinaria mesenterina male and (f) Turbinaria mesenterina female. o: ooctyes; s: spermaries; z: zooxanthellae
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and solar radiation levels are rising (spring). In con-
trast, on the west coast of Australia the peak
spawning period occurs when water temperatures
and solar radiation levels are decreasing (autumn).
Therefore, peak spawning on high latitude reefs on
both the east and west coast of Australia occurs when
water temperatures are at the yearly maxima, pre-
sumably in order to maximise both fertilization suc-
cess and larval survivorship (Woolsey et al. 2015).
Low wind speeds and high rainfall have also previ-
ously been associated with the time of spawning,
however, more recent work on spawning cues in the
Scleractinia does not support such an association (see
discussion in Keith et al. 2016).

Plesiastrea versipora was sampled on 4 occasions
and had immature gametes on each occasion except
in May 2009, when all 14 colonies sample were ma -
ture. In August 2009, 2 stages of oocytes were visible

(Fig. 2d). These data suggest that, similar to popula-
tions on the east coast of Australia (Madsen et al.
2014), the oogenic cycle lasts longer than 1 yr.

Four species were common between this study and
previous work at Rottnest Island (Tables 1 & 2). Sim-
ilar to Crane (1999), our data indicates that Australo-
phyllia wilsoni spawns in February, and immature
oocytes in our samples of Paragoniastrea australensis
are consistent with a January or February spawning
as observed by Crane (1999). In contrast to Crane
(1999), our data indicate a February rather than an
April spawn in Montipora mollis. In contrast to Ward
(1992) we saw no planulae in Pocillopora damicornis
in February. When these 2 data sets are combined, a
total of 18 species have now been examined in south-
ern Western Australia, 12 of which have mature
gametes in February. In addition, there is some
spawning in every month from January to May.
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The sexuality and mode of reproduction of each
species were similar to previous records (Baird et al.
2009a) or were in line with expectations based on
taxonomy. For example, Goniopora pendulus, Dun-
canopsammia peltata, Coscinaraea mcneilli and Ple-
siastrea versipora were all gonochores along with
other species within their respective families (Baird
et al. 2009a, Madin et al. 2016a) These data support
the hypothesis that sexuality is a highly conserved
trait at the family level in the Scleractinia (Kerr et al.
2011).

In conclusion, the reproductive biology of the spe-
cies at Hall Bank was consistent with similar or
related species in tropical regions, suggesting that
the selective pressures on reproductive traits on high
latitude reefs are not significantly different than in
the tropics. The reproductive season in south West-
ern Australia extends over at least 5 mo, similar to
reefs further north in Western Australia (Gilmour et
al. 2016) and on the Great Barrier Reef (Baird et al.
2009b). The seasonal nature of coral reproduction
suggests that processes that affect reproductive suc-
cess, such as dredging, should be restricted to
months outside of this reproductive season.
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