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ABSTRACT
Toll-like receptors (TLRs) are an important component of innate immunity, the first
line of pathogen defence. One of the major roles of TLRs includes recognition of
pathogen-associated molecular patterns. Amphibians are currently facing population
declines and even extinction due to chytridiomycosis caused by the Batrachochytrium
dendrobatidis (Bd) fungus. Evidence from other vertebrates shows that TLR2 and TLR4
are involved in innate immunity against various fungi. Such genes therefore may play a
functional role in amphibian-chytridiomycosis dynamics. Frogs from East Asia appear
to be tolerant to Bd, so we examined the genetic diversity that underlies TLR2 and TLR4
from three Japanese Ranidae frog species, Rana japonica, R. ornativentris and R. tagoi
tagoi (n= 5 per species). We isolated 27 TLR2 and 20 TLR4 alleles and found that
these genes are evolutionarily conserved, with overall evidence supporting purifying
selection. In contrast, site-by-site analysis of selection identified several specific codon
sites under positive selection, some of which were located in the variable leucine rich
repeat domains. In addition, preliminary expression levels of TLR2 and TLR4 from
transcriptome data showed overall low expression. Although it remains unclear whether
infectious pathogens are a selective force acting on TLRs of Japanese frogs, our results
support that certain sites in TLRs of these species may have experienced pathogen-
mediated selection.

Subjects Evolutionary Studies, Molecular Biology
Keywords Amphibian, Ranidae, Toll-like receptors

INTRODUCTION
Toll-like receptors (TLRs) are a type of pattern recognition receptor that recognize
pathogen-associated molecular patterns (PAMPs) such as bacterial cell walls and nucleic
acids (Medzhitov, 2001). The signalling of TLRs triggers the synthesis and release of
pro-inflammatory cytokines, and thus TLRs have an important role in innate immunity
and activation of adaptive immunity. TLRs are type 1 membrane glycoproteins comprised
of extracellular and cytoplasmic domains; the extracellular domain is also considered
as a ‘pathogen-recognition domain’ with a variable number of leucine rich repeats (LRR,
proteinmotifs in the ectodomain inferred to be important for recognisingmolecules), while
the cytoplasmic signalling domain is a conserved toll/IL-1 domain (Mikami et al., 2012).
The TLR repertoire differs between vertebrate groups ranging from 10 loci in humans
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and great apes to 21 in urodele amphibians (Takeda, Kaisho & Akira, 2003; Quach et al.,
2013; Babik et al., 2014). Specific TLR loci are generally considered to recognize different
groups of PAMPs, for example, TLR1 and TLR6 associate with TLR2 to recognize acylated
lipopeptides, TLR4 recognize lipopolysaccharides in gram-negative bacteria, and TLR5
recognize bacterial flagellin (Poltorak et al., 1998; Voogdt et al., 2016). In addition, TLR2
and TLR4 can recognize PAMPs derived from different fungi species (reviewed by Roeder
et al., 2004; Luther & Ebel, 2006).

In amphibians, TLRs have been described in Xenopus frogs (20 loci from 14 families,
Ishii et al., 2007) and newts (21 loci from 13 families, Babik et al., 2014). TLR families
characterized in both frogs and newts include TLR01, TLR02, TLR03, TLR05, TLR07,
TLR08, TLR09, TLR12, TLR13, TLR14, TLR21, and TLR22. However, the prevalence of
TLR4 across amphibian taxa is uncertain: no TLR4 orthologs were found in newts, but
putative TLR4 were identified in Xenopus (Ishii et al., 2007; Babik et al., 2014). In addition,
TLR4 was one of the 11 TLR genes that were isolated from transcriptome data of Bombina
maxima frogs (Zhao et al., 2014).

Most TLR genes are functionally constrained, and typically have high sequence
conservation and slow evolutionary rates to maintain a functional role of recognizing
conserved PAMPs (Roach et al., 2005), although extracellular LRR domains have higher
evolutionary rates compared to intracellular domains (Mikami et al., 2012). An overall
signature of purifying selection was identified in TLRs of urodele amphibians, although
a few individual codons were found to be evolving under positive selection (Babik et
al., 2014), as has been observed in other vertebrates (Wlasiuk & Nachman, 2010; Shang
et al., 2018). The identification of TLR-disease associations in vertebrates (Tschirren et
al., 2013; Noreen & Arshad, 2015) also supports that episodic selection can occur in TLR
genes as a response to changes in pathogen diversity. In addition, human TLR4 displayed
significantly negative Tajima’s D values in nonsynonymous variants (Smirnova et al.,
2001), and subsequent evidence supporting selection for rare TLR4 variants was found
(Smirnova et al., 2003). Therefore, while TLRs may be under functional constraints, there
is evidence across vertebrates that positive selection may act on these genes in response to
local pathogens.

Chytridiomycosis is a disease in amphibians caused by the fungal pathogen
Batrachochytridium dendrobatidis (Bd). This disease has been linked to the decline of
amphibian populations worldwide (Daszak, Cunningham & Hyatt, 2003; Longcore et al.,
2007; Skerratt et al., 2007;Wake & Vredenburg, 2008). Despite Bd being prevalent in Korea
and Japan (Goka et al., 2009; Bataille et al., 2013), within endemic East Asian frogs there is
no evidence of Bd-related declines and no published reports of Bd susceptibility following
experimental infection; this supports that such frogs could be Bd-tolerant. Additionally,
genetic evidence for high Bd genetic diversity and endemism in this region indicates that
Bd is endemic to Asia (Fisher, 2009; Bataille et al., 2013), suggesting a long co-evolutionary
history between the Bd pathogen and Asian amphibians.

While adaptive immune genes of Japanese frogs have been studied in the context of
diseases like chytridiomycosis (Lau et al., 2016; Lau et al., 2017), there are limited studies
involving innate immunity genes including TLRs. Since TLR2 and TLR4 have been shown
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to play a role in innate immune responses to various fungi (Roeder et al., 2004; Luther &
Ebel, 2006), TLRs therefore may be involved in Bd resistance (Richmond et al., 2009).

Basal expression of TLRs can provide an overview of the function of these genes, and
have been examined in a few anuran species including Bombina and Xenopus frogs. In
B. maxima, expression levels of TLR2 and TLR4, measured using quantitative RT-PCR,
were variable between different adult tissues (Zhao et al., 2014). In X. laevis, ubiquitous
expression of both TLR2 and TLR4was detected in adults and tadpoles using standard PCR,
but expression levels were not quantified (Ishii et al., 2007). This current study provides
the opportunity to expand the knowledge about basal TLR expression in amphibians.

To better understand the gene complements of anuran innate immunity, here we
characterize the genetic diversity and selection patterns of two candidate TLR genes in
three Japanese Rana species using molecular cloning and sequence analyses. Given the
potential immunological importance of TLRs against fungal pathogens, we hypothesized
that TLRswould be subjected to purifying selection in species which showmarked resistance
to Bd. In addition, we also conducted preliminary investigation of TLR expression using
published transcriptomic data, to determine whether basal expression is similar across
different life stages and tissue types.

METHODS
Animals
All sample collection was approved by Hiroshima University Animal Research Committee,
approval number G14-2. Adult skin tissues were collected from three common Ranidae
frog species from Japan (n= 5 per species): the Japanese brown frog (Rana japonica),
the montane brown frog (Rana ornativentris), and Tago’s brown frog (Rana tagoi tagoi).
All frogs are the same individuals used previously to characterize MHC class I and II
genes (Lau et al., 2016; Lau et al., 2017, Table S1). All animals were housed in laboratory
conditions for a minimum of five weeks and exhibited no clinical signs of disease prior to
euthanasia, and thus considered ‘healthy’. Animals were euthanized through immersion
in tricaine methanesulfonate (MS222, 0.5–3 g/L water), and preserved in RNAlater
(Applied Biosystems, Carlsbad, CA, USA) at −20 ◦C prior to excision of skin sample
and genomic DNA (gDNA) extraction using DNAsuisui-F (Rizo Inc., Tsukuba, Japan)
following manufacturer’s protocol.

Isolation of TLR genes from transcriptome data set and primer
design
To isolate TLR2 and TLR4 genes, we utilised the published transcriptomic data set
previously compiled using Illumina sequences from immune tissues of the three species
(Lau et al., 2017). Briefly, we used the assembled transcripts that were annotated with
NCBI-BLAST-2.3.30 against the Swissprot protein database (https://www.expasy.ch/sprot),
and isolated all transcripts that had top hits from BLAST search to published TLR
genes of other vertebrates. We manually scanned the NCBI-BLAST search results and
aligned each transcript with orthologous genes from Xenopus laevis and Nanorana
parkeri (Xenbase, http://www.xenbase.org/, RRID:SCR_003280, and GenBank accession
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numbers XM_002933491, XM_018557931, XM_018232906, XM_018565865). Due to
low coverage of sequence data, full-length contigs were not available for TLR2 and
TLR4 genes in all three species (Figs. S1 and S2); in such cases, fragmented contigs
were used in the alignment. The genomic structure of most vertebrate TLR genes
are unique in that the majority of their coding sequence is located within a single
exon. From the alignments, we used Primer 3 (Rozen & Skaletsky, 1998) to design
degenerate primers that amplified 2348 bp and 2072 bp fragments within a single
exon of TLR2 (RanaTLR2_F: 5′-TGRTTGCATACATATGGAGTTG-3′, RanaTLR2_R:
5′-GTGGTCCTCTGGCTGAAGAG-3′) and TLR4 (RanaTLR4_F: 5′-CTGGCAAGCCTTT
CTGAACT-3′, RanaTLR4_R: 5′-AGCGGARCATCAACTTTACG-3′), respectively, across
all three species (Table S1).

TLR PCR and sequencing
Polymerase chain reaction (PCR) amplification was conducted in Applied Biosystems R©

Veriti R© thermal cycler in 10µL reactions with 0.25 U TaKaRa Ex Taq R© polymerase (Takara
Bio Inc., Kusatsu, Shiga, Japan), 1x Ex Taq PCR buffer, 0.2 mM each dNTP, and 0.7 µM
each primer and 0.5–1.0 µL skin gDNA samples (n= 5 per species) with the following cycle
condition: initial Taq activation at 95 ◦C for 1 min, then 35 cycles of 30-s denaturation at
95 ◦C, 30-s annealing at 60 ◦C (TLR2) or 61 ◦C (TLR4), and 80-s extension at 72 ◦C, then
a final extension of 72 ◦C for 3 min. Since TLR alleles could not be phased in heterozygous
individuals by sequencing alone, we usedmolecular cloning followed by Sanger sequencing.
PCR products were ligated into T-Vector pMD20 (Takara Bio Inc., Kusatsu, Shiga, Japan)
using DNA Ligation Kit 2.1 (Takara Bio Inc.) and incubated for 30 min at 16 ◦C. For
cloning, ligation reactions were transformed into JM109 competent cells (Takara Bio Inc.,
Kusatsu, Shiga, Japan) and cultured on selective LB plates containing 50 µg /mL ampicillin
overnight at 37 ◦C. We then amplified positive clones (4 –10 per individual reaction) using
M13 primers and similar PCR conditions, and purified using ExoSAP-IT R© (Affymetric
Inc., Santa Clara, CA, USA). As amplicons were over 2 kbp length, we utilised four to six
additional sequencing primers (Table S2, Figs. S3 and S4) in addition to M13 primers for
sequencing with BigDye R© Terminator Cycle Sequencing kit (Applied Biosystems, Foster
City, CA, USA) and ABI 3130xl automated sequencer.

Sequence analyses, dN/dS comparison with other genes, and
selection tests
We measured polymorphism and divergence of the TLR2 and TLR4 sequences using
DnaSP 6.10.03 (Rozas et al., 2017), including number of segregating sites (S), number
of alleles (NA), average number of nucleotide differences (k), nucleotide diversity (π),
Tajima’s D (D) and normalized Fay and Wu’s H (Hn). We calculated synonymous (dS)
and nonsynonymous (dN ) divergence and the ratio (dN /dS) between the focal species
using MEGA7 (Kumar, Stecher & Tamura, 2016). We then compared the dN /dS ratio with
that of major histocompatibility complex (MHC) class I and II (average among the three
species), which are known to be under balancing selection in these species (Lau et al.,
2016; Lau et al., 2017). In addition, we compared with dN /dS ratio of all orthologous genes
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collated from the transcriptome data set of Lau et al. (2017). This consisted of over 3,000
orthologous amino acid sequences from each of the three species that were identified using
Proteinortho V5.15 (Lechner et al., 2011). We then extracted nucleotide coding sequences
of orthologous genes from transcriptome data sets using a custom python script, and used
PhyloTreePruner (Kocot et al., 2013) to align the sequences and remove paralogues. Finally,
all sequences were compiled together and maximum likelihood estimates of ω (dN /dS)
were calculated using CODEML in PAML 4.9 (Yang, 2007).

To test for selection, we used McDonald-Kreitman (MK) test in DnaSP 6.10.03 to
compare species-wide data with outgroup sequences from distantly related Ranidae frogs
(Odorrana amamiensis and O. ishikawae, transcriptome data, source: T. Igawa, GenBank
accession numbers MH165314–MH165317). In addition, we tested for sequence-wide
neutral (dN = dS), purifying (dN < dS) and positive (dN > dS) selection using codon-based
Z tests with 1,000 bootstrap replicates in MEGA7. To infer specific codons as positively
selected sites (PSSs) with ω (dN /dS)> 1, we used omegaMap version 5.0 (Wilson &
McVean, 2006) to perform Bayesian inference on independent alignments for each species
and gene, following Lau et al. (2016). Neighbour-joining phylogenetic trees from amino
acid alignments (p-distance) were constructed independently for TLR2 and TLR4 in
MEGA7. Protein domain structures of TLR2 and TLR4 were predicted using SMART
(Letunic, Doerks & Bork, 2015).

Expression of TLRs
In order to investigate baseline expression of our candidate TLRs, we extracted expression
levels from our transcriptome data set (Lau et al., 2017). RSEM v 1.3.0 (Li & Dewey, 2011)
was used to extract trimmed mean log expression ratio, or TMM-normalized values
which represent estimated relative RNA production levels (Robinson & Oshlack, 2010),
for TLR2 and TLR4 transcripts in each of the 12 samples (Table S1). We compared
TMM-normalized values within adults (blood, skin and spleen), using false discovery rate
(FDR) cut-off of 0.001, to determine whether expression was ubiquitous. In addition,
we checked if expression in tadpoles was different to adults, using stage 24 and stage 29
tadpoles (in R. japonica and R.ornativentris) (Gosner, 1960). In the cases where full-length
contigs were not available from low sequence coverage (R. ornativentris TLR2 and TLR4,
and R. t. tagoi TLR4), we obtained expression values for each fragmented contig.

RESULTS
We characterized a total of 27 TLR2 and 20 TLR4 alleles from the three study species, all
of which were distinctive at the amino-acid level. Rana japonica had seven TLR2 and five
TLR4 alleles, R. ornativentris had ten TLR2 and seven TLR4 alleles, and R. tagoi tagoi had
ten TLR2 and eight TLR4 alleles (Table 1, Figs. S3 and S4, GenBank accession numbers
MG999527–MG999573). All alleles clustered phylogenetically into species-specific clades
(Fig. 1) and had similar domain structure to that of other frogs (Fig. S5). Allelic diversity
among species was high (Table 1, Table S3), especially TLR2 in R. ornativentris and R. t.
tagoi, where all individuals were heterozygous with two unique alleles.
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Figure 1 Phylogenetic relationships of TLR2 and TLR4 alleles from three Japanese Rana species. Phy-
logenetic relationships of (A) TLR2 and (B) TLR4 alleles identified in R. japonica (red), R. ornativentris
(blue) and R. tagoi tagoi (orange) and other species based on amino acid alignments (neighbour-joining
method). Human TLR5 and TLR6 were used as outgroup sequences. Accession numbers for sequences
are indicated. Sequences obtained from transcriptome data include: Lithobates catesbeianus (DRA acces-
sion number SRP051787), and Odorrana amamiensis and O. ishikawae (GenBank accessions MH165314–
MH165317). Image sources: Q. Lau.

Full-size DOI: 10.7717/peerj.4842/fig-1

Table 1 Polymorphism of TLR2 and TLR4. Polymorphism of TLR2 and TLR4 in R. japonica, R. orna-
tiventris and R. tagoi tagoi.

Gene 2N nsites NA S k π D Hn MK P-value

TLR2
R. japonica 10 2,312 7 28 10.48 0.0045 −0.474 −0.873 0.629
R. ornativentris 10 2,312 10 44 13.89 0.0060 −0.521 −0.242 1.000
R. tagoi tagoi 10 2,312 10 39 13.29 0.0058 −0.292 −1.108 0.215
TLR4
R. japonica 10 2,072 5 41 19.20 0.0093 −0.183 −0.144 0.279
R. ornativentris 10 2,078 7 35 14.71 0.0071 0.008 −0.510 0.266
R. tagoi tagoi 10 2,072 8 25 8.57 0.0041 −0.584 −1.539 0.127

Notes.
2N, number of gene copies studied; nsites, nucleotide length of sequence; NA, number of alleles; S, number of segregating
sites; k, average number of nucleotide differences; π , nucleotide diversity; D, Tajima’s D value for all sites (no values were sig-
nificant at p< 0.01); Hn, Fay and Wu’s normalized H value for all sites (no values significant p< 0.01); MK P-value, McDon-
ald and Kreitman Fisher’s exact test P-value.
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Table 2 Codon-based Z tests for global selection. Codon-based Z tests for global selection (Z statis-
tics), and specific codon sites under positive selection detected by omegaMap. Codon sites in identical po-
sitions in more than one species are underlined.

Gene Neutrality Purifying Positive Positively selected sites (PSS)

TLR2
R. japonica −2.72* 2.69* −2.63 n.s. 12, 23, 95#, 164, 428#, 672
R. ornativentris −2.78* 2.66* −2.77 n.s. 11, 53#, 75#, 207, 284, 299, 417, 509, 535
R. tagoi tagoi −3.81** 3.83** −3.76 n.s. 105#, 192, 235, 265, 407, 458#, 485#, 486#

TLR4
R. japonica −3.16* 3.11* −3.11 n.s. 12, 46#, 65#, 129, 133, 221, 339, 430#

R. ornativentris −3.34* 3.34** −3.32 n.s. 35#, 56#, 77#, 173, 253#, 378#, 481#, 691
R. tagoi tagoi −1.28 n.s. 1.28 n.s. −1.27 n.s. 24, 53#, 56#, 65#, 127, 128, 373#, 416#, 489#

Notes.
*p< 0.01.
**p< 0.001.
n.s.—p> 0.05.

#PSS located in leucine rich region (LRR).

Selection tests over the entire alignment indicated that TLR2 and TLR4 in the three
focal species are under purifying selection (Z -value = 2.66 − 3.83, p< 0.01, Table 2) with
the exception of TLR4 in R. t. tagoi (Z -value = 1.28, p= 0.102). In addition, Tajima’s
D, normalized Fay and Wu’s H, and the McDonald-Kreitman test showed no significant
support for selection (Table 1). However, omegaMap analyses identified six to nine
positively selected sites (PSSs) in either TLR2 or TLR4 of each of the three focal species
(Posterior probability >99%). Of these, two (22.2%) to six (75.0%) PSSs were located
in predicted leucine rich repeat domains (Table 2, Figs. S3 and S4). There were no PSSs
common in all three species studied, but two PSSs of TLR4 (sites D56 and S65) were shared
across two species (Table 2, Fig .S4).

Pairwise comparisons of dN /dS ratios between Rana species were low and ranged from
0.188 to 0.398 (Table 3). These ratios were comparable to that of MHC class 1 α3 andMHC
class II β2 domains as well as other transcribed genes within the species (mean dN /dS of
over 3,000 genes = 0.380, Fig. 2). In contrast, these ratios were lower than that of MHC
class I α1 and α2 domains and class II β1 domain.

When we checked published transcriptome data for TLR2 and TLR4 expression,
preliminary examination of adult tissues indicated no significant differences between tissue
types (blood, spleen, skin) at FDR cut-off of 0.0001. Nevertheless, overall expression of
TLR2 and TLR4 was low and there were a few consistent trends seen across all three
species. This included higher expression of TLR2 in adult skin relative to blood, and
lower expression of TLR4 in adult skin relative to either blood or spleen (Table 4). Across
life stages, expression of TLR2 and TLR4 was seemingly low in tadpoles relative to adult
samples (FDR > 0.0001, n.s., Table 4).

DISCUSSION
The preliminary characterization of TLR2 and TLR4 in the three focal species here
provides a platform for future population genetics studies across the species’ distributions,

Lau et al. (2018), PeerJ, DOI 10.7717/peerj.4842 7/14

https://peerj.com
http://dx.doi.org/10.7717/peerj.4842#supp-1
http://dx.doi.org/10.7717/peerj.4842#supp-1
http://dx.doi.org/10.7717/peerj.4842#supp-1
http://dx.doi.org/10.7717/peerj.4842


0

20

40

60

80

100

120

140

160

180

200

dN / dS

Fr
eq

ue
nc

y

TLR2
MHC-IIβ2

TLR4

MHC-IIβ1 MHC-Iα1
MHC-Iα2

MHC-Iα3

Figure 2 Distribution of dN /dS ratios from over 3,000 genes isolated from transcriptome data com-
pared to TLR andMHC. Distribution of dN /dS ratios from over 3,000 genes isolated from transcriptome
data of R. japonica, R. ornativentris and R. tagoi tagoi. dN /dS location of TLR2 and TLR4, as well as MHC
class I and II domains are marked with arrows.

Full-size DOI: 10.7717/peerj.4842/fig-2

Table 3 dN and dS of TLR2, TLR4 andMHC genes.Nonsynonymous (dN ) and synonymous (dS) diver-
gence between the three focal Rana species, for TLR2 and TLR4 genes as well as previously characterized
MHC class I and II loci from these three species.

Gene dN dS dN /dS
TLR2

Rj- Ro 0.014 0.077 0.188
Rj-Rt 0.015 0.069 0.213
Ro-Rt 0.020 0.065 0.316
all three species 0.291

TLR4
Rj- Ro 0.016 0.078 0.207
Rj-Rt 0.018 0.062 0.293
Ro-Rt 0.020 0.051 0.398
all three species 0.379

MHC class I α1 0.092 0.056 1.632
MHC class I α2 0.082 0.054 1.525
MHC class I α3 0.035 0.073 0.476
MHC class II β1 0.139 0.146 0.953
MHC class II β2 0.041 0.151 0.269

uncovering the full TLR diversity with more targeted PCR and sequencing approaches.
Overall allelic diversity of TLR2 and TLR4 appeared to be high, whereby only a few alleles
were shared between more than one individual (Table S3). Commonly shared alleles were
more apparent in R. japonica, likely due to a population bottleneck history in the source
population of Etajima (Lau et al., 2016). The presence of the TLR4 gene in amphibians
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Table 4 Expression of TLR2 and TLR4 across different tissues and life stages based on transcriptome data.Normalized expression of TLR2 and
TLR4 across different tissues and life stages based on transcriptome data set of Lau et al. (2017).

Gene Species Transcript length (bp) Adult blood Adult skin Adult spleen S24 tadpole s29 tadpole

TLR2 R.japonica 3,285 0.25 1.37 2.60 – 0.05
R. ornativentris

fragment 1 1,417 0 0.73 0.11 0.20 0
fragment 2 1,324 0.16 0.88 0.22 0.25 0

R. t. tagoi 2,686 0.86 2.55 1.59 – –
TLR4 R.japonica 2,830 0.20 0.03 1.14 – 0.01

R. ornativentris
fragment 1 444 0.16 0 0.32 0 0
fragment 2 548 0 0 0.55 0 0.52
fragment 3 405 0 0.28 0.58 0 0

R. t. tagoi
fragment 1 1,454 0.11 0 0.50 – –
fragment 2 629 0.18 0 1.21 – –

was previously unclear, described as ‘putative’ in Xenopus frogs (Ishii et al., 2007) and
‘predicted’ from genomic data in Lithobates catesbeianus and Nanorana parkeri (GenBank
accessions XP_018421367 and PIO23183; Sun et al., 2015; Hammond et al., 2017), and
undetected in newts (Babik et al., 2014). The characterization of TLR4 genes in this study
supports the existence of this gene family in anurans, whereby TLR4 alleles of the three
Rana species were similar in phylogeny and domain structure to that of other frogs.

From selection tests, we found overall evidence of purifying selection and no support for
sequence-wide positive selection. This agrees with data from other vertebrates, including
newts, where TLRs are regarded as conserved with their evolution predominated by
purifying selection (Roach et al., 2005; Babik et al., 2014). The dN /dS ratios in TLR2 and
TLR4 of the Rana species studied here were remarkably low compared to that of external
domains of MHC class I (α1 and α2 domains) and class II (β1 domain), which are
considered to be under balancing selection. However, the low dN /dS of TLR2 and TLR4
was comparable to dN /dS of MHC class 1 α3 and MHC class II β2 domains which are
intracellular or not involved in peptide recognition, as well as those of over 3,000 transcribed
genes within the species. These findings further support that TLR2 and TLR4 are under
functional constraint.

Althoughwe found thatmost of the TLR2 andTLR4 sequences of the JapaneseRana frogs
were evolutionarily constrained, we identified evidence of adaptive evolution occurring
at individual codon sites in our alignment, similar to other vertebrates studied (Wlasiuk
& Nachman, 2010; Shang et al., 2018). When comparing with codon sites predicted to be
important for binding of non-fungal ligands (Figs. S3 and S4), two PSSs identified in
R.ornativentris TLR2 (Q284 and V299) corresponded to sites in human TLR2 predicted
to be involved in ligand binding of lipopeptides (N294 and L312, Jin et al., 2007). In
addition, one PSS each of R. tagoi tagoi (T128) and R. ornativentris (Q253) corresponded
to human TLR4 sites predicted to be involved in secondary (N268) and phosphate (K388)
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binding, respectively, of bacterial lipopolysaccharides (Park et al., 2009). Positive selection
at identical codon sites across different species, as observed in MHC adaptive immune
genes (Lau et al., 2016; Lau et al., 2017), could be driven by a single selective force that is
pathogen-related. However, in Rana TLRs there were no PSSs shared across all three species
studied. As we did not examine the patterns of selection in species which are susceptible
to Bd, any link is currently speculative; nevertheless, we cannot rule out the possibility of
adaptive evolution, potentially driven by pathogens such as Bd, acting on TLR of the study
species in recent evolutionary history.

Preliminary examination of TLR2 and TLR4 expression levels extracted from
transcriptome data showed overall low expression. While the expression data is derived
from single individuals that were housed in disease-free environments, it appears that
skin of healthy frogs that are not immune-challenged express TLR2 more so than TLR4.
However, expression of immune-related genes could be modulated following immune or
stress challenges, and future studies should monitor immune gene expression following
experimental infection with pathogens like Bd. The adult tissue-specific differences in TLR2
and TLR4 expression fromR. ornativentris in this studywere distinct fromB. maxima (Zhao
et al., 2014), but sample size should be increased for both species before further inferences
can be made. A previous study in Xenopus frogs detected ubiquitous expression of both
TLR2 and TLR4 in adults and tadpoles using PCR, but expression levels were not quantified
(Ishii et al., 2007). Although we found low TLR expression in tadpoles in this study, further
conclusions cannot be made due to limited sampling and overall low TLR expression across
the samples. Future quantitative studies can investigate expression level changes of TLRs
during development from tadpole to adults, as well as that of other innate and adaptive
immune genes extracted from the transcriptome data set (Lau et al., 2017).

CONCLUSION
In this study, we characterized TLR2 and TLR4 genes from three Japanese Rana species.
We provide strong evidence of purifying selection acting across TLR2 and TLR4, and
evidence of a few specific codon sites under positive selection. Further research is necessary
to determine if the positive selection we detected is due to pathogen-driven selection. Since
immunity to infectious diseases is usually polygenetic, our study adds to the growing body
of literature related to genes that potentially impact resistance to Bd and other pathogens
in amphibians.
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