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Abstract

The operational impact of deltamethrin resistance on the efficacy of indoor insecticide appli-

cations to control Aedes aegypti was evaluated in Merida, Mexico. A randomized controlled

trial quantified the efficacy of indoor residual spraying (IRS) against adult Ae. aegypti in

houses treated with either deltamethrin (to which local Ae. aegypti expressed a high degree

of resistance) or bendiocarb (to which local Ae. aegypti were fully susceptible) as compared

to untreated control houses. All adult Ae. aegypti infestation indices during 3 months post-

spraying were significantly lower in houses treated with bendiocarb compared to untreated

houses (odds ratio <0.75; incidence rate ratio < 0.65) whereas no statistically significant dif-

ference was detected between the untreated and the deltamethrin-treated houses. On aver-

age, bendiocarb spraying reduced Ae. aegypti abundance by 60% during a 3-month period.

Results demonstrate that vector control efficacy can be significantly compromised when the

insecticide resistance status of Ae. aegypti populations is not taken into consideration.

Author summary

Insecticide resistance has emerged as a worrisome outlook for the implementation of

insecticide-only approaches. Particularly for Aedes aegypti, it is generally argued that this

rapid rise of insecticide resistance may compromise the effectiveness of control programs.

Yet, empirical evidence of such negative operational impact is lacking. This article pro-

vides quantitative evidence of the impact of insecticide resistance, primarily to the pyre-

throid insecticide deltamethrin, on the entomological effectiveness of interventions

against Aedes aegypti mosquitoes. Within an area of high resistance to pyrethroids, per-

forming high-quality insecticide applications using deltamethrin had no entomological
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impact in comparison to the application of an insecticide to which Ae. aegypti was suscep-

tible. Deltamethrin did not protect against resistant Ae. aegypti, whereas the application of

bendiocarb led to an average efficacy of 60% during a 3-month period. This study pro-

vides strong evidence of the dramatic operational treatment failure that can occur when

the background insecticide resistance level of Ae. aegypti populations is not taken into

consideration when performing vector control.

Introduction

The expanding geographic range of Aedes aegypti and increased human mobility have primed

the world for increased transmission of Aedes-borne diseases [1, 2]. Zika is rapidly propagating

and causing severe congenital complications in the Americas [3], yellow fever has recently re-

emerged in urban Africa [4], Mayaro virus is gaining prevalence [5], and dengue viruses con-

tinue to be the most prevalent mosquito-borne arboviruses worldwide [6]. With the exception

of yellow fever, which can be prevented with a vaccine, the containment of the remaining

Aedes-borne viruses depends almost exclusively on vector control and community mobiliza-

tion [7, 8]. Unfortunately, Aedes-control programs today are challenged by limited budgets

and the social-environmental complexities of contemporary urban areas. Given that existing

vector control methods are context-dependent and can vary greatly in effectiveness [7, 9], and

in light of the increasing threat posed by Aedes-borne diseases, there is an urgent need to deter-

mine which vector control tools and strategies provide the greatest impact [7].

One of the key challenges with insecticide-based interventions is that they inherently select

for insecticide resistance [10]. In multiple countries, resistance to pyrethroid insecticides has

been reported in Ae. aegypti, likely resulting from the widespread reliance of vector control

programs on pyrethroid insecticides for over two decades [11]. The most widely reported

mechanisms of pyrethroid resistance in Ae. aegypti are increased detoxification due to

P450-monooxygenases and mutations in the voltage-gated sodium channel genes [11]. In

Mexico, the widespread use of permethrin over a 10-year period led to the rapid emergence

and spread of a mutation in codon 1016 of the gene encoding the voltage-gated sodium chan-

nel that results in an isoleucine substitution for valine [12]. An additional mutation in codon

1534 resulting in a cysteine substitution for phenylalanine has also been detected at high fre-

quency throughout Mexico, and is thought to have evolved to compensate for fitness costs

incurred by 1016I [13]. Both 1016I and 1534C kdr mutations are now widespread throughout

Mexico, and have reached fixation or near-fixation in many places in only a few short years.

This example of rapid evolution has been documented elsewhere [11], and represents a worri-

some outlook for the reliance on insecticide-only approaches. Particularly for Ae. aegypti, it is

generally argued that the rapid rise of insecticide resistance may compromise the effectiveness

of control programs [10, 14], hindering the ability to control pathogen transmission, yet

empirical evidence of such impact is lacking. This lack of evidence is at least partially due to

the variability in the effectiveness of interventions [9], which can confound the accuracy of

measurements of both the entomological and epidemiological impacts of resistance.

Indoor residual spraying (IRS), when targeted to Ae. aegypti resting locations, can provide a

significant protective effect against dengue transmission [15, 16]. In addition to being one of

the only vector control interventions clearly and significantly linked to a reduction in disease

transmission, this method also has potential for the control of pyrethroid-resistant Ae. aegypti,
as non-pyrethroid insecticides are available for residual application. As such, a randomized

controlled trial (RCT) was conducted in the city of Merida, Mexico, with two objectives: 1) to
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quantify the efficacy of IRS in controlling Ae. aegypti, and 2) to evaluate the operational impact

of pyrethroid resistance by comparing the efficacy of interventions using an insecticide to

which the Ae. aegypti population presented a high frequency of resistance as compared to an

insecticide to which the Ae. aegypti population was susceptible.

Materials and methods

Study area

This study was conducted in the state of Yucatán in southern Mexico in three suburbs (San

Lorenzo, Acim, Itzincab) of Merida (population ~1 million), the state’s capital (Fig 1). The

three suburbs were small, densely populated ‘fraccionamientos’ (neighborhoods) connected to

Merida by a single road and similar in housing size and design (e.g., one story, brick-and-mor-

tar homes with typically two bedrooms, one living room, one TV room, a bathroom and a

kitchen), characteristic of high-density low-income housing in the region. Merida is located in

a subtropical environment with mean temperatures ranging from 29˚C in December to 34˚C

in July. The rainy season occurs from May to October and overlaps with the peak dengue

transmission season between July and November, although cases occur year-round [17]. Den-

gue virus is widely distributed throughout the Yucatan peninsula, and the vector control strat-

egies used by local authorities at the time of this study included ultra-low volume (ULV)

spraying with the organophosphate insecticides chlorpyrifos and malathion and indoor space

spraying with pyrethroids (deltamethrin) and organophosphates (malathion) for adult Ae.

aegypti control. Recent published reports from the region categorized the populations of Ae.

aegypti as resistant to type I and II pyrethroids (including deltamethrin) and completely sus-

ceptible to carbamates (including bendiocarb) [18]. Mutations had previously been detected at

both loci on the voltage-gated sodium channel gene, resulting in the presence of both 1016I

and 1534C [18, 19].

Study design

To test the hypothesis that insecticide resistance can impact the efficacy of insecticide-based

interventions, a RCT was designed with three study arms: blocks where IRS (see below) was

conducted using deltamethrin (WP, 5 g a.i. diluted in 7.5 L of water), blocks where modified

IRS was conducted with bendiocarb (WP, 125 g sachet diluted in 7.5 L of water) and untreated

control blocks. WHO recommended doses were used for each insecticide (0.025 g active ingre-

dient [a.i.]/m2 for deltamethrin and 0.375 g a.i./m2 for bendiocarb) which were applied using

standard manual compression sprayers (Hudson 93793 X-pert, Chicago, IL) with flat nozzle

fitted with flow control valves (CFV red, model CFV.R11/16SYV.ST, with operating pressure

1.5Bar/21 psi, Flow rate 550 ml/min, CFValve, Gate LLC, Sebastian, FL).

Under strong spatial heterogeneity, as it is observed for Ae. aegypti [20], randomly allocat-

ing treatments over space can lead to marked variability in the distribution of treatment and

control blocks. This challenge can be addressed with a randomized-block design by allocating

treatments to smaller geographic units (blocks) nested within larger ones [21]. In this study, 14

clusters containing three city blocks each were generated as follows: 1) 42 city blocks were ran-

domly selected using a geographic information system (ArcGIS 10.1, Redlands, CA), restrict-

ing the selection to blocks that were not contiguous (one city block was left as a buffer to

reduce confounding between treatments due to mosquito dispersal); 2) the 42 city blocks were

then used to generate ‘clusters’ of 3 blocks (by selecting blocks that were closest to each other

based on the distance between their centroids); 3) each of the 3 blocks within the cluster was

randomly allocated to one of the study arms (control, deltamethrin, bendiocarb)(Fig 1).
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Two to three weeks prior to implementation of an intervention in a block, written informed

consent from the household owner was obtained. Blocks with enrollment <60% were replaced

by newly selected blocks, as previous studies showed that the epidemiologic effectiveness of

IRS is significantly lower below such threshold [15]. One week prior to the intervention, a

baseline entomologic survey using ovitraps [22], Prokopack aspirators to collect adult mosqui-

toes for 10 minutes per house [23] and pupal surveys [24] was systematically conducted at 10

randomly selected houses per block to determine pre-treatment vector abundance and insecti-

cide resistance prevalence. Susceptibility to deltamethrin and bendiocarb was assessed with

CDC bottle bioassays on adult mosquitoes emerging from the eggs hatched from ovitraps

placed in each cluster. Resistance intensity was measured by exposing mosquitoes to multiples

of the diagnostic dose (2x, 5x and 10x) [25].

Spraying occurred from October 31 to November 22, 2015. Three teams of 2 research team

staff who had been trained in the application of insecticides adapted the standardized IRS pro-

tocols used for malaria vector control [26] to the urban control of Ae. aegypti. While the tech-

nical parameters for spraying (distance from wand to wall, speed, pressure, etc.) were kept as

used in classic IRS, some modifications were introduced to maximize application of insecti-

cides to specific Ae. aegypti resting sites [27] and increase acceptability by house owners [28]:

1. No personal belongings were taken outside of the home and furniture was not moved away

from the walls; only exposed walls were sprayed; 2. Picture frames and other belongings hang-

ing on the walls were kept unless the owner decided to remove them; 3. Kitchens were not

sprayed to minimize the risk of food contamination and because evidence from exhaustive col-

lections shows that Ae. aegypti is rarely found resting there [27].

In Iquitos, Peru, IRS with deltamethrin induced mortalities higher than 80% in susceptible

Ae. aegypti strains up to eight weeks post spraying but mortality was reduced to 55% at 16

weeks post-spraying [29]. Thus, we designed our post-intervention (PI) entomological evalua-

tions to occur at 15 days, 1 month, 2 months and 3 months post-spraying. On each survey

date, 10 randomly selected houses per block were surveyed using the same methodology as at

baseline. All collected adult mosquitoes were transported to the laboratory (Universidad

Autonoma de Yucatan, Merida) in styrofoam coolers for further processing. Once in the lab,

mosquitoes were separated by species, sex and (for females) sorted by the level of engorgement

Fig 1. Map of the location of the three Merida suburbs (inset) and distribution of treatment and control blocks within each.

https://doi.org/10.1371/journal.pntd.0005656.g001
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as recently bloodfed or non-bloodfed. Mosquitoes were individually stored in labeled vials

containing RNALater (Invitrogen, Carlsbad, CA) and kept at -80˚C for future processing.

Cone bioassays [30] using a susceptible laboratory strain of Ae. aegypti (New Orleans) were

performed monthly in a random selection of 3 houses per treatment arm to determine the

residual effect of the insecticide treatments. A sample of 100 Ae. aegypti females collected in

the field was randomly selected at baseline to quantify the initial frequency of the most com-

mon knock-down resistance mutations. Genomic DNA was extracted from a leg or other body

part from each individual mosquito and kdr allele-specific assays were be performed using

real-time PCR. DNA extractions were performed by mixing the mosquito body part with a

50ul solution containing 5ul of Taq 10X buffer (containing 500mM KCl, 100mM tris HCl,

15mM MgCl2, and 1% Triton X-100) and 45ul of sterile ddH2O and heating in a thermocycler

(Eppendorf Mastercycler pro, Hamburg, Germany) at 95˚C for 15 minutes. The 1016I allele

was be detected using the methodology described by Saavedra-Rodriguez et al. [31] and the

1534C allele by the methodology described by Yanola et al. [32].

Ethics statement

All study protocols were approved by Emory University Institutional Review Board

(IRB00082848) as well as the ethics board at the State of Yucatan. Written informed consent

was obtained from the household owner was obtained and houses who did not consent to the

intervention were noted and not sprayed or visited in post-intervention entomological

surveys.

Statistical analyses

The following Ae. aegypti adult indices were calculated for each sampling date and compared

between treatments and over time: presence (binomial variable) and abundance (count vari-

able) of adults, females and bloodfed females per house. Mean values during all sampling peri-

ods were compared using generalized linear mixed effects models (GLMM) nested at the

cluster (level 1) and city-block (level 2) levels. Link functions for GLMMs were binomial for

presence indices and Poisson for abundance indices. Models were used to calculate odds ratios

(OR, for mosquito presence/absence) and incidence rate ratios (IRR, for mosquito abundance)

using control houses as the unit of comparison. We calculated the operational efficacy of the

intervention as E = (1 − IRR) × 100. This measure, ranging between 0 and 1, describes the per-

cent reduction of mosquito abundance in treated houses with respect to the control. All mod-

els were run with the software package lme4 [33] within the software platform R (https://www.

r-project.org/). Data has been made available from the Dryad Digital Repository: http://dx.doi.

org/10.5061/dryad.1b070 [34].

Results

A total of 2,100 Ae. aegypti, 1,309 Aedes taeniorhynchus, and 1,228 Culex quinquefasciatus were

collected throughout the trial (140 houses per arm per sampling date, or 420 houses per date,

for a total of 1,680 houses in the entire period), of which 39.8%, 81.2% and 10.4% were col-

lected in the baseline survey, respectively. The proportion of houses infested with Ae. aegypti at

baseline ranged between 0.49–0.62; the variability between treatment arms was not statistically

significant (generalized linear mixed model, GLMM, |z|< 1.19; P>0.234; Fig 2A). The propor-

tion of houses infested with bloodfed females (a more precise index, as bloodfed females have

a higher chance of contacting insecticides due to their need to rest immediately after a blood-

meal) at baseline ranged between 0.33–0.44 and did not differ statistically between treatment

arms (GLMM, |z| < 1.39; P>0.16; Fig 2B). Both indices of adult presence were dramatically
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Fig 2. House positivity (proportion of Ae. aegypti infested houses) by treatment and survey date.

Panel (A) shows positivity for adult Ae. aegypti and panel (B) positivity for bloodfed female Ae. aegypti.

Asterisks (*) indicate statistically significant (P<0.05) difference between each treatment and the control, after

a mixed-effects logistic regression model (Table 1).

https://doi.org/10.1371/journal.pntd.0005656.g002

Deltamethrin resistance and Aedes aegypti control

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005656 June 12, 2017 6 / 14

https://doi.org/10.1371/journal.pntd.0005656.g002
https://doi.org/10.1371/journal.pntd.0005656


reduced post-intervention (Fig 2), with houses treated with bendiocarb being consistently less

infested (range, 14–23% for adults and 5–15% for bloodfeds) than houses treated with delta-

methrin (range, 23–51% for adults and 9–36% for bloodfeds) or control houses (range, 29–

41% for adults and 16–25% for bloodfeds).

Residual spraying with deltamethrin did not produce any measurable impact on any of the

Ae. aegypti presence indices (Table 1). Surprisingly, the odds of finding Ae. aegypti was signifi-

cantly higher in clusters treated with deltamethrin compared to unsprayed controls at one

month PI (OR > 1.95, P< 0.05). Conversely, residual spraying with bendiocarb reduced the

positivity of houses, with most adult indices being significantly lower in treated clusters com-

pared to untreated controls (Table 1). Throughout the three month follow-up, houses sprayed

with bendiocarb were 0.25–0.58 less likely to have Ae. aegypti comparison to unsprayed con-

trols. Such protective effect was more marked when looking at female Ae. aegypti (0.23–0.61)

and bloodfed Ae. aegypti (0.18–0.32)(Table 1).

At baseline, Ae. aegypti adult abundance averaged 2.8–4.5 per house and bloodfed Ae.

aegypti 1.6–1.7 per house (Fig 3), with differences between treatment and control clusters lack-

ing statistical significance (Table 2). Spraying with deltamethrin did not produce any measur-

able impact on the abundance of Ae. aegypti for all indices evaluated, with the incidence rate

ratio (IRR) not differing statistically between deltamethrin vs control clusters (Table 2). How-

ever, bendiocarb spraying led to a significant reduction in Ae. aegypti abundance; IRRs for all

adult indices were significantly lower in bendiocarb-sprayed houses compared to untreated

Table 1. Odds ratios (OR) estimated from a mixed-effects logistic regression model evaluating impact of treatment (deltamethrin vs control and

bendiocarb vs control) on each adult entomologic metric. The model included city block (where individual observations are nested) and cluster (grouping

of 3 treatments) as random intercepts. ORs were calculated by considering control blocks (i.e., unsprayed) as comparison. Numbers in bold show statistically

significant (P<0.05) difference between the treatment and the control.

Metric Survey Deltamethrin Bendiocarb

Coefficient Lower Upper Coefficient Lower Upper

Adult mosquito presence (any species) Baseline (pre-spraying) 1.16 0.04 44.91 0.96 0.03 27.56

15days 0.86 0.53 1.39 0.26 0.15 0.44

1month 2.25 0.53 1.39 0.75 0.15 0.44

2months 1.22 0.76 1.97 1.03 0.64 1.65

3months 0.79 0.48 1.27 0.55 0.33 0.90

Presence of Aedes aegypti Baseline (pre-spraying) 1.31 0.81 2.17 0.75 0.46 1.20

15days 1.00 0.61 1.64 0.25 0.13 0.44

1month 2.06 1.27 3.43 0.58 0.34 0.99

2months 1.17 0.71 1.93 0.56 0.32 0.95

3months 0.71 0.41 1.22 0.37 0.19 0.67

Presence of Aedes aegypti females Baseline (pre-spraying) 1.43 0.88 2.35 0.68 0.41 1.10

15days 1.00 0.61 1.64 0.23 0.13 0.44

1month 2.11 1.27 3.37 0.61 0.34 0.99

2months 1.17 0.72 1.92 0.56 0.33 0.95

3months 0.71 0.41 1.22 0.37 0.19 0.67

Presence of bloodfed Aedes aegypti females Baseline (pre-spraying) 1.39 0.86 2.29 0.88 0.53 1.44

15days 1.08 0.63 1.85 0.18 0.08 0.39

1month 1.95 1.16 3.32 0.59 0.32 1.09

2months 0.96 0.54 1.70 0.32 0.15 0.65

3months 0.51 0.24 1.05 0.30 0.12 0.68

https://doi.org/10.1371/journal.pntd.0005656.t001
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controls (Table 2). Based on the IRR values from Table 2, the average efficacy of IRS applica-

tion of bendiocarb for Ae. aegypti total abundance (males and females) was 60% during a 3

month period (E15d = 77%, E1mo = 43%, E2mo = 52% and E3mo = 67%). When considering

female Ae. aegypti only, efficacy remained the same (overall, 60%; E15d = 74%, E1mo = 35%,

E2mo = 68% and E3mo = 64%).

At baseline, deltamethrin susceptibility was very low, with knock-down frequencies averag-

ing 30.7% (SD = 24.3%) at the diagnostic dose, 34.3% (SD = 23.7%) at double the diagnostic

dose, 53.3% (SD = 33.9%) at five times the diagnostic dose and 73.1% (SD = 31.3%) at ten

times the diagnostic dose, indicating high levels of resistance. Although deltamethrin resis-

tance was prevalent across all sites and clusters, the neighborhood Itzincab presented the low-

est levels of susceptibility for all doses tested (Fig 4). For bendiocarb, all bioassays resulted in

100% mortality at the diagnostic dose. The prevalence of both kdr mutations was very high,

with 1534C found in 98% and 1016I in 71% of tested Ae. aegypti (n = 104). Cone bioassays per-

formed in wall surfaces of 26 houses (13 Bendiocarb and 13 deltamethrin) using susceptible

mosquitoes (New Orleans strain) showed 100% mortality for both insecticides at 15 days post

intervention. At one month post-spraying, mortality was reduced to 78% and 83% for bendio-

carb and deltamethrin and both insecticides reached average mortalities of 49% and 32%,

respectively, at 3 months post intervention (Fig 5).

Fig 3. Average (±SE) number of Ae. aegypti collected per survey date and by treatment. Panel (A) shows

positivity for adult Ae. aegypti and panel (B) positivity for bloodfed female Ae. aegypti. Vertical gray line indicates

the timing of the intervention. Asterisks (*) indicate statistically significant (P<0.05) difference between each

treatment and the control, mixed-effects Poisson regression model (Table 2).

https://doi.org/10.1371/journal.pntd.0005656.g003
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Discussion

These results provide quantitative evidence suggesting that insecticide-based interventions

may fail when resistance of local Ae. aegypti populations is not taken into consideration.

Within an area of high resistance to deltamethrin, performing high-quality residual insecticide

applications of deltamethrin indoors had no entomological impact in comparison to the appli-

cation of an insecticide to which Ae. aegypti were susceptible. Deltamethrin did not produce

any detectable impact against resistant Ae. aepypti during a 3-month period, whereas the appli-

cation of bendiocarb was 60% more effective during a 3-month period.

Residual spraying (in the form of peri-focal spraying) was a pivotal component of the suc-

cessful Ae. aegypti elimination campaign of the 1950s and 60s [35]. The dismantling of the

public health infrastructure once the elimination campaign ended in the early 1970’s [1] led to

the abandonment of peri-focal spraying for urban mosquito control due to difficulties in main-

taining high insecticide coverage in rapidly growing urban areas. Ultra-low volume spraying

(primarily truck mounted) and thermal fogging were adopted as an appealing approach for

urban Ae. aegypti control due to their increased coverage, ease and speed of application, low

cost and visibility to communities in comparison to the laborious peri-focal application [8].

Unfortunately, such area-wide approaches have no residual efficacy and have proven largely

ineffective in preventing dengue transmission [8, 36]. Furthermore, there is indirect evidence

suggesting that ULV applications are associated with rapid evolution of insecticide resistance

(primarily to pyrethroids) [36, 37]. IRS is now re-emerging as an alternative Ae. aegypti control

paradigm in part due to the development of new insecticide molecules (or the re-formulation

Table 2. Incidence rate ratios (IRR) estimated from a mixed-effects Poisson regression model evaluating effect of treatment (deltamethrin vs con-

trol and bendiocarb vs control) on each adult entomologic metric. The model included city block (where individual observations are nested) and cluster

(grouping of 3 treatments) as random intercepts. IRRs were calculated by considering control blocks as comparison. Numbers in bold show statistically signifi-

cant (P<0.05) difference between the treatment and the control.

Metric Survey Deltamethrin Bendiocarb

Adult abundance Coefficient Lower Upper Coefficient Lower Upper

No. of adult mosquitoes (any species) Baseline (pre-spraying) 0.78 0.61 1.16 1.74 0.78 1.46

15days 0.73 0.49 1.08 0.23 0.14 0.36

1month 1.73 1.21 2.49 0.80 0.55 1.17

2months 1.10 0.74 1.65 0.80 0.53 1.22

3months 0.86 0.51 1.44 0.57 0.33 0.97

No. of Aedes aegypti Baseline (pre-spraying) 0.99 0.67 1.46 0.89 0.60 1.32

15days 1.07 0.66 1.72 0.23 0.13 0.41

1month 2.21 1.42 3.50 0.57 0.34 0.94

2months 1.07 0.64 1.78 0.48 0.27 0.83

3months 0.66 0.35 1.22 0.33 0.16 0.64

No. of Aedes aegypti females Baseline (pre-spraying) 1.05 0.72 1.56 0.82 0.55 1.21

15days 1.07 0.66 1.75 0.26 0.13 0.48

1month 2.18 1.41 3.44 0.65 0.37 1.11

2months 0.94 0.52 1.71 0.32 0.16 0.64

3months 0.72 0.29 1.80 0.36 0.13 0.96

No. of bloodfed Aedes aegypti females Baseline (pre-spraying) 1.18 0.72 1.94 0.87 0.52 1.44

15days 1.19 0.66 2.14 0.23 0.10 0.49

1month 2.08 1.31 3.34 0.62 0.35 1.10

2months 0.86 0.43 1.71 0.27 0.11 0.59

3months 0.52 0.20 1.26 0.27 0.09 0.75

https://doi.org/10.1371/journal.pntd.0005656.t002
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of existing ones) with high potential for the control of resistant mosquitoes. The findings from

this study provide initial evidence for the use of residual insecticide applications to control pyr-

etrhoid-resistant Ae. aegypti populations, with significant reductions in population numbers

up to 3 months post-spraying.

While bendiocarb IRS was effective at controlling Ae. aegypti, the method is time-consum-

ing (it takes approximately 30–40 minutes per house) and requires strong community accep-

tance. Given that the “classic” form of IRS was developed for controlling malaria vectors in

rural areas [26], there is room for optimizing the technique to make it more targeted to the

control of Ae. aegypti. In Acapulco, Mexico, most (82%) indoor adult Ae. aegypti are found

resting below 1.5m [27], leading to the possibility of focusing insecticide applications on lower

resting sites as a way to reduce spraying time and insecticide costs and improve community

acceptance. In Cairns, Australia, this form of targeted IRS (TIRS) led to a ~70% reduction in

gravid female Ae. aegypti abundance [38] and a 86–96% reduction in symptomatic dengue

cases [16]. Information about the settings which TIRS may be most effective and the scalability

of this approach will be crucial components for future evaluation, including the possibility for

the implementation of pre-transmission season preventive TIRS in areas identified as high-

risk (e.g., schools, neighborhoods with historically high dengue transmission, etc.) or transmis-

sion hot-spots [39]. In addition, the existence of novel IRS products being brought to market

for resistance management in malaria vector control could also prove to be important tools for

the control of Ae. aegypti.
A key limitation of this study was the inability to age-grade collected Ae. aegypti females. As

the intervention did not target peridomestic breeding sites, it is very likely that many of the

Fig 4. Results from intensity bottle bioassays evaluating the susceptibility of local Ae. aegypti

populations to deltamethrin, defined as knock-down after 30 minutes of exposure to the the

diagnostic dose (1x) and at twice, five and ten times the diagnostic dose. Each letter in the Y axis

indicates a locality (SL = San Lorenzo, Itz = Itzincab, ACIM = Acim) and treatment (C = control,

B = bendiocarb, D = deltamethrin).

https://doi.org/10.1371/journal.pntd.0005656.g004
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adult Ae. aegypti collected indoors were recently emerged males and females which had not yet

contacted a treated surface. Thus, quantifying the changes in the age structure of the adult pop-

ulation throughout the intervention would have helped refine our estimates of efficacy. Near

infrared spectroscopy [40] constitutes a promising tool that could aid in quickly age grading of

large numbers of mosquitoes as the methodology becomes increasingly more robust. An addi-

tional limitation was the limited follow up period. A longer follow up period would have

allowed for a determination of the longevity of the residual effect of the insecticide, as well as

how residual efficacy is related to Ae. aegypti abundance and changes in the insecticide resis-

tance status over time.

Measuring the intensity of resistance in local Ae. aegypti populations should be considered

as an important factor informing the choice of insecticide classes to be applied, as resistance

intensity is considered an important correlate of vector control failure [41]. However, an oper-

ationally significant resistance threshold for Ae. aegypti has not yet been defined. In the present

study, a significant proportion of the Ae. aegypti remained resistant to deltamethrin at 5 and

10 times the diagnostic dose, and no impact of the vector control intervention was detected.

Given that Ae. aegypti resistance profiles appear to be highly variable in space and time, even

within sub-national political units [12, 18, 19], there is a need to establish comprehensive

insecticide resistance monitoring plans that can help guide public health policy. Online

Fig 5. Cone bioassay data showing average mortality of susceptible Ae. aegypti (New Orleans strain)

to both insecticides applied in houses belonging to this study at 1–3 months post intervention. Error

bars indicate 95% CI of the mean value.

https://doi.org/10.1371/journal.pntd.0005656.g005

Deltamethrin resistance and Aedes aegypti control

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005656 June 12, 2017 11 / 14

https://doi.org/10.1371/journal.pntd.0005656.g005
https://doi.org/10.1371/journal.pntd.0005656


platforms for assembling such data have been established for Anopheles spp. mosquitoes [42],

and are being adapted for Ae. aegypti. Such tools, combined with proper spatial analytics, can

provide important information for decision makers regarding the management of insecticide

resistance in Ae. aegypti and the appropriate selection of vector control tools.
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