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Abbreviations: AMPK, adenosine monophosphate-activated protein kinase; ALT, alanine 

aminotransferase; αSMA, alpha-smooth muscle actin; APN, adiponectin; AdipoR2, adiponectin 

receptor 2; AdipoR1, adiponectin receptor 1; AST, aspartate aminotransferase; BrdU, 

bromodeoxyuridine; CCl4, carbon tetrachloride; Col1-1, collagen type 1 1; ECM, extracellular 

matrix; HSCs, hepatic stellate cells; HDL, high-density lipoproteins; IL-10, interleukin 10; MMP-2, 

matrix metalloproteinase-2; MMP-9, matrix metalloproteinase-9; NASH, non-alcoholic 

steatohepatitis; ns, non-significant; Scram, Scrambled; siRNA, small interfering ribonucleic acid; 

TIMP-1, tissue inhibitor of metalloproteinase-1; TGFß1, transforming growth factor ß; WT, wild-

type. 
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Abstract 

Activation of the adiponectin (APN) signaling axis retards liver fibrosis. However, understanding of 

the role of AdipoR1 and AdipoR2 in mediating this response is still rudimentary. Here, we sought 

to elucidate the APN receptor responsible for limiting liver fibrosis by employing AdipoR1 and 

AdipoR2 knock-out mice in the carbon tetrachloride (CCl4) model of liver fibrosis. In addition, we 

knocked down receptor function in primary hepatic stellate cells (HSCs) in vitro. Following the 

development of fibrosis, AdipoR1 and AdipoR2 KO mice had no quantitative difference in fibrosis 

by Sirius red staining. However, AdipoR2 KO mice had an enhanced fibrotic signature with 

increased Col1-α1, TGFß-1, TIMP-1, IL-10, MMP-2 and MMP-9. Knockdown of AdipoR1 or 

AdipoR2 in HSCs followed by APN treatment demonstrated that AdipoR1 and AdipoR2 did not 

affect proliferation or TIMP-1 gene expression, while AdipoR2 modulated Col1-α1 and α-SMA 

gene expression, HSC migration, and AMPK activity. These finding suggest that AdipoR2 is the 

major APN receptor on HSCs responsible for mediating its anti-fibrotic effects. 
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1. Introduction 

Hepatic fibrosis results from the excess deposition of extracellular matrix (ECM) proteins such as 

collagen in response to chronic liver injury from insults such as viral hepatitis, excess alcohol and 

non-alcoholic steatohepatitis (NASH) [1]. If the underlying injury persists, liver fibrosis can 

progress to cirrhosis where swirls of ECM around clusters of hepatocytes can promote portal 

hypertension and liver failure, and ultimately result in the development of liver cancer. The major 

cell type responsible for elaborating excess collagen is the hepatic stellate cell (HSC) which 

differentiates into a myofibroblast, proliferates and migrates to regions of hepatocyte injury. 

Simultaneously, these cells secrete ECM proteins and inhibit ECM degradation by the release of 

inhibitors such as tissue inhibitor of metalloproteinase-1 (TIMP-1), together promoting the 

formation of excess scar tissue [2]. 

Adiponectin (APN) is an adipocytokine produced by adipocytes and shown to have an array of 

biological functions [3]. APN is secreted as low, medium or high molecular weight forms that have 

different magnitudes of activity through the binding to three receptors: adiponectin receptor 1 

(AdipoR1), adiponectin receptor 2 (AdipoR2), and T-cadherin [4]. AdipoR1 is found predominantly 

in muscle and AdipoR2 principally in liver, while T-cadherin is found in diverse tissues and cell 

types. Little is known about the signaling events of T-cadherin in the liver, but AdipoR1 and –R2 

signaling and downstream events have been extensively characterized. Importantly, the binding of 

APN to AdipoR1 and –R2 leads to the phosphorylation and activation of adenosine 

monophosphate-activated protein kinase (AMPK) to modulate cellular energy utilisation.  

Numerous groups have reported that APN has strong hepatic anti-fibrotic activity [5]. APN null 

mice treated with carbon tetrachloride (CCl4) develop more liver fibrosis than wild type mice and 

APN overexpression limits fibrosis in vivo [6]. Further, the application of recombinant APN to 

activated HSCs can limit their fibrotic signature as exemplified by reduced α-smooth muscle actin 

(αSMA), collagen type 1 1 (Col1-1) and transforming growth factor ß (TGFß) expression 
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(markers of HSC activation), AMPK activation, and reduced HSC proliferation and migration [6-

10]. Nevertheless, little is known about the identity of the APN receptor(s) through which anti-

fibrotic responses are mediated in liver. Given that APN agonists reduce CCl4-induced liver fibrosis 

in mice [9] and APN has diverse activities in different tissues, a greater understanding of receptor 

activity is important if APN agonists are considered as therapeutic targets. We sought to elucidate 

the role of APN and AdipoR1 and –R2 interactions in liver fibrosis in vitro and in vivo. Our results 

demonstrate that AdipoR2 is the major receptor mediating APN’s protective responses during 

fibrosing liver injury.  
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2. Materials and Methods 

2.1. Materials: Recombinant full-length APN was sourced from BioVendor (Evropska, Czech 

Republic). Small interfering ribonucleic acid (siRNA) against Scrambled (Scram), SiGENOME Rat 

AdipoR1 siRNA-SMARTpool (Cat. No. M-100692-01-0005) and AdipoR2 siRNA-SMARTpool 

(Cat. No. M-095646-02-0005) were purchased from Thermo Fisher Scientific.  

2.2. Animals: All animal experiments were undertaken according to protocols approved by the 

Western Sydney Area Health Service Animal Ethics Committee and conducted in accordance with 

the guidelines of the Australian Council on Animal Care. Male wild-type (WT), AdipoR1 and 

AdipoR2 knock-out mice (6-8 per group) were sourced from Jackson Laboratory and bred on the 

C57B/6 background for at least 6 generations. Mice were housed under standard conditions with a 

12-h light/dark cycle. Liver fibrosis was induced by the intraperitoneal injection of carbon 

tetrachloride (300 μl/kg) in corn oil, twice per week for 12 weeks as previously described [6]. The 

livers harvested 48 hours after the final injection. Controls were WT mice never treated with CCl4. 

2.3. Primary rat HSC isolation and culture: HSCs were isolated from the livers of male adult 

Sprague-Dawley rats by in situ perfusion and purified by single-step density gradient centrifugation 

as described [11]. HSCs were seeded in Dulbecco’s modified eagle medium containing 20% Fetal 

bovine serum (FCS), penicillin (100 IU/mL) and streptomycin (100 mg/mL).  

2.4. Gene expression studies: Total RNA was isolated from the livers and cells using a FavorPrep 

Tissue Total RNA Extraction Mini Kit, according to the manufacturer’s protocol. Complementary 

deoxyribonucleic acid (cDNA) was synthesized from total RNA with the Superscript III cDNA 

First-Strand Synthesis system (Invitrogen). Real-time PCR was performed on a Corbett 6000 rotor 

gene platform (Corbett).  

2.5. Western Blot Analysis: Liver tissues and HSC cell lysates were generated, subjected to 

electrophoresis and western blotting and as previously described [12]. Primary antibodies diluted in 
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milk TBST buffer against AdipoR1 (1/500; cat.no. sc-46748; Santa Cruz), AdipoR2 (1/500; cat. 

No sc-46755; Santa Cruz), adenosine monophosphate-activated protein kinase alpha (1/1000; 

AMPKα; cat no. 2532), Phospho-AMPKα (1/1000; p-AMPKα; cat no. 2535; Cell Signaling), and β-

actin (1/1000; Sigma; cat no. A2228) were used to quantitate protein levels.  Protein expression was 

quantified using ImageJ software analysis and normalised against β-actin. 

2.6. siRNA Knockdown of AdipoR1 and AdipoR2 In Vitro  

siRNA knockdown was performed with the Lipofectamine RNAiMAX reagent (Life Technologies) 

and cells treated for 24 hours, serum-starved overnight and followed by subsequent treatment with 

recombinant full-length APN (5 μg/ml) for 16 hours. The scram siRNA was used as a negative 

control. For time course studies, cells were treated with full-length APN over 5, 10, 20, 30 and 60 

minutes.  

2.7. Immunohistochemistry 

Liver tissues were fixed in formalin and embedded in paraffin. 5 μm sections were cut and stained 

with haematoxylin and eosin or Sirus red and photographed using the Nuance Multispectral 

Imaging System. Image quantification was performed using ImageJ software, as previously 

described [8, 13]. 

2.8 Migration Assay 

Activated HSCs (7 days) were treated with Scram, AdipoR1 or AdipoR2 siRNA, and serum-starved 

overnight. 2.5 x 10
4
/ml cells in serum-free medium were plated on the upper chamber of Boyden 

chambers (8 μm pores; Becton Dickinson) and the lower chamber was filled with 200 μl of serum-

containing media. APN (5 μg/ml) was supplied to the upper chamber and the chamber incubated for 

24 hours at 37°C. The cells were fixed and stained with hematoxylin and counted over six random 

fields on a phase contrast microscope.  
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2.9 Cell Proliferation and Apoptosis Assays 

Activated HSCs (7 days) were treated with Scram, AdipoR1 or AdipoR2 siRNA, serum-starved 

overnight and treated with APN (5 μg/ml) for 16 hrs. Cell proliferation or apoptosis was assessed 

using a bromodeoxyuridine (BrdU) kit (Roche Applied Science) or the FAM-FLICA caspase 3 and 

7 staining kit (ImmunoChemistry Technologies), respectively, according to the manufacturer’s 

instructions.  

2.10. Data Analysis and Statistics  

Quantitative data were analysed using GraphPad Prism software and data are presented as 

mean ± standard error of the mean. For multiple group analyses, the one-way analysis of variance 

and Tukey’s multiple group comparison tests were used. The student’s t-test was employed when 

comparing two groups. p<0.05 was statistically considered significant. 
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3.0. Results 

3.1. AdipoR1 and AdipoR2 KO mouse fibrosis characterization 

Fibrosis was induced in WT, AdipoR1 and AdipoR2 KO mice for 12 weeks and gross hepatic 

pathology, serum measures of liver damage and lipogenesis were evaluated. Compared to WT 

control, AdipoR1 KO mice body weight was 6.3% less (p < 0.05). No difference in body weight 

was noted between the other groups. The liver weights were similar between groups but the liver to 

body weight ratio was 13% greater in CCl4 treated AdipoR1 KO mice compared their controls 

(p<0.05). Liver triglyceride levels were increased in CCl4 AdipoR1 KO (9%; p < 0.01) and CCl4 

AdipoR2 KO (5%; p < 0.01) versus CCl4 WT, and versus placebo elevated in AdipoR1 KO (12%; p 

< 0.05) and AdipoR2 KO (17%; p < 0.01) mice. No differences were observed between groups for 

serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides, high-

density lipoproteins (HDL) and the cholesterol/HDL ratio. Compared to CCl4 WT, CCl4 AdipoR1 

KO mice had increased plasma total cholesterol (16%, p < 0.05; Table 1). 

3.2. AdipoR2 mediates APN’s anti-fibrotic actions in vivo 

An examination of H&E and Sirius red staining, suggested no apparent difference in hepatic 

pathology, inflammation, and fibrosis between WT, AdipoR1 KO and AdipoR2 KO mice receiving 

CCl4 (Figures 1A and B).   

To more thoroughly interrogate a role for AdipoR1 or AdipoR2 in hepatic inflammation and 

fibrosis, qPCR for the fibrotic and inflammatory markers collagen type 1, α1 (Col1-α1) 

transforming growth factor beta-1 (TGFβ1), tissue inhibitor of metalloproteinase-1 (TIMP-1), 

interleukin 10 (IL-10), macrophages (CD68), matrix metalloproteinase-2 (MMP-2) and matrix 

metalloproteinase-9 (MMP-9), were performed. There were no differences in hepatic gene 

expression between the placebo groups of WT, AdipoR1 KO and AdipoR2 KO.  

Comparing CCl4 WT versus CCl4 AdipoR1 KO, there were no differences in Col1-α1, TGFβ1, 
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TIMP-1, IL-10, MMP-2 and MMP-9, and CD68 was reduced 1.4-fold (ns). In contrast, CCl4 

AdipoR2 KO exhibited increased Col1-α1 (2.8-fold; p<0.05), TGFβ1 (2.2-fold; p<0.05), IL-10 

(2.6-fold; p<0.05), CD68 (2.2-fold, ns), MMP-2 (2.3-fold; p<0.01) and MMP-9 (2.3-fold; p<0.001). 

Differentiating CCl4 AdipoR1 KO and CCl4 AdipoR2 KO, the later had increased Col1-α1 (2.3-fold, 

p<0.05), TIMP-1 (2.4-fold, p<0.05), IL-10 (4.5-fold, p<0.01), CD68 (1.5-fold, ns), MMP-2 (3.2-

fold, p<0.01) and MMP-9 (7.9-fold, p<0.001).  

Compared to placebo AdipoR2 KO, CCl4 AdipoR2 KO livers had increased Col1-α1 (4.7-fold, 

p<0.05), TIMP-1 (3.1-fold, p<0.05), TGFβ1 (3.2-fold, p<0.01), CD68 (1.9-fold, ns), MMP-2 (3.6-

fold, p<0.01) and MMP-9 (3.4-fold, p<0.05; Figure 2A-G). Only Col1-α1 was increased in CCl4 

AdipoR1 KO versus control AdipoR1 KO (4.3-fold; p<0.05). 

To examine for receptor redundancy between AdipoR1 and AdipoR2, qPCR was performed for 

each gene. In CCl4 AdipoR2 KO livers, AdipoR1 gene expression was increased compared to CCl4 

WT and AdipoR2 KO controls by 2.6-fold (p<0.05) and 2.4-fold (p<0.05), respectively (Figure 

2H). In AdipoR1 KO livers, AdipoR2 was reduced, but not significantly (Figure 2I). Given that the 

markers of fibrosis and inflammation were increased in AdipoR2 KO and not in AdipoR1 mouse 

livers after CCl4 treatment, this suggests that AdipoR2 is the major receptor mediating the 

protective actions of APN during liver fibrosis. 

3.3. AdipoR2 mediates the anti-fibrotic action of APN in vitro 

To further test the role of these receptors, we silenced AdipoR1 and AdipoR2 in rat primary 

activated HSCs with specific siRNAs, and tested their role in fibrosis in vitro. Validation 

experiments confirmed that the siRNAs reduced the gene expression of AdipoR1 and AdipoR2 by 

approximately 70% compared to control and Scram siRNA-treated cells, respectively (Figure 3A 

and B). To confirm qPCR knock-down, western blot and densitometry analysis was performed and 

reduced AdipoR1 (3.5-fold less; p<0.01) and AdipoR2 (7.5-fold; p<0.05) protein was observed 

compared to scram, after the respective siRNA treatment (Figure 3C and D).  
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In order to understand the temporal effect of HSC activation on AdipoR1 and AdipoR2 gene levels, 

qPCR for these receptors was performed at 0, 2, 7 and 10 days after platting (Figure 3E) in HSCs 

from WT rats. Compared to day 0, the gene expression of AdipoR1 was significantly reduced after 

2 (2.3-fold, p<0.05), 7 (5.8-fold, p<0.05) and 10 (6-fold, p<0.05) days. In contrast, the gene 

expression of AdipoR2 was unaltered at all days compared to day 0.  

Next, we determined the role of APN and AdipoR1 or AdipoR2 interactions on HSC function in 

vitro. Activated HSCs were treated with siRNA and subsequently recombinant APN (5 g/ml) and 

qPCR performed. Scram siRNA had no effect on Col1-α1 and α-SMA gene expression compared to 

control cells. In contrast, APN application reduced Col1-α1 1.2-fold (p<0.05) and α-SMA 2-fold 

(p<0.01). AdipoR1 siRNA had no effect on Col1-α1 and α-SMA gene expression and in 

conjunction with APN reduced Col1-α1 1.5-fold (p<0.05) and 2.7-fold (p<0.001), respectively. 

AdipoR2 siRNA had no effect on Col1-α1 and α-SMA gene expression, however the addition of 

APN increased Col1-α1 gene expression 1.5-fold (p<0.05) and α-SMA 1.7-fold (p<0.01; Figure 3G 

and F).  

Significantly, in the comparison of siRNA knock-down after APN treatment there were: (i) for 

Scram versus AdipoR1 no differences in Col1-α1 and α-SMA gene expression, (ii) for Scram 

versus AdipoR2, AdipoR2 knock-down increased gene expression of Col1-α1 1.8-fold (p<0.01) and 

α-SMA 3.4-fold (p<0.001); and (iii) AdipoR1 versus AdipoR2, AdipoR2 knock-down increased 

gene expression of Col1-α1 2.4-fold (p<0.001) and α-SMA 5.3-fold (p<0.001) (Figure 3F and G). 

These data further supports the notion AdipoR2 mediates the anti-fibrotic responses of APN. 

We then extended our experiments to TIMP-1 which we have previously shown is upregulated by 

APN in vitro and in vivo models of fibrosis [8]. Compared to control cells Scram, AdipoR1 or 

AdipoR2 siRNA had no effect on TIMP-1 gene expression. The application of APN in conjunction 

with Scram, AdipoR1 or -R2 siRNA increased TIMP-1 gene expression by similar levels, 1.4-fold, 

1.4-fold and 1.3-fold, respectively (all p<0.05). There were no differences between groups and 
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these data therefore suggest that neither receptor alone is responsible for mediating APN’s 

induction of TIMP-1 (Figure 3H).  

3.4. AdipoR2 mediates HSC migration  

APN can regulate HSC survival, proliferation and migration [7, 8, 14]. To understand the 

involvement of AdipoR1 and AdipoR2 in these events, AdipoR1 or AdipoR2 was selectively 

knocked-down in activated HSCs and apoptosis, proliferation and migration assessed. In initial 

experiments, treatment of HSCs with Scram siRNA, or Scram siRNA and APN did not promote 

HSC apoptosis (Figure 4A). The subsequent application of hydrogen peroxide readily promoted 

HSC apoptosis but Scram, AdipoR1 or AdipoR2 siRNAs alone or with full length APN did not 

trigger HSC apoptosis (Figure 4B).  

Treatment with Scram, AdipoR1 or AdipoR2 siRNA had no effect on HSC proliferation compared 

to control cells. The addition of recombinant APN to Scram, AdipoR1 or AdipoR2 siRNA treated 

cells reduced HSC proliferation by 1.3 (p<0.05), 1.6 (p<0.001) and 1.4-fold (p<0.01), respectively, 

and there was no difference between the groups (Figure 4C).   

Treatment with Scram, AdipoR1 or AdipoR2 siRNA had no effect on HSC migration compared to 

control cells. However, the addition of full-length APN to Scram or AdipoR1 siRNA reduced HSC 

migration by 3.6-fold (p<0.001) and 4.2-fold (p<0.001), respectively. In contrast, AdipoR2 siRNA 

followed by APN treatment reduced migration by only 1.6-fold (p<0.01). Between groups this 

represented 2.3-fold (p<0.001) and 3.1-fold (p<0.001) less migration than that observed with 

respective Scram or AdipoR1 siRNA and APN treatment (Figure 4D). These data show that APN 

regulates HSC migration principally through AdipoR2. 

 

3.5. AdipoR2 regulates AMPK activity 

Previous studies have shown that APN can partly mediate anti-fibrotic responses in HSCs by 

activating AMPK [7, 14]. Given that we saw a limited role for AdipoR1 in in vivo and in vitro in 
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fibrotic responses, we evaluated the function of AdipoR2 in AMPK signaling. Cells were treated 

with either Scram or AdipoR2 siRNA, after which time-dependent treatment with APN (5 μg/ml) 

was performed. Through western blot analyses, less AMPK phosphorylation was detected in 

AdipoR2 siRNA and APN-treated cells, compared to Scram siRNA and APN, at 10 minutes (1.4-

fold, p< 0.05), 20 minutes (1.4-fold, p<0.05), 30 minutes (1.4-fold, p<0.05) and 60 minutes (1.4-

fold, p < 0.05; Figure 4D). These data suggest that APN through binding to AdipoR2 can modulate 

AMPK activity.  
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4. Discussion 

We have elucidated the roles of AdipoR1 and AdipoR2 in in vivo and in vitro models of hepatic 

fibrosis. We show that the absence of AdipoR1 or AdipoR2 is not essential for liver fibrosis in vivo, 

while AdipoR2 loss is associated with an enhanced fibrotic signature. In activated HSCs, AdipoR2 

is necessary for mediating APN’s anti-fibrotic responses and cell migration. Furthermore, APN was 

unable to activate AMPK in the absence of AdipoR2 in vitro, suggesting that of the G-protein like 

APN receptors, AdipoR2 is the major receptor transmitting APN intracellular signaling in HSCs.  

Since the discovery of the APN receptors by Yamauchi et al., a large body of literature has 

demonstrated the role of APN mediated activation of diverse intracellular signaling pathways in 

various cells and tissues [15]. In the liver, APN is a potent modulator of hepatic lipid and glucose 

metabolism, and is protective against fibrosis [6, 15-17]. However, few publications have addressed 

the identity and functionality of the receptor mechanisms that mediate APN’s anti-fibrotic activity 

at the genetic and cellular levels. To address this, we subjected AdipoR1 and AdipoR2 knock-out 

mice to CCl4 treatment and evaluated liver fibrosis. Only the loss of AdipoR2 resulted in an 

enhanced fibrotic signature. AdipoR1 gene expression was upregulated in AdipoR2 KO CCl4 

treated mice, suggesting that AdipoR2 may modulate AdipoR1 gene expression, and that genetic 

redundancy by AdipoR1 could possibly explain the unaltered collagen staining we observed. 

However, this was insufficient to perturb increases in the gene expression profile of pro-fibrotic 

genes. Moreover, given that the over-expression of AdipoR2 reduces steatohepatitis and fibrosis in 

the methionine and choline-deficient model, our in vivo observations support a greater role for 

AdipoR2 in liver diseases [18]. 

At the cellular level, studies by Ding et al., [14] have shown that AdipoR1 and AdipoR2 are 

expressed in primary quiescent HSCs and on activation, AdipoR1 mRNA expression was halved 

and AdipoR2 was maintained. In a separate study, Caligiuri et al., [10] used primary passaged 

HSCs, and illustrated at the mRNA level that AdipoR1 was more abundant than AdipoR2. In 

contrast, we observed in primary non-passaged activated HSCs over a 10 day time course that 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 15 

AdipoR2 gene expression was maintained and AdipoR1 decreased, and at the protein level both 

receptors were expressed in activated HSCs. Together these data suggest that culturing conditions 

may influence receptor gene expression, however on the basis of our in vitro and in vivo data 

AdipoR2 would appear to be the major APN receptor in primary HSCs. Nevertheless, prior studies 

have focused on APN’s action through AdipoR1. Reduced levels of tyrosine phosphatase 1B 

(PTPB1) protein were found in APN KO mouse livers, and adenoviral over-expression of APN 

suppressed focal adhesion kinase activity in CCl4 treated APN KO mice. In passaged primary rat 

HSCs, APN binding to AdipoR1 and not AdipoR2 promoted PTP1B activity, and separately Src 

homology region 2-containing protein tyrosine phosphatase 2 (Shp2) phosphorylation to 

dephosphorylate focal adhesion kinase (FAK) [19, 20]. Concerning Shp2 and FAK, this suggests 

that APN through AdipoR1 can disrupt focal adhesion complexes and integrin activity, to limit 

HSC function. However, these studies did not stringently test the basic properties of fibrotic HSC’s, 

namely proliferation, migration and activation that assist in liver repair and protect damaged regions 

from further injury insults.  

To investigate these facets of HSC function, we referred to Kamada’s original work where he 

illustrated that APN limited primary HSC proliferation, migration and fibrogenic gene expression 

[6]. In replicating these data in serum free growth conditions and the absence of any mitogenic 

factor, we confirmed recombinant APN could reduce these parameters in primary HSCs. Given that 

APN receptor function in the context of active fibrosis in vitro had not been tested, we ablated 

AdipoR1 or AdipoR2 in HSCs and show for the first time that AdipoR2 and not AdipoR1 is 

responsible for mediating APN’s suppression of HSC activity and migration.  

In agreement with our recent publication, we find that APN decreases HSC proliferation and 

increases TIMP-1 gene expression [8]. However, given that neither receptor modulated APN’s anti-

proliferative activity or the induction of TIMP-1 expression, the downstream pathways of APN 

activation appear to be complex. A plausible explanation for this is that APN’s anti-proliferative 

action and induction of TIMP-1 require the combined action of both AdipoR1 and AdipoR2. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 16 

Previously, the action of both AdipoR1 and AdipoR2 in double knock-out mice has been shown to 

generate greater insulin resistance than AdipoR1 or AdipoR2 KO loss alone [21]. We attempted to 

generate AdipoR1 and AdipoR2 double KO mice. However, we were unable to attain double 

homozygous littermates in our line of C57B/6 mice. Similarly, unfortunately, in primary HSCs the 

combined knock-down of both AdipoR1 and AdipoR2 with siRNAs affected cell viability, limiting 

experimental evaluation (data not shown). Thus, it remains open as to whether both receptors are 

required to mediate some of the anti-fibrotic effects of adiponectin. 

Apart from limiting HSC activation, APN can activate hepatic AMPK in vivo and in HSCs [7, 8, 10, 

22]. Since we demonstrated that AdipoR1 did not mediate APN’s anti-fibrotic or migratory 

activities, we focused on AdipoR2, and found that in its absence APN treatment was associated 

with reduced AMPK activation. In our hands, the knock-down of AdipoR2 did not affect HSC 

proliferation, but did mediate AMPK activity, suggesting that the limiting of HSC proliferation by 

APN is AMPK independent in this model. It is also tenable that both AdipoR1 and AdipoR2 

receptors are required for optimal AMPK activity to affect proliferation. 

An interesting observation was the increased gene expression levels of the anti-inflammatory 

cytokine IL-10 in CCl4 treated AdipoR2 KO mice. Previous reports have shown recombinant APN 

to increase IL-10 in concanavalin A treated wild-type mice, and in Kupffer cells, leading to the 

establishment of an APN/IL-10/heme oxygenase-1 signaling axis [23][24]. We speculate that 

AdipoR2 is involved in an inflammatory switch as CD68 levels are non-significantly increased on 

CCl4 treatment. However, further in-depth studies using both wild-type and AdipoR2 depleted 

hepatic parenchymal and non-parenchymal cells are required to consider the significance of APN 

and AdipoR2 interactions in inflammation. 

APN has now been established as a potential anti-fibrotic as APN agonists can limit fibrosis in vivo 

[9]. AdipoR1 can mediate APN signaling and disrupt focal adhesion assembly, however these 

events appear to be independent of HSC activity and migration. In contrast, we demonstrate that 

AdipoR2 primarily mediates APN’s anti-fibrotic and –migratory effects. It remains open as to 
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whether there are alternative receptor mechanisms or interactions between APN receptors that 

regulate HSC proliferation and TIMP-1 expression. In sum, this work provides a foundation for 

future studies that aim to elucidate these mechanisms. 
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Table 1. The effect of chronic CCl4 treatment on markers of liver damage in WT, AdipoR1 KO and 

AdipoR2 KO mice. 

   

WT AdipoR1 KO AdipoR2 KO 

Placebo CCl4 Placebo CCl4 Placebo CCl4 

Body Weight (g) 28.24 ± 0.4 26.77 ± 0.88 26.45± 0.06*  27.31 ± 0.77 29.31 ± 0.25 28.34 ± 0.99 

Liver Weight (g) 1.21 ± 0.07 1.28 ± 0.05 1.26 ± 0.04 1.48 ± 0.04 1.45 ± 0.11 1.40 ± 0.03 

Liver/Body weight Ratio 4.28 ± 0.21 4.79 ± 0.18 4.79 ± 0.17 5.43 ± 0.16 # 4.93 ± 0.32 4.96 ± 0.14 

Liver Trig (µmol/g) 349.4 ± 8.8 324.3 ± 11.1 341.5 ± 9.2 381.7±12.7## ^ 313.5 ± 49.2 365.8±17.7## ^^ 

ALT (U/L) 51.25 ± 4.7 55.56 ± 6.04 71.82 ± 13.03 61.64 ± 3.39 63.33 ± 17.8 70.57 ± 12.44 

AST (U/L) 17.89 ± 2.65 17.30 ± 2.17 17.58 ± 2.57 14.45 ± 2.02 24.14 ± 7.39 17.86 ± 1.16  

Triglycerides (mmol/L) 0.60 ± 0.03 0.60 ± 0.07 0.58 ± 0.04  0.6 ± 0.07 0.71 ± 0.07 0.54 ± 0.07 

Cholesterol (mmol/L) 1.73 ± 0.04 1.65 ± 0.08 1.87 ± 0.12 2.09 ± 0.08  1.86 ± 0.14 1.77 ± 0.17  

HDL Chol (mmol/L) 1.65 ± 0.06 1.43 ± 0.17 1.67 ± 0.13 1.83 ± 0.08 2.10 ± 0.2 1.97 ± 0.2 

Cholesterol/HDL ratio 1.08 ± 0.03 1.23 ± 0.09 1.17 ±0.07 1.1 ± 0.04 1.00 ± 0.06 1.13 ± 0.08 

Statistical significance was determined by one-way ANOVA: * p < 0.05 versus WT controls; # p 

<0.05 versus AdipoR1 control; ## p < 0.01 vs WT control; ^ p < 0.05 vs AdipoR1 control; ^^ p < 

0.01 vs AdipoR2 control
 
;  p<0.05 versus WT on CCl4; and Tukey’s multiple group comparison 

tests. Trig: triglyceride, Chol: cholesterol. The data are expressed as mean ± SEM.  
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Gene Primers 

GAPDH Forward   GTCGTGGATCTGACGTGCC 

Reverse    TGCCTGCTTCACCACCTTC 

TIMP-1 Forward   GCAAAGAGCTTTCTCAAAGAC 

Reverse    AGGGATAGATAAACAGGGAAACACT 

TGFβ 

 

Forward   GTGGGGACTTCTTGGCACT 

Reverse   GAGTGTCCACGACGGTGAG 

Col1-α1 Forward   AGGAGAACCAGGTGACGAAG 

Reverse   CCCCAGCTTCTCCTTTCTCT 

AdipoR1 Forward   TTTGCCACTCCCAAGCAC 

Reverse   ACACCACTCAAGCCAAGTCC 

AdipoR2 Forward  TCTCAGTGGGACATGTTTGC 

Reverse  AGGCCTAAGCCCACGAAC 

IL10 Forward   AGGCGCTGTCATCGATTTCT 

Reverse   AGGAAGAACCCCTCCCATCA 

MMP-2 Forward   CCAGACAGGTGACCTTGACC 

Reverse   AAACAAGGCTTCATGGGGGC 

MMP-9 Forward   AAAGGCAGCGTTAGCCAGAA 

Reverse   ACAACTCGTCGTCGTCGAAA 

CD68 Forward TGACCTGCTCTCTCTAAGGCTACA 

Reverse TCACGGTTGCAAGAGAAACATG  

 

Table 3. Rat qPCR primer sequences 

Gene Primers 

β-actin Forward  CTGGCTCCTAGCACCATGA 

Reverse  TAGAGCCACCAATCCACACA 

Col1-α1 Forward  CAGATGTCCTATGGCTATGATGAG 

Reverse  CCACGAGGACCAGAAGGAC 

αSMA Forward  TTCAATGTCCCTGCCATGTA 

Reverse  CCATCTCCAGAGTCCAGCAC 

TIMP1 Reward  TTTCCGGTTCGCCTACAC 

Reverse  CGGTTCTGGGACTTGTGG 

AdipoR1 Reward  AGCACCGGCAGACAAGAG 

Reverse  GGTGGGTACAACACCACTCA  

AdipoR2 Forward  ATGTTTGCCACCCCTCAGT  

Reverse  GATTCCACTCAGACCCAAGC  

 

 

 

 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 23 

Figure Legends 

Figure 1. AdipoR1 or AdipoR2 loss does not affect pathology or fibrosis. (A), Representative 

images of H & E CCl4 and Sirius red staining from corn oil and CCl4 treated WT, AdipoR1 KO, 

and AdipoR2 KO mice. Scale bars: 500 μm. (B), Graph illustrating the percentage of collagen 

deposition as represented by Sirius red staining in liver sections after CCl4 treatment. In AdipoR1 

KO and AdipoR2 KO mice receiving CCl4, the extent of liver fibrosis was not significantly 

different to the WT. Statistical significance was determined by one-way ANOVA. The data are 

expressed as mean ± SEM (n=6).  

Figure 2. Loss of AdipoR2 increases fibrotic and inflammatory markers. qPCR for fibrotic and 

inflammatory genes from WT, AdipoR1 KO, and AdipoR2 KO control and CCl4 treated mice 

showed, (A), Compared to controls Col1-α1 increased in AdipoR2 KO (6.4-fold; p<0.05), AdipoR1 

KO (2.8-fold; p<0.05) and WT (3-fold; p<0.05). CCl4 AdipoR2 KO Col1-α1 gene expression was 

increased versus CCl4 AdipoR1 KO (2.3-fold; p<0.05) and WT (2.8-fold; p<0.05). (B), TGFß gene 

expression in CCl4 AdipoR2 KO was increased versus WT CCl4 (2.2-fold; p<0.01), AdipoR2 

control (3.2-fold; p<0.01), and CCl4 AdipoR1 (1.8-fold; not significant). (C), TIMP-1 gene 

expression in CCl4 AdipoR2 KO was increased versus CCl4 AdipoR1 (2.4-fold; p<0.05) and control 

AdipoR2 (3.1-fold; p<0.05). (D), IL-10 gene expression in CCl4 AdipoR2 KO was increased versus 

CCl4 WT (2.6-fold; p<0.05) and CCl4 AdipoR1 (4.5-fold; p<0.01). (E), CD68 gene expression was 

unchanged between groups (F), MMP-2 gene expression in CCl4 AdipoR2 KO was increased 

versus CCl4 WT (2.3-fold; p<0.01), CCl4 AdipoR1 (3.2-fold; p<0.01), and control AdipoR2 (3.6-

fold; p<0.01). (G), MMP-9 gene expression in CCl4 AdipoR2 KO was increased versus CCl4 WT 

(2.3-fold; p<0.001), CCl4 AdipoR1 (7.9-fold; p<0.001), and control AdipoR2 (3.4-fold; p<0.05). 

(H), In CCl4 AdipoR2 KO mice AdipoR1 gene expression was increased versus CCl4 WT (2.6-fold; 

p<0.05) and control AdipoR2 (2.4-fold; p<0.05). (I), In CCl4 AdipoR1 KO mice AdipoR2 gene 

expression was unchanged. Differences between groups (n=6) were analysed using a one-way 

ANOVA with Tukey test (* p<0.05, ** p<0.01, *** p<0.001).  
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Figure 3. APN Mediates Fibrotic Responses through AdipoR2. (A and B), specific siRNA 

reduced the gene expression of AdipoR1: compared to untreated (3.2-fold, p<0.001) and Scram 

siRNA-treated (3.0-fold, p<0.01), and AdipoR2: compared to untreated (3.5-fold, p<0.001) and 

Scram siRNA-treated (3.5-fold, p < 0.01). (C and D), Western blot and densitometry confirmed that 

specific siRNA treatment reduced the protein levels of AdipoR1: compared to untreated (4.0-fold, 

p<0.01) and Scram siRNA-treated (3.0-fold, p<0.01), and AdipoR2: compared to untreated (35-fold, 

p<0.001) and Scram siRNA-treated (30-fold, p < 0.01). (E), Time course analyses of AdipoR1 and 

AdipoR2 gene expression in HSCs, shows AdipoR1 decreased at days 2 (2.3-fold; p<0.05), 7 (5.8-

fold; p<0.05) and 10 (6-fold; p<0.05). AdipoR2 expression was unchanged. In activated HSCs: (F), 

APN reduced Col1-α1 mRNA in Scram (1.2-fold; p<0.05) and AdipoR1 siRNA (1.5-fold; p<0.05) 

treated cells. Treatment with APN and AdipoR2 siRNA increased Col1-α1 gene expression (1.5-

fold; p<0.05); (G), APN reduced α-SMA mRNA in Scram (2.0-fold; p<0.01) and AdipoR1 siRNA 

(2.7-fold; p<0.001) treated cells. Treatment with APN and AdipoR2 siRNA increased α-SMA gene 

expression (1.7-fold; p<0.01). (H), TIMP-1 gene expression increased after co-treatment with 

Scram, AdipoR1 and AdipoR2 siRNA, and APN, 1.4-, 1.4- and 1.3-fold, respectively (all p<0.05). 

Differences between groups (n=6) were analysed using a one-way ANOVA with Tukey test (* 

p<0.05, ** p<0.01, *** p<0.001).  

 

Figure 4. APN through AdipoR2 mediates HSC migration and AMPK activity. In activated 

HSCs: (A), APN did not induce apoptosis in Scram siRNA treated cells; (B), 0.1% H2O2 induced 

apoptosis compared to Scram siRNA and the combination of APN with AdipoR1 or AdipoR2 

treatment had no effect on apoptosis. (C), In proliferations assays: Scram, AdipoR1 or AdipoR2 

siRNA had no effect on HSC proliferation compared to control cells. The application of APN to 

Scram, AdipoR1 or AdipoR2 siRNA treated HSCs reduced proliferation by 1.3 (p<0.05), 1.6 

(p<0.001) and 1.4-fold (p<0.01), respectively, and there was no difference between these groups. 

(D), In migration assays: Scram or AdipoR1 siRNA alone had no effect. Co-treatment with APN 
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reduced migration in Scram (3.6-fold; p<0.001), AdipoR1 (4.3-fold; p<0.001), and AdipoR2 siRNA 

(1.6-fold; p<0.01). (E), Western blot analysis of a time course of AdipoR2, AMPK and p-AMPK in 

Scram siRNA and AdipoR2 siRNA groups with APN treatment at 0, 5, 10, 20, 30 and 60 minutes. 

APN application reduced AMPK phosphorylation in AdipoR2 siRNA cells at 10 (1.4-fold; p<0.05), 

20 (1.3-fold; p<0.05), 30 (1.4-fold; p<0.05) and 60 (1.4-fold; p<0.05) minutes. Differences between 

groups (n=6 for qPCR and n=3 for western) were analysed using a one-way ANOVA with Tukey 

test (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). Data are expressed as mean ± SEM (n=3). 
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Highlights 

 The absence of AdipoR1 or AdipoR2 is not essential for liver fibrosis in vivo.  

 AdipoR2 loss is associated with an enhanced fibrotic signature.  

 In activated HSCs, AdipoR2 is necessary for mediating APN’s anti-fibrotic responses and 

cell migration.  

 APN is unable to activate AMPK in the absence of AdipoR2 in vitro.  
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