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Abstract Exposure of coral reefs to river plumes carrying
increasing loads of nutrients and sediments is a pressing issue
for coral reefs around the world including the Great Barrier
Reef (GBR). Laboratory experiments were conducted to
investigate the eVects of changes in inorganic nutrients
(nitrate, ammonium and phosphate), salinity and various types
of suspended sediments in isolation and in combination on
rates of fertilisation and early embryonic development of the
scleractinian coral Acropora millepora. Dose–response exper-
iments showed that fertilisation declined signiWcantly with
increasing sediments and decreasing salinity, while inorganic
nutrients at up to 20 �M nitrate or ammonium and 4 �M
phosphate had no signiWcant eVect on fertilisation. Suspended
sediments of ¸100 mg l¡1 and salinity of 30 ppt reduced fer-
tilisation by >50%. Developmental abnormality occurred in
100% of embryos at 30 ppt salinity, and no fertilisation
occurred at ·28 ppt. Another experiment tested interactions
between sediment, salinity and nutrients and showed that fer-
tilisation was signiWcantly reduced when nutrients and low
concentrations of sediments co-occurred, although both on
their own had no eVect on fertilisation rates. Similarly, while
slightly reduced salinity on its own had no eVect, fertilisation

was reduced when it coincided with elevated levels of sedi-
ments or nutrients. Both these interactions were synergistic. A
third experiment showed that sediments with diVerent geo-
physical and nutrient properties had diVerential eVects on fer-
tilisation, possibly related to sediment and nutrient properties.
The Wndings highlight the complex nature of the eVects of
changing water quality on coral health, particularly stressing
the signiWcance of water quality during coral spawning time.

Keywords Great Barrier Reef · Coral fertilisation · 
Salinity · Sediment · Nutrients · Terrestrial runoV

Introduction

One of the most pressing concerns for the management of
the Great Barrier Reef (GBR) is to understand the conse-
quences of increasing terrestrial runoV of nutrients and
sediments (Hutchings and Haynes 2005; Hutchings et al.
2005). Nearshore reefs of the GBR have developed in an
environment driven by the inXuence of river runoV, yet in
the past 150 years, expanding agriculture, urban develop-
ment and industry have led to greater runoV of freshwater
(McCulloch et al. 2003), nutrients (Devlin et al. 2001;
Furnas 2003), sediments (Neil et al. 2002; Furnas 2003;
McCulloch et al. 2003), and agrochemicals (Haynes and
Johnson 2000; Haynes and Michalek-Wagner 2000). River
plume waters are characterised by elevated levels of dis-
solved organic and inorganic nitrogen and phosphorus, sus-
pended particulate matter, turbidity, and chlorophyll a, as
well as by reduced salinity, when compared with ambient
marine coastal waters (Table 1). Generally, Xood plumes in
this region remain within 20 km of the coast due to prevail-
ing south-easterly winds and Coriolis forcing (Chao 1988),
impinging upon the approximately 900 nearshore reefs

Communicated by Environment Editor Professor Rob van Woesik

C. Humphrey (&) · T. Cooper · K. Fabricius
Australian Institute of Marine Science, PMB 3, Townsville, 
QLD 4810, Australia
e-mail: c.humphrey@aims.gov.au

M. Weber · C. Lott
Max Planck Institute for Marine Microbiology, 
Celsiusstrasse 1, 28359 Bremen, Germany

M. Weber · C. Lott
HYDRA Institute for Marine Sciences, Elba Field Station, 
Via del Forno 80, 57034 Campo nell’Elba, Livorno, Italy
123

https://core.ac.uk/display/303783417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


838 Coral Reefs (2008) 27:837–850
(»27% of all reefs) within the GBR Marine Park. In the
absence of strong south-easterly winds, Xood plumes may
extend to some of the mid- and outer-shelf reefs of the GBR
(Devlin and Brodie 2005).

Some reefs in the northern wet tropical section of the
GBR (Herbert to Daintree Rivers) are exposed to Xoods
nearly annually. Reefs in the southern, central and far
northern sections are characterised by dryer subtropical
to tropical climates with fewer Xoods (on average every
2–3 years; Devlin and Brodie 2005). The majority of river
Xoods occur in the monsoonal wet season (October to
April), often associated with tropical cyclones or rain
depressions (Devlin et al. 2001). Although average rainfall
is highest in January to March, early Xoods can coincide
with the coral mass spawning event in the GBR that occurs
annually in October to December (Babcock et al. 1986).

The residency time of dissolved materials in the GBR
has been estimated to be up to 300 days (disregarding
biological uptake; Luick et al. 2007), while particulate
materials remain for an unknown period whilst undergoing
cycles of wind-driven re-suspension and deposition until
they are Wnally deposited in deeper water or in north-facing
bays. Terrestrial runoV therefore not only aVects biological
processes during acute Xood events but can also chronically
alter water quality near inshore reefs year-round.

The reproductive processes and early life history stages
of corals, including fertilisation, embryonic development,
metamorphosis and settlement, are sensitive to changes in
water quality (Fabricius 2005). Successful coral reproduc-
tion is critical for the resilience of coral reefs, determining
the speed of recovery after disturbance. Several investiga-
tors have studied the eVects of individual water quality
parameters on coral reproduction. In particular, exposure to
increased levels of nitrogen and phosphorus resulted in
reduced fertilisation rates and increased levels of develop-
mental abnormalities in Acropora longicyathus (Harrison
and Ward 2001), as well as the production of smaller and
fewer eggs per polyp in A. longicyathus and Acropora
aspera (Ward and Harrison 2000). Enhanced ammonium
has also been shown to reduce larval survival and settle-
ment in Diploria strigosa with more pronounced reductions

at higher temperatures (Bassim and Sammarco 2003).
Reduction in salinity from 35 to 28 ppt reduced fertilisation
success in Acropora digitifera from 86% to 25%, with a
further 50% reduction in development to actively swim-
ming planulae larvae (Richmond 1993). Suspended sedi-
ments of 50–100 mg l¡1 have also been shown to reduce
fertilisation rates, larval survival and larval settlement in
Acropora digitifera (Gilmour 1999).

Understanding the eVects of changes in water quality on
coral reproduction is complicated by the fact that high
nutrients often co-occur with reduced salinity and
increased levels of suspended sediments. Few studies have
examined these interactive eVects between water quality
parameters on coral reproduction. One of the few studies
to investigate interactions in water quality parameters on
corals is that of Bassim and Sammarco (2003) who showed
that the eVects of temperature and ammonium were addi-
tive in reducing survivorship, ciliary activity and settle-
ment rates of larvae of the coral Diploria strigosa. Another
study showed that the eVects of sedimentation on adult
corals depended upon the physical and chemical properties
of the sediments, as nutrient-rich sediments exerted greater
photo-physiological stress on corals than nutrient-poor
sediments (Weber et al. 2006). The eVects of sedimenta-
tion on the photo-physiology of reef-inhabiting crustose
coralline algae were also substantially exacerbated by the
presence of trace concentrations of the herbicide diuron
(Harrington et al. 2005).

This study investigates the synergistic eVects of varying
but environmentally relevant levels of suspended sedi-
ments, salinity and dissolved inorganic nitrogen (as nitrate
and ammonium) and phosphorus on fertilisation and
embryonic development in the coral Acropora millepora.
The eVects of Wve contrasting sediment types on coral fer-
tilisation and development were also compared, to better
understand how sediment properties determine reproduc-
tive impairment. The results help to better understand the
eVects of increased terrestrial runoV and changes in water
quality on coral reproduction and resilience on coral reef
systems that are within the reach of river Xood plumes and
seaXoor resuspension on the GBR.

Table 1 Water quality parameters of Xood plumes of the Great Barrier Reef compared to ambient values

Salinities are minimum values recorded while all other values are maximum values
a Devlin et al. (2001), values recorded in Xood plumes on the GBR between 1991 and 1999 
b Furnas (2003), median values from inshore waters of the Central GBR
c Wolanski et al. (2008)

Salinity NH4 NO3 DON PN DIP DOP PP Si Chl a SS

(ppt) (�M) (�g l¡1) (mg l¡1)

Flood plumea 0 12.8 14.3 40.4 20.3 2.5 2.8 1.3 221 4.6 500c

Ambient (non-Xood)b 35 0.03 0.02 5.43 1.43 0.10 <0.10 0.10 4.77 0.4 1.7
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Materials and methods

Spawning and gamete collection

The broadcast-spawning coral Acropora millepora (Ehren-
berg, 1834), abundant in nearshore waters of the GBR, was
selected as the study species. Eleven gravid colonies (each
»30 £ 30 cm) were collected from Davies Reef, GBR
(18°50� S, 147°38� E), from a depth of 5–8 m on 28 Nov.
2004. They were transported to aquarium facilities at the
Australian Institute of Marine Science and maintained out-
doors in 27–29°C temperature-controlled, Xow-through
seawater tanks until spawning commenced.

Prior to sunset, colonies were isolated in 50 l plastic con-
tainers and shielded from artiWcial light. Synchronous
spawning occurred in 8 of the 11 colonies between 2100
and 2200 h on 1 Dec. 4 days after the full moon. The
released gametes were collected following the methods of
Negri and Heyward (2000). BrieXy, the Xoating egg–sperm
bundles from individual colonies were collected from the
water surface by gentle suction through a plastic tube into
250 ml plastic containers. Gametes from each colony were
kept separate to prevent fertilisation until the experiments
were ready to proceed. Gametes in the plastic jars were
gently agitated to separate the eggs and sperm, and passed
through a 150 �m plankton mesh to retain all eggs and col-
lect the concentrated sperm in a glass beaker. The eggs thus
retained on the mesh were washed Wve times with sperm-
free seawater to remove residual sperm. Eggs from all colo-
nies that had spawned were pooled, as was the concentrated
sperm.

The sperm concentration in the stock solution was deter-
mined with a haemocytometer viewed with a compound
microscope at 400£ magniWcation. Sperm concentration
was diluted with sperm-free seawater to achieve a working
stock of »1.4 £ 107 cells ml¡1. The concentrations of the
egg and sperm slurries were adjusted to obtain »100–500
eggs and a sperm concentration of »2 £ 106 sperm ml¡1

per treatment chamber. This concentration has been found
to be slightly suboptimal for fertilisation, thereby increas-
ing the sensitivity of the assay (Harrison and Ward 2001).
Gamete-free seawater treatments with varying concentra-
tions of dissolved inorganic nutrients, various types of sedi-
ments and/or freshwater (see below) were made up a few
hours prior to spawning in 70 ml plastic jars. To each of
Wve replicate jars holding 20 ml of modiWed seawater per
treatment, 5 ml of egg solution was added, and 5 ml of
sperm was added to another set of Wve plastic jars per treat-
ment. Gametes remained in separate jars for 30 min before
the eggs and sperm from the appropriate treatments were
combined, resulting in a Wnal gamete and seawater volume
of 50 ml per chamber. The 30 min pre-fertilisation expo-
sure period simulated the time required for sperm to Wnd

and appropriate eggs in the Weld, and reXecting the time
required for polar body extrusion in acroporid gametes
(Babcock and Heyward 1986). Chambers were sealed and
then placed in a Xow-through seawater bath to maintain a
constant ambient temperature during fertilisation and
development. At 10 min intervals all chambers were gently
agitated to keep the sediment in suspension.

Development was terminated after 3 h by adding to each
jar 2 ml of Bouin’s preservative (75 ml saturated aqueous
picric acid, 25 ml concentrated formalin, 5 ml glacial acetic
acid), which preserved embryo integrity. Three aliquots of
fertilised eggs were then collected with a wide bore pipette,
placed on glass well-slides, and photographed for later
analysis of rates of fertilisation, abnormal and normal
development (both expressed as a percentage of fertilised
eggs). Coral embryos undergo radial holoblastic cleavage
with regular cleavage up to the eight cell stage which
generally occurs within 3–8 h (Hayashibara et al. 1997;
Ball et al. 2002; Okubu and Motokawa 2007). Aberrant
development was characterised as deviation from this pat-
tern of division, generally resulting in irregularly shaped
blastomeres.

Treatment types

Three experiments were conducted. Experiment 1 investi-
gated the main eVects of gamete exposure to increasing
concentrations of suspended sediments, salinity, and dis-
solved inorganic nitrogen and phosphate. Experiment 2
investigated the combined eVects of suspended sediment,
salinity and nutrients, to assess potential interactions.
Experiment 3 investigated main eVects of increasing con-
centrations of Wve diVerent types of sediments. Concentra-
tions for all the treatments were within the range of those
measured on nearshore reefs of the GBR during Xood
events (Devlin et al. 2001).

Experiment 1: response curves

Suspended sediment

Coastal sediment was collect from a jetty oV the Australian
Institute of Marine Science (19°17� S; 147°03� E) from 3 m
water depth. The sediment was placed into a 100 l tank and
suspended by agitation, and the coarser grain fraction was
allowed to settle for 1 h. The Wne particles, still in suspen-
sion after 1 h, were then collected by siphoning directly
from the top of the tank, and allowed to settle for a further
3 h. This sediment was then passed through a 63 �m mesh,
keeping only the <63 �m fraction.

The suspended sediment treatments consisted of Wltered
seawater, to which 0, 25, 50, 100, 200 and 400 mg dry
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weight (DW) l¡1 of suspended sediment solution was
added. Final amounts of suspended sediment were calcu-
lated by determining the DW of a known volume of the
stock solution. Twenty-nine water chemical and geological
parameters were analysed for each of the sediment types
used; these and the methods used for determination are
listed in Table 2.

Salinity

Salinity was manipulated by adding Super-Q water to
Wltered seawater, resulting in 36, 34, 32, 30 and 28 ppt
salinity.

Dissolved inorganic nutrients

Two sources of dissolved inorganic nutrients were com-
pared: a nitrate (potassium nitrate) and phosphate (dipotas-
sium hydrogen phosphorus) treatment, and an ammonium
(ammonium chloride) and phosphate (as above) treatment.
Nutrients were added to Wltered seawater at a nitrogen to
phosphorus molar ratio of 5:1. The nutrient treatments con-
sisted of a Wltered seawater control and nominal concentra-
tions of nitrate/phosphate and ammonium/phosphate of
1.25:0.25, 2.5:0.5, 5:1, 10:2 or 20:4 �M. Final concentra-
tions of nutrients were conWrmed as outlined in Table 2.

Experiment 2: interactions between suspended 
sediment, salinity and nutrients

The second experiment investigated interactions between
the main eVect treatments of Experiment 1. There were

three nutrient treatments with nominal concentrations of
0:0, 5:1 and 10:2 �M nitrate and phosphate, three sediment
treatments with nominal concentrations of 0, 50 and
100 mg DW l¡1, and two salinity treatments (36 and
32 ppt). An extra replicate of each treatment was added to
the experiment and Wltered seawater added in place of eggs
or sperm for later analysis of the various water quality
parameters to conWrm the nominal concentrations. A
Wltered seawater control and all possible interactions of the
above treatments were investigated in Wve replicates of
each. The experiment proceeded as described above.

Experiment 3: comparison of suspended 
sediment types

Five diVerent types of sediments were collected 4 weeks
prior to the spawning event. The upper 5 cm of sediment was
collected from just below the water level at the estuarine
shore of the Chester River (13°04� S; 143°33� E), a catch-
ment in the far northern section of the GBR with minimal
agriculture (Fabricius et al. 2005). The upper 5 cm of marine
sediments was collected by SCUBA from 5 to 10 m depth
from the leeward sides of the near-shore fringing reefs of
High Island (17°10� S, 146°00� E), Wilkie Island (13°46� S,
143°38� E), and the lagoon of the oVshore reef 14-077
(14°19� S, 145°13� E). The Wfth sediment type was aragonite
silt, a by-product of slicing coral skeletons of massive Porites
sp. for growth band analyses (for details see Weber et al.
2006). All sediments were prepared as described above.

Treatments (each with Wve replicates) consisted of
Wltered seawater, with 0, 4, 16, 32, 64, 128, 256 and
512 mg DW l¡1 suspended sediment solution from either

Table 2 The 29 chemical and geochemical parameters measured, and the analytical methods employed to characterise the suspended sediments

a Woolfe and Michibayashi (1995); b Parker (1983); c Furnas and Mitchell (1999); d Furnas et al. (1995); e Strickland and Parsons (1972); f Loring
and Rantala (1992); g Ryle et al. (1981) and Ryle and Wellington (1982)

Parameter Method Description

Grain size distribution (GSD)a Laser diVraction Master series X Malvern Particle Sampler (32 detector ranges); 
Detector lens = 1000 �m

Ash free dry weight (AFDW)b Combustion Sediments dried at 100°C for 24 h, weighed, heated at 500°C 
for 1 h, and re-weighed.

Total organic carbon (TOC)c and dissolved 
organic carbon (DOC)c

Combustion Shimadzu TOC-5000 Carbon Analyser (Shimadzu Corporation, 
Kyoto, Japan)

Total nitrogen (TN)d Combustion ANTEK Solid Auto Sampler (Antek Instruments, Inc., 
Houston, Texas, USA)

Chlorophyll a (Chl a) and phaeophytin (Phaeo)e Fluorometry Turner Designs (Model 10-AU or TD700) Digital 
Fluorometer after 24 h extraction in acetone in dark.

Al, Ba, Ca, Cd, Co, Cu, Fe, Mg, Mn, Mo, Ni, Pb, 
Sn, Zn, V and Total phosphorous (TP)f

Spectrophotometry Varian Liberty 220 ICP Atomic Emission Spectrometer 
(ICP-AES)

Total inorganic nutrients (PO4, Si, NO2, NO3, 
NO2 + NO3)g

Colorimetry Segmented Flow Analysis—Bran+Luebbe AA3 

Total suspended solids (TSS)c Gravimetry Re-weighed Wlters after drying at 60°C until constant weight.
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one of the Wve stock solutions. A treatment with
1,024 mg DW l¡1 was additionally tested, but samples
were lost in two of the sediments; results of the successful
treatments are included in the graphics but not in the sta-
tistical analyses. Sediment and water quality properties
(29 parameters) were analysed as detailed in Table 2. To
characterise the sediments, the sediment parameters were
z-transformed, parameters were grouped into four catego-
ries, and z-transformed parameter values summed for each
sediment type to form the following four indices: grain
size (GSI), organic and nutrient related parameters
(ONP), geochemical parameters (GCP), and dissolved
nutrients (DNI). GSI was calculated as the sum of z-scores
of the four parameters: mean grain size, and the 25, 50
and 75 percentiles of sediment volume. ONP was calcu-
lated as the sum of z-scores of the six parameters: chloro-
phyll a (Chl a) and phaeophytin (Phaeo) (an indicator of
nutrient status; Brodie et al. 2007), ash-free dry weight
(AFDW) (an indicator of organic matter), total organic
carbon (TOC), total nitrogen (TN) and total phosphorous
(TP). GCP was calculated as the sum of z-scores of Wfteen
metal and trace elements. DNI was calculated based on
the six parameters: dissolved organic carbon (DOC),
ammonium (NH4), nitrate (NO3), nitrite (NO2), silicate
(Si) and phosphate (PO4).

Statistical analysis

Experiment 1

The data from the fertilisation and embryo development
experiments were analysed using analysis of variance
(ANOVA). One-factor ANOVAs were conducted to test
the main eVects of diVering concentrations of suspended
sediment and salinity, while a two-factor ANOVA was con-
ducted to test for the eVects of dissolved nutrients on fertil-
isation success and development of A. millepora embryos
in isolation. Data were tested for deviation from homogene-
ity of variances and arcsine transformed where required.
Post hoc comparisons of means for signiWcant factors in the
ANOVAs were done using Student-Newman Keuls (SNK)
tests.

Experiment 2

To test for synergistic eVects among the water quality
parameters on the fertilisation success and development on
A. millepora embryos, a three-factor ANOVA was used
with suspended sediment (three levels), nutrients (three lev-
els, Wxed and orthogonal) and salinity (three levels, Wxed
and orthogonal) as the factors. Data were tested for devia-
tion from homogeneity of variances and arcsine trans-
formed where required.

Experiment 3

Analysis of variance (ANOVA) was used to test for diVer-
ences in fertilisation and early development abnormalities
between sediment type and concentration. Data were tested
for deviation from homogeneity of variances and arcsine
transformed where required. A Spearman non-parametric
rank correlation test was used to test the correlation of
ranked rates of fertilisation with the four sediment indices
for the Wve sediments. The AIMS jetty sediment was not
included in this analysis as gametes were exposed to diVer-
ent treatment concentrations.

All results were given as the mean § standard error, and
as not all the data required transformation all plots are of
untransformed data to maintain consistency. Data analyses
were conducted with Statistica 6.0 (StatSoft) and the statis-
tical software package R (R Development Core Team
2008).

Results

Experiment 1: response curves

The responses of gametes exposed to increasing sediments
and nutrients, and decreasing salinity are shown in Fig. 1
and Table 3. The controls were characterised by high levels
of fertilisation (87.1 § 2.2% SE) and moderate rates of
developmental abnormalities (20.1 § 1.6%). Sediment sig-
niWcantly aVected rates of fertilisation yet had no eVect on
successful embryo development (Table 3; Fig. 1a, b). Fer-
tilisation declined to 75.6 § 5.4% at 100 mg l¡1 suspended
sediments, and 35.5 § 4.8% at 200 mg l¡1 (Fig. 1a). Fertil-
isation was not aVected by 36–32 ppt salinity, while it
dropped to 33.6 § 4.6% at 30 ppt, and no fertilisation was
observed at 28 ppt (Table 3; Fig. 1c). Salinity of 32 ppt led
to an increase in developmental abnormality of »10%,
while salinity of 30 ppt resulted in 100% developmental
abnormality (Fig. 1d). Neither the nitrate/phosphate nor the
ammonium/phosphate treatments signiWcantly aVected fer-
tilisation or development, even at the highest nutrient con-
centrations (Table 3; Fig. 1e, f).

Experiment 2: interactions between suspended sediment, 
salinity and nutrients

Fertilisation rates of gametes exposed simultaneously to
combinations of sediments, salinity and nutrients are shown
in Fig. 2. There was a signiWcant interactive eVect between
sediments, salinity and nutrients on fertilisation (Table 4).
While in Experiment 1, fertilisation was not aVected by sed-
iments at ·50 mg l¡1, salinity at ¸32 ppt or any of the nutri-
ent treatments (Fig. 1 a, c, e), fertilisation was signiWcantly
123
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reduced at these levels and higher when in combination
(Fig. 2). At the highest nutrient concentration of 10:2 �M
NO3:PO4 and salinity of 32 ppt, fertilisation was reduced at
100 mg l¡1 sediments compared with treatments with 0 and
50 mg l¡1. At 36 ppt salinity, there was no sediment eVect at
0 and 50 mg l¡1 at the lowest two nutrient concentrations,
though when nutrients were increased to 10:2 �M NO3:PO4

there was a signiWcant eVect at all sediment concentrations
(Fig. 2c).

There were no interactive eVects of salinity, sediment or
nutrients on proportion of embryonic abnormalities.

Experiment 3: comparison of suspended sediment types

In the control treatments, the level of fertilisation averaged
71.0 § 2.4%, and 24.5 § 2.3% of embryos showed devel-

opmental abnormalities. Fertilisation was signiWcantly
reduced at the highest sediment levels for two of the Wve
sediment types (Wilkie and High Islands; Fig. 3). Conse-
quently, the analyses showed strong interactions between
the eVects of sediment type and sediment concentration on
fertilisation success (Tables 5, 6).

Levels of abnormal development averaged 34% over all
treatments, and showed weak and complex interactions
between sediment types and amount (Tables 5, 6). The
highest level of abnormal development (45.1 § 3.3%) was
observed in embryos exposed to Chester River sediment at
16 mg DW l¡1. The lowest levels of abnormalities were
found for the lowest concentrations of Wilkie Island sedi-
ments (22.2% and 20.8%, respectively).

The concentrations and derived indices of each of the Wve
sediments, and of the AIMS jetty sediment from Experiment

Fig. 1 Percentage of fertilisa-
tion and abnormal development 
in gametes of the coral Acropora 
millepora in response to expo-
sure to various concentrations of 
suspended sediment (AIMS 
jetty), salinity and dissolved 
inorganic nutrients (Experiment 
1). * Represents signiWcant 
diVerence (P < 0.05; Table 3)
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Table 3 EVects of exposure to changes in salinity, suspended sediment, and dissolved inorganic nutrients on gamete fertilisation and early devel-
opment of A. millepora (Experiment 1)

df MS F P Pairwise multiple comparison, SNK

Sediment

Fertilisation (%) 5 3,018 41.27 <0.0001 0 = 25 = 50 > 100 > 200

Abnormal development (%) 5 19.87 19.87 0.5688

Salinity

Fertilisation (%) 4 7,915 150.01 <0.0001 28 < 30 < 32 = 34 = 36

Abnormal development (%) 3 7,883 262.00 <0.0001 36 = 34 < 32 < 30

Nitrate and phosphate/Ammonium and phosphate (Fertilisation (%))

Concentration 5 6.9 0.36 0.8759

Nutrient type 1 51.7 2.68 0.1080

Concentration £ nutrient type 5 17.4 0.90 0.4867

Nitrate and phosphate/Ammonium and phosphate (Abnormal (%))

Concentration 5 31.63 1.95 0.1032

Nutrient type 1 12.08 0.75 0.39

Concentration £ nutrient type 5 28.85 1.78 0.1351
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1, are listed in Table 7. Median grain sizes of the silt-sized
sediments ranged from 11 to 23 �m, with smallest grain size
in the AIMS jetty sediment (Experiment 1) or High Island
(Experiment 3) and highest for aragonite silt. The organic
and nutrient-related parameters (ONP) were highest for
Chester River sediment, and lowest for aragonite silt. The
geochemical parameters were highest in the AIMS jetty and
High Island sediment, and lowest in aragonite silt. The index
characterising dissolved inorganic nutrients was highest in
the two inshore sediments Wilkie and High Island, and low-
est in the AIMS jetty and Chester River sediments.

In order to investigate the role various sediment proper-
ties may play in determining their eVects on coral reproduc-
tion, fertilisation rates exposed to 512 mg l¡1 of the Wve
sediment types were rank ordered (in increasing order) as
follows: Wilkie Island sediments (49.9 § 3.6%), followed
by High Island sediment (58.2 § 8.7%), oVshore sediments
(64.8 § 1.0%), Chester River sediment (76.1 § 3.5%) and

aragonite silt (76.8 § 4.3%). Chester River and aragonite
silt were given the same rank order. The ranking of fertil-
isation rates was strongly related to the index characterising
the dissolved nutrients in the sediment treatment (DNI,
P = 0.005), with higher nutrient concentrations resulting in
lower fertilisation rates (Table 8, Fig. 4). The apparent pos-
itive relationship of fertilisation rate to grain size was non-
signiWcant (GSD, P = 0.054). Fertilisation rates were also
clearly unrelated to the geochemical and the organic and
nutrient-related sediment parameters (P > 0.1).

Discussion

This study investigated the interactive eVects of suspended
sediments, salinity and dissolved inorganic nutrients on
fertilisation success and embryonic development in a
scleractinian coral. The results from this experiment conWrm

Fig. 2 Percentage of fertilisa-
tion and abnormal development 
in gametes of the coral Acropora 
millepora in response to com-
bined exposure to suspended 
sediment (AIMS jetty), salinity, 
and dissolved inorganic nutri-
ents (Experiment 2). Line above 
bars represent that there is no 
signiWcant diVerence between 
treatments, while * represents 
signiWcant diVerence (P < 0.05; 
Table 4)
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previous studies that have shown that suspended sediments,
salinity and nutrients at environmentally relevant levels
(see Table 1) aVect the reproductive successes in corals; it
furthermore demonstrates that these eVects are interactive.
Suspended sediments with diVerent organic, nutritive and
geophysical properties also diVered in their eVects on fertil-
isation and embryonic development.

Increased suspended sediments in the water column neg-
atively aVect the physiology of corals, including their rates
of photosynthesis, growth, survival and energy expenditure
(see reviews by Rogers (1990) and Fabricius (2005)).
While mean suspended sediment concentrations are typi-
cally <5 mg l¡1 (Rogers 1990), they exceed »80 mg l¡1 for
20–30 days per year due to wind resuspension around some
GBR inshore reefs (Wolanski 1994; Wolanski et al. 2005).
Wolanski et al. (2008) measured suspended sediment levels
of 280 mg l¡1 as a result of a Xood plume during calm
weather, and 500 mg l¡1 due to a combination of Xood
plume and resuspension during a storm event. Here, levels
of suspended sediment ¸50 mg l¡1 inhibited fertilisation
yet had no eVect on early development, a Wnding that
closely matches that of Gilmour (1999) who found that sus-
pended sediment ¸50 mg l¡1 inhibited fertilisation yet had
no eVect on larval development. Interestingly, Gilmour
(1999) found no diVerence in fertilisation between the 50
and 100 mg l¡1 treatments, whereas in the present study

there was a continued decline in the fertilisation with
increasing concentrations of suspended sediments: fertilisa-
tion dropped from 92% at 50 mg l¡1 to 75% at 100 mg l¡1

and 35% at 200 mg l¡1. Such diVerences are likely to be
attributable to the diVerent coral species or sediment types
used. Gilmour (1999) used Acropora digitifera and sourced
sediment from spoil dredged from a large port that com-
prised grain sizes of »50–200 �m, while the present study
used fresh (presumably biologically active) coastal marine
sediments with <63 �m grain size.

The eVect of diVerences in sediment properties on coral
fertilisation and early development was further investigated
by exposing the gametes to various types of sediments with
contrasting properties including grain size, organic and
nutrient related parameters, geochemical properties and dis-
solved nutrients. A reduction in fertilisation was only found
in sediments containing high dissolved nutrients and small
sediment grain sizes. The AIMS Jetty sediment used in
Experiment 1 appeared to reduce fertilisation more than
any of the sediments used in Experiment 3; however,
results were not strictly comparable as diVerent concentra-
tions were used in the two studies. Nevertheless it is note-
worthy that the AIMS Jetty sediment had the lowest GSI of
all sediments, strengthening the evidence for a potential
correlation between GSI and fertilisation.

The mechanisms by which coral fertilisation could be
impaired by suspended sediments are presently unknown. It
is possible that suspended sediments may act as physical
barrier between sperm and egg: suspended sediment may
hinder, damage or adhere to sperm aVecting its viability and
movement hence reducing the number of egg–sperm con-
tacts, or sediment particles may cover the micropyle block-
ing access to the sperm (Galbraith et al. 2006). Gilmour
(1999) observed greater aggregation of eggs in treatments
exposed to suspended sediment and suggested that this may
result in fewer contacts between sperm and egg. These sug-
gestions may help to explain the role of sediment presence
in reducing fertilisation success, yet they fail to account for
the interactive eVects of dissolved nutrients. A number of
studies have shown that sediment microorganisms rapidly
recycle coral spawning products (Wild et al. 2004), and that
sediment properties, including particle size, are responsible
for binding nutrients (Pailles and Moody 1992) and
harbouring microorganisms (Crump and Baross 1996). We
speculate that microbial communities attached to sus-
pended sediment particles might be one of the mechanisms
responsible for low fertilisation in sediment-exposed coral
gametes; however, this hypothesis requires further study.

The correlation between sediment nutrients and fertilisa-
tion rate shown in Experiment 3 have to be interpreted with
caution, as the number of sediment variables is high com-
pared with the number of sediments investigated, and some
of the sediment parameters are highly correlated with each

Table 4 EVects of combined exposure to 3 levels of suspended
sediment, 2 levels of salinity, and 3 levels of dissolved inorganic nutri-
ents on gamete fertilisation and early development of A. millepora
(Experiment 2)

df MS F P

Fertilisation (%)

Sediment 2 6057.8 164.5 <0.0001

Salinity 1 2602.5 70.7 <0.0001

Nutrients 2 90.64 2.46 0.0925

Sediment £ nutrients 4 127.34 3.46 0.0122

Sediment £ salinity 2 308.29 8.37 0.0005

Salinity £ nutrients 2 138.71 3.77 0.0278

Sediment £ salinity
£ nutrients

4 114.49 3.11 0.0203

Residual 72

Abnormal development (%)

Sediment 2 94.51 4.64 0.0128

Salinity 1 1121.77 55.0 <0.000

Nutrients 2 2.49 0.122 0.8852

Sediment £ nutrients 4 26.73 1.31 0.2740

Sediment £ salinity 2 22.59 1.11 0.3357

Salinity £ nutrients 2 50.04 2.45 0.0930

Sediment £ salinity
£ nutrients

4 41.21 2.02 0.1004

Residual 72 20.38
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other. Nevertheless, the results agree with the Wndings of
Experiment 2, showing that interactions between high
nutrient concentrations and sedimentation negatively aVect
coral fertilisation rates.

Salinity is an important environmental factor for corals, as
corals lack mechanisms for osmoregulation (Muthiga and
Szmant 1987). Some inshore coral reefs of the GBR are
exposed to reduced salinity from Xood plumes almost annu-
ally (Devlin et al. 2001), yet only a relatively small propor-
tion of these Xoods coincide with spawning. Heavy localised
monsoonal rainfall can also occur during the coral mass
spawning period, resulting in the formation of low salinity
surface water layers. Anecdotal evidence by Harrison et al.
(1984) suggested that the entire reproductive output of a
coral reef Xat in the GBR was destroyed when the mass

Fig. 3 Percentage of fertilisa-
tion in gametes of the coral 
Acropora millepora in response 
to exposure to Wve types of sus-
pended sediments (Experiment 
3). * Represents signiWcant 
diVerence (P < 0.05; Table 5)
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Table 5 EVects of exposure to Wve types of suspended sediments on
gamete fertilisation and early development of A. millepora (Experi-
ment 3)

df MS F P

Fertilisation (%)

Sediment type 5 335.02 1.76 0.2560

Concentration 6 190.83 4.97 0.0002

Sediment type £ concentration 24 108.08 2.82 0.0001

Residual 112 38.38

Abnormal development (%)

Sediment type 5 331.02 7.68 0.0138

Concentration 6 43.12 1.02 0.4151

Sediment type £ concentration 24 78.30 1.86 0.0167

Residual 112 42.21
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spawning event coincided with heavy rainfall destroying all
coral propagules on the surface, most probably due to
reduced salinity.

EVects of reduced salinity on adult corals are well docu-
mented in the literature (e.g. Moberg et al. 1997; Alutoin et al.
2001; Kerswell and Jones 2003). However; there are fewer
studies on the eVects of reduced salinity on reproductive pro-
cesses including fertilisation and larval development. This
study demonstrated a signiWcant reduction in fertilisation in
response to a reduction in salinity to 30 ppt, while at 28 ppt no
fertilisation of coral eggs occurred. These results are similar to
those of Richmond (1993) who found that the rate of fertilisa-
tion dropped from 88% to 25% with a drop in salinity from 34
to 28 ppt, and from 58% to 34% with a drop in salinity from
35 to 31.5 ppt in corals from Guam and Okinawa, respec-
tively. The present study also showed increased levels of
developmental abnormalities at 30 ppt salinity treatment com-
pared to 32 or 35 ppt, again conWrming previous studies
which also recorded a reduction in embryo viability and plan-
ulae survival in response to reductions in salinity (Richmond
1993; Vermeij et al. 2006). Increasing rates of abnormal
development, in addition to reduction in fertilisation levels,
can bring about a marked reduction in viable larvae and may
have a profound impact on recruitment (Bassim et al. 2002).

Nutrient concentrations vary widely around inshore coral
reefs of the GBR, with lowest concentrations during the dry
season and orders of magnitude greater values in Xood
plumes (Table 1). This study showed that dissolved inor-
ganic nutrients on their own did not aVect rates of fertilisa-
tion or early larval development in A. millepora. This result
contrasts with Harrison and Ward (2001) who found that fer-
tilisation rates and development in the sympatric species
Acropora longicyathus were signiWcantly aVected by ammo-
nium, phosphate and ammonium/phosphate at levels similar

to those investigated in the present study. In Goniastrea
aspera exposed to the same levels of nutrients, fertilisation
rates were aVected at the highest treatment (50 �M) of
ammonium plus phosphate, and most treatments adversely
aVected larval development (Harrison and Ward 2001). The
sensitivity of coral fertilisation experiments is known to
strongly depend on sperm density and gamete viability (Oli-
ver and Babcock 1992; Marshall 2006), and it is possible that
diVerences in the viability of diVerent crosses may explain
the diVerent outcomes between the two sets of experiments.
Additionally, the diVerences may also have been due to spe-
cies-speciWc diVerences in sensitivities to elevated nutrients,
as reviewed by Koop et al. (2001). Cox and Ward (2002)
also showed diVerent eVects of increased ammonia on the
reproduction in a broadcasting coral, Montipora capitata, and
a brooding coral, Pocillopora damicornis. Planulation in
P. damicornis ceased after 4 months of exposure to ammo-
nium, while in M. capitata there was no change in fecundity
or fertilisation success.

This study showed that there was a signiWcant synergistic
interaction between salinity, sediment and nutrients on fertil-
isation rates of A. millepora. This Wnding highlights the com-
plex nature of the eVects of changing water quality on coral
ecology. Nutrients and low concentrations of sediments on
their own had no eVect on fertilisation rates yet when occur-
ring in combination there was a signiWcant reduction in fertil-
isation. Similarly, while slightly reduced salinity on its own
had no eVect, fertilisation was reduced when water with
slightly reduced salinity carried elevated levels of sediments
or nutrients. This interaction is particularly relevant when con-
sidering the changed nature of Xood plumes: nutrient and sed-
iment loads carried in Xood plume waters into the Great
Barrier Reef have increased around Wvefold since onset of
western agriculture, due to soil erosion from overgrazing, and
increasing fertiliser application (Devlin et al. 2001; Furnas
2003; McCulloch et al. 2003). Thus, while exposure to low
amounts of sediment-poor freshwater seems to reduce fertil-
isation success only in a minor way, it constitutes a major
problem for coral fertilisation if that freshwater carries
enhanced levels of dissolved inorganic nutrients and sedi-
ments, as often found in Xood plumes from agriculturally
modiWed catchments. The GBR lagoon, which covers an area
of 30,000 km2, currently receives on average 66 km3 of fresh-
water, 14 to 28 million tonnes of sediment, and 43,000 and
1,300 to 22,000 tonnes of nitrogen and phosphorus, respec-
tively, from the land per year (Furnas 2003). A signiWcant
proportion of these nutrients are associated with particulate
matter (Verstraeten and Poesen 2000; Vaze and Chiew 2004),
increasing the potential of synergistic detrimental eVects on
coral reproduction and on the resilience of nearshore reefs.

The early life history stages of coral have been shown to
be extremely sensitive to changes in water quality (Ward and
Harrison 1997; Negri et al. 2005; Markey et al. 2007), partic-

Table 6 Summary of post-hoc comparisons of mean rates of fertilisa-
tion and abnormal development in Experiment 3

Sediment concentrations are presented in ascending order of percent-
age fertilisation or abnormality (Ns = no signiWcant diVerence). Sedi-
ment types: CR, Chester River; HI, High Island; Ar, Aragonite;
OS, OVshore; WI, Wilkie Island

Sediment Concentration (mg DW l¡1)

Fertilisation CR Ns

HI 512 < (0 = 4 = 16 = 32 = 64 = 128 = 256)

Ar Ns

OS Ns

WI 256 = 512 < (0 = 4 = 16 = 32 = 64 = 128)

Abnormal CR 0 = 4 < (16 = 32 = 64 = 128 = 256 = 512)

HI 0 < (4 = 16 = 32 = 64 = 128 = 256 = 512)

Ar Ns

OS Ns

WI 512 = 0 < (4 = 16 = 32 = 64 = 128 = 256)
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ularly fertilisation (Harrison and Ward 2001; Reichelt-Brush-
ett and Harrison 2005). The Wnding that environmentally
realistic changes in suspended sediment, salinity and dis-
solved inorganic nutrients can have a negative impact on fer-
tilisation, and to a lesser extent on development, is clearly a
reason for concern. Coral reefs around the world are under

increasing threat from overWshing (Jackson et al. 2001),
urban development (Hughes and Connell 1999), and climate
change (Hoegh-Guldberg 1999; Hughes et al. 2003). An
important aspect of the ability of coral reefs to withstand
these ongoing disturbances is successful reproduction and
recruitment. If recruitment is a limiting event in the life history

Table 7 Results of the sediment and water quality properties
measured to characterise each of the six sediments (means § s.e.) used
in Experiments 1–3, including Grain Size Index (GSI), Geochemical

Parameters (GCP), Organic and Nutrient related Parameters (ONP)
and Dissolved Nutrient Index (DNI)

AIMS Jetty Chester river High island Wilkie island OVshore Aragonite

Grain size parameters (PP)

Mean grain size (�m) 11 20 13 15 17 23

50% of sample volume = median of 
grain size distribution (GSD) (�m)

7 14 7 9 12 19

25% of sample volume (GSD) (�m) 3 7 3 4 6 6

75% of sample volume (GSD) (�m) 14 26 14 19 23 35

Organic and nutrient related parameters (ONP)

AFDW [%] 13.0 § 0.8 16.3 § 0.4 11.9 § 0.8 12.0 § 0.3 10.2 § 0.7 6.5 § 0.6

C/N ratio 11.35 11.03 6.57 6.20 4.30 3.28

Chlorophyll a (�g g DW¡1) 3.54 § 0.32 11.12 § 0.68 2.82 § 0.42 3.89 § 0.66 9.36 § 0.58 0.55 § 0.18

Phaeophytin (�g g DW¡1) 19.84 § 0.68 37.54 § 2.36 15.88 § 0.64 19.87 § 3.63 21.31 § 1.50 1.98 § 0.70

TOC (mg g DW¡1) 20.07 § 1.19 50.15 § 2.84 12.53 § 0.25 13.16 § 0.42 17.37 § 1.12 2.78 § 0.35

TN (mg g DW¡1) 1.77 § 0.18 4.55 § 0.54 1.91 § 0.12 2.12 § 0.22 4.04 § 0.49 0.85 § 0.26

TP (�g kg DW¡1) 4.83 § 0.27 11.42 § 0.41 5.58 § 0.36 5.76 § 0.28 14.39 § 0.62 0.64 § 0.18

Geochemical parameters (GCP)

Ca (mmol g¡1) 0.197 § 0.003 0.267 § 0.006 1.41 § 0.034 1.86 § 0.009 7.30 § 0.207 10.1 § 0.008

Mg (mmol g¡1) 0.759 § 0.006 0.677 § 0.011 0.615 § 0.010 0.887 § 0.011 0.757 § 0.000 0.084 § 0.000

Al (mmol g¡1) 2.39 § 0.034 2.35 § 0.039 2.28 § 0.007 1.86 § 0.058 0.287 § 0.001 0.010 § 0.000

Fe (mmol g¡1) 0.721 § 0.006 0.489 § 0.013 0.572 § 0.022 0.464 § 0.011 0.067 § 0.002 0.004 § 0.000

Mn (�mol g¡1) 8.90 § 0.070 4.37 § 0.012 8.94 § 0.181 5.61 § 0.068 0.760 § 0.001 0.091 § 0.001

Ba (�mol g¡1) 0.662 § 0.011 0.660 § 0.006 0.489 § 0.008 0.508 § 0.017 0.103 § 0.002 0.111 § 0.000

Zn (�mol g¡1) 1.133 § 0.006 0.863 § 0.005 0.989 § 0.009 0.707 § 0.006 0.130 § 0.004 0.221 § 0.004

V (�mol g¡1) 1.60 § 0.055 0.97 § 0.029 1.34 § 0.015 1.08 § 0.138 <0.196 <0.196

Cu (�mol g¡1) 0.346 § 0.001 0.141 § 0.001 0.235 § 0.002 0.136 § 0.005 0.038 § 0.002 0.069 § 0.001

Co (�mol g¡1) 0.196 § 0.008 0.133 § 0.001 0.171 § 0.001 0.107 § 0.007 <0.017 <0.017

Pb (�mol g¡1) 0.091 § 0.001 0.115 § 0.002 0.109 § 0.010 0.083 § 0.000 0.016 § 0.000 0.010 § 0.000

Ni (�mol g¡1) 0.343 § 0.017 0.179 § 0.004 0.469 § 0.009 0.223 § 0.013 0.131 § 0.006 0.036 § 0.006

Cd (�mol g¡1) 0.154 § 0.011 0.117 § 0.030 0.185 § 0.066 0.082 § 0.025 0.285 § 0.027 0.190 § 0.001

Dissolved nutrients (DNI)

DOC 1.16 § 0.14 1.41 § 0.05 1.21 § 0.11 1.77 § 0.22 1.47 § 0.06 1.38 § 0.06

PO4 1.27 § 0.95 0.17 § 0.03 0.41 § 0.19 2.93 § 2.71 0.23 § 0.04 0.22 § 0.04

Si 5.60 § 1.77 5.79 § 2.74 8.43 § 4.36 6.67 § 2.87 7.06 § 3.99 4.04 § 3.99

NH4 0.66 § 0.50 0.22 § 0.01 0.24 § 0.02 0.19 § 0.00 1.85 § 1.08 0.75 § 0.37

NO2 0.30 § 0.03 0.35 § 0.07 0.46 § 0.06 0.40 § 0.02 0.40 § 0.03 0.48 § 0.03

NO3 1.01 § 0.15 1.48 § 0.14 2.23 § 0.78 1.53 § 0.25 1.16 § 0.15 1.41 § 0.15

Indices

GSI ¡4.17 3.08 ¡3.83 ¡1.63 1.11 5.43

ONP 0.35 9.80 ¡2.14 ¡1.39 2.29 ¡8.90

GCP 9.38 2.20 8.07 0.59 ¡5.78 ¡14.47

DNI ¡3.75 ¡2.28 2.24 3.27 1.44 ¡0.92
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of corals, then any reduction in fertilisation levels and
additional increases in embryonic abnormalities will have
profound consequences for the ability of coral reefs to
recover from disturbances. This study therefore again con-
Wrms that the prevention of terrestrial runoV of nutrients and
sediments through sustainable land management is an impor-
tant management tool for reef conservation.
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