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ABSTRACT

Parrotfish are fundamental species in controlling algal phase-shifts and ensuring the
resilience of coral reefs. Nevertheless, little is known on their ecological role in the
south-western Atlantic Ocean. The present study analysed the ontogenetic foraging
activity and feeding selectivity of the Brazilian endemic parrotfish Scarus zelindae us-
ing behavioural observation and benthic composition analyses. We found a significant
negative relationship between fish size and feeding rates for S. zelindae individuals.
Thus, terminal phase individuals forage with lower feeding rates compared to juve-
niles and initial phase individuals. The highest relative foraging frequency of S. zelin-
dae was on epilithic algae matrix (EAM) with similar values for juveniles (86.6%), ini-
tial phase (88.1%) and terminal phase (88.6%) individuals. The second preferred ben-
thos for juveniles was sponge (11.6%) compared with initial (4.5%) and terminal life
phases (1.3%). Different life phases of S. zelindae foraged on different benthos accord-
ing to their availability. Based on Ivlev’s electivity index, juveniles selected EAM and
sponge, while initial phase and terminal phase individuals only selected EAM. Our
findings demonstrate that the foraging frequency of the endemic parrotfish S. zelindae
is reduced according to body size and that there is a slight ontogenetic change in feed-
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Scaridae (Plass-Johnson, McQuaid ¢ Hill, 2013). For instance, parrotfish behavior seems to
change in response to food resource availability, meaning local variation in algal abundance
can influence fish feeding preferences and modify parrotfish patterns of abundance (Russ,
2003; Hoey, Pratchett & Cvitanovic, 2011).

Parrotfishes are believed to be important contributors to healthy reefs because they
consume algae that compete with corals for space in tropical waters (Hughes et al., 2003;
Graham et al., 2013). Grazing activity also provides open space for coral recruitment,
securing better conditions for coral reef development during recent strong impacts such as
climate change and global warming (Bennett et al., 2015). As a generalist group, parrotfish
foraging activity varies strongly according to morphology, life phase, and food availability
(Bonaldo, Hoey ¢ Bellwood, 2014). They are usually classified in three main functional
groups: browsers, scrapers and excavators (Bellwood ¢ Choat, 1990; Streelman et al.,
2002; Francini-Filho et al., 2008; Bonaldo, Hoey ¢ Bellwood, 2014). Browsers tend to cut
off macroalgae, leaving no scars on the substrate (e.g., Sparisoma spp.), scrapers feed at high
rates leaving only a superficial scrape and normally do not damage coral surface (e.g., Scarus
spp.) and excavators feed at low rates removing large portions of the substratum or coral
using their robust jaws, leaving noticeable scars (e.g., Bolbometopon muricatum) (Bellwood
¢ Choat, 1990; Streelman et al., 2002).

Ontogenetic changes in foraging activity and feeding preference are relevant for
many coral reef fishes, including parrotfish (Bellwood, 1988; Pereira ¢ Ferreira, 2013).
Bellwood, Hughes ¢» Hoey (2006) suggested that newly settled Scarus individuals feed on
crustaceans, whilst larger juveniles almost exclusively ingest algae and detritus. Additionally,
morphological and anatomical body changes throughout ontogeny also directly influence
parrotfish feeding preferences. As parrotfish grow, the enlargement and development of the
oral jaws and associated musculature allow them to bite deeper into the benthos, effectively
scraping or even excavating the substratum (Bellwood ¢ Choat, 1990; Bonaldo, Hoey ¢
Bellwood, 2014; Francini-Filho et al., 2008). Although much research has been conducted
analysing ontogenetic changes on parrotfish ecology in the Indo-Pacific and Caribbean,
few studies have attempted to analyse variations on foraging activity and feeding preference
across different life stages in endemic parrotfish species of the Southwestern Atlantic Ocean.

Scarus zelindae is an endemic parrotfish from Brazilian waters occurring on coral
and rocky reefs at depths up to 60 m. Previous studies have shown that S. zelindae is
predominantly herbivorous, ingesting algae and detritus (Ferreira & Gongalves, 2006).
Francini-Filho et al. (2010) found S. zelindae had a preference for turf algae and classified
this species as a scraper. However, larger terminal phase individuals can also act as
excavators (Francini-Filho et al., 2008; Francini-Filho et al., 2010), whereas juveniles have
been recorded feeding on Millepora spp. fire-corals with feeding rates of up to 0.58 £
0.35 bites/min (Pereira et al., 2012). Nevertheless, these preliminary studies were more
naturalist and did not systematically test for ontogenetic changes on S. zelindae resource
use. Therefore, the relationship of their ontogenetic foraging activity and feeding selectivity
is still unclear. The ecological role of parrotfish on tropical coral reefs is evident; hence, it is
critical to better understand ontogenetic changes in their feeding patterns and the different
effects parrotfish have on benthic communities according to size. Adults are normally
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targeted by local fisheries and the large bodied individuals could be the most effective
individuals controlling algal growth. However, this has never been analysed for Scarus
individuals in the Southwestern Atlantic Ocean. If S. zelindae display ontogenetic changes
in feeding activity and foraging preferences, then individuals of different life phases could
have a disproportional ecological role in shaping benthic communities.

The present study aims to understand the ontogenetic foraging activity and feeding
selectivity of the endemic parrotfish S. zelindae on tropical coral reefs. To achieve this goal,
the foraging intensity and feeding behaviour of juvenile, initial phase (IP) and terminal
life phase (TP) individuals were recorded using behavioural observations. The benthic
composition at foraging sites was also examined to determine resource availability relative
to foraging behavior. Specifically, we analysed if individuals of different life phases selected
food resources according to substratum availability or whether they showed preferences
for particular food types.

METHODS

Study area

The studied coral reef complex is located within the limits of the “Costa dos Corais”
marine protected area (MPA) which encompasses 135 km of coastline in Pernambuco
State of northeastern Brazil. The “Costa dos Corais” MPA was the first Brazilian federal
conservation area that included coastal reefs and is the largest multiple-use MPA in the
country (Maida, & Ferreira, 1997). Deeper reefs (from 25 to 35 meters depth) (8°49’S and
35°03'W) were used as sampling sites, which comprised a series of continuous reef tracts
with sand intervals and high structural complexity. The benthic community is mainly
composed of epilithic algae matrix, coralline algae, sponges and hard corals Video S1).
Deeper reefs were used as sampling sites considering that the shallow reefs have been
extremely impacted by spearfishing and it is currently difficult to observe S. zelindae
terminal phase individuals in these areas (PHC Pereira, pers. comm., 2016). Therefore,
these deeper reefs represent a unique opportunity to analyse parrotfish ontogenetic foraging
activity and feeding selectivity because all the different life phases have a representative
abundance for behavioural observations.

Foraging activity

Feeding rates (bites per minute) of S. zelindae individuals were obtained from animal
focal sampling that was always carried out by one observer (Altmann, 1974). Dives were
conducted by SCUBA from December 2014 to March 2015. Individuals were observed
over 5 min intervals, except when the individuals evaded the observer. On average, a
minimum distance of 5 meters was maintained between the observer and each fish in
order to reduce observer impact on fish behaviour (Pereira, Leal ¢» Araiijo, 2016) whilst
increasing identification accuracy of feeding selectivity. During each observation session
divers recorded feeding rates (total number of bites) of each individual and the substratum
type where feeding was observed. Fish size (total length - TL) was visually estimated and
individuals were categorized as juvenile, initial and terminal phase according to size.
Individuals were also classified into different life phases based upon variation in their
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Figure 1 Scarus zelindae life phase classification highlighting different color pattern. (A) Juvenile;
(B) Initial Phase (IP) and (C) Terminal Phase (TP). Photographs by PHC Pereira.

patterns of coloration (Fig. 1). A total of 20 individuals from each life phase (juvenile,
initial and terminal phase) were recorded during 5 min observation sessions totalling
300 min of direct observation.

Benthic community

The benthic composition was also analyzed in the reef complex where the foraging
behaviour of S. zelindae was recorded, using the point intercept transect method (Meese
& Tomich, 1992). A 20 meter transect belt was used in which the diver registered the
substrate at 0.5 m intervals. In order to avoid temporal variations in resource availability
all the benthic surveys were performed during the same dives and same period as feeding
behavioral observations (from December 2014 to March 2015). A total of 20 randomly
distributed belt transects were conducted along the top of the reef at an average depth of
25 m. The benthic community was classified using the categories: epilithic algal matrix
(EAM), coralline algae, sand, sponge, hard coral, macroalgae and bare rock.
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Data analyses

One-way analysis of variance (ANOVA) was used to compare mean feeding rates of

S. zelindae individuals at different life phases. Post hoc comparisons based on Tukey HSD
test were subsequently made for the significant factors using Statistica 10 (StatSoft Inc.
Tulsa, OK, USA). Linear regressions were used to compare the bite rates (bites/min!)
with parrotfish body size (cm).

To test differences between the relative foraging frequency of S. zelindae individuals on
different benthic categories we applied a permutational multivariate analysis of variance
(PERMANOVA). S. zelindae foraging frequency data on different benthic categories were
log transformed (X 4 1) and reassembled in a Bray-Curtis similarity matrix. Unrestricted
permutation of raw data was used as the best technique for analyzing one factor. A
permutational analysis of multivariate dispersions (PERMIDISP) was also applied to
analyze whether the multivariate variations were homogeneous or not (Anderson, 2001;
Anderson, & Walsh, 2013). PERMANOVA and PERMIDISP were conducted using Primer-
e 6 PERMANOVA+1.0 software (Ver. 6.1.14) 227 (Anderson ¢ Gorley, 2007).

Principal component analysis (PCA) was used to investigate correlations between
S. zelindae feeding preferences and individual life phases, with the total number of bites
per substratum category used as the main data. All the data were standardized and
log-transformed prior to multivariate analyses. PCA was performed using Primer-e 6
PERMANOVA+1.0 software (Ver. 6.1.14).

Ivlev’s electivity index (Ivlev, 1961) was calculated to examine the ontogenetic feeding
selectivity of S. zelindae individuals. The index was calculated using the following equation:

E="lTPi

ri+pi
where electivity (E;) for each benthic category i was calculated from the proportional
availability of that benthic category (p;) in the field and the proportional of feeding bites on
that benthic category (r;). The values of E can vary from —1.0 to +1.0 with negative values
indicating avoidance, zero indicating random selection, and positive values indicating
active selection. In order to estimate 95% confidence intervals of Ivlev’s index values,
bootstrapping procedures (9,999 simulations) were performed on individual feeding rates
(keeping resource availability constant). Variability analyses were performed following
procedures used by Smith (1982).

RESULTS

Feeding activity

The feeding rate of S. zelindae was 34.6 + 6.6 bites/min~! (mean =+ s.d.) for juveniles,
17.9 &£ 4.9 for initial phase and 14.9 &+ 4.6 for terminal phase individuals. Significant
differences in foraging rates were observed among life phases (ANOVA; F = 224.56;

p < 0.01). Tukey HSD test showed significant differences between juveniles and initial
phase (p < 0.01) and also between juveniles and terminal phase (p < 0.01). However, no
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Figure 2 Linear regression of S. zelindae feeding rates (bites/min~"') compared with fish size (cm).
Each point represents an individual. Size of S. zelindae ranged from 2.5 cm to 36 cm.

significant difference in foraging rate was observed between initial phase and terminal
phase (p=0.10).

There was a significant negative relationship between fish size (cm) and feeding rates
(bites/min~!) for S. zelindae individuals (R? = 0.51; p =0.008) indicating a reduction in
feeding rate with increasing fish size (Fig. 2).

The relative foraging frequency of S. zelindae was highest on the EMA and this was similar
for all life phases; juveniles (86.6%), initial phase (88.1%) and terminal phase (88.6%)
(Fig. 3). On the other hand, sponge was the second highest preferred feeding substratum
for juveniles (11.6%) foraged at a higher percentage compared with other life phases:
initial phase (4.5%) and terminal phase (1.3%). Terminal phase individuals displayed a
considerable foraging frequency on coralline algae (4.3%) and macroalgae (4.5%) (Fig. 3).
No significant difference was recorded for the relative frequency of foraging comparing
S. zelindae individuals at different life phases (PERMANOVA; Pseudo F =1.31; p=0.21).

The PCA analysis of S. zelindae foraging preference explained 98.1% of the total
variability; 76.8% PC1 and 21.4% PC2, respectively. The eigenvalue for PC1 was 262 and
73 for PC2. The analysis confirmed that EAM was the most used food resource for all life
phases (Fig. 4). However, for juvenile individuals sponge was the second most foraged
resource, whereas, in terminal phase individuals it was macroalgae (Fig. 4).

Substratum availability

The benthic substratum at feeding sites of S. zelindae was mainly composed of EAM
(38.0%), coralline algae (18.7%) and sand (13.5%), which together represented more than
70% of the benthic composition. The less representative categories were rock (5.2%) and
macroalgae (7.2%) which represented less than 15% of the benthos (Fig. 3).
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Figure 3 Relative frequency in foraging of S. zelindae individuals on different substratum per life phase
and relative abundance of the benthic composition (resource availability).

Foraging selectivity

S. zelindae individuals at different life phases foraged selectivity on different benthos.
Based on the Ivlev’s electivity index, juveniles selected EAM and sponge, whereas initial
phase and terminal phase individuals selected only EAM (Fig. 5). The benthic categories
sand, bare rock, coralline algae and hard coral were avoided completely by all life phases.
Sponge and macroalgae were also avoided, yet to somewhat different degrees by different
life stages (Fig. 5).

DISCUSSION

Parrotfish populations are under intense decline in the southwestern Atlantic Ocean,
with many species suffering up to 50% reduction in total abundance in recent decades
(Floeter et al., 2008; Bender et al., 2014). Despite this evident decline, baseline knowledge
on parrotfish ecological role, such as foraging activity and ontogenetic changes in resource
use are still scarce in the Atlantic Ocean outside the Caribbean. Our findings demonstrate
that the feeding rate of S. zelindae decreases as body size increases. Additionally, EAM
was the preferred foraging benthos for all life phases, with lower rejection of sponge in
juveniles and macroalgae in terminal phase individuals. It is worth mentioning that Ivlev’s
electivity index (i.e., foraging selectivity) accounts for resource/food availability, and thus
characterizes true foraging preferences. Understanding variation in foraging can inform
how fishing, which targets adult parrotfish, alter the ecological role of parrotfishes, which
normally prevents macroalgae from displacing corals, thereby enhancing the resilience of
coral reefs. Removal of large parrotfish due to fishing can cause a release of grazing pressure
on EAM, thus allowing macroalgae to grow and outcompete corals.

Ecomorphological patterns of many southwestern Atlantic Ocean parrotfish species
were recently analysed by Lellys (2014) using premaxilla, dentary and mouth configuration
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Figure 4 Principal components analysis with data clustered by types of substrata used as a food
resource for S. zelindae at different life phases.

data. Lellys (2014) determined that the weaker and more mobile oral apparatus of smaller
S. zelindae individuals classify them as scrapers. Additionally, the broad cutting edges of
teeth in small S. zelindae individuals increases the contact area of the jaw, spreading the
force over the substrate during feeding and therefore reducing bite force (Bellwood ¢
Choat, 1990; Lellys, 2014). In contrast, according to Francini-Filho et al. (2010), S. zelindae
terminal phase individuals could be classified as excavators, feeding at low rates and
removing large portions of the substratum using their robust jaws, leaving noticeable scars.
Our results confirm the findings of Francini-Filho et al. (2010) that the lowest feeding rates
were observed for terminal phase individuals that foraged primarily on EAM and coralline
algae. Larger parrotfish may feed at lower rates because they are able to acquire large
amounts of food per bite, taking fewer yet larger bites.

Additionally, we have observed large S. zelindae individuals removing portions of
the substratum, leaving feeding scars (e.g., Siderastrea stellata coral colonies). Although
variations in S. zelindae bite size were not analysed in the present study, terminal phase
individuals could have a greater effect on benthic communities compared to juveniles and
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the benthos composition at foraging site. Bars in the figure represent 95% confidence intervals.

initial phase individuals due to larger jaw size, as previously shown for other parrotfishes
(Bonaldo, Hoey ¢ Bellwood, 2014). Hence, larger bodied individuals are not only likely
taking larger bites but those bites are likely having a larger impact on the benthos due to
force/bite intensity. Future research using bite excavation measurements could elucidate
this impact on benthic communities (e.g., bioerosion) and test the hypothesis that adults,
normally targeted by local fisheries, could be the most effective individuals controlling
algal growth.

Terminal phase individuals recorded in the present study displayed lower feeding rates
compared to juveniles and initial phase individuals. This could be associated with patrolling
behaviour observed for larger parrotfish size classes, on a few occasions during this study,
which is likely to reduce their feeding rates once energy is allocated for mating and patrolling
(Van Rooij, Kroon ¢ Videler, 1996; Bonaldo et al., 2006). Haremic parrotfish also tend to
increase their territory size and therefore more time should be used to protect this area
(Mumby & Wabnitz, 2002). Additionally, it has been suggested recently that observer
presence could reduce feeding rates of fishes on coral reefs (Pereira, Leal &~ Aratijo, 2016).
Consequently, the impact of observer presence could be intensified on terminal phase
individuals who are normally patrolling much more often than individuals of other size
classes.

Spatial variation in the availability of benthic resource could potentially influence
S. zelindae feeding preference during the present study. Therefore, we have assessed the
benthic community in foraging areas, to understand the ontogenetic selective patterns
according to resource availability. According to Bonaldo, Hoey ¢ Bellwood (2014) the
availability and productivity of surfaces covered by EAM, the main feeding substratum for
most parrotfish, may directly influence the distribution and feeding habitats of parrotfish.
It is likely that EAM could be the most important food resource for the Brazilian endemic
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parrotfish throughout the lifespan of the specie due to their natural preference for and
availability of EAM. However, juveniles also foraged at sponges. The use of sponges as a
food resource for juvenile parrotfishes is uncommon; therefore, juveniles could be foraging
on the mucus associated with the sponges as well as ingesting algae biofilm that grow
on top of sponges (Randall & Hartman, 1968; Wulff, 2006). Similarly, Pereira et al. (2012)
observed juveniles of S. zelindae feeding on Millepora spp. fire-corals on Brazilian coral
reefs.

Fishing intensity on coral reefs (mainly spearfishing) normally targets larger, terminal
phase parrotfish. According to Nunes et al. (2012) recreational spearfishing often captures
endemic and larger herbivorous species in Brazilian waters, such as the endangered species
Scarus trispinosus (Labridae). During many years of diving on the coral reefs analysed in the
present study, only a few rare individuals of Scarus trispinosus were recorded. Additionally,
following interviews conducted with the local community in 2015, a dramatic reduction in
the abundance of this endangered species was reported (PHC Pereira, 2014, unpublished
data). Hence, Scarus trispinosus is becoming functionally extinct in Pernambuco state
outside of non-take zones, which is a troubling trajectory that S. zelindae population seems
to also be following. The herbivore community at the deeper reefs (>25m) was previously
analysed in a pilot study and the three most current abundant species were Sparisoma
axillare (7.01 ind./100m?), Scarus zelindae (6.28 ind./100m?) and Sparisoma frondosum
(3.39 ind./100m?) (PHC Pereira, 2015, unpublished data). By removing larger bodied
individuals of parrotfish we could be losing a unique and critical functional group on
southwestern Atlantic Ocean.

The creation of new marine protected areas ranks within priority actions for reef fish
conservation in Brazilian waters, due to high levels of endemism (up to 30% in reef
fishes) (Floeter et al., 2008; Schiavetti et al., 2013). However, effective management of the
few existing marine protected areas in Brazil represent the most urgent conservation
action to protect S. zelindae and other large Brazilian endemic parrotfish (Francini-Filho
et al., 2010). Despite the fact that the reefs we studied are included in the largest Brazilian
marine protected area (MPA), the abundance of large herbivores has been dramatically
reduced in recent decades. This trend highlights the fact that the creation of more MPAs is
probably not the most effective way to increase protection of endangered coral reef fishes.
Accordingly, it is important to increase surveillance and monitoring of existing MPAs.
Environmental education programmes and alternative livelihoods for local communities
are also important strategies to reduce fishing pressure on endangered parrotfish species
as previously observed in other developing countries such as Kenya (Cinner et al., 2012;
Carter & Garaway, 2014), and Thailand (Bennett ¢~ Dearden, 2014).

Much discussion has arisen, mainly in the last decades, regarding the abundance of
parrotfishes and the resilience of coral reef ecosystems. Nevertheless, Adam et al. (2015)
suggested in a recent review that the evidence is mixed in showing that increases in
herbivory can promote coral recovery on Caribbean reefs. The impacts of herbivores on
coral reef ecosystems will vary greatly in space and time and will depend on herbivore
diversity and species identity. Additionally, the findings of Suchley, McField ¢ Alvarez-Filip
(2016) contrast with the top-down herbivore control paradigm of coral reef and suggest
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that the role of external factors could be important in making environmental conditions
more favourable for algal growth. Brazilian coral reefs are dominated by high abundance
of macroalgae which seems to explain a large proportion of variance in reef fish abundance
and species richness (Pereira et al., 2014). Therefore, it is critical to better understand
the ecological role of parrotfishes and the ontogenetic influence of these species on algal
dominated reefs throughout the southwestern Atlantic Ocean.
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