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Abstract 

IDENTIFYING optimal nitrogen application rates that reduce nitrogen loss without adversely 
reducing yields would benefit growers and the environment. In order to identify optimal 
nitrogen application rates throughout the Tully mill area, it is important to identify sub-regions 
that share similar topographical, soil, farm management, productivity or climatological 
attributes. While current SIX EASY STEPS nitrogen guidelines enable a hierarchy of district, 
soil, block and crop nitrogen requirements for sugarcane, it would be beneficial for 
management zones to also take spatial climate variability information into account. 
Unfortunately, spatial climate variability within a region, is generally not considered when 
developing nitrogen management practices. The objective of this paper was to identify sub-
regions within the Tully mill area based on climatological attributes as a first step towards 
better informing nitrogen management decisions. Rainfall, radiation and temperature data were 
obtained on a 0.05 by 0.05˚ grid (approximately 5 km by 5 km) for sugarcane-growing areas 
within the Tully Mill region. A K-means clustering algorithm was then used to cluster these 
grid cells into distinct sub-regions based on seasonal or annual climate data. Two distinct sub-
regions were identified based on total annual rainfall and annual average daily radiation data. 
These sub-regions were identified as a northern and southern sub-region, divided roughly along 
the Tully River. The northern sub-region was characterised by lower radiation, lower 
temperatures and higher rainfall than the southern sub-region. Crop simulation models will 
now be able to use this knowledge to assess if nitrogen management plans should vary between 
the two sub-regions in Tully. 
Introduction 

Climate is an important component for planning farming, harvesting, transport, milling 
and marketing activities in the Australian sugar industry. Climate varies considerably from 
region to region in the Australian sugar industry. For example, the cooler temperatures in New 
South Wales is linked with two-year-old crop cycles in this region (Hughes and Muchow, 
1998). In drier regions like Bundaberg and the Burdekin, irrigation management is a priority 
issue (Everingham et al., 2008; Flynn, 2015). However, in wetter regions such as Tully in the 
Wet Tropics where the average annual rainfall exceeds 4000 mm, priority issues include 
harvest management scheduling and denitrification due to anaerobic conditions associated with 
water logging (Skocaj et al., 2013). 

Whilst climate will vary substantially from region to region, it can also vary within a 
region. One well known example of this is in the Herbert sugarcane growing region. Garside 
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(2013) found that rainfall in November had a lesser effect on cane yields in some Herbert 
districts than others. Specifically, in the southern Ingham Line district cane and sugar yields 
were less affected by seasonal rainfall (Garside et al., 2014). In his review of productivity 
trends in the Herbert, Garside (2013) recommended that district and sub-district rainfall 
differences be considered in developing management practices.  

Other studies have also recommended developing harvest management practices based 
on spatial rainfall variability within a region. Sexton et al. (2015) examined the impact of 
climate change on harvest management using climate projections for 2050 within 7 sugarcane-
growing regions in Australia. For the Herbert region Sexton et al. (2015) found that the 
projected number of unharvestable days increased in northern districts, but decreased in the 
southern districts. These authors further suggested that adaptation strategies should take such 
factors into consideration. For example, preferential scheduling of harvests would be beneficial 
in areas with a greater risk of increased days when harvests would not be possible due to wet 
conditions. Prior to Sexton et al. (2015), Higgins and Muchow (2003) used mathematical 
optimisation methods to propose a new harvest management system that varied spatially within 
regions. They found that industry profitability could be increased by up to A$157/ha for the 
Invicta mill if harvest scheduling was managed based on sugar accumulation profiles on a farm 
by farm basis. Further, they found that profitability for individual districts within a region could 
vary depending on local rainfall patterns throughout the growing season. 

Although the impact of climate variability within a region on harvest management has 
been explored, the impact on nitrogen (N) fertilizer management decisions remains relatively 
unexplored. For example, the SIX EASY STEPS N guidelines are currently based on a soil 
specific nitrogen mineralization index and district yield potentials (Schroeder et al., 2010) but 
does not consider climatic differences within a region. Recently, Skocaj (2015) has shown that 
optimal N application rates can differ due to temporal climate variability, suggesting that N 
fertilizer rates could be reduced in years with a high spring-summer rainfall in the Tully region. 
It stands to reason then that spatial climate variability may also provide guidance for N fertilizer 
management decisions.  

While the SIX EASY STEPS N guidelines enable a hierarchy of district, soil, block and 
crop N requirements for sugarcane, it would be beneficial for management zones to also take 
into consideration spatial climate variability within a region. The objective of this paper was to 
identify climate zones within the Tully region as a first step towards developing N management 
guidelines that are informed by local spatial climate variability.  
Materials and methods 

Data 
The Tully mill region was identified as spanning from latitude 17.75˚ S to 18.30˚ S and 

from longitude 145.65˚ E to 146.10˚ E (Figure 1 (a)). Sugarcane-growing areas in the Tully 
mill region were identified on an 0.05 by 0.05˚ (approximately 5 x 5 km) grid (Figure 1 (b)). 
In total 52, 0.05 by 0.05˚ sugarcane grid cells were identified.  

Daily climate data for each 0.05 by 0.05˚ grid cell were obtained from the Scientific 
Information for Land Owners (SILO),  Data drill data base (Jeffrey et al., 2001). This database 
contains daily climate data spatially interpolated from climate station records. Daily rainfall, 
temperature and solar radiation data were obtained for the 40 year period from 1975 to 2014.  

For each sugarcane-growing grid cell, mean daily maximum temperature, mean daily 
minimum temperature and mean daily radiation as well as total rainfall were calculated for 
summer (Dec – Feb), autumn (Mar – May), winter (Jun – Aug), spring (Sep – Nov) and annual 
(Jan – Dec).  For each sugarcane growing grid cell, the median of the 40 years of data was 
calculated for use in the spatial clustering analysis. This gave 20 climate based variables for 
use in the analysis (five ‘seasons’ (summer, autumn, winter, spring, annual) * four climate 
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variables (total rainfall, mean max temperature, mean minimum temperature, mean radiation)) 
each with 52 observations (0.05 by 0.05˚ sugarcane grid cells). 

 

Fig. 1 ― A map of the Tully mill area (a) and sugarcane-growing land in the Tully mill area 
identified on a 0.05 by 0.05˚ grid (b). 

 
Cluster analysis  
K-means clustering (Hartigan and Wong, 1979) was used to cluster grid cells based on 

the 20 possible predictor variables. K-means clustering is method of finding K clusters of 
observations in a set of unlabelled data (Hastie et al., 2013). The number of cluster centers (K; 
means) must be chosen by the user. The K-means algorithm then moves the cluster centers 
iteratively to minimize the within cluster variance, usually using the Euclidean distance (a least 
squares approach). The iterative procedure can be described in two steps (Hastie et al., 2013): 

1. For each center identify the subset of points that are closer to that center than any 
other. 

2. Compute the mean for each predictor variable in each cluster, with the new vector 
of means becoming the new cluster center.  

Steps 1 and 2 are repeated until the cluster centers do not change.  
While several K-means algorithms can be used, the Hartigan-Wong algorithm performs 

well and has the advantage of ensuring that no single observation switching clusters will 
decrease the variance further (Hastie et al., 2013). K-means has been used in defining rainfall 
zones in the East Asia monsoon region (Awan et al., 2015) as well as identifying in-field 
management zones for crops such as cotton in the United States of America (Boydell and 
McBratney, 2002) and sugarcane in Australia (Cupitt and Whelan, 2001). 

The clustering algorithm “kmeans” in the R “stats” package (R Core Team, 2014), was 
applied to build 10 cluster models (Table 1). Models were built using all climate variables for 
each season (e.g. summer rainfall, summer radiation, summer maximum temperature, summer 
minimum temperature) and annually (e.g. annual total rainfall). Models were then built using 
only rainfall and radiation variables together as these are believed to have the most influence 
on yields in the Tully mill area.  
 

Table 1 ― Design matrix of K-means algorithms analysed in this report. Numbers refer to 
the total number of predictor variables given to the K-means algorithm. 
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Season 
All climate 

 variables  

Rainfall and Radiation 

 variables 

Summer 4 2 

Autumn 4 2 

Winter 4 2 

Spring 4 2 

Annual 4 2 

 

There are many different indices that can be used to identify the “best” number of 
clusters. For each analysis of the design matrix (Table 1) the best number of clusters was found 
using the “NbClust” package (Charrad et al., 2014) in the R statistical analysis program. The 
NbClust package provides 30 indices for determining the ideal number of clusters. The final 
recommended number of clusters is the mode number of clusters recommended by all of the 
indices.  

The NbClust analysis requires the specification of the distance measure (set to 
Euclidean by default), minimum and maximum number of clusters (set to two and 10 
respectively), method of clustering (K-means) and indices to be calculated. The best number 
of clusters was recorded for each analysis. The “kmeans” function (R Core Team, 2014), in the 
R statistical package was then used to perform each cluster analysis from Table 1. For all 
analyses predictor variables were standardized using the “scale” function in the R statistical 
analysis program. Scaling the data removed any effect of difference in scale between the 
climate variables. The resulting clusters were plotted spatially. Graphical analysis of the 
modelled clusters was used to check the sensibility of the modelled clusters and identify the 
most appropriate cluster model. The differences between the climatic variables for each sub-
region identified by the final cluster model were then explored using boxplots. Significant 
differences in climate variables between clusters were identified using a Kruskal-Wallis test. 
Significance was tested at the 0.05 level. 
Results and discussion 

Identifying number of clusters 
When all climate variables were considered, three was identifed as the best number of 

clusters for each season except spring. Using spring data, a two cluster solution was identified 
as the best number of clusters (Table 2). When only radiation and rainfall variables were 
considered, data from individual seasons were split between three clusters when using summer 
or spring data and two clusters when using autumn or winter data. The low number of clusters 
chosen is advantageous as it is easier to interpret two or three larger spatial clusters than to 
interpret a large number of small spatial clusters. 
 

Table 2 ― Recommended number of clusters from NbClust. 
Season All Climate Variables Rainfall and Radiation Variables 

Summer 3 3 
Autumn 3 2 
Winter 3 2 
Spring 2 3 
Annual 3 2 
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Spatial plot of clusters 
Clustering seasonally on all climate variables 
Spatial patterns of the three cluster solutions for summer (Figure 2 (a)), autumn (Figure 

2 (b)), winter (Figure 2 (c)) and annual (Figure 2 (e)) were relatively consistent. Clusters 1 and 
2 were spatially continuous representing a north-eastern cluster (blue) and south-western 
cluster (red). The third cluster (green) consisted of the same six grid cells in each season. By 
comparison with Fig 1. It is clear these grid cells were located on the edge of local mountains 
and may represent higher elevations compared to the other clusters. The same six grid cells 
formed the second cluster (red) for spring data (Figure 2 (c)).  

Comparison of individual climate variables between the clusters suggested that the 
north-eastern clusters tended to be characterized by higher rainfall and lower radiation 
compared to the south-western clusters (data not shown). The clusters consisting of the six 
mountainous grid cells tended to be characterized by lower maximum and minimum 
temperature variables than either the north-eastern or south-western clusters (data not shown).  
The interpretation of the small mountainous clusters should be considered with care. Due to 
the interpolated nature of the climate data used in the analysis (Jeffrey et al., 2001), and the 
relatively course grid size, these cells may be representing climate features of a higher elevation 
than any crop is actually being grown. 

 



6 
 

 
Fig. 2 ― Spatial clusters in the Tully mill area for (a) summer, (b) autumn (c) winter, (d) 

spring and (e) annual. Clusters were based on all climate variables, using the ‘best’ number of 
clusters identified. 

 
Clustering on rainfall and radiation variables 
FigureSpatial patterns of the two cluster solutions for autumn (Figure 3 (b)), winter 

(Figure 3 (c)) and annual (Figure 3 (e)) were consistent. Clusters 1 and 2 were spatially 
continuous representing a north-eastern cluster (blue) and south-western cluster (red).  

The three cluster solution for spring (Figure 3 (d)), had a more direct north/south divide 
between the two primary clusters than in other seasons. The small third spring cluster (green) 
consisted of the same six mountainous grid cells as the three cluster solutions using all climate 
variables (Figure 2). In comparison, the three cluster solution for summer rainfall and radiation 
data (Figure 3 (a)) consisted of three more evenly divided clusters. Comparison of the rainfall 
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and radiation data suggested that rainfall decreased from the northern most to southern most 
cluster while radiation increased (data not shown). 
 

 

Fig. 3 ― Spatial clusters in the Tully mill area using rainfall and radiation climate variables 
for (a) summer, (b) autumn, (c) winter, (d) spring and (e) annual climate data. Clusters 

represent the ‘best’ number of clusters for each season (Table 2). 

Analysis of final clusters 
The final clusters were chosen based on the annual rainfall and radiation data model as 

shown in Figure 3 (e). The final model was used to describe two clusters based on the 
suggestion of the NbClust algorithm (Table 2) and expert industry opinion. Spatially, the Tully 
region was split into southern and northern climatic sub-regions (Figure 4 (a)). Geographically, 
these sub-regions split roughly along the Tully River. 

The southern sub-region (red) was characterised by higher radiation and lower rainfall 
than the northern sub-region (blue) with an obvious difference in the distribution of annual 
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rainfall, radiation and maximum temperature between the two sub-regions (Figure 4). 
However, there was little graphical evidence for a difference in annual minimum temperature. 
Results from the Kruskal-Wallis test confirmed that differences in annual rainfall, radiation 
and maximum temperatures were significant at the 0.05 level, while there was no significant 
difference in annual minimum temperature. Therefore, the northern sub-region can be 
described as the area north-east of the Tully River consisting of higher rainfall, lower radiation 
and lower maximum temperatures. The southern sub-region can then be described as the area 
south of the Tully River consisting of lower rainfall and higher radiation and maximum 
temperatures. This agreed with local industry knowledge. 

Boxplots of annual maximum (Figure 3 (d)) and minimum (Figure 3 (e)) highlighted a 
small number of grid cells with particularly low temperature values (points). These ‘outliers’ 
were identified as the six grid cells located closer to the mountain ranges. The same six grid 
cells that make up the smaller cluster of three cluster solutions such as those shown in Figure 
2 and Figure 3 and the two cluster solution for spring in Figure 2 (c). This suggests that if the 
identified two cluster solution were used in decision support tools, analysis for growers close 
to the mountain ranges should be considered carefully. Unfortunately, one of the limitations of 
the K-means clustering approach is the mutually exclusive nature of the clusters. As real 
climate patterns are unlikely to have sharp divisions between clusters locations, future research 
could consider less constrictive clustering algorithms. For example, fuzzy K-means has been 
used in defining climatic zones in recent research (Bharath and Srinivas, 2015). 
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Figure 4―Climatic sub-regions in the Tully mill area using annual rainfall and radiation 
climate data. (a) Spatial plot showing the northern (blue) and southern (red) sub-regions. 

Figures (b) to (e) contain boxplots of median (1970:2015) annual climate variables for all 0.5 
by 0.5˚ grid cells in the southern (red) and northern (blue) sub-regions. Boxplots show: (b) 
Total rainfall, (c) average daily radiation (d) average daily minimum temperature and (e) 

average daily minimum temperature. Differences in rainfall, radiation and maximum 
temperature were significant at the 0.05 level based on the KW test. 

 
Given that rainfall in the Tully region has been found to influence optimum nitrogen 

levels (Skocaj, 2015), growers in lower rainfall areas may be able to consider applying lower 
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rates of nitrogen fertilizer than growers in higher rainfall areas. The two cluster solution 
identified should therefore be considered when developing new fertilizer best management 
practices for the Tully region. Similar analysis could be applied to other sugarcane growing 
regions such as the Herbert, where it is likely that climatic sub-regions exist. The analysis 
described in this paper could easily be extended to other primary industries. 
Conclusions 

To identify optimal N application rates throughout the Tully mill area it is important to 
identify sub-regions that share similar climate attributes. Two distinct sub-regions were 
identified based on total annual rainfall and radiation data together. These sub-regions were 
identified spatially as a  southern and northern sub-region, divided roughly by the Tully River. 
The southern sub-region was characterised by lower rainfall and higher radiation compared to 
the northern sub-region agreeing with local knowledge. Sub-regions within the Tully mill area 
could be further refined by including other attributes such as soil or topography. Future work 
will assess if crop model simulations indicate different N management strategies for each sub-
region. The research outlined in this paper, will provide a valuable starting point for these 
simulations to be conducted. Although this paper has focused on identifing climate zones to 
improve nitrogen management, knowledge of regions that differ in climate can also be useful 
for improving harvesting management and identifying varieties that are better suited for 
different climates. The methodology outlined in this paper is easily extended to other regions 
in the Australian and international sugarcane growing regions.  
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