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Nematode volume and surface area are usually based on the inappropriate assumption that the animal is cylindrical. While
nematodes are approximately circular in cross section, the radius varies longitudinally. We use standard morphometric data to
obtain improved estimates of volume and surface area based on (i) a geometrical approach and (ii) a Bézier representation of
the nematode. These new estimators require only the morphometric data available from Cobb’s ratios, but if fewer coordinates are
available the geometric approach reduces to the standard estimates. Consequently, these new estimators are better than the standard
alternatives.

1. Introduction

The physiological activities of nematodes, such as respiration
or excretion/secretion, have been expressed on various bases,
including wet or dry weight [1], protein [2], surface area
[3], and nematode number [4]. Each of these has a distinct
significance. Dry weight is indicative of the total amount of
material comprising the nematode, including that which is
metabolically inactive. Wet weight has the added complica-
tion that there is residual water outside the animal which is
not related to its physical structure. Protein, commonly used
by biochemists, depends on the specific assay employed, since
protein properties and nonprotein contaminants interfere
with the chemistry of each assay differently [5]. Surface area is
especially relevant to transport studies [3, 6], but it is difficult
to estimate. Nematode number is relatively easily estimated,
but differences in the size of individuals can obscure the
significance of the data reported.

Nematodes vary greatly in morphology between species
[7–9] and life cycle stages, and the morphology of parasitic
nematodes can depend on the host [10]. For example, 𝐿

3

Teladorsagia circumcincta essentially has a cylindrical body
tapering to relatively pointed ends, the posterior tip being

more pointed than the anterior [8, 11]. Whereas the adult
male, for example, is substantially larger and has a bursa at the
posterior that is wider than rest of the body of the nematode,
other species have a posterior reminiscent of a needle.

The morphometry of nematodes is often based on the
length and width of the body [8, 12, 13] or of specific
anatomical features [14]. Nematodes are frequently described
as cylindrical; among many examples, Sims et al. [3, 6]
estimated the surface area and volume of Ascaris suum
and adult Haemonchus contortus from the length and width
assuming the nematode to be cylindrical. Andrássy’s [15]
volume estimate is also based on that of a cylinder,

𝑉
𝐴

≈
4

5
𝜋𝐿 (

𝐷

2
)

2

, (1)

but includes a correction factor. Holovachov [16], citing the
work of Tsalolikhin, estimated the volume of a nematode
using

𝑉
𝑇

=
1

24
[𝜋𝐿 (𝑑

2
+ 𝑑𝐷 + 𝐷

2
) + 𝜋𝐿𝐷

2
] , (2)

where 𝐿, 𝐷, and 𝑑 are the length, maximum diameter, and
labial region diameter, respectively. Of course, nematodes are
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none of these shapes, so a means of representing the variety
of morphologies that better describes the surface area and
volume is required. Here we provide two complementary
approaches to this problembased on commonmorphometric
measurements.

2. Common Morphometric Measurements

The commonly used morphometric measurements [17–19]
relate the distance between the anterior of the nematode and
particular anatomical features (𝐿

𝑖
) and the diameter (𝐷

𝑖
) of

the nematode at each point. While Cobb [19] described his
approach as a “formula,” as Van Cleave [20] suggested, it is
really just a short-hand notation for particular ratios. The
specific anatomical points defined byCobb [19] are the base of
the pharynx or the buccal cavity (𝐿

1
and 𝐷

1
), the nerve ring

(𝐿
2
and 𝐷

2
), the end of the oesophagus or base of the neck

(𝐿
3
and 𝐷

3
), the vulva in females or middle of the nematode

in males (𝐿
4
and 𝐷

4
), and at the anus (𝐿

5
and 𝐷

5
). Cobb

[19] reports the overall length of the nematode (𝐿) and 𝑙
𝑖

(= 𝐿
𝑖
/𝐿) and 𝑑

𝑖
(= 𝐷
𝑖
/𝐿) as a percentage. While these values

do not provide a complete description of the nematode, they
do provide a means of generating the characteristic shape of
the nematode as we describe here.

The more commonly used de Man indices [17–19] are
the ratio of the length to the greatest diameter (𝑎), the ratio
of the length to the length of the oesophagus (𝑏), the ratio
of the length to the length of the tail (𝑐), and the ratio
of tail length to radius at the anus (𝑐). These are usually
supplementedwith othermeasurements, but what is reported
varies considerably. Of course, some of Cobb’s ratios can be
expressed in terms of the de Man indices:

𝑙
3
= 𝑏
−1

,

𝑑
4
≈ 2𝑎
−1

,

𝑙
5
= 1 − 𝑐

−1
,

𝑑
5
=

2𝑐

𝑐

(3)

and in some cases other measurements make it possible to
calculate more of Cobb’s ratios. Interestingly, some authors
confuse de Man indices with Cobb’s ratios [22, 23].

While Cobb’s ratios are more comprehensive than the
de Man indices and they are still used [24–27], the latter
are in more widespread use. Fracker [28] suggested that
Cobb had never substantiated the consistency of his ratios
and pointed out that it is sometimes difficult to identify
some of the required anatomical features. Such problems
may represent an impediment to the use of Cobb’s ratios for
taxonomic purposes, but there is no such barrier to their use
in modeling the geometry of a nematode. In fact, providing
the measurement points that are distributed appropriately, it
may not matter particularly that they are made consistently.
However, the inadequacy of the de Man indices is indicated
by the frequency with which they are supplemented by other
measurements.

3. A Simple Geometric Model

For each nematode the volume (V) can be thought of com-
prising the volumes of the head (V

𝐻
), core (V

𝐶
), and tail (V

𝑇
),

V = V
𝐻

+ V
𝐶
+ V
𝑇 (4)

and a surface area 𝑎
𝑠
made up of the surface areas of the sides

of the head (𝑎
𝑠𝐻
), core (𝑎

𝑠𝐶
), and tail (𝑎

𝑠𝑇
),

𝑎
𝑠
= 𝑎
𝑠𝐻

+ 𝑎
𝑠𝐶

+ 𝑎
𝑠𝑇

. (5)

The surface area of the ends of the core must match the sur-
face area of the base of the head and of the tail as appropriate.
Of course, the length of these geometrical elementsmust sum
to the length of the nematode.

While nematodes are often treated as cylindrical, a slight
elaboration of this geometrical model is helpful. The frustum
of a cone has a volume and surface area given by

V =
𝜋ℎ

3
(𝑟
2

1
+ 𝑟
1
𝑟
2
+ 𝑟
2

2
) , (6)
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2
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2
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) , (7)

respectively, where 𝑟
1
and 𝑟
2
are the radii of the base and the

top of the frustum (so 𝑟
1

≥ 𝑟
2
) and ℎ is the height. It is easy

to see that if 𝑟
2
= 𝑟
1
, then the expressions reduce to those for

the volume and surface area of a cylinder. On the other hand,
if 𝑟
2
= 0, they reduce to those of a cone. In two dimensions,

as a nematode appears under the microscope, the perimeter
and area of the projection of the frustum are

𝑝 = 2 (𝑟
1
+ 𝑟
2
) + 2√(𝑟

1
− 𝑟
2
)
2
+ ℎ2, (8)

𝑎 = (𝑟
1
+ 𝑟
2
) ℎ, (9)

respectively. Applying these expressions to nematode mor-
phology provides a flexible and simple geometrical approach
that would incorporate both the standard cylindrical model
and Tsalolikhin’s estimator (2).

The structure defined by Cobb’s ratios can be viewed as
the sum of six separate geometrical elements:

V =

6

∑

𝑖=1

V
𝑖
, (10)

corresponding to those defined by the coordinates implicit in
the ratios. The surface area is the sum of the corresponding
surface areas less twice the surface area of circles correspond-
ing to the interfaces between these elements:

𝑎
𝑠
=

6

∑

𝑖=1

𝑎
𝑠𝑖

− 2𝜋 (𝑟
2

12
+ 𝑟
2

23
+ 𝑟
2

34
+ 𝑟
2

45
) , (11)

similarly for the projected area (𝑎) and the perimeter (𝑝).
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As a cone and a cylinder are simply particular cases of the
frustum of a cone (10)-(11), the corresponding expressions for
𝑎 and 𝑝 can be written:

𝑝 = 2(𝑟
0
+ 𝑟
𝑛
+

𝑛−1

∑

𝑖=0

√(𝑟
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)
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2
) , (12)
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Clearly, (12)–(15) can be extended easily to more than 𝑛 = 6

distinct geometric elements to obtain the natural expressions:

𝑃 = lim
𝑛→∞
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0
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𝑛
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(18)

𝑉 = lim
𝑛→∞

V = 𝜋∫

𝐿

0

𝑟
2
𝑑𝑙, (19)

since ∫𝑑𝑟 𝑑𝑙 = 0. Here, 𝑑𝑠 and 𝑑𝑙 are line elements
taken along the surface and midline, respectively, of the
nematode and 𝑟 varies along the length of the nematode. In
effect, Robinson [29] used a discrete version of (19) in his
calculations.

4. Least Squares Estimates of
the Bézier Representation

4.1. Bézier Curve Background. The Bézier curve associated
with 𝑛 + 1 points 𝑃

0
, 𝑃
1
, . . . , 𝑃

𝑛
is given by

C (𝑡) =

𝑛

∑

𝑖=0

P
𝑖
𝐵
𝑖,𝑛

(𝑡) , (20)

where 𝑡 ∈ [0, 1] and 𝐵
𝑖,𝑛

(𝑡) is a Bernstein polynomial given by

𝐵
𝑖,𝑛 (𝑡) = (

𝑛

𝑖
) 𝑡
𝑖
(1 − 𝑡)

𝑛−𝑖
. (21)

Of course, (20) can be written as C = BP and if P is known,
then (20) can be used to calculate the Bézier curve. The least
squares estimate of P is

P = (BB)
−1

BC (22)

[30], where C is a matrix containing the coordinates of
the morphometric data and, if necessary to adjust for the
importance of particular morphometric coordinates, this can
be rewritten as

P = (BWB)
−1

BWC, (23)

whereW is a diagonal matrix of weights.
The parametric representation of the nematode in C(𝑡)

can be used to provide an estimate of 𝑃, 𝐴, 𝑆, and 𝑉 using
well known expressions [31]:
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(24)

In implementing these calculations it is useful to recall that
the derivative of the Bernstein polynomial (21) is

𝑑

𝑑𝑡
𝐵
𝑖,𝑛 (𝑡) = 𝑛 (𝐵

𝑖−1,𝑛−1 (𝑡) − 𝐵
𝑖,𝑛−1 (𝑡)) , (25)

so that the derivative of (20) is

𝑑

𝑑𝑡
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P
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(𝑡)) . (26)

4.2. Application to Nematode Morphology. As an explicit
numerical example, the morphometric data provide 5 coor-
dinates defined as a fraction of the length of the nematode
which we supplement with two coordinates (0, 0) and (1, 0),
so in (21) 𝑛 = 6, 𝑖 = 0, 1, . . . , 6, and 𝑡 = 0, 1/6, 2/6, . . . , 6/6.
From this
B
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0 0 0 0 0 0 1
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Table 1: Comparison of estimates of 𝑝, 𝑎, 𝑎
𝑠
, and V for A. antarcticus [21] obtained using the cylindrical, Andrássy (1), and Tsalolikhin (2)

approximations [15, 16] and those reported here (12)–(15) and (24).The estimates from the Bézier representation were confirmed numerically
using (24).

p or 𝑃 (m) 𝑎 or 𝐴 (m2) 𝑎
𝑠
or 𝑆 (m2) V or 𝑉 (m3)

cylindera 1.229 × 10−3 8.64 × 10−9 2.75 × 10−8 9.77 × 10−14

Andrássyb — — — 7.82 × 10−14

Tsalolikhina 1.188 × 10−3 5.04 × 10−9 1.58 × 10−8 3.98 × 10−14

This work
Geometrical 1.204 × 10−3 7.13 × 10−9 2.24 × 10−8 7.15 × 10−14

Bézier 1.208 × 10−3 7.54 × 10−9 2.26 × 10−8 7.40 × 10−14
aThe expressions for 𝑝, 𝑎, and 𝑎𝑠 for these two approaches are obvious and are not reproduced here.
bIt is unclear how Andrássy’s approach can be applied to the estimation of 𝑝, 𝑎, and 𝑎𝑠.

which we reproduce here because it applies to every case
for which there are 7 morphometric coordinates. It is clear
from (20) and B that C(0) = P

0
and C(1)=P

6
. Cobb [21]

givesmorphometric data forAplectus antarcticus fromwhich,
including the supplementary coordinates,

C = 1

100
(

0 0.1 12.6 21 51 87 100

0 0.4 1.1 1.15 1.2 0.95 0
) , (28)

where the upper row of numbers represents the relative
position along the length of the nematode and the lower
row is the corresponding relative radius (note that Cobb [21]
specifies the diameter rather than the radius). Substituting
these into (22) yields estimates of the Bézier control points

P = 1

100
(

6.743 × 10
−13

−57.417 151.512 −155.854 127.245 87.37 100

1.701 × 10
−14

−1.543 5.829 −3.422 3.969 0.722 5.088 × 10
−16

) (29)

and writing (20) explicitly,

C (𝑡) = (

𝑥 (𝑡)

𝑦 (𝑡)
)

= P
0
(1 − 𝑡)

6
+ 6P
1
(1 − 𝑡)

5
𝑡 + 15P

2
(1 − 𝑡)

4
𝑡
2

+ 20P
3
(1 − 𝑡)

3
𝑡
3
+ ⋅ ⋅ ⋅ + 15P

4
(1 − 𝑡)

2
𝑡
4

+ 6P
5 (1 − 𝑡) 𝑡

5
+ P
6
𝑡
6
,

(30)

where P
𝑖
is the ith row of P. As C(𝑡) is expressed in

relative units it can be converted into dimensional form by
multiplying by 𝐿.

Plotting 𝑦(𝑡) against 𝑥(𝑡) (30) yields the Bézier curve
in the upper half of Figure 1(a). Since the nematode is
symmetrical the lower boundary is just −𝑦(𝑡) against 𝑥(𝑡),
which is also shown in Figure 1(a). At least two features of the
form defined by (30) are inappropriate: at the anterior end the
Bézier curve forms a pair of loops and at the posterior end
𝑑𝑦/𝑑𝑥 approaches zero. The former is a common feature of
polynomial interpolation throughmore than a small number
of points [32]. The latter is overcome by fitting a Bézier
curve clockwise through the coordinates on both sides of
the nematode (Figure 1(b)). This 13-coordinate extended
representation is reasonable at the posterior, but the Runge
effect is amplified at the anterior. However, it is clear from
Figure 1(b) that the lower surface is better described than the
upper surface. In fact all except the anterior supplementary

coordinate are described well by the lower curve. This
observation and the symmetry of the nematode prompted the
use of that part of the curve from the anterior supplementary
coordinate (1, 0) to the first of Cobb’s coordinates (0.001,
−0.004) to model both the upper and lower boundaries
of the nematode (Figure 1(c)). The dotted line underneath
Figure 1(c) indicates the portion of the Bézier curve that was
used to generate the upper side of the nematode by reflection
around the horizontal axis. The remainder of the anterior
boundary was completed by linear interpolation from the
anterior supplementary coordinate (0, 0) to (0.001, 0.004) and
to (0.001, −0.004).

5. Comparison of Estimates of 𝑝, 𝑎, 𝑎
𝑠
, and V

The geometric and Bézier representations of A. antarcticus
described here are bounded by the cylindricalmodel and they
enclose Tsalolikhin’s model (2) completely (Figure 2). As (2)
can be rewritten as

𝑉
𝑇

=
1

2

𝜋𝐿

3
[(

𝑑
2
+ 𝑑𝐷 + 𝐷

2

4
) +

𝐷
2

4
] , (31)

it is apparent that (2) represents an average of the volumes of a
cone (diameter𝐷 and length 𝐿) and a conical frustum (length
𝐿, diameters 𝐷 and 𝑑). Implicit in this geometrical approach
is the assumption that 𝐷 is located at the midpoint of a
nematode which gets thinner towards blunt and pointed ends
(presumably the anterior and posterior, resp.). Of course, this
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(a)
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(c)

Figure 1:The development of the unweighted Bézier representation
ofAplectus antarcticus.Themorphometric data of Cobb [21] (e) and
two supplementary coordinates (I, (0, 0) and (1, 0)) are shown.The
7-coordinate version of the unweighted Bézier representation (27)–
(30) is the solid line in (a), which is reflected along the horizontal
axis to give the dashed line in (a).The extended 13-coordinate Bézier
representation in (b) is explained in the text, as is the edited extended
representation (c) that is derived from it. The dotted line in (c)
represents the region from (0.001, −0.004) to (1, 0) that is reflected
about the horizontal axis to form the upper boundary. Note that the
vertical and horizontal dimensions differ in scale by a factor of 10
relative to the overall length of the nematode (𝐿 = 0.6mm).

is equivalent to (15) for 𝑛 = 2, which might be the case for
reports of the de Man indices (3).

The geometrical model represents the convex hull of C
(Figure 2), which necessarily provides a minimum estimate
of 𝑝 and 𝑎. The overestimation inherent in the cylindrical
estimate and the underestimation arising from Tsalolikhin’s
model (2) are clear (Figure 2). To quantify this, the coordi-
nates forA. antarcticus (28)were used to calculate𝑝, 𝑎, 𝑎

𝑠
, and

V (or the corresponding values from the Bézier representation
(24)) (Table 1). As would be expected from Figure 2, the
Bézier and geometrical representations yield estimates that
are similar and lie between those of the cylindrical and
Tsalolikhin’s (2) models. Arbitrarily taking the geometrical
representation as a reference, the cylindrical approach yields
a volume 36% larger and (2) yields a value that is 44% smaller
(Table 1). Even the value obtained from Andrássy’s equation
is 9% larger than the geometrical estimate, whereas the Bézier
estimate is only 3.5% larger (Table 1).

0
.0
1
L

0.1L

Figure 2: Comparison of the boundaries on which the estimates
in Table 1 are based. The Bézier (—) and geometric (-⋅-⋅-⋅-)
representations are those we describe. The Tsalolikhin (- - - -) and
cylindrical (. . . . . .) approximations have been reported previously.
Themorphometric data forA. antarcticus reported by Cobb [21] (e)
and two supplementary coordinates (I, (0, 0) and (1, 0)) are shown.
The vertical and horizontal dimensions differ in scale by a factor of
10 relative to the overall length of the nematode (L = 0.6mm).

In the case of A. antarcticus the error in 𝑉
𝑇
arising just

from the assumption that the point of greatest diameter is at
𝐿/2 may be small. Nevertheless, it is instructive to consider a
variant of (2) in which the weighting (𝜆) between the conical
posterior and an anterior conical frustum can be varied. To
do this we write (2) as

𝑉
𝑇
(𝜆) =

𝜋𝐿

3
[𝜆(

𝑑
2
+ 𝑑𝐷 + 𝐷

2

4
) + (1 − 𝜆)

𝐷
2

4
]

=
𝜋𝐿

3
[𝜆(

𝑑
2
+ 𝑑𝐷

4
) +

𝐷
2

4
] ,

(32)

and the error arising from the midlength assumption is

𝜀
𝑇

=
𝑉
𝑇
− 𝑉
𝑇 (𝜆)

𝑉
𝑇
(𝜆)

=
1

2

1 − 2𝜆

𝜆 + 𝐷2/ (𝑑2 + 𝑑𝐷)
. (33)

Applying (33) to the values for A. antarcticus, in which the
widest point is located at 0.51L rather than 0.5L, yields 𝜀

𝑇
=

−0.0036, so volume is only slightly underestimated, but Cobb
[21] reports data for other species for which 𝜆 is larger. For
example, forMonhystera polaris 𝑑 = 1.5,𝐷 = 3.4, and 𝜆 = 0.64,
so 𝜀
𝑇
=−0.063whichwould be a significant underestimate for

some purposes, even without any consideration of the other
coordinates Cobb [21] reports.

6. Conclusion

Estimates of nematode volume are usually made using the
cylindrical, Andrássy, and Tsalolikhin approximations. The
latter provides an underestimate and the others provide over-
estimates of nematode size, but they rely on a small number of
coordinates. However, the more detailed data available from
theCobb ratios can be used tomake better estimates based on
the simple geometric or a Bézier approach that we describe.
The cylindrical andTsalolikhin approximations are particular
cases of the more general geometric estimate that represents
the minimum size of the nematode. The geometric estimate
can be extended to incorporate more coordinate data. These
approaches could easily be incorporated into appropriate
image analysis software [33–36].
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