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Abstract
The assessment of the effectiveness of a treatment in a clinical trial, depends on calculating

p-values. However, p-values are only indirect and partial indicators of a genuine effect. Par-

ticularly in situations where publication bias is very likely, assessment using a p-value of

0.05 may not be sufficiently cautious. In other situations it seems reasonable to believe that

assessment based on p-values may be unduly conservative. Assessments could be

improved by using prior information. This implies using a Bayesian approach to take

account of prior probability. However, the use of prior information in the form of expert opin-

ion can allow bias. A method is given here that applies to assessments already included or

likely to be included in the Cochrane Collaboration, excluding those reviews concerning

new drugs. This method uses prior information and a Bayesian approach, but the prior infor-

mation comes not from expert opinion but simply from the distribution of effectiveness

apparent in a random sample of summary statistics in the Cochrane Collaboration. The

method takes certain types of summary statistics and their confidence intervals and with the

help of a graph, translates this into probabilities that the treatments being trialled are

effective.

Introduction
Evidence Based Medicine (EBM) is the dominant paradigm in assessing the effectiveness of
clinical treatments. Conventionally much weight is given to analysis of clinical trials and in par-
ticular to whether p-values are more than or less than 0.05. Effectiveness then, is largely judged
by whether a certain coincidence may or may not explain suggestive results. Researchers may
not always be fully conscious of the tenuous basis for these decisions [1]. However this
approach to assessing medical treatments has had a number of benefits:

• It has revealed a small number of treatments where mechanistic reasoning predicted effec-
tiveness, but where clinical trials have subsequently shown surprisingly, that the treatment
was in fact counterproductive. Indeed, an instance of this sort regarding the management of
heart attack with lignocaine provided a major stimulus to the adoption of EBM. [2]
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• The EBM position of accepting that there is appreciable evidence of effect only if p�0.05 and
at least provisionally ignoring mildly favourable results, is inherently a conservative position.
This conservatism is a reasonable antidote to the presence of publication bias towards posi-
tive results, perhaps enhanced by commercial pressure [3, 4] and even fraud [5] in the case of
new drugs, together with perhaps an undue enthusiasm for new treatments with poorly
defined benefits and unknown dangers. A conservative approach will also be appropriate in
situations where there are a large number of speculative associations with the number of false
associations likely to greatly outweigh the number of true associations. [6]

• A philosophical position that discounts treatments which have not passed the p�0.05 test,
also permits an ethical position of equipoise thereby sanctioning the use of a placebo arm in
clinical trials of promising but unproven treatments. [7]

• Finally, p-values as a criterion for the assessment of medical treatments, have the important
benefit of being objective as they rely only on calculations from the data.

On the other hand there are important limitations to p-values based assessment of medical
treatments:

• Though assessments of effectiveness based almost solely on p-values, continues to be the
norm in practice [8], numerous statisticians and medical researchers have emphasised that a
p-value should be only one of the ingredients in the assessment of medical treatments [9–12]
and indeed, this position is now accepted to a degree within EBM [13].

• A p-value criterion of 0.05 seems too conservative when clinical trials are used to assess
established treatments or treatments backed by mechanistic reasoning. Assume such trials
specify a Type I error of 0.05 and a Type II error of 0.2 for detecting an appropriate level of
effectiveness. Further assume that all treatments are either totally ineffective or are effective
at the minimum levels for which the trials are designed. If in such situations, the proportion
of effective treatments is 50%, then the false positives will constitute less than 6% of all posi-
tive results and Type II errors will occur four times more often than Type I errors. In such
settings the p-value = 0.05 criterion seems too conservative. Interestingly, whilst the calcula-
tions in this paper generally agree, they also show unexpected situations where a p-value of
0.05 may not be conservative enough.

• A decision theory analysis of a treatment taking into account costs of errors, will require a
probability of effectiveness, not a p-value.

• The p-value as a criterion is also unsatisfactory as it is easily misinterpreted by a naive reader,
unlike a statement such as “researchers are x% sure the new treatment is effective”. Indeed
confusion between p-values and “the chance that it is chance” seems widespread [1].

Bayesian statistics addresses some of the limitations of basing assessment of treatments
largely on p-values, by directly calculating a probability that a treatment is effective. However,
calculation of the probability that a treatment is effective in the light of the data, the posterior
probability, requires as a starting point, the probability that the treatment will be effective prior
to seeing the data. This reliance on a prior probability often involves using expert opinion, but
this may be quite subjective and indeed sometimes unduly influenced by commercial pressures
[14]. With objectivity almost inherent in the term “EBM”, this may be the deciding reason for
EBM not embracing the Bayesian approach [1].

This paper gives a method of obtaining prior probabilities for a Bayesian approach in a way
which is objective, but which also adds useful prior information to the assessment of medical
treatments. No subjective assessment about the treatment being trialled is required. Instead
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calculation of the prior probability relies only on an estimate of the distribution of effectiveness
apparent in summary statistics published in the Cochrane Collaboration, a compendium of
EBM [15]. The distribution of summary statistics in the Cochrane Collaboration is assessed
using a random sample from this compendium, with the proviso that studies concerning drugs
under patent are excluded.

The distribution of effectiveness is assumed to fit a model. The model used applies only to
dimensionless ratio data such as odds ratios, relative risks, hazard ratios and meta-analyses
involving aggregation of several sources of such data. With such dimensionless ratio data the
expected value of the effect size is not affected by units of measurement or the size of the clini-
cal trial. Rather than use the rather awkward term “dimensionless ratio data”, in the remainder
of the paper the term “relative risk” will often be used for such data in general.

The distribution of effectiveness obtained from the Cochrane sample of relative risks
together with their standard deviations is used in Bayes’ theorem to derive objective posterior
probabilities. The end result is a contour graph with one axis being the relative risk and the
other axis indicating the width of its confidence interval. Given particular values for these
quantities from a Cochrane study, the nearest contour gives the approximate probability that
the treatment studied is effective.

Methods and Results

Collecting the data
It turned out to be possible to download the titles of all the studies in the Cochrane Collabora-
tion [15]. Computer programs were written to exclude all duplications and then randomly
shuffle the order of the titles and to preserve this randomly ordered sequence of 8710 titles in a
file. Each title in order was then input into the Cochrane search facility and in each case the
first relevant statistic in the Cochrane abstract or (if the abstract gave no relevant statistics) in
the body of the Cochrane review was recorded, if appropriate. The process was continued until
101 appropriate data points were obtained, each giving a relative risk together with a confi-
dence interval. The following criteria were used to determine the appropriateness of the data:

• A data point was appropriate only if it was a dimensionless ratio point estimate such as a rel-
ative risk, together with its confidence interval.

• The log of the point estimate had to be, to within rounding error, in the middle of the log
confidence interval so that the assumption that the estimate comes from a normal distribu-
tion is not contradicted. (This assumption is not true for some measures occasionally used in
meta-analyses.)

• Reviews concerning new drugs or new medical devices were excluded. This criterion avoids
publication biases that may be inflated by commercial pressures and, as desired, tends to
over-represent Cochrane reviews of established treatments where the p-value criteria may be
unnecessarily conservative [8].

• Relative risks were excluded if they referred to side effects, not the intended effect of a
treatment.

• There had to be a clear implication from commonsense or basic medical knowledge that the
treatment is being tried because all researchers agree about the expected direction of benefit
if any (this agreement will not exclude the possibility of a counterproductive outcome). This
is required because the method expects relative risks to be inverted where necessary so that
an effect in the direction of anticipated benefit is given a number greater than 1.00. This
inversion cannot be done objectively when there is disagreement about the direction of
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anticipated benefit. The treatment trials that satisfy this requirement, will often be of the
form standard treatment plus new treatment versus standard treatment alone, and will often
exclude trials comparing mutually exclusive treatments.

A total of 321 Cochrane reviews were searched. Of these 73 were plans for a review with no
actual review (“protocols”) and a further 8 were withdrawn reviews. Of the remaining 240
reviews, 29 were eliminated because they referred to new drugs or new medical devices. Of the
remaining 211 reviews, 35 contained no data as a systematic review of the literature had found
no randomised trials of reasonable standard. Of the remaining 176 reviews, 47 were eliminated
because they contained dimensional data only. Of the remaining 129 reviews, there were 27
where it seemed using commonsense, sometimes supplemented by general medical knowledge
and information in the background to the review, that there would not have been general
agreement about the anticipated direction of any effect. This left 102 reviews, but there was one
review which had a clear arithmetic error with the point estimate outside the range of the confi-
dence interval and it was not possible to resolve this error using publications readily available.
The final tally then was 101 usable data values, a number that seemed likely to be reasonably
adequate for the purposes here in the light of previous work [8]. (The list of the 321 titles con-
sidered together with the data used from each study or else reasons for non-inclusion, is avail-
able as a supplementary document file—S1 File) A histogram of the results in terms of the
logarithm of the absolute size of the relative risks, is shown in Fig 1. This figure also shows the
fit of the model described below.

Each relative risk can also be classified not just by its point estimate of size, but also by the
accuracy with which it is measured thereby giving the strength of evidence for an effect. The
relative risks are then classified as significantly counterproductive, non-significantly negative,
exactly zero effect, non-significantly positive and significantly positive. Significance here being
defined by p< 0.05. The number of relative risks in each category were 2, 11, 2, 32 and 54
respectively.

The distribution of the standard deviations is also of interest. The data suggests that the dis-
tribution of the standard deviations is exponential. The single sample Komogorov-Smirnov
(KS) test for the assumption the standard deviations come from an exponential distribution
with parameter 2.935, gives a p-value of 0.132. The two sample KS test for a difference between
the distribution of the standard deviations of the 54 positive “statistically significant” data
points compared to the remainder gives a p-value = 0.353).

The Standard Model
We want to estimate the intrinsic effectiveness x of any treatment, given a clinical trial or meta-
analysis with outcome u subject to some uncertainties given by the standard deviation of the
study s. To commence we assume that log relative risks chosen at random from the Cochrane
Collaboration, across a disparate range of medical conditions and treatments, will have a distri-
bution that reflects the following ideas. It is assumed that each treatment has a probability p of
being entirely ineffective and that there is probability (1 − p) that the treatment has some effect.
It may be anticipated that where there is an effect it will most often be positive, but occasion-
ally, treatments that have an effect will, surprisingly and disappointingly, have a negative effect,
that is, they will be counterproductive. If the treatment is effective, it is assumed that the size of
this effect is given by a normal distribution with parameters μ and ŝ. We use �ðx; m; ŝ2Þ to
denote the density function of this normal random variable at value x. The distribution of
intrinsic effectiveness X is then given by

X � p� dðxÞ þ ð1� pÞ � �ðx; m; ŝ2Þ ð1Þ
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where we use p times the Dirac δ function to indicate that the probability density function con-
tains a spike of probability mass p, at precisely zero effectiveness.

We also assume that the variability about the true value of x due to the measurement error
that is likely to occur in any clinical trial of finite size, is given by Y* N(0, s2) where s is the
standard deviation. It is assumed that s is known accurately. We also assume that Y is indepen-
dent of X. This assumption is consistent with the result of the two sample KS test given at the
end of the previous section. The joint density function of X and Y is then

Pðx; yjs; m; ŝ; pÞ ¼ ðp� dðxÞ þ ð1� pÞ � �ðx; m; ŝ2ÞÞ � �ðy; 0; s2Þ ð2Þ

Now replace the variable Y with the variable U = Y + X, where U is the random variable
describing measured effectiveness of a treatment in a clinical study rather than the intrinsic
effectiveness of a treatment, X. The joint probability density function of X and U is then

Pðx; ujs; m; ŝ; pÞ ¼ ðp� dðxÞ þ ð1� pÞ � �ðx; m; ŝ2ÞÞ � �ðu� x; 0; s2Þ
¼ p�ðu� x; 0; s2Þ � dðxÞ þ ð1� pÞ � �ðx; m; ŝ2Þ � �ðu� x; 0; s2Þ

Let ψ stand for the model parameters, so c ¼ fm; ŝ; pg The model is then given by the density
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Fig 1. Distribution of the logarithm of the relative risks. The superimposed curve shows the fit of the model described below. Note that the model is fitted
not only according to the position of the values as depicted by the histogram, but also by the accuracy with each point is measured so the visual match may
not give a good impression of the fit.

doi:10.1371/journal.pone.0142132.g001
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function

Pðx; ujs;cÞ ¼ p�ðu; 0; s2Þ � dðxÞ þ ð1� pÞ � �ðx; m; ŝ2Þ � �ðu; x; s2Þ ð3Þ

Integrating Eq (3) over all x then gives

Pðujs;cÞ ¼ p�ðu; 0; s2Þ þ ð1� pÞ�ðu; m; ŝ2 þ s2Þ ð4Þ

The outcome of the ith clinical trial is a realisation of a random variable Ui with a probability
density given by Eq (4) with its standard deviation si replacing s. The distribution of the set {ui}
is the mixture distribution

1

101

X101
i¼1

p�ðui; 0; s
2
i Þ þ ð1� pÞ�ðui; m; ŝ

2 þ s2i Þ
� � ð5Þ

and an estimate of the parameters m; ŝ and p can be found by maximizing the likelihood ofQ101

i¼1ðp�ðui; 0; s
2
i Þ þ ð1� pÞ�ðui; m; ŝ

2 þ s2i ÞÞ or equivalently by maximisingP101

i¼1 log ðp�ðui; 0; s
2
i Þ þ ð1� pÞ�ðui; m; ŝ

2 þ s2i ÞÞ
The Nelder and Meade simplex algorithm [16] was used to find the optimal values of the

parameters m; ŝ and p.
Non parametric confidence intervals were obtained by selecting with replacement a set of

101 data points from the original set of 101 data points and recalculating m; ŝ and p. This pro-
cess was repeated 1000 times. The results are given in Table 1 below.

Main outcome
To calculate the probability (density) of an intrinsic effectiveness of x given a value u for the
measured effectiveness, we use Bayes’ theorem. We require a version of Bayes’ theorem with
further conditioning throughout on s and the parameters ψ. Using Eqs (3) and (4) then gives:

Pðxju; s;cÞ ¼ Pðx; ujs;cÞ
Pðujs;cÞ

¼ p�ðu; 0; s2Þ � dðxÞ þ ð1� pÞ � �ðx; m; ŝ2Þ � �ðu; x; s2Þ
p�ðu; 0; s2Þ þ ð1� pÞ�ðu; m; ŝ2 þ s2Þ

ð6Þ

To find the probability that the treatment is effective (that is x> 0) we integrate Eq (6) over
all values x> 0 to give

Pðx > 0ju; s;cÞ ¼ ð1� pÞ�ðu; m; ŝ2 þ s2Þð1� Fð�aÞÞ
p�ðu; 0; s2Þ þ ð1� pÞ�ðu; m; ŝ2 þ s2Þ

¼ ð1� pÞ�ðu; m; ŝ2 þ s2ÞFðaÞ
p�ðu; 0; s2Þ þ ð1� pÞ�ðu; m; ŝ2 þ s2Þ

ð7Þ

Table 1. Parameter estimates for the standardmodel.

parameter point estimate median 95% confidence interval

μ 0.4775 0.4734 (0.3499, 0.6242)

ŝ 0.3642 0.3593 (0.2334, 0.4657)

p 0.1256 0.1191 (0.000009, 0.2776)

doi:10.1371/journal.pone.0142132.t001
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where F is the cumulative distribution function of the standard normal variable and

a ¼ uŝ2 þ ms2

ŝs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2 þ s2

p ð8Þ

The final value for the probability that the treatment is effective is then

pe ¼ peffective ¼ Pðx > 0ju; sÞ ¼
Z

Pðx > 0ju; s;cÞPðcÞdc

This is then approximated using the set of bootstrap estimates {ψj} for the distribution of ψ so

pe � 1
1000

P1000

j¼1 Pðx > 0ju; s;cjÞcj

Asymptotic Behaviour. It is of interest to explore the asymptotic behaviour of Eq (7). As
expected, it can be seen from Eqs (7) and (8) that if s! 0, pe ! 1 if u> 0 otherwise pe ! 0, so
if effectiveness could be measured with perfect accuracy, then any value for the log of the rela-
tive risk greater than 0 would indicate certainty about effectiveness. Similarly if s!1 then
whatever inaccurate point estimate of effectiveness we may also have, we only have a vanish-
ingly small amount of information from the data about u, and the probability that the treat-
ment is effective approaches the prior probability. That is it approaches the proportion of
treatments with x> 0 as determined by fitting the model to the random sample from the

Cochrane Collaboration. The model’s estimate of the proportion effective is ð1� pÞF m
s

� �
which after the bootstrap step gives 79.9%. This prior estimate of the proportion of effective
treatments reviewed in the Cochrane Collaboration, is compatible with the impression
obtained by noting that positive treatments outweigh negative by about 6.2 to 1. A crude calcu-
lation from this latter figure would suggest that 7:2�2

7:2
or about 72% of treatments are effective.

Contour plots of the outcomes. It is convenient to produce a contour plot to enable at
least an approximate estimation of the probability of effectiveness from a relative risk and its
confidence interval. The contours correspond to a given probability of effectiveness and the
axes give the relative risk and the confidence interval width. However, since a preliminary log
transformation is involved in the model (and in calculating the confidence interval initially),
rather than using the width of the confidence interval, it is convenient to use the width of the
log confidence interval, or equivalently, the log of the ratio of the upper and lower confidence
interval bounds. The log transformation also makes it convenient to use axes with relative risk
and confidence bound ratio both labelled on a log scale. To produce the contour plots, the cal-
culation of probability of effectiveness is undertaken for each point of a 500 × 500 grid of a
range of values for the relative risk and the ratio of the bounds of the 95% confidence interval.
The contours were then obtained using the R contour function [17].

The result is the plot illustrated in Fig 2. The x-axis of this plot is the relative risk, the y-axis
gives the precision with which this measure is assessed in terms of the ratio of the upper to
lower 95% confidence interval bounds. The contours give the probability that the treatment is
effective. This plot assumes that positive results are represented by numbers larger than 1.00
and a preliminary inversion may be necessary. For example, if the relative risk of dying with
the new treatment is 0.25 times that with the standard treatment, this has to be reformulated as
a relative risk of 4.0 of dying by being in the control group.

The log relative risks are assumed to have a normal distribution so a relative risk of 1.5 with
a confidence interval ratio of 3.0, implies log(1.5) is in the middle of the confidence interval of
length log(3), so the confidence interval bounds are log ð1:5Þ � 1

2
log ð3Þ and

log ð1:5Þ þ 1
2
log ð3Þ. The confidence interval ratio of 3.0 around the relative risk of 1.5, then

represents a confidence interval of ð1:5= ffiffiffi
3

p
; 1:5

ffiffiffi
3

p Þ or (0.866, 2.598). The probability of a
treatment with this relative risk and confidence interval, being effective can then be determined
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Posterior probabilities, standard model
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Fig 2. Contour plot allowing posterior probabilities of effectiveness to be estimated from the relative risk and the ratio of the bounds of the
confidence interval. The dotted line close to the 0.95 posterior probability contour represents the p-value = 0.05 criterion. Note that if there is a probability of
x% that a treatment has an effectiveness >0, then in this model the remaining (100 − x)% probability is not that the treatment is simply ineffective. Rather this
(100 − x)% probability is shared out between being ineffective and being counterproductive. However, for reasons of space we omit separate contour plots for
the probability of being ineffective and for being counterproductive.

doi:10.1371/journal.pone.0142132.g002
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from the label of the contour passing through that point, so we see that the posterior probabil-
ity that this treatment is effective is about 0.9.

It is of interest to compare the assessments of treatments which can be made from this dia-
gram with assessments using p-values. We continue the example of a relative risk of 1.5 and a
confidence interval bound ratio of 3.0 and therefore lying almost on the probability = 0.9 con-
tour line. Since the 95% confidence interval represents 3.92 standard deviations, one standard

deviation is log 3

3:92
. Therefore the distance of the point log1.5 in standard deviations from a log rel-

ative risk of zero, is 3:92 log 1:5
log 3

giving the p-value to be 0.0740, so it would be conventional to not

reject the null hypothesis that the experimental treatment has no effect, despite our posterior
probability showing that there is a 90% chance that it is effective. More generally, consider the
set of all treatments which have a p-value of 0.05. For these, the lower bound of the 95% confi-
dence interval is 1.00 and since the geometric mean of the upper and lower bound is the relative
risk, we have the upper bound being the relative risk squared. The ratio of the confidence inter-
val bounds is then the square of the relative risk. The parabola given by the ratio of bounds of
the confidence interval = the square of the relative risk is then the line that defines the p-
value = 0.05 criterion. Since the contour plot is drawn using log-log axes, if we draw this line
on the contour plot, it will appear as a straight line starting at the point (1.0, 1.0) and going
through the point (2.0, 4.0). The p-value = 0.05 criterion is then drawn as a dotted straight line
in Fig 2. It can be seen that over most of the values in the plot, the p-value criterion is very con-
servative compared to the probability of effectiveness, with the p-value = 0.05 criterion being
close to the posterior probability 0.95 for much of the plot.

However, for values very close to a relative risk of 1.00 the p-value criterion may be less con-
servative than a decision made on the balance of probabilities, that is a probability 0.5. Accord-
ingly, assessment based on p-values is not always more conservative than assessment based on
this contour plot. A magnified version of the plot near (1.0, 1.0) is given in Fig 3. It shows the
line representing the p = 0.05 criterion crossing the posterior probability = 0.5 contour line at a
relative risk of 1.027 with confidence interval (1.00, 1.055). Studies which yield relative risks
closer to 1.00 which just pass the p = 0.05 criterion, will then be assessed as indicating effective-
ness too easily compared to an assessment on the balance of probabilities.

Model incorporating Publication Bias
Publication bias has so far not been taken into account. The extent of this problem can some-
times be quantitatively assessed by funnel plots and related techniques [18] and it can also be
assessed by review of the grey literature and in the long run by medical reversals [19]. An exact
measure of the extent of publication bias is not possible, but to extend this work to allow for
publication bias we use an estimate for the odds ratio of publication bias of 2.78 [20]. It should
be noted that this value of 2.78 is more likely to be an overestimate than an underestimate of
the extent of publication bias relevant to the work here. The 2.78 estimate applies to all trials,
whereas the work here deliberately excludes clinical trials involving drugs under patent where
commercial pressures may add further incentive to withhold publication of results that are not
statistically significant [4]. Furthermore the data here comes from the Cochrane Collaboration
where particular care is taken not to overlook non-significant trials. Nevertheless, it may be
reasonable to allow for the effects of publication bias and to assess its effects by using the esti-
mate of 2.78. To account for this level of publication bias, non-parametric bootstrapping is
used. In particular, random numbers are used to select 101 data points with repetition allowed
from the original set of 101. However, the non-significant studies are weighted so that each is
2.78 times more likely to be selected compared to the significant data points. The parameters μ
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Fig 3. Contour plot showing posterior probabilities of effectiveness for values of relative risk close to 1.00. The p-value = 0.05 criterion displays as a
dotted line on this graph. Note how this crosses the balance of probabilities contour (the posterior probability labelled 0.5), at a relative risk of 1.027.
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and ŝ and p are calculated and the whole process is repeated to obtain 1000 sets of values for
the parameters. The results are given in Table 2 below:

The previously described calculations to obtain a contour plot are performed with these
bootstrap estimates of the parameters m; ŝ and p and the results are displayed in Fig 4.

Again, the p-value criterion seems for the most part to be rather conservative, as the p-
value = 0.05 criterion lies between the posterior probability 0.8 and 0.9 over much of the range
of values shown. However, as expected, it is less conservative compared to the model without
allowance for publication bias. Again for relative risks close to 1.0, the p-value = 0.05 criterion
ceases to be conservative and indeed becomes too liberal compared to a decision to be made on
the balance of probabilities. Here, the point at which this occurs is a relative risk of 1.081.

An alternative simpler single peaked model
It is of interest to compare the results of the model above which makes allowance for a propor-
tion of treatments being completely ineffective, with an alternative model. An obvious simpler
model assumes that the log relative risks are normally distributed, with no spike in probability
at zero effectiveness. This model has two parameters—the mean μ and standard deviation of
intrinsic effect ŝ. Following Eq (5) in the derivation of our standard model, we have the distri-
bution of the set of log relative risks {ui}, being the mixture distribution

1

101

X101
i¼1

�ðui; m; ŝ
2 þ s2i Þ

and an estimate of the parameters is obtained maximizing the log likelihood

X101
i¼1

log ð�ðui; m; ŝ
2 þ s2i ÞÞ

Again, non parametric bootstrap methods are used to obtain confidence intervals and the
results are given in Table 3 below.

The contour plot for this model is given in Fig 5. It should be noted that in this model, if a
clinical trial is given a probability of x% of being effective, then it has a probability of (100 −
x)% of being counterproductive, but zero chance of being simply ineffective. While there may
then be an argument for giving contours in terms of net positive probability, this is not done as
there will be a non-linear relationship between size of the log relative risk and the cost.

Goodness of Fit
The method was checked by generating 10000 simulated data points using the values for the
parameters m; ŝ and p found for the standard model. The values of the parameters m; ŝ and p
were then calculated from the simulated data and the result is given in Table 4 below. A

Table 2. Parameter estimates for the model with publication bias.

parameter mean median 95% confidence interval

μ 0.4108 0.4129 (0.1989, 0.6554)

ŝ 0.2997 0.3105 (0.1081, 0.4698)

p 0.3413 0.3579 (0.0127, 0.6141)

doi:10.1371/journal.pone.0142132.t002
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Posterior probabilities allowing for publication bias
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Fig 4. Contour plot allowing posterior probabilities of effectiveness to be estimated from the relative risk and the ratio of the bounds of the
confidence interval. This plot allows for publication bias with an odds ratio of 2.78. The p-value = 0.05 criterion appears as the dotted line.

doi:10.1371/journal.pone.0142132.g004
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histogram of the 10000 effectiveness values is displayed in Fig 6 together with the model distri-
bution function drawn using the parameters that generated the data.

Pðujfsig;cÞ ¼
1

10000

X10000
i¼1

p�ðu; 0; s2i Þ þ ð1� pÞ�ðu; m; ŝ2 þ s2i Þ
� �

The calculated values of the parameters m; ŝ and p were a close match to the values used in gen-
erating the data and the distribution function (evaluated at 8000 different values of u) gave an
excellent match to the histogram of the generated {ui}

In effect, we have used a large parametric bootstrap sample to check the calculations of the
model and have shown a good fit both in terms of parameter values and in terms of a visual fit
of the model probability density to the histogram of the generated data. The fit of the model to
the real data in Fig 1 is less impressive. This reflects the far smaller sample size and the fact that
the model is fitting not just the size of the effectiveness but is weighting that fit by the uncer-
tainty with which each point is measured.

To assess the goodness of fit of the real data to the model, we note that the maximum log
likelihood for the standard model is -86.428 and for the alternative simpler single peaked
model it is -87.977. It is noted that the standard model requires one extra parameter, but gains
more than 1.5 in maximum log likelihood. The Akaike Information Criterion therefore sug-
gests a preference for the standard model.

Uncertainty in the data
Detailed analysis of the extent to which the posterior probability calculations could be refined
by collecting more data to calibrate the model, is beyond the scope of this paper. An assessment
here could require experiments with parametric bootstrap simulated data of the sort described
in the previous section and experiments with non-parametric bootstrap samples as well as cali-
brating the model with different amounts of real data. It is noted that the upper limit to the
model’s performance is obtained if the widths of the confidence intervals on the model parame-
ters have shrunk to zero. If the model is an accurate reflection of reality, the remaining uncer-
tainty when results from a clinical trial are assessed by the model would then be solely a
reflection of the accuracy with which the relative risk is measured in the clinical trial. However,
the focus of this paper was in demonstrating the method and not on the time consuming pro-
cess of collecting sufficient data to obtain confidence intervals of negligible width.

Some impression of the extent to which extra data could refine the posterior probability cal-
culation can be obtained by examining how probabilities at some selected points on the con-
tour graph may change with various non-parametric bootstrap parameter estimates. In
particular, using Fig 2, four points are chosen, two points on the posterior probability = 0.1 line
at confidence interval ratios 2.0 and 5.0 and two points on the posterior probability = 0.9 line
at confidence interval ratios 2.0 and 5.0. The uncertainty is estimated by 95% bootstrap confi-
dence intervals using the 1000 non-parametric bootstrap estimates of the parameters m; ŝ and
p. Results are given in Table 5.

Table 3. Parameter estimates for the single peakedmodel.

parameter point estimate median 95% confidence interval

μ 0.4167 0.4130 (0.3108, 0.5261)

ŝ 0.3593 0.3554 (0.2382, 0.4599)

doi:10.1371/journal.pone.0142132.t003
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The variation in the probabilities obtained by using bootstrap parameter estimates tells us
that, because our information about the parameters is uncertain, we have to do the final inte-
gration step

Pðx > 0ju; sÞ ¼
Z

Pðx > 0ju; s;cÞPðcÞdc

in the model. It is also an indicator of the extent to which our estimates of posterior probability
could be refined by collecting more data to calibrate the model.

In calculating the contour plot using the set of 1000 bootstrap estimations of ψ, we are
describing a surface in three dimensions but we are using 1000 sets of three parameters to do
so. It should be possible to approximate such a surface with far fewer than 3000 parameters but
a good approximation with just a few parameters, has not yet been found. However, the sup-
porting information section below, gives a link to the file of bootstrap estimations of ψ and
some R code to enable exact calculation of posterior probability.

Posterior probabilities, single peaked model
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Fig 5. Contour plot of posterior probabilities for the single peakedmodel. Again the p-value = 0.05
criterion is marked by a dotted line.

doi:10.1371/journal.pone.0142132.g005
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Discussion
The ability to go beyond p-values and confidence intervals and obtain objective probabilities of
effectiveness would seem to be an appreciable advance. However there are a number of
limitations.

Subjectivity
The aim of this work is to show the use of a Bayesian approach to clinical trial results, to
enhance decision making by using non-trivial yet objective prior information. However, as dis-
cussed early in the Methods section, a small degree of subjectivity remains. There is little sub-
jectivity in deciding whether a treatment involves a new drug and only a little more subjectivity
in judging whether the researchers are agreed on the likely direction of an effect if any. Some-
what more subjectivity is needed in judging how much allowance should be made for publica-
tion bias. There is additional uncertainty about the accuracy of the model and also in any
extrapolation of the use of this model to relative risks which do not (yet) appear in Cochrane,
given that the model is calibrated to data currently in Cochrane.

On the other hand, much of the subjectivity discussed above may be irrelevant if the end
result is invariant across a full range of uncertainty. For example, if cost considerations com-
bined with probabilities obtained from all of the contour plots suggest that that a treatment
should be implemented, then the uncertainty about which model to use and whether to allow
for publication bias, is irrelevant. Of course, this can be stated with reasonable certainty only if
contour plots have been prepared for all possible models that give a reasonable fit to the data
and all plausible values for publication bias. However, where there is agreement using the three
contour plots provided here, that a particular treatment should be regarded as worthwhile, it is
reasonable to conclude that it is very likely to be worthwhile. The small amount of subjectivity
that remains in using this method, will then be of little consequence.

Relationship to p-values for relative risks near 1
All three models give a prior probability that more than half of all treatments are effective.
Given the discussion in the introduction, one would then have expected the p-value = 0.05 cri-
terion to be uniformly too conservative compared with a decision made on the balance of prob-
abilities. However, the models which assume a spike of probability at precisely zero
effectiveness show that the p-value = 0.05 criterion is not sufficiently cautious compared to a
decision made on the balance of probabilities when relative risks are close to 1.00. As discussed
in the section on goodness of fit, the data gives evidence in favour of the standard model of sec-
tion 2.3 rather than the model of section 2.5. However there is extrapolation in use here. The
data used to calibrate the model does not include relative risks just above 1.00 with very tight
confidence intervals and there is certainly not enough data to conclude that the excess

Table 4. Theoretical parameters used to generate a large sample and corresponding calculated
parameter values from that sample.

parameter theoretical
value

model parameter estimate from analysing 10000 generated
data points

μ 0.4775 0.4750

ŝ 0.3642 0.3625

p 0.1256 0.1295

doi:10.1371/journal.pone.0142132.t004
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probability near a log relative risk of zero, is necessarily a spike at exactly zero. On the other
hand, it is plausible that an appreciable proportion treatments that may be tested, do in fact tar-
get something which turns out to be entirely irrelevant to the disease process and therefore
have precisely zero effectiveness, so when a treatment shows close to zero effectiveness, the bal-
ance of probabilities may well indicate that it is genuinely ineffective despite a “significant” p-
value. Accordingly, more caution is needed in assessing very large trials which yield small but
“significant” increases in relative risk.

Artificially generated data
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Fig 6. Distribution of the effectiveness of 10000 artificially generated points using the point estimates found for the standardmodel. The line gives
the theoretical density function used to generate the data.

doi:10.1371/journal.pone.0142132.g006
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The converse problem however may be more important. In most cases, the p-value = 0.05
criterion does seem unduly conservative and corresponds to objective posterior probabilities in
the range 0.8 to 0.95. Such conservatism can be reasonable for new treatments with the possi-
bility of unforeseen risks, but will often be inappropriate when low cost, established treatments
are being assessed [8].

Restricted Applicability
Amajor limitation of this approach is its restricted applicability. The method used here directly
applies only to appropriate relative risks extracted from Cochrane as described in section 2.1
with the data being the first mentioned relative risk in a Cochrane review. However, it may be
reasonable, to apply it without recalibration to any appropriate data in Cochrane, regardless of
whether it was the first relative risk quoted in a review and it may also not be too unreasonable
to apply it to any appropriate data likely to be included in a future Cochrane review. The
method would have to be recalibrated if it were to be applied to data from other compendia of
relative risk information such as a register of clinical trials of new drugs. In this case, an esti-
mate of publication bias specific to this situation would also be required.

Appropriate level of Effectiveness
The method described above gives only the probability that the effectiveness is any value
greater than zero. Whilst, this is relevant if the cost of treatment is near zero, the probability of
exceeding a particular non zero level of effectiveness, may be more relevant. For example, a
more appropriate point at which to decide in favour of implementing a treatment under trial
could be the amount of effectiveness at which the expected costs of Type I errors and Type II
errors are equal [21].

In conventional statistical planning and analysis of clinical trials, the size of the effect that
one wishes to detect is usually pre-specified, ideally with the implication that smaller effect
sizes do not matter clinically (the minimal clinical important difference—MCID). In practice
there is often no objective way to determine a MCID and other considerations may often deter-
mine the size of the effect to be detected. In particular, detecting say, a 1% increase in survival
with a new treatment for a cancer may require many tens of thousands of subjects. Since such a
large trial will seldom be feasible, a clinical trial may be designed with the power to detect only
an increase in survival that is an order of magnitude greater. The specification of the effect size
that the trial aims to detect, its relationship to a genuine assessment of the MCID and the
appropriate statistical power of the clinical trial, is an important area in the traditional statisti-
cal approach to clinical trials that is often quite subjective. Bayesian approaches to analysing
clinical trials usually are criticised by traditionalists for admitting subjectivity, so it is interest-
ing that the methodology here could be considered to be much less subjective than the tradi-
tional approach.

Table 5. Relation between parameter uncertainties and posterior probability calculations.

relative risk confidence interval ratio probability 95% conf int

0.711 2.0 0.100 (0.048, 0.217)

0.241 5.0 0.100 (0.030, 0.288)

1.345 2.0 0.900 (0.762, 0.984)

1.737 5.0 0.900 (0.795, 0.973)

doi:10.1371/journal.pone.0142132.t005
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Assuming an appropriate MCID has been specified, the probability that the treatment has
sufficient effectiveness to warrant its implementation can then be obtained by integrating Eq
(7) from the point of sufficient effectiveness onwards, rather than from zero onwards. It may
also be relevant to integrate Eq (7) from −1 to 0−, to take account of the possibility that a treat-
ment could be counterproductive. More generally, a decision theory analysis would employ a
cost function of effectiveness and multiply Eq (7) by this before integrating to obtain net costs.

Practical posterior probability calculations
The files described below enable a calculation of the posterior probability from information
given by a clinical trial on a relative risk and its confidence interval. The calculation uses the
statistics package R [17]. It is necessary to copy and paste the 1000 sets of parameter values
from S2 File (for the standard model) or S3 File (for the model allowing publication bias) into
an ascii file entitled “btstrp.txt”. Then download the R function “postprob” contained in the
text file S4 File and paste it into R. Then run the function postprob with the required values for
u, the relative risk, and cir, the ratio of the bounds of the confidence interval.

Supporting Information
S1 File. List of Cochrane reviews selected from a random list and examined for data
together with the data used from each review or the reason suitable data could not be
found in that review.
(DOC)

S2 File. List of sets of bootstrap parameters used on the assumption that there was no pub-
lication bias.
(TXT)

S3 File. List of sets of bootstrap parameters used on the assumption that there was publica-
tion bias as described in the section “Model incorporating Publication Bias”.
(TXT)

S4 File. Text file containing the R code to give the posterior probabilities.
(TXT)
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