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Abstract
In order to determine optimal training parameters for robot-assisted treadmill walking, it is

essential to understand how a robotic device interacts with its wearer, and thus, how param-

eter settings of the device affect locomotor control. The aim of this study was to assess the

effect of different levels of guidance force during robot-assisted treadmill walking on cortical

activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assis-

tance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and

changes in power spectral density were investigated during unassisted treadmill walking as

well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with

0% body weight support). Clustering of independent components revealed three clusters of

activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill

walking in healthy subjects. These clusters demonstrated gait-related spectral modulations

in the mu, beta and low gamma bands over the sensorimotor cortex related to specific

phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right pri-

mary sensory cortex during treadmill walking compared to robot-assisted treadmill walking

with 100% guidance force, indicating significantly larger involvement of the sensorimotor

area during treadmill walking compared to robot-assisted treadmill walking. Only marginal

differences in the spectral power of the mu, beta and low gamma bands could be identified

between robot-assisted treadmill walking with different levels of guidance force. From these

results it can be concluded that a high level of guidance force (i.e., 100% guidance force)

and thus a less active participation during locomotion should be avoided during robot-assis-

ted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is

known to be crucial for motor learning.
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Introduction
Robot-assisted gait training has a large potential to augment motor function and facilitate
walking recovery in persons with neurological gait disorders [1–5]. It has some important
advantages over manually assisted gait training such as the possibility to 1) increase the inten-
sity and standardization of the training program, 2) offer a more complex multisensory stimu-
lation of the human motor control system and 3) give extensive extrinsic feedback to the
patient [6]. Yet, some reviews point out that there is little to no clear advantage of robot-assis-
ted gait training over manually assisted gait training as far as rehabilitation outcome is con-
cerned [7, 8]. One reason is that, until now, it is unclear how these active gait training devices
should be designed, controlled and set (i.e., device settings such as the amount of assistance) to
synergistically interact with the human body and optimally augment human performance [9,
10].

The assessment of how the human body interacts with robotic rehabilitation devices, which
can be defined as human-robot interaction (HRI), has gained more and more attention over
the past years and is a key aspect for the further optimization of the mechanical design and
control of these devices [11]. HRI is often assessed through measures in the periphery such as
kinematics, kinetics, muscle activity, metabolic energy expenditure, psychophysiological
responses (e.g., heart rate, skin conductance & temperature, . . . etc.) or through the interaction
torques with the robotic device [12–17]. Yet, bearing in mind that gait rehabilitation devices
are primarily used to restore lost motor functions, assessing effects of HRI on the central level
(i.e., central nervous system (CNS)) is important, as basic motor patterns are generated on the
spinal as well as the supraspinal level [18, 19] and motor intentions and high-level adaptations
of motor patterns originate at the supraspinal level [10, 20].

On the supraspinal level, cortical activation patterns have been monitored by means of
electroencephalography (EEG) during lower limb movements [21, 22], actual walking on a
treadmill (TW) [23–29] and robot-assisted treadmill walking (RATW) [30–35], see [36, 37] for
a review. Most of these studies monitored event-related spectral perturbations (ERSPs) which
reflect averaged dynamic changes in amplitude of the broad band EEG frequency spectrum as
a function of time relative to a specific event, in the case of TW and RATW, the phases of the
gait cycle [38]. The few studies which considered ERSPs during TW and RATW have mainly
revealed power modulations in the alpha/mu (8–12 Hz), beta (12–30Hz) and low gamma (30–
45 Hz) bands over the sensorimotor cortex related to the phases of the gait cycle, see [37] for a
review and Table 1 for an overview. As compared to the studies presented in Table 1, where
active RATW is mostly compared to passive RATW (i.e., with the same device settings) or
standing, the purpose of this study was to look at possible effects of different amounts of guid-
ance force of a robotic gait training orthosis (i.e., Lokomat) on brain activity and compare it to
unassisted TW.

Six studies investigated ERSPs during RATW, all in healthy subjects. Nakanishi et al. (2014)
compared passive walking in a gait rehabilitation device to standing and revealed an increase
in power density of theta (4.0–7.9 Hz) and alpha bands. The authors suggested that this indi-
cated a decreased arousal level and drowsiness during passive RATW [32]. Both Seeber et al.
(2014) and Wagner et al. (2012) compared active walking in the robotic gait orthosis Lokomat
(Hocoma AG, Switzerland) to standing [30, 31]. Active walking was defined as active participa-
tion during RATW with 100% assistance (i.e., 100% guidance force) and less than 30% body-
weight support (BWS) [30, 31]. They found that, in the sensorimotor area, upper mu (10–12
Hz) and beta rhythms were suppressed (i.e., event-related desynchronization (ERD)) during
the whole gait cycle compared to standing, while low gamma ERDs occurred at specific phases
of the gait cycle, i.e., around the transition from stance to swing [30, 31]. Probably these mu
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and beta ERDs reflect the active state of the sensorimotor area during RATW compared to
standing [30, 31]. Furthermore, Solis-Escalante et al. (2012) and Wagner et al. (2012) com-
pared active to passive RATW (i.e., both at 100% assistance and<30% BWS) and revealed that
the power spectral density (PSD) in the mu and beta bands in the foot/leg area of the sensory
cortex was significantly reduced during active compared to passive RATW, indicating an
increased activation of this area during active gait participation [30, 34]. Adaptation to a new

Table 1. Event-related spectral modulations in the cortex during TW and RATW.

Study Mu 8–12 Hz Beta 12–30 Hz Low Gamma 30–45 Hz High Gamma 45–100 Hz
TW

Gwin et al. (2011)
[23]

ERS during TSt ERS during TSt - Broad intra-stride ERS/
ERD changes

Severens et al.
(2012)[25]

ERD during swing ERS just before
IC and during DS

ERD during swing ERS just before
IC and during DS

/ /

Passive RATWa

Wagner et al.
(2012)[30]

- - ERD during IC, TSt,
PreSw, TSw

/

ERS during MSt &
MSw

Active RATWb

Wagner et al.
(2012)[30]

- - ERD during IC, TSt,
PreSw, TSw

/

ERS during MSt &
MSw

Seeber et al.
(2014)[31]

- - ERD during IC, TSt,
PreSw, TSw

/

ERS during MSt &
MSw

TW vs standing
Severens et al.

(2014)[39]
ERD ERD / /

Passive RATW vs standing

Nakanishi et al.
(2014) [32]

ERS - / /

Wagner et al.
(2012)[30]

ERD ERD ERD /

Active RATW vs standing
Wagner et al.

(2012) [30]
ERD ERD ERD /

Seeber et al.
(2014) [31]

ERD ERD - /

Active vs passive RATW

Wagner et al.
(2012) [30]

ERD during swing, IC and TSt ERD during TSt,, PreSw, ISw,
MSw, TSw

ERD during PreSw /

Solis et al. (2012)
[34]

ERD ERD ERD /

a passive RATW = 100% guidance force, < 30% BWS, no participation
b active RATW = 100% guidance force, < 30% BWS, active participation

/ = not included in the study; - = not significantly different; TW = treadmill walking; RATW = robot-assisted treadmill walking; BWS = body-weight support;

ERS = event-related synchronization; ERD = event-related desynchronisation; IC = initial contact; MSt = midstance;TSt = terminal stance; PreSw = pre

swing; ISw = initial swing; MSw = midswing; TSw = terminal swing; DS = double support

doi:10.1371/journal.pone.0140626.t001
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gait pattern in a unilateral robotic orthosis was studied by Youssofzadeh et al. (2014) and indi-
cated a strong involvement of the prefrontal area [35]. Finally, Wagner et al. (2014) also com-
pared RATW to RATW in a virtual environment (i.e., both at 100% assistance and<30%
BWS, but for the VE condition subjects had to execute force on the robotic gait orthosis to
steer an avatar) and observed significant decreases in PSD of the 8–12, 15–20, and 23–40 Hz
frequency ranges, as well as gait cycle related modulations in the frequency range 23–40 Hz
[33]. These modulations were significantly reduced during specific phases of the gait cycle for
RATW in a virtual environment compared to RATW, again indicating a more active state of
sensorimotor areas [33].

In general, the functional meaning of these mu, beta and gamma modulations during
RATW all point in the direction of maintaining an active movement related neuronal state dur-
ing walking and processing of sensorimotor information [31]. None of these studies investi-
gated the effects of variations in the level of assistance (i.e., guidance force) on event-related
brain dynamics.

In the Lokomat, variations in the level of assistance a user receives can be achieved through
adaptations in robotic guidance force (GF) [40]. GF is determined by the stiffness of the imped-
ance controller which supplies a supportive force field within a haptic tunnel and smoothly cor-
rects leg movements towards a specified trajectory. A value of 100% GF corresponds to a strict
guiding (i.e., position control with stiff orthosis joints), while a value of 0% GF corresponds to
free walking movements, meaning that full range leg movements are possible [16, 40, 41]. Thus,
reducing GF allows for a more free and active participation to the gait cycle (i.e., the user can
easily move away from the predefined gait trajectory) [16]. Until now, only the effects of GF on
electromyography (EMG), kinematics, kinetics and metabolic energy expenditure have been
investigated [16, 42, 43]. These few studies showed that the level of GF has no effect on oxygen
consumption [42] and kinematics of the trunk and pelvis [43], but does affect muscle activity,
kinematics and kinetics of the lower limbs: increased GF results in decreased muscle activity,
increased joint range-of-motion (ROM) and increased joint range-of-forces [16]. These periph-
eral changes suggest that the effect of GF can possibly also be detected on the supraspinal level.

In summary, the goal of the present study was to reveal if changes in robotic GF affect gait-
related brain dynamics. To this end we investigated ERSPs and PSD during RATW at 30%, 60%
and 100% GF as well as during unassisted TW. It was hypothesized that, during RATW, there
would be a significant decrease in the PSD of the mu, beta and gamma bands (ERDs) over the
sensorimotor cortex with decreasing GF, indicating a larger involvement of the sensorimotor area
when robotic assistance is reduced. Furthermore, it was expected that modulations in the beta
and low gamma frequency bands related to specific phases of the gait cycle would be present.

Materials and Methods

Subjects
Eighteen young adult subjects with no neurological or locomotor deficits were recruited among
the physical and occupational rehabilitation team of Rehabilitation Center Sint-Ursula, Jessa
Hospital, Herk-de-Stad, Belgium. Eleven participants were included in this study (3 men, 9
women, mean age 28.2 SD 4.0 years, height 1.75 SD 0.09m, weight 64.7 SD 7.7 kg), seven par-
ticipants were excluded because of incomplete experimental trials or heavy artifact contamina-
tion of the EEG recordings.

Ethics Statement
Participants gave their written informed consent to participate in this study. All experimental
procedures were performed according to the standards set by the declaration of Helsinki for
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medical research involving human subjects and approved by the local medical ethics commit-
tee of the university, Vrije Universiteit Brussel, Belgium (BUN B1432008499) and Rehabilita-
tion St.-Ursula, Herk-de-Stad, Belgium (12.11/fys12.02).

Experimental Design
Participants completed four walking conditions of five minutes at a walking speed of 2 km.h-1.
All subjects started with a baseline condition of five minutes of TW without the Lokomat gait
orthosis. This was followed by three experimental conditions inside the Lokomat robotic gait
orthosis with three different levels of GF, all under 0% BWS: 30%, 60% and 100% GF. The
Lokomat is a robotic driven gait orthosis that gives assistance at the knee and hip joints in the
sagittal plane and incorporates a motorized treadmill and BWS system [44, 45]. Individual
adjustments of the Lokomat were made according to the common practice in clinical therapy
with the help of physical therapists of the rehabilitation center having experience with the
Lokomat. Safety procedures of the center required that all subjects also wore straps around the
front foot to assist ankle dorsiflexion. The experimental conditions were randomized by strati-
fied randomization based on increasing (30-60-100% GF) or decreasing levels of GF (100-60-
30% GF). Participants were given instructions to follow the guidance of the orthosis and avoid
pushing against it, to relax their arm muscles and rest them on the sidebars of the Lokomat, to
avoid head movements and to look at a marker at eye level in front of them.

Data Acquisition and Processing
Continuous EEG was recorded from 32 active electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, FC5,
FC1, FC2, FC6, T7, C3, Cz, C4, T8, TP9, CP5, CP1, CP2, CP6, TP10, P7, P3, Pz, P4, P8, PO9,
O1, Oz, O2, PO10) and sampled at 1000 Hz (BrainAmp DC & BrainVision Recorder, Brain
Products GmbH, München, Germany). The electrical reference was located at FCz and the
ground electrode at AFz, according to the international 10–20 system [46]. Electrode imped-
ance was kept below 5 kOhm. A force sensing resistor placed on the subjects’ left and right heel
detected left (L HS) and right (R HS) heel strike and was synchronized with the EEG data (Brai-
nAmp ExG, Brain Products GmbH, München, Germany). EEG data were further processed
offline using the EEGLAB v13.0.0b plug-in [47] for the Matlab 7.10 platform (MathWorks,
Natick, MA, USA). The EEGlab ‘.study’ file with the original raw data can be found in S1 File.
In a first step data were filtered (0.5 Hz high-pass, 100 Hz low-pass, 50 Hz notch filter), resam-
pled to 512 Hz and segmented based on L HS. The segmented data were interpolated as such
that the length of each gait cycle equaled 1200 ms. Next, epochs of 2000 ms were extracted (i.e.,
1000 ms before and after L HS). Subsequently, artifactual epochs were removed using three
steps. First, an automatic artifact detection procedure was applied, removing epochs with val-
ues a)� ± 100 μV, b)� 5 standard deviations of the mean kurtosis value, c)� 5 standard devi-
ations of the mean probability distribution, d) drifts� 50 μV/epoch and R-square limit� 0.3,
and e) spectra deviating from the mean by ± 50 dB in the 0–2 Hz frequency window and by
+50 or -100 dB in the 20–100 Hz frequency window. Second, the remaining epochs were visu-
ally inspected for artifacts. After this procedure, the average amount of epochs across all condi-
tions and participants was 103 epochs with a standard deviation (SD) of 24.8 epochs. Third, an
independent component analysis (ICA) decomposition algorithm (i.e., InfoMax) was per-
formed on individual subjects over all conditions (i.e., multiple datasets were selected and
concatenated in order to in order to give the same ICA weights to the different conditions) to
parse EEG signals into spatially static, maximally independent components (IC) [48]. The DIP-
FIT function within EEGLAB [49] was used to compute an equivalent current dipole model
that best explained the scalp topography of each IC using a boundary element head model
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based on the Montreal Neurological Institute (MNI) template (http://www.mni.mcgill.ca). ICs
showing greater residual variance than 25%, or with a topography, time-course and power
spectrum reflective of artifacts, were excluded from further analysis (202 ICs were excluded
across all conditions and participants) [50–52].

In a next step, the remaining 144 ICs were clustered by use of principal component analysis
(PCA) [53, 54]. Therefore, a preclustering array was implemented based on k-means clustering
on vectors jointly coding differences between ICs in power spectra (dimension: 10, normaliza-
tion weight: 1, frequency: 3–45 Hz), ERPs (dimension: 10, normalization weight: 1, latency:
-1000 to 998 ms), dipole locations (dimension: 3, normalization weight: 10), ERSP (latency:
-1000 to 998 ms, frequency: 3–45 Hz, dimension: 10, normalization weight: 1), and scalp
topography (dimension: 10, normalization weight: 1). The resulting joint vector was reduced to
10 principal dimensions. This combined joint measure space over all subjects was clustered
with a robust k-means algorithm into 11 clusters plus an additional cluster that contained out-
liers deviating by more than 3 standard deviations from the obtained cluster centers.

For each IC and each condition, the PSD and ERSP were calculated. Single-trial ERSPs were
computed by averaging the difference between each single-trial log spectogram and the base-
line (i.e., the mean IC log spectrum over all gait cycles per condition). Next, the PSD and
ERSPs were averaged for each cluster and each condition [38]. To visualize event-related per-
turbations, significant differences from the baseline average gait cycle log spectrum were com-
puted with a permutation method (p<.05) [47]. To assess differences between conditions, PSD
and ERSPs were calculated in three frequency bands: mu (8–12 Hz), beta (12–30 Hz) and low
gamma (30–45 Hz); using a common baseline (i.e., the average over all gait cycles) for the
ERSP for each condition. A 4X1 one-way repeated measures ANOVA (REPANOVA) with fac-
tor “condition” (i.e., 1 = TW, 2 = RATW with 30% GF, 3 = RATW with 60% GF, 4 = RATW
with 100% GF) was computed using a randomized permutation procedure in EEGLAB [55].
All reported p-values were adjusted for multiple comparisons using the EEGLAB implementa-
tion of false discovery rate (FDR) procedure [56]. Post-hoc tests were computed using paired
permutation t-tests with correction for multiple comparisons (FDR). The significance level was
a priori set at p<.05.

Results

ICA Clustering
IC clustering analysis produced 11 active clusters and 1 cluster containing outliers, including
144 ICs. Table 2 shows the estimated dipole location of each cluster centroid in the MNI coor-
dinate space, the corresponding Brodmann area (BA) and location of each cluster and the
number of subjects and ICs included in each cluster. Some clusters were excluded from further
analysis, based on the number of participants or ICs (i.e.,< 8 subjects,< 11 ICs). From the
remaining eight clusters, three target clusters were selected based on their region of interest for
this study (i.e., the sensorimotor cortex). The target clusters were localized in the left premotor
cortex (PMC) & supplementary motor cortex (SMA) (cluster 3, Fig 1C), the left somatosensory
association cortex (SA)(cluster 6, Fig 2C) and the right primary somatosensory cortex (S1)
(cluster 12, Fig 3C).

Spectral Perturbations
Cluster 3, located in the midline PMC & SMA, revealed significant changes (p<.05) from base-
line (i.e., the average over all gait cycles for each condition) relative to the phases of the gait
cycle in the mu band during TW and in the mu, beta and low gamma band during RATW. For
these frequency bands an ERD preceded the moment of L and R HS, while an event-related
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synchronization (ERS) occurred around L and R HS. This is displayed in the cluster average
ERSP for each condition (Fig 1D). The one-way REPANOVA showed a significant effect
(p<.05) in the ERSP at the mu band for G, 30% GF, 60% GF and 100% GF, yet post-hoc tests
revealed no significant differences. This cluster also presented a significant effect (p<.05) in
PSD for G, 30% GF, 60% GF and 100% GF in all three frequency bands (i.e., mu, beta and
gamma) (Fig 1B), yet post-hoc tests showed again no significant differences.

Cluster 6 was located in the left SA and showed significant changes (p<.05) from baseline
(i.e., the average over all gait cycles for each condition) relative to the phases of the gait cycle
predominantly in the mu band for both TW and RATW. For RATW some significant spectral
perturbations can also be seen in the beta band (Fig 2D). In general an ERD preceded the
moment of L and R HS, while an ERS occurred around L and R HS (Fig 2D). The one-way
REPANOVA showed a significant effect (p<.05) in the ERSP at the beta and low gamma
bands between G, 30% GF, 60% GF and 100% GF, yet post-hoc tests revealed no significant dif-
ferences. Cluster 6 also presented a significant effect (p<.05) in PSD for G, 30% GF, 60% GF
and 100% GF in all three frequency bands (i.e., mu, beta and gamma) (Fig 2B). Post-hoc tests
revealed significantly higher power over a small part (i.e., 9–10 Hz) of the mu frequency band
for 30% GF compared to 60% GF (p<.05).

Cluster 12, located in the right S1, revealed less significant changes (p<.05) from baseline
(i.e., the average over all gait cycles for each condition) relative to the phases of the gait cycle
when compared to changes from baseline in cluster 3 and 6 (Fig 3D). Most of the changes
occurred during RATW in the mu, beta and low gamma bands. The mu band followed the
same pattern as previously described for cluster 3 and 6: an ERD preceded the moment of L
and R HS, while an ERS occurred around L and R HS, however, as already mentioned, these
perturbations are less pronounced compared to cluster 3 and 6. For the beta and gamma
bands, no clear pattern related to the phases of the gait cycle can be observed (Fig 3D). No sig-
nificant differences (p<.05) in the ERSP at the mu, beta and gamma band could be found
between G, 30% GF, 60% GF and 100% GF. However, this cluster presented significant differ-
ences (p<.05) in PSD between G, 30% GF, 60% GF and 100% GF in all three frequency bands
(Fig 3B). Post-hoc tests revealed a significant lower power in the mu frequency band for G and
60% GF compared to 100% GF (p<.05). Also, a significant lower power in the beta frequency
band was observed for G compared to 100% GF (p<.05) (Fig 3B).

Table 2. Clusters of independent sources identified by ICA.

Cluster # of ICs # of Subjects MNI Coordinates (x,y,z) Brodmann Area (BA) Location of Cluster Centroid

Parentcluster 1 144 11 / / /

Cls 2 (outliers) 4 3 / / /

Cls 3 14 9 -8,-2,63 L BA6 midline PMC & SMA

Cls 4 11 8 -51,33,16 L BA46 L PFC

Cls 5 9 6 -67,-41,-4 L BA21 L auditive cortex

Cls 6 14 8 -14,-58,50 L BA7 L SA

Cls 7 10 6 0,56,-8 / /

Cls 8 13 9 64,-40,-4 R BA21 R auditive cortex

Cls 9 15 10 48,33,24 R BA9 R PFC

Cls 10 14 10 -35,-74,-28 / /

Cls 11 10 6 -15,-17,8 L BA50 L thalamus

Cls 12 18 9 37,-25,45 R BA1 R S1

Cls 13 12 9 31,-84,-25 / /

doi:10.1371/journal.pone.0140626.t002
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Discussion
This study demonstrated gait-related spectral modulations in the mu, beta and low gamma
bands over the sensorimotor cortex related to specific phases of the gait cycle. Furthermore,
mu and beta rhythms were suppressed in the right primary sensory cortex during TW com-
pared to RATW with 100% GF. Only marginal differences in the spectral power of the mu,
beta and low gamma bands could be identified between RATW with different levels of GF.

Fig 1. Scalp map, PSD, dipole locations and ERSPs for cluster 3, located in the midline PMC& SMA. (A) Cluster average scalp projection; (B) Gait
cycle PSD for G, 30%GF, 60%GF and 100%GF; (C) Dipole locations of cluster ICs (blue spheres) and cluster centroids (red sphere) visualized in the MNI
brain volume in coronal and sagittal views; (D) average cluster ERSP (3–45 Hz) plots showing significant changes in spectral power relative to the full gait
cycle baseline (p<.05) for G, 30%GF, 60%GF and 100%GF. Non-significant differences relative to the full gait cycle baseline (p<.05) are masked in green
(0 dB). The gait cycle starts and ends with R HS (i.e., 0 and 100%), the vertical line at 50% of the gait cycle marks L HS.

doi:10.1371/journal.pone.0140626.g001
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Clusters
Three clusters located in the sensorimotor cortex were identified: cluster 3 over the midline
PMC & SMA as well as cluster 6 (i.e., L SA) and 12 (i.e., R S1) in the parietal cortex. The loca-
tions of these clusters are very similar to those found in the studies of Gwin et al. (2011)[23],
Seeber et al. (2014) [31] and Wagner et al. (2012&2014) [30, 33]. More specifically, cluster 3
shows similarities in scalp maps, dipole locations and PSDs with clusters A in [30, 33]; cluster 6
corresponds well to cluster B in [33]; and cluster 12 shares characteristics with cluster D in [30]
and cluster C in [33]. Previous research has suggested that activity in the PMC & SMA

Fig 2. Scalp map, PSD, dipole locations and ERSPs for cluster 6, located in the left SA. (A) Cluster average scalp projection; (B) Gait cycle PSD for G,
30%GF, 60%GF and 100%GF; (C) Dipole locations of cluster ICs (blue spheres) and cluster centroids (red sphere) visualized in the MNI brain volume in
coronal and sagittal views; (D) average cluster ERSP (3–45 Hz) plots showing significant changes in spectral power relative to the full gait cycle baseline
(p<.05) for G, 30%GF, 60%GF and 100%GF. Non-significant differences relative to the full gait cycle baseline (p<.05) are masked in green (0 dB). The gait
cycle starts and ends with R HS (i.e., 0 and 100%), the vertical line at 50% of the gait cycle marks L HS.

doi:10.1371/journal.pone.0140626.g002
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represents processes involved in motor planning [33, 57], while activity in the parietal cortex
has been related to visuo-motor integration and bilateral coordination [33, 58].

The dispersion of the dipoles in the clusters identified in this study is somewhat larger com-
pared to these in [30, 33], which may explain the slight differences in the locations of the cluster
centroids. Nevertheless, the pattern of results with regard to active clusters over the sensorimo-
tor cortex in this study is very similar to that obtained in other studies suggesting that it is pos-
sible to localize brain activity in specific sensorimotor areas related to walking with as little as
32 electrodes.

Fig 3. Scalp map, PSD, dipole locations and ERSPs for cluster 12, located in the right S1. (A) Cluster average scalp projection; (B) Gait cycle PSD for
G, 30%GF, 60%GF and 100%GF; (C) Dipole locations of cluster ICs (blue spheres) and cluster centroids (red sphere) visualized in the MNI brain volume in
coronal and sagittal views; (D) average cluster ERSP (3–45 Hz) plots showing significant changes in spectral power relative to the full gait cycle baseline
(p<.05) for G, 30%GF, 60%GF and 100%GF. Non-significant differences relative to the full gait cycle baseline (p<.05) are masked in green (0 dB). The gait
cycle starts and ends with R HS (i.e., 0 and 100%), the vertical line at 50% of the gait cycle marks L HS.

doi:10.1371/journal.pone.0140626.g003
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ERSPs
Spectral perturbations in the mu (8–12 Hz), beta (12–30 Hz) and low gamma (30–45 Hz)
bands from baseline (i.e., the average over all gait cycles for each condition) relative to the
phases of the gait cycle were identified in all three clusters, although these were more promi-
nent over the midline PMC & SMA (cluster 3) and L SA (cluster 6) and during RATW (Figs
1D–3D). ERSPs over the sensorimotor cortex related to the phases of the gait cycle have previ-
ously been identified during TW by Gwin et al. (2011) [23] and Severens et al. (2012) [25] and
during RATW byWagner et al. (2012&2014) [30, 33] and Seeber et al. (2014) [31]. In this
study an ERD was generally observed preceding HS, when the leading leg was in the swing
phase (i.e., following toe-off) and the trailing leg started pushing-off, while an ERS occurred
around HS, during the double support phase. The ERSP in the cluster 6 corresponds well to the
results of Gwin et al. (2011) [23] and Severens et al. (2012) [25], who reported the same pattern
of mu and beta band modulations around HS and toe-off. It has been suggested that the modu-
lations detected in these frequency bands are related to the control of sensory afferents [23]. In
general an ERD in the mu and beta band corresponds to an activation of sensorimotor areas,
while an ERS is typically associated with a deactivation [59, 60] or inhibition (i.e., mu ERS)
[61] of the involved areas.

The ERD/ERS complex in cluster 3, the PMC & SMA, showed most of its activity in the mu
band (8–12 Hz) and from 20–40 Hz (high beta, low gamma band). This is in line with Wagner
et al. (2012&2014) [30, 33] and Seeber et al. (2014) [31] who reported ERSPs in the low gamma
band (i.e., 24–40 Hz) during RATW, although the pattern of (de)synchronizations (i.e., ERD
surrounding HS) is slightly different from this study (i.e., ERD preceding HS): the ERD in our
study started around 25% and ended around 50% of the gait cycle while in Wagner et al. (2012)
[30] the ERD started around 35% and ended around 60% of the gait cycle. These differences
might be due to the additional effect of body weight support (<30% BWS) in the other studies
[30, 31, 33]. Van Kammen et al. (2014) recently showed that adding BWS during RATW
changes the muscle activity of the lower limbs [62]. Nevertheless, the portion of the ERD pre-
ceding HS is predominant in all studies and may represent processes involved to motor plan-
ning and coordination (i.e., PMC & SMA) during this phase of the gait cycle. Evidence for this
has been put forward by Petersen et al. (2012) who observed significant coupling in the 24–40
Hz frequency range between the foot motor area and the activity of the tibialis anterior muscle
during the swing phase, in preparation for HS of the leading leg [63]. However, the low gamma
ERD could as well be related to the planning of the push-off phase of the trailing leg. Until
today, corticomuscular coherence between the PMC & SMA and activity in the lower limb
plantar flexors has not yet been studied. Thus, it remains to be determined which part of the
gait cycle is linked to activity in the PMC & SMA during walking. It should be pointed out that
Petersen et al. (2012) found this coherence over Cz, corresponding to M1, while in our study
PMC & SMA were active. Yet, Feige et al. (2000) showed that multiple motor areas, including
the PMC, are simultaneously involved in high-frequency corticomuscular coherence [64].

Although no significant differences could be determined between the ERSPs of TW and
RATW and between RATWwith different levels of GF, Figs 1D–3D display weaker gait-related
modulations for TW compared to RATW conditions. Wagner et al. (2014) also found signifi-
cantly reduced activity in gait-related modulations for cluster A (i.e., PMC & SMA) during
RATW in a virtual environment where subjects had to execute additional force on the robotic
gait orthosis to steer an avatar, compared to a normal RATW [33]. These results all indicate a
higher level of involvement of the sensorimotor cortex during more active walking conditions.
For cluster 3 in the PMC & SMA, this is particularly true for the 20–40 Hz frequency band (i.e.,
weaker gait-related modulations in this band during TW), confirming that a higher
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corticomuscular connection is present during TW compared to RATW with 100% GF [63].
This corresponds to the findings of Moreno et al. (2013), indicating that the activity of the
tibialis anterior is significantly reduced during RATW compared to TW [16].

Spectral Differences between TW and RATW
Power in the mu and beta band was significantly decreased in cluster 12 in the right parietal
cortex during TW compared to RATW with 100% GF. This is in agreement with several other
studies showing a significant decrease in PSD of the mu and beta band over the sensorimotor
cortex during active compared to passive walking/pedaling, imagined walking or standing/rest
[21, 22, 27, 28, 30, 31, 33, 34, 65]. The suppression of mu and beta oscillations is a general
marker of an active movement-related neuronal state [31, 60, 66]. More specifically, these
desynchronizations reflect increased cellular excitability in thalamo-cortical systems and can
therefore be regarded upon as the electrophysiological correlate of cortical motor activity [60,
67, 68]. This is further confirmed by fMRI studies showing a more prominent increase in acti-
vation of the sensorimotor cortex during active compared to passive movements [69]. While
the mu and beta band desynchronisation mostly occur simultaneously, there is recent evidence
that these rhythms serve distinct functions [70]. For example, Petersen et al. (2012) found a
corticomuscular coherence in the beta, but not in the mu rhythm [63] and in patients with Par-
kinson disease, Brown 2007 found that a pathological high beta band activity impedes the initi-
ation and execution of movement [71]. Also, the topography of the mu ERD seems to be
spatially less consistent (i.e., mostly spread out over the right parietal somatosensory area) than
that of the beta ERD (i.e., more anterior, concentrated over the motor area) [31, 39, 60, 70, 72].
The desynchronisation of neurons firing in the mu band is possibly related to more general
sensorimotor processes, while the beta ERD probably allows sensorimotor neurons to coordi-
nate their actions in order to engage in a movement [70].

Activity in cluster 12 was asymmetrically concentrated over the right parietal hemisphere
while it is generally thought that processing of somatosensory information is performed by
brain regions contralateral to the side of the movement and thus should be symmetrically dis-
tributed during walking. However, there has been submerging more and more evidence that
this is not entirely correct. Early observations from Mesulam (1981) and Nobre et al. (1997)
showed that the left posterior parietal cortex processes information from the contralateral
space, while the right posterior parietal cortex processes information from both spatial hemi-
fields [73, 74]. Later on, Coghill et al. (2001) confirmed that the left inferior parietal cortex was
only activated during right-sided stimulation, whereas the right inferior parietal cortex was
activated during both left and right-sided stimulation [75]. A more recent and excellent review
from Serrien et al. (2006) indicates that specialized functions for motor control are located in
the right hemisphere. More specifically, the right hemisphere is crucial for closed-loop aspects
of movement which are dependent on sensory feedback [76]. This corresponds very well to our
results for cluster 12 which shows predominant activation in the right posterior parietal cortex,
responsible for the processing of sensory information during walking.

In contrast to our hypothesis, there were almost no significant differences in PSD between
the different levels of GF: 30% GF, 60% GF and 100% GF displayed similar PSD curves indicat-
ing that there is no difference in the involvement of the sensorimotor area when the level of
robotic assistance changes. However, Moreno et al. (2013) found higher muscular activation
for 20% and 40% GF in respect to 70% and 100% GF [16]. Yet, in their study 30% BWS was
used, while in our study 0% BWS was implemented. Reducing body weight might have ampli-
fied the effects of GF (i.e., applying a force to an open kinetic chain will have more effect than
to a closed kinetic chain).
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Interestingly, there was also no significant difference in PSD between TW and RATW with
30% GF and 60% GF. This suggests that these RATW conditions might demand a similar
involvement of the sensorimotor area as TW. Furthermore, Moreno et al. (2013) also showed
that in neurologically intact subjects robotic-guided walking at various GF levels does not alter
the basic locomotor control and timing of muscular activation patterns [16]. For future studies,
it would be interesting to monitor the relationship between cortical activity and simultaneously
recorded muscle activation and kinematics of the lower limbs during RATW.

Methodological Considerations
Recently, Kline et al. (2015) were able to isolate gait-related movement artifacts during walking
[52]. They found that EEG data recorded at slower speeds (i.e., 0.22–0.60 m.s-1) are less likely
to be contaminated by movement artifacts. Moreover, the artifacts differ substantially across
speeds, subjects and electrode locations which renders most of the existing artifact removal
methods useless [52]. In order to actually subtract movement-related artifacts from brain activ-
ity during walking, they suggest to block the electrophysiological signals in some electrodes
during data collection so that those electrodes record only the movement artifact [52]. We did
not do this in our study and thus cannot be a 100% certain that all movement related artifacts
are removed from the data. Yet, our subjects walked at a speed of 2 km.h-1 (i.e., 0.56 m.s-1) and
thus our data are minimally contaminated by these type of artifacts according to the study of
Kline et al. (2015). Furthermore, some of the movement artifact patterns were recurrent in the
study of Kline et al. (2015), such as a desynchronisation in the 4–7 Hz range during double sup-
port (at slow speeds) [52]. As can be seen in Figs 1–3, this does not occur in our brain-related
data.

Due to limitations of the Lokomat at higher speeds, the walking speed was set at 2 km.h-1.
This could have implications for young healthy subjects who naturally walk at higher speeds.
Studies have shown that, at slower speeds, the timing of muscle activation patterns changed
and the amplitude decreased [77]. This could also have implications for brain activity: reduced
muscle activity probably demands for less involvement of the sensorimotor cortex during walk-
ing, although this should still be confirmed. A good trade-off between avoiding movement-
related artifacts and using speeds that are fast enough to be representative of typical human
walking should be made [52].

When comparing RATW to TW it should be taken into account that there are some sub-
stantial differences between both which may alter the sensory feedback during walking. For
instance, the gait orthosis imposes impedance to the limbs, which might constrain leg move-
ments [62, 78]. Furthermore, movements in the Lokomat are restricted to the sagittal plane,
thus reducing the natural degrees of freedom during walking. Nevertheless, according to Van
Kammen et al. (2014) differences between TW and RATW can be kept to a minimum by
imposing higher walking speeds (i.e.,>1.8 km.h-1) and reducing the amount of body weight
support [62]. In our study no body weight support was used and subjects walked at 2 km.h-1.

Furthermore, in this study we did not control for the level of active participation by means
of EMG. It is possible that muscle activation of the lower limbs was similar between different
levels of GF, although the EEG data suggest otherwise (i.e., at least for RATW with 100% GF
compared to unassisted TW). Yet, the lack of significant differences for RATW at 30% GF and
60% GF might be because subjects didn’t adhere to level of assistance given by the orthosis and
recruited similar levels of muscle activity during these conditions. Future studies, should try to
control for the level of active participation by simultaneously recording EMG.

Although this study showed a very good correspondence to other studies [30, 31, 33], results
might become more pronounced if more electrodes (i.e.,>32) are used. This might influence
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the dispersion of the dipoles in the clusters and thus result in a more exact location of the clus-
ter centroids. Nevertheless, Lau et al. (2012) were able to demonstrate that during walking as
few as 35 channels may be sufficient to record the two most dominate electrocortical sources.
This should be considered for practical reasons as multichannel arrays up to 256 channels take
much longer to apply and might be more inconvenient for the patient/subject [79].

Clinical Relevance and Implementations
In order to determine optimal training parameters for RATW, it is essential to understand how
parameter settings affect locomotor control. This study showed that, in healthy subjects, power
in the mu and beta bands was significantly reduced over the right primary sensory cortex dur-
ing unassisted TW compared to RATW with 100% robotic assistance. This decrease might be
related to the increased processing of sensorimotor information from the lower limbs. Yet, no
significant differences in PSD between TW and lower levels of GF during RATW (i.e., 30% GF
and 60% GF) were identified which might suggest that decreasing robotic-assistance provides
training conditions that resemble unassisted walking. Furthermore, previous research has
shown that motor learning, which is characterized by an increased mu ERD [31, 60], is further
enhanced by increasing the task complexity, effort and sustained attention [60]. Therefore, low
levels of guidance force (i.e., 30% GF, 60% GF) and thus active participation should be favored
when possible during RATW although setting robotic assistance to zero may not be representa-
tive of common training conditions [62].

This study also emphasized that ERSPs and changes in PSD can be useful measures of active
participation and motor performance during RATW and may help to establish functional
improvements following interventions with RATW [30].

Some studies indicate that the effect of BWS might have a larger impact than the effect of
GF during RATW [42, 43, 62]. In the current study, 0% BWS was implemented while different
levels of GF were compared. Yet, no significant differences between different levels of guidance
force were found. In a follow-up study, it would be interesting to investigate the effects of dif-
ferent levels of BWS on ERSP and PSD over the sensorimotor cortex.

The presence of ERSPs during walking might also be useful for the development of non-
invasive brain-computer interfaces in order to control a robotic device. In their review, Caster-
mans et al. (2014) have extensively discussed the approaches of how brain signals can be
imbedded in the control loop of assistive devices [37]. Besides, Severens et al. (2014) recently
demonstrated how the mu and beta ERD during actual and imagined walking can be success-
fully implemented in a BCI context to train a linear classifier in distinguishing walking from
not walking [28].

Conclusions
In summary, this study identified three active clusters located in the sensorimotor cortex dur-
ing TW and RATW in healthy subjects. These clusters demonstrated gait-related modulations
in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases
of the gait cycle. Furthermore, mu and beta rhythms were suppressed in the right primary sen-
sory cortex during TW compared to RATW with 100% GF indicating significantly larger
involvement of the sensorimotor area during TW compared to RATW. In contrast to TW,
almost no significant differences in the spectral power of the mu, beta and low gamma bands
could be identified between RATW with different levels of GF. This finding may have impor-
tant clinical implications with regard to parameter setting for RATW. It remains to be eluci-
dated in future studies whether patients with neurological disorders exhibit similar effects of
GF during RATW.
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