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Abstract
The teleost fishes represent over half of all extant vertebrates; they occupy nearly every

body of water and in doing so, occupy a diverse array of environmental conditions. We pro-

pose that their success is related to a unique oxygen (O2) transport system involving their

extremely pH-sensitive haemoglobin (Hb). A reduction in pH reduces both Hb-O2 affinity

(Bohr effect) and carrying capacity (Root effect). This, combined with a large arterial-venous

pH change (ΔpHa-v) relative to other vertebrates, may greatly enhance tissue oxygen deliv-

ery in teleosts (e.g., rainbow trout) during stress, beyond that in mammals (e.g., human).

We generated oxygen equilibrium curves (OECs) at five different CO2 tensions for rainbow

trout and determined that, when Hb-O2 saturation is 50% or greater, the change in oxygen

partial pressure (ΔPO2) associated with ΔpHa-v can exceed that of the mammalian Bohr

effect by at least 3-fold, but as much as 21-fold. Using known ΔpHa-v and assuming a con-

stant arterial-venous PO2 difference (Pa-vO2), Root effect Hbs can enhance O2 release to

the tissues by 73.5% in trout; whereas, the Bohr effect alone is responsible for enhancing

O2 release by only 1.3% in humans. Disequilibrium states are likely operational in teleosts

in vivo, and therefore the ΔpHa-v, and thus enhancement of O2 delivery, could be even

larger. Modeling with known Pa-vO2 in fish during exercise and hypoxia indicates that O2

release from the Hb and therefore potentially tissue O2 delivery may double during exercise

and triple during some levels of hypoxia. These characteristics may be central to perfor-

mance of athletic fish species such as salmonids, but may indicate that general tissue oxy-

gen delivery may have been the incipient function of Root effect Hbs in fish, a trait strongly

associated with the adaptive radiation of teleosts.

Introduction
Haemoglobin (Hb) is one of the most well studied proteins to date and is key to blood oxygen
(O2) transport in nearly all vertebrates and some invertebrates, as it increases the total O2 that
can be transported in the blood and optimizes tissue O2 delivery. The Bohr effect describes the

PLOSONE | DOI:10.1371/journal.pone.0139477 October 5, 2015 1 / 17

OPEN ACCESS

Citation: Rummer JL, Brauner CJ (2015) Root Effect
Haemoglobins in Fish May Greatly Enhance General
Oxygen Delivery Relative to Other Vertebrates. PLoS
ONE 10(10): e0139477. doi:10.1371/journal.
pone.0139477

Editor: Patrick Prunet, Institut National de la
Recherche Agronomique (INRA), FRANCE

Received: December 8, 2014

Accepted: September 14, 2015

Published: October 5, 2015

Copyright: © 2015 Rummer, Brauner. This is an
open access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.
Metadata have been archived on Dryad via doi:10.
5061/dryad.d0325.

Funding: This project was funded by a Natural
Sciences and Engineering Research Council
(NSERC) of Canada Discovery grant and Accelerator
Supplement to C.J.B. and a UBC Graduate
Fellowship to J.L.R. During the modelling and writing
portion of this study, J.L.R. was funded by the
Australian Research Council (ARC) Super Science
Fellowship program, the ARC Centre of Excellence
for Coral Reef Studies, and an ARC Discovery Early

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ResearchOnline at James Cook University

https://core.ac.uk/display/303777273?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0139477&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5061/dryad.d0325
http://dx.doi.org/10.5061/dryad.d0325


reduction in Hb-O2 affinity when blood pH decreases and has been studied for over a century
to understand how metabolic CO2 production can elevate the partial pressure of O2 (PO2) in
the blood to enhance tissue O2 delivery [1–3]. The effect of pH on Hb-O2 can be graphically
represented using an oxygen equilibrium curve (OEC), where Hb-O2 saturation decreases in a
sigmoidal pattern depending on the PO2 of the system. With a given reduction in pH, as occurs
between arterial and venous blood (ΔpHa-v) due to metabolic CO2 production, the OEC shifts
to the right. Thus, at a given Hb-O2 saturation, such as P50 (PO2 at which Hb is 50% saturated),
the shift in the OEC increases the PO2 at P50, which increases the driving force for tissue O2

delivery. The new P50 can be calculated using the following equation (Eq 1):

P50 ¼ P50ið10FDpHða�vÞÞ ð1Þ

where P50i refers to the initial P50 of the organism (e.g., under resting conditions) or system,
F refers to the Bohr coefficient (Δlog P50/ΔpH), and ΔpHa-v is the arterial-venous pH change.
For example, a human with a P50i of 27 mmHg [4], a Bohr coefficient of -0.35 [5], and ΔpHa-v

of -0.035 (a typical change that can occur in vivo [6]) will therefore exhibit a new P50 of 27.77
mmHg. While this is a ΔPO2 (ΔPO2 = P50—P50i) of less than 1 mmHg, it represents the
increase in the driving force for tissue O2 delivery. End capillary PO2 values in mammals have
been measured at 40 mmHg [7–10], and thus the ΔPO2 resulting from the Bohr effect would
represent a modest benefit (~2%) to the driving force for tissue O2 delivery in a human.

Among vertebrates, teleosts possess Hbs whereby an acidosis not only greatly decreases Hb-
O2 affinity, as in the Bohr effect, but also reduces the carrying capacity of Hb for O2, termed
the Root effect [11–13]. The Root effect has long been discussed in terms of its role in enhanc-
ing O2 delivery to the eye and swimbladder of fishes. The eye and swimbladder are equipped
with retia–dense capillary networks that can serve to localize and magnify an acidosis–that, in
conjunction with the Root effect, greatly elevate arterial PO2 (PaO2) [14–16]. In the eye, the
high PaO2 serves to overcome great diffusion distances to oxygenate the metabolically active,
yet poorly vascularized retinal tissue [16–18]. At the swimbladder, a gas gland also aids in pro-
ducing acid, and the resulting high PaO2 serves to inflate the swimbladder against large pres-
sure gradients (>50 atm) associated with depth, permitting precise buoyancy regulation [14].
Teleosts that possess Root effect Hbs generally possess a large Bohr coefficient, much larger
than occurs in air-breathing vertebrates with a Bohr effect alone. Consequently, it has been
proposed that Root effect Hbs may also be in place to enhance O2 delivery to tissues in general,
beyond the eye and swimbladder [2,19,20]. The focus of this study was to quantify the degree
to which this may occur.

Indeed, the Root effect in teleosts is generally associated with a large Bohr coefficient, which
is one step toward generating a large ΔPO2 during blood capillary transit; however, the other
prerequisite is a large pHa-v, which under steady state conditions is thought not to occur [5].
This is because a Hb with a large Bohr coefficient also has a large Haldane coefficient, which
minimizes or even prevents a pHa-v difference due to binding of H

+ upon Hb deoxygenation.
However, recently it has been demonstrated that under some conditions teleosts may exhibit a
large pHa-v that may greatly exceed that of air-breathing vertebrates. If this is coupled with a
large Bohr coefficient, O2 delivery could be greatly enhanced [21,22].

A large ΔpHa-v may occur in teleosts during a generalized acidosis through the short-circuit-
ing of red blood cell Na+/H+ exchange (NHE). During a generalized acidosis, most teleosts
secure gill O2 uptake by protecting RBC pH via β-adrenergically stimulated NHE (βNHE),
which upon activation, removes protons (H+) from the RBCs in exchange for Na+. However,
Rummer and Brauner [23] determined that, in vitro, the βNHE and a general ‘housekeeping’
NHE could both be selectively short-circuited via plasma-accessible carbonic anhydrase (CA).
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This short-circuiting would create the large ΔpHa-v needed to greatly enhance O2 delivery to
select tissues. Short-circuiting was further validated in vivo in rainbow trout exposed to a mild
acidosis (elevated water CO2) upon which muscle PO2 –determined using fast-responding
fibre optic O2 sensors implanted directly into the fish’s muscle tissue–increased by 65% [21].
The increase in red muscle PO2 was completely abolished following arterial injection of a mem-
brane-impermeant CA inhibitor, thus linking the increase in tissue PO2 to plasma-accessible
CA [21]. Therefore, qualitative support exists for a large ΔpHa-v and the associated effect on O2

delivery both in vitro and in vivo, which may only require a mild acidosis. However, the degree
to which this may enhance O2 delivery during periods of severe environmental challenges,
such as hypoxia or exercise, is not known.

At a given pHa-v and Hb-O2 saturation (e.g., P50 or otherwise), a ΔPO2 (P50—P50i, where the
respective level of saturation is used instead of 50%) can be calculated using Eq. 1 assuming
that the Bohr coefficient is constant at the different Hb-O2 saturations. This is more or less the
case in human blood, where under relevant in vivo conditions the shift in the OEC due to the
Bohr effect is relatively constant between 20 and 80% Hb-O2 saturation [24]. However, Root
effect Hbs exhibit a strongly non-linear release of Bohr protons with oxygenation [24], and
consequently, the greatest Bohr shift exists between 60 and 100% Hb-O2 saturation [25–28].
Thus, a ΔPO2 in Root effect Hbs cannot simply be calculated as described above. Rather, ΔPO2

must be interpolated directly from OECs generated at constant pH values that span the in vivo
range for that organism. Surprisingly, no such data set currently exists. Furthermore, there is
tremendous variability in the literature regarding even the magnitude of the Bohr coefficient at
P50, let alone at other Hb-O2 saturations, in rainbow trout (Oncorhynchus mykiss), despite it
being one of the most comprehensively investigated teleost species to date. These inconsisten-
cies may be in part due to differences in methodologies (Table A in S1 File).

We chose to thoroughly characterize the Root effect Hb system in rainbow trout, and our
specific objectives were as follows: i) generate complete OECs in whole blood at constant pH val-
ues that span the in vivo range for rainbow trout; ii) calculate the ΔPO2 for a given proposed pHa-

v at set Hb-O2 saturations; iii) determine Bohr coefficients, Hill coefficients, and P50 values vali-
dated against other sampling and incubation techniques from our previous studies [29] to
address the historical inconsistences that preclude many of these analyses otherwise; iv) compare
this with the ΔPO2 calculated frommodels developed for a mammal (e.g., human) possessing a
Bohr effect alone; v) estimate the increase in the O2 release fromHb and potential enhancement
in tissue O2 delivery associated with a Root effect Hb that rainbow trout may experience during
exercise or hypoxia, when oxygen delivery is most critical for performance. The latter may be par-
ticularly important in athletic species to speed up post-exercise recovery, following a predator-
prey encounter, or during long, upstreammigrations as exhibited in Pacific salmon [30], or to
enhance O2 delivery in other species during exposure to environmental stress.

Results

Series 1: Influence of pH on the oxygen equilibrium curves of rainbow
trout blood
Blood was incubated at 0.25, 0.5, 1, 2, or 4% CO2 to simulate different pHa-v over the entire
range of Hb-O2 saturations. At each CO2 level and therefore pH, PO2 was also decreased step-
wise, and mean Hb-O2 saturation was calculated at each step so that OECs could be generated.
Mean Hb-O2 saturation significantly decreased with PO2 and with each increase in CO2 ten-
sion, resulting in the characteristic rightward (Bohr effect) and downward (Root effect) shifts
in the OEC (Fig 1A). The exceptions were points generated from samples incubated at 0.25,
0.5, and 1% CO2 for a PO2 of 156 to 158 mmHg, which were not statistically different from
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Fig 1. Oxygen equilibrium curves (OECs) generated at 0.25, 0.5, 1.0, 2.0, and 4.0% CO2 with stepwise
decreases in PO2 (mmHg) from 160 to 0 mmHg (balance N2) for rainbow trout rinsed RBCs (panel A).
The ΔpHe relative to the 0.25%CO2 curve (black, pHe = 8.01) is also noted for each treatment. Data are
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each other. This pattern was evident again when samples were incubated at a PO2 of 47 to 49
mmHg. At air-saturated oxygen tensions (~160 mmHg) there was a reduction in Hb-O2 satu-
ration from 95 and 96% at 0.25 and 0.5% CO2, to 89% at 1% CO2, 75% at 2% CO2, and 47% at
4% CO2 (Fig 1A), a reduction in carrying capacity that is characteristic of Root effect Hbs.

Blood samples were taken at each step of the incubation process for each curve generated. Both
intracellular and extracellular pH (pHi and pHe) were measured at each CO2 tension, and both
decreased with higher levels of CO2 (P<0.001) (Table 1). Changes in pHi were significantly and lin-
early correlated with changes in pHe (pHi = 2.747 + (0.574 � pHe), R

2 = 0.930), similar to previous
determinations with whole blood in vitro (pHi = 2.708 + (0.595 � pHe), R

2 = 0.950) [31]. Haemato-
crit (Hct) was measured in whole blood samples following each CO2 incubation and was found to
slightly but significantly increase at 1, 2, and 4% CO2 relative to 0.25 and 0.5% CO2 incubations.

Both 3-parameter logistic equations as well as Hill plots were used to calculate P50 values for
each OEC, which were approximately 25, 38, 41, 75, and>160 mmHg (generated from 0.25 to
0.5, 1, 2, and 4% CO2 mixtures, respectively). Each were significantly different from one
another (P<0.001) except for 0.5 and 1% CO2 samples (P = 0.05) (Table 1, S1 Fig, S1 File). Sta-
tistical analyses did not include the>160 mmHg P50 from samples; while the Hill plots resulted
in a value of 162 mmHg, a nominal value could not be interpolated from the OECs. The Hill
coefficient (nH) was also calculated for each curve, illustrating low cooperativity (1.34, 1.48,
1.37, 1.03, and 0.55 at 0.25, 0.5, 1, 2, and 4% CO2, respectively) that is characteristic of Root
effect Hbs. The nH using 2 and 4% CO2 were the only significantly different values (Table 1, S1
Fig, S1 File). Bohr coefficients for each CO2 incubation treatment were calculated at P50 and
were -0.91, -0.67, -0.87, and -0.77 (at 0.25, 0.5, 1, 2, and 4% CO2, respectively) (Table 1).

Series 2: Differences in ΔPO2 in a Bohr effect Hb system (human) and a
Root effect Hb system (rainbow trout)
For the human model, the ΔPO2 was calculated as described above (Eq. 1), assuming a resting
P50 of 27 mmHg [4], F of -0.35 [5] and assuming F was constant at all pH values between 20

means ±S.E.M. Brackets indicate no statistically significant effect of CO2 at the respective PO2. Dashed lines
extend from 50%Hb-O2 saturation to indicate the P50 for each OEC. In panel B, the magnitude of the right-
shift of the OEC for a given pH change (ΔpH represented as different colours) is represented as ΔPO2 over
each Hb-O2 saturation for a Bohr effect Hb system (human, dashed lines between 20 and 80%Hb-O2

saturation only) or a Root effect Hb system (rainbow trout, solid lines).

doi:10.1371/journal.pone.0139477.g001

Table 1. Effects of carbon dioxide (% CO2) on haematological parameters, pH and oxygen transport-related variables for blood of rainbow trout.

CO2 (%) 0.25 0.5 1 2 4

PCO2 (mm Hg) 1.9 3.8 7.6 15.2 30.4

[Hb] (mM) 0.9 ±0.0abc 0.9 ±0.0abc 1.0 ±0.0b 1.0 ±0.0b 0.8 ±0.1c

Hct (%) 23.2 ±0.0abd 22.5 ±0.3b 25.3 ±0.8c 26.1 ±0.4c 24.5 ±0.2cd

MCHC 3.7 ±0.2ab 4.2 ±0.1a 4.1 ±0.1a 4.0 ±0.1a 3.1 ±0.4b

pHi 7.40 ±0.00a 7.24 ±0.05b 7.12 ±0.03c 6.96 ±0.05d 6.79 ±0.02e

pHe 8.01 ±0.00a 7.81 ±0.04b 7.69 ±0.02c 7.46 ±0.03d 6.96 ±0.01e

P50 (mm Hg) 24.8 ±0.3a 37.7 ±0.3b 40.6 ±2.2b 75.0 ±4.8c >160.0

nH 1.3 ±0.1a 1.5 ±0.0a 1.4 ±0.0a 1.0 ±0.0b 0.6 ±0.1c

Φ -0.91 ±0.18 -0.67 ±0.04 -0.87 ±0.06 -0.77 ±0.05

Haemoglobin concentration [Hb], haematocrit (Hct), mean corpuscular haemoglobin concentration (MCHC), intracellular pH (pHi), extracellular or plasma

pH (pHe), the Hill coefficient (nH), and the Bohr coefficient (Φ). All data were collected according to Series 1 protocols on rinsed RBCs. Letters that differ

within rows indicate statistically significant effects of CO2.

doi:10.1371/journal.pone.0139477.t001
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and 80% Hb-O2 saturation, as this is where the shift in the OEC due to the Bohr effect is rela-
tively constant [24]. The PO2 values at P20, P30, P40, P60, P70, and P80 were extrapolated from a
Hill plot generated using nH = 2.8 and P50 = 27 mmHg. A ΔpH of -0.2, -0.3, -0.55 and -1.0 pH
units were chosen to be consistent with those values determined for rainbow trout. While the
latter two values far exceed what might be seen in vivo, they serve to illustrate the dramatic dif-
ferences between the two model systems investigated. It was assumed that Hb always reached
100% saturation at atmospheric O2 tensions for the human model because they do not possess
Root effect Hbs. Therefore, the model was restricted to Hb-O2 saturations between 20 and
80%, as a ΔPO2 would not be expected at 0 and 100% SO2. Rainbow trout blood ΔPO2 values
were obtained by direct interpolation from the OECs generated in Series 1 (Fig 1A). The SO2

values from 0 to100% for a ΔpHe of 0.1 (by comparing the 0.25 and 0.5% CO2 OECs), ΔpHe of
0.2, (by comparing the 0.25 and 1% OECs), ΔpHe of 0.5 (by comparing the 0.25 and 2% CO2

OECs), and ΔpHe of 1.0 (by comparing 0.25 and 4% CO2 OECs). The ΔPO2 depending on Hb-
O2 saturation for human and rainbow trout determined at the same ΔpH values are shown
superimposed in Fig 1.

For human blood between 20 and 80% Hb-O2 saturation, the ΔPO2 values for a ΔpH of
-0.2, -0.3, -0.55, and –1.0 were relatively constant (because the Bohr coefficient was assumed
constant over this range) and were 4.7, 7.4, 15.1, and 33.4 mmHg, respectively at P50. For rainbow
trout blood, the ΔPO2 values directly interpolated from the OECs for ΔpH values of -0.2, -0.3,
-0.55, and –1.0 ranged from 14.6 to 295.1 mmHg at 50% Hb-O2 saturation. Thus, at a given
ΔpH, the ΔPO2 depended greatly on the Hb-O2 saturation. The ΔPO2 for each ΔpH was on aver-
age 2.5-times greater in rainbow trout blood than human blood at 40% Hb-O2, and this differ-
ence increased at higher saturations. For Hb-O2 saturations up to 80% and a ΔpH close to what
might be expected in vivo in trout (0.2 pH units), the ΔPO2 for rainbow trout was, at minimum,
4-fold that of the human ΔPO2 and over 21-times greater at greater ΔpH values (Fig 1B).

Series 3: Modeling changes in O2 release from Hb in a Bohr effect
system in comparison to a Root effect system.
The OECs generated for human and trout blood were used to model O2 release from Hb and
tissue O2 delivery. For the human model, a PaO2 of 115 mmHg (labeled “a” on Fig 2A), a PvO2

of 27 mmHg (labeled “v” on Fig 2A), and a physiologically relevant ΔpHa-v of 0.035 were used.
All above values correspond to values obtained from previous studies [6,32–35]. The corre-
sponding right-shifted OEC was plotted assuming a constant Bohr coefficient, F = -0.35,
between 20 and 80% Hb-O2 saturation [4]. For the rainbow trout model, a PaO2 of 110 mmHg
was used (labeled “a” on Fig 2B), and PvO2 (labeled “v” on Fig 2B) was estimated from muscle
O2 values of 45–47 mmHg, both of which correspond to values obtained in vivo [21]. The OEC
curves generated from the current study were used to simulate the various ΔpHa-v for the
model and also to accommodate the non-linear Bohr shift known to occur at the different Hb-
O2 saturations in teleosts.

Oxygen extraction over a given Pa-vO2 and without a right-shift in the OEC (“a” to “v”) is
represented by a black vertical double arrow for both human and trout models (Fig 2). The
increase in O2 released from Hb that is associated with a given ΔpHa-v and resulting right shift
in the OEC can then be estimated by tracing “v” horizontally to the first right-shifted OEC to
the point labeled “vCO2” and then moving down this new OEC to the PvO2 estimate corre-
sponding with v’ on the model. For the human, the increase in O2 released from Hb as a result
of the right-shift in the OEC (a to v’) would be a 1.3% increase from what would occur from “a
to v” (i.e., without a right-shift, compare black and red vertical arrows; Fig 2A). For rainbow
trout (Fig 2B), the increased O2 extraction as a result of the right-shift in the OEC (a to v’)

Enhanced O2 Delivery in Fish vs. Other Vertebrates
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Fig 2. The degree to which O2 release from Hb is enhanced for a givenΔpH for a Bohr effect Hb
system (human, panel A) and a Root effect Hb system (rainbow trout, panel B). The increase in O2

release with respective right-shifts in the OECs is represented by vertical double arrows here and as a
percent increase over what is possible without the right shift in the text (see above section “Series 2:
Differences in ΔPO2. . .” for details).

doi:10.1371/journal.pone.0139477.g002
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would be 73.5% (compare black and red vertical arrows; Fig 2B). Thus, under these conditions,
there is over a 50-fold increase in the additional O2 released from the Hb associated with the
right shift in the OEC in trout relative to the human model. Under a more severe acidosis, the
OEC shifts further to the right corresponding to v”, v”‘, or v”“and a respective 88, 160, or 197%
increase or a doubling to tripling of O2 released from Hb (compare black to yellow, green, or
blue vertical arrows; Fig 2B) and therefore potentially tissue O2 delivery.

An additional model was generated for rainbow trout to predict the degree to which O2

release from Hb could be enhanced under normoxic conditions, at various levels of sustained
exercise, or during exposure to hypoxia (Fig 3). We used PaO2 values corresponding to ~95%
Hb-O2 saturation as well as various levels of hypoxia (e.g., 80, 60, and 40% Hb-O2 saturation)
and a range of PvO2 levels (40, 30, 20, 10, 5, and 0 mmHg). Both ΔpH = -0.2 and ΔpH = -0.55
OEC curves were used to represent two potential ΔpHa-v scenarios. The first could be experi-
enced in vivo at the tissues in the presence of a mild acidosis [21,23], and the second would rep-
resent a more severe acidosis–both cases representing involvement of selective short-circuiting
of RBC NHE via plasma-accessible CA. The % increase in O2 release with Root effect Hbs,
depending on the scenario, is most often at least 40% or greater and in five scenarios exceeds a
100% increase in O2 release (Fig 3). Furthermore, the increase in O2 release from Hb is almost
doubled when the ΔpH is -0.55 when compared to ΔpH of -0.2 (Fig 3).

Discussion
The present study quantifies the potential benefit to tissue O2 delivery associated with a ΔpHa-v

in the presence of Root effect Hbs (rainbow trout) compared to that for a mammalian Bohr
effect Hb system (human). Overall, it was determined that the ΔPO2 occurring in rainbow
trout blood at 40% Hb-O2 saturation was 2.5-fold greater than that of a system with only a
Bohr effect, using the same ΔpHa-v (Fig 1B). At Hb-O2 saturations greater than 50%, the differ-
ence was even more pronounced, 21-times that of a system possessing only a Bohr effect (Fig
1B). Upon modeling O2 release from Hb, it was determined that a ΔpHa-v of 0.2 in rainbow
trout blood could increase O2 extraction by 73.5% at constant PvO2 (Fig 2B). Based on ΔPO2

values calculated from OECs associated with larger changes in pH, it follows that the enhance-
ment in O2 release from Hb in rainbow trout could be even greater. In the human, however, a
physiologically relevant pH change under otherwise similar assumptions may only increase O2

release from Hb by 1.3% (Fig 2A). This is the first time this difference has been quantified to
this extent, despite qualitative predictions [19,26,36]. It follows that, if a relatively large ΔpHa-v

can be generated in the general circulation of fish, which has been recently demonstrated in
vitro and in vivo in rainbow trout [21,23], Root effect Hbs could be responsible for greatly
enhancing general O2 delivery. Modeling with known Pa-vO2 in fish during exercise and hyp-
oxia indicates that O2 release from Hb and thus tissue O2 delivery may double during exercise
and even triple during some levels of hypoxia.

One of the assumptions associated with the model we present is that fish exhibit larger pHa-v

differences than air-breathing vertebrates. To be conservative, many of the estimates presented
here are based upon measured pHa-v differences in fish; although, recent data suggest that the
pHa-v difference realized at the tissues under periods of stress are likely to be even larger [21,22].
This is due to the presence and then elimination of disequilibrium states [22], which are almost
impossible to measure directly. It is also important to note that intracellular pH (pHi) cannot yet
be reliably measured in real-time at the tissue/cellular level in vivo, and disequilibrium states in
the blood preclude accurate representations of pHi once blood is collected and RBCs are lysed for
measurement. So, even though many past studies have drawn arterial and venous blood samples
for pHmeasurements, the values determined are equilibrium values that may differ greatly from
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pH values realized at the tissues. Currently, the fastest and most sensitive way to infer changes in
RBC pHi is via changes in PO2 that we know occur as a result of a decrease in pHi, and indeed,
the technology is already available for real-time measurements of PO2 at the tissues.

The magnitude of the ΔpHa-v that is possible in teleosts has recently been described and
elaborated upon by Randall et al., and the sequence of events contrast the model for air-breath-
ing vertebrates in several ways [22]. In teleosts, there is a loss of CA at the respiratory surface
and in the venous circulation, an uncoupling of RBC and plasma pH, and a decrease in the role

Fig 3. Model estimates for enhanced O2 release from Hb (as a %) in rainbow trout under normoxic conditions, various levels of sustained exercise,
and various levels of hypoxia at two different simulated ΔpHa-v (panels A and B) compared to when there is no right shift in the oxygen equilibrium
curve (OEC). The PaO2 values corresponding to arterial Hb-O2 saturations (indicated by red cells) were derived from the resting curve of Fig 1A. Calculated
values at each combination of arterial Hb-O2 saturation (red cells) and venous PO2 (PvO2) values (blue cells) represent the % increase in O2 delivery (white
cells) over what is possible without a right-shift in the OEC. Curves for ΔpH = -0.2 (panel A) and ΔpH = -0.55 (panel B) were used for this model. For scenarios
where the Pa-vO2 difference was less than 5 mmHg (deemed unrealistic), no data are shown (—).

doi:10.1371/journal.pone.0139477.g003
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of Hb as a buffer. This collectively results in nearly all plasma bicarbonate dehydration occur-
ring inside the RBC, which results in disequilibrium states that elevate arterial and venous
bicarbonate levels [22]. With the presence of plasma-accessible CA near some tissues, disequi-
librium states can be eliminated to form CO2 that re-acidifies the RBCs. All of this can be
greatly magnified during acidotic stress and has been supported both in vitro [23] and in vivo
[21]. In rainbow trout exposed to a mild acidosis (0.2 pH unit reduction in blood pH), for
example, red muscle PO2 increased to an extent nearly identical to the right shift in the OECs
derived from this study with the same pH change (0.2 pH unit). The ΔPO2 was abolished when
plasma accessible CA in the red muscle was selectively inhibited [21]. These findings suggest
that–at least during a mild acidosis–an entire acid load can be transferred from the plasma into
the RBC, resulting in the equivalent of a ΔpHa-v of 0.2 pH units in situ. This is a much larger
difference than would be inferred from arterial and venous blood drawn and then measured at
equilibrium, which represents most of the literature values. Whether the same applies under
more severe acidoses in vivo, as it does in vitro [23], needs to be investigated. However, the pre-
dictions generated here can now be tested experimentally. Clearly there is a tremendous poten-
tial for enhanced O2 release from the Hb associated with a large ΔpHa-v and potentially tissue
O2 delivery.

Past information on haemoglobin-oxygen relationships in rainbow trout
Rainbow trout is arguably one of the most universally investigated teleost species with respect
to O2 transport and respiratory physiology. The absence of a comprehensive data set sufficient
to model ΔPO2 over a range of ΔpH (Table A in S1 File) was therefore surprising. An extensive
review of the available literature reveals that reported O2 transport-related variables in rainbow
trout blood are highly variable. For example, great variability in Bohr coefficients are observed
ranging from –0.15 to –1.97 (Table A in S1 File, S2 Fig, S1 File) and P50 values for control or
resting animals as low as 11 but as high as 40 mmHg (Table A in S1 File). This variability is
likely due to the range of animal holding conditions, sampling techniques, blood preparation
and protocols (Table A in S1 File), but it is unknown how these differences may affect the val-
ues those authors obtained. Consistent OECs and calculated Bohr and Hill coefficients and P50
values were generated using two different blood sampling protocols (rinsed RBCs or whole
blood drawn from an indwelling dorsal aortic cannula), and two methods of equilibrating
blood with gases (tonometry and the Tucker method vs. a modified version of the microdiffu-
sion chamber and spectrophotometer, i.e. the Pwee50) [29] to further validate the data used for
the models in the present study.

Modeling increased O2 release from Hb and tissue O2 delivery with a
Bohr effect Hb (human) and a Root effect Hb (rainbow trout)
Christiansen and colleagues calculated a maximal P50 shift (ΔP50) in human blood associated
with the Bohr effect in vivo of 3 mmHg, and so the predicted benefit to O2 delivery associated
with the Bohr effect alone is quite modest. In modeling ΔPO2 associated with a pH change in
human blood, a Bohr coefficient of –0.35 was assumed, a value deemed optimal for O2 delivery
[5]. This value also falls within the middle of the range of fixed-acid and CO2 Bohr coefficients
calculated from whole blood of healthy humans [37]. It was also assumed that the Bohr coeffi-
cient was constant between 20 and 80% SO2 [24]. A P50 value of 27 mmHg was chosen, which
is midway between resting values of 24 and 29 mmHg, which have previously been determined
at a pH of 7.4 [4,38–41]. The ΔpH values chosen were consistent with those determined in
Series 1 for rainbow trout OECs to allow the two systems to be compared in terms of the con-
tribution of a ΔpHa-v to enhancing O2 release from Hb. Our models may actually
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underestimate the difference between the two systems, however, because pH is a log scale, and
starting pH values are lower in humans (7.4) than in rainbow trout (8.0). As such, more H+

would be added to the human system, which has a lower H+ sensitivity, than the trout system,
despite using the same ΔpH. Therefore, if the same number of H+ were added to the trout sys-
tem, the result may be even greater than we predict here. The measured ΔpHa-v in humans,
0.035 pH units, is quite small relative to even the lowest ΔpH value of 0.2 units used in this
study, which between 20 and 80% Hb-O2 saturation, results in a ΔPO2 of less than 8 mmHg. A
ΔpH of 0.035 would result in a ΔPO2 of even less than 1 mmHg, which would increase O2

release from Hb by 1.3%. However, it should also be noted that mammals can have nearly dou-
ble the blood Hb concentrations of teleosts, which must be taken into account in determining
the increase in tissue O2 delivery that may be realized with this modest Bohr effect. On the
other hand, teleosts may be able to exploit this phenomenon that we describe here to enhance
tissue O2 delivery while maintaining lower blood Hb concentrations.

In comparison, O2 release associated with a ΔpHa-v in teleost blood with Root effect Hbs is
much greater than that in an air-breathing vertebrate with a Bohr effect Hb only, provided a
sufficient pH change in the blood is observed. This varies with blood Hb-O2 saturation for a
number of reasons. First, the Root effect results in incomplete Hb-O2 saturation at low pH,
despite atmospheric PO2 levels [11–13]. This was evident in the OECs generated for rainbow
trout, as larger pH changes resulted in curves that approached apparent upper asymptotic max-
imum Hb-O2 saturations that were distinctly and significantly lower than 100% (Fig 1A). This
translated to very high ΔPO2 values upon interpolation (Fig 1B). Second, Root effect Hbs typi-
cally exhibit large Bohr coefficients [19,26,36]. As a result, the ΔPO2 in rainbow trout blood
exceeds that of human blood at all comparable ΔpH values between 20 and 80% Hb-O2 satura-
tion (Fig 1B). A 0.2 ΔpHa-v difference in human blood is unlikely, but a difference of this mag-
nitude has been measured in rainbow trout during exercise [42,43]. This is also a value that can
be realized at the level of the RBC when disequilibrium states are eliminated in the presence of
plasma-accessible CA at the tissues, as described above. Even at a ΔpHa-v of 0.035, the ΔPO2 in
rainbow trout blood still exceeds that of the human blood by as much as 3-fold (data not
shown). Third, Root effect Hbs exhibit a non-linear release of Bohr protons with Hb-O2 satura-
tion, and therefore the magnitude of the Bohr shift varies with Hb-O2 saturations [26,44]. This
is apparent in Fig 1B, where ΔPO2 for a given ΔpHa-v is much greater in rainbow trout blood
than human blood above P50, but this difference decreases below P50 (Fig 1B).

To date, only two studies have monitored real-time muscle PO2 in a teleost, and both of
these studies provided evidence that tissue O2 delivery may be enhanced relative to other verte-
brates [20,21]. Whether during normoxia, mild hypoxia, mild hypercarbia, or sustained or
exhaustive exercise, red muscle PO2 in rainbow trout (between 45 and 60 mmHg; [20,21]) is
consistently and substantially higher than in mammals (25–35 mmHg [7–10]), and this differ-
ence has been proposed to be due to the presence of Root effect Hbs. Furthermore, the fact that
muscle PO2 still remains elevated during stress (hypoxia, hypercarbia, or exercise [20,21]) and
above PvO2 (approximately 20 mmHg; [45]), despite decreases in PaO2, also suggests the
importance of Root effect Hbs to enhancing O2 delivery. Here, the comparative model for
human and trout with relevant ΔpHa-v demonstrated at least a 50-fold difference in the impact
that Root effect Hbs have on enhancing O2 release from Hb when compared to a system with
only a Bohr effect.

The potential for enhanced O2 delivery in rainbow trout was calculated using arterial Hb-
O2 saturation, PaO2, and PvO2 values that represent normoxia, sustained exercise, and two lev-
els of hypoxia associated with the exploitation of two different ΔpHa-v (Fig 3). The associated
increase in O2 release from Hb over a given Pa-vO2 difference is remarkable, resulting in an
increase of at least 40% or greater and in five scenarios exceeds a 100% increase (Fig 3).
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Assuming that, under these conditions, all other aspects of the oxygen cascade remain con-
stant, and in particular there is no change in tissue metabolism or perfusion, this increase in O2

release would be directly proportional to the increase in tissue O2 delivery. Ultimately, this
model serves to illustrate the remarkable potential for enhanced O2 delivery under various sce-
narios in a system unique to teleosts. Enhanced O2 delivery may be particularly important dur-
ing exposure to environmental stress or prolonged exercise–for example–during the long,
upstream migrations that the Pacific salmon undertake [30] or even to speed up post-exercise
recovery, such as following a predator-prey interaction.

Conclusions
Quantitative results confirmed theoretical predictions that–for a given pH change–Root effect
Hbs in rainbow trout convey an enormous benefit to blood O2 release and thus delivery when
compared with human blood having a Bohr effect alone. Teleost fish evolved an extraordinary
O2 delivery system associated with the extremely pH-sensitive Root effect Hbs. This system has
been understood for decades as key to O2 delivery to the eye and swimbladder, which may have
been important factors responsible for the extensive adaptive radiation of teleosts. Provided
here is empirical evidence to suggest that Root effect Hbs, in conjunction with a mechanism to
increase pHa-v (via the presence of plasma accessible CA in the tissues and absence at the gills),
can also enhance generalO2 delivery, which is consistent with recent in vitro and in vivo studies
[20,21,23]. It may be that Root effect Hbs, which evolved prior to the appearance of the ana-
tomical structures (retia) at the eye and swimbladder typically associated with this exceptional
O2 delivery system, were initially selected for enhancing general O2 delivery through the associ-
ated large Bohr coefficient and large pHa-v difference. Studies on a model species, such as the
rainbow trout, that is neither basal nor the most derived of the teleosts and exhibits a moderate
level of activity and tolerance to environmental conditions provides a foundation on which to
build further studies to understand how evolutionary history, activity, and habitat may play a
role in the functional significance of this system.

Materials and Methods

Series 1: Influence of pH on the oxygen equilibrium curves of rainbow
trout blood

1.1 Experimental animals and holding conditions. Rainbow trout, (O.mykiss, 300–600g
wet body mass), were obtained from Spring Valley Trout Farm (Langley, British Columbia,
Canada) and maintained at the University of British Columbia (UBC) Aquatic Facilities. Fish
were held under a natural photoperiod at densities no greater than 10kg/m3 [46] in 4,000-l
tanks supplied with flow-through 10°C Vancouver dechlorinated municipal tap water. Fish
were fed every other day to satiation using commercial trout pellets (Skretting, Orient 4–0).
Experiments were completed within the spring months over two separate years. All procedures
complied with the guidelines approved by the Canadian Council on Animal Care and were
approved by UBC’s animal ethics care and use committee (UBC protocol approval # A07-
0080).

1.2 Caudal puncture sampling protocol. Fish were quickly removed from holding tanks
and placed into a 20 l bucket of clean, well-aerated water containing benzocaine (0.2 mM final
concentration, p-aminobenzoate, Sigma-Aldrich cat. no. E1501; St. Louis, MO, USA) to anaes-
thetize fish. Blood was drawn from the caudal vein and collected in heparinized syringes, and
RBCs were rinsed twice and resuspended in ice-cold Cortland's saline [47] according to Cald-
well et al. [48]. Haematocrit (Hct) of the rinsed RBCs was measured in duplicate by
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centrifuging 60μl whole blood in heparinized micro-capillary tubes for 3 min at 17,000 g and
was standardized to 25% by removing either saline or RBCs. Blood was stored at 4°C overnight
until experiments commenced, ensuring that any catecholamines present within the sample
had degraded [49].

1.3 Oxygen equilibrium curves derived from tonometry. The Hct of rinsed RBCs stored
at 4°C overnight was readjusted to 25% as needed. Then, 4 ml was added to each of four
Eschweiler tonometers, which were incubated at 12°C, and equilibrated for one hour with a
humidified gas mixture to one of the following CO2 proportions: 0.25, 0.5, 1, 2, or 4% balanced
with air (21% O2). To generate an OEC at each of the above % CO2 values (n = 8), each tonom-
eter was subjected to a step-wise decrease in O2 (21, 20, 19, 13, 9, 6.5, 4, 2.5, 1.5, or 0%) bal-
anced with N2 using a DIGAMIXWösthoff gas-mixing pump (DIGAMIX 275 6KM 422
Wösthoff, Bochum, Germany). Following a 20-min incubation period at each O2 tension, two
25 μl aliquots of rinsed RBCs were withdrawn into a pre-gassed Eppendorf™ tube or Hamilton™
syringe for measurement of total O2 content (TO2), and up to a further 500μl was withdrawn
to measure haemoglobin concentration ([Hb]), Hct, extracellular pH (pHe), and intracellular
pH (pHi). TO2 was measured according to Tucker [50], [Hb] (mM per tetramer) was measured
after adding rinsed RBCs to Drabkin’s solution (Sigma-Aldrich cat. no. D5941; St. Louis, MO,
USA), measuring absorbance at 540 nm, and applying a millimolar extinction coefficient of 11.
The freeze-thaw technique [51] was used to measure pHi, where both pHe and pHi were mea-
sured using a BMS 3 Mk2 Blood Microsystem in conjunction with a PHM 84 meter (Radiome-
ter, Copenhagen). A larger blood volume (500μl) was drawn when pH was measured, which
was done at the highest, middle, and lowest O2 incubation tensions. All assays were performed
in duplicate.

1.4 Calculations and statistical analyses. Data are presented as means ±S.E.M. Mean cor-
puscular haemoglobin concentration (MCHC) was calculated as Hb/(Hct/100). Haemoglobin
% saturation (SO2) was calculated by dividing TO2 (after subtracting physically dissolved O2

according to [52]) by the theoretical maximum carrying capacity of the rinsed RBCs based
upon the tetrameric Hb concentration obtained spectrophotometrically according to [50]. The
SO2 values were plotted as a function of incubation PO2 (mmHg) for each % CO2 (0.25, 0.5,
1.0, 2.0, and 4.0%), and a curve was fit to the data using the Dynamic Fit Wizard function in
SigmaPlot for Windows 13.0 (Systat Software Inc.) to generate the OECs. The P50 and Hill
coefficients (nH) were calculated from Hill plots. Bohr coefficients (F) were calculated as
ΔlogP50/ΔpHe for pH values corresponding to each CO2 incubation condition relative to
0.25% CO2. Statistical differences among CO2 treatments were detected via ANOVA and,
when necessary, a post-hoc Holm-Sidak multiple comparisons test. All statistical analyses were
conducted using SigmaPlot for Windows 13.0 (Systat Software, Inc.), using α< 0.05 to deter-
mine statistical significance.

Series 2: Differences in ΔPO2 in a Bohr effect Hb system (human) and a
Root effect Hb system (rainbow trout)

2.1 Human model with a Bohr effect Hb system. The ΔPO2 was calculated (using Eq. 1),
assuming a P50 of 27 mmHg [4], F of -0.35 [5], and assuming F was constant at all pH values
between 20 and 80% SO2. A ΔpH of -0.2, -0.3, -0.55 and -1.0 pH units were chosen to be consis-
tent with those values determined for rainbow trout below, and while the latter two values far
exceed what might be seen in vivo, they serve to illustrate the dramatic differences between the
two model systems investigated. It was assumed that Hb always reached 100% saturation at
atmospheric O2 tensions. Therefore, the ΔPO2 at 0 and 100% SO2 always equalled zero.
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2.2 Rainbow trout model with a Root effect Hb system. Rainbow trout blood ΔPO2 val-
ues were obtained by direct interpolation from the OECs generated in Series 1. The SO2 values
from 0 to100% for a ΔpHe of 0.1 (by comparing the 0.25 and 0.5% CO2 OECs), ΔpHe of 0.2,
(by comparing the 0.25 and 1% OECs), ΔpHe of 0.5 (by comparing the 0.25 and 2% CO2

OECs), and ΔpHe of 1.0 (by comparing 0.25 and 4% CO2 OECs). The same four pH shifts
(ΔpH) simulated in rainbow trout blood were used for the human blood calculations as
described above.

Series 3: Modeling changes in O2 release from Hb in a Bohr effect
system in comparison to a Root effect system.
The OECs generated at different CO2 levels from this study were used to calculate the increased
O2 release from Hb associated with a given ΔpHa-v and a constant ΔPa-vO2. Then, O2 release
can be used to estimate enhanced tissue O2 delivery associated with the respective ΔpHa-v,
assuming that all other aspects of the O2 transport cascade were unaffected (e.g., including tis-
sue metabolic rate and blood flow).

For the human model, a PaO2 of 115 mmHg, PvO2 of 27 mmHg, and a physiologically rele-
vant ΔpHa-v of 0.035 were used because they correspond to values obtained from previous
studies [6,32–35]. The corresponding right-shifted OEC was plotted assuming a constant F =
-0.35 between 20 and 80% Hb-O2 saturation [4]. For the rainbow trout model, a PaO2 of 110
mmHg was used, which corresponds to values obtained in vivo in rainbow trout [21]. PvO2 was
assumed constant and estimated from RMPO2 values (45–47 mmHg, [21]), which closely
resemble PvO2. The OEC curves generated from the current study were used to simulate the
various ΔpHa-v for the model and because PO2 values at each Hb-O2 could not be calculated
using Eq. 1 because of the non-linear Bohr effect precluding a constant F at different Hb-O2

saturations.
An additional model was generated for rainbow trout to predict the degree to which tissue

O2 delivery could be enhanced under normoxic conditions, hypoxic conditions, or at various
levels of sustained exercise. We used PaO2 values corresponding to ~95% Hb-O2 saturation as
well as various levels of hypoxia (e.g. 80, 60, and 40% Hb-O2 saturation) and a range of PvO2

levels (40, 30, 20, 10, 5, and 0 mmHg). Both ΔpH = -0.2 and ΔpH = -0.55 OEC curves were
used to represent two potential ΔpHa-v that could be experienced in vivo at the tissues [21,23].
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