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INTRODUCTION

The extent and periodicity of movement by an ani-
mal within its environment provides a baseline indi-
cation of how biological demands are met. Space use
patterns can identify temporal trends associated with
obtaining resources (Jonsen et al. 2007) and provide
spatial estimates of habitat selection (Knip et al.
2012). Knowledge of movement can also be used to

delineate behavioural (Loseto et al. 2006, Heupel et
al. 2012), ontogenetic (Knip et al. 2011), and physio-
logical (Roscoe et al. 2010) adaptations. Understand-
ing these biological traits is important when making
informed management decisions for exploited species.

The methodological approaches used in the past to
explore movement and space use of reef fish have
included underwater visual census (UVC), mark-
recapture, and active acoustic tracking (see Zeller
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1997, Zeller & Russ 1998 for descriptions). However,
these methods are limited to fragmented and short-
term sampling with relatively small sample sizes. For
example, UVC only covers a small area and may not
represent reef-wide trends, observer presence may
alter animal behaviour, and surveys are often depth-
limited (Davies 1996, Thompson & Mapstone 2002,
Colton & Swearer 2010, Miller et al. 2012). Mark-
recapture can yield low recapture rates (e.g. <10%,
Grandcourt 2002, Sumpton et al. 2008) and short
retention times of markings have been reported (e.g.
Davies 1996, Samoilys 1997). Finally, active acoustic
tracking requires intensive sampling and is limited to
a small number of detections from multiple indivi -
duals or sparse individual detections (Tulevech &
Recksiek 1994, Szedlmayer 1997, Zeller 2002). A
major limitation of previous approaches is that sight-
ings, recaptures, or detections only represent a small
proportion of time and typically cannot identify
movement or behavioural patterns outside of moni-
toring or observation periods. Although a combina-
tion of techniques is typically preferred, passive
acoustic tracking may be a useful alternative to the
previously employed methods because tagged ani-
mals within range of receivers can be sampled simul-
taneously and long-term, independent of on-site
effort (see Heupel & Webber 2012 for review).

Concerns exist that fishery-targeted reef species,
such as epinephelids, serranids, lethri nids, and lut-
janids, are at risk of over-exploitation (Dulvy et al.
2004, Sa dovy 2005, Newton et al. 2007). Many loca-
tions have already experienced drastic declines. For
example in the Caribbean, the Nassau grouper Epi-
nephelus striatus once contributed to ~50% of total
finfish landings but many populations are now con-
sidered commercially unviable due to over-exploita-
tion of aggregations (Sadovy de Mitcheson & Colin
2012). Knowing how reef species interact with their
environment is valuable for delimiting individuals’
spatial ranges and important habitats, which can
improve management of large predatory fish. The
leopard coralgrouper Plectropomus leopardus is a
large (up to ~60 cm total length) reef-associated
predatory fish in the family Epinephelidae that has a
broad distribution, and is the main target species in
the Great Barrier Reef line fishery (Mapstone et al.
2008).

Past research using the methods described above
has demonstrated that space use of P. leopardus va -
ries largely between studies and sampling ap proach -
es: mark-recapture: home sites ∼2000 m2, 300 h of
SCUBA over 12 mo (Samoilys 1997); active acoustic
tracking: home range ∼19 000 m2, 5 sampling trips

over 3 yr, each trip 1−3 mo (Zeller 1997); passive
acoustic tracking: distance moved ∼10−15 km d−1,
study area of 0.04 km2 sampled during 81 d (Bunt &
Kingsford 2014), but the majority of time is spent at a
few locations within a small home range. Individuals
are also reported to be more active during the day
(Samoilys 1997, Zeller 1997, Connell & Kingsford
1998), and move distances up to ~5 km to spawn at
specific aggregation sites (Zeller 1998). However,
due to limitations of past research (described above),
space use patterns of P. leopardus at different tempo-
ral scales (e.g. daily, monthly, yearly) require further
investigation. Seasonal changes in activity and move-
ment are of particular concern since this species
aggregates in groups for spawning between October
and December (Sadovy de Mitcheson & Colin 2012,
Carter et al. 2014). In fact, >100 reef-associated spe-
cies are known to aggregate to spawn, many of
which are large predatory fish that travel long dis-
tances to reach spawning sites (Sadovy de Mitcheson
& Colin 2012). These species face in creased risk of
over-exploitation since aggregations can contain 1000s
of individuals at predictable times and  locations.

The goal of this study was to improve knowledge of
how an exploited reef species, P. leopardus, behaves
by identifying long-term space use patterns, such as
home range, depth use, roaming, and residency
using passive acoustic tracking. There is concern that
fishing pressure (Little et al. 2005, Mclean et al. 2011)
and environmental disturbances (Tobin et al. 2010)
are detrimental to the sustainability of P. leopardus
populations. Information on long-term distribution
and movement will help define the effects human or
environmental factors can have on population
dynamics and demography, and assist in effective
management of important fishery species.

MATERIALS AND METHODS

Study area

The study was located at Heron Island reef (HIR;
23°26’31’’S, 151°54’50’’E) and One Tree Is land reef
(OTIR; 23°30’30’’S, 152°05’30’’E) in the southern
Great Barrier Reef, Queensland, Australia (Fig. 1).
Both consist of fringing and patch coral reefs and a la-
goonal area surrounding a small island. HIR is ~10 km
long and 5 km wide (reef area ~35 km2) and OTIR is
~5 km long and 3.5 km wide (reef area ~16 km2).
Depths are <10 m in the lagoon at both reefs and
reach ~25 m along the reef slope. At low tide, the la-
goon areas at both reefs are largely isolated.
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Field methods

Passive acoustic tracking was conducted at both
reefs using VR2W receivers (Vemco). Forty-five
receivers were deployed: 25 at HIR and 20 at OTIR
(Fig. 1). Receivers were deployed ~1 m above the
seabed on long star pickets along the reef slope (10 to
22 m deep) and within reef lagoons (2 to 8 m deep)
(Fig. 1). The detection range was tested at HIR by
comparing the expected and observed number of
detections from 5 transmitters moored at different
depths and distances from receivers. Due to variabil-
ity in environmental factors such as reef structure,
detection ranges differed with depth and location,
but on average the detection range was ~300 m (M.
R. Heupel unpubl. data). Acoustic receiver data were
downloaded twice per year between August 2010
and February 2013. The final data used in this analy-
sis was downloaded in February 2013. Based on
detection range, acoustic receivers covered approx.
50% of the available habitat.

Individuals were captured using barbless hook and
line, and released at the same location 20 to 940 m
away from a receiver. Upon capture, the individual
was immediately placed in an anaesthetic bath of
Aqui-S® (~30 l) diluted with seawater (1:10000). Prior
to removing the hook, the swim bladder was vented

to avoid barotrauma, if necessary. Once individuals
lost equilibrium, they were measured (mm fork
length), fitted with an external dart tag (PDS; Hall-
print©) in the dorsal musculature for identification,
and moved to a fresh seawater bath where an
acoustic transmitter was implanted using similar
methods to Zeller (1999). A small incision (~2 to 3 cm)
was made with a sterile scalpel blade in the ventral
body wall and a V13P (13 × 36 mm) acoustic transmit-
ter (Vemco) with pressure sensor (±2.5 m manufac-
turer specified) was inserted into the body cavity.
Each transmitter was programmed to randomly emit
a unique coded signal (69 kHz) every 120 to 200 s,
with an expected battery life of 364 d. The incision
was closed using 2/0 synthetic absorbable sutures
and the individual was released after recovering
from the anaesthetic (~10 min procedure overall).
Individuals were released in good condition in shal-
low regions to help avoid predation. A total of 124
Plectropomus leopardus were tagged between Au -
gust 2010 and February 2012 (Table 1).

Data analysis

Transmitter data collected from receivers at HIR
and OTIR were used to analyse patterns associated
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Fig. 1. Map of study area, with acoustic receiver locations outside (s) and inside (⊕) the reef crest at Heron Island reef and One
Tree Island reef. Black circles (d) represent both receiver and sentinel tag location. The number of tagged coralgrouper 

Plectropomus leopardus (n = 124) released near each receiver is shown as a number within the receiver location symbol
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with frequency of detections, presence, and hori-
zontal and vertical depth use. Detections from
each transmitter were grouped in 2 h intervals to
reduce correlation between consecutive data
points. Initial analysis indicated grouping data into
2 h intervals accurately reflected fish behaviour
while avoiding autocorrelation. To avoid spurious
findings from transmitters with few detections (e.g.
mortality events or movement outside detection
range of re ceivers), individuals detected <25 times
and/or for <15 d were excluded from analyses.
There were 3 main periods of transmitter deploy-
ment (August 2010, February−March 2011, Febru-
ary 2012). Since transmitters had a battery life up
to 1 yr, detection data was available between
August 2010 and February 2013. Due to the incon-
sistency in total months with data between years,
individuals were divided into 3 groups based on
the year tagging occurred (i.e. 2010, 2011, 2012).
To determine if the distance of capture/release
locations from a receiver affected the likelihood of
an individual being in cluded in analyses (i.e. ≥25
detections and/or ≥15 d), a generalized linear
model (GLM) with bi nomial data was selected,
where distance from receiver, locality on the reef
(i.e. North, East, West, South, Lagoon), and reef
were the explanatory variables (with an interaction
term between locality and reef). These were tested
against a response category of whether each indi-
vidual met detection criteria or not (de scribed
above). Initially, the effect of fish size on movement
patterns was analysed using simple linear regres-
sions. However, it was not a significant predictor
for any of the response variables and was not con-
sidered any further. All data analyses were com-
pleted in the R environment (R Development Core
Team 2013) and results were considered significant
when p < 0.05. Mean values are presented with ±
standard error (SE) throughout.

Detections

The number of detections for each individual (after
grouping in 2 h intervals) was grouped in 6 h bins as
a percentage of total detections to allow for standard-
ization among individuals. A repeated measures
ANOVA (RM-ANOVA) determined the influence of
time of day (00:00−06:00, 06:00−12:00, 12:00−18:00,
18:00−24:00 h), location (HIR, OTIR), and tagging
year (2010, 2011, 2012) on the frequency of detec-
tions (arcsine transformed) using the R packages ‘car’
(Fox & Weisberg 2011) and ‘nlme’ (Pinheiro et al.
2013). Individual (i.e. transmitter number) was the
within-subject factor and interactions among ex -
planatory variables were identified. When signifi-
cant, contrasts were fit to determine which categories
differed from each other using the ‘gmodels’ pack-
age in R (Warnes 2013).

Receiver detections can be affected by environ-
mental variables such as time of day (Payne et al.
2010). Therefore, sentinel tags (stationary transmit-
ters moored near receivers) were deployed at depths
between 2 and 15 m at the study site (n = 5; Fig. 1) to
identify fluctuations in receiver/detection efficacy.
Analysis of each sentinel tag consistently showed
more detections during daytime as opposed to night,
possibly due to increased noise interference from
nocturnal crustaceans (Heupel et al. 2006). Conse-
quently, a standardising factor was applied to the
number of detections in each time category to reduce
diurnal detection disparities. The standardising fac-
tors were calculated by dividing the time category
with the most detections by each subsequent time
category for each sentinel tag. The mean categorical
value from all sentinel tags (i.e. the standardising
factor) was then multiplied by the number of detec-
tions for each respective time category for all trans-
mitters. Following this, RM-ANOVAs were com-
pleted for standardised detection data as described
above.

Presence

Trends relating to presence of P. leopardus within
receiver arrays were investigated using residency
and roaming indices. Monthly residency indices
were calculated by dividing the number of days an
individual was detected at any receiver by the num-
ber of days in each month. This measure estimated
an individual’s proclivity to remain near a receiver.
Monthly roaming indices were calculated by divid-
ing the number of receivers an individual was de -
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Location Tagging year n Date tagged

Heron 2010 14 August 12−14
2011 25 March 15−26
2011 2 August 21
2012 32 February 8−15

One Tree 2010 10 August 15−16
2011 16 March 31−April 15
2012 25 February 12−20

Total 124

Table 1. Location, tagging year, sample size (n), and tagging
date of coralgrouper Plectropomus leopardus released with 

acoustic transmitters
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tected on each month by the total number of re -
ceivers in the array (i.e. HIR n = 25; OTIR n= 20). This
index provided an estimate of movement patterns at
a relatively large temporal scale. An RM-ANOVA
(individual as repeated measure) was applied with
season (January−March, April−June, July−Septem-
ber, October−December), location, and tagging year
as explanatory variables, and residency and roaming
indices as response variables (analysed separately).
Interactions among explanatory variables were not
analysed, and contrasts were fit when significant.
Proportional data were arcsine transformed prior to
analysis.

Horizontal space use

The locations of individuals were estimated using a
mean position algorithm to provide centres of activity
(COA) (Simpfendorfer et al. 2002). These locations
represented the mean position of an individual based
on the frequency of detections at receivers during the
designated 2 h interval (Simpfendorfer et al. 2002).
Space use was evaluated based on COAs using 95%
(home range extent) and 50% (core home range) uti-
lization distributions (UDs) from Brownian bridge
movement models (BBMMs). These models estimate
space use based on the probability of an animal
being in an area as determined by several factors
such as start and end locations, the time between
detections, and the speed of movement (Bullard
1999, Horne et al. 2007). The BBMM has advantages
over other techniques (e.g. fixed kernels) because it
incorporates uncertainties about the movement path
by using ecologically based model parameters, such
as animal mobility and location error (Powell 2000,
Horne et al. 2007). The ‘kernelbb’ function in the R
package ‘adehabitatHR’ (Calenge 2006) was used to
estimate 95% and 50% UDs. Additionally, the ‘liker’
function was used to find the maximum likelihood
estimation of animal mobility (σ2

m) as described by
Horne et al. (2007). A location error parameter (δ) of
200 m was used, based on a conservative estimate of
receiver detection range. Additional R packages
used include ‘chron’ (James & Hornik 2013), ‘map-
tools’ (Bivand & Lewin-Koh 2013), and ‘PBSmapping’
(Schnute et al. 2013).

Since movement was typically restricted to one or a
few receivers (see results), 95% and 50% UDs were
calculated for the entire detection period of each
individual. If an individual was only detected on one
receiver, a UD of 0.2 km2 was designated based on an
estimated detection area around each receiver (i.e.

area of a circle with 250 m radius). An ANOVA (Type
III sums of squares) determined the effect of location
and tagging year (2010, 2011, 2012) on UDs [ln(x+1)]
transformed; with each individual as a sample n). A
post-hoc Tukey’s test determined which tagging
years or locations differed when they significantly
influenced UDs.

Vertical space use

Since the depth range of individuals in this study
was relatively small (typically <20 m), the ±2.5 m
accuracy of sensor data was evaluated to improve
confidence identifying differences in depth use pat-
terns. To do this, hourly tide height was subtracted
from sensor depths of a transmitter that remained
stationary on the sea floor near a receiver for a 2 mo
period (i.e. a mortality event). This output provided
an estimate of actual depth for >16000 detections
where values only varied by ±0.64 m. Therefore, we
consider this revised sensor error value to be more
accurate for this study than the manufacturer-quoted
error.

Depth was calculated by averaging values during
each 2 h period. An RM-ANOVA was used to test for
differences in depth use between time of day (00:00−
06:00, 06:00−12:00, 12:00−18:00, 18:00− 24:00 h), sea-
son (January−March, April−June, July−September,
October−December), location (HIR, OTIR) and tag-
ging year (2010, 2011, 2012), with individual as the
within-subject factor. Additionally, to test for differ-
ences in variation of depth use (as opposed to depth
itself) by individuals between time of day, season,
location, and tagging year, an RM-ANOVA was com-
pleted using the standard deviation of mean depth
for each individual (repeated measure) and affiliated
season/time of day category. Contrasts were fit for
both analyses when explanatory variables affected
depth use. To explore the influence of water temper-
ature on vertical space use, a linear mixed effects
model was used with location, tagging year, and
daily water temperature (Australian National Moor-
ing Network-Integrated Marine Observing System,
sensors from ≤20 m deep; www.imos.aodn.org.au) as
candidate explanatory variables. The response vari-
able was depth and individuals were treated as ran-
dom factors. Due to the complexity and volume of
data, interactions were not identified in the models.
Candidate models were compared using Akaike
information criterion with correction for small sample
size (AICc) from the ‘nlme’ package (Pinheiro et al.
2013) and model selection was done by averaging

205



Mar Ecol Prog Ser 521: 201–216, 2015

parameter estimates and predictions across models
(model averaging) with the ‘MuMln’ package (Burn-
ham & Anderson 2002). The models with the lowest
AIC values were considered to contain the most
important factors influencing depth use.

Additionally, preliminary analysis revealed that a
few individuals regularly moved to deeper water
towards the end of the year. To further explore this
novel depth use behaviour, raw detection data were
plotted summarizing depth use of these individuals
over time.

RESULTS

The GLM revealed that release distance of Plectro -
pomus leopardus from a receiver did not affect
whether an individual was included in further analy-
ses. The locality on the reef was the only significant
explanatory variable, explicitly the lagoon, where
individuals were less likely to be detected after
release (Estimate = −2.752, SE = 1.320, z = −2.085, p =
0.037).

Detections

After filtering out transmitters that were detected
<25 times and/or for <15 d, 74 individuals were
included in the analyses (Table 2). Of the 10 fish
released in the lagoon at OTIR, 3 had sufficient
detections to analyse. Two of these (#6593 and #6594)
were only detected at the release location receiver,
while #6599 was only detected on one receiver out-
side the lag oon, north of the release location. No
individual tagged outside the lagoon was detected
inside of it. The mean detection period (i.e. time
between first and last detection) for P. leopardus at
HIR and OTIR was 286 ± 10 d (Table 2). During that

period, the mean number of days that tagged animals
were detected was 125 ± 11 (Table 2). Time of day
had a significant effect on detections (F3,204 = 391.1,
p < 0.001), with a greater proportion of detections
during the daytime (i.e. between 06:00 and 18:00)
(Fig. 2a,b). Location (F1,68 = 0.035, p = 0.85) and tag-
ging year (F2,68 = 0.004, p = 0.99) did not affect detec-
tions, although there was an interaction between
time of day and location (F3,204 = 5.203, p = 0.02), with
fewer detections between 12:00 and 18:00 at OTIR
compared to HIR (Fig. 2a,b). Correcting for biased
diurnal patterns in receiver efficacy produced the
same findings as above (Fig. 2c,d).

Presence

Approximately 45% of individuals were detected
on only one receiver, 33% at 2 receivers, 15% at 3
receivers, and 7% at >3 receivers. One individual
(#281) was detected on 15 receivers at both HIR and
OTIR during a 191 d period (Fig. 3a). Survival of indi-
viduals detected at a single receiver was confirmed
by examination of depth data which revealed varia-
tion in depth indicating vertical movement. Mean
monthly roaming indices ranged between 0.04−0.07
and 0.04−0.09 at HIR and OTIR, respectively, which
is equivalent to being detected on ~1.0−1.8 receivers
each month. Season (F3,671 = 10.18, p < 0.001) and
tagging year (F2,70 = 4.40, p = 0.016) had an effect on
roaming indices (Fig. 4). Contrasts revealed that
roaming in October−December and January−March,
were significantly greater than in April−June and
July−September (Fig. 3b,c). Also, roaming of individ-
uals tagged in 2010 was greater than in 2011 and
2012. Despite yearly differences in roaming indices,
monthly trends among years were similar; particu-
larly that roaming increased around October, and
was lowest between April and September (Fig. 4).
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Location Tagging year n Fork length (mm) Detection period (d) Days detected

Heron 2010 12 496.3 ± 18.2 (400−587) 267.0 ± 16.7 (89−297) 170.1 ± 30.2 (27−296)
2011 8 509 ± 24.9 (414−618) 293.3 ± 43.5 (15−373) 169.1 ± 47.7 (15−330)
2012 25 507.4 ± 13.2 (391−627) 294.7 ± 17.0 (54−370) 118.4 ± 15.8 (22−362)

One Tree 2010 4 542.75 ± 10.1 (521−564) 208.0 ± 33.6 (134−296) 116.0 ± 60.1 (46−296)
2011 10 539.3 ± 12.9 (475−613) 284.2 ± 35.1 (48−375) 57.2 ± 15.1 (20−161)
2012 15 452.9 ± 16.3 (380−558) 305.6 ± 15.9 (105−368) 124.5 ± 24.5 (15−331)

Total 74 502.3 ± 7.5 (380−627) 286.1 ± 9.9 (15−375) 125.1 ± 11.2 (15−362)

Table 2. Mean ± SE (range) values for the number of detections, detection period, days detected, and size of coralgrouper
 Plectropomus leopardus implanted with acoustic transmitters at Heron Island reef and One Tree Island reef between 2010 and 

2012. The sample size (n) only includes transmitters with detections ≥25 times and/or for ≥15 d
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Fig. 2. Proportion of detections of coralgrouper Plectropomus leopardus at (a) Heron Island reef and (b) One Tree Island reef
grouped into time categories. Proportional detections after correcting for fewer detections on sentinel tags at night are also
plotted for (c) Heron Island reef and (d) One Tree Island reef. Boxes are 25th and 75th percentiles; whiskers represent 10th
and 90th percentiles; the solid midline shows the median and the diamond, the mean. The letters above each plot represent 

statistically different time categories based on contrasts following the repeated measures ANOVA (p < 0.05)

Fig. 3. Representation of coralgrouper Plectropomus leopardus movement (a) between Heron Island and One Tree Island reefs
for ind. #281, and examples of increased roaming during the Austral summer to adjacent receivers at Heron Island reef and 

One Tree Island reef by (b) ind. #6586 and (c) ind. #3899



Mar Ecol Prog Ser 521: 201–216, 2015

The mean residency index at both locations during
the study was 0.41 ± 0.03, indicating that P. leopardus
were within range of receivers nearly half the days in
each month. The range of mean monthly residency
indices was 0.36 to 0.49 at HIR and
0.25 to 0.48 at OTIR. Season (F3,671 =
11.65, p < 0.001) was the only ex -
planatory variable affecting resi-
dency of P. leopardus (Fig. 4); specif-
ically, residency was significantly
lower in January−March compared
to the rest of the year.

Horizontal space use

Estimates of horizontal space use
ranged between 0.20−28.18 km2

(95% UD) and 0.13−3.99 km2 (50%
UD) (Table 3). The mean size of

space use at HIR and OTIR was 2.37 ±
0.60 km2 (95% UD) and 0.54 ±
0.08 km2 (50% UD) (Table 3). The
tagging year significantly influenced
both 95% (F2,69 = 3.38, p = 0.040) and
50% UDs (F 2,69 = 3.24, p = 0.045),
where UDs of individuals tagged in
2012 were smaller than those in 2010
(p < 0.05) (Table 3).

Vertical space use

A total of 55 individuals were ana-
lysed for vertical space use because
depth sensors were only available on
transmitters deployed in 2011 and
2012 (Table 4). Additionally, detec-
tion data from the 2 lagoon fish were
omitted due to differences in depth/
habitat availability. The mean depth
of these individuals was 9.66 ±
0.03 m (Table 4). Time of day (F3,15504

= 44.39, p < 0.001) and season
(F3,15504 = 59.78, p < 0.001) had a sig-
nificant effect on depth use. All time
categories differed, but depth was
greatest during the day, i.e. 06:00 to
18:00 h (Fig. 5a). Contrasts between
seasons revealed that deeper water
was frequented be tween October
and December compared to other
months (Fig. 5b). Season (F3,121 =

6.38, p < 0.001) and time of day (F3,82 = 3.85, p =
0.013) significantly influenced the standard devia-
tion of depth use, and no inter actions with location
and tagging year existed. Contrasts between time of
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Location Tagging n 95% UD (km2) 50% UD (km2)
year

Heron 2010 12 4.28 ± 2.53 (0.20−31.75)a 0.83 ± 0.30 (0.20−3.99)a

2011 8 3.34 ± 1.02 (0.20−7.16)a,b 0.68 ± 0.22 (0.20−2.09)a,b

2012 25 1.46 ± 0.38 (0.20−8.94)b 0.41 ± 0.06 (0.13−1.06)b

One Tree 2010 4 8.36 ± 6.65 (0.20−28.18)a 0.85 ± 0.56 (0.20−2.66)a

2011 10 1.71 ± 1.24 (0.20−12.56)a,b 0.60 ± 0.28 (0.20−2.91)a,b

2012 15 0.72 ± 0.27 (0.20−3.98)b 0.29 ± 0.05 (0.20−0.82)b

Total 74 2.37 ± 0.60 (0.20−28.18) 0.54 ± 0.08 (0.13−3.99)

Table 3. Mean ± SE (range) 95% and 50% utilisation distributions (UDs) for
coralgrouper Plectropomus leopardus using Brownian bridge movement mod-
els at Heron Island reef and One Tree Island reef. Significantly smaller 95% and
50% UDs were detected in 2012 compared to 2010 (p < 0.05) as indicated by 

different lowercase letters beside each estimate

Fig. 4. Mean (±SE) of (a) monthly roaming for tagging years in 2010, 2011,
2012 and (b) residency indices for coralgrouper Plectropomus leopardus at
Heron Island reef and One Tree Island reef. Locations are grouped together
since site did not impact roaming or residency values. Similarly, all tagging
years are grouped for the residency output. Note: ind. #281 was not included
because the rare inter-reef movement inflated February values. Roaming in
January−March and October−December was significantly greater (p < 0.05)
than in April−June and July−September, and roaming of individuals tagged in
2010 was greater than in 2011 and 2012. Residency indices in January−March 

were lower than all other months
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day revealed there was more variation in depth use
during daytime as opposed to night (Fig. 6a).
Greater variation in depth use also existed in Octo-
ber−December compared to other months (Fig. 6b).
The effect of location, tagging year, and water tem-
perature on P. leopardus depth use from several

candidate models showed that water temperature
was the most important factor (Table 5; Estimate =
0.015, SE = 0.005, z = 3.256, p = 0.001).

Two individuals (#6552 detected at 2 adjacent re -
ceivers in the northwest of HIR and #6580 detected at
one receiver in the southwest of OTIR) demonstrated
unique swimming patterns between October and
January, where both used deeper water around the
new moon (Fig. 7a,b). At a finer scale, these individ-
uals (particularly #6580) demonstrated diurnal activ-
ity, swimming to deeper water primarily during the
latter half of the day (Fig. 7c,d).

DISCUSSION

It is crucial to understand the movement patterns of
exploited species to ensure management measures
encompass the resource use of targeted species.

Short-term data cannot indicate
whether individuals shift home range
areas over time or whether specific
habitats are used during key times.
Thus, long-term data, such as that
provided by acoustic monitoring in
this study, are the only means of iden-
tifying seasonal or annual patterns in
behaviour and movement at scales
relevant to management. The results
of this study showed that Plectropo-
mus leopardus moved more and used
deeper water during the day in the
Austral summer. Seasonal differences
in space use were related to water
temperature and corresponded with
spawning periods. Despite these sea-
sonal changes, individual P. leopar-
dus remained in relatively small areas
(~0.5 km2) throughout the year with
no evidence of long-range movement
to aggregate for spawning. These
results indicate that local ised move-
ments on the reef provide sufficient
access to food, shelter, and mates.
Lack of evidence for spawning-
related migrations in this region sug-
gests protection of spawning aggre-
gations may not be feasible for this
population.

Detection differences between day
and night indicated that P. leopardus
were more active on the reef during
daytime. At night, they were likely
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Location Tagging n Depth (m)
year

Heron 2011 8 9.10 ± 0.05 (1.10−20.35)
2012 25 11.76 ± 0.06 (0.01−21.98)

One Tree 2011 9 7.47 ± 0.07 (2.64−19.12)
2012 13 8.57 ± 0.04 (0.20−21.43)

Total 55 9.66 ± 0.03 (0.01−21.98)

Table 4. Mean ± SE (range) of depth values for coralgrouper
Plectropomus leopardus tagged in 2011 and 2012 at Heron 

Island reef and One Tree Island reef

Fig. 5. Depth use (mean ± SE) of coralgrouper Plectropomus leopardus
grouped by (a) time of day and (b) month for all tagging years (2010, 2011,
2012) and locations (Heron Island reef and One Tree Island reef). The dashed
line in (b) shows mean water temperature. The letters above each series rep-
resent statistically different time (00:00−06:00, 06:00−12:00, 12:00−18:00,
18:00−24:00 h) and month (January−March, April−June, July−September,
October−December) categories based on contrasts following the repeated 

measures ANOVA (p < 0.05)
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refuging within shelter sites (e.g. large corals, over-
hangs, tunnels, and reef edges) for protection (Sa mo -
ilys 1997, Zeller 1997), resulting in weakened acoustic
signal transmission (Hutchinson & Rhodes 2010).
Despite accounting for detection differences from
sentinel tags, nightly detections were still less fre-
quent than during the day. Reduced activity at night
was also demonstrated by Zeller (1997), who found
that on 88% of monitored nights, individuals (n = 6)
re mained in the same location. Refuging within reef
structure is a common predator avoidance strategy

employed by species that rest at night, with some
parrotfishes going as far as surrounding themselves
in a mucous bubble to reduce odour trails (Winn &
Bardach 1959, Dubin & Baker 1982). Therefore, lim-
ited movement and refuging within reef structures is
likely a successful survival strategy for P. leopardus.

The proportion of detections at HIR was similar
between morning (06:00 to 12:00 h) and afternoon
(12:00 to 18:00 h), suggesting that individuals were
active throughout the day at this location, although
specific behaviours during these periods could not be
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Fig. 6. Mean (±SE) of standard deviation of recorded depth for the coralgrouper Plectropomus leopardus grouped by (a) time
of day and (b) month for all tagging years (2010, 2011, 2012) and locations (Heron Island reef and One Tree Island reef). The
letters above each plot represent statistically different time (00:00−06:00, 06:00−12:00, 12:00−18:00, 18:00−24:00 h) and month
(January−March, April−June, July−September, October−December) categories based on contrasts following repeated 

measures ANOVA (p < 0.05)

Fig. 7. Total detections from 2 coralgrouper Plectropomus leopardus: ind. #6552 (Heron Island reef) and ind. #6580 (One Tree
Island reef) at a scale (a,b) of ~1 yr, and (c,d) 5 d during spawning season. Black dotted lines (a,b) and black boxes (c,d) indi-
cate the new moon. Grey and black dots in (a) signify the 2 different respective receivers that detected ind. #6552, and shaded 

areas in (c,d) represent noon to midnight
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determined. Similarly, the number of locations used
by P. leopardus did not differ at Lizard Island during
the day (Zeller 1997), nor did abundance counts vary
at OTIR from 1991 to 1993 when divided into 2 h
 categories (05:00−07:00; 11:00−13:00; 17:00−19:00 h)
(Connell & Kingsford 1998). In this study, OTIR had
fewer detections in the afternoon compared to morn-
ing, yet afternoon still accounted for ~40% of detec-
tions. Whether the difference between locations was
due to fish behaviour or physical/environmental
 factors is difficult to assess. Nevertheless, Bunt &
Kingsford (2014) suggested visually oriented for -
aging ac tivity was responsible for greater mean daily
movements during morning (05:00 to 10:00 h) in the
lagoon at OTIR.

Site fidelity was relatively high for individuals at
both HIR and OTIR. Almost half of individuals were
only detected on one receiver; otherwise detections
occurred mainly on adjacent receivers. Additionally,
daily detections were common throughout monitoring
periods. High site fidelity has been shown in P. leop-
ardus (e.g. Zeller 1997, Bunt & Kingsford 2014), but
not to the temporal scale in this study (i.e. mean detec-
tion period ∼285 d yr−1 over 3 yr). Other studies have
also demonstrated high site fidelity of epine phelids
such as squaretail coralgrouper P. areolatus (Hutchin-
son & Rhodes 2010), dusky grouper Epine phelus mar-
ginatus (Pastor et al. 2009), gag grouper Mycteroperca
microlepis (Kiel 2004), and goliath grouper E. itajara
(Frias-Torres 2006). Results presented here indicate
that home sites of P. leopardus are consistently main-
tained over periods extending up to a year. The con-
sistency of site attachment and space use across indi-
viduals and reefs suggest this is a widespread pattern
of habitat use within this species.

Both roaming and residency indices indicated that
individuals were more transient between October
and March. Increased movements away from re -
ceivers during the Austral summer were probably re-
lated to water temperature. There are several

possible reasons why water
temperature and/or season
would af fect movement. First,
physio logical and biochemical
bene fits of warmer tempera-
tures (e.g. in creased swim-
ming ability; Claireaux et al.
2006) may facilitate greater
activity during the Austral sum-
mer. Second, increased move-
ment during Austral summer
may be related to foraging.
Kingsford (1992) found that P.

leopardus at OTIR consumed mostly pelagic fishes
(e.g. Clupeidae and Engraulidae) during summer and
demersal fishes during winter (e.g. Apogonidae). In-
terestingly, P. leopardus frequently follow schools of
pelagic planktivores when they are abundant (Goe-
den 1978, Samoilys 1987). Therefore, in creased
movement during summer may be related to the sea-
sonal variation in prey availability and selection. Fi-
nally, seasonal differences relating to presence near
receivers may have been related to reproductive be-
haviour. Many large groupers move long distances
during spawning periods, particularly for site-specific
aggregative reproductive activity (Sado vy de Mitche-
son & Colin 2012). However, the relatively complex
and flexible reproductive dynamics of P. leopardus
result in a combination of strategies (e.g. transient ag-
gregator, resident aggregator, and resident non-
 aggregator; Sadovy de Mitcheson & Colin 2012). For
example, Zeller (1998) actively tracked 13 individuals
moving 220 to 5210 m to reach spawning aggregation
sites; yet this only accounted for 31% of fish tagged.
These results indicated that almost 70% of tracked
individuals either failed to undertake spawning be-
haviours or spawned near their site of capture. In this
study, increased movement occurred, at least in part,
during the P. leopardus spawning season at Heron Is-
land (Carter et al. 2014). Therefore, increased roam-
ing during summer may have occurred while search-
ing for partners for spawning or due to increased
feeding activity associated with spawning (Samoilys
& Squire 1994, Davies 1996). The small range of both
roaming and residency indices, and small changes in
space use, suggest that transient spawning (or
spawning-independent) movements are rare for this
portion of the P. leopardus population. Similarly, P.
areolatus inhabit relatively small areas (0.004 to
0.12 km2) throughout both reproductive and non-re-
productive periods in Micro nesia, and many individ-
uals reside within close range of spawning aggrega-
tion sites (Hutchinson & Rhodes 2010).
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Model df AICc ΔAIC Weight

M1 Depth ~ Temperature 4 64796.2 0 0.46
M2 Depth ~ Location + Temperature 5 64797.7 1.46 0.22
M3 Depth ~ Tagging Year + Temperature 5 64797.7 1.53 0.21
M4 Depth ~ Location + Tagging Year + Temperature 6 64799.3 3.14 0.10
M5 Depth ~ 1 (null model) 3 64805.9 9.66 0

Table 5. Model selection examining the effect of location, tagging year, and daily
water temperature on coralgrouper Plectropomus leopardus (n = 55) depth use, using
corrected Akaike information criterion (AICc) accounting for small sample size. The
best 4 models (i.e. lowest AICc) and the null model are presented using model aver-

aging as well as the relative importance of each model (i.e. weight)
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Brownian bridge UDs revealed that P. leopardus
were mainly restricted to small areas. The extent of
movement (i.e. 95% UD) was usually <2.5 km2, while
core use area (i.e. 50% UD) was ~0.5 km2. The indi-
viduals tagged in 2010 had higher UDs (and roaming
indices) than those tagged in 2011 and 2012. Further
investigation into environmental influences is need -
ed to address this finding. However, the different
tagging dates (August 2010, February−March 2011,
February 2012) could have biased results since
detection periods for individuals tagged in 2010 com-
menced later in the year than individuals tagged in
2011 and 2012. Estimates of P. leopardus space use
have varied in past studies. For example Samoilys
(1997) found that 59% (n = 101) of branded fish (mark-
recapture) remained in the same area (~2000 m2) 4 to
5 mo after release. Meanwhile, active acoustic track-
ing revealed home ranges between 10000 and
19000 m2 (Zeller 1997) when tracked for ~3 mo. The
analytical approach to estimate space use from these
studies consisted of calculating the area of convex
polygons encompassing recapture (or redetection)
sites. This method can be highly influenced by outly-
ing detection points and increasing sample size tends
to increase biases associated with area estimates
(Burgman & Fox 2003). The use of a  continuous-time
stochastic model of movement was selec ted in this
study because estimates are calculated based on
maximum likelihood parameters and incorporate
several influential factors (e.g. time between detec-
tions and speed of movement). Overall, home range
estimates for P. leopardus were larger than other
studies, and were representative of longer  periods
and covered a larger sampling area. Greater spatial
resolution for individual movement, and identifica-
tion of more specific behaviour-based activities
would require a denser receiver array (e.g. Vemco
Positioning System; Espinoza et al. 2011, Bunt &
Kingsford 2014). Nevertheless, home range estimates
were comparable to other reef species with high site
fidelity. For example, Currey et al. (2014) estimated
that horizontal space use of redthroat emperor
Lethrinus miniatus at HIR was 0.36 km2 (50% UD)
and 1.93 km2 (95% UD). Additionally, in a coastal
Kenyan marine park, greasy grouper Epinephelus
tauvina demonstrated stable site attachment with
home ranges between 0.07 and 0.73 km2 (Kaunda-
Arara & Rose 2004).

Although most P. leopardus remained within a
small area throughout the study, some moved long
distances around the reef they were released at; one
individual (#281) travelled from OTIR to HIR after
6 mo residency at OTIR. Fish size had no influence on

movements or space use in this study, a finding that
parallels other studies (e.g. Zeller 1997, Bunt &
Kingsford 2014). The effect of sex was not explored
because internal identification of gonads was not
attempted during surgery, but is not likely contribu-
tory since some of the long-distance movements oc -
curred outside the spawning season (see also Zeller
1997, 1998). Also, site attachment was apparent
before and after long movements, making pre dation
events (e.g. eaten by a shark) an unlikely explanation
for these movements. The reason some individuals
moved far is probably related to intra-specific vari-
ability common in reef fish movements, where some
individuals are migratory and others are resident
(Chapman et al. 2012). For example, using the same
acoustic receiver array as this study, Currey et al.
(2014) tracked 26 L. miniatus at HIR and found that
half were resident (detected on only one re ceiver)
and the other half used an area ~4 km2, while 1 indi-
vidual moved ~160 km to the Swain reefs. Consider-
ing the temporal extent of acoustic tracking and that
most individuals (>75%) were detected at ≤2 re -
ceivers, long-range movements of P. leopardus in this
region appear to be uncommon.

It should be noted however that movements out-
side detection ranges could have occurred and as
such these data may underestimate movements away
from the study reefs. Individuals detected for short
periods or not at all may have moved to adjacent
reefs, maintained home ranges outside the range of
the acoustic array, or suffered mortality. Due to the
inability to determine the actual fate and behaviour
of these individuals they were excluded from analy-
ses. Interestingly, release distance (from a receiver)
did not affect the number of detections, indicating
that tagging was suitable for fish caught <1 km from
a receiver. The reason why the lagoon at OTIR was
the least likely location to obtain adequate detections
is unclear, but may be related to individuals moving
outside the lagoon (e.g. #6599) when the tide permit-
ted or due to receiver placement. Overall, movement
between the outer reef edge and the lagoon at HIR
and OTIR was rare in this study, since all P. leopardus
detected in the lagoon were tagged there and only
#6599 was detected moving outside of it.

Acoustic transmitters equipped with pressure sen-
sors provided high-resolution long-term depth meas-
urements for P. leopardus. The mean depth used was
~10 m, typically ranging between 3 and 18 m. Deeper
water was used during the day compared to night
likely in relation to diurnal activity patterns, such as
foraging or conspecific interactions along the reef
edge and slope (St. John 2001, Kingsford 2009). Sim-
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ilar diurnal depth use patterns were detected in the
ocean whitefish Caulolatilus princeps where deeper
sand habitats optimised foraging during the day and
shallower rocky reef and kelp habitats provided
refuge at night (Bellquist et al. 2008). However, it is
unclear why individuals would not simply refuge at
similar or the same depths used during the day. Pre-
sumably there is some advantage to refuging in
 shallower water, perhaps due to increased shelter
locations, better predator avoidance, or behavioural
thermoregulation (see below). Bunt & Kingsford
(2014) examined spawning-related aggregative move-
ments of individuals in a lagoon at OTIR be tween
2001 and 2002 and found a similar pattern during the
non-reproductive period (January and February), but
the opposite trend occurred during the reproductive
period in November and December (i.e. P. leopardus
were deeper at night). The present study encom-
passed a larger area, and may not be comparable to
the shallow (<7.5 m) lagoon environment sampled by
Bunt & Kingsford (2014).

Some P. leopardus exhibited a small range of depths
throughout detection periods, while for others,
monthly mean depths varied considerably (>5 m).
Consequently, differences in the variation in depth
use were explored in addition to actual depth differ-
ences. Similar to depth patterns, there was more vari-
ation in depth use during daytime and be tween
October and December (reproductive season), which
also corresponded to greater depth use when water
temperature was warmer. Reduced activity at night
for refuging (Zeller 1998, Bunt & Kingsford 2014)
explains why individuals moved less in the water col-
umn between 18:00 and 06:00 h. Deep movements to
cooler waters could have been related to behavioural
thermoregulation to minimize metabolic costs associ-
ated with feeding/digestion (e.g. Bevelhimer & Adams
1993) or aerobic scope (e.g. Nilsson et al. 2009). Inter-
estingly, a few individuals made marked daily deep
movements (up to 25 m) near home sites that over-
lapped with spawning periods. These deep dives
mainly occurred during new moon periods, in the
afternoon/at dusk between October and January, all
of which are within the main periods of P. leopardus
courtship and spawning activity (Samoilys & Squire
1994, Ferreira 1995, Samoilys 1997, Zeller 1998).
Interpretation of the observed deep movements is
that individuals used deeper parts of reefs to partici-
pate in spawning-related behaviour (e.g. courtship,
spawning, or recovery). For example, Zeller (1998)
found that P. leopardus displayed peak spawning
activities during new moon periods in the Austral
summer at Lizard Island and identified 4 spawning

sites, all of which were situated on the lower reef
slope between 15 and 20 m.

Passive acoustic tracking provided long-term (~3 yr),
medium-scale movement data surpassing approaches
employed previously to monitor P. leo pardus move-
ment. The data presented here are re presentative of
behavioural patterns independent of aggregative
spawning — an occurrence that may not be common-
place for this species (Samoilys 2000, Tobin et al.
2013). Space use and movement patterns have direct
relevance to current issues threatening sustainability
of reef fish including vulnerability to fishing during
spawning season (Sadovy de Mitcheson & Colin
2012, Tobin et al. 2013), Marine Pro tected Area de-
lineation (Monaco et al. 2007, Bunt & Kingsford
2014), effects of severe weather/climate change
(Nilsson et al. 2009, Tobin et al. 2010), and determin-
ing ‘spillover’ between reefs/management zones
(McClanahan & Mangi 2000, Zeller et al. 2003). For
large marine predators with high site fide lity, it is
recommended that management strategies are
geared to localised scales (e.g. Pastor et al. 2009)
such as maximising habitat availability or establish-
ing marine reserves for populations regardless of
season. Nevertheless, persistent spawning aggrega-
tion sites should be protected during spawning sea-
son as they can attract numerous individuals from
large catchment areas (Sadovy de Mitcheson & Colin
2012). Moreover, physiological and behavioural re-
sponses to environmental changes need to be closely
monitored because future changes in temperature
may adversely influence populations of reef fish (e.g.
Munday et al. 2008, Donelson et al. 2011). Improved
understanding of daily and seasonal spatial patterns
throughout and between years is necessary for man-
agers and policy makers to help balance the eco-
nomic and conservation demands of reef fisheries.
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