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Abstract

The process of charge transport is fundamental to the operation of all electronic devices.
In organic photovoltaics, high efficiencies can only be achieved if charge transport is
able to extract charge carriers from the active layer with minimal recombination losses.
This work presents new insights into the measurement of charge transport, the under-
lying physics, as well as new approaches for modelling. Numeric simulation software
using a drift-diffusion-recombination model is developed and applied to organic photo-
voltaic devices. Specifically, this model is used to design and interpret charge transport
experiments that are applicable to operational organic solar cells.

Charge carrier mobility is studied using photogenerated charge extraction by lin-
early increasing voltage (photo-CELIV) and the novel technique of resistance-dependent
photovoltage (RPV). These experiments demonstrate the absence of “hot carrier” re-
laxation effects on the timescales of charge transport in several organic photovoltaic
polymer:fullerene blends. This is surprising because it has previously been argued
that such relaxation is the cause of the deterimental dispersive transport that affects
many organic semiconductor devices. It is argued instead that dispersive transport
arises from the loss of carriers to trap states. Next, the techniques are extended
to recombination measurements, where the recombination coefficient in a benchmark
polymer:fullerene system is found to depend upon the polymer’s molecular weight.

Modelling of the steady-state photocurrent produced by a solar cell demonstrates
the conditions under which non-geminate recombination may be avoided, and presents
a design rule for avoiding non-geminate recombination. Experimental measurements
on devices of varying thickness support the conclusion that the space-charge limited
current is a fundamental threshold for high-efficiency photocurrent extraction.

Finally, fractional kinetics and generalised diffusion equations are explored. We
show that the Poisson summation theorem permits the analytic solution of a fractional
diffusion equation to be collapsed into closed form. Subsequently, these techniques are
applied to a new type of kinetic model that is capable of unifying normal and dispersive
transport within a single framework.
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INntroduction

Semiconductor technology has transformed the world. Integrated circuits, micropro-
cessors, displays, memories, sensors, solar cells, etc. are all ubiquitous in modern
society. Yet, most of these technologies are manufactured using the same raw ma-
terials, the vast majority being silicon. Silicon is cheap, abundant on the Earth, and
well suited to many applications. However, it requires a large energy input due to its
reliance on high temperature manufacturing processes, and is generally used in the
form of a brittle crystal that cannot be bent or twisted.

A new class of semiconductors has emerged that might be able to fill a niche that
silicon cannot. These are polymers, or in casual terms, “plastics”. Most polymers
are insulating, but there are a special class of polymers that are able to conduct
charges very effectively. The key is conjugation, which is a sequence of alternating
single and double bonds. Conjugation is not limited to polymers; it can also be found
in many other organic molecules. All together, these materials are called organic
semiconductors [10].

Organic semiconductors have attracted tremendous scientific attention because of
their promise of extremely low-cost fabrication, chemical tunability, and mechanical
flexibility [11-17]. These features would especially benefit solar cells, because organic
semiconductors make it possible to literally “print” a solar module onto a roll of plastic
[18]. However, the power conversion efficiency of even the best organic solar cells is
still far below that achieved using other technologies [19]. The performance of organic
photovoltaics needs to be improved if they are to be commercially successful and obtain
market penetration.

The poor performance of organic electronics is partly due to their poor charge

transport properties. (Charge transport is the mechanism by which electric charges
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are conducted through the device.) To work towards improving charge transport per-
formance, it is first necessary to have robust tools for measuring that performance. As
will be described in the next chapter, classical measurement techniques are not well
suited to organic photovoltaics.

The objective of this thesis is to develop novel approaches for characterising charge
transport in organic semiconductor devices, and especially organic solar cells. This
is achieved through joint theoretical-experimental studies. The theoretical work is
based on two major types of model. Firstly, a drift and diffusion numerical simula-
tion, which is a well-known modelling approach with a long history of success [20—22].
The second modelling approach is the so-called fractional kinetic theory [23,24]. The
experimental work is the measurement of charge transport properties in a variety of
organic photovoltaic systems using the techniques that are developed in this thesis.

The structure of this document is as follows. Chapter 2 is a literature review with
a focus on organic photovoltaics, measurement techniques, and modelling approaches.
Chapter 3 describes the numerical simulation model. Chapter 4 applies the model to
a classical measurement technique (photo-CELIV) and addresses some of the limita-
tions of that technique. Chapters 5 and 6 report on novel experimental approaches
developed as part of this study for measuring mobility (speed of charge transport) and
recombination (between electrons and holes, and hence energy loss during transport),
respectively. Chapter 7 applies the model to a very common measurement (photocur-
rent as a function of light intensity), and reports on new insights that were gained.
Next, the focus shifts towards the second class of modelling that was addressed in this
work. Chapter 8 presents mathematical advances regarding the analytic solution of a
certain type of fractional differential equation for charge transport. Then, Chapter 9
applies these mathematical techniques to a novel kinetic model that unifies different
types of charge transport under a common framework. Finally, Chapter 10 concludes

and makes recommendations for the future.

Chapter 1. Introduction 2



Fundamentals

This chapter presents a literature review. We begin with some background on the char-
acteristics of solar cells in general, before moving onto the history and current status
of organic solar cells. The next topic is charge transport, starting with some funda-
mental concepts and a discussion of the important physical processes. Key techniques
for measuring charge transport properties are reviewed, and then various modelling
approaches are discussed. Some gaps in the current knowledge or weaknesses with

current methods are highlighted in order to motivate the rest of the thesis.

2.1 Solar Cell Fundamentals

A solar cell is a device that converts light into electric power [25]. The electrical
behaviour of a solar cell is defined by its current-voltage curve [25,26], called an IV
curve or a JV curve, where the symbol I or ¢ refers to current, J or j refers to current
density (current per unit area), and V or v refers to voltage. Often current density
is used (instead of current) because it allows a more direct comparison between solar
cells with different surface areas. A solar cell has an asymmetric IV curve, as shown
in Figure 2.1. Considering first the “dark” curve (when light is not applied), the solar
cell behaves as a diode. In reverse bias, no charge is injected and no current will flow;
whereas in forward bias, charge will be injected and current will low once the voltage
exceeds the diode threshold voltage. The distinction between reverse bias and forward
bias is important in charge transport experiments, to prevent (or induce) the electrical
injection of charges, respectively.

When light is applied, the solar cell produces current, as shown by the light curve

in Figure 2.1. Useful electrical power P = iv is generated in the region indicated
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Current density
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Figure 2.1: A current-voltage curve for a solar cell. The power generated is indicated
schematically by the area of the green rectangle.

by the grey box. Three key points on the IV curve are the short-circuit current (is.
or js, when the voltage is zero), the maximum power point (v, when the power
output is maximised), and the open-circuit voltage (v,., when the current is zero). The
maximum power point is illustrated schematically in Figure 2.1 by area enclosed in the
green rectangle. The ratio between the actual power produced (the green rectangle)
and the product is.v, is called the fill factor (FF). Specifically,

Pmax

- )
1scVoc

FF =

(2.1)

where Py is the power produced at the maximum power point. A fill factor of unity
would indicate a perfectly rectangular IV curve.
The “headline” performance number for a solar cell is its power conversion efficiency

(PCE), defined as [27]
Pout

P

PCE = —2, (2.2)

where P,,; is the electrical power generated and Py, is the light power incident on
the solar cell. To ensure that PCE measurements are reproducible, it is necessary to
define a standard reference solar spectrum. Natural sunlight is too variable because it
depends upon the position on the Earth, the time of day, etc [25]. The most commonly
used standard is the “AM1.5” spectrum defined by the American Society for Testing
and Materials (ASTM) [28], which is plotted in Figure 2.2. Three spectra are shown.
The extraterrestrial spectrum is that observed from outside the Earth’s atmosphere; it
is also called the “AMO0” spectrum because it has been attenuated by zero air masses,
where an “air mass” is the thickness of the atmosphere. The AM1.5 spectra represent
the solar energy remaining after the sunlight has passed through 1.5 air masses, which
is considered to be a standard reference that accounts for the fact that the sun is not
always perfectly overhead. There are two AM1.5 spectra: the Direct spectrum contains
only that light originating from a small solid angle surrounding the sun, whereas the

AM1.5 Global spectrum additionally includes the typical diffuse irradiance caused by
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Figure 2.2: Standard benchmark solar spectra. The two AM1.5 spectra demonstrate
the typical attenuation caused by the atmosphere.

the rest of the sky. For flat solar panels, the AM1.5 Global spectrum is the standard
benchmark.

Not every photon is successfully converted into an electron-hole pair, and not every
electron-hole pair is successfully transported to their respective electrodes. The com-
bined efficiency of the photon-to-extracted-charge-carrier process is called the quantum
efficiency of the solar cell. There are two separate quantum efficiencies that are com-
monly reported: the Internal Quantum Efficiency (IQE) represents the proportion of
absorbed photons that result in fully extracted electron-hole pairs; conversely, the Ex-
ternal Quantum Efficiency (EQE) represents the proportion of incident photons that
result in fully extracted electron-hole pairs [27]. The IQE represents the efficiency of
charge generation and collection in isolation from the optical properties, whereas the
EQE also includes the optical reflectance and transmittance of the device. Calculating
the IQE requires precise optical modelling in order to determine the proportion of
incident photons that are actually absorbed in the active layer [29].

This thesis will examine a new class of emerging solar cells, made from organic

semiconductors. These are discussed next.

2.2 Organic Solar Cells

Organic semiconductors are carbon-rich materials that exhibit semiconducting prop-
erties [30]. Interest in these materials often arises because of the belief that they will
deliver substantially reduced costs when compared to conventional, inorganic semicon-
ductors [11-14,31,32]. Organic semiconductors also attract attention because they per-
mit novel form factors such as lightweight, flexible and transparent electronics [15-17].

The chemical structures of some commonly studied organic semiconducting ma-
terials are shown in Figure 2.3. These materials are conjugated, that is, they have

chains of alternating single and double bonds. The conjugation causes 7 orbitals to
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Figure 2.3: Some common organic semiconducting materials. Poly[N-9 -heptadecanyl-
2,7-carbazole-alt-5,5-(4 ,7 -di-2-thienyl-2 ,1 ,3 -benzothiadiazole)] (PCDTBT) and
Poly(3-hexylthiophene-2,5-diyl) (P3HT) are electron donors, while [6,6]-phenyl-
C61-butyric acid methyl ester (PCBM) is an electron acceptor. Images from
Sigma-Aldrich.

be delocalised over the conjugated segment, allowing ready charge transport along a
molecule and giving rise to interesting electronic properties [10].

There are many applications of organic semiconductors. These include solar cells
[33,34], light emitting diodes [35], optically pumped lasers [36,37], thin film transistors
[38-41], thin-film memory devices [42], and biosensors [43]. This thesis will focus on
organic solar cells.

The earliest organic solar cells were made using a single active layer [44]. Photo-
voltaic effects were observed, but device performance was extremely disappointing (<
1% power conversion efficiency).

The first major development was the bilayer organic solar cell published by Tang in
1986 [45]. It improved upon earlier devices by utilising two dissimilar organic semicon-
ductors that act as electron accepting and electron donating materials. This concept
is the foundation of modern organic solar cells. The original bilayer device had a
power conversion efficiency (PCE) of approximately 1%, and was notable because of
its greatly improved fill factor, demonstrating the benefits of having separate donor
and acceptor materials.

The next major development came in 1992 with the report of ultrafast photoin-
duced electron transfer from a polymer to a fullerene by Sariciftci, et al [46]. That

article established Cgg fullerenes as the prototypical electron acceptor. Nevertheless,
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Figure 2.4: Two architectures of organic solar cell. (a) A bilayer structure can be
manufactured by sequential deposition of two distinct layers. (b) A bulk heterojunc-
tion structure can be manufactured by deposition of a mixed solution. The advantage
of the bulk heterojunction structure is that the interfacial surface area is greatly in-
creased, improving the overall exciton separation efficiency at the expense of potential
charge transport problems if there are isolated “islands” that are not connected to
their respective electrode. (The anode and cathode naming convention in solar cells
refers to the forward bias diode behaviour, even though the desirable photocurrent is
in the opposite direction.)

a substantial architectural problem remained. Photogenerated excitations, called “ex-
citons”, will only separate with high efficiency if they are able to reach the donor-
acceptor interface within their short lifetime (typically 10719 to 1079 seconds [47-49]).
The original devices had a bilayer structure, as shown in Figure 2.4 (a). Only those ex-
citons that were generated near to the interface could contribute to the photocurrent.
Bilayer devices are therefore fundamentally limited.

A substantial improvement to the early bilayer devices came with the invention of
the bulk heterojunction structure, which is a continuous intermixed network of donor
and acceptor phases, as shown in Figure 2.4 (b). The idea of this structure is that an
exciton should not need to diffuse far before it reaches an interface and can separate.
However, the bulk heterojunction introduces new challenges because the domain sizes
must be large enough to ensure that most domains are continuously connected to their
respective electrode for rapid charge extraction, yet the domains must also be small
enough that excitons can reach the heterojunction. A successful method to form such
a structure was reported in 1995 by Yu et al [50]. The manufacturing process was
tantalisingly simple: the two materials were simply mixed in solution and spin cast.
This was made possible by the development of the soluble fullerene derivative [6,6]-
phenyl-C61-butyric acid methyl ester (PCBM) [51], the structure of which is shown in
Figure 2.3. PCBM is still very commonly used to this day [52].

Since these pioneering early publications, the field of organic solar cells has grown
enormously. The current PCE record for a single junction organic solar cell is 10.7%
[19]. This remains substantially below the record for crystalline silicon cells of 25%
[19], and even further behind the GaAs thin film record of 28.8% [19]. However,

organic photovoltaics (OPV) still attract interest because of their potential low cost
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and innovative form factors. It has been predicted that OPV efficiencies of 20% or
more should be achievable [53].

Some perspective on the modern state of the field can be obtained from a meta-
analysis published by Jergensen, et al [52] in 2013. These authors analysed the status of
OPV by an exhaustive literature survey. Their literature search located 8962 relevant
journal papers, which they claim was the complete record of all OPV publications
at that time. From these papers they compiled data on 10533 individual organic
solar cells. Overall, the vast majority of devices exhibited performance well below the
record-holding “hero” cells that are commonly cited in performance benchmarks. They
concluded that the headline performance numbers are unrepresentative of the majority
of actual devices being produced in laboratories around the world. Consequently,
despite the steady improvements in PCE world records, it’s clear that much progress
still needs to be made.

To understand the operational principles of organic solar cells, it’s helpful to follow
the sequence of events as a photon is absorbed [54]. As mentioned above, the absorption
of light creates an excited state called an exciton [49] that may move by diffusion until
it reaches the interface between the donor and acceptor phases. At this interface, it is
energetically favourable for the electron to cross from the donor into the acceptor. The
result is a “charge transfer” (CT) state [49] that consists of a Coulombically bound
electron-hole pair, with the electron in the acceptor and the hole in the donor material.
Finally, the charges in the CT state move away from each other, to yield free charge
carriers.

The specifics within the above sequence of events are still under debate [55-61].
For a CT state to dissociate into free charges it must overcome a binding energy that is
estimated to be an order of magnitude larger than kT at room temperature [49, 55].
(Here, kp is the Boltzmann constant and 7" the temperature.) Given the apparently
strong binding energy, it’s somewhat surprising that charge separation occurs at all,
let alone with high efficiency.

It has been proposed that above-bandgap light might contribute additional energy
to assist with the separation of the CT state [58]. An exciton created by above-bandgap
light is considered to be “hot.” According to this theory, the resulting “hot” CT states
dissociate more readily, using their additional energy to overcome the Coulombic bind-
ing energy. However, this theory has been disputed [29,59,62]. Quantum yields of
extracted charges have been shown to be independent of the photon energy [59], sug-
gesting that “hot” excitons are not actually important for efficient charge generation.
Additionally, when optical effects are properly accounted for, some internal quantum
efficiency (IQE) spectra are flat [29,62], further questioning the hot exciton theory.
We will return to the question of “hot” carriers in Chapter 5.

It has also been proposed that CT dissociation is assisted by the delocalisation
of charge [63], which would assist charge separation by increasing the effective size
of the CT state and thus weakening the binding energy. Another possibility is that

dissociated charges have higher entropy because a free carrier may sample from a
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wider range of possible states, and therefore CT dissociation is assisted by an entropic
contribution [49, 64]. Whatever the mechanism, it is effective, because there exist
organic materials with nearly 100% conversion of photons to charge carriers [59,65].
Once free charge carriers have been created, they must be extracted to the ap-
propriate electrodes in order to provide useful energy. This is the process of charge
transport, and it is the main focus of this thesis. Optimal charge transport would move
the charges through the device as quickly as possible, while simultaneously avoiding

the loss of energy through recombination. These steps are discussed below.

2.3 Charge Transport

2.3.1  Semiconducting properties

Conventional semiconductor theory describes transport using a band model [66,67],
with a conduction band and a valence band that are separated in energy. Electrons
can be conducted through the material once they are excited from the valence band
into the conduction band. Similar energetic states exist in organic semiconductors,
but due to their chemical structure, the terminology is Highest Occupied Molecular
Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO). The HOMO is
the analogue of the valence band, while the LUMO is the analogue of the conduction
band [10,68]. The absorption of a photon can excite an electron from the HOMO into
the LUMO.

The chemical structure of organic semiconductors is such that charge carriers are
substantially delocalised over conjugated segments of the molecule [69]. This allows
charge to travel very quickly along conjugated segments. However, charge cannot travel
so rapidly between conjugated segments [57]. Such a charge transfer will be strongly
dependent upon the local spatial and energetic configurations of the respective sites.

An intuitive picture of charge transport in organic materials is that of localised
charge hopping between sites. A network of sites is distributed in space and energy,
as shown in Figure 2.5. Charges move from one site to another by tunnelling or by
thermally activated hopping [12,70,71]. If there is an applied electric field, then hops
in the direction of that field will be favourable because the work done by the field
effectively lowers the energy of the sites in that direction.

In classical semiconductor theory of ideal systems, there are no energetic states
between the conduction band and the valence band. This means that a carrier in
the conduction band cannot thermalise any lower than the conduction band, and will
therefore continue to be able to be conducted for an arbitrarily long period of time.
However, defects in the material may result in energetic states between the two bands.
These are called “traps”. A carrier that is captured by a trap has dropped out of the
conduction band and is no longer able to move. Eventually, thermal fluctuations will
impart enough energy to that carrier that it can be released from the trap and return

to the conduction band. An equivalent situation occurs in the hopping model of Figure
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energy

. . )
position
Figure 2.5: The hopping model of charge transport. Carriers occupy sites which are

distributed in energy and position. Movement of charge occurs by hopping events in
which a carrier rapidly transitions from one site to another.

2.5, where a trap would be a state low enough in energy such that its release time is
much longer than normal.

The effectiveness of charge transport is often quantified by a parameter called the
carrier mobility. The mobility is the constant of proportionality between the drift
velocity and the electric field, i.e. the velocity is pE where p is the mobility and E
is the field. A higher mobility is desirable for electronics, since higher-performance
electronics results from faster-moving carriers. Typical mobilities in organic solar cell
materials are ~ 107 to 1073 cm?V~1s™1 [72-75].

2.3.2 Normal transport vs dispersive transport

The hopping model suggests that charge transport results from the chaotic movement
of charges throughout a complex spatial and energetic landscape. At the microscopic
level of individual carriers, some may follow a fortunate sequence of jumps and make
rapid motion through the film, while others might take substantially longer [76]. Con-
sequently, the classical notion of a carrier mobility is not precisely defined. There’s no
single velocity that applies to all carriers, because some carriers effectively move faster
than others at any given moment.

More precisely, charge carrier mobility can no longer be thought of as a invariant
material property [77,78]. The mobility must be subject to a distribution, which
might be time, position, or temperature dependent [79,80]. This complicates the
measurement and the modelling of charge transport.

Experimentally, it is not possible to observe the instantaneous velocity distribution
because the observable conduction current measures only the average motion of all
the charge carriers that are present. The best that can be done is to measure the
instantaneous average velocity. Surprisingly, in some systems, even the average velocity
is not always well defined [78], because it is time-dependent and therefore influenced
by the geometry of the sample. This is called dispersive transport.

Dispersive transport occurs when the photocurrent reduces with time even before
any charge carriers have been extracted. The photocurrent results from the average

motion of all carriers, so this implies that the average velocity is decreasing and/or the
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number of carriers is decreasing. This apparent time-dependent mobility makes it dif-
ficult to extract a representative value, resulting in an apparent thickness-dependence,
where thicker devices have longer transit times and consequently allow more time for
the photocurrent to decay [78]. These issues will be discussed below in relation to the

experimental methods that are commonly applied.

2.3.3 Recombination

Recombination occurs when oppositely charged carriers annihilate [67,81]. It is the
operational mechanism of light emitting diodes, where radiative recombination events
generate photons. Conversely, recombination is a loss mechanism in solar cells.

Recombination is classified as geminate or non-geminate [82-84]. Geminate re-
combination occurs when the recombining electron and hole both originated from the
same photon. It is not necessary that the recombination event occur at exactly the
same location as where the photon was absorbed, because the exciton may diffuse
some distance before recombining. Such movement of excitons cannot contribute to
the electrical current because the exciton is not charged.

Non-geminate recombination occurs when the recombining electron and hole have
originated from different photons. The electron and hole must physically meet and
then interact. There are various mechanisms by which this can occur, but the simplest
is “band-to-band” recombination where two mobile (untrapped) carriers are drawn
together in each other’s electrostatic field. This process is called bimolecular recom-
bination and it is described by the rate equation [67,85-87]

@ _On

== = 2.

bimolecular recomb. bimolecular recomb.

where n and p are the number density of electrons and holes, respectively. (The number
density is the number of charges that are present per unit of volume.)

The prefactor S is the called the bimolecular recombination coefficient. It has
units of volume per time, and typical values in organic solar cells are 10713 to 107!
em?s~! [88-91].

A simple physical model that aids in understanding the meaning of § is a charge
carrier undergoing random Brownian motion. As it moves, that carrier continuously
samples the surrounding volume looking for a recombination target. Once it crosses
into the sphere of influence of an opposite charge, it is likely to recombine. The
recombination coefficient 3 gives the rate at which each carrier samples its surrounding
volume, i.e., volume per time. According to this model, the recombination coefficient
is a volume swept per unit time, i.e. 5 = Suv, where the S is the cross-section for
recombination and vy, is the velocity due to thermal motion.

The rate equation (2.3) can be re-written as

Op p

o = -4, (2.4)

bimolecular recomb. T8
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where 753 = (Bn)~! is the bimolecular lifetime. The lifetime gives an approximate
length of time that a carrier is expected to survive before recombination.
Many published organic photovoltaic materials exhibit Langevin recombination

[12,92,93], which specifies that the bimolecular recombination coefficient is

e (Np + fin)
pfr = ———
€€o

? (2.5)

where e is the charge of an electron, p, and u, are the mobilities of holes and elec-
trons, respectively, and eey is the dielectric permittivity. Langevin recombination is
derived based on the assumption that transport is the rate limiting step. Charges
cannot possibly recombine faster than they can physically meet, and hence Langevin
recombination represents an upper limit on the bimolecular recombination rate.

Some organic photovoltaic devices display recombination coefficients less than the
Langevin rate [94-97]. These are called “non-Langevin” materials, and are highly
desirable for efficient photovoltaics.

The derivation of the Langevin rate is usually presented in terms of the Coulomb
radius [98]. The Coulomb radius () is the distance at which the electrostatic attract-

ive potential energy of two charges equals the thermal energy,

2
|4 = = kT
(re) 4meegre
or )
e
= . 2.6
e dreegkT (2:6)

The typical argument for the use of the Coulomb radius is as follows. If a charge
passes within a distance r. of another charge, then the mutual attraction of the two
charges will dominate over any tendency for the charges to escape each other (e.g. by
diffusion or an external electric field). It is often suggested [94,99-104] that Langevin
recombination applies if the mean free path is less than the Coulomb radius.

The discussion of the Coulomb capture radius presents a compelling physical pic-
ture, but it is not actually necessary in the mathematical derivation. Mathematically,
it suffices to take any arbitrary radius and calculate the flux of recombination targets
crossing such a sphere. Consider a frame of reference attached to an electron. In this
moving reference frame, holes have an effective mobility i, + 11,. We consider a sphere
of radius r centred at this electron, and calculate the flux of holes crossing the sphere
due to electrostatic attraction. The physical assumption is that any hole that crosses
this sphere is certain to recombine, i.e. no escape is possible. The holes crossing the
sphere move with a velocity (u, + pp)E, where E is the electric field. At a distance r

from the electron at the origin, the field is given by E = e/4meeqr?. Combining these,

flux density per electron = p (pn + pp) £ = p (pin + 1) Treer®
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Integrating across the surface of the sphere to obtain the total flux, the radius cancels:

e +
recombination flux per electron = M.
€€

This is the recombination flux due to a single electron. The total recombination rate

is obtained by multiplying by the electron number density n,

€ (,U«n + Mp):| np

recombination rate = [
€€

which from Eq. (2.3) allows the Langevin recombination coefficient to be identified:

e (pn + 1)
fr = ——=.
€€0

(2.7)

This derivation is independent of the assumed radius 7. It is necessary to assume
that the electric field near the electron is given by the electrostatic attraction of that
electron alone, and this is an approximation that improves with decreasing radius.

The Langevin derivation requires that charges be treated as continuous number
densities, so that the flux crossing the sphere is density times velocity. It also requires
that charges be free to move towards each other so that their velocity is uF in the
vicinity of the recombination target.

Another recombination mechanism that must be considered is recombination via
trap states [105]. In this mechanism, a charge is first captured into a trap where it
becomes immobilised. At some later time, an oppositely charged carrier may approach
and recombine with it. This may be described as “monomolecular” recombination with
a first order rate [106,107]

o
ot

g, (2.8)

monomolecular recomb.
where 7 is the monomolecular lifetime. The lifetime 7 is controlled by the density of
trapped charges. However, this model is too simple for our needs because it does not
balance the recombination rates of both types of charges. According to Eq. (2.8), the
hole density p will continue to decay regardless of whether there are any electrons left
in the trap states. This violates the conservation of charge.

The problem of trap-assisted recombination was first solved by Shockley and Read
[108] and Hall [109]. The so-called Shockley-Read-Hall (SRH) recombination via elec-
tron traps is described by the equations

Oop on

= — = Bsru(np —nip1) (2.9)
ot SRH recomb. ot SRH recomb.

CCyN,
Cn (n+n1) +Cp (p‘i’pl)7

Bsru (2.10)

where ny (p1) is the equilibrium concentration of electrons (holes), C), is the probability

per unit time that an electron will be captured by an empty trap, C), is the probability
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per unit time that a hole will be captured by a trapped electron, and NV, is the density
of electron traps. SRH recombination is derived from the principle of detailed balance
for a system in thermal equilibrium.

Instead of the SRH expression, which inherently incorporates the trap capture
time, one might prefer to decouple the recombination model from the trapping model
so that these can be specified in isolation. To achieve this, there are three possible

mechanisms which must be considered [110]:
1. A free electron recombining with a free hole;
2. A free electron recombining with a trapped hole; and
3. A trapped electron recombining with a free hole.

Each mechanism will be second order, proportional to the number density of each
respective species, i.e., of the form [np for some recombination coefficient 5. It has
been shown that the coefficient § may be estimated from the Langevin rate with
the corresponding mobility set to zero [105]. This makes physical sense, because in
systems with near-to-Langevin recombination, the limiting process is likely to be charge
transport. We will return to this issue in the following chapter, when we introduce

recombination terms into our numerical model.

2.4 Experimental Methods for Characterising Charge
Transport

Characterisation of charge transport in organic semiconductors is challenging because
of complex dependencies on device geometry, film morphology, electric field, and
charge carrier concentration; consequently, a variety of techniques have been de-
veloped [92,111-115]. This review focusses specifically on those that apply to solar
cell geometries, because measurements taken on other geometries (such as transist-
ors) can differ dramatically [116] and are not necessarily representative of photovoltaic

performance due to a concentration-dependence in the carrier mobility [117].

2.4.1  Current-voltage curves

Carrier injection (in the dark) can be used to probe charge transport. For the case of
injection into an ideal undoped, unipolar semiconductor, the Mott-Gurney square law

describes the current density as a function of voltage [118]

.9 eeopV?
8 43

(2.11)

where €€ is the permittivity, u is the mobility, V' is the effective voltage (applied plus
built-in), and d is the thickness of the semiconductor. If a JV curve has a regime

where the slope is proportional to V2, then the mobility can be extracted by fitting
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Figure 2.6: Typical experimental setup for time-of-flight. The laser pulse photogen-
erates carriers that subsequently move under the influence of the DC voltage. The
resulting electric current is measured by the oscilloscope and the load resistance Rjpqq-

Eq. (2.11) to the data. When applying this technique, care must be taken to ensure
that the current is not limited by injection barriers or series resistances. Furthermore,
a major weakness of this approach is that the presence of charge trapping will modify
the slope of the JV curve [119]. It is possible to calculate j(V') for certain types of
trapping distribution [118,120], but this requires assumptions or knowledge about the
types of traps.

Solar cells blends are bipolar conductors, and the Mott-Gurney law does not apply
if both types of carrier are present. Nevertheless, it can be used as an approximation if
special “hole only” or “electron only” devices are fabricated by using a poorly matched
electrode that prevents injection of the corresponding type of carrier [104,121]. Chan-
ging the electrode material may modify the film morphology, and consequently it is
desirable to measure the mobilities in actual operational devices.

“Double” injection (of both types of carrier) into bipolar devices can also be used
to characterise charge transport [106,122,123]. However, the double injection current
depends upon the mobilities of both carriers, the bimolecular recombination coefficient,
and the distribution of traps. Consequently, care must be taken when interpreting
double injection experiments that all of these dependencies are properly accounted
for. The interpretation is much simpler when the transport of a single type of carrier

can be studied in isolation, as is possible with time-of-flight.

2.4.2  Time-of-Flight

The time-of-flight (TOF) technique is a well established method that has been used
for many years [124, 125]. The experimental setup is shown in Figure 2.6. A DC
voltage is applied to the sample in reverse bias. It is necessary that the sample has a
very low conductivity so that the resulting “dark” conduction current in reverse bias is
negligible. A packet of charge carriers is generated near one of the electrodes, typically
with a nanosecond laser pulse. The DC voltage causes the charge packet to move

through the semiconductor, and the time of the charge carriers’ “flight” is observed by
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Figure 2.7: Typical current transients measured in time-of-flight experiments, when
the light intensity is low such that the electric field is not disturbed by space charge
effects. In the case of normal transport, the plateau reveals the constant velocity of
the carriers, whereas in the case of dispersive transport, the carrier mobility is poorly-
defined.

measuring the electrical current. The velocity of the charges, and hence their mobility,
can be calculated with knowledge of the geometry of the sample.

Classical time-of-flight as just described depends upon the smooth and constant
motion of the packet of charge carriers. For this to occur, the electric field inside the
device must be undisturbed by space charge effects, and so it’s necessary to use a light
intensity low enough that the amount of photogenerated charge is much less than the
charge on the electrodes, CU, where C' is the capacitance of the device and U is the
voltage. Note that time-of-flight can also be conducted at high light intensities, in
which case it provides a measure of charge carrier recombination [89,102].

Schematic representations of typical low-light intensity time-of-flight transients
are shown in Figure 2.7. Normal transport—in which charges move in a coherent
packet—is shown on the left side, whereas dispersive transport—in which the pho-
tocurrent continuously decays—is shown on the right side. The flat plateau in the
case of normal transport indicates a packet of charge moving with a constant velocity.
Conversely, in the case of dispersive transport, no such plateau is visible.

The apparently featureless dispersive transient usually demonstrates some structure
when plotted on logarithmic axes, as shown in Figure 2.8. Often there are two power
law regimes with slopes —1 + @ and —1 — «, respectively, where 0 < o < 1 [77,78].
The dimensionless parameter o describes the severity of the dispersion, with smaller
values of a indicating more severe dispersion. The transition between the two regimes
occurs when the slope changes, and this is often interpreted as a representative transit
time, from which mobilities are determined.

The two power law slopes of —1 + a were predicted by an influential model due to
Scher and Montroll called the continuous-time random walk [77]. The details of this
model will be described in more detail below, but for analysing time-of-flight data it
is important to recognise that the two slopes sum to —2, independent of the value of
a. Therefore, the “sum of slopes” is a test that determines whether the transport can
be described by a Scher-Montroll continuous-time random walk.

To obtain meaningful time-of-flight transients like Figures 2.7 and 2.8, it is ne-

cessary to photogenerate carriers in only a very thin section of the device near to the
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Figure 2.8: Typical dispersive current transits plotted on double logarithmic axes. The
two regions are labelled with the asymptotic behaviour of the current density (j) as a
function of time (¢). The coefficient o describes the degree of dispersion. The change
in slope, which is marked by an arrow, is often interpreted as a transit time.

surface. This ensures that all charges travel approximately the same distance, and con-
sequently their velocities can be calculated on the basis of the sample’s geometry. A
highly efficient solar cell will always have a thickness similar to the optical penetration
depth, because otherwise a substantial portion of the device will not receive light and
therefore will not contribute photocurrent. Even more detrimentally, the additional
thickness beyond the optical penetration depth would serve to delay charge extraction
and weaken the electric field by spreading the built-in voltage over a larger thickness.
The reduced built-in field would cause charges to “pile up” inside the device, increas-
ing recombination losses. Consequently, good solar cells are necessarily too thin for
classical time-of-flight. If the devices are made thicker, then the film morphology or

microstructure may change [126,127], and so time-of-flight is not well suited here.

243 CELIV

Charge extraction by linearly increasing voltage (CELIV) addresses some of the diffi-
culties associated with the standard time-of-flight technique. It was originally used in
the dark to measure mobilities in doped semiconductors [128], and was later extended
to use laser photogeneration [129] or LED photogeneration [72]. When photogenera-
tion is used, the technique is called photo-CELIV. Conversely, the name dark-CELIV
is sometimes used to explicitly indicate the absence of photogeneration. As shown in
Figure 2.9, the experimental setup is similar to time-of-flight, except that the charges
are linearly accelerated by a rising voltage.

A CELIV or photo-CELIV transient contains several features, which are shown in
Figure 2.9. There is a displacement current ¢y and corresponding current density jo
caused by capacitive charging with a linearly increasing voltage. The displacement
current ig = AC, where A is the slope of the applied voltage and C' is the capacitance
of the device. Superposed with the displacement current “step” is the conduction
current density Aj. The conduction current displays a maximum j,q. at a time t,,qz.
The maximum j,q. is the total current at the maximum, whereas Ajnq. refers to

the conduction current only, i.e. Ajmazr = Jmaz — jo- The mobility is evaluated from
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Figure 2.9: Typical experimental setup for photo-CELIV (top), and a schematic cur-
rent transient (bottom).

the time t,,,4,. The original dark-CELIV theory specified that the mobility should be
calculated with [128]

2 &
h= g (2.12)
whereas for photo-CELIV [130]
2d?
(2.13)

Iu - 2 Ajmaz )
3412 [1 + 0.36T}

Other forms of the mobility equation have been proposed [131], and more recently it
has become apparent that proper interpretation of photo-CELIV requires correction
factors computed via numerical simulations [132,133].

A strong advantage of photo-CELIV is that it can be applied to thin films [92]. It
works well in the case of volume photogeneration, as occurs in operational solar cells.
Additionally, photo-CELIV can conveniently estimate the bimolecular recombination
coefficient with [100] ‘

. Jo
Br " Ajsat’

(2.14)
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where Ajgqr 1S Ajmae at a high enough light intensity that it is saturated. Overall,
photo-CELIV has proven itself to be a powerful tool in the study of charge transport
in organic semiconductors [6,134-136]. It has been widely used to elucidate the fun-
damental mechanisms of time-, field-, and carrier concentration-dependence in various
systems [94,103,137-143].

The impact of dispersion on photo-CELIV is unclear. In time-of-flight, there is a
qualitative distinction between non-dispersive and dispersive transients. Photo-CELIV
does not appear to display such a sharp transition. Intuitively, this may be because
photo-CELIV measurements are performed on much thinner films than time-of-flight,
so charge carriers will have less time to relax before they are extracted from the film.
Nevertheless, the impact of dispersion deserves further attention, and we will return
to this question in Chapter 4.

A weakness of photo-CELIV is that the widely used formulae (2.12)-(2.14) are
believed to be inaccurate under certain important operating conditions [21,22, 131,
132,144]. For example, even in the ideal case of uniform photo-generation, a general
expression for the mobility cannot be found unless approximations are made [131].
Non-uniform light absorption requires numerical correction factors that have been pub-
lished only for the special case of Langevin recombination and Beer-Lambert absorp-
tion [133]. In the case of thin films—those having an absorption coefficient-thickness
product (ad) of 2 or less—the correction factor in the equation to calculate the mo-
bility varies by approximately a factor of 50 across the range of Aj/jo [133]. If thick
films are also included, the variation is as much as 100 times. Real devices display
more complex optical absorption patterns [29], and calculation of the correction factor
is therefore more difficult, but the Beer-Lambert case provides an estimate of the size
of the uncertainty. These correction factors need to be adjusted if the system exhibits
non-Langevin recombination, and so the uncertainly may be even larger in the case
of strongly suppressed recombination. Charge trapping is another problem for photo-
CELIV. A study by Hanfland et al [144] concluded that CELIV mobilities for “typical
organic solar cells” are only accurate to within one or two orders of magnitude. Overall,
it should be expected that photo-CELIV mobilities have an uncertainty of at least an
order of magnitude, and probably more if numeric simulations are not used to supply
correction factors.

A further problem with photo-CELIV is the unintended extracted of charge by
the built-in field during the delay time between photo-generation and the beginning
of the applied voltage ramp [145]. This has been addressed via improvements in the
experimental methodology. A nanosecond switch can be used to hold the device at open
circuit during the delay time [88,146]. Alternatively, the open-circuit voltage transient
can be prerecorded and then “played back” during the delay time to simulate open
circuit conditions [72]. However, even if the electric field were perfectly compensated,
there will still be diffusion and recombination during that time, which will influence

the shape of the extraction transient, and hence the measured mobility. This issue

Chapter 2. Fundamentals 19



Philippa, Bronson Charge Transport in Organic Solar Cells

will be addressed in Chapter 4. The weaknesses of the photo-CELIV technique have
inspired the development of the RPV technique (Chapters 5 and 6).

2.4.4 Transient PhotoVoltage (TPV)

The transient photovoltage (TPV) technique measures the lifetime of charge carriers
via a decay in voltage [147]. Typically, a white-light bias is applied to generate an
open-circuit voltage v,., then a small optical perturbation (typically with a pulsed
laser) temporarily increases vo.. The decay of this open-circuit voltage v, is recor-
ded using an oscilloscope with a large input impedance. It is commonly believed that
the measured decay in voltage corresponds to the recombination of the additional
charges that were photogenerated by the optical perturbation [147]. The measured
lifetime depends upon the concentration of charge carriers that are present accord-
ing to 75 = (ﬁn)_l, and so the lifetime alone (without analysis of the charge carrier
concentration) is insufficient to quantify the nature of the recombination or to com-
pare distinct systems, despite some attempts to do so [148]. It is necessary to obtain
the carrier concentration by other means in order to compare TPV lifetimes between
systems [149].

The TPV measurement is conducted under open-circuit conditions, where charge
carriers are spatially separated and recombination is suppressed. More importantly,
however, the number density n in the lifetime equation 73 = (Bn)_1 is likely to be
strongly non-uniform, as indicated by simulations of open circuit conditions [20]. Con-
sequently, the spatially-varying lifetime at open circuit greatly complicates the inter-

pretation of lifetime measurements [150].

2.5 Models of Charge Transport

Microscopic models of charge transport in organic semiconductors are typically based
on the hopping of charge carriers between localised sites (see, for example, refer-
ences [76,77,93,151-158]). These models are remarkably successful in explaining and
predicting charge transport fundamentals, however, they suffer from several problems.
Firstly, the model inputs are in terms of microscopic parameters, such as the char-
acteristics of the site-to-site hopping mechanisms, and these are difficult to measure.
Secondly, these models are computationally expensive, especially since each chargeable
site—and often each individual carrier—is accounted for individually. It is thus dif-
ficult to scale these models to a realistic number of sites or a realistic number of
carriers. Some transport effects (such as space charge limitations) only appear at high
concentrations of charge, and therefore these are difficult to model using a microscopic
approach.

An alternative is a drift-diffusion model [20-22]. These models consider a con-
tinuum of charge densities, rather than discrete chargeable sites, and are described by
partial differential equations (PDEs) rather than probabilistic hopping rates. The con-

tinuum model’s input parameters are all macroscopically important quantities, such as
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carrier mobilities and recombination coefficients. Additionally, there are strong compu-
tational advantages because large devices with high charge densities can be simulated
in seconds on a typical computer. A weakness of the continuum models is that any
temperature-, field- or density-dependence must be assumed a priori and inserted as
an input parameter [159], whereas microscopic models can often make ab initio pre-
dictions of any such dependencies [151]. Additionally, dispersive transport often arises
naturally in microscopic models, in contrast to standard drift-diffusion models where

dispersive mechanisms must be explicitly included in the model.

2.5.1 Gaussian Disorder Model

Perhaps the most commonly used hopping framework is the Gaussian Disorder Model
(GDM) [76,160-162]. According to this model, the energy levels of the sites follow a
Gaussian distribution, perhaps because of the central limit theorem where the energy
of the sites results from the interaction of a large number of random variables. The

density of states is written

2
g(E) = \/2;76Xp < QUEZ ) , (2.15)

where F is the energy with respect to the mean of the density of states, and o is the

width of the distribution and indicates the level of disorder that is present. The value
of o is called the diagonal disorder. This model may be simulated with Monte Carlo
techniques. A typical implementation will place the sites on a three-dimensional grid,
populate some sites with carriers, and then simulate the hopping motion by random
sampling from the probability distribution of allowable hops. To implement such a
procedure, the probability of each possible hop must be calculated. These are usually
obtained first in terms of the hopping rates, i.e. the number of carriers that would be
expected to make such a hop in a given unit of time.

The most commonly used hopping rates are due to Miller and Abrahams [163].
According to the Miller-Abrahams rate, hops upward in energy are penalised by a
Boltzmann factor, whereas hops downward in energy receive no additional contribution.
Hops are always accompanied by the absorption or emission of phonons. The jump
rate is [163]

%R E;—FE;
vpe 2Hij exp (— liBTZ) , B> E;

Vij = (216)

Vge_QaRij, Ej < FEj,
where v;; is the hopping rate from site ¢ (which has energy E;) to site j (which has
energy F;), vg is an attempt to hop frequency, « is the reciprocal of the decay length
of the localised wavefunctions, and R;; is the distance between the two sites.
Monte Carlo simulations are performed by calculating the hop rates v;;. Long hops
have vanishing probabilities, and therefore it is only necessary to consider some set of
nearest neighbours as candidate destinations j. At any given instant, an individual

carrier will have many allowable destination sites. We introduce the label n to stand for

Chapter 2. Fundamentals 21



Philippa, Bronson Charge Transport in Organic Solar Cells

a particular combination of source and destination indices, ¢ and j respectively. Then,

to calculate the hop which is actually taken, we consider the following distribution [164]:
P(1,n)dr = P(the next hop is type n AND it occurs within a time interval 7 to 7-+dr).

This distribution can rewritten as the product of two factors:

P(1,n)dt = P(no hops of any type occuring before time 7)
x P(hop of type n occuring in the interval 7 to 7 + d7).

The second factor can be immediately written down. The probability of a hop n
in the differential time interval dr is v,dr, where v,, is the rate constant for the hop of
type n.

To calculate the first factor, we consider the probability that the hop does not occur
in the (arbitrarily large) length of time 7 by dividing this interval into K segments
of width 7/K. In each such segment, the probability of the hop not occurring is
1 — v,7/K, to first order in K~!. Then the probability that the hop does not occur

in the entire interval of length 7 is the product of all these probabilities, in the limit

of large K:
o . T K
P(hop n not occurring int tot+7) = lim [1 - —}
K—o0 K
= exp(—vnT).

It follows that the probably that no hop at all occurs is the product over all possible
types

P(no hops of any type occurring in t to t +7) = H exp (—vp,T)
m
= e <_ ZW>
m

This gives the distribution P(7,n)dr as

P(1,n)dr = exp <— Z 1/m7'> UpdT. (2.17)

This distribution is not normalised because it is not certain that the next hop is in
fact of type n. Summing over all n yields a normalised distribution.

A Monte Carlo simulation will sample from Eq. (2.17) to evaluate the hop taken
by each carrier. As the number of carriers increases, the conduction current will
converge to the macroscopic average. The macroscopic conduction current resulting
from this simple model contains surprisingly rich behaviour [165, 166]. The charge
carrier mobility varies with the energetic configuration of the sites, the electric field,

and the temperature [76,167,168]. The results are sensitive to short-range correlations
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between site energies, which might be expected to arise in practice because nearby
sites will be influenced by similar features of the molecular-scale morphology [151]. A
further complication is the impact of the charge carrier concentration, because higher
concentrations force the carriers to occupy higher energy states in order to comply
with the Pauli exclusion principle [169-171].

A fundamental weakness of hopping models is their computational complexity. The
need to track individual carriers and individual charge sites makes large-scale models
rather challenging. An alternative approach is to apply a macroscopic continuum

model, such as a continuity equation.

2.5.2 Continuity equations

Continuity equations describe the macroscopic processes that influence the charge car-
rier number density n(x,t). The carrier number density gives the number of particles
per unit volume, and it varies with position x and time t. A typical continuity equation
would be

on X

o +V.j=G(x,t) — R(x,1),
where j is the flux of particles (i.e. the conduction current), G is the rate of carrier
generation, and R is the rate of carrier loss (or recombination). This partial differ-
ential equation can be solved analytically in simple cases, but in general numerical
solutions are needed. Fortunately, numerical solutions of this form are computation-
ally efficient, and modern computers can solve such systems in a matter of seconds.
This thesis primarily utilises continuity equations. A full continuity equation model

will be developed in the next chapter.

2.5.3 Drift and diffusion

A very widely used model for normal transport writes the conduction current as the
sum of drift and diffusion terms [67]. For example, the conduction current of holes

would be
ip(x,t) = epp(E, p)E(x, t)p(x,t) — pp(E, p)kpT Vp, (2.18)

where e is the fundamental charge, 1, is the carrier mobility, E is the electric field, p is
the number density of holes, kp is the Boltzmann constant, and 7T is the temperature.
The first term in Eq. (2.18) is the drift current, which is caused by the electric
field. The second term is the diffusion current, which is caused by a gradient in
concentration. Carriers in regions of high concentration tend to diffuse towards regions
of lower concentration.

We note that in certain organic semiconductors, the carrier mobility 1, may be de-
pendent upon the electric field and /or the density of charge carriers [153,169]. Equation
(2.18) displays these dependencies explicitly. Furthermore, Eq. (2.18) also assumes
the Einstein relation, D = pkpT /e, where D is the diffusion coefficient. The Einstein
relation allows the diffusion coefficient to be calculated from the carrier mobility and

the temperature, however, the applicability of this equation to organic semiconductors
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has been disputed [172]. Nevertheless, the Einstein relation does appear to be valid
under conditions near to thermal quasi-equilibrium [173], as would occur in opera-
tional solar cells. For this reason we have written Eq. (2.18) with the Einstein relation
included. However, if the Einstein relation does not apply, then the variation can be
modelled by simply inserting a prefactor into the diffusion term [174].

To apply this model, the conduction current (2.18) forms the transport term in a
continuity equation. It is coupled with a similar continuity equation for electrons, and
then the electric field is calculated using the Poisson equation. A complete description
of such a model and its software implementation is provided in the following chapter.

These models are very widely used [105,159,174-182]. They are simple and compu-
tationally efficient. Nevertheless, they do not account for dispersive transport, which
is often present in organic materials, unless further terms are added. One mechanism

to implement dispersive transport is the multiple trapping model.

2.54 Multiple trapping

The multiple trapping model makes a distinction between free and trapped charge [183].
Free charges are considered to be propagating according to standard drift and dif-
fusion, but there exists a mechanism whereby a free charge can become trapped.
Trapped charges are immobile, until they are released by some physical process (typ-
ically thermal activation), whereupon they continue their motion as before.

Multiple trapping models can be formulated in terms of a discrete set of trap
levels [184]

on n n;
4V = -t 2.19
ot + J Zz: Tesi + Tri ( )
on; n n;
= — - — 2.20
ot Tei  Tri (2.20)

where n is the number density of free carriers, j is the flux of carriers, n; is the number
density of carriers in the i*" trap state, Tci is the capture time for the ith trap, and Tri
is the release time for the i trap.

Multiple trapping models can also be formulated in terms of a continuum of trap
levels [185]

on 0
5t +V-j = / —veg(e)n + vre* 8 n (€) de (2.21)
Bn(;ie) = veg(e)n — ve* 8T, (e), (2.22)

where g(e€) is the density of trap sites, v, is a capture rate, v, is a release rate, and
n¢(€) is the number density of trapped sites at energy e. Here, energies are measured
with respect to the conduction band, i.e. € = 0 is the edge of the conduction band and
more negative energies represent states lower in energy. Carriers are thermally excited

out of their localised states, and deeper traps have concomitantly slower release rates.
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The above formulations implicitly assume that the charge concentration is low
compared with the number of trap sites, because the rate of trapping does not consider
the amount of charge already trapped. If the number of charges becomes comparable
with the number of trap sites, then “trap filling” effects need to be included. Trap filling
can be modelling by introducing a factor of the form 1 — f, where f is the fractional
occupancy of the trap site [185]. This causes the equations to become nonlinear.

Multiple trapping can model dispersive transport if the density of states g(e) is
chosen correctly. Carriers relaxing within an exponential density of states exhibit
dispersive transport with a temperature dependent dispersion parameter o = T'/T,
where T, represents the width of the exponential density of states [184,186,187]. Other
density of states distributions may give rise to alternative behaviour. Further details

of multiple trapping and its implementation are discussed in the following chapter.

2.5.5 Continuous time random walks

The continuous time random walk (CTRW) was an early model for dispersive trans-
port that has been particularly influential [77,188-190]. This is a microscopic scheme
where carriers make random hops in space. Crucially, the time between hops is also
random. The scheme is described by a probability density function (pdf) i (z,t), where
1 (z,t)dzdt is the probability of a jump of length z to z + dz occurring after a delay of
duration ¢ to t + dt.

To analyse a CTRW, we define the waiting time (or hopping time) pdf ¢(¢) and
jump length pdf \(z) as:

b(1) = / O(z 1) da, Mz) = /0 bz by, (2.23)

where the integration with respect to z is taken over the full extent of all spatial
coordinates in the relevant coordinate system.

It is possible to solve this scheme analytically [191]. To do this, we introduce the
pdf n(z,t), which is the probability of just having arrived at a point z. The probability
of arriving at a point z at time ¢ is the combined probabilities of all the jumps that

could terminate there. This is the integral over all possible jump lengths and times,

n(z,t) = §(t)po(z) + //0 n(z, t)(z — 2t —t)dt'd>7, (2.24)

where po(z) is the initial condition, that is, the probability of finding a carrier at
position z at time ¢ = 0. As above, the integral over z’ is taken over the full extent

of all the spatial coordinates. Recognising that the integrals are convolutions, we are
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motivated to take a Laplace-Fourier transform! to algebraically solve for 7:

n(kvs) = pO(k)+77(k73)1/}(k73)
n(k, 5) po(k)

T his) (2.25)

The probability that a carrier is still located at a position z some time after it
initially arrived there depends upon the survival probability. The survival probability

is the probability of not hopping away:

B(t) = 1 — / Co(t)dr (2.26)

Combining these, the overall probability density function for a carrier being at a pos-

ition z at time t is

p(z,t) —/0 n(z,t —t)®(t)dt. (2.27)

In Fourier-Laplace space,

p(k>5) = n(kvs)q)(s)
= nlks) |2 - 2

_ pok)  1—¢(s)
= TToks s (2.28)

Equation (2.28) gives an analytic solution to any CTRW defined by a probability dens-
ity function v (z,t), where 1)(z,t) is the probability of making a hop with displacement
z after a time ¢, and where ¢(t) = [ 9(z,t)d%z is the waiting time distribution. The be-
haviour of this solution depends strongly upon the moments of 1. For the purposes of
illustration, we now simplify the problem to one spatial dimension. The characteristic

waiting time 7' and the jump length variance %2 are

6(t) = /_ TR Az) = /0 (e Dt (2.29)
T = /Oo to(t)dt, »? = /OO 22\(2)dz. (2.30)
0 —00

Various types of CTRW scheme can be classified according to whether T and 2 are
finite or divergent. Classical transport occurs when both 7" and ¥? are finite. An
example of such a system is charge carriers in crystalline semiconductors. The fact
that 7 and X2 are finite implies that the pdf ¢(k, s) has the power series expansion in

Laplace-Fourier space

¥2k?

Y(k,s) =1—sT —iMik — 5

T (2.31)

! Transformed functions are denoted by explicit dependence on the Laplace variable s and Fourier
variable k. The combined transformation is f(k,s) = ffot f(z,t) exp (—st) exp(—ik - z)dtdz.
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where M is the first moment of A\(z). We substitute this distribution into the CTRW
solution (2.28), discarding the higher order terms:

no (k)
k .
n(k, s) iMik/T + 22k2/2T + s
Rearranging,
Mk ¥2k?
sn(k,s) —ng(k) + Tl n(k,s) + 5T n(k,s) =0

and inverting the Laplace and Fourier transforms yields

on  Myon X0 _
ot T 0z 2T 022
This is the classical advection-diffusion equation with normal drift and diffusion terms.

Consequently, a CTRW with finite moments 7 and X2 obeys a diffusion equation.

Conversely, if T is divergent but ¥? remains finite, the CTRW describes dispersive
transport [192]. Early development of this model [77,193,194] introduced an ad hoc
waiting time distribution ¢(t) ~ ¢=*~! with 0 < @ < 1. This model predicts time-of-
flight current transients of the form [77],

. et <ty
i(t) ~ (2.32)
t_l_au t Z tt'ﬁ

where t;,. is the transit time of the carriers. Recall that these are exactly as observed
in many dispersive systems, complete with a “sum of slopes” of —2. This model was
successfully applied to dispersive transport in a variety of materials [78].

Since the regular diffusion equation cannot describe dispersive transport, it is inter-
esting to solve the dispersive CTRW to see what kind of generalised diffusion equation
results. To illustrate, we shall use the following power series expansion with a divergent
first moment in time [191,195]

32k2
2

W(k,s) =1— (s1)* —iMik — + .., (2.33)

where 0 < a < 1 and 7 is a time scale parameter. Using this distribution in the CTRW
solution (2.28),

5% Ing(k)
k = .
n( ,S) iMlk/Ta +22k2/27a + 5@
Rearranging,
o a1 iMk 2k?
sn(k,s) — s no(k) + ——n(k,s) + 5o n(k,s) = 0. (2.34)
T T

The first two terms are reminiscent of a Laplace-transformed derivative. Indeed,

if we put @ = 1, then we have the first derivative. However, we previously specified

Chapter 2. Fundamentals 27



Philippa, Bronson Charge Transport in Organic Solar Cells

« to be strictly less than one. We can use fractional calculus to invert this Laplace
transform and obtain a diffusion equation for dispersive transport. We shall introduce

fractional calculus next, and then return to Eq. (2.34).

2.5.6 Fractional Calculus

A brief aside: the Leibniz notation for a derivative of order n is suggestive.

y
e
The notation itself tempts thoughts about how this expression could be interpreted
for arbitrary values of n. One could consider a “half-derivative”, n = % Applying
the “half-derivative” twice should be equivalent to an ordinary derivative. Indeed,
arbitrary orders could be defined.

Modern mathematical tools allow the development of fractional calculus quite suc-

cinctly [196,197]. It is easiest to first consider arbitrary orders of integration.

Fractional Integration

We begin by considering the integration identity of the Laplace transform:

c {/Otf(t)dt} = L{";(t)} Fls) (2.35)

S

where L£{-} is the Laplace transform, and the Laplace transform of f(¢) is written
F(s). By repeated application of this identity, one can generalise this expression to

the n-fold integral

t ot t F(s)
L /// f@t) dtdt --- dt p = . (2.36)
0 Jo 0 ~~ s"
N———— n times
n times
For clarity of notation, we introduce the integral operator
t ot t
I"f(t) = t) dtdt --- dt, € NT, 2.37
pro = [ [ [ ro g (237
N———’ n times

n times
where N* = {1, 2, 3, --- }. The Laplace transform of the integral operator is then

oy fyy =18 (2.38)

STL

The expression on the right hand side could be interpreted as the product of two

n

functions, F(s) and s~™. A product in Laplace space is a convolution in the time

domain. Noting that the inverse Laplace transform of s~ is t"~!/(n — 1)!, we have:

I () = — ; /0 (t— 7" f(r)dr, (2.39)

(n—1

This is the Cauchy formula for repeated integration.
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The operator I" in Eq. (2.39) was defined for natural numbers n, but one could
envisage the formal replacement of n by some arbitrary number «. To achieve this,
it is necessary to exchange the factorial with the Gamma function. Consequently, we

arrive at
I f(t) = F(la)/o (t— T)O‘*l f(r)dr, R () >0, (2.40)

which defines the fractional integral. It is necessary that ® («) > 0 for this integral to

converge.

The Laplace space representation is straightforward:

F(s)

s

LA f(1)} =

(2.41)

Equation (2.40) and its Laplace transform (2.41) define fractional integration. For
example, a “half-integral” is obtained for a = % The Laplace representation (2.41)
makes it clear that applying the “half-integral” twice is equivalent to an ordinary

integral of the first order.

Fractional Derivatives

Fractional integration is elegantly defined by the generalisation of the repeated integ-
ration formula (2.39). Unfortunately, there is no corresponding formula for “repeated
differentiation.” So how to form a fractional derivative?

The solution is to combine ordinary derivatives and fractional integration. To form
a derivative of order «, we differentiate m times (where m is the next integer larger
than «), and integrate m — « times. However, the order of application is significant.
Integration and differentiation operators do not commute, so we immediately arrive at

two alternative definitions [198],

dm
Riemann-Liouville derivative, 22D = ——[m=@ (2.42)
t dtm t
dm
Caputo derivative, “ D¢ = [m@ (2.43)

dtm’

In general, these two derivatives are different operators. When a becomes an integer,
then both types of derivative reduce to the standard operator %, because I} is the
identity operator?.

For the case where 0 < a < 1, these two forms of derivative have the Laplace

transforms
L{®DE (1)} = s"Fls) — lim 11" (0) (2.44)
C{D§ f(0)} = sF(s)—s* ' f(0), (2.45)

Notice that the Riemann-Liouville derivative has a fractional initial condition, whereas

the Caputo derivative has the usual initial condition. It is not always clear how this

2This can be easily seen from the Laplace space definition Eq. (2.41).

Chapter 2. Fundamentals 29



Philippa, Bronson Charge Transport in Organic Solar Cells

fractional initial condition can be obtained from physical measurement, although some
models do admit such a physical interpretation [199]. Nevertheless, the additional work

required to define the initial condition is a weakness of Riemann-Liouville formulations.

2.5.7 Fractional diffusion

We are now able to return to the equation in Section 2.5.5 that contained a Laplace
transformed “derivative” that we could not invert. Recall that we were considering the
analytic solution in Fourier-Laplace space of a continuous time random walk describing

dispersive transport, which is repeated here for clarity:

21.2

s n(k,s) — s* tng(k) +iMikn(k, s) + n(k,s) = 0.

2T

We now recognise the first two terms on the left hand side as a Caputo fractional de-
rivative. Consequently, we can invert the transforms, and obtain a fractional diffusion
equation

2 92
ngnJri{ng—;g;:o. (2.46)
Here, M /7% is a generalised drift velocity with units (length) (time)™®, and %2/27¢
is a generalised diffusion coefficient with units (length)? (time) ™. In the limit o — 1,
the classical diffusion equation is recovered.

Equation (2.46) is one of many fraction diffusion equations that have been proposed
[23]. The various models can be separated into two main categories, depending upon
whether they model the total charge in the system or only the untrapped charge.

The example above began with a CTRW framework, describing total charge. The
result is Eq. (2.46), or equivalently [200,201]

on 5?n

c
o Din(x,t) + Wyor = Praga

=0. (2.47)
We will return to Eq. (2.47) in Chapter 8, where we will present mathematical

advances related to its efficient analytic solution. This model can also be cast into the

form of a Riemann-Liouville derivative and a source term [24]

on 0’n  n(x,0)t

= _D = . 2.4
Ox L 922 'l -a) (248)

Dz, t) + W,

Alternatively, if one begins with a multiple trapping framework—describing un-
trapped charge—the result is a fractional diffusion equation with a Riemann-Liouville

derivative but no source term [185,202]

on 9%*n

RL
0 D? + W’y% - DLWW

= 0. (2.49)
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This equation has a peculiar feature: it does not conserve number density. This is
understood to represent the permanent loss of charges to deep trap states from which
they will not be released [203].

Fractional diffusion equations such as these can be solved analytically, often by

utilising the Laplace transform or by invoking special functions [204-206].

2.5.8 Kinetic theory

Diffusion equations are extremely popular transport models, however, they are neces-
sarily a special case of a more fundamental system. For example, the standard diffusion
equation is an approximation to kinetic theory [207]. Kinetic theory describes particle
distributions as a function of position and velocity, and is consequently able to cap-
ture more of the underlying physics. The relationship between kinetic theory and the
diffusion equation is well established. Diffusion equations are valid in the limit of long
times and small gradients [207]. They are useful because these assumptions are often
well met, and their simplicity outweighs their small inaccuracy.

On the other hand, fractional diffusion equation is typically developed from a
probabilistic, random-walk model rather than a kinetic theory. For example, Eq. (2.46)
results from the truncation of a power series [Eq. (2.33)]. The type of kinetic model
that would give rise to a fractional diffusion equation has not been widely studied.

Such a model is developed and studied in Chapter 9.

2.6 Conclusion

Organic semiconductors are promising and exciting materials, but they are hampered
by poor performance and complex physics. Experimental characterisation of transport
physics is challenging. Consequently, modelling plays a key role in understanding
experimental results. There are two board categories of model which are used for
this purpose: microscopic models (such as the Gaussian Disorder Model), which track
individual charges as they hop between sites; and macroscopic models (such as the drift-
diffusion equation), which describe the evolution of the number density. Drift-diffusion
models are advantageous due to their computational efficiency and the macroscopic
nature of their input parameters. The development and implementation of a drift-

diffusion model will be described in the following chapter.
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This chapter describes the development and implementation of a numerical simulation
program. The model is a one-dimensional generalised drift-diffusion-recombination
solver that is implemented in MATLAB. Its development begins with specification of
equations that describe drift, diffusion, charge generation, and recombination. Next,
we discuss non-dimensionalisation, in which the physical quantities are scaled into
dimensionless units, yielding physical insights into the true degrees of freedom of the

model. Finally, the implementation details are presented.

3.7 The One-Dimensional Drift-Diffusion Model

We are developing a model for thin film devices where the film thickness (d) is much
less than the width or height of the electrodes. As a consequence, almost all of the
spatial variation will be confined to the direction normal to the electrodes, which we
define as x, and consequently a one-dimensional model is a useful approximation. We
specify that the semiconductor occupies the region 0 < z < d.

The drift-diffusion model [67] asserts that the conduction current density consists

of a drift component and a diffusive component:

. 0
Jnl@,t) = empBlaOple.t) - ppksT 5" (3.1)
Jn(x,t) = eunE(z,t)n(z,t) + unkBTgZ, (3.2)

32



Philippa, Bronson Charge Transport in Organic Solar Cells

where j, (jn) is the conduction current density due to holes (electrons), e is the ele-
mentary charge, p, (@) is the mobility of holes (electrons), E is the electric field, p
(n) is the number density of holes (electrons), kp is the Boltzmann constant, and 7T is
the temperature.

We utilised the Einstein relation for the diffusion coefficient, D = ukgT/e, to
represent the diffusion coefficient in terms of the mobility and temperature. The
validity of the Einstein relation in organic semiconductors is sometimes disputed [172],
but is generally supported [173]. We note that variations from the Einstein relation
could be incorporated by introducing a prefactor to the diffusion terms in Egs. (3.1)
and (3.2) [174].

Applying the principle of conservation of charge, we write continuity equations for

electrons and holes:

op 1905, B
a T eor g(z,t) —r(z,t) (3.3)
on 105, _

where the source-sink terms on the right hand side represent the generation rate g and
recombination rate 7.

The electric field E will be specified using Poisson’s equation

o0*V e(n—p)
or2 €€ (3.5)
ov
EFE = ——— .

where V' (z,t) is the electric potential, and ee is the permittivity of the semiconductor.

As a voltage reference, we choose V' (d), where d is the thickness of the semiconductor:
V(d)=0. (3.7)

For notational convenience, we define U(t) as the voltage across the semiconductor:
d
U(t)=V(0,t) —V(d,t) = / E(x,t)dz. (3.8)
0

3.1.1 Measurement Circuit

A typical measurement circuit is shown in Figure 3.1. Here, the sample under test
is placed in series with a load resistor, and a function generator is used to apply a
voltage. The quantity of interest is the current i(¢), measured using the load resistor
and an oscilloscope. As mentioned above and shown in Figure 3.1, the voltage ground
reference is taken to be one of the electrodes.

By applying Kirchhoff’s voltage law to the circuit, we find

Vpsu(t) = U(t) + (1) R, (3.9)
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Voltage U Source, electrode,
and other resistances

Thin film samplel d)=0
Capacitance C | J__ N\/\_ 5
x=0 x=d —
Power Current i Measurement
supply resistance Oscilloscope
unit (Load resistance)
O

Combined resistances
R

Figure 3.1: A typical measurement circuit for transient measurements. All circuit
resistances are lumped together as R, while the capacitance of the thin film sample
is C. A power supply unit generates a waveform Vs, (t), which is applied to the RC
circuit. The resulting current is measured using a load resistance and an oscilloscope.

where the symbols are defined in Figure 3.1. The voltage across the thin film sample
U(t) arises due to the charge accumulating on the capacitive plates. The current i
must be same everywhere in the circuit, due to Kirchhoff’s current law. It will consist

of both a conduction current i, and a displacement current 4

i(t) = ie(t) +ig(t)
= 9 j"(xl’t)+jp($1,t)+eeow

5| (3.10)

where S is the surface area of the device, j,(z) and jy(z) are the conduction current
densities for electrons and holes, respectively; and z; is any point inside the sample.
The current must be the same everywhere, so x; is arbitrary within the range 0 <
z1 < d. Defining the total conduction current density j. = j, + jn, and integrating

across the thickness of the film:

d d o d
/z’(x,t)da: = S/ jc(x,t)dx—i—Seeo/ E(z,t)dzx
0 0 ot Jo
ou

= i(t) = S(jAt))%—C’E, (3.11)

where C' = Seep/d is the geometric capacitance of the device, and the angle brackets
denote a spatial average.
Combining Egs. (3.9) to (3.11), we obtain
dU .
where the conduction current i.(t) = S (j.(t)). Equation (3.12) is the form we will use
to incorporate the measurement circuit in the model. In the limit of R — 0, we find
Vpsu = U. Therefore, in the model, we can “turn off” the effects of the external circuit

by setting the parameter R to zero.
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3.1.2 Photogeneration of carriers

Most experiments involve the photogeneration of carriers. Often, a brief flash of light
is used at the beginning of the experiment. We will model this behaviour by setting
the initial values of n and p according to an optical absorption model [133,208]. The

initial condition will be

n(l" 0) = p(l‘, O) = Qthl(fL')v (3'13)

where @, is a scaling prefactor that indicates the quantity of photogenerated charge,
and Q1(z) is the photogeneration profile normalised such that fod Q1(z)dz = 1. Note
that @)y, implicitly includes the quantum efficiency for free carrier generation. The
spatial profile Q1 (x) will be determined by a photogeneration model. For example, the

Beer-Lambert law would give

Ql(l’) == %Me_‘m (314)

if the photogeneration is from the x = 0 side, or
Qu(x) = —eald=e), (3.15)

if the photogeneration is from the x = d side. Here, « is the absorption coefficient.
We should highlight that the numerical solver that implements this model will permit
arbitrary specification of the photogeneration profile Q1 (x).

Another possible setup is continuous illumination. This will be modelled using a

generation term in the continuity equation:

dp _On

ot = — G (=), (3.16)

photogeneration photogeneration

where G(t) gives the light intensity in units of generated charge carriers per unit area

per unit time.

3.1.3 Recombination

There are two types of recombination that need to be considered: geminate and non-
geminate [82-84]. Geminate recombination occurs when the recombining carriers ori-
ginated from the same photon. Any movement of these carriers cannot contribute
to the electrical current, because the net movement of one carrier is perfectly com-
pensated by the identical net movement of the other. Consequently, from an electrical
perspective, the geminate recombination rate can be incorporated into the quantum
efficiency for charge generation (i.e., through Q). That is the approach that we will
take for this model.
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Non-geminate recombination includes both band-to-band recombination and trap-

assisted recombination. The relevant equations are (Section 2.3.3 and ref. [105])

ap _ _Belmtw), o Bem, (3.17)
O |oorn Br €€o BL eco

0

0

% recomb. - _/BﬂLee'Z:npt (3‘19)
0

where n and p are the number densities of free electrons and holes, respectively; n;
and p; are the number densities of trapped electrons and holes, respectively; (/51
is a prefactor to account for non-Langevin recombination; and e (uy, + f1p) /€€ is the
Langevin coefficient.

Note that we have assumed that band-to-band recombination and trap-assisted
recombination are both described by the same reduction factor 5/8r. This simplifying
assumption is made on the basis of experimental evidence that trap-assisted recom-
bination in certain systems is described by a Langevin-like expression with one of the
mobilities set to zero [105]. Additionally, this assumption is physically reasonable in
near-to-Langevin systems such as most organic solar cells, because the limiting step is
likely to be charge transport. However, the model could be easily extended to cover

the case where trap-assisted recombination is governed by a different reduction factor.

3.1.4 Boundary Conditions

Precise modelling of the interface between a metallic electrode and an organic semi-
conductor is difficult, primarily because of challenges in quantifying the exact nature
of the interface, and fabricating reproducible samples [209,210]. Consequently, we will
consider simplified boundary conditions that represent ¢deal behaviour. Our intent is
to model the bulk transport without the influence of non-ideal boundaries.

For the continuity equations (3.1)-(3.2), there are four boundary conditions that
need to be specified: two species of charged particle each interacting with two elec-
trodes. For each species of charged particle, we can categorise one electrode as the
“injecting” boundary and the other electrode as the “extracting” boundary. For ex-
ample, holes inject at the boundary where the electric field points into the device,
whereas electrons inject at the boundary where the electric field points out of the
device. With this terminology, we can define several boundary conditions:

Outflow boundary condition—This is the default boundary condition for reverse
bias experiments such as photo-CELIV (Chapter 4) and RPV (Chapters 5 and 6).
This boundary condition allows unimpeded charge extraction, and guarantees that
charges will escape into the electrode provided that there is an electric field to drive

them. At the extracting boundaries, the current is given by the drift term j, = ey, Ep,
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and similarly for electrons. This is an ideal boundary condition in the sense that the
presence of the boundary does not interfere with the charge carrier density other than
to provide a sink for extracted charges. This boundary condition has been used for
ideal extracting electrodes in analytic solutions and numerical simulations [122, 133].
At the injecting boundaries, the current is set to zero (j, = 0 and j, = 0), because
that is the ideal case for reverse bias.

Ohmic boundary condition (zero field)—This is the default boundary condition for
forward bias experiments that involve the injection of charge carriers. This boundary
condition represents perfect charge injection by specifying that the electric field at
the injecting electrode is zero, because if it were non-zero there would be a current
that injects more carriers until the field is completely screened. Numerically, the
implementation calculates the number density needed just inside the semiconductor
so that the field at the semiconductor-electrode interface satisfies |E| < € where € is
a small threshold. This boundary condition was used by Lampert and Mark [118] for
their analytic solutions of various carrier injection problems. These analytic solutions
are valuable because they can be used to benchmark the accuracy of the numeric solver.
The extracting boundaries are the same as for the Outflow case, which matches the
analytic solutions that are available [118].

Ohmic boundary condition (Boltzmann statistics)—As an alternative mechanism to
implement Ohmic injection, the number density at the boundaries can be held fixed, to
simulate Boltzmann statistics where the semiconductor edge is in thermal equilibrium
with the reservoir of charges in the metal [20]. According to this boundary condition,

the injecting electrode has the fixed number density
n(0) = N, (3.21)

while the extracting electrode has

p(0) = Neexp <_fT> |
where NN, is an effective density of states and Eyq, is the bandgap energy (i.e. the
difference between the LUMO of the acceptor and the HOMO of the donor). In this
boundary condition, the effective density of states N, becomes a free parameter that
must be fit from experimental data (such as JV curves).

Blocking boundary condition—The blocking boundary condition is relevant when an
insulating layer contacts the semiconductor, rather than a metal. Blocking boundary
conditions set the current to zero.

Some boundary conditions specify the conduction current, and others specify the
number density. A combination of these could be specified (e.g. Ohmic injection
at one side of the device and a blocking boundary at the other side), or the system
could transition from one to another (e.g. when charges are injected and then later
extracted). The dynamic switching between boundary conditions of different types

requires careful implementation in the code.
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The boundary conditions for Poisson’s equation are

V) = U®)
Vi) = o0,

where U (t) is the voltage across the semiconductor that is determined via solution of
Eq. (3.12).
3.1.5 Summary of Model

The basic one-dimensional semiconductor model developed in this section can be sum-

marised by the following system of equations:

ioat) = enBa, Opla, 1) — kT (3.22)
Jn(z,t) = eunE(x,t)n(x,t)—i—unkBTgZ (3.23)
ic = (p+ia) S (3.24)
ap 105
871;4‘2% = g(ib,t)—’l“(ll'},t) (325)
on 19,
a*?_gaijx = g(z,t) —r(z,t) (3.26)
g(z,t) = Qgen(t)Q1(z) (3.27)
r(x,t) = Pnp (3.28)
0’V _ n-—p
02 e (3:29)
v
E = -5 (3.30)
d
Uity = / B, t)dx (3.31)
0
Rc% — Vou(t) = U(t) — iR, (3.32)

3.2 Non-Dimensionalisation

Non-dimensionalisation means that the model equations are converted into a dimen-
sionless system of units. Ideally, the parameters should be scaled such that physically
reasonable values have magnitudes not too far from unity, because such a scaling will
make the numerics easier and more accurate. (Differential equation solvers—especially
implicit solvers—work best when all variables are approximately the same order of
magnitude.) Normalising the model has the added benefit of eliminating redundant
degrees of freedom in the parameter space, and thereby identifying the relationships
between variables.

To perform the normalisation, we need to select reference scales for physical units

such as time, voltage, and length. Here, we start with an elegant scaling published by
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Juska [106,122], and then extend it. In this section, we denote dimensionless quantities
with a prime.

Voltage scale—The obvious voltage scale for normalisation is the maximum voltage
for CELIV and the applied voltage for TOF and other experiments. However, we
would like to retain the freedom to vary the applied voltage without rescaling other
parameters, if it should be necessary. Therefore, we define a reference voltage U,.; as
the voltage scale. We normalise the maximum voltage (for CELIV), or applied voltage

(for ToF) in terms of this reference

U,
Urlnaz = Uma: °
re

Almost always we take U/, = 1, which corresponds to choosing U4 as the voltage

reference. We normalise all voltages to the reference voltage

U
Uref

U=

such that 0 < U’ < U;ef is the range of applied voltages for CELIV models and
U =, 1 is the applied voltage for ToF models.

Length scale—The natural length scale is the width of the sample (d), and we
normalise the position coordinate as 2/ = x/d.

Time scale—While the natural time scale is the transit time of carriers, in the case
of CELIV experiments we will instead use the pulse duration, 5. This choice of
units makes it easier to reason about the impact of changing the voltage slope. By
normalising to tpyse, We can vary the voltage slope without changing the entire system

of units for measuring time. Consequently, we normalise the time coordinate as

t = t
tscale
tpuise;  (CELIV experiment)
tscale 2 .
HpUrer? (other experiments).

Charge scale—We use the charge on the electrodes at the reference voltage, Qe =
CU,cf/Sd to scale units of charge.

3.2.1 Consequences of this system of units

The above system of units requires the normalised electric field to be

Ed

E' = .
Uref

The CELIV voltage slope A = Upaz/tscale has normalised value A" = U, As

max*

mentioned above, we will almost always take A’ = 1.
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We normalise the number densities to the charge scale

oo enSd end?

B CUref B 6Oe'r‘U'ref
, epSd epd?
V= _

CUref B 6067‘Uref7

such that n’ = 1 everywhere in the device would correspond to a charge of CU,.¢
distributed evenly.

We also normalise the mobility in terms of the above voltage, time and length
scales:

r Ureftscale
w=——p H

For time-of-flight and other experiments where 4.4 = t4-, this system of units requires
p' = 1. (More precisely, the faster carrier mobility is 1.) For CELIV experiments, the
case of tpyse =ty corresponds to p' = 2, and therefore realistic CELIV transients will
have p/ > 2.

We normalise the circuit resistance to the time scale selected above:

o _ RC

scale

This scaling is such that the time-of-flight experiment (where tg.qe = t4) operates
in differential mode when R’ < 1 and in integral mode with R’ > 1. Differential
mode is required for classical time-of-flight, in which the measurement circuit does
not substantially interfere with the measured current. Conversely, in integral mode,
the measurement circuit acts as an analog integrator, and the measured signal is the
integral of the TOF transient.

The above normalisations require the dimensionless current to be

./ tscale .

- CUref ,
while the dimensionless current density is

./ Lscale . tscale .

T U T U

This implies 7/ = j/, i.e. the normalised current and current density are equal.

We normalise the recombination rate 8 to the Langevin rate, that is,

g

52677

such that a Langevin material will have 3’ = 1, while non-Langevin materials will have
B < 1.

Finally, we define the dimensionless temperature as

T — kT
eUref'
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3.2.2 CELIV specifics

In the CELIV experiment, the current can be separated into two components: the
displacement current caused by the charging of a capacitor with a linearly increasing
voltage, and the conduction current. As discussed in Chapter 2, the displacement

current is given by

dU
o= —C = AC
T
where A is the slope of the applied triangle voltage. In normalised units, i = U}, 4.,

and almost always U/ = 1 such that the normalised displacement current is equal

max
to unity. This is why ¢y, s (rather than t.) is the preferred time scale for the CELIV
experiment, because if ¢4, were the time scale then the displacement current i, would
depend upon the mobility!

Since current and current density are equivalent in this system of units, we also
have j) = U,

max-*

3.2.3 Normalised system of equations

The normalised system of equations are

. op
g’ t) = p,E' (@ ) (1) - ,LL;)T/% (3.33)
-/ / ! ! / / / ! / ! ! lan/

Jn@th) = u,E'(z t)n (m,t)—i—unT@ 3.34)
i = (Jp+in) (3.35)

8]7, ajzlzz S, Y
w—i-% = g, t)—r'(a,t) (3.36)

on’ a];z YR I
g t) = Quen(t)Qi(a") (3.38)
(@) = By + )0’ (3.39)

o2V’ , ,
= n - 3.40
5 (2 p (3.40)
oV’
B o= - (3.41)
1
Ut = / E'(2/,t)dz' (3.42)
0

du’ .

R — = Vosu(t) = U'(t) — i R (3.43)

For the remainder of this chapter, we will drop the primes and write directly in

normalised units unless otherwise specified.
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3.3 Modelling Trapping and Dispersion

From a modelling perspective, we can treat both trapping and dispersion effects
through a unified framework. The key insight that makes this possible is that num-
ber density can be “partitioned” into distributions that have different mobilities. A

“mobility partition” is a partial number density, i.e.
n(x,t) = Z n'(z,t), (3.44)
i

where n' is the number density of particles in the i*® mobility partition.

Traps are simply mobility partitions with zero mobility, whereas non-trap par-
titions will have a nonzero mobility assigned to them. A mix of shallow and deep
traps (with fast and slow release rates, respectively) can be modelled using multiple
partitions, since the release rates of each partition can be specified independently.
Similarly, a distribution of mobilities can be modelled by assigning different mobilities
to each partition. Consequently, “mobility partitions” are a general framework that
can implement a variety of physical effects.

To numerically implement mobility partitions, we recognise that they effectively
introduce a new dimension to the number density distribution. Number density will
be a function of position, time, and mobility. Discretisation along the mobility axis
results in Eq. (3.44).

It is straightforward to extend the charge transport terms in the continuity equa-

tion,
. Y
Jp = MpEp' 4w, T 5 (3.45)
3pi aj:zia i i
— — 4
Ot Oz g =" (3.46)

and similarly for electrons. (All equations in this section and for rest of this chapter
are written in normalised units.)

The recombination term must be considered carefully, because recombination events
could occur between any oppositely charged pair of mobility partitions with a rate
proportional to the sum of their respectively mobilities. Generalising the trap-assisted
recombination model given by Egs. (3.17)-(3.20), we write a sum over all possible

recombination targets:

dp'
dt

== (uh+pd) B'p'n. (3.47)
recomb. j

A key assumption here is that the reduction factor 5’ = /51, is the same for all
partitions. There is an experimental justification for this assumption in the case of
trap-assisted recombination, where it has been shown that the recombination rate due

to traps is related to the recombination rate due to free carriers, where the trap-assisted
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case simply has the appropriate mobility set to zero [105]. In the absence of contrary
evidence, we therefore keep the number of free parameters low by assuming the same
reduction factor across all partitions.

New terms in the continuity equation are needed to model the movement of charges
from one mobility partition to another, for example, the rates of trapping and de-
trapping. In general, there might be a net movement of charge between any two
mobility partitions ¢ and 7,

on'’ (n) _

5 = v ——V](-?) (3.48)

due to partition j

z‘(T‘Z) is the net rate of movement of electrons from partition ¢ to partition j, with

where v J
the superscripts ) used for electrons and ®) used for holes. This rate may be time

and position dependent. For example, if n? represents free electrons and n' represents

trapped electrons, then 1/((]711)(:6, t) is the net rate of trapping.
The inter-partition rate coeflicients VZ(Jn ) (for electrons) and V,L»(]].D )
calculated by one of the models discussed below. Any one of these models can be

(for holes) are

turned on for a given simulation, in which case the corresponding portion of code will
be invoked to calculate 1/1-(;) (z,t), I/Z-(]Z-J ) (x,t) and the mobilities of each partition u? (,t)
and p (z, ).

3.3.1  Simple trapping

The simple trapping model includes one free mobility partition and one trapped mo-
bility partition with fixed capture and release times. It is the simplest trapping model,

and it is described by the equations [211]

ony ny oy

BN - + . (3.49)
3nt ng Tt

—_— = = — = 3.50
ot Te T (3.50)

where n; is the free distribution, n; is the trapped distribution, 7. is the capture time,
and 7, is the release time. Separate capture and release times are specified for each
type of carrier.
In the notation of mobility partitions, if n° represents free electrons and n' repres-
ents trapped electrons, then
8;:) = V((]Tf)(x,t) = —n—o + n—l (3.51)

due to partition 1 Tc Tr

3.3.2 Simple trapping with trap filling

The simple trapping with trap filling model introduces a blocking term to describe
the filling up of trap states. The simple trapping model is modified by introducing a
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“blocking factor” proportional to the number of unoccupied trap states that remain
[185]

anf nyg Nt — N¢ Tt
_ _ns m 3.52
at Te < Nt t Tr ( )
ony _ ﬂ Ni —ny _ Ny (3 53)
ot Te N; 7. '

where NV; is the number of available trap states, ny is the free distribution, n; is the
trapped distribution, 7. is the capture time, and 7, is the release time. Separate
parameters (N, Tc, 7,) are again specified for each type of carrier.

Expressed as transition rates between mobility partitions,

0 " 0 /N, —pnl 1
o () = - (t”>+”. (3.54)

due to partition 1

3.3.3 Multiple trapping

As described in Section 2.5.4, the multiple trapping model [212-215] considers traps
to be distributed in energy space. The trapped distribution is n¢(z, ¢, €) where € is the
energy below the conduction band. Then, the trapping and de-trapping terms in the

continuity equation are:

0 _e/kpT
ong - _ / elmle) _g(Ony o (3.55)
ot oo T Te
ong(e) e/*8Tn(e)  gle)ny
ot = - + _— (3.56)

where kg is the Boltzmann constant, T' is temperature, 7, is a release time, 7. is a
capture time, and g(e) is the density of trap states. Usually, to model typical dispersive
transport [77] we use an exponential density of states,

6€/€trap

g(e) = : (3.57)

€trap

where €rqp is an energy scale representing the width of the distribution.

The numerical implementation requires that this system be discretised in energy
space, each discrete energetic level forming one number density partition. Firstly, it is
necessary to truncate the infinite space to a depth €, at which the density of states
g(e) is sufficiently small. Next, energy space is discretised into the linearly spaced
values {€1, €2, -+ ,en} separated by a width Ae, resulting in the transition rates

€i/ksT . j Ny O
eci n Ae_g(ej)n A

Ly = €, (358)

Ty Tc

where n is the number density of free carriers, and n/ (j > 1) is the number density of

trapped carriers at energy depth €;. The numerical discretisation width Ae is chosen
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Figure 3.2: Spatial discretisation scheme in the case of six cells. Number densities (n)

are defined at cell midpoints, whereas the electric field (E) and current (j) are defined
at cell boundaries.

to be sufficiently small that the simulation output is independent of it, i.e. the result

does not change as Aec is reduced.

3.4 Numerical Implementation of Model

3.4.1 Spatial discretisation

Spatial discretisation is done using a finite volume method [216], as shown in Figure 3.2.
Number densities are defined at cell midpoints, whereas fluxes and related quantities
are defined at cell boundaries. The finite volume method was selected because it exactly
preserves the conservation of mass [216]. Additionally, the boundary conditions can be
easily specified in terms of current densities, which as discussed previously are often
physically relevant.

Using the finite volume method, continuity equations are written for each cell.
These take the form of ordinary differential equations rather than partial differential
equations:

dni _ ji — jit1

dt = 7AZL‘ + gi — Ti, (359)

where n; is the number density in the i*® cell, j; is the current density between cells

n;—1 and n;, g; is the generation rate and r; is the recombination rate or loss rate. The
generation and loss terms also include effects such as trapping and release.

Electric fields are defined at cell boundaries, rather than cell midpoints, because the
finite volume method requires the current densities to be specified at the boundaries.
We use a first order upwind scheme [216], where the advective contribution to the
current is calculated from the number density of the neighbouring “upstream” cell.
The “upstream” cell is the one that charge carriers are leaving, as determined by
the direction of the electric field. The advantage of defining the electric field at the
boundary is that it makes it easy to identify the “upstream” cell in regions where the

electric field changes sign.

3.4.2 Time integration

Spatial discretisation results in a large system of ordinary differential equations (ODEs)
of the form

oy
M = f(y.0), (3.60)
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where M is a constant matrix and f(y,t) is a function of the state vector

y=1| p'(x0) |: (3.61)

where U is the voltage across the sample. We have written y for the case of a single
mobility partition. If multiple mobility partitions are present, they are inserted into
the state vector underneath n” and p°. The Poisson equation and the electric field are
not part of the ODE state y; they are simply evaluated at every time step, i.e. they
form part of the right-hand-side function f(y,t).

The system of equations (3.60) is numerically solved by using the ODE solvers
built into MATLAB. The implicit scheme odel5s generally achieved the highest per-
formance. This solver operates by numerically approximating the Jacobian matrix,
i.e. all possible partial derivatives 0f(y;)/0y; in the ODE system given by Eq. (3.60).
For some problems, the solver would occasionally “stall,” and continuously recalculate
the Jacobian with very tiny step sizes. The cost of recalculating the Jacobian is pro-
portional to the square of the number of ODEs, and therefore this operation is costly.
Consequently, the following optimisation was implemented.

The solver’s speed is continuously monitored. We define the speed as the amount
of ODE time advanced in a given window of real time, i.e. simulated time per second.
If the solver’s speed drops below a critical threshold, and certain other heuristics are
met, then the program temporarily switches away from the ode15s solver and onto one
of the explicit solvers. Explicit solvers do not require the use of a Jacobian matrix.
Once the explicit solver has advanced the problem past the troublesome point, use of
odel5s is resumed. This approach of dynamically switching ODE solvers has turned
out to be tremendously useful in reliably achieving high performance simulations.

To implement solver switching, it was necessary to modify the Application Pro-
gramming Interface (API) of the ODE solver. Consequently, custom implementations
of odelbs, ode23, and ode23s were produced. Additionally, the Jacobian finder—which
uses finite differences to numerically approximate the matrix—was reimplemented as

a parallel algorithm.
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3.5 Conclusion

This chapter introduced a model for charge transport in disordered semiconductors.
Physical effects including advection, diffusion, space charge, recombination, and trap-
ping were introduced and a system of equations was developed. Finally, the numerical
implementation of this system of equations was described. The following four chapters

go on to apply the numerical solver that was described here.
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Charge Extraction by Linearly
Increasing Voltage (CELIV)

This chapter contains material that has been published in the following journal article:

[5] Bronson Philippa, Chellappan Vijila, Ronald D. White, Prashant Sonar, Paul L.
Burn, Paul Meredith, and Almantas Pivrikas. Time-independent charge carrier mobil-
ity in a model polymer:fullerene organic solar cell. Organic Electronics, 16, 205 (2015).
doi:10.1016 /j.orgel.2014.10.047.

This chapter includes experimental data that was measured by Chellappan Vijila.
The experimental method is summarised here, and full details are found in the cited
publications. The analysis of the data was performed by me. All other work described

in this chapter is my own.

4.1 Introduction

As discussed in Chapter 2, photo-CELIV is an attractive tool to study charge transport
because it uses a diode geometry that is representative of the architectures used in
organic solar cells. However, a key weakness of photo-CELIV is that the experimental
settings such as the light intensity, applied voltage, or delay time can affect the shape
of the transient and thus the apparent mobility. Variations in the delay time have
previously been used as evidence of a time-dependent mobility [137,138]. However,

changing the delay time will change the charge carrier concentration and therefore the
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shape of the transient may change [133]. It remains unclear whether the apparent time-
dependent mobility that has been observed is a genuine effect or whether the photo-
CELIV technique has been misleading due to transport and recombination during the
delay time.

Dispersive transport and in particular charge trapping can also affect the analysis
of the photo-CELIV experiment. It has been reported that the CELIV mobility in
the presence of traps is only accurate to within one or two orders of magnitude [144].
Dispersive transport, where the photocurrent reduces with time even before charge
extraction, is commonly observed in organic semiconductors with time-of-flight exper-
iments [75,217-219]. However, it is not clear how to interpret dispersive photo-CELIV
transients, nor is the impact of dispersion on charge carrier extraction necessarily un-
derstood.

This chapter will address these questions through a combined theoretical and
experimental study. We will apply the numeric simulation software that was de-
scribed in the previous chapter. We explore the impact of the time delay as well
as the role of traps and dispersive transport on the analysis of photo-CELIV experi-
ments and the extraction of the charge mobility. Our study is based on the organic
solar cell blend poly[3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c|pyrrole-
1,4-dione-alt-naphthalene| (PDPP-TNT) and [6,6] phenyl-C71-butyric-acid-methyl-ester
(PC70BM) [220]. Optimised solar cells made made from this blend exhibit power con-
version efficiencies in the range of ~ 5% [221]. We will show that the photo-CELIV

technique is potentially misleading and demonstrate how to avoid these issues.

4.1.1  Summary of solar cell fabrication and experimental methods

Solar cell fabrication followed a previously described procedure [7]. PDPP-TNT (33
wt. %) and PC7T0BM (American Dye Source, 67 wt. %) were dissolved at a total
concentration of 15 mg/mL in a mixture of chloroform and o-dichlorobenzene (4:1 by
volume), then spin coated onto a cleaned ITO-patterned glass substrate. Next, the
sample was heated on a hot plate at 60 °C for 10 minutes to drive off excess solvent.
The device was finished with a 100 nm thick aluminium electrode that was deposited
by thermal evaporation under a pressure of 107° mbar. The thickness of the active
layer was 170 nm as measured with a KLA-Tencor P10 surface profiler. The active
area of the device was 0.04 cm?.

Photo-CELIV measurements were conducted with a pulsed Nd:YAG laser pumped
OPO (Ekspla). The pulse width was < 4 ns, and the repetition rate was 1 Hz. The
sample was excited through the ITO side of the device at a wavelength of 740 nm and
an intensity of ~ 0.06 mJ/ cm?. Neutral optical density filters were used to attenuate
the light for the intensity dependent measurements. The temperature of the device
was controlled with a closed cycle helium cryostat. We reported on the temperature
dependences of these devices in a previous publication [7]. All the measurements

reported here were obtained at 120 K, because the reduced temperature enhances the
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Figure 4.1: Photo-CELIV transients experimentally recorded at various light intensit-
ies. The current maxima (which are marked with symbols) only display a small shift as
the light intensity is increased. This is in contrast with the simulation results shown in
the inset, where the maximum position shifts to extremely short times. Note that the
legend refers to the experimental data only. The simulation results neglect the delay
time, as is common in numerical and analytic treatments of CELIV. The clear qualit-
ative differences between the experimental and numerically calculated transients raise
the question of whether the shift in ¢, originates from the photophysics of charge
transport or whether it is an artefact of the photo-CELIV technique. This difference
is important and must be accounted for when calculating the carrier mobility using
the photo-CELIV technique.

dispersive effects that we aimed to study. The locations of the maxima were obtained
from the noisy data by smoothing the transients with an adjacent averaging filter.

Simulations were performed using the software described in the previous chapter.
We assumed a Langevin bimolecular recombination rate, in accordance with our previ-
ous study of these devices [7]. We assumed a carrier mobility ratio of fiaster fslower = 50,
although the results are insensitive to this ratio because the faster carrier mobility dom-
inates in the case of Langevin recombination. Since the devices are thin (170 nm active
layer), we applied volume photogeneration (i.e. a homogeneous initial photocarrier dis-
tribution). Additionally, we assumed that the built-in field is perfectly compensated
by the applied constant offset voltage of 0.5 V during the delay time.

4.2 Effect of the delay time and laser intensity

Two related factors that can affect the photo-CELIV transient are the laser pulse
intensity and the delay time. Both parameters influence the concentration of charge
carriers during the CELIV extraction. The light intensity controls the quantity of
photogenerated charges, whereas the delay time controls how many of these recombine
before initiation of the CELIV triangular voltage pulse. Carrier mobility has been
shown to depend upon concentration [169], so the photo-CELIV response is likely to

change as the light intensity and/or delay time are varied. However, a more insidious

Chapter 4. Charge Extraction by Linearly Increasing Voltage (CELIV) 50



Philippa, Bronson Charge Transport in Organic Solar Cells

problem is that the shape of the photo-CELIV transient varies with concentration even
if the mobility is constant [133].

Experimentally measured photo-CELIV transients at varying light intensities are
shown in Figure 4.1 and the corresponding simulated transients are shown in the in-
set. The extraction maxima (tmax) are marked by the symbols, and it can be seen that
there is a qualitative difference between the experiment and the simulation. Numerical
simulations and analytic results both predict that the time of the extraction maximum
tmax should become smaller as the light intensity (or the height of the extraction peak)
increases [100,131-133]. Our simulations demonstrate this effect in the inset, where
the maxima move into the far top-left corner of the plot. In contrast, the experimental
results in Figure 4.1 show that ¢,y decreases (shifts to the left) only slightly before
saturation is reached. One reason for the difference between the simulations and ex-
periment is that the simulations neglect the delay time between photo-generation and
the initiation of the ramp voltage. We note that the delay time is commonly neglected
in theoretical treatments of photo-CELIV [100,132,133], presumably because increas-
ing the delay time acts to reduce the concentration, which is equivalent to varying the
light intensity in simple models.

The delay time is typically used in the experiment to prevent the extraction transi-
ent from being obscured by the voltage oscillations that are caused by the laser excita-
tion. These oscillations are visible in Figure 4.1. Crucially, the system is not “frozen”
during the delay period, that is, photo-generated charges will diffuse and recombine,
and the subsequent loss of carrier concentration will affect the extraction transient.
Consequently, changing the delay time should lead to a change in the maxima, and
indeed this effect was observed, as shown in Figure 4.2. The locations of the maxima
were found to shift by a factor of approximately two over the range of delay times that
were measured, despite an unchanging light intensity. This would correspond to a
change in mobility by a factor of approximately four if the basic dark-CELIV equation
p = 2d?/3At2 . was used [128], where d is the device thickness and A is the rate of
change of the triangular voltage.

To determine the origin of the delay dependence of t,,x observed in Figure 4.2,
we simulated #yax as a function of #4elay, as shown in Figure 4.3. If the delay time
is set to zero (as in Figure 4.3a and the inset of Fig. 4.1), the position of ¢,y shifts
to the left of the dark-CELIV predicted position, with the largest shift at the highest
light intensities. When experimentally relevant delay times are included (as in Figures
4.3b and 4.3c), the shift of ¢y,ax is reduced particularly at higher light intensities, and
the simulations more closely resemble the experimental results. Thus when comparing
photo-CELIV transients it is important to ensure that there are identical delay times
and excitation intensities used if a valid comparison of trends is to be made.

From Figure 4.3 it can be predicted that the shift in ¢,,x will be most prominent at
high light intensities and short delay times. This can be understood by considering the
bimolecular recombination that occurs during the delay time. At high light intensities,

the bimolecular recombination is very rapid, so a small change in the delay time results
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Figure 4.2: Measured photo-CELIV transients with varying laser delay times and a
light intensity of 0.06 mJ/ cm?. The maxima, which are marked by the symbols, move
to the right with increasing delay time. This could be interpreted as a time-dependent
mobility, although we will show in Figure 4.7 that this shift actually originates from
charge recombination during the delay time.

in a large change in the surviving concentration (Figure 4.4a). Similarly, at long delay
times, the bimolecular recombination has had sufficient time to eliminate the differ-
ences between light intensities, especially when the initial concentration is high (Figure
4.4b). Overall, accurate mobility estimation requires that the carrier concentration be
approximately constant at the start of extraction, which can be achieved via low light

intensities and/or longer delay times.

4.3 Effect of traps on the transient shape

There are three general regimes for transport in organic semiconductors, which include
deep traps, shallow traps, and no traps. Previous reports have shown that localized
trap states influence the shape of CELIV transients, and hence the interpretation of
results and calculation of transport parameters [144,222]. The case of no traps has
already been examined in Figure 4.3. Next, we consider the case of long-lived traps
(deep traps), which we define as traps whose average release time exceeds the transit
time of carriers. (The transit time in a CELIV experiment is ¢, = d\/m, where
d is the film thickness, p is the mobility, and A is the slope of the triangle voltage.)
In the presence of these long-lived traps, charges may remain within the film after the
transient has concluded. If the traps are sufficiently deep, then trapped carriers may
still be present when the next laser shot is fired. We call this effect “film charging”,
because the extracted charges leave behind uncompensated trapped charges. Although

such trapped charges do not contribute to the current, they do disturb the electric
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Figure 4.3: Simulated photo-CELIV transients at varying light intensities and at three
different laser delay times, showing the impact of the delay time. The light intensity
is represented as the photogenerated charge (Qpn) normalised to the charge on the
electrodes at the end of the voltage ramp (CU). The vertical dotted lines indicate
d\/2/3u1A, which is the location of the maximum according to the low concentration
dark-CELIV theory [128]. (a) When the delay time is neglected, the location of tmax
(as marked by the symbols) is predicted to shift very strongly with increasing light
intensity. (b, ¢) In contrast, introducing a small delay time greatly reduces the shift
in the maxima, which is in agreement with experimental transients such as those
shown in Figure 4.1. These data demonstrate that correct estimations of the carrier
mobility require that the technique-induced shift in ¢,,,x be avoided, by using low light
intensities or increasing the delay time.

field and also provide recombination targets for untrapped carriers, thus influencing
the shape of the transient.

To investigate these effects, we simulated the scenario of a perfectly unipolar con-
ductor. We set the slower carrier mobility to zero to represent strongest possible trap-
ping of one type of carrier. We used a delay time of zero to more clearly demonstrate
the impact of the traps. Next, we populated the traps by simulating ten photo-CELIV
experiments in sequence, with the trapped carriers remaining in the film between ex-
periments. This is similar to how measurements are conducted with a repetitive pulsed
laser. We applied bimolecular recombination with the Langevin coefficient adjusted
to have one mobility set to zero. This ensured that trapped carriers were able to
recombine with mobile carriers. After the traps were populated, we simulated the
experiment at varying light intensities, as is shown in Figure 4.5.

The results in Figure 4.5 demonstrate that deep traps reduce the shift in ¢y, that
would otherwise occur at high light intensities. The underlying mechanism explain-
ing this behaviour is that a larger voltage is required to overcome the space charge
created by the trapped carriers. This space charge opposes extraction, resulting in
the temporarily negative currents at the very beginning of the transient. Note that

these simulations neglected the RC rise time of the measurement circuit. In practice,
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Figure 4.4: The amount of charge remaining in the device after the delay time, cal-
culated from the solution of the bimolecular recombination equation dn/dt = —Brn?,
where n is the carrier concentration and S, is the Langevin recombination coefficient.
Light intensity is shown in units of photogenerated charge (Qpn) per CU, where CU
is the charge on the electrodes at the end of the CELIV triangle voltage. (a) and (b)
show two different presentations of the same data.
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Figure 4.5: Simulated photo-CELIV transients in the case of a unipolar conductor
with trap sites pre-populated by immobile carriers whose release time from traps is
much longer that the transit time of mobile carriers. The vertical dotted lines indicate
d\/2/3uA, which is the location of the maximum according to the low concentration
dark-CELIV theory [128]. The electric field due to the trapped charges opposes the
extraction of the photogenerated charges, eliminating the strong shift in ¢y, that
occurs without traps (Figure 4.3a). Consequently, the technique-induced shift in #yax
is not so significant if long-lived traps are present. These simulations neglected RC
effects, and there was no delay time applied.

the very early transients arising due to any trapped charge are not likely to be visible
because of the RC' rise time and/or the voltage oscillations coincident with the laser
pulse.

The trend in Figure 4.5 is reminiscent of that in Figure 4.3b,c in which a time
was introduced. This might explain why some systems display a trend of shifting ¢,.x
while others do not. Devices with sufficient quantities of deep traps will show only a
minimal change with light intensity. Thus it is important to quantify the trapping and
charging inside a film, which can be done using methods such as resistance dependent
photovoltage (RPV) [3]. RPV is described in the following chapter.

The final regime to be examined is that of shallow traps that lead to dispersive
transport. While the signature of dispersive transport is often observed in time-of-flight
experiments [77] it is less clear how dispersive transport will influence photo-CELIV
transients. To address this question, we applied a multiple trapping and release model
with an exponential density of shallow localised states [212-214]. This model extends
the drift-diffusion equations by including repeated trapping and de-trapping of carriers
as they transit through the film. Its advantage is that the dispersive results can be
directly compared with the non-dispersive results because both are implemented in
the same way. Dispersion arises because of the statistical distribution of trap release
times. The severity of the dispersion is controlled by the average depth of the traps,

which is quantified by an energy level Eiap/kT, where k is the Boltzmann constant
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Figure 4.6: A non-dispersive to dispersive transition in simulated photo-CELIV tran-
sients. Increasing the dispersion broadens the pulse and slightly increases tax. The
inset shows surface generation time-of-flight for the same trap settings, to give a visual
indication of how dispersive each setting is. This graph demonstrates that temperature-
dependent studies will need to account for the dispersion effect because the shift in
tmax With increasing dispersion will hinder estimations of the activation energy.

and T is the temperature. The full list of equations used in the model were given in
the previous chapter.

Figure 4.6 shows simulated dispersive photo-CELIV transients. The carrier transit
time was kept constant, as is shown by the surface-generation time-of-flight transients
in the inset. Dispersion broadens the transient while also shifting the position of the
maximum to the right. This shift is due to the distribution of mobilities that results
from the dispersion. We note that a similar shift has been reported as a function
of trap density [144]. The most characteristic feature of the dispersive transients is
that the current does not reduce to the capacitive charging current jo before the end
of the pulse. Experimental transients (such as Figure 4.1) often demonstrate this ef-
fect [75,138]. The shift of the maximum with increasing dispersion will complicate
temperature-dependent studies. For example, if the amount of dispersion depends
upon temperature — as is predicted by multiple trapping models — then decreasing
temperature will artificially shift the extraction peak to the right, as shown in Fig-
ure 4.6. This will hinder studies of temperature-dependent mobilities and activation

energies, and so other techniques should be used for these measurements.
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4.4 Time-dependent photocarrier mobility

With the effects of time delay, light intensity and traps now understood, the question
remains as to how to analyse the photo-CELIV data for the PDPP-TNT:PC70BM
blend. The measurements plotted in Figure 4.1 and Figure 4.2 show that ¢,,,x moves to
shorter times with increasing laser power or decreasing delay time. We can reasonably
assume that the impact of deep traps is minimal because the solar cells are of high
efficiency, and the transients more closely resemble the shallow trapping case (Figure
4.6) rather than the deep trapping case (Figure 4.5). Since the temperature is constant,
the amount of dispersion will remain constant, and so we assume that shallow traps
are unlikely to contribute a time dependence. To justify this assumption, we will
show that recombination during the delay time can entirely predict the observed ¢yax
shift, so it is not necessary to introduce other time dependencies (e.g. due to trapping
or relaxation). We ran simulations across the entire range of delay times that were
measured, and plotted the resulting f,,x values in Figure 4.7a. There is an excellent
agreement between the experimental and numerical data, from which we conclude
that the observed variation can be entirely explained by charge carrier recombination
during the delay time. Consequently, the measured trend of an increasing ta.x with
delay time is an artefact of the photo-CELIV measurement and is not caused by a
changing charge mobility within these devices.

Figure 4.7b compares mobilities calculated directly from #,,x with those obtained
from fits to simulations. The fitting procedure was to adjust the simulated mobil-
ity until the predicted tmax equalled the actual f,,x. The crucial difference between
the two approaches is that simulation includes recombination during the delay time,
whereas the simple mobility equation neglects this effect. We find that there is no
evidence of carrier relaxation on transport timescales, in agreement with our previous
studies of charge transport in different organic solar cell blends [3]. The resultant
average mobility was 2.3 x 107° e¢m?/Vs, which is similar to our previous report of
5 x 107° ¢cm?/Vs at this temperature (120 K) [7].

4.5 Conclusion

Variations in light intensity and delay time can cause substantial shifts in the position
of the CELIV tna, resulting in apparent changes in mobility. Since the shape of the
CELIV transient is sensitive to the concentration of carriers [133], we propose that the
shift is caused by recombination during the delay time. In the organic photovoltaic
blend studied in this work, we demonstrate that the photocarrier mobility is constant
on the time scale of charge extraction, despite a large change in tp.x. This suggests
that photocarrier relaxation effects are insignificant, with any excess energy being lost
on much shorter time scales. In addition, we studied the impact of shallow traps
(causing dispersive transport), and determined that changing amounts of dispersion

— as are very likely to occur with changing temperature — will artificially shift the
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Figure 4.7: (a) Delay time dependence in the photo-CELIV extraction maximum
(tmax). The error bars indicate the time taken for the transients to change by
0.05 mA/cm?. (b) Carrier mobilities calculated directly from #x (red circles), versus
mobilities obtained by fitting simulations to tmax (black squares). The shift in ¢yax
with delay time (panel a) results in an apparent time-dependent mobility, but this
time dependence is an artefact of the measurement technique, and it disappears when
recombination during the delay time is properly accounted for (panel b).

position of the CELIV maximum, complicating temperature-dependent studies. In
conclusion, photophysical parameters measured from photo-CELIV, and their trends
when external parameters are changed, should be estimated with the help of numerical

predictions and simulations.
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This chapter contains material that has been published in the following journal article:

[3] Bronson Philippa, Martin Stolterfoht, Paul L Burn, Gytis Juska, Paul Meredith,
Ronald D White, and Almantas Pivrikas. The impact of hot charge carrier mobility
on photocurrent losses in polymer-based solar cells. Scientific Reports, 4, 5695 (2014).
doi:10.1038 /srep05695.

The solar cells studied in this chapter were fabricated by Martin Stolterfoht. Unless
otherwise specified, experimental measurements were conducted by Martin Stolterfoht
and Almantas Pivrikas. The analysis of the data was performed by me. All other work

described in this chapter is my own.

5.7 Introduction

The previous chapter reported a study of charge carrier mobility and thermalization us-
ing the photogenerated charge extraction by linearly increasing voltage (photo-CELIV)
technique. As was discussed in that chapter, the photo-CELIV technique suffers from
various limitations, most notably that numerical simulations are required for accurate
interpretation because of the influence of non-uniform photogeneration [133], charge
trapping [144], and a non-uniform electric field [145].

Other measurement techniques also have issues. For instance, the current-voltage
methodology is strongly influenced by trapping [119,120], while time-of-flight usually

requires films that are much thicker than typical high-efficiency operational devices [82,
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223]. These issues inspired the development of the Resistance-dependent PhotoVoltage
(RPV) technique that is presented here.

In this chapter, we develop and apply the RPV technique to address the origin of
dispersive transport and the impact of above-bandgap photon energy on the charge
extraction process. Above-bandgap photons create “hot” excitons, the impact of which
on charge generation has been extensively studied [58,224,225]. However, this level of
attention has not extended to studies of the extraction of hot charge carriers, despite
the fact that efficient charge extraction is crucial for device performance [226].

It is important to understand the origin of dispersive transport because it harms
device performance by lowering the average photocarrier mobility [227]. Consequently,
the vast majority of novel organic semiconductors remain inapplicable for efficient
devices. Moreover, the detrimental effects of dispersion are exacerbated by the in-
homogeneities in film thicknesses caused by the targeted low cost deposition method-
ologies, because the transit time distributions become dramatically longer and more
dispersed in regions of increased thickness.

Dispersive transport in organic semiconductors is usually thought to be caused
by the energetic relaxation of hot charge carriers within their density of states [76].
Spectroscopic measurements and Monte Carlo simulations have revealed energetic re-
laxation extending even to the microsecond timescales, where it could be relevant to
bulk charge transport [228,229]. Even if the bulk of the energetic relaxation were to
occur on very fast timescales, there is still the question of whether residual thermal-
ization might continue to long, microsecond timescales. This energetic relaxation is
often understood to cause a time-dependent mobility and therefore explain dispersive
current transients [217,230], yet we will show in this chapter that this commonly-used
model is inconsistent with our observations in high efficiency organic solar cell ma-
terials. Instead, there is an alternative mechanism for the creation of a distribution
of carrier velocities, namely, via trapping. This observation has a very direct im-
pact on the numerous models, theories and experimental results describing dispersive
charge transport in disordered organic semiconductors. Furthermore, it points to a
new strategy for improving charge transport “management” in devices such as organic
solar cells.

The classic signature of dispersive transport is a time-of-flight photocurrent signal
that decays with time even before the carriers have transited through the film [77].
This decay in photocurrent can occur due to two mechanisms, a reduction in carrier
mobility, and/or a reduction in the number (or concentration) of moving carriers.
The former, a time-dependent hot carrier mobility, is presently commonly believed
to be the cause of dispersion in organic semiconductors [76,217,230] and it is usually
understood to originate from a loss of energy as carriers thermalize within their density
of states [231-233]. Higher energy carriers are expected to have a higher hopping
probability, and hence a higher velocity [151,169,234], so the thermalization within the
density of states causes the carrier mobility to decline. Recent studies have reported

mobility thermalization times on the order of microseconds [228,229]. However, an

Chapter 5. Resistance-dependent PhotoVoltage (RPV) 60



Philippa, Bronson Charge Transport in Organic Solar Cells

alternative explanation for the decaying transient photocurrent, which is less commonly
accepted in organic semiconductors, is a time dependent concentration that can arise
if carriers are gradually lost to traps [141,212,213]. The photocurrent signal will
continue to reduce as long as the net concentration of moving carriers continues to
decrease. If that physical process prevails, there can be decaying photocurrent despite
the moving carriers having a constant drift velocity. Additionally, if the cause of
dispersion is trapping, then it will influence all devices, even those which operate in
the dark [73,235].

In this chapter, we demonstrate that a time-dependent hot carrier mobility cannot
explain the dispersive transport in our studied bulk heterojunction solar cells. We
address this issue by performing transient photoconductivity experiments in which
we vary the transit time by changing the electric field and/or device thickness. The
expectation is that if the dominant cause of dispersive transport is mobility relaxation,
then the average mobility and the amount of dispersion should vary with the electric
field and/or film thickness, because longer transit times will allow for more relaxation
to occur. Conversely, if the dominant effect is trapping, then it is the concentration
of carriers which is changing in time rather than their mobility, and consequently,
the average mobility and the dispersion range should not vary with film thickness or
electric field. This transit time dependence allows these two dispersive mechanisms to

be experimentally distinguished.

5.2 Experimental Design

Our experiments were made possible by the development of a new transient photo-
conductivity technique that we call Resistance dependent PhotoVoltage (RPV). The
experimental measurement circuit for RPV is shown in Figure 5.1. This setup is sim-
ilar to time-of-flight, where charge carriers are photogenerated by a short low-intensity
laser pulse. A low light intensity is necessary so that the electric field inside the device
is undisturbed. The transient photosignal is determined by the competition between
two simultaneous processes: the transport of charge carriers inside the film, and the
response of the external RC' circuit. Unique to the RPV approach, and in contrast
with time-of-flight, the entire measurement is repeated at many different load resist-
ances spanning the range from differential mode (small R) to integral mode (large
R). The resistance is varied for two reasons: firstly, to visualize the transit times,
as will be shown below; and secondly, to reveal the slower carrier mobility by amp-
lifying the slower carrier’s conduction current. The slower carriers produce a much
smaller current than the faster carriers, and their transit would be buried in the noise
at resistances that are optimized for the faster carriers. Slower carriers have much
longer transit times, allowing the use of larger resistances, and consequently allowing
for their weaker electrical signal to be amplified. In this way, RPV bridges the gap
between differential mode and integral mode time-of-flight, and allows measurement

of the transport of both types of charge carriers.
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Figure 5.1: Experimental setup for Resistance dependent PhotoVoltage (RPV). A low
light intensity nanosecond laser pulse is used to photogenerate charge carriers inside
the semiconductor junction of an organic solar cell. Low light intensity is critical in the
RPV experiment to ensure operation within the “small charge extraction mode” where
the internal electric field distribution in the film is not altered by transported charges.
After photogeneration, the charge carrier transport through the film is driven by the
built-in or the applied external electric field, and the resulting transient photosignal is
recorded by an oscilloscope. The transient photosignals are measured at various load
resistances Rjgad-

The combination of the RC circuit dynamics, dispersive transport, and optical in-
terference effects prevent analytic analysis of the transients. To study highly dispersive
systems, such as organic solar cells, the simultaneous impact of all these effects must
be understood. We applied numerical simulations to develop this understanding, using

the simulation software that was described in Chapter 3.

5.2.1 Ideal case

Figure 5.2 shows typical transients for the ideal case of no trapping and no dispersion,
where the voltage across the load resistance is plotted as a function of time. We use the
notation that V is the voltage on the load resistor and U is the effective voltage across
the semiconductor (which is the sum of the built-in voltage and the applied voltage).
The results are shown in normalised units, with the load resistance R expressed as
RC [ty (faster), Where C'is the device capacitance and ty,(gster) 18 the transit time of the

?

faster carriers. The transients show two distinct extraction “shoulders,” as indicated
by the arrows. The positions of these arrows correspond to the exact transit times
required for the faster and slower carriers to cross the entire thickness of the film. In

Figure 5.2, carriers were generated uniformly throughout the film, so there is a spread
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Figure 5.2: Simulated non-dispersive RPV transients demonstrating how the gradually
increasing resistance assists in revealing the two transit times. The arrows indicate the
exact transit times.

of arrival times as different carriers travel different distances. Gradually increasing the
load resistance assists in revealing these arrival times by lengthening the time scale
of the measurement to incorporate those carriers that have to travel further. With a
large enough resistance, the peak location saturates, indicating complete extraction of
the corresponding type of carrier. In this way, the final saturated peak location reveals
the transit time of those carriers that transited the entire film. Saturation of the peak
voltage is thus an important indicator of complete carrier extraction, and failure to
observe this saturation could result in an underestimation of the transit time. The
mobility is then calculated from the transit time using the equation t;, = d?u~1U~1,
where d is the film thickness, p is the mobility, and U is the sum of the built-in voltage
and the applied voltage. Experimentally, the amount of photogenerated charge (Qpp)
needs to be kept small, such that @),;, < CU, in order to avoid the space charge effects
that would redistribute the electric field and disturb the transit time. This condition
is easily checked experimentally by confirming that the maximum photovoltage is at

least 10 times smaller than U.

5.2.2 Optical interference

While Figure 5.2 was calculated using the simplified case of uniform volume generation,
the extension to non-uniform photogeneration does not affect the technique. The case
of Beer-Lambert absorption is shown in Figure 5.3. The heights of the peaks vary, but
their positions are mostly undisturbed. Since the transit times are obtained from the
positions of the peaks, the RPV technique is a robust tool for measurement of carrier
mobilities.

The Beer-Lambert case is an idealisation that neglects optical cavity effects [29].
Real photogeneration profiles are considerably more complex. Figure 5.4 (a) shows
typical absorption profiles at varying wavelengths of light for one of the solar cells

studied in the Results (Section 5.3) below. These profiles were calculated using the
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Figure 5.3: The robustness of the RPV technique against varying photogeneration
profiles. Shown here are simulated transients at large resistances. Photogeneration
profiles follow the Beer-Lambert law, i.e. the initial distribution of charges is propor-
tional to e~**, where « is the absorption coefficient and x is distance into the film.
For thin films (ad < 3), the heights of the peaks vary but their locations do not,
demonstrating the robustness of the RPV technique.

T cross the device

—_

T T :_('b)'
(a) Structure: Air / Glass / ITO(80nm) / [

Faster carriers [T T TTTg

=
S

I PEDOT:PSS(20nm) / PCDTBT:PCBM (1:4 ratio, 9 [ —¥— A =650 nm

= 75nm) / Al(100nm > I

E )/ A ) o 0.8f —A— =532 nm

o - 5 B

8 § 0.6 [ #—2.=405m Slower carriers
c 0.bf cross the device

-..i—: % F —@— ) =355nm —>

<] ‘0 L —O— 1 =355nm

o [ 5

c c 0.4 RC# .. =10 —8— 1 =405nm

2 355 nm light S b tr(faster) ~ 106

<3 405 nm light o F Hiaster " Mstower = — A% -532nm

2 ) & 0.2 Low light intensity

2? 532 nm light g (Qph << CUBI) —— A =650 nm

650 nm light
A T S B S 3 ) 3 0 ] B
0 15 30 45 60 75 10 10 1 10 10

. 0
Time, t/ t"(

Position in film (nm) faster)

Figure 5.4: The robustness of the RPV technique to optical interference. (a) Light
absorption profiles calculated for the organic solar cell structure written at the top of
the plot. Material abbreviations are defined in the Results section below. (b) RPV
transients for each light absorption profile, for both polarities of applied voltage. In all
cases, both transit time shoulders are visible, demonstrating that the RPV technique
can be applied to thin film operational devices without concern for optical interference.

transfer matrix method [208]. The corresponding simulated RPV transients are shown
in Figure 5.4 (b).
wavelength of light or the applied voltage polarity. We consider that the RPV technique

The transit time shoulders are clearly visible, independent of the

is insensitive to light interference effects, and can be applied to operational devices with

or without optical cavities.

5.2.3 Charge trapping and dispersion

Typical simulated transients for an organic solar cell with dispersive transport are
shown in Figure 5.5. The positions of these arrows correspond to the mean transit

times required for the faster and slower carriers to cross the entire thickness of the film.
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Figure 5.5: Simulated RPV transients in the case of dispersive transport caused by
shallow traps. The extraction “shoulders” approximately correspond to the mean
carrier mobility, allowing a good estimation of carrier mobility even in the presence of
strong dispersion.
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Figure 5.6: Simulated RPV transients in the case of film charging caused by deep traps.
The magnitude of the RPV transit is reduced in subsequent shots of the laser, but the
transit “shoulder” remains unhindered, which allows for reliable mobility estimation.

In this simulation, carriers are repeatedly trapped and de-trapped, creating dispersion
because the total time spent in traps is different for different carriers. The resulting
distribution of transit times is shown at the top of Figure 5.5, and its approximate
width is indicated by the shaded background. It can be seen that the RPV technique
allows the mean charge carrier mobility to be obtained even in the presence of strong
dispersion.

In addition to shallow traps that cause dispersion, we also considered deep traps
that immobilize carriers for times much longer than the transit time of either car-
rier. Long lived trapping is typical in disordered organic semiconductors [119, 141],
because many organic materials behave as unipolar conductors, and solar cells often

have strongly imbalanced mobilities [236]. In these cases, repeated photogeneration
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Figure 5.7: Current-voltage curves under AM1.5G illumination for the solar cells stud-
ied in this chapter.

adds more trapped charge in the form of the immobilized charge carriers, which might
accumulate with every repetitive laser shot, redistributing the electric field and dis-
torting the measurement. Figure 5.6 shows simulations of this film charging for the
case of fast Langevin-type recombination under repeated laser shots, as would arise
from the presence of deep trap states far inside the forbidden energy gap [118]. These
are large resistance transients, in other words, the measurement circuit has integrated
the photocurrent such that the peak voltage is proportional to the extracted charge.
If the extracted charge is decreasing and the extraction time remains constant, then
carriers must be lost to recombination and not due to field screening, and hence we
conclude that the trapped charges act as recombination sites for the mobile carriers.
However, the mobility of the charge carriers can be determined independently of the
trapping effects, because the rapid Langevin recombination prevents the build-up of

large amounts of trapped charge that would disturb the transit time.

5.3 Results

We chose to study the well-known photovoltaic blend [65] of poly[N-9”-hepta-decanyl-
2,7-carbazole-alt-5,5-(4",7’-di-2-thienyl-2’,1’,3’-benzothiadiazole)| (PCDTBT) and [6,6]-
phenyl-Crp-butyric acid methyl ester (PC70BM) in an optimized blend ratio of 1:4 by
weight [72]. This blend is ideally suited to this study because its amorphous nature al-
lows the elimination of any film thickness dependent morphology [237]. In order to see
the generality of observed effects, we have also done the same experiments on poly|[4,8-
bis[(2-ethylhexyl)oxy|benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl)-
carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7):PC70BM blends. The thin film (active
layer thickness of 75 nm) PCDTBT:PC70BM solar cell exhibited a power conversion
efficiency of 6.3% under standard AM1.5G illumination, while the PTB7:PC70BM
blends reached 7.7%. Current-voltage curves for both devices are shown in Figure 5.7.
None of the optimized PCDTBT or PTB7 based devices demonstrated any significant
film morphology inconsistencies in the range of studied film thickness. The presence of

dispersive transport was confirmed by time-of-flight experiments on thick films (Figure
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Figure 5.8: Dispersive time-of-flight transients measured in thick film devices of (a)
PCDTBT:PC70BM and (b) PTB7:PC70BM. The insets show the same data plotted
on logarithmic axes. Both devices show highly dispersive transients.
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Figure 5.9: Measured RPV transients for an optimised PCDTBT:PC70BM solar cell.
Mean electron (faster) and hole (slower) transit times are marked, from which the
respective mean mobilities are estimated. The dispersive nature of charge transport
in the studied solar cells is highlighted by shaded boxes that mark the range of carrier
arrival times. Thin curves show recorded data, while bold show show data smoothed
by adjacent averaging. The short timescales for large resistances were omitted for
clarity.
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5.8). As can be seen, there are no photocurrent plateaus. The transients decrease with
time as is typical of dispersive systems.

Figure 5.9 shows the recorded RPV transient signals for a PCDTBT:PC70BM solar
cell. All transients were recorded at near to short-circuit conditions. This remains true
even at large resistances, because the maximum photovoltage occurring during the
transient is substantially less than the built-in voltage. The first shoulder marks the

arrival time of faster carriers (27 ns), which is attributed to electron transport because
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Figure 5.10: RPV transients measured on a 75 nm PCDTBT:PC70BM solar cell using
two different laser wavelengths: 355 nm (3.49 €V) and 532 nm (2.33 eV). The nearly
identical transient responses directly demonstrate the absence of hot carrier effects in
this system.

its time scale is similar to that measured for PC70BM. The second shoulder is less well
defined due to the strongly dispersive nature of the hole transport in this system, but
marks the arrival of the slower carriers (2.59 ps). Mean electron and hole mobilities
were determined from the shoulders in the transients, as indicated by arrows in Figure
5.9, with the approximate spread of arrival times indicated by the shaded boxes (corres-
ponding to the regions where the transients deviate from the dotted lines). The edges
of these shaded boxes give the “fastest” and “slowest” case transit times, from which
we obtained the dispersion range in the mobilities for each species. This range is an
essential feature of the dispersive transport exhibited by this system, because a single
mobility value does not correctly quantify the transport when the system is dispersive.

-1

We measured the mean electron mobility to be 2.9x 1073 cm? V~!s~! with a dispersion

range from 1.1 x 1072 em? V71571 to 4.5 x 1072 em? V~!s~!, and the mean hole mo-
bility to be 3 x 107° cm? V! s~! with a dispersion range from 9.2 x 1076 cm? V=11
to 7.4 x 107° cm? V™1 s71. Despite the high level of dispersion observed here (the hole
dispersion range covers nearly an order of magnitude), the OPV device still maintains
good performance. However, further work is necessary to identify the impact of the
dispersion range on the performance of solar cells.

Next, we studied the impact of photon energy on the hot charge carrier transport,
because any relaxation effects are likely to be dependent upon the initial energy. This is
important because of recent suggestions that excess above-bandgap energy may assist
excitonic dissociation [58], although the methodology of that observation has been
challenged [62]. We note that quantum yields have been shown to be independent
of the energy level of the excited state, suggesting that hot excitons are indeed not
beneficial for exciton separation [59]. Nevertheless, hot charge carriers — rather than
excitons — might also possess excess energy and shape the internal quantum efficiency

spectra; therefore, it is important to clarify these effects, aiming for improvement
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in the charge extraction of typical low mobility organic materials. In the past the
absence of hot charge carrier effects has been observed indirectly [238]. Numerical
simulations predict that RPV is independent of optical interference effects (Figures
5.3 and 5.4), allowing direct and unambiguous measurement of any hot charge carrier
effects that may be present. RPV transients were measured at two different photon
energies, 3.49 eV (355 nm) and 2.33 €V (532 nm). The results are plotted in Figure
5.10, showing nearly identical transients resulting from laser excitation at the two
different wavelengths. The photon energy independent mobility suggests that excess
energy plays a minimal role in dispersive transport, since carrier thermalization (if it
is present) must happen in time scales much shorter than the transit time.

To further confirm that the dispersion in hot carrier mobilities is not caused by the
thermalization of carriers, we studied the electric field and film thickness dependence.
Longer transit times should allow more time for thermalization, thus influencing the
result if the dispersion is due to carrier relaxation. The results are shown in Figure
5.11. The mobilities and dispersion ranges are completely independent of electric field
and photon energy [Figure 5.11 (a)], suggesting that trapping mechanisms are more
significant than relaxation mechanisms. The lack of electric field dependence is in
contrast with the Poole-Frenkel dependence reported in pristine PCDTBT [239]. This
is an unexpected result, because in disordered organic systems significant electric field
dependence is typically observed, even at relatively low values of electric fields [239],
which is thought to originate from hopping-type charge transport. Further studies
of the temperature dependence, and measurements on other systems, have to be per-
formed in order to clarify the origin of this observation. Additionally, we observe that
the mean mobilities and dispersion ranges are nearly independent of the film thick-
ness [Figure 5.11 (b)]. We attribute the small changes in mobility to device-to-device
variations that result from the fabrication process. The thickness independence of the
mean mobilities and dispersion ranges further support the claim that the dispersion
is caused by traps instead of relaxation. A charge carrier density dependence in the
mobility even at low concentrations has been observed in P3HT:PCBM blends [73],
and we note that a concentration dependence might cause dispersion as carriers gradu-
ally become trapped and the density decreases. We do not exclude the possibility of a
density dependence here. However, in our measurements, increasing thickness corres-
ponds to lower densities because the amount of photogenerated charge was always less
than CU, which is inversely proportional to thickness. Consequently, the thickness
independence in the mobility implies that there is negligible density dependence at the
concentrations probed here.

Further measurements were also performed on solar cells made with PTB7 blends.
Typical transients are shown in Figure 5.12. Only a single transit time is visible, which
we attribute to the fact that charge transport is more balanced in PTB7 blends than in
PCDTBT blends. Nevertheless, the electric field and thickness dependencies show the
same conclusions as the PCDTBT blends: the mean mobility and dispersion ranges

are independent of both of these parameters (Figure 5.13). Consequently, the same
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Figure 5.11: Electron and hole mobilities measured in PCDTBT:PC70BM solar cells.
The error bars show the dispersion ranges. Carrier mobilities and dispersion ranges
are independent of electric field and photon energy [panel (a)], and nearly independent
of film thickness [panel (b)], demonstrating that carrier thermalization cannot account
for the dispersive transport in this system. Consequently, dispersion is caused by

trapping.
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Figure 5.12: RPV measurements conducted on PTB7:PC70BM solar cells. Only the
slower carrier transit time is visible, possibly because the transport in PTB7 blends is
more balanced than in PCDTBT blends.

arguments apply, and these results appear to be generally applicable and are certainly
not specific to PCDTBT blends.

5.4 Discussion

Charge transport in the studied operational OPV blends is strongly dispersive, as
demonstrated by the decaying time-of-flight photocurrent transients in thick devices
(Figure 5.8). These time-of-flight transients were recorded in a regime where drift
dominates over diffusion, so the current density is described by j = eE(nu, + ppp),
where e is the charge of an electron, u, and pu, are the electron and hole mobilities, n
and p are the carrier concentrations, and F is the electric field. The observation of a
decaying photocurrent density j can be explained by two mechanisms: thermalisation
(a time dependent mobility, 1), and/or trapping (a time dependent concentration of
moving charge carriers, n). These mechanisms are schematically illustrated in Figure
5.14, from which it can be seen that either model would result in dispersive photocur-
rent transients. We found no evidence of thermalisation-type effects on the timescales
comparable with those involved in charge transport. Figure 5.10 directly demonstrates
that that excess energy of hot carriers has essentially no contribution to mobility or
dispersion. In Figure 5.11, we demonstrate that the dispersion range is essentially
independent of the applied electric field and changes very little with thickness, over
the ranges that were tested. If thermalisation on transport time scales were the cause
of the dispersion, then modifications to the transit time should change the mean mo-

bility and/or dispersion range by varying the time available for relaxation. Such a
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Figure 5.13: Mobilities measured in PTB7:PC70BM solar cells, as a function of (a)
electric field and (b) film thickness. The mobilities are independent of electric field
and thickness, as observed above for the PCDTBT blends, suggesting that carrier
thermalisation is not the cause of the dispersion in this system.

variation was not observed, and hence we exclude thermalisation as the mechanism of
the dispersive transport. Any relaxation processes must be much faster than charge
transport, so that the distance covered by charges as they relax is insignificant com-
pared with the film thickness, and hence the relaxation has negligible contribution to
the overall dispersion.

With relaxation excluded, the only remaining mechanism is a reduction in the
concentration of moving carriers, therefore, we conclude that trapping is the primary
cause of the dispersion in these systems. This challenges the widely-used model of
hot carrier relaxation within the density of states. Consequently, dispersive transport
potentially impacts on the many different devices that employ films made from dis-
ordered semiconductors, including those that operate in the dark or at steady-state
conditions.

We cannot exclude the possibility that excess photon energy is not transferred to
the charge carrier at all, i.e. that it is dissipated earlier in the photogeneration pro-

cess. Nevertheless, the central conclusion that thermalisation effects are insignificant
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Figure 5.14: . Schematic illustration of the two pathways to dispersive transport. (a)
Thermalisation causes the mobility to decrease with time, whereas (b) trapping causes
the loss of carrier density. We have shown here that the latter case (trapping) is the
dominant effect in the studied solar cells.

is supported by the observation that the mobility is independent of the transit time
(Figure 5.11). Even if hot carriers are not formed by high energy photons, dispersive

transport must be caused by trapping rather than energetic relaxation.

5.5 Conclusion

Electron and hole mobilities and their dispersion ranges were measured simultaneously
using the RPV technique in a high efficiency narrow optical gap polymer/fullerene
system (PCDTBT:PC70BM). We found that the transport of electrons and holes are
both strongly dispersive in these thin, efficient solar cells. We introduced the dispersion
range as a parameter to quantify charge transport, since a single mobility value is
insufficient to properly characterize a dispersive material.

We directly observed the absence of “hot carrier” effects on time scales relevant
to charge extraction, and furthermore found that the dispersion is caused by trapping
rather than thermal relaxation. We have found that the widely-used model of hot
carrier relaxation within a density of states is not the dominant process causing the
dispersion in the studied solar cells. Furthermore, in contrast with the Poole-Frenkel
dependence previously reported in pristine PCDTBT and other disordered systems,
the studied solar cell blends exhibit an unexpected negligible electric field dependence.

While further work is needed to clarify this observation, electric field independence
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may assist in maintaining a good fill factor by keeping the mobility higher near the
maximum power point. The absence of hot carrier effects and an electric field in-
dependent mobility were also observed in PTB7:PC70BM solar cells, suggesting that
these conclusions may be more generally applicable.

This work signifies the importance of localized trap states as opposed to thermal-
ization and hot carrier effects in efficient polymer-based solar cells. Since dispersion
arises from trapping, it is also important for other types of devices, such as organic
field effect transistors and diodes. Trap states are relevant whether the carriers were
injected or photogenerated, and whether the device is in transient or equilibrium con-
ditions. Our results suggest that further scientific research should be directed towards
reducing the density of trap states rather that utilizing above-bandgap energy for im-

proving electronic device performance.
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This chapter contains material that has been published in the following journal article:

[2] Bronson Philippa, Martin Stolterfoht, Ronald D. White, Marrapan Velusamy,
Paul L. Burn, Paul Meredith, and Almantas Pivrikas. Molecular weight dependent
bimolecular recombination in organic solar cells. The Journal of Chemical Physics,
141, 054903 (2014). doi:10.1063/1.4891369.

The low molecular weight polymer studied here was fabricated by Marrapan Velusamy.

Solar cells were manufactured and measured by Martin Stolterfoht, Anton Bavdek, and
Almantas Pivrikas. The analysis of this data that is presented here was performed by

me. All other work described in this chapter is my own.

6.7 Introduction

The previous chapter presented results of applying the RPV technique at low light
intensities in order to study mobility. It was shown that RPV was a robust tool,
and that it is applicable to operational solar cell devices. In this chapter, the RPV
technique is extended to high light intensities in order to probe carrier recombination.
Recombination is important because it is one of the key loss mechanisms in organic
bulk heterojunction solar cells, especially those with thicker junctions or those made
from materials which do not possess a sufficiently high carrier mobility [12,82,240].
Recombination coefficients are commonly compared with the prediction of Langevin
[12,89,92], which is f1, = e (ip + fin) /€€0, where e is the charge of an electron, ju, (fin)
is the mobility of holes (electrons), and e¢ is the dielectric permittivity. A suppressed,
non-Langevin recombination coefficient (with § < [r) has been reported in organic
photovoltaic blends that exhibit high performance [94, 95,103,241, 242]. Suppressed
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recombination is desirable to ensure efficient charge extraction. The reduction factor
B/ 5L is a useful “figure of merit” for screening candidate photovoltaic blends to rapidly
identify those which are likely to be highly performing [89].

A variety of techniques are available to study recombination dynamics. Techniques
that operate on fully operational devices (i.e. those without blocking layers or other
modifications [104]) include transient photovoltage (TPV) [147,149], photogenerated
charge extraction by linearly increasing voltage (photo-CELIV) [128,129], and time-
of-flight (TOF) [124,125].

TPV studies often show an apparent reaction order higher than the expected value
of two [150]. It has been suggested that this is due to a concentration dependence in the
recombination coefficient [243], recombination through trap states [244], or the spatial
separation of the carriers under open circuit conditions [150]. The spatial separation at
open-circuit conditions can be reduced by studying the solar cell nearer to short-circuit
conditions [20], as in the photo-CELIV or TOF experiments.

Photo-CELIV can be used to study charge carrier mobility and also the bimolecular
recombination coefficient [7,245-249]. The recombination coefficient can be estimated
from the maximum extraction current in the photo-CELIV transient [100,133]. How-
ever, this transient is influenced by experimental factors that are not fully accounted
for in the theory, such as the spatial distribution of light absorption [133], the circuit
resistance [21], and the voltage slope [131]. Additionally, premature escape of charge
from the film [250] contributes to the charge redistribution during the delay time [145],
which results in a false position of the extraction maximum and makes the measure-
ment unreliable. While some attention has been directed to minimizing this issue [72],
a full compensation of carrier redistribution is impossible due to Fermi level pinning,
an inhomogeneous electric field inside the film and strong diffusion near the electrode
where carriers are photogenerated.

Another well known technique to characterise recombination is high intensity time-
of-flight (TOF) [75,112,113]. The recombination coefficient can be estimated from the
amount of charge extracted during a TOF experiment [89,102,223]. However, the ex-
ternal circuit resistance influences the extracted charge [95], making the measurement
unreliable due to its dependence on the experimental conditions. Previous works have
neglected the impact of the RC circuit [89]. Here, we resolve this issue by extending
the previous work to achieve more reliable experimental results.

In this chapter, we study recombination in the benchmark organic photovoltaic
system PCDTBT:PC70BM (see the experimental section for details of the materials).
We quantify the recombination in this system, and compare solar cells made with
low molecular weight PCDTBT to those made with high molecular weight PCDTBT.
Our recombination study will be conducted using a variant of time-of-flight that we
call High Intensity Resistance dependent PhotoVoltage (HI-RPV). An exact analytic
solution of the relevant differential equations is not known, so we apply numerical

simulations to show the applicability of the technique to a variety of experimental
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conditions. After demonstrating the generality of the technique, we go on to apply it
to operational bulk heterojunction solar cells.

Our simulations take an effective medium approach to model device-scale beha-
viour, an approach which is commonly used for organic solar cell simulation [20-22,
144,251,252]. We consider the situation where the films are not doped and there is
no film charging due to deep traps whose release times are longer than the transit
time. These assumptions are typically met in high efficiency devices. The details of

our numerical solver were described in Chapter 3.

6.2 Experimental Setup

The experimental setup is shown in Figure 6.1. Similarly with time-of-flight, charges
are photogenerated using a high intensity laser, and the voltage across the load resistor
is measured with an oscilloscope. However, in contrast with traditional time-of-flight,
the measurement is repeated many times across a wide range of load resistances. Fur-
thermore, volume photogeneration is desirable, and consequently operational thin-film
solar cells can be studied.

The experiment begins with the photogeneration of a large quantity (> CU) of
charge carriers using an intense laser pulse. These carriers induce a photocurrent that
charges the electrodes, which act as capacitive plates. The electrodes rapidly acquire
a charge of CU, where C is the capacitance and U is the solar cell’s built-in field
(or the applied voltage). Next, two processes occur simultaneously. The first is the
recombination of the photogenerated charges, and the second is the discharge of the
capacitor through the external RC' circuit. If the RC time is large, then the photo-
carriers will completely recombine before the capacitor can discharge, and the total
extracted charge will be limited to CU. Conversely, if the RC time is small, then the
capacitor will discharge before the carriers completely recombine, more photocurrent
will flow, and the extracted charge will exceed CU. In the intermediate regime, there
is an interplay between the bimolecular lifetime and the RC' time. We exploit this

relationship in order to quantify the carrier recombination.

6.3 Device Thickness and Light Absorption Profile

It has been shown in the past that the light absorption profile strongly affects CELIV
transients [133], so it is important to clarify the impact that the light absorption has
on HI-RPV. We apply the Beer-Lambert law to represent the photogeneration profile,

ax

ng = po = Lae™ ", (6.1)

where ng (pp) is the initial concentration of electrons (holes), L is the light intensity in

photons per unit area, « is the absorption coefficient at the laser wavelength, and z is
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Figure 6.1: Circuit schematic for the High Intensity Resistance dependent Photo-
Voltage (HI-RPV) experiment. Current transients are recorded across a range of load
resistances, and then integrated to obtain the extracted charge, Q.. The variation in
the extracted charge with resistance is used to quantify the recombination processes
and determine the bimolecular recombination coefficient. If the device under test is
an operational solar cell, then the DC voltage supply is optional and the experiment
can be done under the solar cell’s built-in field.
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the spatial coordinate. Normalising the absorption coefficient « to the film thickness
d, the shape of the initial distribution is described by the dimensionless quantity ad.

We performed numerical simulations at varying values of ad and for varying light
intensities. The light intensity is represented by the quantity of photogenerated
(6.1) over the

device. We selected a fixed circuit resistance, RC/ty(sum) = 0.05, where R is the

charge carriers Qp, = L (1 — e*ad), which is the integral of Eq.

resistance of the circuit external to the device, C' is the device capacitance, and
Lir(sum) = d? (p + un)fl U~! is an effective transit time calculated from the sum of
carrier mobilities crossing a film of thickness d under a voltage U. The use of pp, + pn
in the normalisation scale will be justified below. The bimolecular recombination was
given by the Langevin rate (8/8 = 1).

The light intensity dependence in the amount of extracted charge is plotted in
Figure 6.2. The simulations were conducted with equal electron and hole mobilities;
however, the results are essentially unchanged if the mobilities are not equal (as shown
in Figure 6.3). We observe that the extracted charge Q./CU becomes essentially
The inset of Figure 6.2 shows the ad
dependence at high light intensity, demonstrating that Q./CU is essentially insensitive

independent of ad when ad is less than 1.

Chapter 6. High Intensity RPV (HI-RPV) 78



Philippa, Bronson Charge Transport in Organic Solar Cells

Decreasing film thickness
—a—od=0.1 g o
—eo—ad=1 B oA B AR AR S A—64
—a—od=3 _4_’__‘__'
—v—ad=10 > >
3 19 —<—ad=30 3
-~ 1 |—— ad =100 /
o 3.0 . . . .
) 2.5
2 )
8 O 20;
© CIJ
B 0.14 O 15 1 F
& 1.0 : : : : )
4; 0.01 0.1 1 10 100 1000
] od [
Langevin recombination; Equal electron & hole mobilities
RC/ tir(sum) = 0.05
001 T NARRRM | T LA | T LA | T
10* 10" 10° 10" 10° 10° 10° 10°

Photogenerated carriers, Qph / CU

Figure 6.2: The impact of the film thickness and light absorption profile on the extrac-
ted charge. The film thickness is incorporated within the absorption-thickness product
ad (where « is the absorption coefficient and d the thickness). The inset shows the ad
dependence in the region indicated by the thin grey box (Qpn/CU = 10%), and demon-
strates that the extracted charge is independent of the initial carrier distribution for
thin films (ad < 1). The extracted charge readily saturates with high light intensity.
This graph shows that a general theory for thin film devices can be developed, without
detailed optical modelling, and without regard for the precise quantity of photogener-
ated carriers in the saturation regime.

to the initial carrier spatial distribution, in the case of volume generation. For example,
in the case of ad = 3 (see Figure 6.2), the light intensity at the back of the device
is approximately 5% of the light intensity at the front of the device. Such a strong
inhomogeneity in the spatial distribution does not meaningfully affect the extracted
charge.

Physically, the insensitivity to the initial spatial distribution is caused by bimolecu-
lar recombination. The bimolecular recombination process will be more rapid in re-
gions of higher light intensity, and slower in regions of lower light intensity. This will,
in effect, “smooth” the carrier distribution across the device, erasing the initial spa-
tial distribution. More precisely, the carrier concentration at early times is given by
n(t) = (ng' + Bt)il, where ng is the initial carrier concentration [118]. In the limit of
very large ng, the dependence on the initial condition vanishes [n(t) ~ (8t)"']. This
explains why the absorption profile is irrelevant at high light intensities.

In summary, to first order, detailed optical modelling to account for exact carrier
distribution in operational solar cells is not necessary, since the precise spatial dis-
tribution of carriers is rapidly erased by bimolecular recombination. Therefore, the
HI-RPV technique can be applied to thin film devices (ad < 1) without concern for
optical interference.

Since the technique is insensitive to the light absorption profile, we will remove

ad from the set of parameters being tested, and approximate the initial condition by
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Figure 6.3: The impact of the circuit resistance on the extracted charge from simu-
lated resistance dependent photovoltage experiments. Filled symbols with lines show
balanced mobilities (fifaster/Mslower = 1); open symbols without lines show strongly
unbalanced mobilities (fgaster/tslower = 100). The two are very similar, because the
normalisation scale for the circuit RC time minimises the effect of the mobility ratio.
The saturation value Qe(sat)/CU depends almost entirely upon the normalised resist-
ance. These results demonstrate that the load resistance needs to be accounted for to
correctly measure the recombination coefficient.

perfectly uniform carrier generation. All subsequent numerical calculations are per-
formed with this simplified uniform initial condition, rather than the Beer-Lambert
law. Using this approximation, the simulation parameters are reduced to light intens-
ity (expressed as Qpn/CU), recombination coefficient (expressed as 3/fr), mobility
ratio fifaster/Hslower; and the circuit resistance (expressed as RC /[ty (sum)). The circuit
resistance, which we will address next, is a crucial parameter that may have been

overlooked in the past [95].

6.4 Circuit Resistance

In a HI-RPV experiment, the circuit resistance is varied over many orders of magnitude
in order to observe the dynamical interaction between the known circuit RC' time and
the unknown bimolecular lifetime.

We examined the impact of the circuit resistance using our simulations, as shown
in Figure 6.3. Importantly, we observe that more charge can be extracted at lower
resistances. A smaller resistance allows the charge extraction to complete in a shorter
time, so that less recombination occurs, and the overall extracted charge is higher.

The faster carrier mobility is normalised out of the simulation by the system of units
(as described in Chapter 3). However, it is necessary to specify the ratio of carrier
mobilities fifaster/ Mslower- L0 confirm that variation in this ratio will not interfere with

the measurement, Figure 6.3 shows the case of balanced mobilities (figaster/tslower = 1)

Chapter 6. High Intensity RPV (HI-RPV) 80



Philippa, Bronson Charge Transport in Organic Solar Cells

12 - -

5 High light intensity (Q, saturated)
© 104 Langevin recombination |
= Uniform photogeneration (valid for ad < 1)

©

0

kg
O 84 =
) _

% . p’faster / l'Ls\uwer -
6 6 1 ufaster / l’Ls\ower = 10 I~
B le'faster / us\ower = 100

§ 4 —— Equation (3) |
s ttr(sum) is the transit time
3 calculated from the sum
% 27 of mobilities. -
2 tyeumy =8 )T UT
T tr(sum) o] n
9]

T MRARA | MR | MR | MELELRALLL | MR | T T
10°  10* 10° 10® 10" 10° 10" 107 10° 10°

Normalised circuit resistance, RC / ttr(sum)

Figure 6.4: Simulations of the impact of load resistance on the extracted charge from
thin film devices with Langevin recombination at varying mobility ratios. Points are
calculated from simulations at high light intensity (Qpn/CU = 10°, although the pre-
cise value is unimportant because of the saturation in the extracted charge Q., as
shown in Figure 6.3). The ratio of carrier mobilities does not affect the extracted
charge, so HI-RPV measurements can be applied equally to systems with balanced
mobilities and systems with strongly unbalanced mobilities.

with filled symbols and lines and strongly unbalanced mobilities (pgaster/ tsiower = 100)
with open symbols and no lines. This covers a wide range of mobility ratios to examine
the variation that might be expected to occur in practice. The two cases (balanced mo-
bilities and strongly unbalanced mobilities) are essentially indistinguishable, as shown
in Figure 6.3. We explain this insensitivity as follows. The amount of extracted charge
Qe is primarily controlled by the recombination. The Langevin recombination rate is
proportional to the sum of carrier mobilities. The relevant time scale for this process
1S ter(sum) = d*/ (tp + pn) U.

Figure 6.3 shows that the extracted charge saturates at high light intensities to
a value that we call Qc(st)/CU, as indicated by the arrows. Therefore, if the HI-
RPYV experiment is operated in this saturation regime, the amount of extracted charge
does not depend on the laser power which is applied. The extracted charge is also
independent of the carrier mobility ratio (Figure 6.3) and the light absorption profile
(Figure 6.2). Consequently, the only parameters remaining to be quantified are the
circuit resistance and the bimolecular recombination coefficient.

The impact of the circuit resistance is shown in Figure 6.4. If the normalised
resistance is small, the extracted charge Q(sar) can exceed the charge on the electrodes
CU by an order of magnitude or more, even in the presence of Langevin recombination.
The TOF experiment under these circumstances is therefore misleading, especially if
comparing two systems with different values of the normalised resistance, RC'/t;(sum)-

We resolve this problem by introducing the HI-RPV technique. We firstly develop
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predictions for Langevin systems, and then in the following section extend this to the
general case.

Figure 6.4 shows a single universal curve that all Langevin systems should obey.
We developed an empirical equation to describe this curve by arbitrarily choosing an
appropriate functional form that would give a logarithmic dependence at small R (as

shown in Figure 6.4), and would saturate to 1 at large R (as also shown in Figure 6.4),

Qesa trsum p3
CEUt)zl—Fpllog[l—Fpg(t](%C)) ] (6.2)

We used non-linear least squares regression to calculate the coefficients p; from the

simulation results in Figure 6.4. The result is:

1 10,63 [ teum) " (6.3)
' RC ’ '

Qe(sat)
cU

=1+ 1.8log

which is valid for Langevin recombination and thin films. Equation (6.3) is plotted
against the simulation results in Figure 6.4, demonstrating excellent agreement.

The purpose of Eq. (6.3) is to determine the type of recombination present in a thin
film device; for example, one could plot this equation alongside measured data in order
to determine whether the recombination is of the Langevin type. This is important,
since recombination orders higher than two have been experimentally observed [150],
and it is necessary to identify the type of recombination dynamics that might apply
to the system being studied. A plot of extracted charge versus resistance (Figure 6.4)
will follow the form of Eq. (6.3) if Langevin recombination is dominant. In contrast,
if there is a higher order of recombination, then the carrier concentration will decay
according to a different time dependence, and the functional form of the extracted
charge versus resistance will change. If the recombination is stronger than Langevin,
the experimental data will lie below the line. On the other hand, if the dominant form
of recombination is slower than Langevin, then less recombination will occur and the
experimental data will lie above the line.

We will show below that our experimental data can be described by a bimolecular
recombination process with a Langevin reduction prefactor. We do not exclude the
possibility of higher-order effects such as a concentration-dependent recombination
coefficient [243], but these are not necessary to explain our data. Therefore, in the
following section, we extend our theory to systems with suppressed (non-Langevin)

recombination of purely second order.

6.5 Bimolecular Recombination Coefficient

In order to develop a tool for convenient experimental quantification of the recom-
bination coefficient (8/8r), we applied numerical simulations to predict the amount

of extracted charge as a function of 3/8r. These simulations are plotted in Figure
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Figure 6.5: Numerically predicted extracted charge as a function of load resistance in
High Intensity Resistance dependent PhotoVoltage (HI-RPV) experiments for different
recombination coefficients 5/fr,. The extracted charge shown in this figure is calculated
at the highest light intensities where the extracted charge saturates, as shown in Fig.
6.2. The points are from simulations, whereas the lines are Eq. (6.2) evaluated for
each respective value of /8. This graph presents numerical predictions to be used
when measuring the recombination coefficient 3/8;, experimentally from HI-RPV in
systems without deep traps.

6.5. As expected, the amount of extracted charge increases dramatically in the pres-
ence of non-Langevin recombination. To confirm that our technique remains valid, we
checked that non-Langevin devices also exhibit saturation at high light intensity, and
that the extracted charge is independent of the optical absorption profile for thin films
(ad < 1). We found that systems with strongly suppressed recombination (8 < ()
exhibit a stronger dependence on the mobility ratio than Langevin systems. The more
unbalanced the mobilities, the less charge can be extracted. A representative example
(tgaster/ slower = 10) is plotted in Figure 6.5 with open symbols.

We are now ready to specify how the HI-RPV technique can be applied. The
recombination coefficient can be determined by comparing measurements of the ex-
tracted charge against the simulation results in Figure 6.5. This approach is valid
for any thin film (ad < 1) device. Importantly, this technique is not hindered by the
RC-dependence that affects traditional high intensity TOF [89,95], because the impact
of the RC' time constant on the extracted charge is accounted for on the horizontal
axis of Figure 6.5. However, for accurate measurements, it is necessary to reach the
regime where RC'/ti;(sum) << 1. This may not be possible in extremely high mobility
materials, especially when the series resistances are included in R. Ideally, R should
be varied over many orders of magnitude.

As an alternative to visual inspection of the graph, we can also specify an empirical
equation that describes the data in Figure 6.5. We started with the general functional
form [Eq. (6.2)] and applied a procedure similar to that described earlier for the
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Langevin case. We performed simulations across a physically realistic parameter space
in both RC'/t(sum) and (/BL. The simulations were performed with balanced mobil-
ities, because that corresponds to the maximum extracted charge. With least squares
regression, we found the parameters p; as a function of 5/fr,. Finally, we parametrised
the p; values as follows, choosing an arbitrary functional form that best described the
data:

-1

o= 1.829 <é+0.0159 é) (6.4)
B 0.407

p2 = 063 <> (6.5)
AL
,3 0.0203

p3 = 0.55 <> : (6.6)
AL

These functional forms were found to obtain the best fit to the simulated results.

Figure 6.5 shows the simulation results compared with Eq. (6.2) with the para-
meters (6.4)-(6.6). A good agreement is demonstrated for balanced mobilities; if the
mobilities are unbalanced then Eq. (6.2) will slightly overestimate the extracted charge.

These equations are a convenient tool to analyse experimental data. For example,
to determine the recombination coefficients for the data presented below, we set up a
spreadsheet table to compare the model with experimental data and thereby estimate
the bimolecular recombination coefficient.

In order to confirm the validity of the newly presented HI-RPV technique, we
have compared its results in various systems with other techniques including photo-
CELIV [129], double injection transients [253] and plasma extraction [254]. The results
are in agreement, given the limitations of each technique. These limitations must be
carefully considered when comparing measurements, which is why we have developed
the present HI-RPV approach.

6.6 Experimental Measurements

We manufactured bulk heterojunction organic solar cells with the donor:acceptor blend
poly[N-97-hepta-decanyl-2,7-carbazole-alt-5,5-(4’,7-di-2-thienyl-2’,1’,3’-benzothiadiazole)]
(PCDTBT) and [6,6]-phenyl-C7i-butyric acid methyl ester (PC70BM). This blend,
PCDTBT:PC70BM, has previously been reported to exhibit near to Langevin recom-
bination [75]. Two sources of PCDTBT were used. A low molecular weight batch
(M,, = 4.3 kDa, M, = 12.1 kDa, PDI = 2.8, dissolved in 1,2 4-trichlorobenzene at 140
°C) was synthesized in our laboratory following the Suzuki cross-coupling protocols
previously described [255]. A high molecular weight batch (M,, = 22.7 kDa, M,, =
122.2 kDa, PDI = 5.4) was purchased from the SJPC Group.

The fabrication of the solar cells followed a previously described procedure [6]. 15
Q/sq. Indium Tin Oxide (ITO) coated glass substrates patterned by photolithography

(Kintec) were cleaned by sonicating in sequence with alconox (detergent), de-ionised
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Figure 6.6: Experimentally measured extracted charge as a function of circuit resist-
ance obtained using the HI-RPV technique. Films made with the low molecular weight
polymer exhibit Langevin recombination, whereas films containing the high molecular
weight polymer exhibit suppressed non-Langevin recombination. Non-Langevin recom-
bination is beneficial to solar cell performance, indicating the importance of material
quality in device fabrication.

water, acetone, and iso-propanol for 10 minutes. The cleaned substrates were coated
with a 20 nm layer of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PE-
DOT:PSS) by spin casting at 5000 rpm for 60 sec. The PEDOT:PSS layer was baked
for 10 minutes at 170 °C. A solution of PCDTBT and commercially purchased PC70BM
(Nano-C) with a mass ratio of 1:4 was prepared at a total concentration of 20 mg/mL
in anhydrous 1,2-dichlorobenzene. This solution was deposited by spin coating on top
of the PEDOT:PSS layer after filtration. Two substrates were prepared from the low
molecular weight batch with active layer thicknesses of 46 nm and 130 nm, respect-
ively. From the high molecular weight batch, two additional substrates were made with
active layer thicknesses of 75 nm and 90 nm. Thicknesses were measured by a Veeco
Dektak150 profilometer. Slow drying was performed after spin coating by placing the
coated film in a partially opened petri dish for 2 hours. Finally, a 100 nm aluminium
layer was deposited by thermal evaporation under a 10~ mbar vacuum. The device
areas were 0.035 cm? with three devices per substrate. The low molecular weight ma-
terial produces solar cells with power conversion efficiencies (PCE) of approximately
4%; whereas optimised solar cells made from the high molecular weight material have
PCEs in excess of 6% [256]. Transit times were measured using low light intensity res-
istance dependent photovoltage [3]; the mobilities were oy Mw ~ 8 x 1072 em?Vlg!
and phigh Mw = 2 X 1073 em?V~1s~!, demonstrating greatly improved charge transport
in the latter devices.

HI-RPV measurements were performed using a pulsed third-harmonic Nd:YAG

laser (Quantel Brio) working at a wavelength of 355 nm and pulse duration of 5 ns.
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At 355 nm, the absorption coefficient of this blend [65] is 8 x 10* cm™!, which gives ad
values of 0.37 for the thinnest device (46 nm) and 1.0 for the thickest device (130 nm).
The laser beam was attenuated using a neutral density filter set. No external voltage
was applied; instead, the transients were driven by the solar cells’ built-in field. The
signal was recorded by a digital storage oscilloscope (LeCroy Waverunner A6200).

We performed HI-RPV with load resistances in the range from 1 Q to 1 M. The
results are plotted in Figure 6.6. This graph demonstrates the application of the HI-
RPYV technique. It is important to note that the resistance value R on the horizontal
axis is the complete circuit resistance, calculated as the sum of the load resistance and
the solar cell series resistance. The experimental data is plotted together with the
predicted curve from Eq. (6.2) with parameters (6.4)-(6.6). The measured extracted
charge behaves as expected and as predicted by the simulations. The extracted charge
decreases with increasing resistance until it saturates to Qesat)/CU = 1. To determ-
ine the recombination strength, the coefficient /5, was adjusted until the predicted
curves matched the experimental data.

Our results indicate that low molecular weight devices exhibit Langevin-type re-
combination, while the high molecular weight devices exhibit non-Langevin recom-
bination with 5/8r ~ 0.07. Photo-CELIV measurements applied to the same devices
demonstrated Langevin and non-Langevin recombination, respectively, supporting our
results. However, photo-CELIV is subject to various limitations, as we discussed in
the Introduction, and so we developed HI-RPV for the detailed study. The strong
change in the recombination strength likely contributes to the improved power con-
version efficiency of the high molecular weight blend. It has previously been reported
that PCDTBT solar cell performance improves with increasing molecular weight [257].
Our results indicate that suppressed recombination may be the mechanism behind
this performance trend, and hence the molecular weight is a parameter that should
be considered when optimising solar cell performance. There may be further per-
formance improvements to be gained by identifying the molecular weight at which the
recombination is minimised.

A previous study of recombination in PCDTBT solar cells [75] reported reduction
factors in the range of 5/8r = 0.3 to 8/ = 1 depending upon the device thick-
ness. Thinner devices were reported to exhibit more strongly reduced recombination.
Thickness dependencies cannot be reliably studied using time-of-flight because vari-
ations in the thickness influence parameters such as the device capacitance, the RC
time, the transit time, the optical absorption profile, and the amount of extracted
charge. Consequently, with time-of-flight it is difficult to eliminate the dependence
on the experimental parameters. In contrast, HI-RPV accounts for these effects. We
did not observe any thickness dependence, although the range of thicknesses measured
here is less than that in the previous study [75].

Further work is necessary in order to clarify the origin of this molecular weight

dependence, as well as any dependence on other parameters such as polydispersity,
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impurity density, and conjugation length. The novel HI-RPV technique will be bene-

ficial for such future work.

6.7 Conclusion

We studied recombination in the organic photovoltaic system PCDTBT:PC70BM, and
observed that devices made with a higher molecular weight polymer exhibit suppressed
recombination relative to devices made with a lower molecular weight polymer. Our
results highlight the importance of material quality for fabrication of high efficiency
organic solar cells. We developed and implemented a theoretical framework for the
novel High Intensity Resistance dependent PhotoVoltage (HI-RPV) technique, which
allows recombination measurements that are independent of the experimental con-
ditions, resolving a key weakness of previous time-of-flight based techniques. A key
advantage of HI-RPV is its insensitivity to the light absorption profile in thin films,

making it applicable to operational devices.
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Intensity Dependent Photocurrent
(IPC)

This chapter contains material that has been submitted for publication:

e Martin Stolterfoht, Ardalan Armin, Bronson Philippa, Ronald D. White, Paul
L. Burn, Paul Meredith, Gytis Juska, and Almantas Pivrikas. Photocarrier drift

distance in organic solar cells and photodetectors. Scientific Reports (submitted).

This chapter contains experimental data that was measured by Martin Stolterfoht, Ar-
dalan Armin, and Almantas Pivrikas. Figure 7.9 was prepared by Martin Stolterfoht,
and is reproduced here because it provides a validation of my theoretical work. The
discussion here focusses on the simulation and theoretical aspects of the above paper,

which were my contribution.

7.1 Introduction

The previous chapters reported experimental methods based on photoconduction tran-
sients, where current transients are measured after a nanosecond laser excitation. A
solar cell spends the vast majority of its time under steady-state conditions, and so
measurements conducted at steady-state would be the most representative of actual
operational conditions. In this chapter, we study steady-state photocurrent. We exam-
ine the influence of the carrier mobilities, recombination coefficient, and trapping on
the photocurrent that a solar cell can produce. We show that variation in the light in-

tensity can be used to observe the onset of fast bimolecular recombination, and thereby
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present “design rules” for achieving high transport efficiency without bimolecular re-
combination.

We will investigate the solar cell’s photocurrent as a function of light intensity.
Typically, this would be done under short circuit conditions, but it is also possible to
apply a bias to test the device’s response at the maximum power point. We call this
measurement intensity dependent photocurrent (or IPC). This technique is very com-
mon in the literature [73,242,258-260], where it is often used as a test for bimolecular
recombination. Many studies report a power law dependence, i.e. js. ~ L% where jg. is
the short-circuit current, L is the light intensity, and « is the power law slope. A linear
dependence (o = 1) is known to indicate the absence of bimolecular recombination,
whereas sublinear slopes (o < 1) indicate bimolecular recombination losses [242,261].
If this measurement is taken over a small range of light intensities [259], the true func-
tional shape of e may be hidden, and so many orders of magnitude of light intensities
are needed. Over a large range, one often observes a transition between linear beha-
viour at low light intensities, to sublinear behaviour at higher light intensities [242].
This indicates a transition from recombination-free to recombination-limited beha-
viour. Here, we will systematically examine this effect in order to understand the
conditions under which bimolecular recombination is significant and the conditions

under which it may be avoided or minimised.

7.1.1 Device fabrication and methods

Two different organic solar cell materials were used in this study. The first was
poly[[4,8-bis|(2-ethylhexyl)oxy|benzo|1,2-b:4,5-b’|dithiophene-2,6-diyl]| [3-fluoro-2-[(2-ethyl-
hexyl)carbonyl]thieno[3,4-b|thiophenediyl]]:[6,6]-phenyl-C70-butyric acid methyl ester
(PTB7:PC70BM) [262], while the second was poly[N-9”-hepta-decanyl-2,7-carbazole-
alt-5,5-(4’,7-di-2-thienyl-2’,1’,3’-benzothiadiazole)| (PCDTBT):PC70BM [65]. To fab-
ricate the devices, the substrates were prepared as described previously [263]. For the
PTBT7 devices, the active layer solution of PTB7 (purchased from 1-Material, Mw =
97.5 kDa, PDI = 2.1) and PC70BM (American Dye Source, Inc., Canada) was blended
in a 1:1.5 ratio by weight in chlorobenzene with 3% 1,8-diiodoctane (DIO) by volume.
Solar cells with three different junction thicknesses were prepared by using a total con-
centration of 31 mg/cm3 for the 100 nm and 230 nm thick devices and a concentration
of 45 mg/cm3 for the 700 nm thick device. The solutions were spun cast at 2200 rpm,
400 rpm and 600 rpm for 120 seconds, respectively. The films were subsequently dried
at 70 °C. For the PCDTBT devices, the solution of PCDTBT (SJPC, Canada, Mw
= 122 200 g/mol, PDI=5.4) and PC70BM was blended in a 1:4 ratio by weight in
1,2-dichlorobenzene. Solar cells with three active layer thicknesses, 75 nm, 230 nm
and 850 nm were fabricated by using a total concentration 25 mg/cm? for the 100
nm and 230 nm thick blends respectively, while a concentration of 40 mg/cm?® was
used to fabricate the 850 nm thick film. The solutions were spun cast at 2000 rpm,
500 rpm and 500 rpm for 90 seconds, respectively. The active layer thicknesses were

measured with a DekTak 150 profilometer. All devices were completed by vacuum

Chapter 7. Intensity Dependent Photocurrent (IPC) 89



Philippa, Bronson Charge Transport in Organic Solar Cells

)

T i G G Gy
O O O O O O O o o
N W s

slower

tr

uf/p.s=1000
-3 L - : . : , uf/us=100
_4 uf/us=10
n/p =1

Short circuit current (CU/

1010102102107 10° 10" 10® 10° 10* 10°

Generation rate (CU/ttsrlower)

Figure 7.1: Simulated IPC data for various carrier mobility ratios. There is a universal
shape that applies independently of the carrier mobility ratio, allowing general predic-
tions to be made. For these simulations, the recombination coefficient was Langevin,
i.e. B/B = 1. Simulation results are shown with points, and the lines are a guide to
the eye.

evaporation of 1.2 nm of samarium followed by 75 nm of aluminum under a 10~¢ mbar
vacuum. The device areas were 0.2 cm? for current-voltage curves (JV), IPC and EQE
measurements, and 3.5 mm? for RPV measurements (to characterise the mobility and
calculate Ig.). All device fabrication took place within a glove box with < 1 ppm
oxygen and water. JV and EQE measurements were also performed inside a glove box.
Subsequently the devices were encapsulated for the IPC measurements.

Simulations were conducted using the model described in Chapter 3. Of particular
importance to this work is the normalisation scale that was described in that chapter.
Notably, the light intensity is incorporated into the concomitant generation rate of
free carriers. In other words, the efficiency of exciton separation is included in the
generation rate. The objective of this work is to focus on charge transport, and so
all the effects of light absorption, exciton separation, etc. are simply lumped together
into an overall generation rate. This generation rate will itself be normalised with
respect to CU /t5°V" where C' is the device’s capacitance, U is the effective voltage
(the built-in field plus any applied voltage), and tf}rower is the transit time of slower
carriers. The chosen charge scale (CU) is a natural choice because it indicates the
approximate threshold at which space charge effects begin to appear. Similarly, the
transport time #{1°° is a natural time scale because it indicates the amount of time
that a carrier would be expected to remain inside the device. Photocurrent is also

normalised with respect to the same scale.

7.2 The Universal Functional Form

Initially considering the case of Langevin-type recombination, we simulated the IPC

experiment over a very large range of light intensities. The results shown in Figure
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7.1 display two notable features. Firstly, there is a universal functional form, and
consequently variations in any of the parameters in the normalised generation rate
(e.g. mobility, dielectric constant, thickness, ...) will simply move along the universal
curve. The second notable feature is that the deviation point separating the linear
and sublinear regimes always occurs at the same normalised light intensity, that being
when the generation rate of free carriers is equal to CU /#§lower,

There is much information encoded in the normalised axes. Increasing the light
intensity has the impact of moving right and upward, following the universal shape
of Figure 7.1. A more interesting result is that variations in any of the parameters
contained within CU/ tﬁ}rower would also move along the curve. For example, increasing
the slower-carrier mobility while holding everything else constant moves to the left
but also down. This is counter-intuitive: an improved mobility results in a lower
photocurrent! However, a reduction in normalised photocurrent does not necessarily
correspond to a reduction in actual photocurrent because the normalisation scale also
changes. The interplay between normalised units and real units provides crucial insight
that endows Figure 7.1 with much predictive power.

According to this simple model, variations in mobility have no impact on the pho-
tocurrent if the device remains in the linear regime. Physically, in this regime, there
is negligible recombination, so charge transport is already sufficient to extract charges
before they recombine, and improving the mobility provides no further benefit. A
different situation arises in the sublinear regime, where an improvement in mobility
would indeed improve the photocurrent. For example, consider a ten-fold improvement
in slower-carrier mobility. The operating point moves one decade to the left in Figure
7.1, resulting in approximately a three-fold decrease in normalised current. However,
the scaling factor to convert that normalised current back to real units increased by a
factor of ten, resulting in a net gain of ~ 10/3 or approximately 3 times improved pho-
tocurrent. It is not just mobility that can be considered in this way, because CU / ti}f’“’er
also contains the dielectric constant, active layer thickness, voltage, etc. This model
allows predictions to be made with respect to any of these parameters.

In the discussion above, we assumed that non-geminate recombination caused the
deviation from linearity, as has been previously reported [242]. To confirm this claim,
we replotted the simulation of Figure 7.1 as internal quantum efficiency (IQE) and
recombination losses, as shown in Figure 7.2. It is possible to plot recombination
losses directly because the simulation allows access to such information that would not
be observable in a real experiment. These results clearly show that the drop in IQE,
and hence the sublinear behaviour at higher light intensities, is caused by non-geminate

recombination.

7.3 Non-Langevin Recombination

The impact of non-Langevin recombination (i.e. S1,/8 > 1) is to prolong the deviation

from linearity until higher normalised generation rates, as shown in Figure 7.3. The
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Figure 7.2: (a) Simulated internal quantum efficiency (IQE) as a function of light
intensity for various carrier mobility ratios. The decline in IQE exactly coincides with
the onset of non-geminate recombination as shown in panel (b).
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Figure 7.3: Simulated IPC data for various recombination coefficients. Panels (a)
and (b) are from the same simulations. The impact of non-Langevin recombination
is to allow higher light intensities without losses. It can be seen that the benefit is
approximately proportional to the square root of 51 /5.

data are presented in two forms: as intensity-dependent photocurrent (Figure 7.3a)
and also as internal quantum efficiency (Figure 7.3b). The advantage of the latter is
that the onset of recombination is more clearly visible.

To make predictions about the amount of recombination that should occur, we de-
sire a normalisation scale that will collapse all the data into the same universal curve,
as was done above with Figure 7.1. Figure 7.3 (b) shows that a hundred-fold reduc-
tion in recombination results in approximately a ten-fold shift in the deviation point.

This implies that the impact of non-Langevin recombination should be proportional

Chapter 7. Intensity Dependent Photocurrent (IPC) 92



Philippa, Bronson Charge Transport in Organic Solar Cells

100f

] ———B_/p=1000
od | —— B /B=100
B /B=10
B /p=1

10° 107 10" 10° 10 10 10

Current /|
scle

Figure 7.4: Simulated IPC data for various recombination coefficients. Recombination
is seen to begin when the photocurrent reaches approximately the space-charge limited
current (Isec)-

to v/Br/B. Another transport problem that displays the same trend is the analytic

solution for double injection into an undoped semiconductor [118]

oo = ﬁ\/ﬁgOU <V“}C’l§‘”U> , (7.1)

where the sclc subscript stands for space charge limited current. Importantly, the
impact of non-Langevin recombination is to enhance the injection current by a factor

\/Br/B. Introducing that factor into the normalisation scale from above, we arrive at

CcU |BL
Toete ~ —— | —. 7.2
! tﬁower B ( )

It is demonstrated in Figure 7.4 that Eq. (7.2) is indeed an effective normalisation

the simplified formula

scale. The onset of recombination is approximated by Eq. (7.2) across three orders
of magnitude of recombination coefficient. Therefore, the space-charge limited current
indicates the approximate extraction capacity before recombination losses become sig-

nificant.

7.4 Practical Issues

Before this theory can be applied to operational organic solar cells, several practical
issues must first be considered. These are optical interference, circuit series resistance,

and charge trapping.
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Figure 7.5: The impact of optical absorption patterns on IPC simulations for the case
of (a) Langevin recombination and (b) non-Langevin recombination. In the case of
thin films (ad < 3), e gives an approximate indication of the onset of substantial
recombination.

7.4.1  Optical interference

The light intensity profile inside a solar cell is non-uniform, because of absorption,
reflection, and wave interference. It’s important to test the impact of this absorption
profile, because it can be an issue for other experiments such as photo-CELIV [133].

The simplest model for the light intensity profile is the Beer-Lambert law,

Qpn(z) o e™, (7.3)

where Qpn(x) is the spatial profile of charge photogeneration, a is the absorption
coefficient, and z is the distance into the film. When normalised as described in
Chapter 3, the absorption coefficient becomes the dimensionless quantity ad, where d
is the film thickness.

Typical simulations for the case of varying ad values are shown in Figure 7.5.
The absorption profile does cause some slight shifts, for example in the IQE that is
predicted when the current equals Iy .. Nevertheless, for the case of thin films, we find
that I .. gives an approximate threshold for the onset of substantial recombination.

We also tested realistic absorption profiles as calculated using the transfer matrix
approach [208]. The results are very similar to the thin film cases shown in Figure 7.5.
As long as the photogeneration is substantially “in the volume” (as opposed to near

the surface), then the impact of optical interference appears small.

7.4.2 Series resistance

Series resistances are expected in the circuit, which may arise for example due to the
transparent electrode of the solar cell. The impact of the series resistance is shown
in Figure 7.6. Resistances are expressed as the dimensionless ratio RC/tfs%r | The
impact of the series resistance is to cause an earlier onset in recombination, with a
notably sharp drop-off in IQE. This occurs when the voltage across the resistance
becomes comparable with the solar cell’s built-in voltage, for then charge accumulates

on the electrodes and extraction is compromised.
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Figure 7.6: The impact of series resistances on IPC simulations. A large series resist-
ance results in an earlier onset of recombination with a very sharp drop-off in IQE.

The results in Figure 7.6 indicate that series resistance might be an issue in some
devices. The threshold at which R becomes limiting is approximately RC /tfaster ~ 1.
This is a large resistance, and the problem would be immediately obvious in a transient
experiment such as photo-CELIV (Chapter 4) and RPV (Chapter 5). If RC /taster < 1,

then the series resistance should not affect the onset of recombination.

7.4.3 Charge trapping

To examine the impact of charge trapping, we applied the following model

anf nf Ni —ny n¢
_ m 7.4
at Te < Nt + Tr ( )
ony ng t— Nt ny
_ N _ M 7.5
6t Te < Nt ) Tr’ ( )

where N; is the number of available trap states, ny is the free particle distribution, 7
is the trapped particle distribution, 7. is the capture time, and 7, is the release time.

The IPC experiment is conducted under steady-state conditions, so the most im-
portant characteristic is the quantity of charges that exist in trapped states; the tem-
poral dynamics of their capture and release are insignificant once steady-state has been

reached. There are two situations that we will consider:

1. The case where the number of available trap states is not limited, and therefore
the quantity of trapped charges depends upon the equilibrium between capture,

release, and recombination; and

2. The case where the number of available trap states is limited, and therefore the
quantity of trapped charges is primarily determined by the density of available
trap states. This could arise, for example, if the materials are of high quality

and the traps are caused by rare defects.
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The first situation will occur in the limit of large Ny, and equations (7.4) and (7.5)

reduce to
ong ng o ng
- = —— 4+ = 7.6
ot Te * Ty (7.6)
8’!% nyg Nt
= L _ 7.7
ot Te  Tr (7.7)
Under steady-state conditions we find that
Te
=< 7.8
ny - s ( )

T

and it is the ratio between the capture and release rates that controls the equilibrium
point. Equation (7.8) is a simplification because it neglects the other terms such
as generation and recombination, but it is still a useful approximation to guide the
modelling of trapping in the IPC experiment. Guided by this approximation, we will
specify the trap parameters in terms of the proportion of charges available, ny/niotal =
(1+ TT/TC)il, where nyotal = g + 14

The simulation results in Figure 7.7 (a) show that trapping causes an early onset
of recombination. This is expected because each charge carrier must spend some time
in traps, and therefore the average bulk mobility is reduced. A reduction in mobility
compromises the ability of the system to extract charge carriers, and therefore the
concentration increases until recombination sets in. We emphasise that the simulation
incorporates both band-to-band recombination (between free carriers) as well as trap-
assisted recombination.

If continual trapping and release causes an overall reduction in mobility from what
it would be without traps, then all mobility measurements should be similarly affected.
Indeed, the true mobility of the system is the one that incorporates this trapping effect.
When I is adjusted accordingly, the impact of trapping vanishes (Figure 7.7 b). This
is simply because the onset of recombination is driven by the overall concentration of
charges (whether they are trapped or not).

Next, we turn to the second situation to be modelled, which was where the quantity
of trapped charges is limited by the number of trap sites that exist. This case will
occur when the release time is long (7 > ), such that all the traps eventually
become filled. In practice, not every single trap site will be populated, because trap-
assisted recombination will cause some to be empty. Nevertheless, if the capture time
is fast (7. < ty;), recombined trapped charges will be quickly replaced, and the overall
quantity of trapped charge will remain close to the physical limit. Simulations of this
case are shown in Figure 7.8 for 7. /t;; = 0.1, and 7,, = co. In this situation, the amount
of charges in the traps is largely independent of the light intensity, and consequently
the trap-assisted recombination is first-order. This appears as a flat reduction in the
internal quantum efficiency, as shown in Figure 7.8.

This type of trapping will only occur when the release time is long and/or the

density of available trap sites is small. In the latter case, the effect is negligible, as
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Figure 7.7: The impact of charge trapping, when the quantity of trapped charge is
controlled by the equilibrium between the capture and release times. In panel (a), the
current is normalised to the space-charge limited current that is calculated using the
mobility of free carriers, whereas in panel (b), the normalisation scale is corrected for
the reduction in bulk mobility that is caused by the trapping. Panel (b) is the real-
istic case because experiment will measure the “after trapping” mobility. Simulation
settings were Langevin recombination, balanced mobilities, 7. + 7 = 0.1#y;, and both
types of carriers trapped equally.
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Figure 7.8: The impact of charge trapping, when the quantity of trapped charge is
limited by the density of available trap sites. In panel (a), only one type of charge
carrier is trapped, whereas in panel (b) both types of carrier are trapped. In both
situations, the quantity of trapped charge is independent of the light intensity, and
therefore appears as first-order recombination and a flat reduction in IQE. Simulation
settings were Langevin recombination, balanced carrier mobilities, 7./t = 0.1, and
T = 0.
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shown in Figure 7.8. Trap-assisted recombination is only significant when the density
of (filled) traps approaches CU, which is a level that would be easily detected by charge
extraction measurements [241]. Additionally, if the release time is long, then repetitive
RPV experiments will reveal the presence of the trapped charge [3]. Consequently, it
is experimentally possible to determine whether the observed first-order losses are
determined by trapped charge or by geminate recombination.

In summary, our simulations indicate that trapping causes second-order recom-
bination if the quantity of trapped charges increases with increasing light intensity
(Figure 7.7), and it causes first-order recombination if the quantity of trapped charges

is independent of light intensity and larger than ~ CU (Figure 7.8).

7.5 Experimental Results and Discussion

The simulation results above indicate that substantial recombination should only occur

when a solar cell’s photocurrent reaches approximately

CU |8

slower B
ttr ﬁ

Isere ~ (7.9)
provided that the device is not limited by series resistances.

This prediction was tested on a total of six different organic solar cells: three devices
with PTB7:PC70BM as the active layer, and another three devices with PCDTBT:PC70BM
as the active layer. The results are shown in Figure 7.9. The thinnest PTB7:PC70BM
device (100 nm) is limited by the series resistance of the indium tin oxide (ITO) elec-
trode, because in that device the very thin structure and the high mobility of PTB7
combine to produce a large Iy.. Excluding that device, the remaining five demon-
strate excellent agreement with the prediction that the onset of strong recombination
coincides with the photocurrent reaching Iy.

To discuss the physical implications of this result, it is helpful to express Iy in

terms of the fundamental device and material properties:

SeeopsU? | BL
Lo ~ ————4 —. 1
sclc d3 /8 (7 O)

Notably, there is a very strong dependence of the device thickness (d). Optimising the
device thickness is challenging, because increased thicknesses are desirable to maximise
light harvesting, but at the same time an increased thickness has a very detrimental
impact on charge transport. Other parameters such as the slower-carrier mobility
(1s) or recombination coefficient (fz,/5) would need to improve dramatically in order
to permit an increase in thickness. Additionally, inhomogeneities in the thickness
(as might be caused by fabrication over large areas) would cause dramatic changes
in the device’s charge transport capacity. Another interesting observation is that a

ten-fold improvement in mobility is equivalent to a hundred-fold improvement in the
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Figure 7.9: Experimental results confirming the prediction that non-geminate recom-
bination begins when the photocurrent reaches the space charge limited current. This
supports the conclusion from the modelling that Iy . is the fundamental limit for
charge extraction without losses.

recombination coefficient. It is clear that strongly suppressed recombination is needed

in order to make substantial gains.

7.6 Conclusion

Normalised photocurrent as a function of normalised light intensity shows a universal
shape (e.g. Figure 7.1), in which a linear regime transitions into sub-linear behaviour
at higher generation rates. In the linear regime, non-geminate recombination is negli-
gible, except in the case of large amounts of deep traps which could be detected exper-
imentally through charge extraction measurements [241]. Consequently, non-geminate
recombination is essentially negligible, and therefore losses that occur can be attributed
to geminate recombination. However, substantial non-geminate recombination sets in

once the photocurrent reaches the critical threshold of Is. ~ +/81/BCU/ ti‘lower. In
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this regime, the photocurrent is limited by charge transport. We emphasise that a
given solar cell system can be switched from one regime to the other by changing the
thickness or voltage, or if the device had a different permittivity, slower-carrier mo-
bility, or recombination coefficient. Due to the universal shape of the IPC curve, this
model can be used to estimate the rise in photocurrent that would occur given certain
material improvements. The most important parameters to optimise are the mobility

of slower carriers and the recombination coefficient.
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The Fractional Advection-Diffusion
Model

This chapter contains material that has been published in the following journal article:
[1] B. W. Philippa, R. D. White, and R. E. Robson. Analytic solution of the

fractional advection-diffusion equation for the time-of-flight experiment in a finite geo-

metry. Physical Review E, 84, 041138 (2011). doi:10.1103/PhysRevE.84.041138.

8.1 Introduction

Dispersive transport occurs when photocurrent transients decay with time even before
the transit time of the carriers [78,264]. It can be modelled using a multiple trapping
model—as in Chapter 3—but this does not incorporate dispersion directly into the
transport model. Instead, that model creates dispersion by “partitioning” the number
density into trapped and free distributions, and ensuring that the release times are
subjected to a distribution.

An alternative mechanism is to specify a transport model that intrinsically im-
plements dispersion. This can be achieved using a fractional diffusion equation. The
advantage of this scheme is that only a single equation is needed; whereas the mul-
tiple trapping framework fundamentally requires a free distribution to be coupled to a
trapped distribution. One such approach is that of fractional diffusion [185,203,265—
269].

This chapter will apply a fractional diffusion model to the time-of-flight experiment.
We begin by formulating the model. We consider a thin sample of disordered material

confined between two plane-parallel electrodes, with all spatial variation confined to
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the normal direction, which we take to be the z axis. In Chapter 2, we derived the

following fractional diffusion equation that describes this system:

on 0%n
9. Prage

where W, and Dy, , are the fractional drift velocity and longitudinal diffusion coeffi-

§D)n+ W, =0, (8.1)

cient, respectively. The fractional drift velocity has units m/s?, while the fractional
diffusion coefficient has units m?/s?. We have assumed the small signal limit so that
the transport coefficients W, and Dy, - are constant and uniform. The derivative oper-
ator §' D} is the Caputo fractional partial derivative of order v. We recall from Chapter
2 that the Caputo derivative is defined as

CDIf(t) = —— )Au—ﬂﬂfmm. (8.2)

I(1-7)

A simple and numerically efficient solution of Eq. (8.1) would be highly desirable.
Previously reported solutions of fractional diffusive systems for bounded media have
been expressed in terms of infinite series solutions [195,200,270]. Here, we show that
the series solution to Eq. (8.1) with absorbing boundaries may be collapsed into a
simple closed form solution in Laplace space by building upon the experience gained
in solution of the non-dispersive diffusion equation in gaseous electronics [271].

The structure of this chapter is as follows. In Section 8.2, we model the time of
flight experiment [112] and obtain a formal analytic solution of Eq. (8.1) as a series
of Mittag-Leffler functions, which is cast into a tractable form, suitable for practical
purposes, using the Poisson summation theorem. In Section 8.3, we express the current
measured in a time-of-flight experiment in terms of this analytic solution, and show
analytically that sums of the slopes in distinct time regimes add up to -2 on a log-log
plot, as predicted by Scher and Montroll [77] and as observed in many experiments [78].
In Section 8.4, we explore the way that current varies with experimental parameters,
and go on to fit selected experimental data. We show that our solution demonstrates

the power-law decay characteristic of dispersive transport.

8.2 Time of Flight Solution

In this chapter, we will use Eq. (8.1) to model a disordered semiconductor in a time
of flight experiment [112]. A one dimensional equation, such as (8.1), is appropriate
for a thin sample of disordered material confined between two large plane parallel
boundaries, which we shall take to be at z = 0 and L respectively.

In the idealized time-of-flight experiment, a sharp pulse of ng charge carriers is

released from a source plane z = zy at time t = {, i.e.,

n(z,to) = nod(z — 20), (8.3)
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and the fractional advection diffusion equation is solved using the methods and tech-
niques described below. The solution for other experimental arrangements, e.g., for
sources distributed in space and/or emitting for finite times, can be found by appropri-
ate integration of this fundamental solution over zy and/or ¢y respectively. We assume

absorbing boundary conditions at the electrodes, i.e.
n(0,t) = n(L,t) = 0. (8.4)

The fractional partial differential equation (8.1) can be solved by separation of

variables. The result is
n(z,t) = no Z Om(2)Ey (—wm (t —t0)7), (8.5)

where the spatial modes are

6>\(z—zo)
om(2) = (cos [km(z — 20)] — cos [km(z + 20)]) ,
and where
w.
A= 8.6

i (5.6a)
wm = Dry (N +E2) (8.6b)
K = % (8.6¢)

In Eq. (8.5), E4(2) is the Mittag-LefHler function [272] of order ~:
E, = 8.7
5(2) kZ::O I ak e (8.7)

Eo(2) = FEai(2).

Equation (8.5) gives an exact solution, however, this expression is somewhat dif-
ficult to manipulate due to the presence of the Mittag-Leffler function. Furthermore,
a large number of terms are needed for this series to converge, and the numerical
evaluation of the Mittag-Leffler to suitable precision is computationally difficult.

For inspiration as to how to resolve this challenge, we consider the correspondence
principle between fractional and non-fractional systems. Starting with a fractional
system, it must be possible to recover non-fractional behaviour in an appropriate limit.
In this case, in the limit v — 1, the Mittag-Lefler function reduces to an exponential,
ie. Ei(z) = €%, and (8.5) reduces to Eq. (3b) in Ref. [271]. In the classical, non-
fractional limit [271], it was shown that the series convergence could be substantially

improved through application of the Poisson summation theorem (PST):
oo

ad 1
Z f(mT):T Z F<

m=—0oQ m=—0oQ

) , (8.8)

slE
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where F(k) is the Fourier transform of f(z). Here, we show that the PST can also be
applied to the fractional advection diffusion equation with similar benefits. Attempting
to apply the PST directly to Eq. (8.5) results in an intractable Fourier transform
involving the Mittag-Lefller function. On the other hand, the Mittag-Leffler function
has a simple Laplace domain representation. Transformed into Laplace space, Eq.

(8.5) becomes
5771

n(z,8) =ng Y om(2)——— (8.9)
m=1

ST 4wy,
where without loss of generality we have taken tg = 0.

Applying the Poisson summation theorem to Eq. (8.9) gives the equivalent form

n(z,s) = e Z [675|2Lm7(zfzo)\ _ 676|2Lm7(z+z0)\] , (8.10)

m=—o00
where the space-independent parameters o and 3 are defined as

nosfy—le—/\zo

)= e /o T D

S'Y—G—DL;Y)\Q
Bs) = V2T 2L N (8.12)

Simplifying Eq. (8.10), we obtain the closed form expression

(8.11)

Ao [ =Bla—zol _ —~Bl+z0l _ 4sinh (S2) sinh (820)
e2BL 1

n(z,s) = ae (8.13)

A necessary condition for convergence to the closed form expression Eq. (8.13) is
|exp(—25L)| < 1, (8.14)

which defines the region of convergence of the Laplace domain function Eq. (8.13).

It should be emphasized that Eq. (8.13) is a general result, valid for fractional and
non-fractional cases. For normal (non-fractional) transport, v = 1, and Eq. (8.10) has
an analytic inverse Laplace transform that reduces to Eq. (7) of [271], where it was
obtained using time domain methods. For dispersive (fractional) transport, v < 1, and
an analytical inverse Laplace transform is difficult to find, so the applications presented

below required numerical inversion of the Laplace transform?!.

"Numerical inverse Laplace transformation was achieved using Matlab code published on the Math-
works File Exchange by W. Srigutomo (http://www.mathworks.com/matlabcentral/fileexchange/
9987). For large values of the parameter § (defined in Eq. (8.12)), the Multiple Precision (MP)
Toolbox for Matlab (http://www.mathworks.com/matlabcentral/fileexchange/6446) was required
to obtain numerical convergence. The MP Toolbox uses the open-source GNU Multiple Precision
Arithmetic Library (http://gmplib.org/).
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Figure 8.1: Simplified time of flight schematic used in current derivation. The two
electrodes at z = 0 and z = L have potentials V[, and Vi, respectively. A surface
S cuts through the sample at z = 2/; the volume V is the space between the z = 0
electrode and the surface S.

8.3 Currents and the Sum Rule

8.3.1 Current in the time-of-flight experiment

To calculate the current that would be measured in a time-of-flight experiment, we
consider the measurement apparatus (Figure 8.1). An electrode at z = 0 is held at
a potential V by an external power supply, and the opposite electrode at z = L has
potential V; and is connected via a resistor R to the ground. We define a surface &
which is normal to the electrodes at a position z = 2/, and a volume V which is the
entire area between the z = 0 electrode and the surface S, as indicated in Figure 8.1.

The overall current will consist of a conduction current and a displacement current.
Integrating across the width of the sample:

eeo d

I
=— in(2,t)d2 + —— — 1
T i+ P8 06 -1, (8.15)

where J is the total current density, j,(2’,t) is the conduction current density passing
through the surface S, and ee¢p is the permittivity of the semiconducting material.

If the time-of-flight experiment is conducted in differential mode (RC < t4.), the
voltage Vj — Vi is essentially constant, and the second term in Eq. (8.15) vanishes.

Then the overall current density is simply the space-averaged conduction current:

1 L
J = / Jn(2', t)d2". (8.16)
L 0

Care must be taken to evaluate the current density j, correctly. Some of the charge is
trapped, so the current density is not proportional to the number density. The proper

way to calculate j, is by the rate of charge leaving the volume V:

’

Jn(Zt) = —d/z en(z,t)dz
n ) dt 0 ) *
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Using Eq. (8.16):
J=—

Q.‘Q‘
\

% /0 n(z,t)dzdz'.

Changing the order of integration:

L L
J = —th/ n(z,t)dz'dz
0 z
e d L
d
= d{ / zndz—/ ndz} (8.17)

Substituting the time domain n(z,t) solution Eq. (8.5) into Eq. (8.17), the current
density is found to be
oo
= kmt By (—wmt), (8.18)
m=1
with

26”067/\ZO/€mDL, . m
72 7 sin (km=z0) [2)\DL,7 (eAL (=)™ — 1) — me} .

Rm =

The expression given in Eq. (8.18) can be slow to evaluate, because a large number
of terms are required for the series to converge. A closed form solution can be found

in Laplace space by applying Eq. (8.17) to Eq. (8.13):

Azo

J(s) = eng (1 fo) + enge” ZO{ (1 + L()\fiﬁ)) (e_/BZO _ eAzo> + ZOZ
A+6) 1 N

i ﬂzﬂ( (m—m‘l)‘smwm[e o

2 e PL

Ao D —B)—e 21 - _
L (A2 52)+2,8L{/\+5 L(A-p) [1—-L(A ﬁ)]}])}. (8.19)

8.3.2 Sum rule for asymptotic slopes

Experimental time of flight current traces plotted on double logarithmic axes often
demonstrate two distinct straight line regimes (see, for example, Figure 8.5), a distinct-
ive shape which has been described as the “signature” of dispersive transport [78]. In
many materials, the sum of the slopes on logarithmic axes of these two regimes is very
close to —2 (Refs. [78,273]), a prediction originally made for a continuous time random
walk model by Scher and Montroll [77]. In what follows, we prove that our expression
for the current, Eq. (8.18), demonstrates the same “sum of slopes” criterion.

The small argument asymptote of the Mittag-Leffler function can be written down

from its power series definition, Eq. (8.7). The result is

E,o(—wmt?) ~ —wpt?,

Chapter 8. The Fractional Advection-Diffusion Model 107



Philippa, Bronson Charge Transport in Organic Solar Cells

where we have neglected terms of order O ([wmﬂf) and higher. Substituting this into
Eq. (8.18) we find the early time current to be

oo
Jearly(t) =~ Z — Kt Yt ~ L
m=1

Conversely, for the long time current, we use the large |z| asymptote valid for negative
real z [274]
P i )
o)== ey -0 (+)
a,,B(Z) ];F(,B—Oék) + |Z’
If ¢ is large, then by taking p = 1 we obtain the following form for the long time current
i L (—wnt?)
Nate (t) = = Kml™ ~—
— I'(=v)
~ 1) v # 1.

In summary, the asymptotic forms of the current for v # 1 are

t~(=7 carly times
J(t) ~ (8.20)
t— 1+ late times,

in agreement with the sums of slopes condition.

It is noteworthy that these asymptotes are independent of the boundary condi-
tions imposed on the system. When solving the fractional diffusion equation n(z,t) is
factored as n(z,t) = Z(z)T'(t). The time-dependent function, 7'(t) can be expressed

in terms of Mittag-Leffler functions
n(z,t) =Y Zm(2)Ey (cmt), (8.21)

where ¢, are the separation eigenvalues found by applying the boundary conditions to
the differential equation for Z(z). The asymptotes of the Mittag-Leffler functions [274]
are such that physically acceptable solutions must have ¢, < 0 so that n(z,t) remains
bounded as ¢t — oo. Imposing only the requirement that the boundary conditions
result in a negative separation constant, using Eq. (8.17) the current must take the

form

L
_ z
Jt) = ; {t LB o (emt?) /0 <Z - 1) Zm(z)dz} .
Using the asymptotic limits detailed above, the time dependence may be brought out-
side the summation, and the the same temporal asymptotes detailed above then follow.

This result is independent of the spatial boundary conditions and hence independent
of the specific form of Z(z).
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8.3.3 Transit Time

The transit time can be obtained from the expression for the total number of charge

carriers within the medium. Defining

L
N(s) = / n(z,s)dz
0
we find in Laplace space

v _ 10 [ _ —(\B)z _ Sinh (B20) _xz (AL -BL
N . [1 e o (ﬁL)e (e e ) . (8.22)

To simplify the mathematics and obtain an estimate for the transit time, we neglect

diffusion by taking the limit D, — 0:

- no —s7 (L — zp)
Npp,=0 = — (1—exp [M : (8.23)
In the classical case with v = 1, the above equation has the expected inverse

Laplace transform

i L— 2z
N(classmal) (t) — no |:1 - (t . >:|
Dp=0 )
L W’Y
where H(t) is the Heaviside step function.
For the dispersive case, where v < 1, Laplace inversion by complex contour integ-

ration gives
> L — 20 m
Np, =0(t) =m0 > Ny <> , (8.24)
7 = WLty

where
(=)™ sin (mm) T (3m)
mm! '

T,y

In the special case of v = 1/2, the power series Eq. (8.24) is equivalent to the closed

form expression

(v=0.5) /y _ L — 2
NDLw:O(t) = ng erf <2WW\/E> , (8.25)

where erf is the Gaussian error function. It is interesting to note that Eq. (8.25)
demonstrates great dispersion despite it being a zero diffusion limit of the true behavior
of the system.

A clear transit time cannot be precisely defined because the packet of charge carriers
becomes widely dispersed. Nevertheless, there exist two regimes of current transport
behavior, and the boundary between these regimes can define a “transit time” for
the material. It can be seen that two distinct regimes will emerge from Eq. (8.24),

according to the magnitude of the term in parenthesis. The transit time, defining the

Chapter 8. The Fractional Advection-Diffusion Model 109



Philippa, Bronson Charge Transport in Organic Solar Cells

transition between regimes, is therefore approximately given by

L— 20
W’Ytzr

~ 1.

Solving for the transit time t,

L—ZO 1/7
L~ . 2
t ( - ) (8.26)

This is in agreement with the expected experimental length and field dependence
[77,78,273].

8.4 Results

The model discussed above has five parameters: the fractional drift velocity W, the
fractional diffusion coefficient Dy, -, the fractional order v, the initial source location 2y,
and the length of the sample L. These parameters are constrained such that 0 < v <1,
0 < zp < L and Dy, > 0. The effects of varying the first three of these parameters will
be discussed below. The remaining two, the initial location and length of the sample,

have obvious implications for the number density profiles.

8.4.1 Impact of the fractional order

The fractional order v is a dimensionless quantity which defines the degree of the
trapping within the medium, with a smaller value corresponding to greater and longer
lasting traps. The maximum value of v = 1 corresponds to “normal transport,” which
is governed by the classical (non-fractional) diffusion advection equation.

The impact of v on the current is demonstrated in Figure 8.2. For non-dispersive
transport (7 = 1), the result is essentially a time independent (displacement) current
until a sharp cutoff where the charged particles exit the system through the electrode.
The finite drop off time is a reflection of the diffusion in the system. For dispersive
transport, the departure of the current traces from the classical profiles is enhanced
as the fractional order decreases. The fractional order v defines the slopes of the two
regimes, and hence, characterizes the fundamental shape of the current trace. The
relevant relations are given in Eq. (8.20) above.

Number density profiles corresponding to the aforementioned current solutions are
shown in Figure 8.3. Solutions for v = 1 exhibit a moving Gaussian “pulse” of charge
carriers, spreading according to Dy, - and drifting according to W,. This is shown in
Figure 8.3a.

For v < 1, the signature of fractional or dispersive behavior appears. In this mode,
the number density profile retains a “memory” of the initial sharp spike at z = zg.
This peak in the density profile does not drift with W, as it does in the non-dispersive
case. This long persistence of the initial condition has previously been mentioned in the

literature [77,195,268]. The smaller the value of v, the more dispersive the transport.
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Figure 8.2: Impact of the fractional order v on the time-of-flight transients. Each curve
is the current resulting from the respective number density solution of Figure 8.3.
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Figure 8.3: Impact of the fractional order « on the space-time evolution of the number
density. In these plots, W, = 40/L and Dy = 1/L%.
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Figure &8.5: Comparison of the model with experimental transients for

trinitrofluorenone-polyvinylcarbazole, digitised from Ref. [77]. There is an excellent
agreement, demonstrating that the fractional diffusion equation can correctly describe
charge transport in this system.

Indeed, for strongly dispersive systems, the spike at z = zp is the most prominent
feature of the entire charge distribution for much of its lifetime. This sharp spike is

most clearly illustrated in the contour plots of Figures 8.3c and 8.3d.

8.4.2 Impact of the drift velocity and diffusion coefficient

The fractional drift velocity has units of m/s”, and describes the tendency of the
charged particles to drift in the positive z direction. The fractional diffusion coefficient
has units of m?/s7, and describes the tendency of the charged particles to diffuse down
the concentration gradient. The effects of varying W, and Dy , are demonstrated
in Figure 8.4, for a weakly dispersive system (v = 0.8) and for a strongly dispersive
system (y = 0.4). The relevant parameters are indicated in the figure captions. For
both systems, an increased W, sweeps the charge carriers further to the right, and an

increased Dy, , spreads the charges over a wider area.

8.4.3 Comparison with time-of-flight data

To demonstrate the process by which this model may be fitted to time-of-flight ex-
perimental data, we consider the data for trinitrofluorenone and polyvinylcarbazole
(TNF-PVK) presented as Figure 6 of [77]. The data were digitized from the scanned
plot, and the slopes of the two regimes was used to furnish an estimate for v. We used
L =1 to give a normalized length scale; and selected the initial source location zy to
be 0.2, since the model is largely insensitive to the location of the source, provided it

is sufficiently far from the electrodes to avoid substantial “back diffusion.”
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The intercept of the two straight lines was taken to be the transit time t;., and the

following equation was used to furnish an estimate of W, which provided a starting

1

1/L—2\>
fip ~ = : 8.27
' 2( Wy ) (8:27)

the factor of 1/2 being an empirical correction that gives better results when compared

point for curve fitting;:

with the order of magnitude estimate Eq. (8.26). There need not be a generalised
Einstein relation linking W and Dy , for such systems. However, to give an initial
starting point for the curve fitter, the diffusion coefficient was taken as Dy, ~ W, /20.
We note that the measured current is insensitive to diffusion because of the strongly
dispersive transport that is present, and so the precise value of Dy - is insignificant.
The parameter estimates discussed above were used as the starting point for non-
linear least squares curve fitting. The Matlab Curve Fitting Toolbox was used. The

result of the model fitting is shown in Figure 8.5. The fitted v parameter is 0.83.

8.5 Conclusion

We have demonstrated a fractional advection diffusion equation modelling the hop-
ping transport observed in many disordered semiconductors. We have shown that the
infinite series of Fourier modes [Eq. (8.5)] for the bounded solution can be collapsed
into a closed form expression using the Poisson summation theorem [Eq. (8.13)]. It
this closed form expression that then facilitates the extraction of model parameters
from the experimental data using a simple curve fitting routine. We have modelled a
time of flight experiment by assuming the initial condition n(z,ty) = nod(z — 2z9). We
have calculated the resultant electric current, and shown that the sum of slopes on
logarithmic axes is —2, as predicted by other models and as verified by experiment.
It is possible to extend this solution to sources of finite duration or finite width, by

integrating with respect to tg or zp, respectively.
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GGeneralised Diffusion Equations and
Fractional Kinetics

This chapter contains material that has been published in the following journal article:

[4] Bronson Philippa, R. E. Robson, and R. D. White. Generalized phase-space
kinetic and diffusion equations for classical and dispersive transport. New Journal of
Physics, 16, 073040 (2014). doi:10.1088/1367-2630/16/7/073040.

Ron White and Rob Robson supervised the work, derived the phase-space model
and its reduction to configuration space. It is simply stated here as the starting point
of this chapter. The interested reader is referred to the above publication for further
details. The configuration space analysis, which formed the second half of the above
article, was performed by me and is presented here in greater detail than the above

publication.

9.1 Introduction

The previous chapters applied advection-diffusion equations to various transport prob-
lems. The solution of these equations is a number density n(r,t). They are known as
“configuration space” models, and are approximations of a more fundamental “phase
space” description that also includes velocity space. Configuration space approxima-
tions are only valid in the hydrodynamic regime of smooth spatial gradients [207]. It
is therefore fortunate that many physical systems, including ordered semiconductors,
rapidly approach this regime. Consequently, configuration space models are often an

excellent description of the dynamics of such materials.
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A rapid approach to the hydrodynamic regime occurs when collisions dominate and
memory of the initial condition is lost after only a few collisions. Any large gradients
in the number density will be quickly smoothed. For such “classical” transport, the
corresponding diffusion equation is a conventional partial differential equation of first
order in ¢ and second order in r. Such systems are characterised by a diffusive regime
wherein the mean square displacement grows linearly, i.e. (x2) — (x)2 ~ t. In contrast,
disordered semiconductors, such as those studied in this thesis, often demonstrate
“anomalous” diffusion, wherein the mean square displacement is nonlinear, i.e. (22) —
(x)? ~ 7 where v # 1 [77,195,268, 275].

Subdiffusion occurs when v < 1. It arises from repeated trapping and de-trapping
of the transported species, in which periods of “classical” transport are interrupted by
(potentially long) periods of immobilisation. Consequently, the memory of the initial
condition may persist for long times, and large gradients are not necessarily smoothed
out. As in the previous chapter, such effects are often accounted for by replacing the
conventional time derivative with a fractional derivative [266,276-279]. The fractional
derivative accounts for the memory effects. However, the spatial gradient terms are
left intact, and thus the weak gradient assumption is therefore still implicit. This is an
apparent contradiction that challenges the validity of the fractional diffusion equations.
Until now, this issue has only been addressed in an ad-hoc manner, through solution of
an exactly solvable model kinetic equation in phase space [280]. The phase space system
does not require the assumption of weak gradients, so this questionable assumption is
avoided. In that study [280], trapping effects were incorporated in the collision term,
and even though the theory is consistent, it is nevertheless ad-hoc and warrants further
scrutiny.

Recently, we resolved the ad-hoc nature of the previous approach by developing
from first principles a new, physically-based, exactly solvable model kinetic equation
[4]. A schematic of the fundamental processes is shown in Figure 9.1. Freely moving
carriers may be captured by trap states, where they are held for some period of time
drawn from a waiting time distribution ¢(t). This distribution is defined such that the
probability of being released after an time in the interval ¢ to ¢t + dt is ¢(t)dt.

The resultant phase space model is [4]

(8t+v'v+a‘av) f:_l/[f_d)*fdetrap]’ (9'1)

where f is the free particle distribution function, a is the external acceleration, v is a
rate constant for the trapping process, and fgerqp is the distribution function for the
newly detrapped carriers. We assume that the velocity distribution of these carriers
is a Maxwellian. This is an arguable assumption, in that it assumes that de-trapped
carriers are effectively instantly thermalised with the medium temperature 7. The

resulting distribution function is

f (r,v,t) =n(r,t) mn 3/2e _m]v|2
detrap\T', V, 1) = NI, 27TkBT Xp 2kBT )

Chapter 9. Generalised Diffusion Equations and Fractional Kinetics 116



Philippa, Bronson Charge Transport in Organic Solar Cells

Velocity A 5 5 Free states

Free carriers

[
X o

Free carriers

Trapping

- De-trapping to a
// ; ' |Maxwellian distribution

' [of velocities
1

él 5 Localised states

Trapped carriers

Figure 9.1: Key processes occurring in the kinetic model. Freely moving charges
may be scattered into localised states. The newly detrapped charges emerge with a
Maxwellian distribution of velocities at the medium temperature.

where n(r,t) = [ f(r,v,t)d>v is the number density, m is the carrier mass (or effective
mass), kp is the Boltzmann constant, and T is the medium temperature. Solving this
model [4] for ideal time-of-flight conditions yields the “generalised diffusion equation”
for the free charged particle density
on on 0’n
— +v|[l—¢(n+vg— — D=5 =
gr TV oxdn g = Digs

where vy is the drift velocity, and Dy is the longitudinal diffusion coefficient. Note

0, (9.2)

that in contrast with the previous chapter, vy and Dy, are standard drift and diffusion
coefficients and do not have fractional units.

In this chapter, we shall analyse the generalised diffusion equation (9.2). We find
the analytic solution and then cast it into closed form by following the mathematical
procedure that was developed in the previous chapter. Next, we analyse the role of
the waiting time distribution ¢, which is the key feature that differentiates Eq. (9.2)

from other drift-diffusion models, including the fractional form from Chapter 8.
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9.2 Formulation for Time-of-Flight

As in the previous chapter, we consider an ideal one-dimensional time-of-flight system.
We introduce a slab of material of thickness L between two plane-parallel electrodes,
the normal direction defining the z axis of the system of coordinates. We take absorbing
boundary conditions, n(0,t) = n(L,t) = 0, and an impulse initial condition, n(z,0) =

nod(z — zp).

9.2.1 Series solution

Equation (9.2) is solved by separation of variables. We write n(z,t) = Z(z)T'(t), and
substitute into Eq. (9.2) to obtain:
T+v[l—¢«T —vyZ'+Dp2"

T - 7 “

(9.3)

where dots indicate time derivatives and primes indicate spatial derivatives, and c is
an arbitrary separation constant. The spatial equation, i.e. the one involving Z, is
identical to the ordinary diffusion equation (without any trapping effects). Its solution

is

m7rz> ’ (9.4)

Z(z) = i A e sin ( 7
m=1

where A = vy/2Dy, and A,, is an arbitrary constant of integration. The separation

constant ¢ is negative and multi-valued:

Cm = ————= — Dp\?. (9.5)
The temporal equation, which is unique to this model, is
T + V[l — ¢x|T — e, T = 0.

The convolution hints that a Laplace transform might be useful. Solving this equation

in Laplace space yields

7(0)
s+v[l—¢(s) —cm’

T(s) (9.6)

Combining these according to the separation ansatz n = Z(2)T(t), the general solution

is

oo
1
n(z,s) = Z Ape™ sin (mwz

L ) s+v[l—o¢(s)] —cm’ (07)

m=1

where T'(0) has been merged into A,,.
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The integration constants A,, will be specified by the initial condition. Using the

initial value theorem,

mmz\ .. 1
n(z,0) = npd(z—z0) Z A sm( 7 )Slggo T vl — ()T — o (9.8)

The limit must converge to unity for any probability distribution!.

This is a Fourier series, from which we find the Fourier coefficients A,, to be

C2n0 . (MT20
Ap = I ¢ sm( 7 ) . (9.9)

Combining all the above, the solution is

o0

n(zs) =Y M0 A(z—20) €08 [maL™" (2 = 20)] -~ cos [ma L= (2 + 20)]
= LD (s+ v[1 — 0())) D! + A2 + m2n?L 2

(9.10)

The transformation from sin to cos was done to facilitate the use of the Poisson sum-

mation theorem.

9.2.2 Poisson Summation

As per the previous chapter, the Poisson summation theorem is useful in collapsing

infinite series like Eq. (9.10) into closed form. Recall that the Poisson summation

Z F(mT) = :Z ( ) (9.11)

m=—00 -

where F(k) is the Fourier transform of f(mT'). The first task is to write Eq. (9.10) in
the form of the left hand side of Eq. (9.11). We introduce the parameters

theorem is

no _
a = 76)\(2 20)

LDy,
B2 = (s+v[l—¢(s)])/Dr+ N
s
T = —
L
to obtain
(2.5) = a i cos [mT (z — z0)] — COS£mT(Z+Z())]‘
B2+ (mT)
!The non-trivial term in the denominator is
lim @
5—00 S

The numerator tends to zero in the limit of large s because the integrand vanishes exponentially

o]

lim ¢(s) = lim e S o(t)dt — 0,

S5—00 s—00 Jq

and consequently,
lim L(S)

8§—>00 S

=0.

All other terms on the denominator in (9.8) have trivial limits as s — co.
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The limits of summation can be extended to —oo because each term is an even function

of m:

a ~= cos[mT (z — 2] — cos [mT (z + 2

m=—0oQ

Further, the cosine function can be replaced by the exponential representation

etmT(z—20) _ eimT(z—i-zo)
n(z,s) = = 0] )
2 51 ()

m=—0oQ

which is a valid transformation because the imaginary component of each exponential
is an odd function of m, and so all the imaginary components will cancel when the
summation is taken. This equation now resembles the left hand side of Eq. (9.11).

The next task is to take the Fourier transformation. The necessary integral is

o0 it(z—20) _ pi7(2+20)
_ —2rikt € €
Fk) = /_Ooe e

This integral can be evaluated using complex contours and the residue theorem. The

result is
_ T [ —Bl2rk—(z—20)| _ ,—Bl2mk—(z+20)|
F(k) 5 {e e ] .

Finally, the Poisson summation theorem can be applied. We find

e = 5 S P ()

= ?gzﬁe)\(z—m) m;m lexp (=B |2mL — (z — z0)|) — exp (=B |2mL — (z + 20)])] .

By separately considering the cases of m < 0, m = 0, and m > 0, with the cases of
z < zp and z > zg, this can be recognised as a geometric series with the closed form

expression

n(z,s) = (9.12)

ngez—%0) o—Bla—zol _ —Blatzol _ 4 sinh (5z) sinh (Bz0) .
2D e2bL — 1

Equation (9.12) is the analytic solution to the time-of-flight problem.

9.2.3 Time-of-flight current

Since n(z, s) represents free charge, rather than total charge as in the last chapter, the

current expression is simply

L
] = % ; ndz
_ o L ANemz0) [ g Blazol _ y—Bletzol _ 4 sinh (5z) sinh (8z0) d.
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Figure 9.2: Modelled current transients for ideal time of flight experiments, showing the
impact of various waiting time distributions ¢. Results are plotted in normalised units,
where jj is the initial current for the trap-free model, and ¢y, = L/vy is the trap-free
transit time. When ¢(t) = §(¢) (top line), no trapping occurs. In the other cases, the
transients are influenced by trapping but the results exhibit “classical” transport with
well-defined drift velocities and diffusion coefficients. The trapping rate is v = 103 /t;.,
the reciprocal of which gives the timescale for the transition to trap-limited transport
in the case of an exponential waiting time distribution. The first moments of the
waiting time distribution functions from top to bottom are respectively 0, 0.01, 0.03,
0.1, 0.3, in units of #;-. The dimensionless diffusion coefficient is Dyty./L? = 0.02.
The initial delta-function pulse is at xg/L = 0.1. [In the legend, ¢(s) is the Laplace
transform of ¢(t).]

Evaluating this integral and simplifying,

50 = gy (e [ Sy (e )]) - e

To this point the discussion is quite general, but to go further, we must specify

(t)-

9.3 Role of the waiting time distribution

9.3.1 Waiting time distributions ¢(t) with a finite first moment---'classical’
transport

To study the impact of the waiting time distribution on the solution, we initially
considered several simple ¢(¢) functions. Time of flight transients were calculated
using Eq. (9.13), numerically inverting the Laplace transform. Dimensionless results

are shown in Figure 9.2, where time is scaled to the transit time t;,, = L/vg through a
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sample of thickness L, and concentration is scaled to the initial concentration N (0). In
this system of units, the normalised drift velocity is equal to 1. We set the normalised
diffusion coefficient to Dpt;./L? = 0.02.

The simplest choice for the waiting time distribution is the Dirac delta, ¢(t) = ().
In this case, de-trapping occurs instantaneously and consequently has no impact. The
system reduces to the standard advection-diffusion equation.

Another choice is an exponential distribution, ¢(t) = e~/ /7. Two examples with
exponential distributions are shown in Figure 9.2, which different first moments, 7.
The initial trap-free transport transitions into trap-limited transport on a timescale
governed by the collision frequency (~ v~!). The trap-limited transport is charac-
terised by an increased transit time (and hence decreased effective drift velocity) for
increased 7 because of the additional time spent in traps. For the same reason, the
current density j falls with increased 7. Nevertheless, the transport is not dispersive,
and there exists a clear time-of-flight arrival time.

A final option explored is a first-order truncation of the series expansion of the
exponential waiting time distribution in Laplace space: g/b\(s) ~ 1—7s, where again 7 is
the first moment of the waiting time distribution function. As can be seen from Figure
9.2, the first moment of ¢ controls the long-time behaviour. Higher moments can only
influence the behaviour at shorter times, as is demonstrated by the differences between
the cases with an exponential distribution and those with the Laplace domain series

expansion.

9.3.2 Relating the waiting time distribution to a density of trapped states

Rather than simply assuming an ad-hoc waiting time distribution, it may be useful
to calculate it from a more fundamental physical model. In what follows, we give a
specific example for how this might be achieved. We consider a semiconductor with
traps that form a density of localized states below the band gap. The release times
¢(t) are determined by the distribution of these traps in energy space.

To describe this semiconductor, we use a multiple trapping model with a uniform
capture (trapping) cross-section [212] for charge carriers. We define the density of
localised states to be g(€), where € < 0 is the energy relative to the conduction band.

If the rate of escape from a trap at energy e is proportional to exp(e/kgT) then

0
o(t) = 1/0/ g(e)e*8T exp {—tuoeg/kBT} de, (9.14)

where 1 is a frequency characterizing the rate of escape from traps. The density
of states g(e) can be measured experimentally [222,281]. In this case we assume
an exponential distribution, which occurs in certain organic and inorganic materials
[12,120]. Then g(e¢) = e/*8T¢ /KT, where T, is a characteristic temperature that
describes the width of the density of states. Eq. (9.14) yields

¢(t> = alp (tVO)_a_l Y (OZ +1, tl/(]) ) (915)
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Figure 9.3: Modelled current transients for ideal time of flight experiments using the
waiting time distribution (9.15), which was calculated for a semiconductor with an
exponential distribution of localised states. An initial trap-free regime transitions into
strongly-trap limited dispersive transport. Transport parameters are the same as Fig.
2, except for the alternative waiting time distribution. These plots were calculated for
Vot = 5 x 10°. The transition between “classical” and dispersive regimes occurs at

t/ty ~ (V)L

Chapter 9. Generalised Diffusion Equations and Fractional Kinetics 123



Philippa, Bronson Charge Transport in Organic Solar Cells

where (-, -) is the lower incomplete Gamma function?, and a = T/T.. This distri-
bution appears in the literature of the multiple trapping model, for example, Eqn (9)
of Ref. [213]. This distribution is normalized, and it has a divergent first moment,
sufficient to describe dispersive transport [192,282,283].

Figure 9.3 shows typical time of flight transients together the waiting time distri-
bution Eq. (9.15). Initially, all carriers are assumed to be untrapped. At short times
the profiles are classical, with a transition to dispersive behaviour at longer times as
the carriers begin to enter the trap states. In the dispersive regime, the sum of slopes
is -2, exactly as expected for an exponential density of states [77]. We note that a
different form of dispersive transport may arise from a different density of states, and
that our model can be readily adapted by evaluating Eq. (9.14) with the appropriate
g(e) function.

The parameters used for Figure 9.3 were chosen as follows. The attempt to escape
frequency vy is extremely fast (e.g. ~ 10'2 Hz for a realistic system [212]), so we
consider only the situation where vty > 1. We selected ot = 5 x 10° for Figure
9.3. The trapping frequency v, which is a new feature of our model, must be large
enough that vty > 1, otherwise there will be negligible trapping events before the time
of flight experiment has concluded. In Figure 9.3 (a), we demonstrate the influence
of this parameter. It controls the time scale for the transition between classical and
dispersive transport. Finally, if the transport is dispersive, the temperature 7" must
be below the critical temperature T, [212]. We examine the range 0.5 < T /T, < 0.9 in
Figure 9.3 (b). It can be seen that the slope of the current transient is controlled by
the temperature.

Our generalised diffusion equation (9.2) provides a framework for a unified analysis
of transport, whether dispersive or classical. It is pertinent at this point to highlight
that in the long time limit, one can make direct connection to the fractional diffusion
equation literature [192,282,283]. If we consider the Laplace transform of the waiting
time distribution Eq. (9.15)

GO <s>“+ . (1,—a;1 _a;_8>, (9.16)

sinam \ vy 1

where o F} is a hypergeometric function, then the small s (long time) representation of
this is

B(s) ~ 1 — ros®. (9.17)
Here the coefficients of the s® term have been collected into a single parameter r, =
vy “am/sin o, which weights the relative importance of trapping effects. By substi-
tuting Eq. (9.17) into (9.2), and taking the limit of small s, one obtains a fractional
diffusion equation, with a Riemann-Liouville or Caputo form of the fractional deriv-
ative depending upon whether one solves for untrapped charge or total charge. These

fractional equations result from a waiting time distribution that was calculated using

*The lower incomplete gamma function is y(a, z) = [ t*~ e~ "dt.
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an exponential density of trap states. It remains to be seen whether alternative “frac-
tional” equations could be formed by considering different distributions for the density

of trapped states.

9.4 Concluding remarks

In this chapter we have studied a generalized diffusion equation (9.2) for transport in
disordered materials. This equation is grounded in a phase-space kinetic model that
accounts for both free particle transport and trapping/detrapping from localized states,
described by a waiting time function ¢(t). This model provides a unified framework
for the analysis of transport, whether dispersive or not. The nature of the transport
is strongly influenced by the waiting time distribution, and in particular, the first
moment of this distribution plays a dominant role. By way of example, this model was
applied to a disordered semiconductor, obtaining dispersive transport if the density of
states is exponential. Other distributions (e.g. a Gaussian) might be expected to yield
different detailed behaviour, which could be calculated using the generalized diffusion

equation presented here.
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Conclusion

10.17 Summary

Charge transport is a key contributor to the performance of any electronic device.
In the specific case of organic solar cells, high power conversion efficiencies can only
be achieved if charges are quickly extracted without significant recombination losses.
The charge transport properties of current organic photovoltaics are inadequate, for
example if device thicknesses are to be increased for optimal light harvesting, or be-
cause of inhomogeneities in large-scale fabrication. There is a need for better tools to
quantify charge transport, which should lead to improved physical understanding and
perhaps guide future performance gains. This thesis addressed these issues with the
development of new experimental techniques that contributed physical insights into
the charge transport mechanisms in a variety of OPV systems.

There is a huge design space of charge transport experiments that can be conceived
using only a light source, arbitrary waveform generator, variable load resistor, and
oscilloscope. Over the course of this project, many such experimental configurations
were simulated. The simulations quickly identified those which were most promising
in terms of robustness and accuracy, and also excluded many that were intuitively
plausible but did not stand up to the rigorous analysis provided by the simulation
software. The most promising techniques were further refined, using the simulations
to learn how to recognise and work with non-ideal effects such as charge trapping
and dispersive transport. Armed with the knowledge gained from the simulations, this
thesis addressed questions of scientific importance regarding the impact of hot carriers,

charge carrier thermalisation, and recombination.
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Charge carrier thermalisation, in the form of a time-dependent mobility, was
studied in three different polymer:fullerene blends using two different experimental
techniques. The photo-CELIV technique was applied to poly[3,6-dithiophene-2-yl-
2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-naphthalene] (PDPP-TNT) :
[6,6] phenyl-C71-butyric-acid-methyl-ester (PC70BM) [220] solar cells. A shift in the
current maximum with increasing delay time was observed, as has previously been
reported in other organic solar cell systems [137,138]. However, numeric simulation
with a drift-diffusion model demonstrated that this shift is induced by the measure-
ment technique and does not necessarily indicate a genuine time-dependence in the
mobility. Quantitative analysis of the observed data revealed that carrier mobility is
not time-dependent in this system. This highlights a weakness of the photo-CELIV
technique: variations in the experimental conditions might induce artificial trends into
the apparent mobility. We also examined the impact of dispersion on photo-CELIV
transients, and found that a systematic change in the apparent mobility occurs when
the amount of dispersion is varied, even if the true mobility is held constant. This
would be complicate temperature-dependent studies, since the amount of dispersion is
often dependent upon temperature. It was concluded that care must be taken when
examining trends in mobility obtained via photo-CELIV.

Next, carrier relaxation was studied in poly[N-9”-hepta-decanyl-2,7-carbazole-alt-
5,5-(4’,7-di-2-thienyl-2’,1’,3’-benzothiadiazole)] (PCDTBT):PC70BM and poly|[4,8-bis-
[(2-ethylhexyl)oxy]|benzo[1,2-b:4,5-b’|dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl)car-
bonyl|thieno|[3,4-b]thiophenediyl]] (PTB7):PC70BM. These experiments were performed
using the novel technique of Resistance dependent PhotoVoltage (RPV), which was de-
veloped in order to address the limitations of photo-CELIV. There was no evidence
of any time-dependent mobility as the transit time was varied by changing the bias
voltage and device thickness. Similarly, there was no evidence of energetic relaxa-
tion extending to the timescale of charge transport when different wavelengths of laser
pumping were used. This is in contrast to the prediction of the influential Gaus-
sian Disorder Model that dispersive transport arises due to the energetic relaxation
of charge carriers. Our observations are inconsistent with this hypothesis, and so we
argue that dispersion in these systems is instead caused by charge trapping, and the
reduction in photocurrent that is typically attributed to a time-dependent mobility is
actually driven by the gradual loss of charges to deep trap states.

To study recombination, the RPV technique was extended to high light intensities
(HI-RPV). It was shown that low molecular weight PCDTBT (M, = 4.3 kDa, M,
= 12.1 kDa, PDI = 2.8) results in Langevin recombination, whereas high molecular
weight PCDTBT (M, = 22.7 kDa, M,, = 122.2 kDa, PDI = 5.4) results in non-
Langevin recombination with a reduction factor 5/8r ~ 0.07. This highlights that
molecular weight may need to be considered when optimising devices.

Next, we studied the steady-state short-circuit current as a function of light intens-
ity, which we call IPC, or intensity-dependent photocurrent. Simulations identified

that there is a critical threshold at which charge transport becomes inadequate and
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substantial non-geminate recombination begins. This threshold is the space-charge
limited current, Igge ~ \/m CU /toer | from which the required mobility, recom-
bination coefficient, device thickness, dielectric permittivity, and voltage can be calcu-
lated. We experimentally verified this prediction using solar cells of varying thickness
made from PCDTBT:PC70BM and PTB7:PC70BM.

The second theme of this thesis was related to generalised (or “fractional”) trans-
port models. It was demonstrated that the Poisson summation theorem is applicable
to the analytic solution of a fractional advection-diffusion equation. With the use of
the Poisson summation theorem, the result can be expressed concisely in closed form
in Laplace space. This is helpful in manipulating the analytic solution of such models.
Finally, a new form of generalised kinetic model was proposed and analysed. This kin-
etic model introduces trapping and de-trapping into phase space, with the de-trapping
mechanism specified via a waiting time probability density function. It was shown that
differing choices of the waiting time distribution result in qualitatively different types
of charge transport, and in particular, that the proposed kinetic model incorporates

both normal and dispersive transport within the same common framework.

10.2 Recommendations for Future Work

This is a broad field and there are many opportunities, but we have identified several
issues that directly arise from this work and can be addressed using the framework
and tools that we have developed.

Analysis of recombination via photo-CELIV—In Chapter 4, we demonstrated that
photo-CELIV measurements of the time-, field-, and temperature-dependence of mo-
bility may be misleading due to variations in the shape of the photo-CELIV transient.
The photo-CELIV technique is also used to study recombination, and it seems likely
that similar artefacts would affect recombination studies too. It is recommended that
simulations and experiments be performed in order to understand the impact of the
delay time, charge trapping, and dispersive transport on recombination measurements.

Time-dependent mobility in pristine polymers—We have shown in Chapters 4 and
5 that three polymer:fullerene systems display no evidence of mobility relaxation on
the timescales of charge transport, despite the fact that such dependencies have pre-
viously been reported (often with the photo-CELIV technique). An interesting test
case that we have not yet explored is whether there is any energetic relaxation in pure
polymer films, as opposed to polymer:fullerene blends. This would provide insight into
the microscopic transport mechanism that applies in polymer domains and/or at the
interface between polymers and fullerenes.

Impact of trapping on HI-RPV—The HI-RPV technique (Chapter 6) encounters
difficulties in the presence of deep trapping. The extracted charge does not saturate
to CU in the limit of large resistances, but instead to a value approximately 2-5 times
higher than CU. We performed some preliminary simulations that demonstrated this

effect when a substantial quantity of charge is trapped for long periods of time, but
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due to the time constraints of this thesis, this work was not yet completed. Further
analysis is needed in order to develop useful predictive tools.

Applying the Poisson summation theorem to other fractional equations—The Pois-
son summation theorem was shown to be useful in the analytic solution of a time-
fractional Caputo diffusion equation (Chapter 8), and a generalised diffusion equation
with a convolution term (Chapter 9). Given it was useful in these two distinct systems,
it is likely that other types of fractional equation would benefit from a similar treat-
ment. Many different fractional equations have been applied in the literature, and so
it is likely that some of these would be amenable to the techniques presented here.

Dispersive transport with non-exponential density-of-states distributions—The gen-
eralised diffusion model in Chapter 9 produces standard Scher-Montroll dispersive
transport when an exponential density-of-states (DOS) is used. However, some or-
ganic materials display different distributions, for example a Gaussian. To adapt the
model for a different DOS, one evaluates the release time integral [Eq. (9.14)] for the
new distribution. It would be interesting to examine whether other types of distribu-
tion can give rise to different types of dispersive transport, for example, whether the
“sum of slopes” can be varied from the Scher-Montroll/exponential DOS value of —2.

Dispersive to non-dispersive transitions—Fractional models for subdiffusion exhibit
instability in the presence of spatially varying fractional order [284,285], as might be
expected to arise in practice due to inhomogeneities in the material if the fractional
order depends upon the material structure or properties. This is an important issue be-
cause spatial variations might be especially likely in disordered media, precisely where
the existing (unstable) models are intended to be used! Preliminary analysis indicates
that the model described in Chapter 9 can avoid this problem by an appropriate choice
of waiting time distribution that triggers a transition to non-dispersive transport at
long times. It is recommended that the transition to non-dispersion be investigated as
a mechanism to prevent the structural instability in the fractional models.

Higher moments of the kinetic equation—In Chapter 9, the generalised kinetic
model was integrated over all velocities to obtain a particle balance. Higher order
moments in velocity space can be used to obtain, for example, a momentum balance
and an energy balance. These are likely to contain information about relaxation effects
that are associated with charge trapping, and possibly fields that are rapidly varying

in time or space.
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