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Abstract: The global dependence on finite fossil fuel-derived energy is of serious concern 

given the predicted population increase. Over the past decades, bio-refining of woody 

biomass has received much attention, but data on food waste refining are sorely lacking, 

despite annual and global deposition of 1.3 billion tons in landfills. In addition to negative 

environmental impacts, this represents a squandering of valuable energy, water and 

nutrient resources. The potential of carbohydrate-rich food waste (CRFW) for biofuel (by 

Rhodotorulla glutinis fermentation) and biogas production (by calculating theoretical 

methane yield) was therefore investigated using a novel integrated bio-refinery approach. 

In this approach, hydrolyzed CRFW from three different conditions was used for 

Rhodotorulla glutinis cultivation to produce biolipids, whilst residual solids after 

hydrolysis were characterized for methane recovery potential via anaerobic digestion. 

Initially, CRFW was hydrolysed using thermal- (Th), chemical- (Ch) and Th-Ch combined 

hydrolysis (TCh), with the CRFW-leachate serving as a control (Pcon). Excessive foaming 

led to the loss of TCh cultures, while day-7 biomass yields were similar (3.4–3.6 g dry 

weight (DW) L−1) for the remaining treatments. Total fatty acid methyl ester (FAME) 

content of R. glutinis cultivated on CRFW hydrolysates were relatively low (~6.5%) but 

quality parameters (i.e., cetane number, density, viscosity and higher heating values) of 
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biomass extracted biodiesel complied with ASTM standards. Despite low theoretical  

RS-derived methane potential, further research under optimised and scaled conditions will 

reveal the potential of this approach for the bio-refining of CRFW for energy recovery and 

value-added co-product production. 

Keywords: anaerobic digestion; biodiesel; fatty acid methyl ester (FAME); fermentation; 

Rhodotorula glutinis; yeast 

 

1. Introduction 

Bio-refining is an alternative to fossil fuel-based refining yielding high-value, low-volume, 

marketable products, i.e., polymers, pigments, nutraceuticals and biofuels as co-products [1,2]. It is 

defined as a more sustainable, efficient and flexible process for complete conversion of biomass into 

value-added products through integrated approaches [3]. Conventionally a variety of processes such as 

fractiontionation, liquefaction, hydrolysis, fermentation, pyrolysis, hydrothermal carbonization and  

bio-gasification are included to recycle waste biomass into value-adding products [2]. Employed 

refining processes are grouped into four main categories based on energy, economic and by-product 

developments, i.e., gasification-, pyrolysis-, hydrothermal- and fermentation-based bio-refineries [1,2,4]. 

A wide range of feedstocks can be bio-refined, but the selection of appropriate processes and their 

integration is important, yet little information is available at this stage for effective strategies for the 

bio-refining of food wastes, i.e., more than 80% biomass feedstock used in bio-refineries are wood and 

shrubs [2,5]. Technically feasible separation operation of the biomass, which would enable separate 

use or subsequent processing of whole biomass as feedstock through integrated biorefinery approaches 

are still in initial stages of investigation [6]. 
Globally, ~1.3 billion metric tons of food waste is generated annually which is estimated to increase 

in parallel with population growth [7,8]. Within the Australian context, the disposal of 2.29 million 

tons of food annually to landfills and the resulting biogenic degradation leads to emission of 11 million 

tons of greenhouse gas emissions (as CO2 (g) equivalents; [9]). The current technological capability 

offers few options for the transformation of food waste into bio-energy, but the net energy yields often 

exceed total energy input (e.g., pyrolysis-based bio-refining exceeded by 20%; [10]). Fermentation-based 

bio-refining (i.e., anaerobic digestion (AD), composting and direct fermentation processes) are widely 

accepted methods for food waste treatment yielding favourable end products such as biogas,  

bio-fertilizers and industrially important acids and alcohols (i.e., lactic acid, succinic acid, acetic acid, 

ethanol, methanol, etc.) requiring low energy inputs [11–13]. The main drawbacks with these 

conventional technologies are time efficiency (21 and 60 days for AD and composting, respectively), 

foot print area requirements, GHG emissions (i.e., CO2 and ammonia during composting), and  

process-associated health risks due to pathogen spread/odours (i.e., composting). Fermentation-based 

approaches are widely used either on their own or in combination with other treatment technologies for 

bio-refining of food waste, mainly to: (i) maximize recycling of nutrients/energy; and (ii) reduce 

treatment cost, time requirements and environmental burdens. However, there is no appropriate 

technology integration for mixed food waste treatment coupling energy and nutrient recovery potentials. 
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Mixed food wastes are rich in sugars, proteins, lipids, vitamins and minerals which are easily 

assimilated as raw materials for the production of high-value chemicals, bio-oil and polymers by 
microorganisms such as bacteria, yeast, fungi or algae [8,14]. Yeast is considered superior over other 
microorganisms due to high biomass growth rates, lipid accumulation capacity, fatty acid profile, and 
carotenoid, biopolymer and nutraceutical potential [15,16]. Although there are 600 identified yeast 
species, fewer than 30 species can be categorised as oleaginous with the lipidome accounting for >20% 
biomass and only very few produce carotenoids and biopolymers [17,18]. In addition, data on  
bio-refining of carbohydrate-rich food waste using yeast are limited, i.e., largely confined to reported 
yeast biomass production on other media. For instance, Yerrowia lipolytica (phylum Ascomycota) has 
been used for bio-refining of lipid-rich restaurant-food waste, which proved to be an excellent 
cultivation medium when coupled with hydrolysis of the complex sugars [19]. In contrast, the red 
yeast Rhodotorula glutinis (phylum Basidiomycota) has been cultivated on different wastewater  
media [16], food waste and municipal wastewater mixed media [20], glycerol- [15] and starch-containing 
wastewaters [21]. Another yeast, Cryptococcus curvatus showed higher productivity than Y. lipolytica 
when cultured on glucose-based media, but lipid content was 10% lower than R. glutinis cultured on 
food waste hydrolysates [20]. More than 70% increase in lipidome content per gram dry biomass has 
been achieved in R. glutinis under nutrient-limited (nitrogen and phosphate) culture conditions [22,23]. 
Of the total lipidome accumulated and synthesized, ≥90% is comprised solely of triacylglycerides 
(TAG), free fatty acids (<1%) (FFA) and steryl esters (SE) [24]. Furthermore, R. glutinis accumulate 
the high value bio-product β-carotene (1 kg ~ 1,600 USD) used commercially as a food colorant, 
nutritional supplement, cosmetic colorant, antioxidant and anticancer agent in pharmaceuticals [16]. 

These industrially relevant characteristics of R. glutinis make it a potential candidate for developing 

a fermentative bio-refinery concept for food waste treatment. As such, this study aimed to investigate 

an integrated bio-refinery process consisting of hydrolysis of carbohydrate-rich food waste (CRFW) 

and yeast fermentation of the resulting hydrolysate using R. glutinis for lipid accumulation. The 

residual solid from the hydrolysis pre-treatment were characterized for bioenergy potential to 

maximize energy recycling in the proposed bio-refinery approach (Figure 1). Effects of three different 

hydrolytic pre-treatments (thermal, chemical and thermo-chemical) on fermentative biolipid 

production and bioenergy recovery potential during the fermentative bio-refinery process of CRFW 

were investigated and results are discussed. 

2. Materials and Methods 

2.1. R. glutinis Culturing and Acclimatization 

A pure culture of R. glutinis FRR-4522, an isolate from dairy produce was supplied by the 

Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia. R. glutinis was 

subcultured and maintained on 2% agar plates prepared with Yeast Malt (YM) medium (3 g L−1 yeast 

extract; 3 g L−1 malt extract; 5 g L−1 casein peptone; 10 g L−1 dextrose). Cultivation of R. glutinis for 

CRFW conversion consisted of 350 mL YM broth and 100 mL hydrolysed CRFW (hydrolysis 

procedures are detailed in section 2.2) at a pH of 4 ± 0.01 in 1 L Erlenmeyer flasks. Seed cultures were 

maintained in YM liquid medium on a rotary shaker at 95 rpm for a minimum of 5 days (to a 

maximum of 7 days) at 28 ± 2 °C for biomass enrichment (≥5 × 108 cells mL−1) prior to inoculations. 
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The axenic state of seed cultures was confirmed by light microscopy (at 400× magnification on an 

Olympus CX21LED, Philippines) at every stage of the cultivation process. 

 

Figure 1. Proposed integrated bio-refining approach for carbohydrate-rich food waste 

recycling for biofuels 

2.2. Bio-Refining of Carbohydrate-Rich Food Waste 

CRFW was a mixture of bread (25.9%), oats (29.8%), cooked pasta (27.7%) and boiled rice 

(16.6%) which was homogenised (<1 cm3 particle size) by grinding (PB7600s MultiBlenderTM  

Pro-Sunbeam). The homogenized CFRW was characterized for various parameters before and after 

pre-treatment as detailed in Section 2.3. 

2.2.1. Hydrolysis of CRFW 

Feed slurry was prepared by adding 250 g CRFW to 1 L−1 of deionised (DI) water and refrigerated 

at 4 °C for 24 h to allow passive leaching of nutrients, whilst minimising microbial growth.  

The resultant mixtures represented the physical control (PCon) throughout the study (i.e., 4 °C  

24 h-leachate). The slurry was hydrolyzed using three different approaches: 

(i) Chemical hydrolysis (Ch)—acidic hydrolysis of the CRFW slurry at a pH of 3 ± 0.01 

adjusted with 2 M HCl (Sigma Aldrich, Australia) for 24 h at room temperature (25 °C); 

(ii) Thermal hydrolysis (Th)—autoclaving of the CRFW slurry using a standard moisture-heat 

procedure of 121 °C at 1013.25 hPa for 30 min (Tomy, VWR International, Murarrie,  

QLD 4172, Australia); 

(iii) Thermochemical hydrolysis (TCh)—a combined double hydrolysing procedure, where the 

chemical hydrolysis of the slurry preceded the thermal hydrolysis. 
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Following hydrolysis, hydrolysates were centrifuged at 15,900 × g for 20 min with 10 min 

deceleration at 4 °C (Avanti®J-26 XPI, Beckman Coulter, USA). The supernatants (hydrolysates) 

were decanted into sterilised 2 L Simax bottles for R. glutinis enrichment (as detailed in Section 2.2.2). 

Prior to inoculation with R. glutinis, total carbohydrate was determined for each hydrolysate  

(as detailed in Section 2.3) and pH was adjusted to 4 with addition of either 1 M HCl or NaOH (WP-81, 

Thermofisher Scientific, Australia). pH probes were cleaned and sterilized with an ethanol wash before 

each measurement. Residual solids (RS) were characterized for biogas and corresponding bioenergy 

(methane) potential was estimated using Buswell equation (as detailed in Section 2.3.3). 

2.2.2. Cultivation of R. Glutinis in Hydrolysates for Bio-Product Development 

500 mL of undiluted hydrolysates of each treatment were inoculated with R. glutinis ~ 1.0 × 109 

cells in sterile 1 L Simax reagent bottles with a modified polypropylene cap for aeration and 

ventilation. The culture bottles were maintained with a continuous airflow of 130 ± 0.7 L h−1 at 28 ± 2 °C 

for 7 days. Filtered air 0.45 µm syringe filter (Advantec, VWR International) was supplied via a 2 mL 

glass pipette connected to a Precision Air Pump 7500 (Aqua One, Local Aquarium, Townsville, 

Australia) and venting occurred via pipette tips filled with cotton wool. Although photo periods and 

light intensities are not limiting factors for lipid accumulation in saprophytic microorganisms,  

R. glutinis experiments were conducted under a 12:12 light:dark cycle as cultivation was carried out in 

the algal culture room at the North Queensland Algal Culture Identification Facilities (NQAIF, James 

Cook University, Australia). Growth of R. glutinis was monitored daily by cell count (Neubauer 

improved bright-line haemocytometer) and measuring dry weight (DW) gravimetrically [25] at days 0, 

1, 3, 5 and 7. Total carbohydrates were measured using the UV-sulphuric acid method [26] at days 1, 4 

and 7 and the system pH (portable pH meter-Oaklon®, Singapore) was measuered at days 0 and 7. 

Experiments were performed in triplicates and all sampling occurred in a sterile laminar flow cabinet 

(AES Environmental Pty LTD fitted with HEPA filter, Australia) to minimise contamination. 

Rhodotorula glutinis biomass was harvested from hydrolysates by centrifugation, was freeze-dried and 

extracted for transesterification into fatty acid methyl esters (FAME) [27]. In brief, ~ 30 ± 4 mg 

lyophilised R. glutinis biomass was measured into 8 mL Teflon capped glass vials (Supelco, Sigma-Aldrich). 

An equal volume (50 mg) of 0.5 mm zirconium oxide beads (Next Advance) was added to the 

biomass, serving as abrasive particles for mechanical cell wall disruption. 2 mL of freshly prepared 

methylation mixture, HPLC-grade methanol and acetyl chloride (95:5 v/v), was added and supplemented 

with 300 µL internal standard solution (Nonadecanoic acid-C19:0, 0.2 mg mL−1 HPLC-methanol). The 

methylated-biomass mixture was vortexed at 2,200 rpm for 30 s at 30 s intervals (Schneiter and Daum, 

2006). Once homogenised, vials were placed into a block heater (Ratek DBH30, Australia) at 100 °C 

for 60 min to facilitate transesterification of fatty acids to methyl esters. Heated samples were allowed 

to cool to room temperature, before adding 1 mL non-polar organic solvent (0.01% BHT w/w  

HPLC-Hexane) and mixing by inversion. Sample vials were replaced into the warm block heater for 

60 s, enabling the formation of a miscible mixture. Once cooled, addition of 1 mL UltraPure water 

(MilliQ, Life Technologies) separated the two phases. The upper FAME-hexane mixture was collected 

and filtered through a 0.2 µm PTFE filter (Agilent) prior to its injection into GC vials. Gas 

chromatography determination of FAME profiles were carried out on an Agilent 7890 GC with flame 
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ionisation detector (FID) and Electron Ionisation (EI) Turbo Mass Spectrometer (MS) (Agilent 5975C, 

Agilent Technologies Australia Pty Ltd). A DB-23 column with cyanopropyl stationary phase  

(60 m × 0.55 mm id × 0.15 µm) with He2 (g) injection (33 cm s−1 at 50 °C) at 230 kPa was used for 

sample separation. Constant inlet temperatures for injector and FID were maintained at 150 °C and  

250 °C with split injection of 1/50, respectively. Oven and column temperature settings were based on 

instrumental protocols by the manufacturer. Unknown FAME profiles were determined via 

comparison of peaks and retention times of pure external standards (C8-C24, Sigma-Aldrich), whilst 

the recovery potential was corrected using a factor derived from the known concentrations of 

nonadecanoic acid (C19:0) used as internal standards. Review of the literature and supporting data 

from procedure blanks confirmed that C19:0 is not produced by R. glutinis [23,28,29]. 

2.3. Analytical Procedure 

2.3.1. Reagents and Standard Calibration Gases 

All chemicals and reagents were obtained from Sigma-Aldrich, Australia. The calibration CH4 gases 

(i.e., 10%–50%), helium and compressed air (N2-78.08% and O2-20.94%) for GC-TCD-FID were 

supplied by BOC a member of the Linde group, Townsville, Australia. All gases were ISO certified  

for purity. 

2.3.2. Characterization of CRFW 

25 ± 2 g CRFW and RS were freeze-dried over 48 h (Virtis benchtop 2K, VWR International, 

Australia). The subsequent lyophilised products were then homogenised in pre-dried (105 ± 2 °C for 4 h) 

porcelain mortars into a fine powder, which were passed through a 1 mm2 stainless steel mesh to 

exclude large fragments for CHNS-O analysis. The sample analysis was outsourced to Organic 

Elemental Analysis Laboratories (OEA Laboratory Ltd., Cornwall, UK). Total and volatile solids  

(TS and VS, [25]) for CRFW and RS were measured and moisture contents were back calculated 

(moisture% = 100−TS). 

2.3.3. Calculating Bio-diesel and Bio-energy Potential of Bio-refined CRFW 

The potential physicochemical properties of biodiesel were calculated based on levels of 

(un)saturation and carbon length of the individual FAMEs using established models [30,31]. For this 

study, the values of cetane (CN), kinematic viscosity (υ), density (ρ), and higher heating values 

(HHVB) of biodiesel were calculated using Equations 1–4, respectively. 

	 7.8 0.302 20  (1)

ln 	 12.503 2.496 ln 0.178  (2)

0.8463
4.9

0.0118  (3)

46.19
1794

0.21  (4)
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where Ni, Mi, and Di represent the percentage, molecular weight and number of double bonds in the 

respective ith FAME. 

Based on the elemental analysis, theoretical biogas (Bth) yields of RS were calculated using 

Equations 5 and 6 [32] and compared with actual CH4 potential as reported in literature [33]: 

∗ 22.415
12 16 14

 (5)

4 2 3
8 ∗ 22.415

12 16 14
 (6)

where, a: carbon-C%; b: hydrogen-H%; c: oxygen-O% d: nitrogen-N%. 

3. Results and Discussion 

3.1. Characteristics of Hydrolysates from Pre-treated CRFW 

Hydrolysis pre-treatment of CRFW converts complex organic structures into simpler molecules 

(mainly sugars) making them readily available for microbial conversion [34]. Hydrolysed CRFW had a 

pH range of 3.77–5.79 based on the different pre-treatments. Therefore, HCl or NaOH were used to 

reduce/increase the pH of hydrolysates for cultivation of R. glutinis. Buffering capacities of the 

hydrolysates differed, requiring variable volumes and concentrations of acids/bases. Compared to Pcon 

leachate total carbohydrate content (~45 mg eq-Gluc.g−1), carbohydrate release was higher (~25%;  

i.e., ~65 mg eq-Gluc.g−1) in the thermal hydrolysis leading to a change in leachate pH from 4.01 to 

5.79, whereas, the Ch or TCh pre-treatments did not improve total carbohydrate release from CRFW. 

These results are in contrast to acid-hydrolysed fruit and vegetable waste which released more 

carbohydrates than when subjected to alkali or Th hydrolysis [35]. However, another study showed, 

that, whilst acid directly hydrolysed/solubilised starch and hemicellulose from CRFW, thermal 

hydrolysis was more efficient [36]. Furthermore, Th hydrolysis also simultaneously reduces pathogen 

levels and viscosity of the medium [37], which resulted in easier handling of RS and R. glutinis cultivation. 

3.2. Growth of R. glutinis in CRFW Hydrolysates 

Whilst final cell concentrations were similar for Th-, Ch- and Pcon-treated CRFW, growth 

responses of R. glutinis in the early stages of cultivation varied. Foam formation occurred in the 

culture based on TCh-hydrolysate causing >80% loss of of R. glutinis cells and leading to termination 

on day 4 (Figure 2). Foaming could be due to high aeration and inhibited fermentation processes led to 

protein degradation in the systems. Culture growth was accompanied by a shift in system pH from 4 to 

7.62 ± 0.17 and 6.36 ± 0.02 in Pcon and Th cultures, respectively. Growth of R. glutinis was 

comparable between Th and Ch hydrolysates, peaking within 2 days. However, Ch hydrolysates better 

supported the growth of R. glutinis and achieved maximum cell counts within 24 h. On the other  

hand, Th hydrolysates contained more carbohydrates, which were expected to provide higher R. 

glutinis biomass. 

All systems reached R. glutinis densities of 2.60–2.67 × 108 cells within 4 days are remained stable 

during stationary phase until day 7, which is consistent with another report [15]. In terms of  
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biomass yield, ~3.42–3.61 g DWbiomass L−1 was measured from Pcon (3.61 ± 0.25 g DWbiomass L−1),  

Ch (3.42 ± 0.41g DWbiomass L−1) and Th (3.53 ± 0.94 g DWbiomass L−1) hydrolysates and no significant 

differences were observed between the cultivation media. Our results were also comparable to biomass 

yields of 4.3–6.9 gDWbiomass.L−1 achieved when cultivating R. glutinis on carbon sources such as 

glucose, xylose, arabinose at a pH 5.8 and temperature 28 °C [38]. Carbohydrate analysis at harvest 

indicated that secondary or continuous cultivation of R. glutinis over a longer period may be possible, 

as ~29% (from Pcon and TCh hydrolysates) and ~24% (from Ch hydrolysate) of carbohydrates were 

assimilated within 7 days. As nitrogen was likely limiting biomass yield and also carbon utilization [23], 

nitrogen supplementation could enhance these process performance criteria. 

In the context of biofuel potential, for which green microalgae have been identified as a potential 

biomass source [30] total lipid contents of 14.05% (Chlorella sp.) of dryweight biomass have been 

reported [39]. In contrast, achieved CRFW hydrolysate-cultivated R. glutinis biomass yields were  

3.5× higher (~3.5 g DW L−1 with a total lipid content of 40%) compared to typical yields of green 

microalgae cultivated in open system suspension cultures [40]. 

 
Figure 2. Growth of R. glutinis in carbohydrate-rich food waste (CRFW) hydrolysates. 

3.2.1. FAME Profile of R. glutinis Cultivated in CRFW Hydrolysates 

The total fatty acid (TotFA) contents and FAME profiles of R. glutinis enriched in CRFW hydrolysates 

are shown in Table 1. TotFA contents were 41.79 ± 12.6, 38.05 ± 8.2 and 65.56 ± 30.9 

mgTotFA.g−1DWbiomass for Pcon-, Ch- and Th-cultivated R. glutinis, respectively. TotFA content achieved 

for Th-cultivated R. glutinis is comparable to reported values for its biomass derived from food waste 

and wastewater (62–63 mgTotFA.g−1DWbiomass [20]). A positive correlation between medium 

carbohydrate content and TotFA content of the derived biomass was also demonstrated in Braunwald, 

Schwemmlein [23]. Compared to Pcon, biomass TotFA of Ch-cultivated R. glutinis was lower, 

suggesting that stored fatty acids may be re-utilized (i.e., lipid turnover) during prolonged  

cultivation [41]. This is consistent with the literature, reporting a 63% reduction of TotFA content (i.e., 

from 190 (3rd day) to 120 (5th day) mgLipids.g−1DWbiomass) for R. glutinus with prolonged cultivation 

when cultivated in wastewater [42]. 

The FAME profiles of CRFW hydrolysate-cultivated R. glutinis are shown in Figure 3. Mono- and 

poly-unsaturated fatty acids (MUFA and PUFA, respectively) accounted for 61%–67%, while 
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saturated fatty acids (SFA) were only 32%–39% of the biomass. While general fatty acid profiles were 

similar, the percentage distributions of fatty acids differed. Highest MUFA and PUFA contents were 

achieved in R. glutinis cultivated in Th and PCon hydrolysates, respectively. Irrespective of cultivation 

medium, fatty acid profiles and elongation and desaturation patterns were typical for R. glutinis and  

de novo lipid synthesis [43]. In line with other reports, oleic acid (C18:1) and linoleic acid (C18:2) were 

the main MUFA and PUFA of R. glutinis cultivated in CRFW hydrolysates [16,23,44]. Oleic acid 

(C18:1) accounted for ~42% in Th-cultivated R. glutinis biomass, whilst the levels were 35 and 44% 

lower in Ch- and Pcon cultivates, respectively. On the other hand, palmitic acid (C16:0) was elevated 

by 43% in Ch-cultures, while contents were similar for Th- and Pcon cultivated R. glutinis biomass. 

Highest levels of C18:2 (26%) were achieved in Pcon-cultivated R. glutinis declining by 37.5 and 65% 

with hydrolysis treatment (Ch- and Th-cultures, respectively) with an opposite trend observed for 

stearic acid (C18:0). Α-linolenic acid (C18:3) was highest in Ch-cultures, slightly lower in Pcon and 

lowest in Th-cultivated biomass, with an opposite trend observed for palmitoleic acid (C16:1). While 

margaric acid (C17:0) was not detectable in Th-cultvated R. glutinis, heptadecenoic acid (C17:1), 

C16:1 and myristic acid (C14:0) was observed in small amounts under all cultivation conditions. 

Overall, the FAME profiles obtained from all R. glutinis cultures are considered to be ideal precursors 

for the biofuel industry [44–46]. 

 

Figure 3. Fatty acid methyl ester (FAME) profiles (%) of R. glutinis grown in CRFW hydrolysates. 

Table 1. Total fatty acid contents and distribution of fatty acid categories in R. glutinis 

cultivated in CRFW hydrolysates. 

Particulars 
Pre-treatment of CRFW 

PCon Ch Th 

Fatty Acids (mg g−1 DW) 41.79 ± 12.67 38.05 ± 8.23 65.56 ± 30.91 
Branching Fatty Acid (%) 9.88 ± 6.02 3.79 ± 2.18 <3 
Saturated Fatty Acid (%) 37.81 ± 7.41 39.5 ± 2.78 32.53 ± 11.50 
Monounsaturated Fatty Acid (%) 28.64 ± 12.90 31.82 ± 12.77 51.65 ± 34.85 
Polyunsaturated Fatty Acid (%) 33.55 ± 20.81 28.67 ± 12.82 15.82 ± 0.98 
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3.2.2. Biodiesel Potential of R. glutinis Enriched from CRFW Hydrolysates 

Biodiesel properties calculated based on FAME profiles of R. glutinis biomass cultivated using 

CRFW-hydrolysates yielded a density of ρ ~ 0.79 to 0.85 g cm−3 and mean HHVs of 35.79–39.36 MJ.kg−1. 

The HHVs were 14%–25% lower than the fossil fuel-derived diesel [47]. Calculated CNs were 

comparable with the biodiesel standard (ASTM D6751-02), i.e., CN > 51, but higher than demanded 

standards for fossil fuel-derived diesel (ASTM D975; CN ~ 40–50). In addition, the calculated 

viscosity (υ) for the biomass was within the standard limits (υ −1.3–4.1 mm2S−1) for fossil fuel-derived 

diesel (Table 2). In general, higher CN, ρ and HHV are correlated with MUFA content of TotFA of  

R. glutinis harvested from Th hydrolysates. If required, these properties can be tailored to meet the 

required standards in downstream processes or the biofuel can be used as a diesel blend [48]. While 

higher SFA contents correlate with higher CN, contributing to shorter ignition delay times and 

improved oxidative stability of final products [41], cold use properties decline, as the biofuels become 

more viscous with decreasing temperatures [30]. It should be recognized that at present only B5 (5% 

biodiesel content) fuels are being used, but the calculated fatty acid-derived properties of CRFW 

hydrolysate cultivated R. glutinis indicates that higher mixing ratios are possible without adverse effects 

on key fuel properties [30]. In the context of biodiesel production, the fatty acid profiles and contents of 

the red yeast R. glutinis cultivated on CRFW hydrolysates are comparable to those in green algae [40], 

but biomass yields (3.5× higher) and total lipid contents (3–4.5× higher) were superior than green algal 

biomass cultivated under phototrophic conditions in open systems. Together with the potential 

secondary or continuous cultivation option for R. glutinis cultivation in CRFW hydrolysates, this 

would translate into a potentially much smaller production area foot print when compared to green 

algal biodiesel. However, required energy inputs for the cultivation of the respective biomass will need 

detailed investigation. 

Table 2. Standard biodiesel properties as set by ASTM D6751-02 and EN 14214 and  

FAME-based calculated biodiesel properties of R. glutinis cultivated on CRFW hydrolysate. 

 CN ʋ ρ HHV 

ASTM D6751-02 ≥47 1.9–6.0 0.86 * NA 
EN 14214 ≥51 3.5–5.0 0.86–0.90 35 ** 
PCon 51.06 ± 0.12 3.59 ± 0.05 0.79 ± 0.03 35.76 ± 1.23 
Ch 56.92 ± 0.36 3.99 ± 0.9 0.84 ± 0.02 38.19 ± 1.11 
Th 62.35 ± 0.45 4.46 ± 0.12 0.86 ± 0.06 39.36 ± 1.36 

Note: * typical values; ** set by the DIN 51900. 

3.3. Characteristics of Residual Solids and Bioenergy Potential 

The elemental composition of RS from hydrolysis pre-treatments are given in Table 3. Hydrolysis 

pre-treatment had no large effect on C, O, N, H, and S contents. Also, high VS (~96%–97%) and TS 

contents suggest that the RS is suitable for bioconversion. The calculated C/N ratios of the RS were 

between 15–19, similar to those in the organic fraction of municipal solid waste; OF-MSW [49]. For 

anaerobic digestion, optimal C/N ratios of 27–32 were recommended in order to avoid any build-up of 

ammonia and associated toxicity effects in reactors that subsequently affect CH4 yield [49]. 
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Theoretical CH4 yields could be lower, i.e., 0.16–0.18 m3CH4.kgVS−1, compared to reported literature 

values of 0.18–0.24 m3 CH4.kgVS−1 reported for FW/OF-MSW [32]. This lower CH4 potential could 

be due to the removed carbohydrate contents of the waste, supplied as hydrolysates for R. glutinis 

cultivation in the previous experiments, which has been reported in association with the removal of 

organic material removal following pre-treatment of organic waste [50]. In the context of the proposed 

bio-refinery concept, the actual CH4 potential of recycled RS from the hydrolysates of CRFW will 

require experimental validation. 

Table 3. Characteristics of residual solids of CRFW hydrolysates. 

Parameters Pcon Ch Th TCh 

Carbon 41.86 ± 0.81 43.02 ± 0.32 42.27 ± 0.28 44.13 ± 0.31 
Nitrogen 2.68 ± 0.22 2.83 ± 0.18 2.29 ± 0.26 3.06 ± 0.31 
Hydrogen 6.41 ± 0.23 6.4 ± 0.37 6.46 ± 0.18 6.63 ± 0.09 
Sulphur 0.12 ± 0.02 0.14 ± 0.01 <0.1 0.19 ± 0.01 
Oxygen 48.95 ± 1.11 47.62 ± 0.59 48.99 ± 0.83 46 ± 1.21 
C/N ratio 15.62 ± 0.58 15.23 ± 0.67 18.46 ± 0.38 14.42 ± 0.79 
Total solids 74.13 ± 2.71 75.92 ± 1.63 74.68 ± 1.42 75.15 ± 2.35 
Volatile solids 96.76 ± 0.97 95.75 ± 1.25 95.97 ± 1.54 97.1 ± 1.80 

Note: All values are in %. 

4. Conclusions 

The proposed integrated yeast fermentation and anaerobic digestion process appears to be a 

promising approach for the bio-refining of CRFW for biolipids and bioenergy production. Biomass 

yields, total fatty acid content and profile, as well as calculated important diesel characteristics, render 

R. glutinis a suitable alternative to green microalgal biodiesel when cultivated on CRFW hydrolysates 

under controlled conditions, potentially requiring a fraction of the cultivation foot print. Ch 

hydrolysates provided better biomass yields, however biodiesel properties and FAME yields were 

higher with the Th hyrolysate cultivates. In addition, solid residue from the Th pre-treatment was 

estimated with higher methane potential. Therefore, Th hydrolysis of CRFW followed by R. glutinis 

cultivation under buffered condition should be recommended for further investigation. 

Further research is required with regards to outdoor cultivation suitability and competitiveness for 

CRFW recycling. Residual solids characteristics and theoretical yields show promise for additional 

energy benefits that can be derived through the bioconversion of CRFW. However, the full potential of 

this novel integrative bio-refinery concept for CRFW hydrolysates and residual solids requires further 

opitmization of cultivation conditions and field experimentation to validate biomass yields, total lipids 

yields and actual methane production, as well as a full characterization of the resulting biodiesel 

characteristics and quantities, which will lay the foundation for a comprehensive techno-economic 

analysis and energy requirements of bioenergy generation using different feedstocks. In addition, 

unutilized sugars from R. glutinis fermentation could be potentially re-cycled within the fermentation 

system or anaerobically digested for making this technology more energy efficient and economically 

viable. Furthermore, heat and power generated from biogas combustion could be potentially re-routed 

for hydrolysis pre-treatments which would benefit the proposed integrated bio-refining approach. 
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