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Abstract

Background: Leptospirosis is one of the most widespread zoonoses in the world and with over 260 pathogenic serovars
there is an urgent need for a molecular system of classification. The development of multilocus sequence typing (MLST)
schemes for Leptospira spp. is addressing this issue. The aim of this study was to identify loci with potential to enhance
Leptospira strain discrimination by sequencing-based methods.

Methodology and Principal Findings: We used bioinformatics to evaluate pre-existing loci with the potential to increase
the discrimination of outbreak strains. Previously deposited sequence data were evaluated by phylogenetic analyses using
either single or concatenated sequences. We identified and evaluated the applicability of the ligB, secY, rpoB and lipL41 loci,
individually and in combination, to discriminate between 38 pathogenic Leptospira strains and to cluster them according to
the species they belonged to. Pairwise identity among the loci ranged from 82.0–92.0%, while interspecies identity was
97.7–98.5%. Using the ligB-secY-rpoB-lipL41 superlocus it was possible to discriminate 34/38 strains, which belong to six
pathogenic Leptospira species. In addition, the sequences were concatenated with the superloci from 16 sequence types
from a previous MLST scheme employed to study the association of a leptospiral clone with an outbreak of human
leptospirosis in Thailand. Their use enhanced the discriminative power of the existing scheme. The lipL41 and rpoB loci
raised the resolution from 81.0–100%, but the enhanced scheme still remains limited to the L. interrogans and L. kirschneri
species.

Conclusions: As the first aim of our study, the ligB-secY-rpoB-lipL41 superlocus demonstrated a satisfactory level of
discrimination among the strains evaluated. Second, the inclusion of the rpoB and lipL41 loci to a MLST scheme provided
high resolution for discrimination of strains within L. interrogans and L. kirschneri and might be useful in future
epidemiological studies.
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Introduction

Leptospirosis is a zoonotic disease caused by pathogenic

Leptospira spp. and is considered an emerging global public health

problem [1,2]. Furthermore, the impact of leptospirosis has

increased, particularly in poverty stricken regions of the world,

due to the high mortality (.50%) associated with the recent

increase of severe pulmonary haemorrhage syndrome (SPHS) in

patients with severe leptospirosis [3,4]. Based on serology,

Leptospira spp. are traditionally classified into 29 serogroups and

over 300 serovars [5–7]. More recently, genetic methods have

attempted to replace the traditional classification methods and

DNA-DNA hybridization studies have identified 20 Leptospira spp.

to date [5,8–11]. Several typing methods have been employed to

classify isolates with differing degrees of success [12]. However, a

major limitation is the lack of correlation between the serologic

and genotypic classification methods [5,12,13].

Multilocus sequence typing (MLST) was originally developed

for bacteria using Neisseria meningitidis isolates [14] and, so far, it has

been successfully applied to over 30 bacteria [15,16]. In the field of

leptospirosis, efforts to develop a typing method have focused on

MLST [17,18]. MLST allows the adoption of a universal format
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for a particular bacterial species and permits the sequence data

generated to be easily exchanged over the Internet. Traditionally,

the loci chosen for MLST analyses are based on 6–10

housekeeping genes that are under selection for metabolic

functionality [15]. Since this group is comprised of slowly evolving

genes they are likely to be more conserved and stable within a

particular species [19]. Unfortunately it has not been possible to

identify a set of housekeeping genes with universal applicability to

all bacterial pathogens. Rather, MLST loci are chosen empirically

and evaluated for each individual pathogen [15]. Ahmed and

colleagues presented the first MLST scheme based on loci from

four housekeeping genes and two genes encoding outer-membrane

proteins for typing L. alexanderi, L. borgpetersenii, L. interrogans, L.

kirschneri, L. noguchii and L. santarosai isolates [18]. An alternative

MLST scheme using loci from seven housekeeping genes was used

to type L. interrogans and L. kirschneri isolates and is available on the

Internet (http://leptospira.mlst.net/). The database contains 109

sequence types (ST) and sequences from 263 isolates at time of

writing [17]. Although this evidently moved the field forward, a

limitation of this database is that it only applies to isolates from two

Leptospira species, L. interrogans and L. kirschneri. The ideal MLST

scheme should be valid for all Leptospira spp. or at least the

pathogenic species [20], and provide discrimination beyond the

species level [21].

High-resolution typing, such as that required during outbreak

investigations, usually requires the inclusion of genes with greater

diversity, e.g. antigen genes, rather than housekeeping genes [15].

The objective of this study was to carry out a bioinformatics-based

analysis of Leptospira genes available in GenBank to identify

potential targets for improved Leptospira discrimination. The genes

ligB, secY, lipL41 and rpoB were identified as potential genes for use

in an improved typing scheme.

Methods

DNA sequences
The DNA sequences for the ligB, secY, rpoB and lipL41 loci used

in this study were obtained from GenBank and LepBank [22]

(Table 1) or from the authors of the original Leptospira MLST

scheme [18]. Most of these sequences were generated by the

authors during previous studies and they belong to different

reference strains and clinical isolates. The sizes of the loci analyzed

were 214 bp (ligB), 245 bp (secY), 541 bp (rpoB) and 884 bp (lipL41)

and correspond to nucleotide positions 2236–2449 (ligB), 771–

1015 (secY), 1922–2462 (rpoB) and 73–956 (lipL41). Note that

nucleotide positions are based on the L. interrogans Copenhageni

Fiocruz L1-130 genome (AE016823). These genes can be

amplified by using the primers ligB (PSBF: 59-ACWRVHVHR-

GYWDCCTGGTCYTCTTC-39; PSBR: 59-TARRHDGCYB-

TAATATYCGRWYYTCCTAA-39), [23]; secY (SeqYII: 59-GAA-

TTTCTCTTTTGATCTTCG-39; SeqYIV: 59-GAGTTAGAG-

CTCAAATCTAAG-39), [24]; rpoB (Lept 1900f: 59-CCTCATG-

GGTTCCAACATGCA-39; Lept 2500r: 59-CGCATCCTCRA-

AGTTGTAWCCTT-39), [25] and lipL41 (lipL41F: 59-TAG-

GAAATTGCGCAGCTACA-39; lipL41R: 59-GCATCGAGAG-

GAATTAACATCA-39), [18]. The DNA sequences correspond-

ing to the glmU (18 alleles), pntA (24 alleles), sucA (20 alleles), fadD

(20 alleles), tpiA (30 alleles), pfkB (35 alleles) and mreA (23 alleles) loci

were downloaded from the Leptospira MLST database at http://

leptospira.mlst.net/[26].

Phylogenetic analysis
DNA sequences were aligned using ClustalW at the default

settings (http://www.ebi.ac.uk/clustalw). The phylogenetic anal-

yses were performed with Mega 4.1 [27] or Geneious Pro ver 4.7

[28], and the neighbour-joining method with no outgroup. The

Tamura-Nei genetic distance model was selected and all trees were

resampled using the bootstrap method and 1000 replicates. The

phylogenetic trees constructed using sequences of 38 reference

strains (Table 1) was based a 1884 bp superlocus composed of the

concatenated sequences of the loci for each strain in the following

order: ligB-secY-rpoB-lipL41.

Results

Phylogenetic analysis of the ligB, secY, rpoB and lipL41
loci

The main criteria to select genes for the presented MLST

scheme were their ability to separate one or more species in

different clusters and to discriminate the strains and clinical

isolates within them. To identify candidate loci with these

properties we searched those previously characterized by the

authors and mined public databases to obtain additional

representative sequences. The genes used to constitute this study

(ligB, secY, rpoB and lipL41) showed an optimal discriminative

power. Following alignment, the percentage of identical pairwise

amino acids residues (PI) for the lipL41 locus was 92.0% and the

percentage of identical sites (IS) among the DNA sequences was

77.9%, the rpoB locus was 91.8 and 75.2%, the secY locus was 87.8

and 71.4%, and the ligB locus was 82.0 and 48.6%, respectively.

When all four loci for each strain were concatenated and when the

resulting superloci were aligned the overall PI was 90.3% and the

IS was 72.9%. Of note, intraspecies identity was considerably

higher, 97.7–98.560.2% (Figure 1). The phylogenetic tree formed

two major clusters representing L. kirschneri and the other species:

L. interrogans, L. noguchii, L. borgpetersenii, L. santarosai and L. weilii

(Figure 2).

The 15 L. interrogans strains, two L. noguchii strains, four L. weilii

strains and three L. santarosai strains, listed in Table 1, could all be

discriminated using the superlocus and of the seven L. kirschneri

strains, only two proved to be identical at the sequence level

(strains 5621 and 3522C). Among the seven L. borgpetersenii strains,

the superlocus sequence was capable of discriminating all but two

strains (JB197 and L550). Polymorphic sites, where one sampled

sequence exhibits a unique base relative to the common

nucleotide of the others were observed in 13 serovars and all

species except L. weilii. The L. interrogans species included the

largest number of polymorphic-containing serovars, six, followed

by Pomona with two, then Autumnalis, Lai, Manilae, Muenchen

and Pyrogenes with one. The L. noguchii serovars contained the

largest number of unique polymorphic sites per serovar, Orleans

and Panama had five each). Inclusion of the low polymorphic

genes rrs2 and lipL32 as in the scheme of Ahmed and colleagues

[18] was assessed but showed no advantage to the presented

scheme (results not shown).

Increased discrimination using the ligB, secY, rpoB and
lipL41 loci in an existing MLST scheme

Based on analysis of the loci sequences from 38 Leptospira

reference strains, ligB contained 15 alleles, secY 16 alleles, rpoB 19

alleles and lipL41 28 alleles, Figure 3 and Figure S1 B–D,

respectively. Using the online Leptospira MLST scheme (http://

leptospira.mlst.net, [17]) we identified 16 sequence types (ST), out

of 109 ST, where the corresponding ligB, secY, rpoB and lipL41

sequences for each strain were readily available. Using the

concatenated sequences that corresponded to the glmU, pntA, sucA,

fadD, tpiA, pfkB and mreA loci a phylogenetic tree was constructed

that identified 13 unique ST among the 16 different strains

High Resolution Typing of Pathogenic Leptospira
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included in the analysis (Figure 4). The ligB, secY, rpoB and lipL41

loci were added to the MLST superloci from each strain to

determine their impact on the level of discrimination. While

inclusion of the ligB locus did not improve upon the original

scheme (Figure S2 B), the secY and lipL41 loci resolved 14 ST

(Figures S2 C & D, respectively) and the rpoB locus discriminated

between 15 ST (Figure S2 E). All possible combinations of the

candidate loci were used to create additional superloci to

determine the assembly with the greatest discriminatory power

(data not shown). Complete resolution of the 16 ST was achieved

by inclusion of both lipL41 and rpoB loci in the original

concatenated sequence of each strain, Figure S2 F.

Discussion

The MLST scheme proposed by Thaipadungpanit and

colleagues is based on loci from seven housekeeping genes and

identified 109 unique ST among 263 isolates from either L.

Table 1. Leptospira serovars and the candidate alleles for MLST.

Species Serogroup Serovar Strain Accession numbers

ligB secY rpoB lipL41

L. borgpetersenii Javanica Ceylonica Piyasena EU938500a EU358041g DQ296134j AY461936m

Javanica Javanica Veldrat Batavia 46 EU938501a EU358040g DQ296134j AY461938m

Javanica Poi Poi EU938502a EU358007g DQ296134j n/a n

Mini Mini Sari n/a EU358032g DQ296134j n/a n

Sejroe Hardjo-bovis JB197 CP000350b CP000350b CP000350b CP000350b

Sejroe Hardjo-bovis L550 CP000348b CP000348b CP000348b CP000348b

Tarassovi Tarassovi Perepelitsin n/a EU358057g EU747307k AY461937m

L. interrogans Australis Australis Ballico EU938484a DQ882850h DQ296144j n/a n

Australis Bratislava Jez Bratislava EU938487a EU357939g EU747300k AY461939m

Australis Muenchen Muenchen C90 EU938497a EU357938g DQ296133j n/a n

Autumnalis Autumnalis Akiyami A EU938485a EU357943g DQ296145j AY461940m

Bataviae Bataviae Van Tienen EU938486a EU357956g DQ296146j AY461941m

Canicola Canicola Hond Utrecht IV EU938488a EU357961g EU747299k AY461942m

Icterohaemorrhagiae Copenhageni Fiocruz L1-130 AE016823c AE016823c AE016823c AE016823c

Icterohaemorrhagiae Icterohaemorrhagiae RGA EU938493a EU365950g DQ296133j AY461947m

Icterohaemorrhagiae Lai 56601 AE010300d AE010300d AE010300d AE010300d

Pyrogenes Manilae LT398 EU938496a EU358049g DQ296133j n/a n

Pyrogenes Pyrogenes Salinem n/a DQ882863h DQ296147j n/a n

Sejroe Hardjo-prajitno Hardjoprajitno EU938491a EU357983g EU747303k AY461943m

Sejroe Wolffi 3705 EU938499a EU357985g EU747308k n/a n

Hebdomadis Hebdomadis Hebdomadis EU938492a EU357974g EU747304k n/a n

Pomona Pomona Pomona EU938498a EU358013g EU747306k AY461948m

L. kirschneri Australis Ramisi Musa EU938507a EU358020g DQ296139j AY461949m

Autumnalis Erinaceiauriti Erinaceus Auritus 670 EU938504a EU358021g DQ296139j AY461950m

Bataviae Djatzi HS 26 EU938503a EU358027g DQ296139j AY461951m

Cynopteri Cynopteri 3522 C EU938508a EU358027g DQ296139j n/a n

Grippotyphosa Grippotyphosa RM52 AY190126e EU358027g EU747301k AY461953m

Hebdomadis Kambale Kambale EU938505a EU358030g DQ296139j AY461954m

Pomona Mozdok 5621 EU938506a EU358015g DQ296139j AY461955m

L. noguchii Louisiana Orleans LSU 2580 EU938509a EU365958g EU349500l AY461957m

Panama Panama CZ 214 K EU938510a EU365958g DQ296141j n/a n

L. santarosai Pyrogenes Alexi HS 616 EU938512a EU358047g DQ296131j AY461964m

Sejroe Trinidad TRVL 34056 n/a EU358035g DQ296131j n/a n

Shermani Shermani LT 821 EU938511a DQ882866h DQ296131j AY461965m

L. weilii Celledoni Celledoni Celledoni EU938514a EU365960g DQ296132j n/a n

Hebdomadis n/a EcoChallenge EU700274f AY034036i DQ296132j n/a n

Javanica Coxi Cox n/a EU358009g DQ296132j AY461967m

Tarassovi Vughia LT 89–68 EU938515a EU365960g DQ296132j AY461968m

n/a - Not applicable. Source of sequence data: [26]a; [32]b; [33]c; [34]d; [35]e; [30]f; [28]g; Riedigerh, unpublished data; [36]i; [29]j; Bomfimk, unpublished data; [37]l; [27]m;
[18]n.
doi:10.1371/journal.pone.0015335.t001
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interrogans or L. kirschneri [17]. This represented a major advance in

the molecular epidemiology of Leptospira isolates. Unfortunately, as

noted by the authors themselves, a major limitation of this scheme

is that it does not allow for the inclusion of the other common

pathogens associated with human leptospirosis [20]. Previously, it

was shown that the antigen encoding genes ligB, secY, lipL41 and

the rpoB gene are potentially useful for the molecular discrimina-

tion of Leptospira strains and that they can be readily amplified from

Figure 1. Alignment analysis of the concatenated superlocus. Comparison of the variability of the DNA sequences from the ligB-secY-rpoB-
lipL41 superlocus among the Leptospira species included in this study, where B – L. borgpetersenii, I – L. interrogans, K – L. kirschneri, N – L. noguchii, S –
L. santarosai and W – L. weilii. Results are shown as means 6 SD. The nucleotide positions used during the alignment analysis were: nt 2236–2449
(ligB), 771–1015 (secY), 1922–2462 (rpoB) and 73–956 (lipL41) and refer to the L. interrogans serovar Copenhageni L1-130 strain.
doi:10.1371/journal.pone.0015335.g001

Figure 2. Phylogenetic analysis of 38 Leptospira serovars. The tree was constructed based on the ligB-secY-rpoB-lipL41 superlocus sequences.
The loci were analyzed using the Neighbor-Joining method as implemented in Geneious Pro 4.7.5 [25]. The samples are represented by the serovar
followed by the strain designations. Confidence in the topology of this tree was gauged by bootstrap resampling (1,000 times).
doi:10.1371/journal.pone.0015335.g002
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all known pathogenic leptospires [23–25,29,30]. Furthermore, the

authors of the original bacterial MLST scheme recommend the

inclusion of loci from antigen coding genes to improve

discrimination, especially during outbreak investigations [31].

To determine the potential benefits of using ligB, secY, rpoB

and lipL41 loci in an MLST typing scheme focused on strain

differentiation we identified the corresponding sequences in a

reference collection containing 38 Leptospira strains (Table 1).

The overall level of pairwise identity ranged from 82–92%

among the individual loci while the intraspecies identity was

even higher (Figure 1). Furthermore, when the sequences were

concatenated to create a superlocus for each strain and

analysed, the overall pairwise identity was .90%. Following

the modelling of phylogenetic trees and in agreement with

previous studies, two distinct evolutionary branches were

observed, the first contained L. kirschneri, L. interrogans and L.

noguchii strains and the second the L. borgpetersenii, L. santarosai

and L. weilii strains (Figure 4 and Figure S2) [23,29]. There was

some evidence that serovars from the same serogroup clustered

together, serogroups: Icterohaemorrhagiae: L. interrogans Icter-

ohaemorrhagiae RGA and Copenhageni Fiocruz L1-130;

Australis: L. interrogans Australis Ballico and Muenchen

Muenchen C90; and Javanica: L. borgpetersenii Javanica Veldrat

Batavia 46, Poi Poi and Ceylonica Piyasena (Figure 2). This may

indicate homoplasy (similarity due to convergent evolution) of

the genes from these serovars. This analysis showed a separation

of serovar Bratislava from the other L. interrogans serovars

(Figure 2). Alignment analyses demonstrated this is probably

due to the high similarity of the L. interrogans Jez Bratislava strain

rpoB gene sequence with those from the L. borgpetersenii strains

(data not shown). Despite this, serovar Bratislava was correctly

located within the L. interrogans clade. We did not determine

however, whether this was due to sequence mosaicism or

horizontal gene transfer. The phylogenetic organisation of the

Leptospira genus based on the superlocus supports the theory [29]

that L. interrogans is more recently evolved from L. kirschneri, more

recent evolutionary subdivisions resulted in the separation of L.

borgpetersenii followed by L. santarosai and L. weilii clades.

Analysis of the discriminatory power of the ligB-secY-rpoB-

lipL41 superlocus found that the L. interrogans, L. noguchii, L.

santarosai and L. weilii strains could be separated into individual

ST. However, among the L. kirschneri and L. borgpetersenii strains,

two could not be resolved by the superlocus. Serological analysis

of the two L. borgpetersenii strains indicated that both belonged to

serogroup Sejroe serovar Hardjo-bovis and their genomes were

found to be highly conserved. Yet they are distinct clonal

subtypes, both strains established chronic infections in cattle yet

differed in their ability to cause lethal infections in hamsters [32].

Despite this no specific polymorphisms were observed in either of

the L. borgpetersenii L550 or JB197 strains. These polymorphic

regions are normally useful for surveillance purposes, to monitor

outbreaks or for epidemiological studies. Thirteen serovars, out of

Figure 3. Analysis of the loci sequences from 38 Leptospira reference strains. The tree was constructed based on the individual loci
sequences. The loci were analyzed using the Neighbor-Joining method as implemented in Geneious Pro 4.7.5 [25]. The samples are represented by
the serovar followed by the strain designations. Confidence in the topology of this tree was gauged by bootstrap resampling (1,000 times). A: ligB
loci; B: secY loci; C: rpoB loci; D: lipL41 loci. Phylogenetic analysis was used to demonstrate the number of alleles that were distinguished for each loci
A: ligB (15); B: secY (16); C: rpoB (19); and D: lipL41 (27). Parts B–D can be found as supporting information in Figure S1.
doi:10.1371/journal.pone.0015335.g003
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38 in this study, exhibited unique polymorphic sites. These

findings highlight the efficiency of the proposed ligB-secY-rpoB-

lipL41 superlocus to discriminate Leptospira strains. The study

previously performed by Ahmed and colleagues [18] was the

pioneer in the use of a concatenated superlocus to discriminate

among the Leptospira species. However, this work was intended as

a step towards the study of pathogen evolution rather than strain

discrimination. Inclusion of low polymorphic genes such as rrs2

and lipL32 used by Ahmed et al., [18] did not contribute to

enhance the discriminative power of the MLST scheme presented

here. In the present work, we included some of those sequences in

combination with recently sequenced polymorphic genes to

increase the resolution, and observed the occurrence of

discrimination to the subspecies level. Although a reduced

number of strains and isolates were included in our study we

believe the proposed superlocus presents a solid basis for

discriminating within large panels of Leptospira strains and isolates.

An analysis of the ligB, secY, rpoB and lipL41 loci found that the

ligB locus was the most conserved with 15 alleles, followed by secY

with 16 alleles, rpoB with 19 alleles and lipL41 with 28 alleles out of a

potential 38 (Figure 3 and Figure S1). Following analysis of the 263

isolates (109 ST) contained in the Leptospira MLST database

(leptospira.mlst.net), 16 strains (corresponding to 13 ST) were

identified as having the corresponding ligB, secY, rpoB and lipL41 loci

sequences available (Figure 4). To determine the utility of the loci

proposed in this study the relevant sequence for each individual

locus was concatenated to the glmU, pntA, sucA, fadD, tpiA, pfkB and

mreA superlocus of each strain (Figures S2 B–E). All possible

variables were evaluated in order to identify the most useful

additional loci. The combination of the original superlocus together

with the rpoB and the lipL41 loci was found to be the simplest

superlocus that could discriminate between all 16 of the strains

(Figure S2 F). This is in agreement with the ability of the superlocus

determined by Ahmed and colleagues [18], which includes the

lipL41 locus, to discriminate the Leptospira spp. in study.

The phylogenetic analysis of our sequences showed a great

diversity of ST and no clustering, due to the use of epidemiologically

unrelated strains. Thus, when the two new loci sequences were

concatenated to the original ST sequences we observed the complete

discrimination of the strains, although our adapted scheme remains

limited to L. interrogans and L. kirschneri. We recommend that the rpoB

and lipL41 loci be evaluated in existing or future MLST schemes to

enhance their typing power during outbreak investigations.

Supporting Information

Figure S1 Continued from figure 3.
Figure S2 Continued from figure 4.
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