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Summary 

The probabilistic expression of cytokine genes in differentiated T helper (Th) cell 

populations remains ill-defined. By single-cell analyses and mathematical modeling we 

show that one stimulation featured stable cytokine nonproducers as well as stable 

producers with wide cell-to-cell variability in the magnitude of expression. Focussing on 

interferon-γ (IFN-γ) expression by Th1 cells, mathematical modeling predicted that this 

behavior reflected different cell-intrinsic capacities and not mere gene-expression noise. 

In vivo, Th1 cells sort-purified by secreted IFN-γ amounts preserved a quantitative 

memory for both probability and magnitude of IFN-γ reexpression for at least one month. 

Mechanistically, this memory resulted from quantitatively distinct transcription of 

individual alleles and was controlled by stable expression differences of the Th1 cell 

lineage-specifying transcription factor T-bet. Functionally, Th1 cells with graded IFN-γ 

production competence differentially activated infected macrophages for bacterial killing. 

Thus, individual Th cells commit to produce distinct amounts of a given cytokine, 

thereby generating functional intrapopulation heterogeneity. 
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Introduction 

Cytokines are key regulators of immune responses. Differentiated T helper (Th) cells 

rapidly secrete specific cytokines upon antigen challenge (Lohning et al., 2002; Zhu et 

al., 2010). The lineage-specifying transcription factors T-bet, GATA-3, and RORt 

program the expression of Th1 [(interferon (IFN)-], Th2 [interleukin (IL)-4, IL-5, and 

IL-13], and Th17 (IL-17) cell-associated cytokines, respectively (Zhu et al., 2010). 

However, only a fraction of activated Th cells expressing such a ‘master regulator’ 

transcription factor produces the associated cytokines (Bucy et al., 1994; Openshaw et al., 

1995; Peine et al., 2013). Such intrapopulation heterogeneity has been attributed to a 

stochastic ‘choice’ of the cells (Apostolou and Thanos, 2008; Guo et al., 2005; Rand et 

al., 2012). However, mammalian gene transcription occurs in brief bursts, separated by 

random intervals of up to several hours (Harper et al., 2011; Suter et al., 2011). Thus, 

antigen-stimulated T cells might rapidly switch between cytokine-producing and silent 

states, implying that all cells in a population are producers - but at different time points. 

Alternatively, the decision to express a cytokine could be made only once, resulting in 

stable producing and nonproducing subpopulations. 

A rapid-switching model based on transcriptional bursting implies that the amounts of a 

given cytokine produced by an individual cell fluctuate over time. Such rapid fluctuations 

have been observed for constitutively expressed genes in human cell lines (Sigal et al., 

2006), suggesting that each individual cell recapitulates the entire variability in the 

population. By contrast, individual Th cells might have different inherent capacities to 

express cytokine genes. This capacity may be influenced by response thresholds caused 

by heterogeneous expression of receptors, signaling proteins, and key transcription 
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factors (Feinerman et al., 2008; Peine et al., 2013). Intrapopulation heterogeneity may 

result in functional diversification of Th cell responses (O'Garra et al., 2011) and - 

presumably - of T cell-mediated immunological memory. 

Previous studies on cytokine expression are based on conventional ‘snapshot’ flow 

cytometry that would have missed a rapid switching between cytokine-producing and -

nonproducing states. Here, we have developed an experimental method to track the 

expression of endogenous cytokine genes in individual Th cells over time without 

resorting to genetic alterations. Our approach combined the fluorescent labeling of viable 

cytokine producers by a cytokine capture matrix on the cell surface (‘secretion assay’) 

(Assenmacher et al., 1998; Lohning et al., 2003) with time-delayed intracellular staining. 

We show that in a given stimulation, T cells made a stable decision whether to produce a 

given cytokine or not. In addition, the producers committed to individual magnitudes of 

expression. Mathematical modeling predicted different cell-intrinsic capacities to express 

the respective cytokine genes. Using a prototypical example, we found that the amount of 

IFN-γ production was a stable feature of individual Th1 cells that was memorized for at 

least one month in vivo, even upon immunological challenge. This memory was based on 

quantitatively distinct transcription at single alleles, controlled by different quantities of 

T-bet protein, and associated with graded DNA methylation at the Ifng and Tbx21 loci. In 

functional terms, the produced IFN- amount defined a cell’s capacity to stimulate 

macrophages to kill bacteria. Thus, individual T cells can stably maintain and inherit 

distinct expression rates of a given cytokine, thereby regulating their potential to 

stimulate immune responses. 
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Results 

Differentiated Th cells segregate into stable cytokine-producing and -nonproducing 

subsets during one stimulation 

We analyzed the cytokine production behavior of Th1, Th2, and Th17 cells in a kinetic 

fashion. To obtain homogeneous populations, we derived them from naive precursors. 

Cytokine-producing cells reached their maximal frequency within ~3 h after stimulation 

(Fig. S1A). An interruption of stimulation led to the rapid termination of cytokine 

production, and resumption of stimulation caused rapid reinitiation (Fig. S1B). At all 

time points, a fraction of the cells did not produce cytokines. However, this behavior did 

not reflect heterogeneous differentiation or activation, since all cells underwent multiple 

cell divisions (data not shown), upregulated the activation marker CD44 (Fig. S1C), and 

homogeneously expressed the lineage-specifying transcription factors T-bet, GATA-3, or 

RORt, respectively. Thus, cytokine expression by Th cell populations appeared 

heterogeneous and required recent and continuous stimulation, consistent with previous 

studies on CD8
+
 T cells (Corbin and Harty, 2005; Slifka et al., 1999). 

To distinguish whether all stimulated Th cells transiently produce cytokines but rapidly 

cycle between producing and nonproducing states or whether there are stable producing 

subpopulations (Fig. 1A), we tracked the behavior of individual cells over time. We 

surface-labeled viable cytokine producers using the cytokine secretion assay technology 

(Assenmacher et al., 1998; Lohning et al., 2003) and counterstained for the same 

cytokine intracellularly at various time points (Fig. 1B). The vast majority of Th1 cells 

that initiated IFN- production maintained it for several hours in the presence of the 

stimulus (Fig. 1C; top row, upper right quadrants). Controls without cell permeabilization 
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confirmed the accurate detection of intracellular versus surface-captured IFN-γ (Fig. 

S2A). Similarly, individual Th17 cells continuously produced IL-17 (Fig. S2B). A small 

fraction of cells switched on cytokine production with some delay (Fig. 1C, upper left 

quadrants), consistent with the gradual culmination of cytokine production (cf. Fig. S1A, 

B). Virtually all cytokine-producing cells switched off cytokine production within 21 h 

(Fig. 1C, lower right quadrants). A substantial fraction of cells did not produce cytokine 

throughout the experiment (Fig. 1C, lower left quadrants). These results show that upon 

stimulation, fully differentiated Th cells segregate into stable cytokine-producing and -

nonproducing subpopulations. 

 

Individual Th cells maintain their specific rate of cytokine production 

To assess how long an individual cell produced a given cytokine, we fitted mathematical 

models of cytokine production to the data in Fig. 1C. The models describe IFN-
–
 cells 

becoming IFN-
+
 upon stimulation and expressing the cytokine for a certain time. In the 

first model, we allowed for rapid switching between on and off states, e.g. by 

transcriptional bursting (Fig. 1D). We fitted the model to the fraction of IFN-γ
+
 cells over 

time, either gating on all cells or only those that had initially been surface-labeled (Fig. 

1C, 0 h, upper right gate). This fit constrained the backward rate from the 

transcriptionally active state, , to be less than 0.09/h (upper bound of the 95% 

confidence interval, Table S1), implying a half-life of this state of 7.7 h or longer. Hence, 

repeated on-off switching of IFN- expression could be neglected. Instead, we considered 

a stable-production model where switching off cytokine expression is irreversible after a 

Gamma-distributed production period  (Fig. 1E). The model accurately fitted the time 
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courses of intracellular IFN-
+
 cells among both total and surface-labeled cells 

simultaneously (Fig. 1F, G). The best-fit parameters implied that, on average, after an 

initial delay of 40 min, the cells start IFN- expression within the following 1 h and 

continue production for 5.9 ± 3.6 h (Fig. 1H, Table S1). Thus, to describe the data, the 

stable-production model was required where individual cells switch on continuous 

cytokine production once (cf. Fig. 1A, E). Switching on was more synchronous than 

switching off, explaining that the decline of the IFN-
+
 fraction was slower than the 

initial increase (Fig. 1F). Stable production rather than rapid switching was also observed 

for IL-17 expression by Th17 cells (Fig. S 2B) and thus appeared to be a common mode 

of effector cytokine expression. 

 

Mathematical modeling predicts inherently distinct cytokine expression capacities of 

individual cells 

Among IFN-
+
 cells, the IFN- amount per cell varied by more than one order of 

magnitude. Since our detection method introduced only a marginal experimental error 

(relative error 17%, Fig. 2A), this was primarily due to true cell-to-cell variability which 

could result from stochastic fluctuations in IFN- expression (e.g. in transcription rate) or 

intrinsically different IFN- expression capacities of individual cells, or both. Addressing 

this question, we asked if a standard stochastic gene-expression model based on 

transcriptional bursting could describe the data (Raj et al., 2006). To account for the 

transient nature of cytokine production, we extended the standard model by including 

initial and terminal off states (Fig. 2B). This promoter state transition model produces 

cell-to-cell heterogeneity in IFN- expression due to switching between inactive and 
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active promoter states [with rates rates k±; (Friedman et al., 2006; Mariani et al., 2010; 

Miller-Jensen et al., 2011)] as well as asynchronous induction and terminal switching off 

of cytokine transcription (with rates kon and koff, respectively). 

Given the short half-life of IFN- protein in the cells (~1 h, Fig. 2C; blue crosses), 

transcription fluctuations would manifest themselves at the protein level. However, the 

correlation of IFN- protein amounts at two different time points in the same cell 

(autocorrelation) persisted for longer than the IFN- protein half-life (Fig. 2D). We asked 

if the model in Fig. 2B could explain this autocorrelation and the observed cell-to-cell 

variability in IFN- expression, as quantified by the coefficients of variation of the IFN-
+
 

cells (Fig. 2E, blue crosses). Systematic parameter estimation (Table S1) revealed that the 

model accounted for the kinetics of IFN-
+
 cells (Fig. 2C, red curves) as well as the 

temporal correlations of IFN- quantities in individual cells (Fig. 2D, red curve) but 

failed to reproduce the cell-to-cell variability of IFN- expression. The model accounted 

neither for the width (Fig. 2E) nor the shape of the distribution (Fig. 2F). Thus, intrinsic 

noise in gene expression alone could not explain the observed cell-to-cell variability of 

IFN-γ expression. 

Therefore, we extended the model by cell-to-cell differences in the IFN- expression 

capacity, defined as the product of transcription and translation rate (Fig. 2G, H). These 

differences would result from the variability in regulators of transcription and/or 

translation between the cells, including epigenetic mechanisms. Moreover, as we found 

that transcriptional bursting (rates k±) made a negligible contribution to the protein 

variability, explaining <7% of the CV of the IFN-
+
 cells (Table S1), we neglected it. The 

resulting distributed production capacity model accurately described the dynamics of 
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IFN- expression upon stimulation (Fig. 2I). In the beginning, the broad IFN- 

distribution was due to the distributed expression capacities while the further increase 

until t = 3 h resulted from the different switching-off times of individual cells. We also 

fitted the model to the distribution of initially surface-labeled cells, achieving a good fit 

with the same parameter values (Fig. S3). To conclude, the observed cell-to-cell 

variability in IFN- protein amounts is consistent with a model in which individual cells 

have inherently distinct capacities for IFN- expression. 

 

Individual Th1 cells exhibit a stable quantitative memory for IFN- and T-bet 

expression 

According to our data-driven modeling, a given antigen stimulation of Th1 cells featured 

stable IFN- high producers, low producers, and nonproducers. We thus hypothesized 

that the stability of these qualitative (decision to express) and quantitative (expression 

magnitude) characteristics might persist in subsequent stimulations. To generate IFN-–

producing cells in vivo, we adoptively transferred naive lymphocytic choriomeningitis 

virus (LCMV)-T cell receptor (TCR)-transgenic (tg) Th cells into wild-type (WT) mice 

and infected the recipients with LCMV, a strongly Th1-polarizing pathogen (Hegazy et 

al., 2010). At the peak of infection, we isolated the transferred cells, which all expressed 

T-bet (Fig. 3A, histogram), and sorted them by secreted amounts of IFN- upon antigen-

specific restimulation (Fig. 3B). In a second restimulation 4 d later, those cells that had 

initially produced the highest amounts of IFN- showed a higher probability to reexpress 

it than sorted IFN-
lo

 or IFN-
– 
cells and they again produced more IFN- per cell (Fig. 

3C). IFN-
hi

 cells also expressed the highest amounts of T-bet directly after sorting (data 
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not shown), and this correlation was stable for at least 4 d (Fig. 3D). Thus, individual Th1 

cells generated during a viral infection in vivo had a quantitative memory for IFN- 

production that correlated with their degree of T-bet expression. Moreover, kinetic 

analyses revealed that the graded IFN- production capacity of IFN-–sorted Th1 cells 

was a stable property that could be observed at every time point in daily restimulations 

(Fig. 3E, F, Fig. S4).  

Even among Th1 cells that were strongly polarized in LCMV infections, some did not 

produce IFN- in every restimulation (cf. Fig. 3B). To formally show that fully 

differentiated Th1 cells had a quantitative cytokine memory, we performed a similar sort-

and-track experiment starting with purified IFN-γ producers. Again, individual cells 

memorized both probability and per-cell amount of IFN-γ production, and this correlated 

with their degree of T-bet expression (Fig. S5). Thus, the probability and amount of 

IFN-γ expression are stable properties of bona fide Th1 cells. 

 

The quantitative memory for IFN-γ expression persists upon viral challenge 

infection in vivo 

To analyze if quantitative differences in IFN-γ expression were long-term stable in 

memory Th1 cells in vivo, we adoptively transferred purified IFN-
hi

, IFN-
lo

, or IFN-
–
 

Th1 cells into WT mice. After more than one month, we analyzed the capacity of the 

resting cells to reexpress IFN-γ. Both probability and per-cell expression still 

recapitulated the IFN-γ expression capacity which the cells had been sorted by (Fig. 3G). 

In addition, T-bet expression was still positively correlated with the amount of IFN-γ 

production (Fig. 3H). Thus, the magnitude of expression of both T-bet (a constitutively 
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expressed transcription factor) and IFN-γ (a stimulation-induced cytokine) are stable cell-

intrinsic features. 

We then examined if individual Th1 cells maintain their quantitative cytokine memory 

after a strongly Th1-polarizing challenge. We isolated in vivo-differentiated Th1 cells 

from LCMV-infected mice, sorted them by secreted quantities of IFN-, and transferred 

the sorted fractions into naive recipients (Fig. 3I). After at least two weeks of resting, the 

recipient mice were infected with LCMV. Upon reisolation at the peak of the secondary 

infection, the cells still recapitulated their initial graded differences in IFN- expression 

probability and amount (Fig. 3J). Notably, the stably constrained IFN- production of the 

sorted IFN-
–
 cells was not due to impaired proliferation, since these cells expanded at 

least 50-fold upon LCMV challenge. Thus, differentiated Th cells can remain committed 

to produce distinct quantities of effector cytokines while participating in sequential 

immune reactions in vivo. 

 

The quantitative memory for IFN-γ production is regulated at the level of 

transcription at individual alleles 

Next, we asked whether the quantitative cytokine memory was regulated at the RNA or 

protein level. Th1 cells sorted by their amount of IFN-γ secretion continuously featured 

graded IFN-γ mRNA quantities in subsequent restimulations (Fig. 4A), matching their 

stably graded IFN-γ protein amounts and probabilities to produce IFN-γ (cf. Fig. 3E, F, 

Fig. S4). Thus, the secretion of distinct amounts of IFN-γ by subpopulations of Th1 cells 

does not reflect different translation rates but different mRNA amounts. To distinguish 

the possibility of enhanced transcription at the Ifng locus in IFN-γ
hi

 cells from that of 
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enhanced IFN-γ mRNA degradation in IFN-γ
lo

 cells, we used the transcription inhibitor 

actinomycin D. Blocking transcription 3 h after stimulation onset reduced IFN-γ mRNA 

(Fig. 4B). However, this reduction was most profound in IFN-γ
hi

 cells, showing that 

degradation was at least as efficient in IFN-γ
hi

 cells as in IFN-γ
lo

 cells. Moreover, already 

15 minutes after stimulation onset, when mRNA amounts reflect transcription rather than 

degradation rates, IFN-γ transcripts were graded among the sorted subsets (Fig. 4C). 

Taken together, these results indicate that the specific amounts of IFN-γ secreted by 

individual Th1 cells resulted from differences in IFN-γ transcription rates and not from 

differences in mRNA degradation or translation. 

One possible mechanism underlying Ifng gene expression differences could be stable 

usage of either one or two alleles, such that IFN-γ
hi

 cells would always express 

biallelically while IFN-γ
lo

 cells would only express monoallelically. To test this 

hypothesis, we differentiated Ifng
+/+

 and Ifng
+/–

 Th1 cells in a co-culture and sorted them 

for differential IFN-γ secretion. We found that the graded differences in IFN-γ expression 

were similarly stable in WT and Ifng
+/–

 cells (Fig. 4D). Thus, it is not differential allelic 

usage but constant transcription rate differences at individual alleles that regulate the 

quantitative memory for IFN-γ. These cell-specific transcription rates could result from 

different chromatin states allowing distinct degrees of transcription factor binding at 

regulatory sites. One mechanism assumed to stably suppress transcription is DNA 

methylation. We found less methylation in IFN-γ
hi

 and IFN-γ
lo

 cells than in IFN-
–
 Th1 

cells at the key regulatory conserved noncoding sequence (CNS) -6 (Balasubramani et al., 

2010b; Shnyreva et al., 2004) at the Ifng locus (Fig. 4E). We also found graded DNA 

methylation upstream of the Tbx21 promoter (Fig. 4E), matching the higher T-bet 
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expression in IFN-γ
hi

 cells compared with that in their IFN-γ
lo/–

 counterparts (cf. Fig. 3D, 

F). In summary, our findings imply a model where DNA methylation differences 

contribute to quantitatively distinct IFN-γ transcription rates at individual alleles. 

 

T-bet quantitatively controls IFN-γ expression in fully differentiated Th1 cells 

Cells sorted for a high amount of IFN-γ secretion had more T-bet mRNA and protein 

than their IFN-γ
lo

 and IFN-γ
–
 counterparts (Fig. S6, Fig. 3D, H). This corresponds with 

the more pronounced DNA methylation of IFN-γ
lo

 and IFN-γ
–
 cells at the Tbx21 locus 

(cf. Fig. 4E). Next, we analyzed the quantitative relationship between T-bet and IFN-γ 

expression in fully committed Th1 cells at the single-cell level by coexpression analysis. 

We found that the more T-bet protein was expressed by a cell, the higher were its 

probability to produce IFN-γ and the produced IFN-γ amount (Fig. 5A). To test if T-bet 

amounts are predictive of IFN-γ expression in subsequent restimulations, we sorted Th1 

cells from T-bet–ZsGreen reporter (TBGR) mice (Zhu et al., 2012) by their intensity of 

ZsGreen (i.e. T-bet) expression (Fig. 5B) and analyzed their capacity to express IFN-γ. 

The initial T-bet expression predicted the production of IFN-γ in terms of probability and 

amount per cell right after the sort and also several days later (Fig. 5C, D). Upon adoptive 

transfer into WT mice, Th1 cells sorted by T-bet amounts preserved their differential T-

bet and IFN- expression for at least a month in vivo (Fig. 5E, F). Distinct T-bet protein 

amounts were stably maintained by these resting memory cells independent of 

restimulation (Fig. S6C). Moreover, the same functional relationship between T-bet and 

IFN-γ expression described the data both directly after the sort and 4 weeks later (Fig. 
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5G), suggesting that T-bet quantitatively controlled IFN- expression in the same manner 

in activated effector and in memory cells. 

T-bet had been identified as the master regulator of the Th1 cell lineage because of its 

capacity to instruct non-Th1 cells to acquire IFN-γ production competence (Szabo et al., 

2000). To address if a causal relationship dictated the quantitative correlation between T-

bet protein and IFN-γ production in fully committed, already IFN-γ–competent Th1 cells, 

we sorted Th1 cells for different amounts of IFN-γ secretion (and thus indirectly also for 

different T-bet expression). We then further increased their respective T-bet amount by 

retroviral overexpression (Fig. 6A). Notably, all of these Th1 cells stained positive for T-

bet protein already before the transduction (cf. Fig. S1C and hCD4
-
 cells in Fig. 6D). 

Upon T-bet overexpression, sorted IFN-γ
hi

, IFN-γ
lo

, and IFN-γ
–
 Th1 cells exhibited a 

strong increase in both probability and per-cell amount of IFN-γ production compared 

with their counterparts that were transduced with a control retrovirus (Fig. 6B, C). Both 

quantitative parameters were also graded among unsorted T-bet–overexpressing cells, 

correlating with the degree of ectopic T-bet expression (Fig. 6D, E). Taken together, an 

increase in T-bet amount in already T-bet
+
 Th1 cells can overcome an otherwise stably 

restrained cellular capacity to produce IFN-γ. This result identifies T-bet as a quantitative 

regulator of IFN-γ expression in fully differentiated Th1 cells. 

 

Graded IFN-γ production by Th1 cells regulates bacteria killing by macrophages 

To test the functional capacity of Th1 cells with distinct IFN-γ production, we analyzed 

their ability to activate macrophages for bacteria killing. We infected macrophages with 

the facultative intracellular pathogen Salmonella enterica serovar Typhimurium (S. 
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Typhimurium) and co-cultured them with sorted IFN-γ
hi

, IFN-γ
lo

, or IFN-γ
–
 Th1 cells 

(Fig. 7A). IFN-γ
hi

 Th1 cells were most efficient in inducing bacterial killing, followed by 

IFN-γ
lo

 and finally IFN-γ
–
 Th1 cells (Fig. 7B). Graded bacterial killing was associated 

with different nitric oxide (NO) production by the macrophages (Fig. 7C). Ifngr1
–/–

 

macrophages could not kill the bacteria nor produce NO when co-cultured with either 

Th1 cell population (Fig. 7B, C, right graphs), demonstrating that the effects were IFN-γ–

dependent. The IFN-γ amount secreted by IFN-γ
hi

 and IFN-γ
lo

 Th1 cells differed by two 

orders of magnitude (Fig. 7D). Thus, in addition to the frequency of cytokine producers 

in a population, the per-cell amount of cytokine production critically influences the 

functional capacity of Th cells to control intracellular bacterial infections. 
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Discussion 

While cytokines have been recognized for more than three decades as key effector 

molecules of T cells, quantitative aspects of their expression and underlying regulatory 

mechanisms are poorly understood. Here, we have shown that the well-known 

phenomenon of a heterogeneous cytokine production within a cell population is caused 

by stable cellular decisions and not governed by short-term transcription noise (Suter et 

al., 2011). We found that during an antigenic challenge, individual Th cells expressed 

their effector cytokines in stable amounts that vary widely between cells. Focusing on 

IFN- as a prototypical cytokine, we demonstrated that the magnitude of its expression 

per-cell was an intrinsic feature of Th1 cells. In vivo, this magnitude was maintained by 

the cells and their progeny for weeks, even in the face of a strongly Th1-polarizing 

challenge infection that was expected to reduce cell-to-cell differences. Moreover, the 

expression magnitude of the Th1 cell-specific, Ifng-transactivating transcription factor 

T-bet, was also a stable and heritable quantitative feature of individual Th1 cells. It 

predicted the magnitude of IFN- expression according to a dose-response function. 

Thus, T cells can quantitatively control a key effector function in a stable manner by 

quantitatively regulating a ‘master regulator’ transcription factor. 

How is such intrapopulation heterogeneity established? A TCR repertoire with diverse 

antigen affinities is likely to contribute (Constant and Bottomly, 1997) but is not 

required, given that we found similar heterogeneity within TCR-transgenic T cell 

populations. As Th1 cell differentiation proceeds, co-operative actions of STAT4 as well 

as T-bet together with the transcription factors Hlx and Runx3 induce permissive 

chromatin remodeling at the Ifng locus (Balasubramani et al., 2010a). The cell-specific 
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fine-tuning of this process may be achieved by the regulation of cytokine signaling. This 

can occur through the control of either the expression of cytokine receptors or the 

availability and/or activity of downstream signal transduction molecules and transcription 

factors. Indeed, quantitative regulation of IL-12Rβ2 and STAT4 (Szabo et al., 1997; Usui 

et al., 2003) as well as of IFN-γR expression (de Weerd and Nguyen, 2012) during Th 

cell differentiation have been described, e.g. due to asymmetric cell division (Chang et 

al., 2007). Such kinds of adjustment may generate Th1 effector cells with distinct IFN-γ 

production probabilities at the population level and distinct IFN-γ as well as T-bet 

expression rates in individual cells. We found that the probability to express IFN-γ and its 

amount produced per cell were heterogeneous in Th1 cell populations, and both features 

were stably memorized by individual cells. We did not detect a correlation between the 

IFN-γ expression of sorted cell populations and their survival in vivo. In extension of our 

previous study (Lohning et al., 2008), this finding indicated that IFN-γ
hi

 cells did not 

represent short-lived effectors but could efficiently form a memory compartment. 

Upon lineage commitment, the loci of signature cytokines exhibit stable lineage-specific 

epigenetic marks (Wei et al., 2009), allowing the rapid reexpression of the appropriate 

effector cytokines. However, key transcription factors continuously serve important 

regulatory functions. In fully differentiated Th2 cells, GATA-3 remains crucial for IL-13 

and IL-5 production, although it appears largely dispensable for IL-4 production (Zhu et 

al., 2004). Overexpression of a dominant-negative T-bet mutant is most detrimental 

during early Th1 cell differentiation, but still results in a significant decrease of IFN-γ 

production per cell when introduced after sequential polarizations with IL-12 (Martins et 

al., 2005). We found that, although all Th1 cells expressed T-bet, its protein amounts 
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varied in the effector population, and these differences were stably maintained in memory 

cells in vivo. Consistent with a continuous requirement of T-bet for efficient Ifng 

expression, we showed that IFN-γ production increased even in fully committed Th1 

cells as a direct consequence of a retrovirus-induced gradual T-bet overexpression. Thus, 

T-bet does not only orchestrate the commitment of naive T cells to the Th1 cell 

differentiation program but continuously serves as a quantitative regulator of Th1 cell 

functions. 

How does T-bet quantitatively control IFN-γ expression in memory Th1 cells? Recent 

studies indicate that epigenetic marks are subjected to a certain turnover and have to be 

actively maintained (Barth and Imhof, 2010; Dalton and Bellacosa, 2012). Here, T-bet 

seems a likely candidate as it contributes to the opening of the Ifng locus during primary 

Th1 cell differentiation (Mullen et al., 2001; Szabo et al., 2000). We found that stable 

IFN-γ expression differences were associated with corresponding DNA methylation 

patterns at both the Ifng and Tbx21 loci. In addition to DNA methylation, various histone 

modifications are thought to orchestrate gene expression activity (Barth and Imhof, 

2010). The graded DNA methylation we observed at CNS -6 of the Ifng gene and at the 

Tbx21 promoter may partially contribute to a stable quantitative cytokine memory. 

However, we hypothesize that a quantitative cytokine memory is rather based on a 

combination of multiple permissive and repressive epigenetic modifications at several 

regulatory sites. They may act together with distinct T-bet expression rates retained by 

the cells through transcriptional autoactivation (Afkarian et al., 2002; Mullen et al., 

2001). Moreover, T-bet may co-operate with NF-κB family members to facilitate Ifng 

expression upon antigen-driven restimulation – in analogy to STAT4 enabling NF-κB 
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binding to the IFN-γ locus (Balasubramani et al., 2010b) in the scenatio of IL-12– and 

IL-18–driven antigen-independent IFN-γ expression by Th1 cells (Robinson et al., 1997). 

Furthermore, cytokine expression may generally include a stochastic element (Zhao et al., 

2012). Then, changes of the expression probability would require a regulator, and the 

maintenance of a cell’s individual production magnitude of this regulator would 

constitute a quantitative cytokine memory. Here, distinct amounts of transcriptional 

repressors such as twist1 (Niesner et al., 2008; Pham et al., 2012) could contribute to the 

stable differences in IFN-γ expression between individual Th1 cells. We found a major 

regulatory step to generate these differences already at the level of transcription, 

controlled by the positive regulator T-bet. Thus, we suggest that posttranscriptional 

mechanisms such as different mRNA decay rates or modulation by microRNAs are 

unlikely to be key mechanisms. 

Cytokine genes can be expressed either mono- or biallelically (Guo et al., 2005; Hu-Li et 

al., 2001). Therefore, graded cytokine expression rates might be the result of transcription 

from either one or two alleles. However, we found that even cells with only one 

functional Ifng allele maintained quantitative expression differences. This proves that not 

allelic usage but different transcription at individual alleles constitutes the decisive 

mechanism underlying a cell’s quantitative cytokine memory. 

While the frequency of cytokine-producing cells within a population and the expression 

per cell both matter for the local cytokine concentration, most studies focus exclusively 

on the former. Yet, we found that Th1 cells exhibiting a mere 3-5-fold difference in their 

IFN-γ secretion later accumulated to a 100-fold difference over time. Thus, relatively 
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small per-cell differences in the production magnitude of a given cytokine likely have a 

great impact on immune responses. 

IFN-γ is crucial for the control of Salmonella infections (Eckmann and Kagnoff, 2001). 

We observed that distinct IFN-γ expression rates of Th1 cells translated into graded 

activation of infected macrophages to kill intracellular bacteria. Hence, the amount of 

IFN-γ produced by individual Th1 cells was decisive for the functional outcome of the T-

cell–macrophage interaction. Thus, a population of seemingly homogeneously 

differentiated T cells indeed features stable functional diversity that could quantitatively 

regulate various immune reactions. This mechanism might also provide a possibility to 

limit immunopathology. Under changing environmental challenges, plasticity of Th cell 

programs can be beneficial (Hegazy et al., 2010). IFN-γ
lo

 Th1 cells express T-bet only 

modestly and thus might retain certain plasticity, e.g. to adjust to a second pathogen that 

shares an epitope with the first but requires a different type of immune response. 

Cytokine production must be controlled tightly, since a misbalance can induce pathology. 

Here, we have demonstrated that individual T cells stably commit to express distinct 

amounts of a given cytokine. This fine-tuning of cytokine production could contribute to 

the regulation of immune responses and the prevention of excessive inflammation. The 

persistent memory for individual IFN-γ expression rates shown here could result from 

regulation at several levels. Yet, the specific amount of T-bet produced by a Th1 cell is 

decisive for its IFN-γ expression magnitude. With regard to potential clinical application, 

individual rates of cytokine and/or transcription factor expression could serve as 

predictive markers for the quantitative functional behavior of T cells and their progeny in 
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later antigenic challenges. These findings could lead to therapeutic strategies to improve 

the protective capacity of T cell responses and dampen associated immunopathology.  



22 
 

Experimental procedures 

Mice 

DO11.10 ovalbumin-TCR
tg 

mice, Ifngr1
–/–

, LCMV-TCR
tg

 (SMARTA1) Thy1.1
+
 mice, or 

TBGR mice (Zhu et al., 2012) crossed to SMARTA1 Thy1.1
+
 mice were used as organ 

donors. C57BL/6 mice or TBGR Thy1.2
+
 mice were used as recipients for cell transfers. 

Mice were bred under SPF conditions at the Charité animal facility, Berlin. All mouse 

experiments were performed in accordance with the German law for animal protection 

and with permission from the local veterinary offices. For details, see Supplemental 

Information. 

Viruses and bacteria 

LCMV. Mice were infected intravenously with 200 plaque-forming units. 

S. Typhimurium. Macrophages were infected with an MOI of 1:10 and co-cultured with 

IFN-γ–sorted Th1 cells for 36 h. Macrophage lysate was plated onto LB agar plates. 

Bacterial colonies were counted after 24 h. For details, see Supplemental Information. 

Primary T cell cultures 

Naive CD4
+
CD62L

hi
CD44

lo
 T cells were differentiated into Th1 cells using 3 ng/ml 

IL-12 and 10 µg/ml anti–IL-4 (11B11), into Th2 cells using 30 ng/ml IL-4, 10 µg/ml 

anti–IL-12 (C17.8), and 10 µg/ml anti–IFN-γ (AN18.17.24), or into Th17 cells using 20 

ng/ml IL-6, 1 ng/ml TGF-β, 10 ng/ml IL-23, 10 µg/ml anti–IL-4, and 10 µg/ml anti–

IFN-γ. Cells were analyzed on d 5. For details, see Supplemental Information. 

Flow cytometry 
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Cells were stained as described (Hegazy et al., 2010). Antibodies and buffers were 

purchased from eBioscience and BD Biosciences. For detailed protocols and antibody 

clones, see Supplemental Information. 

For cytokine production analysis, cells were restimulated with PMA and ionomycin. To 

normalize the per cell cytokine protein amount of sorted cell populations, the geometric 

mean (GM) of cytokine-positive cells in a sorted subset was divided by the GM of the 

respective cytokine-positive cells from an unsorted population. 

For transcription factor protein quantification, GM indices were calculated as the GM of 

stained cells divided by the GM of isotype control-stained cells. Unless indicated 

otherwise, GM indices of sorted cell subsets were normalized to those of unsorted cells. 

Bone marrow (BM)–derived macrophages 

BM from WT or Ifngr1
–/–

 mice was cultured using standard macrophage differentiation 

protocols. For details, see Supplemental Information. 

Cytokine secretion assay 

The cytometric cytokine secretion assay was performed as described (Assenmacher et al., 

1998; Lohning et al., 2003) upon PMA and ionomycin restimulation unless indicated 

otherwise. For details, see Supplemental Information. 

Retroviral transduction 

Ecotrophic retroviruses (encoding pMSCV-Tbet-I-hCD4 or pMSCV-I-hCD4) were 

generated by transfection of Phoenix cells. Retrovirus supernatants were used to spin-

infect T cells in the presence of 8 µg/ml polybrene (Sigma). 

RNA isolation and real-time PCR 
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RNA isolation and qPCR were performed using standard protocols. For details, see 

Supplemental Information. 

Cytokine analysis in culture supernatants 

IFN- concentrations in cell culture supernatants were determined by cytometric Bead 

Array (BD Biosciences) according to the manufacturer’s instructions. 

Bisulfite sequencing 

DNA was isolated using the NucleoSpin Blood Kit (Macherey-Nagel). Amplicon design 

and bisulfite sequencing was performed by Epiontis GmbH, Berlin, Germany. 

Statistical analysis 

Two groups were compared with two-tailed unpaired Student’s t test; n.s., not significant; 

*, P < 0.05; **, P < 0.01; ***, P < 0.001. 

Mathematical modeling 

For detailed description of all mathematical models, see Supplemental Information.  
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Figure legends 

Figure 1. Individual Th cells maintain their specific rate of cytokine production 

(A) Alternative models of cytokine production by T cell populations. (B) Experimental 

setup. (C) Th1 cells were restimulated with PMA and ionomycin. Live IFN-γ
+
 cells were 

labeled by secretion assay and cultured with or without stimulus. Intracellular IFN-γ 

counterstainings were performed at the indicated time points. Percentages of IFN-γ
+
 cells 

are indicated. (D) Scheme of the ‛rapid-switching model’ that allows cells to cycle 

between producing and nonproducing states at rates  and  before production is 

irreversibly ceased at a rate κ. (E) Scheme of the ‛stable-production model’ used to 

extract the IFN- production length distribution  in the population. Cells become IFN-
+
 

at a rate . (F) Fit of the ‛stable-production model’ (solid line) to the time series data of 

IFN- production (intracellular staining, dots). The brefeldin A control (cross) is modeled 

by leaving out the second step in the model (dashed line). (G) Model fit (simultaneously 

with the data from F) to the kinetics of the secreted–IFN-
+
 cells from C (IFN- measured 

by intracellular staining). (H) The resulting production period is 5.9±3.6 h (mean 

production period and variability within the population). Data are representative of three 

independent experiments. See also Figs. S1 and S2. 

 

Figure 2. Mathematical modeling predicts inherently distinct cytokine expression 

capacities of individual cells 

(A) Intracellular IFN- detection with two different antibodies. The red line represents the 

one standard deviation error ellipse of the IFN-γ
+
 cells corresponding to a relative 

measurement error of 17%. (B) Scheme of the ‛promoter state transition model’: 
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Cytokine transcription becomes active with rate kon after stimulation and is terminally 

inactivated with rate koff; intermittently, the promoter can switch between transcriptional 

on- and off-states (transcriptional bursting, k±). Transcription, translation, degradation of 

IFN- mRNA and protein, and protein secretion are described with rate constants v0, k, 

dR, dP, and dS. (C) Decline of the mean protein amount in IFN-
+
 cells with persistent 

stimulus (dots) and after removal of the stimulus (crosses) (cf. Fig. 1C) together with fits 

of the model in B (solid lines). (D) Correlation coefficients (crosses) calculated for the 

secreted–IFN-
+
 cells and fit of the model (solid line). (E) Coefficients of variation of the 

distributions of IFN-
+
 cells (crosses) and simulation of the model substantially deviating 

from the data (solid line). The experimental data in C–E were used simultaneously for 

fitting the model parameters. (F) Intracellular IFN-γ staining of Th1 cells 3 h after 

restimulation (blue) and simulation of the ‛promoter state transition model’ (red). (G) 

Scheme of the ‛distributed production capacity model’: As in B but allowing only for a 

single switch-on and switch-off event: The promoter switches to an on-state at a rate kon 

and switches back to a nonproductive state after a Gamma-distributed production period 

. The IFN- expression capacity, defined as the product of transcription and translation 

rates, v0 k, is assumed to be lognormally distributed within the cell population. (H) 

Lognormal distribution of the IFN- production capacity (v0 k) resulting from the fit in I. 

(I) Fit of the model (dashed line) to the time evolution of the distribution of intracellular 

IFN- amounts within the total Th1 cell population (solid line). Data are representative of 

three independent experiments. See also Fig. S3. 
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Figure 3. Individual Th1 cells exhibit a stable quantitative memory for IFN-γ and 

T-bet expression 

(A) Experimental setup of B–D. WT recipients of 2×10
5
 LCMV-TCR

tg
 CD4

+
Thy1.1

+
 T 

cells were infected with LCMV. Thy1.1
+
 cells were reisolated on d 10 and analyzed for 

T-bet expression (histogram inset; black, staining; gray, isotype control). (B) Cells were 

restimulated with LCMV-GP64-80, sorted by secreted IFN-γ amounts, and cultured. (C) 

Frequency of IFN-γ
+
 cells and normalized IFN-γ amount per cell in the sorted fractions 

on d 4 after sort. (D) Normalized T-bet amounts per cell on d 4 after sort. Representative 

results (B) and means + SD (C, D) of two experiments are shown. (E, F) In vitro-

differentiated Th1 cells were sorted by secreted IFN-γ amounts and cultured with IL-2. 

(E) Frequency of IFN-γ
+
 cells in the sorted fractions. (F) Normalized IFN-γ amount per 

cell in the sorted fractions. Representative results of three (E) and means + SD of two (F) 

independent experiments are shown. (G, H) In vitro-differentiated Th1 cells were sorted 

by secreted IFN-γ amounts, transferred into WT mice (1.5×10
6
 cells/mouse), and 

reisolated on d 35. Means + SD of two independent experiments are shown. (G) 

Frequency of IFN-γ
+
 cells and normalized IFN-γ amount per cell in the sorted fractions. 

(H) Normalized T-bet amounts per cell in the sorted fractions. (I) Experimental setup of 

J. WT recipients of 2×10
5
 LCMV-TCR

tg
 CD4

+
Thy1.1

+
 T cells were infected with 

LCMV. Thy1.1
+
 cells were reisolated on d 10, restimulated with LCMV-GP64-80, sorted 

by secreted IFN- amounts, and transferred into naive WT mice (5×10
4
 cells/mouse). 

After 16 d, secondary recipients were infected with LCMV. On d 10 after challenge 

infection, Thy1.1
+
 cells were reisolated. (J) Frequency of IFN-γ

+
 cells and normalized 
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IFN-γ amount per cell in the sorted fractions are shown (means + SD of n=3–4 mice). See 

also Figs. S4 and S5.  

 

Figure 4. The quantitative memory for IFN-γ production is regulated at the level of 

transcription at individual alleles 

(A–C) Th1 cells were sorted by secreted IFN-γ amounts and tracked. (A) IFN-γ mRNA 

upon restimulation was normalized to HPRT (means + SD). (B) On d 3 after sort, cells 

were restimulated. 3 h after onset, transcription was inhibited in some cells (dotted line, 

open symbols). IFN-γ mRNA normalized to HPRT over the course of stimulation is 

shown. (C) Data as in (B) with a focus on early time points after stimulation onset. Data 

are pooled from (A) or are representative of (B, C) two independent experiments. (D) 

Ifng
+/+

 or Ifng
+/–

 Th1 cells were sorted by secreted IFN-γ amounts and cultured. Upper 

panel, frequency of IFN-γ
+
 cells in sorted fractions normalized to that in unsorted cells. 

Lower panel, normalized IFN-γ amount per cell in the sorted fractions. Means ± SD of 

two independent experiments are shown. (E) Degree of DNA methylation + SD is 

depicted in Th1 cells sorted by graded IFN-γ secretion and analyzed by bisulfite 

sequencing at a CpG island corresponding to CNS -6 at the Ifng locus (left) and at a CpG 

island approximately 1 kb upstream of the Tbx21 promoter (right). See also Fig. S4. 

 

Figure 5. T-bet and IFN-γ expression are quantitatively correlated 

(A) Th1 cells were stained intracellularly for IFN-γ, either combined with T-bet staining 

(left plot, colored dots) or isotype control staining (left plot, gray dots). IFN-γ expression 

in subpopulations with different T-bet expression is shown. Frequencies of IFN-γ
+
 cells 
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and geometric mean of IFN-γ in IFN-γ
+
 cells (bold numbers) are indicated. Data are 

representative of three independent experiments. (B) TBGR Th1 cells were sorted by 

ZsGreen expression and cultured. (C) Frequency of IFN-γ
+
 cells in the sorted fractions 

and IFN-γ amount per cell in the sorted fractions, both normalized to those in unsorted 

cells are shown as means + SD on d 4 after sort. (D) Kinetic analysis of the frequency of 

IFN-γ
+
 cells in the sorted fractions (means ± SD). Data are pooled from three (C) or two 

(D) independent experiments. (E–G) TBGR LCMV-TCR
tg 

Thy1.1
+
 Th1 cells were sorted 

by ZsGreen expression into T-bet
hi

 or T-bet
lo

 fractions and transferred into WT mice 

(2×10
6
cells/mouse). (E) T-bet expression and frequency of IFN-γ

+
 cells directly before 

transfer, both normalized to those in unsorted cells. (F) T-bet expression and frequencies 

of IFN-γ
+
 cells, both normalized to those in unsorted controls, are shown in cells 

reisolated from spleens on d 29 after transfer (n = 3 mice/group). Data in E and F 

represent means + SD from four independent experiments. (G) Correlation of IFN-γ
+
 

frequency with ZsGreen expression directly after sort (purple dots) and on d 29 after 

transfer (blue dots). Each blue dot represents transferred cells recovered from one 

recipient. Data are representative of two independent experiments. The purple line shows 

the best fit to the data obtained directly after sort using a two-parameter model (c.f. 

Supplemental Experimental Procedures). The shaded region indicates the 95% 

confidence prediction bands. The predicted functional relationship captures the measured 

data on d 29. See also Fig. S6. 

 

Figure 6. T-bet quantitatively controls IFN-γ expression in fully differentiated Th1 

cells 
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(A) Experimental setup. Th1 cells were sorted by secreted IFN-γ amounts and transduced 

with a T-bet–encoding or control retrovirus. IFN-γ expression was analyzed in transduced 

(hCD4
+
) cells 2 d later. (B) Frequencies of IFN-γ

+
 cells and geometric mean of IFN-γ in 

IFN-γ
+
 cells (bold numbers). (C) Relative increase in IFN-γ expression probability and 

per-cell amount upon T-bet overexpression. (D, E) Unsorted Th1 cells were transduced 

with a T-bet–encoding retrovirus and analyzed 2 d later. (D) Counterstaining of T-bet and 

hCD4. (E) Frequencies of IFN-γ
+
 cells and geometric mean of IFN-γ in IFN-γ

+
 cells (bold 

numbers) in cells overexpressing different amounts of hCD4, i.e. T-bet. Representative 

results of (B, D, E) or pooled data from (C) two independent experiments are shown. 

 

Figure 7. Graded IFN-γ production by Th1 cells regulates bacteria killing by 

macrophages 

(A) Th1 cells were sorted by secreted IFN-γ amounts. WT or Ifngr1
–/–

 BM-derived 

macrophages were infected with S. Typhimurium. IFN-γ–sorted fractions were co-

cultured for 36 h with infected macrophages at a 1:5 ratio, or recombinant IFN-γ (10 

ng/ml) was added as a control. (B) Bacterial colonies were counted after plating 

macrophage lysates for 24 h. (C) Nitrite accumulation in the culture medium. (D) Sorted 

fractions from A were cultured without macrophages for 36 h. IFN-γ concentrations in 

the supernatants of 4×10
5
 cells/ml are shown (dotted line, detection limit). Data are 

pooled from (B, D) or are representative of (C) three independent experiments. 
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Figure S1, related to Figure 1. Differentiated Th cells segregate into stable cytokine-

producing and -nonproducing subsets during one stimulation. 

Naive Th cells were differentiated into Th1, Th2, or Th17 cells for 5 d. (A) Cells were 

restimulated with PMA and ionomycin. Cells were fixed and stained intracellularly for the 

indicated cytokines in a kinetic fashion. (B) A fraction of cells was deprived of the stimulus by 

intensive washing in ice-cold buffer at 3 h after stimulation onset. The frequency of cytokine 

producers was then followed in a continuous culture either without stimulus or with immediate 

readdition of the stimulus in comparison to the stimulation without interruption. (C) The 

expression of CD44, T-bet, GATA-3, and RORγt was measured by flow cytometry. Data are 

representative of three independent experiments. 
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Figure S2, related to Figure 1. Secreted and intracellular cytokine detection is 

quantitatively correlated, and Th17 cell populations comprise stable IL-17 producers and 

nonproducers. 

(A) IFN-γ secretion assay was performed with restimulated Th1 cells. Intracellular IFN-γ 

counterstaining was done either with (left) or without (right) cell permeabilization with saponin. 

(B) Upon restimulation of Th17 cells, live IL-17+ cells were labeled by cytokine secretion assay 

and continuously cultured in the presence of the stimulus. Intracellular counterstainings for IL-17 

were performed at the indicated time points. Data are representative of two independent 

experiments. 
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Figure S3, related to Figure 2. The ‘distributed production capacity’ model describes the 

IFN-γ production dynamics of the secreted–IFN-γ+ cells.  

Fit of the ‘distributed production capacity’ model (dashed line; cf. Fig. 2G) to the intracellular 

IFN-γ expression from the secretion assay data, gated on cells with a high amount of secreted 

IFN-γ at t = 0 (solid line) using the same parameter values (except for the initial width of the 

IFN-γ production capacity) as for the IFN-γ production dynamics shown in Fig. 2I.  
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Figure S4, related to Figures 3 and 4. Th1 cells exhibit a quantitative memory for IFN-γ 

expression. 

Th1 cells were sorted for differential IFN-γ secretion into IFN-γhi, IFN-γlo, and IFN-γ– 

populations and cultured in the presence of IL-2. IFN-γ expression in the sorted fractions was 

measured upon daily restimulation. Numbers indicate the percentage of IFN-γ+ cells. 

Representative results of three independent experiments are shown. 
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Figure S5, related to Figure 3. IFN-γ+ bona fide Th1 cells maintain differential capacities to 

express T-bet and IFN-γ. 

In vitro-generated Th1 cells were restimulated and sorted into IFN-γ+ and IFN-γ– fractions. 

IFN-γ+ cells were cultured without further stimulation (medium + IL-2) for 4 d. A second 

restimulation followed by another IFN-γ sort was performed. IFN-γ producers and nonproducers 

were cultured as before, and their capacity to reexpress IFN-γ was compared on d 4. T-bet 

expression was analyzed directly after each sort and 4 d later and is depicted as geometric mean 

index relative to that of the respective IFN-γ+ population. Numbers in bold and color in the dot 

plots show the geometric mean of IFN-γ within the IFN-γ+ population. Representative results and 

means + SD of two independent experiments are shown. 
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Figure S6, related to Figure 5. Graded T-bet mRNA and protein levels are maintained in 

individual Th1 cells. 

(A-B) Th1 cells were sorted for differential IFN-γ secretion into IFN-γhi, IFN-γlo, and IFN-γ– 

populations and cultured in the presence of IL-2. (A) T-bet mRNA normalized to HPRT relative 

to that in unsorted cells is shown over time. (B) Geometric mean index of T-bet protein is shown 

over time. Pooled data from two independent experiments are shown. (C) TBGR LCMV-TCRtg 

Thy1.1+ Th1 cells were sorted for ZsGreen (i.e. T-bet) expression into T-bethi or T-betlo fractions 

and transferred into WT mice. Transferred cells isolated from spleens on d 29 after transfer were 

analyzed for T-bet expression by flow cytometry either with (left) or without (right) 

restimulation. Data represent means + SD pooled from four independent experiments. 

 

 

 



Supplemental Table S1, related to Figures 1 and 2. Parameter estimates and confidence 
bounds. 

 
Rapid-switching model 
 

Parameter Best-fit 95 % confidence bounds 
𝜏̅ 0.71 h (0.50, 0.85) h 
𝜆 0.87 h-1 (0.71, 1.45) h-1 
𝜔 0 h-1 (0, 0.09) h-1 
𝜅 0.16 h-1 (0.15, 0.19) h-1 

 
 
Stable-production model 
 

Parameter Best-fit 95 % confidence bounds 
𝜏̅ 0.70 h (0.50, 0.78) h 
𝜆 1.0 h-1 (0.73, 1.14) h-1 

𝜏: mean 5.9 h (5.2, 6.0) h 
𝜏: √variance 3.6 h (3.4, 4.8) h 

 
 
Promoter state transition model 
 

Parameter Best-fit1 
(used data: Fig. 2 

C, D, E) 

Best-fit 
(used data: Fig. 2 C, D) 

95 % confidence bounds2 
(used data: Fig. 2 C, D) 

kon
 (3) 0.9 h-1 0.9 h-1  

k+
(4) 2.0 h-1 8.0 h-1 (0, ∞) h-1 

k– 0.69 h-1 0.0092 h-1 (0, 1.39) h-1 
dR

(5) 0.83 h-1 0.80 h-1 (0.42, 1.08) h-1 
dP + dS 

(4, 5) 4.3 h-1 4.23 h-1 (1.3, ∞) h-1 
koff 0.65 h-1 0.70 h-1 (0.45, 1.57) h-1 

 
 
Distributed production capacity model 
 

Parameter Best-fit 

initial delay 𝜏̅ 0.58 h 
μ (6) 8.75 
σ (6) 1.47 

mean (7) 4.2 h 
√variance (7) 2.5 h 

ratio of producing cells 0.59 
kon 1.60 h-1 

dR
(8) 1.1 h-1 

dP + dS 
(8) 5.9 h-1 



 
 
1 Confidence bounds not calculated because this model is not describing the data 
2 The corresponding bootstrap sample was also used to calculate the model prediction that less than 7 % of 
the CV generated by the model was due to transcriptional bursting (c.f. supplemental text) 
3 Fixed in accordance with the corresponding rates in the rapid-switching and stable-production models 
4 Importantly, these non-identifiabilities have no effect on the two important conclusions inferred from the 
promoter state transition model: Firstly, the model fails to account both for the CV of the distribution of 
IFN-γ expression levels (Fig. 2E) and for the shape of this distribution (Fig. 2F). Secondly, using bootstrap 
we obtain a confidence bound for the contribution of transcriptional bursting to the CV, showing that it is 
smaller than 7 % and can therefore be neglected in the distributed production capacity model (see 
Supplemental Experimental Procedures for more details). 
5 Without loss of generality, it was assumed in the model fits that dP + dS > dR (fast cytokine secretion 
rate dS); the data just constrain at least one of the two decay rates (protein or RNA decay rate) to be 
sufficiently slow while the other one can be fast 
6 Parameters of the log-normal distribution for the production capacity (v0 k) 
7 Mean and √variance of the gamma distribution for the production time τ 
8 Fixed in accordance with the corresponding rates in the promoter state transition model 
 

 

 



Supplemental Experimental Procedures 

Mice 

DO11.10 ovalbumin-TCR-transgenic (tg) mice (Murphy et al., 1990) on the BALB/c background 

or LCMV-TCRtg (SMARTA1) (Oxenius et al., 1998) Thy1.1+ mice on the C57BL/6 background, 

which express a TCR specific for the LCMV epitope GP61-80, or Ifngr1-/- mice (Muller et al., 

1994) were used as organ donors for the isolation of splenocytes, lymph node cells, and bone 

marrow cells. TBGR mice on the C57BL/6 background (Zhu et al., 2012) were crossed to 

SMARTA1 Thy1.1+ mice and were used as organ donors. C57BL/6 mice or TBGR Thy1.2+ mice 

were used as recipients in adoptive cell transfer experiments. Mice were bred under SPF 

conditions at the Charité animal facility, Berlin. All mouse experiments were performed at the 

Charité University Medicine, in accordance with the German law for animal protection, with 

permission from the local veterinary office, and in compliance with the guidelines of the 

Institutional Animal Care and Use Committee. 

 

Viruses and bacteria 

LCMV. The LCMV-Armstrong strain was propagated on BHK cells, and virus stocks were 

titrated by standard immunofocus assays on MC57G cells. 

S. Typhimurium. S. Typhimurium SL1344 was grown statically at 37 °C in Luria-Bertani (LB) 

broth for 16–18 h. Macrophages were infected with an MOI of 1:10 for 3 h, followed by 1 h 

incubation with media containing gentamycin (100 µg/ml, Gibco) to kill extracellular bacteria. 

Upon co-culture with IFN-γ–sorted Th1 cells for 36 h, supernatants were collected and 

macrophages were lysed with 1% Triton X-100 (Sigma). To determine the number of replicating 

bacteria, macrophage lysate was serially diluted in PBS and plated onto LB agar plates 

supplemented with 25 µg/ml streptomycin. Plates were incubated at 37 °C for 24 h, and colonies 



were counted. Macrophage nitrite production was analyzed in the culture supernatant using 

Griess reagent (Sigma). The absorbance at 550 nm was compared to a NaNO2 standard curve. 

 

Primary T cell cultures 

Naive CD4+CD62LhiCD44lo T cells were sorted from pooled spleen and lymph node cells by 

magnetic-activated cell sorting or FACS and cultured in RPMI 1640+GlutaMax-I supplemented 

with 10% (v/v) FCS (Gibco), penicillin (100 U/ml; Gibco), streptomycin (100 µg/ml; Gibco), and 

ß-mercaptoethanol (50 ng/ml; Sigma) in the presence of APCs and 0.5 µg/ml Ova323-339 peptide 

or LCMV-GP64-80, respectively (R. Volkmer, Institute for Med. Immunology, Charité). For Th1 

cell differentiation, 3 ng/ml IL-12 and 10 µg/ml anti–IL-4 (11B11) were added. For Th2 cell 

differentiation, 30 ng/ml IL-4, 10 µg/ml anti–IL-12 (C17.8), and 10 µg/ml anti–IFN-γ 

(AN18.17.24) were added. For Th17 cell differentiation, 20 ng/ml IL-6, 1 ng/ml TGF-β, 10 ng/ml 

IL-23, 10 µg/ml anti–IL-4, and 10 µg/ml anti–IFN-γ were used. All recombinant cytokines were 

purchased from R&D Systems. Cell cultures were split on d 3 and analyzed on d 5. 

 

Bone-marrow derived macrophages 

Bone marrow was isolated from hind legs of C57BL/6 mice or Ifngr1–/– mice by flushing bones 

with DMEM. Bone marrow cells were cultured at a concentration of 1×106cells/ml in DMEM 

supplemented with 10% (v/v) FCS (Sigma), 5% (v/v) horse serum (Invitrogen), L-glutamine 

(2mM, GE Healthcare), HEPES (10mM, Gibco), sodium pyruvate (1mM, Biochrome), and 20% 

(v/v) M-CSF-containing L929 cell culture supernatants. On d 6, macrophages were harvested, 

plated at a concentration of 2×105 cells/ml, and infected 24 h later. 

 

 



Intracellular cytokine staining and flow cytometry 

On d 5 of culture or at the indicated analysis time points, cells were purified by underlaying 

Histopaque (Sigma-Aldrich) and performing high density centrifugation (400g at 20°C for 20 

min). Cells were then restimulated with PMA (5 ng/ml) and ionomycin (500 ng/ml) for 2.5 – 3 h 

with addition of brefeldin A (5 µg/ml; all from Sigma-Aldrich) at 30 min, followed by fixation in 

2% formaldehyde (Merck). For ex vivo sorting of IFN-γ–producing cells (Fig. 3), an antigen-

specific restimulation using the GP64-80 peptide was performed for 4 h. In some experiments, the 

transcription inhibitor actinomycin D (Sigma-Aldrich) was added at a concentration of 5 µg/ml to 

cells restimulated with PMA and ionomycin. 

Intracellular staining was performed in PBS/0.2% BSA containing 0.05% saponin (Sigma-

Aldrich) for permeabilization. Samples were stained with antibodies against CD4 (RM4-5), 

Thy1.1 (OX-7), CD44 (IM7), IFN-γ (XMG1.2, AN18.17.24), IL-2 (JES6-5H4), TNF-α (MPG-

XT22), IL-4 (11B11), IL-10 (JES5-16E3), IL-13 (38213.11), IL-17A (TC11-18H10), IL-17F 

(eBio-18F10).  

Samples were sorted on a FACSAria II and acquired on a FACSCanto II (Becton Dickinson). 

Data were analyzed with Flow Jo (Tree Star). 

 

Transcription factor staining 

T-bet, GATA-3, and RORγt protein amounts were analyzed using FoxP3 staining buffer set 

(eBioscience) according to the manufacturer’s instructions. Briefly, cells were stained with 

PerCP-conjugated anti-CD4 and then fixed with 1x Fixation/Permeabilization buffer, followed by 

intracellular staining with PE-conjugated anti–T-bet (4B10), Alexa-647–conjugated anti–

GATA-3 (TWAJ, both from eBioscience) or PE-conjugated anti-RORγt (Q31-378 from BD) in 

1x permeabilization buffer. Cells were washed in 1x permeabilization buffer and analyzed. 



 

Cytokine secretion assay 

The cytometric cytokine secretion assay was performed as described before (Assenmacher et al., 

1998; Lohning et al., 2003). Briefly, cells were restimulated for 2.5 h to 4 h, followed by labeling 

with an IFN-γ– or IL-17–specific capture matrix (Miltenyi Biotec). The capture matrix-labeled 

cells were kept in 37°C warm medium for 20 min. Matrix-captured cytokine was stained on the 

cell surface with anti–IFN-γ-PE or anti–IL-17-biotin followed by anti–biotin-PE (Miltenyi 

Biotec). 

Upon FACS sort, cells were continuously cultured in medium containing recombinant mouse IL-

2 (5ng/ml, R&D Systems) and recombinant mouse IL-7 (5ng/ml, Peprotech), if not indicated 

otherwise. 

 

RNA isolation and real-time PCR 

Total RNA was isolated from the sorted cell populations using the NucleoSpin RNA II kit 

(Macherey-Nagel), according to the manufacturer’s instructions. Reverse transcription into 

cDNA was performed using the Taqman kit (Roche Diagnostics). For real-time PCR, the 

FastStart DNA Master SYBR Green I kit (Roche Diagnostics) was used. For normalization, the 

mRNA expression values of the gene of interest were divided by the mRNA expression values of 

a housekeeping gene, i.e. hypoxanthine guanine phosphoribosyl transferase (HPRT). Data were 

evaluated using Lightcycler software (LightCycler3 Data Analysis).  

Primer sequences:  

HPRT, GCTGGTGAAAAGGACCTCT and CACAGGACTAGAACACCTGC;  

Ifng, CAACAACATAAGCGTCATT and ATTCAAATAGTGCTGGCAGA;  

Tbet, TCCTGCAGTCTCTCCACAAGT and CAGCTGAGTGATCTCTGCGT.  



 

Mathematical modeling 

Rapid-switching model (Fig. 1D): A certain fraction !!  of the cells  stays quiescent for the whole 

duration of the stimulation. The remaining cells stay quiescent only for the time period  and can 

then cycle between an IFN-γ producing (state B) and nonproducing state (state A) at rates λ and 

ω. IFN-γ positive cells can switch off production irreversibly at a rate k. The master equation for 

this system reads 

! !, ! = −!  ! !, ! + !  ! !, !  

! !, ! = !  ! !, ! − ! + !   ! !, ! , 

with ! !, ! = 1− !!  and  ! !, ! = 0. For the secretion assay positive cells the initial 

conditions are changed to !sec !, !sec = 1  and  !sec !, !sec = 0, where !sec denotes the time 

point of the secretion assay. 

To fit both probabilities ! !, !  and !sec !, !   to the experimental data, we obtained first the time 

series of secretion-assay positive cells by gating for the cells that produced IFN-γ at t = 0 and 

determined the fraction of remaining producers using the intracellular staining. We then 

estimated all model parameters by fitting both probabilities simultaneously to the kinetics of the 

secretion-assay positive cells and the time series of IFN-γ positive cells in the whole population 

using the trust-region-reflective algorithm of MathWorks MATLAB’s optimization toolbox (the 

data is shown in Figs. 1F and 1G). To additionally constrain the model, we included in the fit the 

experimental control where the secretion inhibitor brefeldin A was added to the culture (data 

point depicted as a cross in Fig. 1F). In the model this corresponds to the solution of the above 

master equation for the case ! = ! = 0. We used a parametric bootstrap approach to resample 

!



the data (n = 10,000; resampling of the residuals) and subsequently refitted the model resulting in 

an (95 % confidence level) upper bound on ! of 0.09/h. The best-fit values and confidence 

bounds for all parameters can be found in Supplemental Table S1. 

Stable-production model (Fig. 1E): As in the rapid-switching model, a fraction !!  of the 

cells  stays quiescent for the whole duration of the stimulation. Following stimulation, the 

remaining cells stay quiescent for the time period  and then become IFN-γ producers at a rate λ. 

After the production period τ (assumed as a gamma-distributed random variable), IFN-γ 

production ceases. The model admits the following analytical solution for the probability to 

produce IFN-γ at time t 

, 

where  is the gamma distribution with rate parameter k and scale parameter θ and 

is the production probability with constant τ, given by  

! !, ! = 1− !! ∙
0, ! ≤ !

1− !!! !!! , ! > ! ∧ ! < ! + !
1− !!!  ! !!!(!!!!!), ! ≥ ! + !.

 

For constant τ, the probability to find a cell producing IFN-γ at the time point of the secretion 

assay tsec and at time t is 

!! !, ! = 1− !! ∙

0, ! ≤ !
1− !!! !!! , ! > ! ∧ ! ≤ !sec

1− !!! !sec!! , ! > !sec ∧ ! ≤ ! + !
!!! !!!!! − !!! !sec!! , ! > ! + ! ∧ ! ≤ !sec + !

0, ! > !sec + !,

 

!

P(t) = p(t,! )
0

!

" # ! ,k,"( )d!

! ! ,k,!( )

p t,!( )



for  and otherwise 

!! !, ! = 1− !! ∙

0, ! ≤ !sec − !
!!! !sec!!!! (1− !!! !!!sec!! ), ! > !sec − ! ∧ ! ≤ !sec

!!! !sec!! (!! !sec!!!! − 1), ! > !sec ∧ ! ≤ !sec + !
0, ! > !sec + !.

 

The probability for a gamma distributed τ is then calculated analogous to . 

Both probabilities were fitted to the experimental data as described above for the rapid-switching 

model (Figs. 1F and 1G). The resulting distribution for the production period ! is shown in Fig. 

1H. Assessment of the parameter confidence bounds was done via bootstrapping as described 

above for the Rapid-switching model. The resulting confidence bounds for all parameters as well 

as their best-fit values can be found in Supplemental Table S1. 

	
  

Promoter state transition model (Fig. 2B): To determine the parameters of the promoter state 

transition model, we first computed the correlation coefficients of IFN-γ protein amounts 

measured at two different time points (autocorrelation; cf. Fig. 2D). In order to correct for any 

positive correlation that is due to background effects (e.g. surface-bound IFN-γ), the intracellular 

IFN-γ amounts for different levels of surface IFN-γ were normalized by the corresponding IFN-γ 

amounts of a control population that was treated equally except that the permeabilization step 

prior to the intracellular staining was left out (no saponin added). In the following we will first 

briefly discuss the analytical tractable case of vanishing kon and koff rates in steady state to gain 

some intuition and then turn to the full model. While analytical formulas for both the 

autocorrelation function and the coefficient of variation can be obtained readily for the steady 

state distribution of the model in the case of vanishing kon and koff rates, we relied for the full-

tsec < ! +!

P+(t) P(t)



time-dependent model on simulations of a large number of cells (n = 100,000) for the calculation 

of these quantities in the full model (see further below). 

The autocorrelation function R for the promoter state transition model with kon = koff = 0 has been 

calculated elsewhere (Raj et al., 2006). It is given by the inverse Fourier transformation of  

! ! =    ℎ!(!)
!
   ℎ! !

!
!! ! ,   

where the hat denotes the Fourier transform and 

ℎ! ! = ! !   !  !! !!!!! ! ,  

ℎ! ! = ! !   !!  !!!!! ,  

!! ! =
!on!off

!on + !off !
!!(!on!!off) ! , 

with the Heaviside function H. The coefficient of variation η in this case is given by (Raj et al., 

2006): 

!! =
!off
!on

!!(!! + !!)
!! + !! + !!

!! + !! + !! + !on + !off
!! + !on + !off !! + !! + !on + !off

. 

The decline of the mean protein amount P in IFN-γ producers after withdrawal of the PMA and 

ionomycin stimulus (Fig. 2C, crosses) leading to an immediate transition to the promoter off state 

in the model is independent on kon and koff; it is given by 

! ! = const.∙
1
!!

!−!!  ! !!!  !!"# − 1 −
1

!! + !!
!−(!!!!!)  ! !(!!!!!)  !!"# − 1 , 

where tsec denotes the time at which the secretion assay was performed.  



In order to calculate the autocorrelation function, the coefficient of variation, and the switching-

off kinetics under continuous PMA and ionomycin stimulation (in contrast to stimulus 

withdrawal, this means continuous shuttling between promoter on and off states according to the 

full model also after the secretion assay was conducted) for the case of non-vanishing rates kon 

and koff, we relied on the numerical simulation of the trajectories for a large number of cells (n = 

100,000). To this end, switching-on and switching-off times for every simulated cell were drawn 

from the exponential distributions defined by the rates kon, koff , k+ and k-. Within the resulting 

time intervals, the RNA (R) and protein (P) kinetics were computed analytically based on the 

solution of the following two ordinary differential equation systems.  

In the case of the promoter becoming active at time point ta at which RNA and protein amounts 

are given by R0 and P0, respectively, the system is described by  

! ! = !! − !!! ! , 

! ! = !  ! ! − !!! ! , 

! !! = !!, 

! !! = !!, 

for all time points t before the promoter becomes inactive again. Accordingly, for a transition to 

the inactive promoter state occurring at time point ti, protein and RNA amounts are governed by 

! ! = !!!!! ! , 

! ! = !  ! ! − !!! ! , 

! !! = !!, 



! !! = !!, 

for all time points t before the promoter (possibly) becomes active again.  

The simulated quantities were then fitted to the data shown in Figs. 2C, D and E using the trust-

region-reflective algorithm of MathWorks MATLAB’s optimization toolbox. While describing 

both the switching-off kinetics (Fig. 2C) and the autocorrelation function (Fig. 2D) accurately, 

the model fails to account for the large variability (as quantified by the coefficients of variation 

shown in Fig. 2E) of the IFN-γ producers (more than one thousand random initial values for the 

fitted parameters were tried). This necessitated the introduction of an additional source of 

variability into the model, which lead us to introduce cell-to-cell differences in the individual 

production capacities (defined as the product of transcription and translation rates, v0 k) of the 

cells (c.f. Distributed production capacity model). Such a model extension results in an additional 

‘cell-extrinsic’ source of variability, but does not affect the (average) switching off kinetics or the 

autocorrelation function (Figs. 2C, D). It also does not alter the ‘cell-intrinsic’ contribution to the 

variability in the amount of expressed IFN-γ formed by asynchronous switching-on and 

switching-off times as well as transcriptional bursting (realized in the model by continuous 

shuttling between the non-terminal off-state and the on-state). In the next step we quantified the 

relative contribution of transcriptional bursting to the cell-intrinsic variability. For this purpose 

we refitted the promoter-state transition model solely to the data in Figs. 2C and D. We then used 

parametric bootstrapping as described above (n = 1,000 samples) and for each bootstrap sample 

calculated the ratio between the predicted coefficient of variation (at t = 3h) setting k– = 0 

(thereby switching off transcriptional bursting in the model) and the full model. The resulting 95 

% confidence bounds for this prediction is (93, 100)%, meaning that transcriptional bursting is 

predicted to contribute less than 7 % to the cell-intrinsic variability while its major part is formed 



by asynchronous switching-on and switching-off times (more than 93%). This allowed us to 

ignore transcriptional bursting in the distributed production capacity model (Fig. 2G). 

Distributed production capacity model (Fig. 2G): For the modeling of the cytokine amounts we 

constrained the model to allow only for a single switch-on and switch-off event: The promoter 

switches to an on-state at a rate kon, and, similar to the stable-production model, switches back to 

a non-productive state after the period τ (assumed as a gamma-distributed random variable). 

Since the above promoter state transition model failed to reproduce the broad distribution of 

IFN-γ levels, we introduced a lognormal distribution for the IFN-γ expression capacity, defined 

as the product of transcription and translation rates, v0 k. The corresponding model distributions 

in the amount of IFN-γ were obtained by simulating a large number of cells (n = 300,000) and 

subsequent addition of the background caused by the IFN-γ negative cells. For each simulated 

cell, a switch-on time t1 and a switch-off time t2 was drawn and the protein level P at time t was 

calculated according to the analytical solution 

! ! =
!  !!

!! + !! − !!
 

×

0, ! ≤ !!
1
!!

1− !−!!(!!!!) −
1

!! + !!
1− !−(!!!!!) !!!! , ! > !!, ! ≤ !!

1
!!

!−!!(!!!!) !!!(!!!!!) − 1 −
1

!! + !!
!−(!!!!!) !!!! !(!!!!!) !!!!! − 1 , ! > !!.

 

We then used simulated annealing to directly fit the model to the time series of observed 

distributions of intracellular IFN-γ (Fig. 2I). The same approach was also used to fit the amount 

of intracellular IFN-γ for the secretion-assay high cells (at every time point defined as the 15 % 

brightest cells in the staining for secreted IFN-γ at t = 0 h). 



We used the following function to describe the functional relationship of ZsGreen expression Z 

and the frequency of IFN-γ producers I (c.f. Fig. 5G): 

! = !!"#   
!

! + !. 

The two parameters Imax and K were estimated using the ZsGreen expression values and the 

corresponding frequency of IFN-γ producers directly after the sort. In order to illustrate that the 

implied functional relationship between both variables also holds true for the data obtained 29 

days after the transfer, we calculated the 95% confidence prediction bands by bootstrapping the 

data and subsequent refitting. 
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