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ABSTRACT 

The Next Best Action (NBA) is a framework that is built in order to assign to each client three (or more) 

actions that are considered to be the best actions to perform with the client. These actions can range 

from product offering to pro-active retention actions and upselling recommendations. It can be a 

useful tool to generate leads for ongoing campaigns but also an excellent tool for analysis and a driver 

for the creation of new campaigns, being a key element in Customer Relationship Management (CRM) 

as a Data-Driven Marketing approach.  

Initially planned as a joint collaboration between a Bank and an Insurance Company to improve the 

Bancassurance business model, three versions of the NBA were built with the first two being tested on 

a campaign setting showing promising results. The last version, NBA 3.0, later became a sole project 

of the Insurance Company due to GPDR compliance policies and due to time constraints could not be 

evaluated. 
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1. INTRODUCTION 

With vast amounts of data now available, companies in almost every industry, like banking and 

insurance, are focused on exploiting data for competitive advantage against other companies. We live 

in the era of Big Data and the volume and variety of data have far outstripped the capacity of manual 

analysis, and in some cases have exceeded the capacity of conventional databases, requiring each time 

more processing power. At the same time, computers have become far more powerful, networking is 

ubiquitous, and algorithms have been developed that can connect datasets to enable broader and 

deeper analyses (Provost and Fawcett 2013), leading companies to turn their heads to Data Science 

and its unlimited potentialities.  

According to the definition of the Center for Insurance & Financial planning, “Bancassurance assume 

a wide range of detailed arrangements between banks and insurance companies, but in all cases it 

includes the provision of insurance and banking products or services” (Clipici 2012). Mutual 

cooperation and strategic alliance are omnipresent in present global economy and Bancassurance has 

proven to be quite successful in Europe (Wu, Lin, and Lin 2009), being heavily present in the Portuguese 

market, with a market share reaching 87% in Portugal in 2009, arising as the most popular distribution 

channel for life insurance policies in Portugal. (Clipici 2012). 

Living in the digital era, Bancassurance executives are still struggling to devise the perfect cross-

channel experiences for their customers—experiences that take advantage of digitization to provide 

customers with targeted, just-in-time product or service information in an effective and seamless way 

(Bommel, Edelman, and Ungerman 2014) although almost 90% of the Financial Institutions provide 

digital channels to their customers (Figure 6.1 – Digital Channels provided by Financial Institutions – 

Source: Banco de Portugal).  

Digital channels allow companies to collect a large amount of data on customer interactions with the 

company, its agents and products, as well as interactions between customers and other prospects or 

customers. However, the customer journey cannot be considered solely through the prism of digital 

marketing. Contact points can involve any agent in the company, computer-tracked interactions with 

objects, interactions with points of sale and systems, and digital and direct contacts through the media. 

As all departments of the company are involved, the data are a common ground for collaboration 

(Micheaux and Bosio 2019).  

With all this data gathered, a change in the marketing paradigm is needed and the focus, which was 

the product, now shifts to the client, becoming a client-centered vision (Alexander Hesse 2009). Using 

customer data to help the customer while making a profit represents a service for both the customer 

and the company and society. The use of data to produce relevant and timely marketing proposals is 

a service to the customer. The data serve the company through the revenues they generate and serve 

society through the employment they create (Micheaux and Bosio 2019). This leads to the definition 

of Next Best Offer (NBO) and Next Best Action (NBA) - Figure 1.1. 

Despite the name, an NBO/NBA may in fact be an initial engagement. And whether the customer 

relationship is new or ongoing, the NBO/NBA is intended to be a “best offer/action” (Davenport, Mule, 

and Lucker 2011). 
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Figure 1.1 - Moving from Product Perspective to a Costumer Perspective (Alexander Hesse 2009) 

 

Being Bancassurance a synergism between different companies, since May 25th 2018, the General 

Data Protection Regulation (GDPR) became in full effect, demanding companies to review their data 

exchange policy and adapt it to the new regulation. The GDPR expands the scope of data protection 

so that anyone or any organization that collects and processes information related to EU citizens must 

comply with it, no matter where they are based or where the data is stored (Tankard 2016). 

Considering the importance of a customer-centric marketing approach, and working as a Business 

Analytics consultant for an IT company, I was approached by a Financial Institution (mentioned as the 

Bank) and their corresponding Insurance Company Bancassurance partner to help them design and 

create a framework to assign to each client three NBAs (regarding insurance products) to help them 

prioritize lead generation for all their campaigns, focusing their marketing strategy on the client, 

utilizing different inputs such as predictive models scores, previous campaign contacts, policy 

simulations and business rules imposed by both companies, focusing on clients from both companies 

(Bancassurance clients) to maximize the insights gathered from both sides of the company; and clients 

without any kind of insurance (Bank-only clients) as a way of selecting the best new clients.  

The main idea of the NBA framework was to assign to each client 3 (or more) actions that are 

considered to be the best actions for the client, ranging from product offering, to retention and 

upselling pro-active actions with the prospection of adding new and diverse actions in future 

improvement versions of the framework. 

The NBA project was crucial to help understanding how a data-driven marketing strategy can be used 

to improve business, especially in the Customer Relationship Management of the Bancassurance 

business model. 

The general roadmap for the creation of the NBA framework was defined in 7 steps:  
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1. Analysis of the predictive models already used;  

2. Building of new predictive models for Lines of Business (LoB) without an assigned model;  

3. Definition of the actions to be considered as NBAs;  

4. Calculation of the NBA and its corresponding confidence levels;  

5. Testing NBA in terms of inbound campaigns and dashboarding the results;  

6. Adjusting NBA calculation with insights derived from weekly campaign results;  

7. Defining integral deployment of the NBA and future improvements.  

Analysis of the existing models and building of new ones was possible using SAS® data mining software, 

mainly SAS® Enterprise Miner, by using some Machine Learning algorithms. 

Initially planned to be a one phase work project, the NBA design was divided in two phases spanned 

across a time period of 10 months (December 2018 – September 2019):  

 Phase One: creation of a client-centralized table used for the calculation of the NBA and its 

corresponding confidence and a weekly dashboard showing the results of the NBA in terms of 

inbound campaigns for all clients (Bancassurance and bank-only clients), December 2018 – 

June 2019;  

 Phase Two: redesign of the NBA framework applied to Bancassurance clients, July 2019 – 

September 2019 (this reformulation was a side-effect of the impact of GDPR policies 

implemented by the bank). 
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2. LITERATURE REVIEW 

2.1.  CUSTOMER RELATIONSHIP MANAGEMENT (CRM) 

Over the last years, there has been an explosion of interest in CRM from Bancassurance and other 

commercial fields and, despite an increasing amount of published practical material, there remains a 

lack of agreement about what CRM is,  how CRM strategy should be developed (Payne and Frow 2005) 

and which steps are required to transition from a mass-marketing culture to a business environment 

for one-to-one marketing (Kelly 2000). 

The term “customer relationship management” emerged in the information technology (IT) 

community in the mid-1990s to describe technology based customers solutions (Payne and Frow 2005) 

but one of the most solid definitions is given by Ronald Swift in his book “Accelerating Customer 

Relationships— Using CRM and Relationship Technologies”: 

CRM is a strategic approach that is concerned with creating improved shareholder value through the 

development of appropriate relationships with key customers and customer segments. CRM unites the 

potential of relationship marketing strategies and IT to create profitable, long-term relationships with 

customers and other key stakeholders. CRM provides enhanced opportunities to use data and 

information to both understand customers and cocreate value with them. This requires a cross-

functional integration of processes, people, operations, and marketing capabilities that is enabled 

through information, technology, and applications. 

 

 

Figure 2.1 - Conceptual Framework of CRM Strategy (Payne and Frow 2005) 
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In short, CRM is a business strategy dedicated to creating and maintaining a long- term and profitable 

relationships with clients. The basic prerequisite for CRM implementation is to collect information 

about customers/users, analysis of these data, exchange and tracking (Greenberg 2010). 

One of the main objectives of the NBA is to optimize CRM and maximize client satisfaction, alongside 

increasing the revenue for both the Bank and the Insurance Company, for satisfied clients reward 

companies with loyalty and commitment (Yu and Dean 2001). 

2.2. DATA-DRIVEN 

MARKETING 

Marketing strategy means setting out business 

direction and the allocation of resources that create 

customer value, it is about choosing value, providing 

value and communicating value to customers 

(Hanssens 2002). 

Data-driven decision making refers to the practice of 

basing decisions on the analysis of data rather than 

purely on intuition (Provost and Fawcett 2013) and 

extracting useful knowledge from data to solve 

business problems is the foundation of the NBA 

framework (Figure 2.2). 

Speed, price and availability of numerous software 

solutions highlight the advantages of this Marketing 

philosophy but its lack of methodologies, difficulties 

in interpretation and verification of achieved results  

surface as the prime disadvantages of Data-Driven 

Marketing (Shankar 2016). 

Data science supports data-driven decision making—and sometimes allows making decisions 

automatically at massive scale—and depends upon technologies for ‘‘big data’’ storage and 

engineering. However, the principles of data science are its own and should be considered and dis- 

cussed explicitly (Provost and Fawcett 2013) bearing in thought business rules should also be used in 

certain cases and/or problems, with these business rules being of the inputs thought for the NBA 

calculation. 

A ‘customer focused’ marketing strategy in response to the changes in the market place is the most 

important element in deriving a successful next product to offer plan (Lau et al. 2003). 

 

Figure 2.2 - Diagram of Data-Driven Decision 
Making (Provost and Fawcett 2013)   
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2.3. NEXT BEST OFFER AND NEXT BEST ACTION 

Typical questions raised by Bancassurance marketers to better understand customers are: Which 

product does this customer need? Can he/she afford the products? Has he/she already bought the 

product from competitors? How much discount should the bank offer to him/her to close the sale? 

What is the most effective communication message to stimulate his/her interest in the product? (Lau 

et al. 2003), questions which raise the importance of the definition of NBA. 

NBO/NBA is increasingly used to refer to a proposal customized based on the consumer’s attributes 

and behaviors, the purchase context, product or service characteristics and the organization’s strategic 

goals. They are most often designed to inspire a purchase, drive loyalty, or both, consisting of products, 

services, information and relationships (Davenport, Mule, and Lucker 2011). 

A ‘customer focused’ marketing strategy in response to the changes in the market place is the most 

important element in deriving a successful next product to offer plan (Fletcher 2002). 

 

2.4. GENERAL DATA PROTECTION REGULATION 

On 27th April 2016, after four years of drafting, lobbying and negotiations among the EU Member States 

and many affected organizations, the EU General Data Protection Regulation (GDPR) has been agreed 

and finalized, whereas on 4th May 2016 its final text was published in the Official Journal of the 

European Union (Regulation 2016/679). 

Previous data protection legislation had become fragmented across the EU as different countries 

added to the basic principles enshrined in the original directive (DPD) of 1995 (Tankard 2016) leaving 

behind a need to legislate the usage of personal data.  

Many of the core definitions from the DPD remain largely unchanged with GDPR complying with six 

processing principles, stating that personal data shall be:  

1. Processed lawfully, fairly and transparently;  

2. Collected for specific legitimate purposes only;  

3. Adequate, relevant and limited to what is necessary;  

4. Accurate and kept up to date;  

5. Stored only as long as is necessary;  

6. Protected with appropriate security measures, ensuring its integrity and confidentiality. 

This new law covers the personal data of all EU residents, regardless of the location of the processing. 

Personal data is information that, directly or indirectly, can identify an individual, and specifically 

includes online identifiers such as IP addresses, cookies and digital fingerprinting, and location data 

that could identify individuals (Goddard 2017). 

With GDPR all EU citizens are entitled to demand a company to delete all the information they have 

about them (“right to be forgotten”), ask for a back-up of all the information stored in the company 

including third-party companies which the information was given to and all citizens and have to be 

notified for any breach of the GDPR in less than 72 hours. Infringement of the EU GDPR can result in 
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administrative fines of up to 4% of annual global turnover or €20 million – whichever is greater 

(Regulation 2016/679), imposing greater requirements for data privacy, for example, like the right to 

data portability (the right to order a company to transfer the personal data to other companies) and 

the “right to be forgotten” (Safari 2017). 

The GDPR extends the provision on automated individual decision-making, to include profiling cases 

as a prime example of enabling individuals to control their personal data in the context of automated 

decision-making (Article 22) and hence acts as crucial function for mitigating the risks of big data and 

automated decision making for individual rights and freedoms (Politou, Alepis, and Patsakis 2018). This 

proved to be one of the biggest challenges faced in Bancassurance: the client has to give explicit 

consent for the exchange of data between companies and for the treatment of the same data. Consent 

aims at providing legitimate grounds to data controllers for collecting, processing or even 

disseminating personal data for secondary use (Edwards 2017). 

 

 

Figure 2.3 – Integration of GDPR in Data-Driven Marketing Strategies 
(https://blog.hubspot.com/customers/gdpr-data-features-hubspot-compliance)  

New innovative concepts like the right to data portability, standardized privacy icons and data 

protection by design and default are opening wide opportunities to foster innovation and competition 

in the direction of data protection and consumer friendly products and services (Albrecht 2017). 

Being Bancassurance a symbiosis between different companies, all the procedures must comply with 

GDPR, including the NBA framework. 

 

2.5. DATA SCIENCE AND SAS® 

In 1996, for the first time, the term Data Science was included in the title of a statistical conference 

(International Federation of Classification Societies (IFCS) “Data Science, classification, and related 

methods”) emphasizing the importance of Statistics in Classification Methods (such as Clustering) with 

some use cases (Hayashi et al. 1996). 

https://blog.hubspot.com/customers/gdpr-data-features-hubspot-compliance
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Even though Statistics is one of the most important disciplines to provide tools and methods to find 

structure in and to give deeper insight into data (Weihs and Ickstadt 2018), the term Data Science has 

become an umbrella term describing a discipline typically involving a mixture of statistics and large-

scale computing (Hardin et al. 2015) with Australian Longbing Cao formulating  Data Science as the 

harmonious combination of Statistics, Computing,  Communication, Sociology and Management on 

the basis of data, the environment and the so called data-to-knowledge-to-wisdom thinking (Cao 

2017): 

Data Science = (Statistics + Computing + Communication + Sociology + Management) | (Data

+ Environment + Thinking) 

 

 

Figure 2.4 - Various areas where Data Science is a key element (http://www.sas.com) 

Cao highlighted key terms used in Data Science, summarizing all the present ideas we have about Data 

Science and Analytics - Table 2.1 - Key Terms in Data Science (Cao 2017). 

Table 2.1 - Key Terms in Data Science (Cao 2017) 

KEY TERMS DEFINITION 

ADVANCED ANALYTICS 

Refers to theories, technologies, tools, and processes that enable an in-depth 

understanding and discovery of actionable insights in big data, which cannot be 

achieved by traditional data analysis and processing theories, technologies, tools, 

and processes. 

BIG DATA 
Refers to data that are too large and/or complex to be effectively and/or 

efficiently handled by traditional data-related theories, technologies, and tools. 

DATA ANALYSIS 
Refers to the processing of data by traditional (e.g., classic statistical, 

mathematical, or logical) theories, technologies, and tools for obtaining useful 

information and for practical purposes. 

DATA ANALYTICS 
Refers to the theories, technologies, tools, and processes that enable an in-depth 

understanding and discovery of actionable insight into data. Data analytics 

consists of descriptive analytics, predictive analytics, and prescriptive analytics. 

DATA SCIENTIST Refers to those people whose roles very much center on data. 

DESCRIPTIVE ANALYTICS 
Refers to the type of data analytics that typically uses statistics to describe the 

data used to gain information, or for other useful purposes. 

http://www.sas.com/
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PREDICTIVE ANALYTICS 
Refers to the type of data analytics that makes predictions about unknown future 

events and discloses the reasons behind them, typically by advanced analytics. 

PRESCRIPTIVE ANALYTICS 
Refers to the type of data analytics that optimizes indications and recommends 

actions for smart decision-making. 

EXPLICIT ANALYTICS 
Focuses on descriptive analytics typically by reporting, descriptive analysis, 

alerting, and forecasting. 

IMPLICIT ANALYTICS 
Focuses on deep analytics, typically by predictive modeling, optimization, 

prescriptive analytics, and actionable knowledge delivery. 

DEEP ANALYTICS 
Refers to data analytics that can acquire an in-depth understanding of why and 

how things have happened, are happening, or will happen, which cannot be 

addressed by descriptive analytics. 

 

Deriving from Data Science, the term Data Scientist was coined in 2008, by D.J. Patil and Jeff 

Hammerbacher, the respective leads of data and analytics efforts at LinkedIn and Facebook, and has 

been used to address data professionals who are skilled in organizing and analyzing massive amounts 

of data, being referenced as the “the sexiest job of the 21st century” (Davenport and Patil 2012). 

Through a quick search in LinkedIn for jobs with the title “Data Scientist”, one job advertisement came 

to prominence for BNP Paribas (https://www.linkedin.com/jobs/view/1477159004), where they were 

asking for someone with 2 to 5 years of work experience, having: 

 Knowledge of databases and associated tools (SQL and NoSQL) 

 Knowledge of ETL methods (data imputation, data cleaning) 

 Knowledge of at least one Machine Learning development stack (e.g. Numpy, scikit-learn, 

keras, …) 

 Strong programming skills (e.g. Python, R, Java, Go, Javascript) and algorithmic knowledge 

 Exposure to Hadoop ecosystems 

 Knowledge of NLP techniques 

 Knowledge of deep learning architectures and frameworks (e.g. TensorFlow, Keras, …) 

 Knowledge of advanced reporting tools (Tableau, Qlikview) 

It appears Data Scientists are expected to have an extended knowledge on a variety of subjects, from 

databases, ETL methods, Machine Learning and Programming Languages, Deep Learning and Natural 

Language Processing techniques, hence the reason why Data Scientists are sometimes called Unicorns 

(Baškarada and Koronios 2017) – finding someone with every single one of these requirements and 

knowledges is virtually impossible. 

Despite the fact that R and Python are well known for their flexibility and being open source 

programming languages (Ozgur et al. 2017), according to Data Driven Investor, SAS® is one of the 

biggest Data Science programming languages and, although lacking the ease to incorporate open 

source features like R and Python, SAS® has an excellent support system, being one of the biggest 

advantages regarding open source programming languages (Bachheriya 2019). As of 2019 100% of 

Fortune 500 companies in the areas of Commercial Banking, Health Insurance, Pharmaceutical, 

https://www.linkedin.com/jobs/view/1477159004
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Aerospace Manufacturing, E-Commerce, Computer Services and Retail Banking rely on SAS®, being a 

leader in Analytics (SAS 2019). 

SAS® has been present in Portugal for the last 25 years with great strength in banking and insurance 

companies and was the selected tool for modelling and calculation of the entire NBA framework. 

2.6. MACHINE LEARNING ALGORITHMS 

In 1959, Arthur Samuel defined Machine Learning (ML) as the subfield of Artificial Intelligence (AI) that 

“gives computers the ability to learn without being explicitly programmed” (Samuel 1959) and over 

the last quarter of a century, ML has become one of the most important parts of the IT revolution 

impacting our lives. 

Although ML dates from the early days of AI in the late 1950s, it underwent a first resurgence when 

the concept of data mining began to takeoff approximately 20 years ago. Data mining algorithms look 

for patterns in information. ML does the same thing but goes one step further: the program changes 

its behavior based on what it learns (Lee et al. 2017). 

Numerous ML algorithms have been developed and extensively documented, but this project focused 

on some of the algorithms of supervised learning, learning a function that maps an input to an output 

based on example input-output pairs (Russel and Norvig 2010), present in SAS® Enterprise Miner, the 

SAS® software which was used for this project: 

 Decision Tree 

A decision tree is a classifier which conducts recursive partition over the instance space. A typical 

decision tree is composed of internal nodes, edges and leaf nodes. Each internal node is called decision 

node representing a test on an attribute or a subset of attributes, and each edge is labeled with a 

specific value or range of value of the input attributes. In this way, internal nodes associated with their 

edges split the instance space into two or more partitions. Each leaf node is a terminal node of the tree 

with a class label (Wei and Wei 2014). 

 

Figure 2.5 - Example of a Decision Tree 
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Figure 2.5 exemplifies a basic decision tree, where circle means decision node and square means leaf 

node. In this example, there are two splitting attributes (Variable A and Variable B), along with two 

class labels (Class X and Class Y). Each path from the root node to leaf node forms a classification rule. 

 Logistic Regression 

A logistic regression is used to model the probability of a certain class or event existing such buying/not 

buying. It is a statistical model that in its basic form uses a logistic function to model a binary dependent 

variable. This model estimates the parameters of a logistic model (a form of binary regression) (Cox 

1958). 

Assuming 𝑋1, … , 𝑋𝑛are independent variables and 𝑌 is the independent variable assuming only two 

categorical values (0 or 1): 

𝑃(𝑋 = 𝑌)  =  
1

1 +  𝑒−(𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑛𝑋𝑛)
 

Where 𝛽0, 𝛽1, … , 𝛽𝑛are the estimates of the parameters of the logistic regression. With the estimation 

of the parameters, a probability for the event in study can be calculated for all individuals. 

Imagining a sample (Table 2.2) is obtained where X is the independent variable and Y is the event 

“Red/Blue” coded as 1 (“Red”) and 0 (“Blue”). A logistic regression can estimate the parameters and a 

graph can be traced (Figure 2.6). 

Table 2.2 - Logistic Regression sample example 

X 1 2 3 6 7 4 4 5 1 1 2 8 8 3 9 2 10 9 9 3 3 3 

Y 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1 1 0 0 0 

 

 

Figure 2.6 - Example of a Logistic Regression 
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 Neural Network 

Artificial Neural Networks (ANN) are a set of algorithms, modeled loosely after the human brain, that 

are designed to recognize patterns and can be defined as “an interconnected assembly of simple 

processing elements, units or nodes, whose functionality is loosely based on the animal neuron. The 

processing ability of the network is stored in the interunit connection strengths, or weights, obtained 

by a process of adaptation to, or learning from, a set of training patterns” (Gurney 1997). 

ANNs can be used to perform probabilistic functions in either a hardware or software analogue. These 

systems are designed to operate in the same manner in which the neurons and synapses of the brain 

are theorized to operate. The architecture of neural connections can be described as a combinational 

feedforward network. Artificial neurons operate by summing inputs (x1, x2, x3) individually scaled by 

weight factors (w1,w2,w3) and processing that sum with a nonlinear activation function, most often 

approximating the logistic-function: 1/(1+exp(−x)) which returns a real value in the range (0,1) (Pagel 

and Kirshtein 2017).  

 

 

Figure 2.7 - Simplified Neural Network 

ANNs are constructed from 3 type of layers (Figure 2.7): 

 Input layer — initial data for the neural network. 

 Hidden layers — intermediate layer between input and output layer and place where all the 

computation is done. 

 Output layer — produce the result for given inputs. 

A Neural Network can have more than one hidden layer (Figure 2.8). 
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Figure 2.8 - Neural Network with two hidden layers (https://towardsdatascience.com/applied-deep-
learning-part-1-artificial-neural-networks-d7834f67a4f6) 

 Model Ensemble 

Ensemble modeling is a process where multiple diverse models are created to predict an outcome, 

either by using many different modeling algorithms or using different training data sets. The ensemble 

model then aggregates the prediction of each base model and results in once final prediction for the 

unseen data. The motivation for using ensemble models is to reduce the generalization error of the 

prediction. As long as the base models are diverse and independent, the prediction error of the model 

decreases when the ensemble approach is used. The approach seeks the wisdom of crowds in making 

a prediction (Kotu and Deshpande 2015). 

For choosing the “best” model (the No Free Lunch Theorem states there is no one model that works 

best for every problem) there are a range of statistics used to assess the perform of the predictive 

model, like: 

 Mean Squared Error (MSE) 

The MSE assesses the quality of a ML algorithm by measuring the average squared difference between 

the estimated values (�̂�𝑖) and the actual value (𝑌𝑖) (Lehmann and Casella 1998).  

 𝑀𝑆𝐸 =  
1

𝑛
∑(𝑌𝑖 − �̂�𝑖)

2
𝑛

𝑖=1

 

The closest the value is to 0, the better the model predictor. 

 Lift 

The lift is probably the most commonly used metric to measure the performance of targeting models 

in marketing applications. A targeting model is doing a good job if the response within the target is 

much better than the average for the population as a whole (Coppock 2002).  

Lift is the ratio of the target response divided by average response:  

Lift = 
Target %

Average Target %
 

https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6
https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6
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For example, suppose a population has an average response rate of 5%, but a certain model has 

identified a segment with a response rate of 35%. Then that segment would have a lift of 7 (35%/5%). 

 Area under the ROC Curve 

When dealing with a two class classification problems we can always label one class as a positive and 

the other one as a negative class. A classifier assigns a class to each of them, but some of the 

assignments are wrong. To assess the classification results the number of true positive (TP), true 

negative (TN), false positive (FP) (actually negative, but classified as positive) and false negative (FN) 

(actually positive, but classified as negative) where: 

TP + FN = Positives 

TN + FP = Negatives 

FPRate = 
FP

N
 

TPRate= Recall = 
TP

P
 

Precision = 
TP

TP+FP
 

Accuracy = 
TP+TN

P+N
 

The ROC (Receiver Operating Characteristic) curve is defined by: 

𝑥 =  FPRate (𝑡) and 𝑦 =  TPRate(𝑡), 

where 𝑡 is the value of probability taken into consideration being selected all the individuals whose 

score is less than  𝑡 (Vuk and Curk 2006). 

The area under the ROC curve (AUROC) 

can be used as a measure of quality of a 

predictive model. A random classifier (e.g. 

classifying by tossing up a coin) has an 

area under curve of 0.5, while a perfect 

classifier has 1. Classifiers used in practice 

should therefore be somewhere in 

between, preferably close to 1 (Vuk and 

Curk 2006). 

 

 

Models can also be tested by using backtesting by applying the chosen model in historical data and 

compare the model and the actual results. 

 

Figure 2.9 - Example of a ROC curve 
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3. NEXT BEST ACTION 

3.1. PROJECT SCOPE 

Nowadays, companies are expected to hire teams that understand how to use databases and other 

data warehouses, scrape data from Internet sources, program solutions to complex problems in 

multiple languages (Hardin et al. 2015). Both the Bank and the Insurance Company possess in their 

Marketing Department two teams specialized in Data Mining and Modelling, teams to which I 

belonged during the scope of the entire NBA project. 

The main focus and goal of this work project was to design a NBA framework aiming at insurance 

products. This framework was built in order to assign to each client three (or more) actions that were 

considered to be the best actions to perform with the client, whenever the calculation was possible. 

This NBA should take into consideration not only scores from predictive models but also other events 

and triggers such as simulations, contacts and some key transactions. 

These actions can range from product offering to pro-active retention actions and upselling 

recommendations. It can be a useful tool to generate leads for ongoing campaigns but also an excellent 

tool for analysis, a driver for the creation of new campaigns and potentially identify new clients (not 

all clients from the Bank are clients of the Insurance Company). 

This project was intended to be a one phase project, 

being supported by both the Bank and the Insurance 

Company as a complement for the Bank since a Next 

Best Offer (for all the Bank LoBs) recommendation 

system was being constructed at the same time, with 

NBA being focused solely on insurance products. Both 

entities were exchanging client information (being all 

this data codified) in a synergism extremely useful for 

the designing of the NBA. Predictive models were built 

on both sides and the scores were shared making sure 

all Bank clients, insured or not by the Insurance 

Company, were being scored for at least the propensity 

to buy a specific insurance LoB. 

After the framework was completed, this exchange of 

data between both companies was drastically 

transformed due to the implementation of GDPR 

compliance procedures and the only information 

exchanged between the two companies was the list of 

eligible clients for insurance campaigns and the 

contacts and results of the corresponding campaigns. 

Because of all these restrictions, the NBA framework 

had to be discontinued and redesigned in the Insurance 

Figure 3.1 - Exchange of Information between 
the Bank and the Insurance Company before 

and after the implementation of GDPR 
procedures 
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Company side, focusing only on the Insurance Company clients, losing the uninsured Bank clients which 

were being treated as prospect clients. 

3.2. PROJECT ROADMAP 

The original roadmap of the project (known as Phase One) was intended to be completed in the first 

semester of 2019 before knowing GDPR procedures would affect the final product. 

The first step was to define the actions that would be used for the first version of the NBA (nicknamed 

NBA 1.0) – which would be based primarily in predictive models – and analyze existing predictive 

models used for defining campaign leads for the products taken into consideration for the actions. If a 

product didn’t have a predictive model associated to its ongoing campaigns, it should be built. The last 

step of the first version was to define the calculation formula of the NBAs and theirs corresponding 

confidence levels. 

The second step was the introduction of new parameters in the NBA (such as product simulations) and 

testing and adjusting the NBA by using the Insurance Inbound Campaigns of two LoBs and analyzing 

their weekly results. This was an iterative process and was extremely useful to understand how to 

incorporate feedback from campaigns in the NBA calculation. It was also crucial in understanding one 

of the problems we were having in the first results of the NBA testing, which were not great and were 

putting the effort and time spent in this project in question.  

 

Figure 3.2 - Project Roadmap - Phase One 

When the Testing and Adjusting phase were in full speed, there was a defining turning point in the 

project: the Bank and the Insurance Company, to comply with the norms of GDPR, ceased to exchange 

information between both companies except for the list of clients to be used in the insurance 

companies. 
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The exchange of all variables, even though they were codified, and models scores ceased and the 

testing and adjusting of NBA 2.0 had to be stopped and scrapped. 

After this fateful event, the NBA project stopped being 

a joint effort between the Bank and the Insurance 

Company and the latter assumed total control of the 

project. By assuming the project, NBA turned its focus 

only on Insurance Clients, reducing drastically the 

client pool which was serving as the base of NBA 1.0 

and 2.0 (all Bank clients regardless owning Insurance 

products or not). 

All the predictive models which were using Bank 

variables as inputs had to be rebuilt in a short period of 

time, the NBA framework had to be rethought and 

redesigned (now known as NBA 3.0) and some features 

were added while other Bank exclusive features could 

not be incorporated. 

After NBA 3.0 was concluded, a possible deployment 

solution was presented and started its testing. 

Unfortunately, the time allocated to me for this project 

ran out I could not analyze the results of the “new” 

NBA framework. 

 

  

Figure 3.3 - Project Roadmap - Phase Two 
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3.3. PHASE ONE – BEFORE GDPR 

Initially thought as the only phase of the NBA project, Phase One was divided in two major moments: 

NBA 1.0 and NBA 2.0. 

The NBA framework was designed as a table with useful information about the customer, containing 

variables which would function as inputs for the NBA calculation (e.g. model scores) and some 

informative characteristics of the client (e.g. age, bank segment profile). The NBA table served as the 

skeleton of all the phases of the NBA framework. 

NBA 1.0 was designed as a premature NBA framework, based solely on predictive models scores and 

some business rules while NBA 2.0 was the result of testing and adjusting the NBA calculation. This 

testing and adjusting was based on the results of two inbound campaigns whose selected targets came 

from the NBA table. Other features, such as insurance simulations, were also added in adjusting the 

NBA table. 

3.3.1. Defining the Actions 

The most crucial step of this project is defining the actions that will be assigned as the Next Best 

Actions. Being focused on Insurance products, the NBA was meant to focus primarily on two major 

Insurance events: 

 Acquisition/Cross-Sell 

 Churn 

Cross-Sell is defined by the Cambridge Business English Dictionary as to sell another further product or 

service to a customer who is already buying a different product or service and Churn as the situation in 

which customers stop buying the products or services of a particular company, especially to buy them 

from a competitor (Cambridge University Press 2011). 

In other words, the main goal of the NBA is to define groups of clients that are most likely to buy a 

given LoB insurance product (whether they possess Insurance products or not) or most likely to churn 

and cancel their policies. With the selected groups, actions can be made to ensure the right group of 

clients is targeted for acquisition campaigns (for Bank-only clients who does not possess any Insurance 

product), cross-selling campaigns (for Bank and Insurance Company clients who already possess at 

least one Insurance product) and/or for proactive retention campaigns (for clients who are in risk of 

cancelling their Insurance policies). 

The Bank and the Insurance Company decided to have the NBAs focusing on the four major LoBs: Auto, 

Health, Housing and Personal Accidents (with Personal Accidents not being used for Churn-related 

actions and being substituted by Life-Risk), making the following actions available for NBA 1.0: 

1. Acquisition of Auto Insurance 

2. Acquisition of Health Insurance 

3. Acquisition of Housing Insurance 

4. Acquisition of Personal Accidents Insurance 

5. Retention of Auto Insurance 

6. Retention of Health Insurance 
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7. Retention of Housing Insurance 

8. Retention of Life-Risk Insurance 

In the NBA 2.0, one more action was introduced: Up-Selling – the practice of offering other or better 

goods or services to a customer who is already buying something (Cambridge University Press 2011) – 

for Health related insurance products, making the total number of actions raising to 9. 

 

Figure 3.4 - Map of NBAs used in NBA 2.0

Acquisition

Cross-Sell

• Auto

• Health

• Housing

• Personal 
Accidents

Retention

• Auto

• Health

• Housing

• Life-Risk

Upsell

• Health
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3.3.2. NBA 1.0 
As mentioned before, the first stage of the NBA framework – NBA 1.0 – was primarily defined by model 

scores built specifically for Insurance products.  

The first step was to analyze the existing predictive models and evaluate their performance in a 

campaign setting. All the models which were built before this project were revisited and, if the Bank 

and the Insurance Company were satisfied with the model performance, these models would be used 

in the NBA 1.0 table. If the companies were not satisfied with the existing model or there was not a 

model for a specific LoB intended to be used in the NBA, it should be built before starting the 

calculation of the NBAs. 

Considering all the actions that were defined by the companies, Table 3.1  summarizes all the existing 

models for Insurance campaigns: 

Table 3.1 - Models built between the Bank and the Insurance Company for Insurance Products 

Line of Business Acquisition/Cross-Sell Churn Upsell 

Auto Built and used for 

campaign leads selection 

Built and used for 

campaign leads 

selection 

Built and not used 

for campaign leads 

selection 

Health Built and used for 

campaign leads selection 

Built and used for 

campaign leads 

selection 

In progress 

Housing Not built Built and not used 

for campaign leads 

selection 

Not built 

Personal Accidents Not built Not built Not built 

Life-Risk Not built Built and used for 

campaign leads 

selection 

Not built 

 

After a meeting with the Bank and the Insurance Company it was defined that the Upsell model for 

Auto LoB was not going to be used because it was not a priority to be included in the NBA project and 

the Upsell model for the Health LoB would be included in NBA 2.0 since it was being built and used in 

a separate project. 

The final NBA 1.0 table was composed by the 4 blocks of information: 

1. General Information 

- Basic information about the customer (e.g. age, gender) 
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- Bank Segmentation 

- Insurance Company Segmentation 

2. Policy Ownership Information 

- Number of active policies 

- Types of LoBs owned 

3. Model Scores 

- Auto Acquisition Model 

- Health Acquisition Model 

- Housing Acquisition Model 

- Personal Accidents Acquisition Model 

- Auto Churn Model 

- Health Churn Model 

- Housing Churn Model 

- Life-Risk Churn Model 

4. Next Best Action 

- NBA1 

- NBA2 

- NBA3 

- NBA1 Confidence Level 

- NBA2 Confidence Level 

- NBA3 Confidence Level 

 

3.3.2.1. Analyzing Existing Predictive Models 

As seen on Table 3.1, six models were already built and four of them were being used to select leads 

for ongoing campaigns.  

All models were analyzed but for the purpose of this report, the model used to predict the propensity 

to buy a Health Insurance product will be used as an example since it was the model with the most 

interesting approach. 

 Propensity Model to Buy Health Insurance 

This model was developed in late 2017 and was being used to help selecting leads for ongoing 

campaigns for acquisition and cross-selling of Health Insurance products, using the Data Mining 

software SAS® Enterprise Miner which provides many proven machine learning algorithm in a high 

performance environment (Hall et al. 2014). 

The model was extremely interesting to analyze due to its unique approach. The team who was in 

charge of its construction decided to divide the model into two models: a model to predict the 

probability of the ownership of a Health insurance product (hereby called Health Ownership Model) 

and a model to predict the actual probability of buying an insurance product (known as Health Model). 

The goal of this division was to predict the propensity to buy a Health policy of people with low 
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probability of having a Health policy elsewhere, in order to have a better campaign performance by 

offering a Health Insurance product to people who actually need one. 

o Ownership Model 

The goal of the model was to optimize campaign contacts by excluding Bank clients who probably 

already possess a Health policy in another company by analyzing the transactional behavior of clients 

with and without Health Insurance.  

Table 3.2 - Human Health Business Activity Code (Institituto Nacional de Estatística 2007) 

2-DIGIT 

CODE 

3-DIGIT 

CODE 

4-DIGIT 

CODE 

5-DIGIT 

CODE 

BUSINESS ACTIVITY 

86    Human Health Acitvities 

 861 8610 86100 Health Establishment with hospitalization 

 862   Ambulatory Clinical Pratice 

  8621 86210 Ambulatory General Practice 

  8622 86220 Ambulatory Specialized Practice 

  8623 86230 Dentistry and Ondontolgy Practice 

 869 8690  Other Health Related Activities 

   86901 Blood Test Laboratories 

   86902 Ambulance Activities 

   86903 Nursing Care Activities 

The general idea was to identify differences between the Health transactions of these two types of 

clients to see if patterns could be found and used to distinguish the clients with Health insurance or 

not.  

This transactional behavior was focused on transactions related to Health such as hospitals, clinics and 

pharmacies, using the Business Activity Code (CAE in Portuguese) of their transactions associated to 

these fields (Table 3.2).  

 

 

Figure 3.5 - Ownership Model Universe 
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The first step was to define the universe to use (Figure 3.5) and to analyze the behavior of these two 

groups in terms of transactions in Health: 

 Assuming Bank clients who bought Health Insurance recently did not have Health Insurance 

before, their Health transactions in the months prior to the purchase can be seen as the 

behavior of clients without Health Insurance; 

 Health transaction of Bank clients who bought Health Insurance in the past and still own it can 

mimic the behavior of clients with Health Insurance. 

The main idea of this analysis was proven to be correct: clients with Health Insurance present more 

medical transactions, but of small value (indicating they were using the Health Insurance), and non-

insured clients present lesser medical transactions, but having considerable higher values than the 

ones coming from insured clients (meaning they were not insured or they were not using their 

insurance). 

To assign a probability for having Health Insurance, a decision tree was made with the variables created 

from medical related transactions. 

 

o Health Model 

As expected, the main goal of the model is model is to calculate the probability of a given client to buy 

Health Insurance. 

There was no Health Insurance campaign before building the model, so the universe taken into 

consideration was all Bank clients that bought Health Insurance between March 2016 and March 2017 

without advising from the Bank, meaning clients who bought Health Insurance proactively (Table 3.3). 

 

Table 3.3 - Health Model Universe 

 

The Bank Data Mining team already possess a monthly process where they build a table with 

thousands of variables that can be used for modelling that can be divided into 7 groups: 

 Transactionality (variables related to Bank transactions) 

 Liability (liabilities of the client to the Bank and to the Bank of Portugal) 

 Rentability (indicators of the value of the costumer to the Bank) 

 Relationship (indicators of the relationship between customers and the Bank) 
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 Possession (information about product ownership in the Bank) 

 Segmentation (geo-demographic and segmentation information about clients)  

 Insurance Company (coded variables received from the Insurance Company) 

The team also have their own standard procedure when it comes to predictive modelling. After 

creating the target variable and selecting the desirable temporal window, from these thousands of 

variables, the most important ones will be selecting by calculating its worth, with a combination of 3 

different methods: 

 R2 – used for numeric variables. Known as the coefficient of determinations, it measures the 

proportion of the variance in the target variable that is predictable from the independent 

variable (Steel and Torrie 1960). Ranging from -1 to 1, the highest the absolute value, the more 

correlated is the variable to the target (Cameron and Windmeijer 1997). 

 Chi2 – Like R2 it is a measure of goodness-of-fit applied to categorical variables, testing the 

relationship, if it exists, between the target and the independent variables, being very robust 

statistical (McHugh 2013). 

 Decision Tree – In  decision tree building, the decision tree model is built by recursively splitting 

the training dataset based on a locally optimal criterion until all or most of the records 

belonging to each of the partitions bear the same class label (Du and Zhan 2002). 

With the combination of the three methods, a composite indicator is calculated, and the top 25 

variables are used for the modelling step. 

As a standard practice modelling technique, the universe was subset in a balanced sample of 50/50, 

which means that half of the clients in the 

sampled universe bought Health Insurance. 

This sampling technique is used to optimize 

the performance of the predictive models 

which sometimes underperform when facing 

an imbalanced sample and cannot find the 

right features to identify the target (Chawla 

2010). 

After selecting the 25 most correlated 

variables with the target, 4 machine learning 

algorithms are used to create a predictive 

model: 

 Decision Tree 

 Neural Network 

 Logistic Regression 

 Model Ensemble 

Their output was then analyzed with the 

Model Ensemble being the chosen algorithm by presenting the best lift (1.98 out of a maximum of 2 

since it’s a 50/50 balanced sample) the and area under the ROC curve (0.89). 

Figure 3.6 - Cumulative Lift of Model Ensemble, Logistic 
Regression and Neural Networks models 
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Even though these statistics showed 

promising results, a backtesting 

evaluation is needed to confirm the 

performance of the Health Model.  

Using a balanced sample of 50/50, like in 

the training data, the selected model was 

applied to historical client data from 

December 2015 to February 2016. The 

predictive model scores were divided into 

percentile groups (Table 3.4) and the 

percentage of targets was calculated.  

As expected (Figure 3.7), there is an increasing percentage of targets in the groups, with the greatest 

percentage belonging to the highest average probability (05 – Very High). This means the model is 

work properly with data outside of its training set and not underfitting (Hawkins 2004).   

The results of the other models (Table 3.1) that were already built and were meant to be used in the 

NBA framework held similar results and the Bank and the Insurance Company agreed not to redo any 

of them. 

 

 

Figure 3.7 - Backtesting results of the Health Model 

 

Predictive Model Score Group 

Below Percentile25 01 – VERY LOW 

Between Percentile25 and Percentile50 02 – LOW 

Between Percentile50 and Percentile75 03 – MEDIUM 

Between Percentile75 and Percentile90 04 – HIGH 

Above Percentile90 05 – VERY HIGH 

Table 3.4 - Backtesting Groups 
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3.3.2.2. Building New Predictive Models 

Almost every needed model was built but there were two specific acquisition/cross-sell models that 

had to be constructed: Housing and Personal Accidents Insurance LoBs. 

Both models were built and tested, but, similarly to the analysis of the existing predictive models (cf. 

chapter 3.3.2.1), the predictive model for the acquisition of Personal Accidents Insurance will be 

described in its extension. 

o Personal Accidents Model 

The main goal of this model was to estimate the probability of acquiring/cross-selling a Personal 

Accidents Insurance product of Bank clients, residing in Portugal. There was no ongoing campaign 

regarding this type of Insurance so, like the Health Model built by the Bank Data Mining Team, there 

was no distinction of clients, excluding only clients who had own this product in the past (Table 3.5). 

The timeframe of the training set was set from February 2017 to February 2018, being the historical 

data of March, April and May 2018 reserved for backtesting (Figure 3.8). 

 

Figure 3.8 - Temporal window for the Personal Accidents Model 

 

Table 3.5 - Personal Accidents Model Universe 

As mentioned in the Health Model, the Data Mining Team of the Bank already utilizes a monthly 

process to get a snapshot table of thousands of variables from different sources, divided into 7 groups: 

Transactionality, Liability, Rentability, Relationship, Possession, and Segmentation from the Insurance 

Company. 
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Since time was short and the NBA 1.0 was meant to be 

concluded as soon as possible, an analogous process to 

one used to select variables used for the Health Model was 

implemented for the Personal Accidents Model. 

By calculating the R2, the Chi2 and using a decision tree, 8 

variables (Table 3.6) stood out as the “best” variables to 

use for modelling with the variable from the Liability group 

assuming the greatest relative importance (Figure 3.9) and 

the variable from the Relationship group showing the 

lowest relative importance.  

Table 3.6 - Groups of Selected Variables 

 

 

Figure 3.9 - Relative Importance of the Groups of Selected Variables of the Personal Accidents Model 

After selecting the 8 variables, the next step was to use ML 
algorithms to find the best models to calculate the propensity 
to buy Personal Accidents Insurance. The total percentage of 
target clients was 1.6%, having 3.500 target clients in a 
universe of 250.000. So, intending to avoid overfitting and 
performance problems, an undersampling of the modelling 
universe was done by selecting all 3.500 target clients and 
performing a random sample from the remaining universe, 
making up a modelling sample of 7.000 clients with a 
percentage of target clients equal to 50% (Figure 3.10). 

After building the final modelling universe, the universe was 

divided in two different sets: a training set compromising 70% 

of the modelling universe with the remaining 30% forming the 

validation set. Dividing the modelling universe in different sets 

is a common practice in supervised learning with the validation 

Group of Variables Number of 

Variables 

Relationship 1 

Possession 1 

Segmentation 2 

Transactionality 3 

Liability 1 

Figure 3.10 - Undersampling scheme 
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dataset is used to give an estimate of model while tuning the model’s hyperparameters (like the 

number of hidden layers in a Neural Network) (Gareth et al. 2013). 

With the training and the validation set defined, and analogously like in the Health Model, 4 ML 

algorithms were tested in SAS® Enterprise Miner: 

 Decision Tree 

 Neural Network 

 Logistic Regression 

 Model Ensemble 

By analyzing the fit statistics of the 4 different models, the Neural Network came up as the chosen 

model (Table 3.7). Even though the Model Ensemble and the Neural Network present the same value 

of Lift, the Area Under the ROC Curve is higher in the Neural Network and the MSE is lower. The 

Decision Tree was the model with the worst performance. 

Table 3.7 - Fit Statistics of the Personal Accidents Models 

Measure Neural Network Decision Tree Logistic Regression Model Ensemble 

Mean Squared Error  0.18 0.25 0.18 0.19 

Area Under ROC 
Curve 

0.8 0.75 0.79 0.79 

Lift 1.7 1.3 1.6 1.7 

 

Focusing on the Neural Network, the ROC curve of both the training and the validation set showed to 

be extremely similar, demonstrating the model was well calibrated (Figure 3.11). 

 

 

Figure 3.11 - ROC Curve of the Neural Network 
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To make sure the model was performing “well” in untested data, backtesting was performed in data 

from March, April and May 2018. Since the results from the Neural Network seem robust, the 

backtesting was applied in unbalanced data where the average target percentage was 15%. 

Similar to the Health Model backtesting, the tested individuals were divided into groups accordingly 

to the model score percentile (Table 3.4). As expected, the group with the highest average model score 

(05 – Very High) presented the biggest percentage of target clients (with a lift of 3 comparing with the 

average target percentage in the backtesting group). 

The backtesting also indicated the Neural Network has similar performances in all months. 

 

 

Figure 3.12 - Backtesting of the Neural Network in more recent data 

 

3.3.2.3. Calculating NBA and Confidence Levels 

With all the 8 models built (4 acquisition/cross-sell models – Auto, Health, Housing and Personal 

Accidents – and 4 churn models – Auto, Health, Housing and Life-Risk) and evaluated, the calculation 

of the formula of the NBA came up as the next step. 

Being the NBA 1.0 mostly based on model scores, the concept of the NBA calculations was relatively 

straightforward: compare scores within each client and assign NBA1, NBA2 and NBA3 to the three 

highest model scores, but a business problem appeared: if a client has a high propensity to buy Housing 

and also a high propensity to abandon their Health Insurance, even if it is slightly lower, the chances 

of the client churning is high so instead of offering a product, shouldn’t NBA1 be a retention action 

instead of a new insurance recommendation? 

Just comparing the scores proved to be insufficient so a ranking system was also introduced: if the 

client is in risk of abandoning their policy (indicating by having a high churn model score), the first 

action should be a retention action even if the client shows a high propensity to buy new products. 
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Besides assigning a hierarchy between retention and offering actions, in case of a tie in model scores 

for the same type of action, the first product to be shown should depend on business objectives 

(sometimes during certain campaigns, some products have bigger objective goals than others). 

To accommodate these settings, the calculation of the NBA is done by a system of transforming each 
action model score in a 5-digit number (Figure 3.13) and then finding the maximum number of all the 
model score numbers and assign it as the NBA: 
 

 The first digit is the priority of the action 
o 9 for retention actions (if the model score is high) and 8 for offering actions and 

retention actions (if the model score is low) 

 The three middle digits are the first digits of the multiplication of the model score by 1000 

 The last digit is given depending on the priority of the product (and can be arranged depending 
on the objectives of the ongoing campaigns) 
 

 

Figure 3.13 – NBA 1.0 Formula 

If the predictive models assign a customer who already possesses a Health Insurance product a score 

of 0.84513 for Auto Acquisition, 0.12598 for Housing Acquisition, 0.35698 for Personal Accidents 

Acquisition and 0.81549 for Health Churn, the calculation of the NBAs should be as followed, assuming 

the ongoing campaigns had a business pressure for selling more Auto Insurance, followed by Health, 

Housing and Personal Accidents Insurance: 

Model Model 

Score 

Priority of Action Model Score 

X 1000 

Hierarchical 

Product 

Priority 

NBA 

calculation 

number 

Order of 

NBA 

Auto Acquisition 0.84513 8 845.13 9 88459 NBA2 

Housing Acquisition 0.12598 8 125.98 7 81257 NBA3 

Personal Accidents Acquisition 0.35698 8 356.98 6 83566 NBA4 

Health Churn 0.81549 9 (high score) 815.49 8 981549 NBA1 

Table 3.8 - Example of NBA calculation 
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Although the score for the Health Churn Model was not the highest, but was still considerably high, 

this method of calculations makes sure that a Health Retention Action would be NBA1 followed by the 

highest acquisition scores, making Auto Acquisition the NBA2 and Housing Acquisition the NBA3. 

With this transformation system, the way to calculate each client’s NBAs becomes quite easy to 

understand and implement but a new question arises:  how confident are we that the NBA is really the 

next best action? 

To address this question, both Data Mining Teams of the Bank and the Insurance Company reunited 

with me to discuss how to calculate the confidence of each action. After a brainstorm of several ideas, 

the Data Mining Team of the Insurance Company came up with a concept they had used in the past to 

compare model scores and that it could be applied to the NBA and be used as a confidence measure: 

lift-adjusted standardized probability. 

The main idea of this measure is to standardize the model scores of each client by subtracting the 

average model score of the population and dividing it by its standard deviation and then adjusting it 

by multiplying the standardized score with the model lift to make sure that models which are proven 

to have a better performance assume higher values (Figure 3.14). 

 

Figure 3.14 - Confidence Formula 

With this new measure, confidence levels can be created by dividing the clients in groups according 

to their confidence percentile: 

Confidence Percentile Confidence Level 

Below Percentile20 01 – VERY LOW 

Between Percentile20 and Percentile40 02 – LOW  

Between Percentile40 and Percentile60 03 – MEDIUM 

Between Percentile60 and Percentile80 04 – HIGH  

Above Percentile 80 05 – VERY HIGH 

 

Table 3.9 - Confidence Levels 

 

With the NBA and confidence formulas created the first phase reached an end and NBA 1.0 was 

completed. 
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3.3.3. NBA 2.0 
The first phase of the project, NBA 1.0, served as a first try to define what type of actions could be 

defined, how to calculate them and how to assess the corresponding confidence levels. 

NBA 2.0 appeared as a result of the introduction of new parameters in the NBA calculations and testing 

the framework in a campaign setting. A new action was also introduced: upselling in Health Insurance 

(a previous model which was being built by the Insurance Company Data Mining Team), increasing the 

number of NBAs to nine (4 acquisition actions, 4 retention actions and 1 upsell action) as well as two 

new features: insurance simulations and transaction tags (cf. 3.3.3.1 chapter). 

With the addition of an upsell action to the possible NBAs, the NBA calculation was updated to include 

one more type of action with the introduction of the digit 7 for upselling actions (Figure 3.15) in the 

first digit of the NBA calculation number (making sure that upsell actions, since they don’t bring as 

much customer value as the others don’t override acquisition and retention actions). 

 

Figure 3.15 - Inclusion of Upselling in the NBA calculation 

 

The final NBA 2.0 table was quite similar to the structure of the NBA 1.0 table with 2 new blocks of 

information, raising the number to 5: 

1. General Information 

- Basic information about the customer (e.g. age, gender) 

- Bank Segmentation 

- Insurance Company Segmentation 

2. Policy Ownership Information 

- Number of active policies 

- Types of LoBs owned 

3. Simulations 

- Number of Auto Insurance Simulations in the last 30 days 

- Number of Health Insurance Simulations in the last 30 days 
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- Number of Housing Insurance Simulations in the last 30 days 

4. Transaction Tags 

- Various Transaction Tags 

5. Model Scores 

- Auto Acquisition Model Score 

- Health Acquisition Model Score 

- Housing Acquisition Model Score 

- Personal Accidents Acquisition Model Score 

- Auto Churn Model Score 

- Health Churn Model Score 

- Housing Churn Model Score 

- Life-Risk Churn Model Score 

- Health Upsell Score 

6. Next Best Action 

- NBA1 

- NBA2 

- NBA3 

- NBA1 Confidence Level 

- NBA2 Confidence Level 

- NBA3 Confidence Level 

 

3.3.3.1. Introducing New Parameters for NBA 

calculations 

Although predictive models can be extremely useful to help defining leads in a campaign, business 

insights and some customer behavior should also be considered when dealing with advising the 

customer and assigning their next best action. 

At the same time the NBA project was in full swing, another project from the Bank Data Mining Team 

was completed: Transactional Tagging. This project consisted in tagging customers based on the 

transactional behavior by creating “tags” constructed around the transactions of the clients in a given 

timeframe. This analysis of behavior was also integrated as a new parameter for the NBA calculation 

as well as insurance product simulations. 

The integration of these new parameters was introduced while NBA 1.0 was being tested in two 

ongoing inbound campaigns for Auto and Health Insurance. 

 Simulations 

When a customer does a simulation of a specific type of insurance, it is usually a sign that customer 

wants to buy that particular type of insurance. So, insurance simulations could be a deciding factor 

when calculating the NBAs. 



 

30 
 

Imagine a Bank customer that doesn’t have any insurance products yet (they are a prospect client) has 

assigned to them the following three NBAs: 

1. Acquisition of Health Insurance 

2. Acquisition of Housing Insurance 

3. Acquisition of Auto Insurance 

Before heading to a Bank branch, this customer went to the Bank website where they saw an 

advertising banner of Auto Insurance, got really interested in buying one and used the website 

simulator to know what type of Auto Insurance product would be the most suitable and its 

corresponding pricing. 

When this customer arrives at the branch, the Bank teller when checking the customer profile notices 

their next best action is the acquisition of a Health Insurance policy and tries to offer the customer a 

Health Insurance. The customer, initially planning to get more information about Auto Insurance, can 

get frustrated of being offered something they actually could need but are not interested at the 

moment because they wanted an Auto Insurance product. 

In this particular case, the NBA framework would fail to advise the correct product because it was only 

base on predictive models which don’t guarantee a 100% accurate and precise answer. Therefore, the 

inclusion of insurance simulations in the NBA calculation, could help increasing its predictive power. 

Unfortunately, the Bank and the Insurance Company don’t present an insurance simulator to all LoBs 

so only information from simulations of Auto, Health and Housing products could be gathered and 

stored. Nevertheless, it is valuable information that can be added in the NBA calculation. 

One might think a simulation of an insurance product is an indicator of intention of buying but it can 

also be an indicator of possible churning. If a customer who already owns a certain LoB policy and is 

looking for alternative, they usually do simulations in different Insurance companies including their 

own company to have comparable prices and to see if they can find a cheaper alternative within their 

insurance provider. 

Adding simulations to the NBA calculation results in a rethinking of the NBA formula since it was 

defined simulations should override models scores (if the model score of a certain product is low but 

the customer did a simulation for that type of product, the simulation should always take precedence, 

both for acquisition and retention actions). This overriding should only occur if the simulation was 

made in the last 30 days.  

By maintaining the transformation formula from NBA 1.0, a first layer was introduced: before 

transforming the models scores into the NBA number, and to make sure that simulations would 

override the model score, the model score is changed to 999 insuring this will always be the next best 

action (when a simulation is made in the last 30 days). 

Using the previous example, NBA 1.0 has identified as the customer’s next best actions as the 

acquisition of Health, Housing and Auto Insurance with corresponding models scores of 0.75614, 

0.54781 and 0.41256. Without knowing the customer did a simulation for Auto Insurance, this product 

would never be shown as NBA1 (assuming a prefixed hierarchical product priority of 9 for Auto, 8 for 

Health and 7 for Housing insurance products) - Table 3.10. 
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Model Model 

Score 

Priority of Action Model Score 

X 1000 

Hierarchical 

Product 

Priority 

NBA 

calculation 

number 

Order of 

NBA 

Auto Acquisition 0.41256 8 412.56 9 84129 NBA3 

Health Acquisition 0.75614 8 756.14 8 87568 NBA1 

Housing Acquisition 0.54781 8 547.81 7 85477 NBA2 

Table 3.10 - NBA calculation without simulations information (NBA 1.0) 

 

When having in mind the customer did an Auto Insurance simulation (Table 3.11), offering an Auto 

Insurance product will appear as the first NBA instead of a Health Insurance product (whose model 

score was the highest). 

Model Model 

Score 

Priority 

of 

Action 

Simulation Model Score X 1000 Hierarchical 

Product 

Priority 

NBA 

calculation 

number 

Order of 

NBA 

Auto Acquisition 0.41256 8 Yes 999 9 89999 NBA1 

Health Acquisition 0.75614 8 No 756.14 8 87568 NBA2 

Housing Acquisition 0.54781 8 No 547.81 7 85477 NBA3 

Table 3.11 - NBA calculation including simulations information 

 The introduction of simulations in the NBA calculation showed how business insights can override 

model predictions. There should always be balance between both. 

Since confidence levels were calculated using model scores, even though simulations take precedence 

over model scores, its confidence is still tied to its corresponding model score resulting in a NBA1 

having low confidence levels when being the result of a simulation. 

 Transactional Tagging 

As a way of studying the behavior of the Bank clients, the Data Mining Team of the Bank created several 

variables called “tags” used to describe the customers based on the type of transactions the clients 

have done in the past months. These “tags” were categorized in different groups accordingly to the 

Business Activity Code of the locations where the transactions were made, creating “tags” related to 

several business areas like health, automotive industry, among others. 

Since I was not involved in this project, the name of the “tags” will not be revealed but, analogously to 

simulations, some tags were introduced in the NBA, mainly health-related tags, when the results of 

the Health testing campaign were not as good as expected. 
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3.3.3.2. Testing and Adjusting NBA 

In order to test the real impact of the NBA in business, it was decided to use two ongoing inbound 

campaigns of Auto and Health insurance products. 

Usually the most appropriate type of campaign to test the strength of the NBA framework would be 

outbound campaigns where the clients are selected as leads and are contacted (via phone call, SMS, 

e-mail…), where the leads selection criterion would be the NBA table. Since the outbound campaigns 

of the Bank already had selection criteria processes running weekly it was decided to use the NBA table 

to select leads for inbounds campaign whose selection criteria was most simples and would affect the 

other campaigns with more complex systems. The biggest disadvantage of using inbound campaigns 

is the clients are not contacted unless they reach a Bank branch so the results will always depend on 

the customers who reach a branch. 

Bearing these risks in mind, the inbound campaigns of Auto and Health Insurance products were used 

as the test vehicle for the NBA framework. 

The Bank and the Insurance Company divide their campaigns in four cycles (or quarters) during the 

course of the year: 

1. Cycle 1 (Q1) – January, February and March 

2. Cycle 2 (Q2) – April, May and June 

3. Cycle 3 (Q3) – July, August and September 

4. Cycle 5 (Q4) – October, November and December 

Some campaigns are seasonal, but the chosen campaigns are regular campaigns that are ongoing 

throughout the entire year. The testing of the NBA was done throughout the entire Q2 with 

adjustments of the NBA calculations (with the new features described in the previous chapter) 

occurring during the 13 weeks that comprehend the cycle: 

 Week 3 – addition of Upsell Health to the possible NBAs  

 Week 6 – introduction of simulations 

 Week 9 – inclusion of health-related transactional tags 

Testing of the NBA framework was done through the typical “A/B testing” where two groups were 

defined with the group “NBA” having the desirable product (Auto or Health depending on the 

campaign) as their NBA1 or NBA2 and having the group “NOT NBA” as customers whose first two NBAs 

were not acquiring Auto or Health Insurance products. 

The “A/B testing” is generally used when two versions (A and B) of a single variable are compared, 

being in this case the variable “having the product as their NBA or not”. One of the groups function as 

a control group, being in the case the “NOT NBA” group (version A), and the other group being the one 

where the effect of the NBA is tested (version B) – “NBA” group (Kohavi and Longbotham 2017). 

The assignment to these groups was done using a pool of customers that were not listed to outbound 

campaigns of Auto and/or Health Insurance products. If a client had as their NBA1 the acquisition of 
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Auto or Health Insurance it would be placed in the “NBA” group of the Auto or Health inbound 

campaign. For the remaining clients, if their NBA2 was also the acquisition of these two LoBs they 

would also be assigned to the “NBA” group of the corresponding campaign. The rest of the clients 

would be randomly assigned to the “NOT NBA” groups (Figure 3.16). Both groups should account for 

half of the clients of the campaign. 

A customer could only be in one of the inbound campaigns, making sure that every client belonged to 

a single group of a unique campaign. 

 

 

Figure 3.16 - Assignment of Testing Groups 

 

Throughout the entire campaign cycle, for both campaigns, 4 indicators were measured and 

compared: 

 Number of sales 

 Contact Rate 

 Intention Rate 

 Sales Rate 

These indicators were published weekly within the two teams in a dashboard with the help of 

Microsoft PowerBI for everyone to be updated with the performance of the NBA and to suggest 

adjustments which could increase the NBA strength. This weekly dashboard proved to be extremely 

useful when the Health “NBA” groups was not performing as expected and some changes had to be 

implemented in order to try to understand why the Health Model was given inverse results compared 

to its backtesting which proven to have a satisfying performance (Figure 3.7). 
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 Number of sales 

The absolute number of sales of each group was measured and compared by campaign every week of 

the cycle. 

For the Auto inbound campaign, it was 

notorious the “NBA” group presented more 

sales than the “NOT NBA” groups (Figure 

3.17). 

Every single week, the number of sales in 

the “NBA” group was higher than the “NOT 

NBA” groups, with the “NBA” 

comprehending 82% of the total sales of 

Auto Insurance products in the inbound 

campaign. 

By analyzing the number of sales of this 

groups, it appears the customers which are 

recommended the acquisition of Auto 

Insurance as their NBA1 (or NBA2) are most 

likely this type of insurance when 

compared to the clients in the “NOT NBA” 

groups whose first NBAs were not acquitting 

this product. 

 

In what regards to the Health 

inbound campaign, although, like in 

the Auto “NBA” group, the “NBA” 

groups presented more sales than 

the “NOT NBA” but when comparing 

the percentage of the corresponding 

sales, it comprehends in average  

60% of the total sales, which is a 

value close to 50%, indicating the 

customers belonging in the “NBA” 

groups were as prone to buy Health 

Insurance as the clients in the “NOT 

NBA” group. This question was raised 

over the cycle in some of the other 

measures. 

 

Figure 3.17 - Absolute Number of Sales of the Auto Inbound 
Campaign 

Figure 3.18 - Absolute Number of Sales of the Auto Inbound 
Campaign 
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 Contact Rate 

The contact rate can be calculated as the number of contacted customers divided by all the customers 

listed in a given campaign: 

Contact Rate = 
# Contacted clients

# Clients listed in the campaign
 

 

Since the Bank tellers don’t know to which group belongs each customer and assuming the probability 

of a person of any group coming to a Bank branch is the same, the contact rate shouldn’t be much 

different between both groups, since each group accounted for 50% of the listed clients. The ratio of 

the “NBA” contact rate and the “NOT NBA” contact rate should be close to 1. 

The average contact rate ratio of the groups of the Auto Insurance inbound campaign was 1.01 (Figure 

3.19) meaning, as expected, both groups were contacted in the same proportion, so the number of 

absolute sales, being higher in the “NBA” group is actually significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

When it comes to the Health Insurance inbound campaign, the average contact rate ratio between the 

groups is 1.23 (Figure 3.20) meaning that, for some reason, a greater number of customers from the 

“NBA” group was coming to the Bank branches. With more clients from this group being contacted, 

the number of sales of Health Insurance should be significantly higher than the number of sales of the 

Figure 3.19 - Contact Rate of the Auto Inbound Campaign 
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“NOT NBA” group.  This was not the case which brought some suspicions on how the Health Model 

was behaving. 

 

Figure 3.20 - Contact Rate of the Health Inbound Campaign 

 

 Intention Rate 

The intention rate of a campaign is calculated by percentage of contacted clients that demonstrated 

intention of acquiring the product: 

Intention Rate = 
# Clients demonstrating intention of acquiring the product

# Contacted Clients
 

 

Indicative of a potential sale, an intention of buying can also be a good measure to test que quality of 

the NBA framework. 

Observing the intention rate of the Auto Insurance inbound campaign (Figure 3.21), the intention rate 

of the “NBA” group was constantly higher than the intention rate of the “NOT NBA” groups, meaning 

the NBA was assigning correctly “Acquiring Auto Insurance” as the correct NBA of the clients belonging 

to the “NBA” group, at least in terms of customers intending to buy the product. 

Unfortunately, the opposite was verified in the Health Insurance inbound campaign (Figure 3.22): more 

customers of the “NOT NBA” group were showing intention of buying Health insurance, compared to 

clients of the “NBA” group. This event indicates once more that something was wrong about the Health 

Model. 
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Figure 3.21 - Intention Rate of the Auto Inbound Campaign 

 

Figure 3.22 - Intention Rate of the Health Inbound Campaign 
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 Sales Rate 

The sales rate is the calculated by dividing the number of customers who bought the product over the 

contacted customers of the campaign: 

Sales Rate= 
# Clients who bought the product

# Contacted clients
 

 

As forecasted by the intention rate, the “NBA” group of the Auto Insurance inbound campaign 

presented a higher sales rate (Figure 3.23), comparing to the “NOT NBA” group reinforcing the idea 

that the NBA framework is assigning correctly the customers who are most prone to buy Auto 

Insurance products. 

 

Figure 3.23 - Sales Rate of the Auto Inbound Campaign 

As feared by the previous results, the “NOT NBA” group of the Health Insurance inbound campaign 

showed the highest sales rate (Figure 3.24), contradicting what should be expected from the NBA 

framework and was demonstrated in the Auto Insurance inbound campaign: the NBA framework was 

not assigning the “Acquiring Health Insurance” action correctly. 

The reason of this strange result was discussed, and the general idea was that something was not 

functioning in the Health Model even though the analysis and the backtesting demonstrated a solid 

performance. 
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Figure 3.24 - Sales Rate of the Health Inbound Campaign 

Since the “NBA” group contained clients with NBA1 and NBA2 for the acquisition of Auto and Health 

Insurance products, and the “NOT NBA” contained some customers with this action as their NBA3, 

the sales rate of each NBA was also analyzed for both inbound campaigns. 

Figure 3.25 - Sales Rate of the Auto Inbound Campaign (by type of NBA) 



 

40 
 

These results once more demonstrated how the NBA framework worked properly in the Auto 

Insurance inbound campaign (Figure 3.25) where the sales rate was higher in the group of customers 

with the acquistion of Auto Insurance as their NBA1, followed by NBA2 and and NBA3; and how it was 

not working in the Health Insurance inbound campaign, in fact, it seemed it was working in an inverse 

order (Figure 3.26): clients with the acquisition of Health Insurance as their NBA3 presented the 

highest sales rate and customers with NBA1 showing the lowest rate. 

 

Figure 3.26 - Sales Rate of the Health Inbound Campaign (by type of NBA) 

 

During the cycle, when it was noticed the NBA framework was not working properly in the Health 

Insurance inbound campaign, some health-related “tags” were introduced to the NBA calculation 

(functioning similarly to the simulations by override model scores) but the results did get as better as 

it was intended. 

After some extensive analysis, it was discovered that within the monthly processes where all clients 

are scored for the different models, there were some filters applied to the scoring universe of the 

model that predicted the probability of acquisition of Health Insurance (the before mentioned Health 

Model) and a lot of costumers were not being scored for this model and therefore their NBA would 

never be the acquisition of a Health Insurance product. 

By time the filters were intended to be lifted in order to score non-filtered clients and re-test the NBA 

in the Health Insurance inbound campaign, the project had to end because of GDPR internal 

procedures.  
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3.4. PHASE TWO – AFTER GDPR 

After 13 weeks of testing and adjusting the NBA 2.0 framework, it was decided by the Bank, due to 

policies regarding the GDPR, although the Bancassurance business model should still be in existence, 

that the exchange of information between the Bank and the Insurance should be limited to a list of 

clients that should be selected to campaigns and the results of those campaigns (contacts and sales). 

Since all the models built used variables from both sides, these models ceased their role and their 

monthly scoring processes were terminated and, as a result of these decisions, the NBA framework 

became invalid and cease its operation. 

Although the Bank ultimately decided to abandon the NBA project, the Insurance Company was still 

very interested in the NBA framework and its promising results. It was decided that the NBA would 

continue after all but in the side of Insurance Company. Because of this decision, the NBA framework 

had to be rethought, redesigned and reconstructed. 

Instead of looking at these months invested in the NBA project as lost time, the Insurance Company 

looked at the situation as an opportunity to apply all the knowledge gain in Phase One at create a more 

powerful NBA framework. 

By having the NBA framework totally constructed in the Insurance Company side, it opens opportunity 

to include new and different insights and features in the NBA table and the NBA calculation. But this 

new opportunity came up with a big cost: by having the NBA framework only in the Insurance 

Company, the clients forming its base universe will only be Insurance Company clients (as well as Bank 

clients), so all Bank clients that don’t possess an insurance policy and were being scored and included 

in the NBA 1.0 and NBA 2.0, which were being considered prospects clients, cannot be taken into 

consideration for the new version of the NBA – NBA 3.0. 
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3.4.1. NBA 3.0 
The new version of the NBA was heavily inspired by NBA 2.0 with new information included and 

incorporated in the NBA table and calculation. 

With the new data exchange policy between the Bank and the Insurance Company, only a list of clients 

(to be used as leads for the different campaigns regarding insurance products) could be sent and the 

Insurance Company viewed the NBA framework as a new mechanism to generate leads for all the 

campaigns. Instead of having different selection processes, this framework could be used to generate 

all the leads in question, optimizing time and performance. 

With the addition of new data from the Insurance Company, the final NBA 3.0 table consisted in a 

table with 7 blocks of information: 

1. General Information 

- Basic information about the customer (e.g. age, gender) 

- Insurance Company Segmentation 

2. Policy Ownership Information 

- Number of active policies 

- Types of LoBs owned 

3. Contacts 

- Indicator of contacts of insurance products campaigns in the last 1, 2 and 3 months  

4. Simulations 

- Number of Auto Insurance Simulations in the last 30 days 

- Number of Health Insurance Simulations in the last 30 days 

- Number of Housing Insurance Simulations in the last 30 days 

5. Complaints 

- Complaints and requests in the last 5, 10 and 15 days 

6. Claims 

- Claims during the past year 

7. Model Scores 

- Auto Acquisition Model Score 

- Health Acquisition Model Score 

- Housing Acquisition Model Score 

- Personal Accidents Acquisition Model Score 

- Auto Churn Model Score 

- Health Churn Model Score 

- Housing Churn Model Score 

- Life-Risk Churn Model Score 

- Health Upsell Model Score 

8. Next Best Action 

- NBA1 

- NBA2 

- NBA3 

- NBA1 Confidence Level 
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- NBA2 Confidence Level 

- NBA3 Confidence Level 

 

3.4.1.1. “Quick” Remodeling 

With the termination of exchange of information between the Bank and the Insurance Company, all 

the models constructed that utilized variables from both sides lost their continuity. Some of the models 

which were being used in the NBA table, belonged to the Bank side, meaning all the models used in 

the previous versions of the NBA framework had to be remodeled. Since the time allocated to this 

second phase was only 2 months, remodeling 9 models would be virtually impossible to complete in 

this short period of time so an alternative was in need. 

Similarly to the Bank Data Mining Team, the Data Mining Team from the Insurance Company also had 

a monthly process to produce a table with an extensive number of variables from different sources 

within the Insurance Company. They also had constructed a process to create a target variable based 

on the desired Insurance product for modelling. By utilizing these existing processes, time was saved 

to construct the target variables for the 9 models in question (acquisition of Auto, Health, Housing and 

Personal Accidents Insurance, churn of Auto, Health, Housing and Life-Risk Insurance and upsell of 

Health Insurance). 

To accelerate the process and to optimize the short time allocated for this last part of the project, it 

was attributed to me the task to redesign the NBA framework while members of the Insurance 

Company Data Mining Team would be modelling the 9 actions needed for the NBA table. They used 

logistic regressions for their speed and easy interpretation as a temporary “quick fix” for the lack of 

models. In the long term, all models would be completely revised. 

 

3.4.1.2. Redesigning of NBA Framework and 

Introducing New Features 

While the Data Mining Team was busy remodeling the lost models, the NBA framework had to be 

reconstructed and redesigned. With the framework completely on the Insurance Company side, new 

information and insights, which were not exchanged with the Bank, were now available to be 

incorporated in the NBA table and in the NBA calculations. 

 NBA Calculation 

The first, and most important, the NBA calculation had to be revisited and revised. The final calculation 

from NBA 2.0 was quite robust so it served as the base for the calculation formula used in NBA 3.0.  

The introduction of transactional tagging in NBA 2.0 was scrapped for it was information that belonged 

to the Bank and could not be used again after the termination of the exchange of information but, 

fortunately, the Insurance Company had access to the same simulations data as the Bank so 

simulations information could still be included in the NBA calculation. 
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In the first two versions, retention actions were seen as priority when their respective models scores 

were high, but for NBA 3.0, while still taking precedence over acquisition actions, instead of using its 

model score, its confidence level was used to assign the level of priority: 9 for scores with “05 – VERY 

HIGH” confidence level, 8 for “04 – HIGH” levels and 7 for the rest of the confidence levels, considered 

to be medium-low (Figure 3.27). 

A new layer was also introduced in the formula: contacts in previous campaigns. 

With the addition of a new block of information concerning campaign contacts, if a customer was 

contacted in the previous 90 days for a specific campaign, any action linked to that campaign would 

be nullified and could not be used as a next best action. These 90 days rule is usually applied in the 

Bank, and being the goal of the NBA framework generate leads for campaigns, adding this filtering 

layer optimizes the process and generates a greater number of valid leads (all the leads sent to the 

Bank are filtered with specifics campaign filters, one of them being the 90 days contact rule). 

 

 

Figure 3.27 - NBA 3.0 Calculation Formula 

 

Opposite to what happens when a client does a simulation in the last 30 days and their model score is 

changed to 999, if a customer was contacted in the last 90 days their model score is substituted with 

a missing value making sure that action will not be considered as a possible next best action. 

A customer who already possesses an Auto Insurance Product presents the following model scores: 

0.63512 for Health Acquisition, 0.41278 for Churn Auto (with a confidence level of “03 - MEDIUM”), 

0.84796 for Housing Acquisition and 0.40135 for Personal Accidents Acquisition. The same client did a 

simulation for a Health Insurance product and, 3 weeks before was contacted in a campaign for a 

Housing Insurance product and answered they were not interested.   
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Table 3.12 - Example of the NBA 3.0 Calculation 

Model Model 

Score 

Confidence 

Level 

(applied to 

Churn) 

Priority 

of 

Action 

Simulation Contacted 

in the last 

90 days? 

Model 

Score X 

1000 

Hierarchical 

Product 

Priority 

NBA 

calculation 

number 

Order 

of 

NBA 

Health 

Acquisition 

0.63512 - 8 Y N 999 8 89998 NBA1 

Housing 

Acquisition 

0.84796 - 8 N Y - 7 -  

Personal 

Accidents 

Acquisition 

0.40135 - 8 N N 401.35 6 84016 NBA2 

Churn Auto 0.41278 03 - 

MEDIUM 

7 N N 412.78 9 74129 NBA3 

 

Applying the revisited formula, the client, whose highest model score is Housing Acquisition, will not 

have this action a NBA because they were contacted in the last 90 days and were not interested in the 

product. The model score for Churn Auto presented a medium confidence level so its priority shifted 

to a lower value (Table 3.12). 

 Complaints & Claims 

Although not integrating the NBA calculation, for the time being, information about complaints and 

claims were added to the NBA 3.0 table, forecasting future needs.  

If a customer has an ongoing complaint, should an acquisition or retention action be assigned to them? 

Or should those action be blocked until the complaint is satisfied? An interesting way to work around 

this problem should be creating an action called “Complaint Checkpoint” with high priority, nullifying 

any action which would involve acquiring or offering products, making the resolution of the complaint 

the top NBA for the client. 

Regarding claims, a similar action could also be created to assign some priority to the payment (or not) 

of the claim but without annulling other actions that would involve acquisition since complaints usually 

have a biggest impact in customer satisfaction. 

 

3.5. DEPLOYMENT OF THE NBA FRAMEWORK 

The last step of the NBA 3.0 was the deployment, how it should be integrated in the Insurance 

Company system and how to make the most use of it. 

The main goal was to make sure the NBA framework could be used to select the list of clients to serve 

as leads for the campaigns (to send to the Bank) but it was also meant to be integrated in an internal 

platform with an overview of the client – besides having basic insurance and personal information 
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about the client, the NBAs could also be shown. A client can be listed in no campaign and contact the 

Insurance Company call center asking for information and, if the call center worker sees the NBAs of 

the client in their profile, besides giving the information the customer is demanding, they can try to 

conduct the conversation revolving around the NBAs. It can be a great asset to the business. 

In the future, if more actions can be added to the pool of existing actions like carrying satisfaction 

inquiries when there is not a proper product to be assigned for an acquisition, retention or upselling 

action. The NBA framework offers great potential.  

As my last contribution to this project, a suggestion about the way to deploy this framework and 

optimize its performance was delivered. The NBA framework could work in a feedback cycle by 

adapting and adjusting it calculations and models based on the contacts and results of the campaigns 

carried by the Bank (Figure 3.28). 

The NBA framework selects the leads for the insurance campaigns, creates the list of chosen clients 

and the list is sent to the Bank. Every week, a file from the Bank is sent to the Insurance Company with 

the contacted clients and results of the campaigns. The information contained in the report can be 

used to feed and improve the modeling process to produce more accurate and precise models which 

will translate in more accurate actions. It’s a continuous feedback-learning process which could help 

optimizing and perfecting the NBA framework mechanism. 

 

 

Figure 3.28 - Possible Deployment of the NBA Framework 

 



 

47 
 

4. LIMITATIONS AND RECOMMENDATIONS FOR 

FUTURE WORKS 

This project was a great opportunity to test in real life how Data Science and Analytics can improve an 

already existing Bancassurance business model but, as in every work project, there were some 

limitations to this work but two of them stood out during the course of the NBA project: 

 Exchange of information between the Bank and the Insurance Company 

As explained throughout this report, at the beginning of the NBA project there was an exchange flow 

of information between the Bank and Insurance company where model scores were freely exchanged 

and codified variables were also freely exchanged between the two interveners with these variables 

being used in models on both sides. This type of synergism of was crucial for the first phase of the NBA 

framework.  

Unfortunately, because of the implementation of procedures complying with the GDPR, this flow of 

information had to be terminated and all the work put into the NBA framework almost came to non-

existence. All the models became invalid and the ongoing testing had to be halted. 

This misfortunate brought frustration and almost invalided the entire project but fortunately the 

Insurance Company saw value in all the effort invested in the NBA framework and decided to pick the 

project up and had it rise from the ashes. 

 Modelling software 

The modelling part of the NBA framework, which was the complete base of the first version of the 

NBA, had to be done in the Data Mining software SAS® Enterprise Miner. Although it is a very complete 

suit for modelling, it works as a black box. All the algorithms are pre-built and it is almost impossible 

to change the core parameters of the ML algorithms when comparing with programming languages 

like R and Python whose models are extremely flexible and adjustable. 

Another problem linked to use SAS® software were the performance issues. Working in a server 

environment presented some challenges since the infrastructure was sometimes fragile and would 

crash constantly. 

There two limitations were the ones which most affected the NBA project but in the end the NBA 

framework was completed but beings an ongoing project, is always space for improvement.  

Before the termination of this work, some recommendations were left to the Insurance Company Data 

Mining Team: 

 New models, new softwares 

After the completion of the NBA 3.0, there was only model built for upselling, the Upsell Health Model. 

The model to predict the probability to upsell in Auto Insurance was never rebuilt and there were more 
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products like Housing Insurance where upsell is an option and there is no model to predict these 

events.  

There are other products that don’t have a corresponding model, so there are a lot of modelling 

opportunities that can be translated into possible acquisition, churn and upsell actions. 

Besides using SAS® Enterprise Miner, trying to use other modelling tools like RapidMiner and/or 

programming languages like R and Python could also bring extra value to the NBA with more powerful 

algorithms. 

 Confidence levels for NBA based on models 

The confidence formula since NBA 1.0 has always been based on the model scores coined to the actions 

but, as mentioned before, if a client does a simulation and its model score is low, the confidence level 

will also be low, even though it should be high since simulations are good indicators of intention of 

buying. 

When the trigger of a next best action is not the model (e.g. simulations), the associated confidence 

level should have a different way of being calculated. 

 New and diversified actions 

Besides acquiring, retention and upselling actions, there are an enormous variety of actions which 

could be added to the NBA pool of actions:  

o Satisfaction inquiries (where there isn’t a specific product to offer and there is no 

complaint or request pending) 

o Complaint solving (if there is a complaint or request that haven’t be solved) 

o Claim payment (check the validity of a claim and proceeding to its payment if it is 

necessary) 

o Information request (sometimes information can be missing in a customer’s profile 

and it should be an action to request the information in fault) 

 

 Transforming the NBA calculation in a Multi-Target Classification 

Instead of using a ranking system to attribute the NBA, like it was implemented in this project, the final 

NBA calculation could be transformed into a Multi-Target Classification model where instead of having 

a predictive model assigned to each action it would all be combined in one single model. It has been 

proven the combination of several classification tasks in a single model may even increase the overall 

predictive accuracy (Last, Sinaiski, and Subramania 2011). 

In a future version, this could come in handy when there are actions that having a specific predictive 

model could not be as effective or difficult to build. 

 Creation of new campaigns based on NBA 

There is still a range of products that don’t have a campaign associated to them and in NBA could be a 

good driver for the creation of new campaigns. 
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6. ANNEXES 

 

Figure 6.1 – Digital Channels provided by Financial Institutions – Source: Banco de Portugal 

 

 

Figure 6.2 - Technology investments for achieving GDPR compliance (Tankard 2016) 
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