
Ivo Miguel da Silva Rocha

Bachelor in Computer Science and Informatics Engineering

A Mobile Secure Bluetooth-Enabled
Cryptographic Provider

(Dissertation Elaboration Report)

Computer Science and Informatics Engineering

DI-FCT-UNL

Orientation: Henrique João Lopes Domingos,
Assistant Professor, DI/FCT/UNL,
Nova Lincs Research Center

Co-orientation: Nuno Felipe Sousa da Silva,
Departamento de Desenvolvimento,
Multicert S.A.

Examination Committee

Chairperson: João Carlos Antunes Leitão
Raporteur: Rui Miguel Soares Silva

Member: Henrique João Lopes Domingos

September, 2019

Copyright © Ivo Miguel da Silva Rocha, Faculty of Sciences and Technology, NOVA Uni-

versity Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

To my grandmother Rosa.

Acknowledgements

I would like to start thanking to my supervisors, Professor Henrique Domingos e Nuno

Silva, for the challenge and opportunity of working on the dissertation topic and the

continuous support and motivation to achieve the objectives. Especially to Nuno, who is

a great guy who tried to support me as much as he could. I also want to thank all Multicert

collaborators for welcomed me in such a lovely way and for giving me the opportunity to

learn and grow with them personally and professionally.

I am grateful to my whole family for the endless support and encouragement through-

out all my student life. It has been a long journey and every little action and encouraging

word meant the world to me. I must thank to: Roberto, Sílvia, Gil, Rosa, Júlio, Manuel,

Leonilde, Paulo, Cláudia, Gilberto, Carlos, Isabel, Carlitos, Rui, Cheila, and Débora.

I must thank very much and appreciate the support, strength and love that my girl-

friend gave me during this 5 years journey which were very difficulty for both of us. To

you Inês, thank you for believing in me. Finally, I would like to thank to my second family

that helped me to break many obstacles during the last couple of years and helped me

to become the person that I am today. I must thank to my second brothers and sisters:

Pedro, Daniel, Didier, Filipe, André, Dinis, Abílio, Diogo, Ana, Teresa, Maria, Helena,

Marco, Wilson, Diogo. And also to all the other colleagues from the Faculty of Sciences

and Technology of the NOVA University of Lisbon, in particular the ones that, for the last

five years, shared their time, their knowledge, their experiences, but also their tears and

sweat. In a final thanks, I would like to thank my cat for always being on the computer

keyboard during the writing of this dissertation.

vii

Abstract

The use of digital X509v3 public key certificates, together with different standards

for secure digital signatures are commonly adopted to establish authentication proofs

between principals, applications and services. One of the robustness characteristics com-

monly associated with such mechanisms is the need of hardware-sealed cryptographic

devices, such as Hardware-Security Modules (or HSMs), smart cards or hardware-enabled

tokens or dongles. These devices support internal functions for management and storage

of cryptographic keys, allowing the isolated execution of cryptographic operations, with

the keys or related sensitive parameters never exposed.

The portable devices most widely used are USB-tokens (or security dongles) and inter-

nal ships of smart cards (as it is also the case of citizen cards, banking cards or ticketing

cards). More recently, a new generation of Bluetooth-enabled smart USB dongles ap-

peared, also suitable to protect cryptographic operations and digital signatures for secure

identity and payment applications. The common characteristic of such devices is to offer

the required support to be used as secure cryptographic providers. Among the advantages

of those portable cryptographic devices is also their portability and ubiquitous use, but,

in consequence, they are also frequently forgotten or even lost. USB-enabled devices im-

ply the need of readers, not always and not commonly available for generic smartphones

or users working with computing devices. Also, wireless-devices can be specialized or

require a development effort to be used as standard cryptographic providers.

An alternative to mitigate such problems is the possible adoption of conventional

Bluetooth-enabled smartphones, as ubiquitous cryptographic providers to be used, re-

motely, by client-side applications running in users’ devices, such as desktop or laptop

computers. However, the use of smartphones for safe storage and management of private

keys and sensitive parameters requires a careful analysis on the adversary model as-

sumptions. The design options to implement a practical and secure smartphone-enabled

cryptographic solution as a product, also requires the approach and the better use of

the more interesting facilities provided by frameworks, programming environments and

mobile operating systems services.

In this dissertation we addressed the design, development and experimental evalua-

tion of a secure mobile cryptographic provider, designed as a mobile service provided in

ix

a smartphone. The proposed solution is designed for Android-Based smartphones and

supports on-demand Bluetooth-enabled cryptographic operations, including standard

digital signatures. The addressed mobile cryptographic provider can be used by appli-

cations running on Windows-enabled computing devices, requesting digital signatures.

The solution relies on the secure storage of private keys related to X509v3 public cer-

tificates and Android-based secure elements (SEs). With the materialized solution, an

application running in a Windows computing device can request standard digital signa-

tures of documents, transparently executed remotely by the smartphone regarded as a

standard cryptographic provider.

Keywords: Public-Key Cryptography, Digital Signatures, Certificates, PKI, Cryptographic
Providers, Key Storage Providers, Bluetooth, NFC, Secure Element, HCE

x

Resumo

Os certificados digitais de chave pública em formato X509v3, juntamente com os

padrões existentes para construções criptográficas de assinaturas digitais seguras, são

vulgarmente usados como mecanismos de estabelecimento de provas de autenticação

entre principais. Uma das características associada ao uso reforçado de segurança desses

mecanismos é a necessidade de se usarem dispositivos criptográficos físicos, como por

exemplo HSMs (ou Hardware-Security Modules), cartões inteligentes (ou smart cards) ou

outras soluções congéneres (como por exemplo, secure hardware-enabled tokens). Estes

dispositivos permitem gerir e armazenar chaves criptográficas ou parâmetros sensíveis

relacionados, e executar internamente as necessárias operações criptográficas, de forma

fisicamente isolada. Deste modo, as chaves criptográficas e outros segredos sensíveis

associados, nunca são expostos externamente aos dispositivos.

Entre os dispositivos portáteis mais vulgares encontram-se os USB-tokens (ou USB-

dongles), os smart cards (que são usados como cartões de identidade, como é o caso do

cartão nacional de cidadão, mas também como cartões bancários). É ainda vulgar o uso

de outros dispositivos semelhantes, tais como cartões de títulos de transporte ou usados

na área de aplicações de bilhética (ou Mobile-Ticketing).

Os anteriores dispositivos implementam de alguma forma a funcionalidade interna

de um provedor criptográfico, tendo em vista a execução segura, contida e isolada de ope-

rações criptográficas seguras, associadas ao seu uso. Mais recentemente, embora menos

vulgares, surgiram implementações especializadas de tokens ou dongles para interoperabi-

lidade via Bluetooth, de modo a evitar o uso de conexões físicas USB, de modo a poderem

ser usados de forma mais cómoda, como dispositivos móveis e ubíquos.

Entre as vantagens dos anteriores dispositivos está a sua portabilidade e ubiquidade.

No entanto, como consequência, são também frequentemente perdidos ou esquecidos.

O seu uso implica também a necessidade de leitores, nem sempre disponíveis aos uti-

lizadores de dispositivos portáteis e uso quotidiano (sejam laptops ou smartphones). Por

outro lado, muitas soluções possuem problemas de atualização de software e firmware,

com dificuldade para acompanharem a evolução de normas e padrões criptográficos.

xi

Uma alternativa prática para mitigar os anteriores problemas é a adoção de smartpho-
nes convencionais como dispositivos suportando provedores criptográficos, para utili-

zação como serviço para aplicações-cliente remotas executando em computadores con-

vencionais (sejam laptops ou smartphones). O uso de smartphones para armazenamento

seguro e gestão de chaves criptográficas ou parâmetros sensíveis associados, requer uma

análise cuidadosa das condições do modelo adversário, tendo ainda em vista o contexto

de comunicação móvel, sem fios. Por outro lado, a implementação para diferentes dispo-

sitivos implica a adopção das facilidades de segurança mais apropriadas, como são hoje

disponibilizadas como suporte de desenvolvimento de aplicações e serviços, ao nível das

diferentes tecnologias de sistemas operativos móveis.

A presente dissertação aborda a concepção, desenvolvimento e avaliação experimental

de um provedor criptográfico móvel, disponibilizado para smartphones Android, acessível

através de comunicação Bluetooth. O provedor implementa, de forma transparente, as

funções normalizadas de um Key Storage Provider (KSP), para utilização de aplicações

executando em sistema operativo Microsoft Windows. Na solução proposta o armazena-

mento seguro de chaves criptográficas privadas utiliza o suporte de programação para

Secure Elements (SEs), em smartphones Android.

Palavras-chave: Criptografia de Chave-Pública, Assinaturas Digitais, Certificados, PKI, Pro-
vedores Criptográficos, Provedores de armazenamento de chaves, Bluetooth, NFC, SE, HCE

xii

Contents

List of Figures xv

List of Tables xvii

Acronyms xix

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Objectives, Contributions and Validation 4

1.3 Document Organization . 6

2 Background and Related Work 7

2.1 NFC and Bluetooth Security . 7

2.1.1 Near Field Communication . 7

2.1.2 Bluetooth . 9

2.2 Secure Elements and Host Card Emulation 16

2.2.1 Secure Element . 16

2.2.2 Host Card Emulation . 17

2.3 Windows Cryptographic Providers . 19

2.3.1 CNG and Key Storage Providers Overview 20

2.4 Critical Analysis . 21

2.4.1 Summary . 21

2.4.2 Discussion for Dissertation Approach 22

3 System Model and Architecture 27

3.1 System Model and Architecture . 28

3.1.1 System Model Overview . 28

3.1.2 Threat Model . 29

3.1.3 Architectural Components . 30

3.1.4 Components Interactions . 32

3.2 BluetoothKSP Architecture and Components 33

3.2.1 Key Storage Provider Architecture 33

3.2.2 Runtime Support . 35

xiii

CONTENTS

3.3 Cryptographic Functions . 35

3.3.1 Windows KSP Functions and Supported Operations 35

3.3.2 Provided Digital Signatures . 37

3.3.3 Comparative Analysis on Provided Digital Signatures 38

3.4 BluetoothKSP Initialization and Setup . 42

3.5 Bluetooth Security Considerations and Enforcement 43

3.6 Summary Remarks . 47

4 Implementation 49

4.1 Prototype Overview . 49

4.2 Building Blocks and Technology . 50

4.2.1 Android-Side or Server-Side . 50

4.2.2 Windows-Side or Client-Side . 52

4.3 Other Development Tools . 54

4.4 Implementation Effort . 54

4.5 Implementation Issues and Final Remarks 55

5 Experimental Evaluation 57

5.1 Test bench Environment . 57

5.1.1 Generic Test bench . 57

5.1.2 Software Environments and Devices 59

5.2 Setup and Benchmarking . 59

5.3 Use of BluetoothKSP with Conventional Applications 62

5.3.1 Adobe Acrobat . 62

5.3.2 Microsoft Word and Outlook . 62

5.4 Evaluation of BluetoothKSP Digital Signatures 63

5.4.1 Client-side Latency Observations 64

5.4.2 Components in the Observed Latency 71

5.5 Bluetooth Performance Evaluation . 73

5.5.1 Bluetooth Low Energy . 73

5.5.2 TLS/Bluetooth Enforcement . 76

5.6 Other BluetoothKSP Evaluation Metrics 77

5.6.1 Packaging Metrics . 77

5.6.2 Memory Resources and Utilization 78

5.6.3 Power Consumption Observation 79

5.7 Summary . 81

6 Conclusions 83

6.1 Main Conclusions and Remarks . 83

6.2 Future Work . 84

Bibliography 89

xiv

List of Figures

2.1 Bluetooth Security Architecture (taken from [88]). 11

2.2 Bluetooth Low Energy Pairing Phases (taken from [19]). 12

2.3 NFC Communications using SE and HCE (based from [9]). 18

3.1 System Model Overview. 28

3.2 System Architecture and Interaction Flows. 30

3.3 Mobile System Architecture and Android Framework. 31

3.4 Architecture of the CNG Key Storage Providers (taken from [53]). 34

3.5 Bluetooth Stack Operations Flowchart. 44

3.6 TLS/Bluetooth Stack. 45

3.7 TLS/Bluetooth Stack Operations Flowchart. 46

5.1 Setup for Benchmarking. 60

5.2 Setup for Benchmarking of Certificate Chains. 61

5.3 Latency of Secure Hash Functions and Variable Document Sizes. 65

5.4 Latency Specifically Induced by Secure Hash Functions. 65

5.5 Comparison with Different Public-key Cryptography Algorithms and Variable

Key Sizes. 67

5.6 Performance of RSA and ECDSA Signatures. 68

5.7 Comparison of Different Constructions for Digital Signatures. 69

5.8 Performance Comparison of Constructions of Digital Signatures and Algo-

rithms, using SHA-256. 70

5.9 Evaluations with Different Cryptographic Providers. 71

5.10 Average latency of Remote Digital Signatures using BLE. 75

5.11 Latency measures using TLS Layering Enforcement. 76

xv

List of Tables

3.1 Initialization Protocol. 32

3.2 Signature Protocol. 33

3.3 Security Level Comparison for Conventional Cryptographic Algorithms (taken

from [62]). 39

4.1 Technologies of the Building Blocks. 50

4.2 Prototype Implementation Effort in terms of Lines of Code (LoC). 54

5.1 Technical Specifications of the Test bench Environment. 59

5.2 Latency of Certificate Imports . 61

5.3 Average Latency for RSA Digital Signatures using Different Secure Hash Func-

tions . 72

5.4 Average Latency for RSA and ECC Digital Signatures using Different Key Sizes 73

5.5 Average Latency with Different Digital Signatures Schemes. 73

5.6 Average Memory Usage of the Supported Digital Signatures with Different

Security Levels. 78

5.7 Average Power Consumption of the Supported Digital Signatures with Differ-

ent Security Levels. 80

xvii

Acronyms

APDU Application Protocol Data Unit.

ATT Attribute Protocol.

BLE Bluetooth Low Energy.

BR Basic Rate.

CA Certification Authority.

CAP Cryptographic Algorithm Provider.

CAPI Cryptography API.

CNG Cryptography API: Next Generation.

CSP Cryptographic Service Provider.

CSRK Connection Signature Resolving Key.

DH Diffie-Hellman.

DLL Dynamic Link Library.

DoS Denial of Service.

DSN Distributed Sensor Network.

DSS Digital Signature Standard.

E2EE End-to-End Encryption.

ECC Elliptic Curve Cryptography.

ECDH Elliptic Curve Diffie-Hellman.

EDR Enhanced Data Rate.

FIPS Federal Information Processing Standard.

GATT Generic Attribute Profile.

HCE Host Card Emulation.

xix

ACRONYMS

HS High Speed.

IoT Internet of Things.

IRK Identity Resolving Key.

KSP Key Storage Provider.

L2CAP Logical Link Control and Adaptation Protocol.

LE Low Energy.

LMP Link Manager Protocol.

LTK Long Term Key.

MAC Media Access Control.

MAC Message Authentication Coding.

MITM Man-In-The-Middle.

MKSP Microsoft Key Storage Provider.

MTM Mobile Trusted Module.

NDEF NFC Data Exchange Format.

NFC Near Field Communication.

NIST National Institute of Standards and Technology.

OID Object Identifier.

P2P Peer-to-Peer.

P2PE Point-to-Point Encryption.

PKCS Public Key Cryptography Standards.

PKI Public Key Infrastructure.

PSS Probabilistic Signature Scheme.

RFCOMM Radio Frequency Communication.

RFID Radio Frequency Identification.

RTT Round-Trip-Time.

SDP Service Discovery Protocol.

SE Secure Element.

SIG Special Interest Group.

xx

ACRONYMS

SSL Secure Sockets Layer.

SSP Secure Simple Pairing.

STK Short Term Key.

TCB Trusted Computing Base.

TCP Transmission Control Protocol.

TEE Trusted Execution Environment.

TLS Transport Layer Security.

UUID Universally Unique Identifier.

UWP Universal Windows Platform.

WPF Windows Presentation Foundation.

XAML Application Markup Language.

xxi

C
h
a
p
t
e
r

1
Introduction

1.1 Context and Motivation

The evolution of the digital era and the Internet leaded to a digital world where every-

one can access and navigate through the world wide web, many times interacting under

non-authenticated guarantees. In many cases, users interact as anonymous entities, and

some times we saw identity thefts of digital identities of persons, which can cause severe

damage in a person’s life. A conventional way to prove the digital identity is through

digital signatures and public-key certificates based on asymmetric cryptography [30].

Digital Signatures and Public-Key Certificates. A digital signature [72] is equiva-

lent to a traditional handwritten signature, but is more difficult to forge and can provide

non-repudiation, meaning that the person who signed cannot deny that he has signed.

Also, cannot be copied, tampered or altered. They are created using the users’ private key

and the message to sign. A digital certificate [41] contains a set of standard attributes and

values, bound to the exhibited digital identity. Those attributes are issued and typically

authenticated by a Certification Authority (CA). Then, certificates and digital signatures

can be used electronically to prove users’ identity or to validate authentication of data

and documents sent in electronic messages, assuming the validity of the CA involved.

Among the different attributes, the certificate contains the owner’s public key, which is

used by the receiver to verify digital signatures as authentication proofs of data sent by

the identity of the sender. The CA, acting as a trusted party, is responsible for issuing the

certificates, with canonical representations (such as the X509v3 standard), confirming

not only the identity of a subject but the bind of that identity to the respective public key.

The functions and operations that take place in the lifecycle management of X509v3 cer-

tificates are currently addressed by well-defined operations in a Public Key Infrastructure

1

CHAPTER 1. INTRODUCTION

(PKI) and following the functions and entities in the PKIX framework model [85].

For example, when signing an email (or a document) we can prove our identity by

signing the email content (or attached documents) using private keys and provide the

respective public-key certificate. Then the receiver can verify the signature. Many soft-

ware products and tools have integrated components for the management and validation

of digital signatures and X509v3 certificates (e.g, Web Browsers, Gmail service and tools,

Thunderbird Mail User Agent or Adobe Reader, among many other very common tools in

everyday use). It is also current that different entities can exhibit multiple authenticated

digital identities, each one mapped on the use of a certified public key. This happens

possibly for multiple authenticated identities that are used for different purposes, for

example, for signatures of documents with different professional roles or using different

authentication and certification policies and methods.

Protection of Private Keys. The protection of private keys is of fundamental security

importance, as this is the principal means by which the Principal is authenticated. Nowa-

days, there are two mainly ways to store a private key, as a secrecy concern [50]. In one

hand, many applications tend to store digital certificates but also the related private keys

on the hard drives of computers and in the supported file-systems, which can leave them

vulnerable to attack by hackers performing intrusion attacks. On the other hand, private

keys can be stored in persistent memory supported by specific tamper-proof physical

devices, providing more protection. By using such devices, cryptographic operations are

isolated and resistant to attack vectors against applications and operating system. This

option provides additional protection against theft or impersonation, as the user is able

to carry the private keys away from the computers and workstations. These security

hardware devices, ranging from smart cards to different variants of cryptographic tokens,

can ease the management of authentication proofs being used alongside or in the place of

passwords, to prove the user identity by secure digital signatures. This way, we can avoid

the need to manually insert credentials.

There are several types of security tokens with different objectives and approaches.

However, the most used to attend the goal of securing private keys or digital signatures

are USB tokens and smart cards [21], which are usually physically connected to comput-

ers with which the user is authenticating. For example, in Europe, each citizen have a

citizen card, supported by smart-card technology that stores a certificate including cryp-

tographic keys related to the remaining identification attributes of that citizen. Also,

some countries enable the citizen to use citizen cards or other forms of smart cards, to

sign contracts, to sign documents or to vote electronically. Other current devices, as

USB cryptographic tokens, also can be used for the same purposes. These tokens are

also currently used for authentication systems, such as Google Accounts [84] or for many

two-factor authentication solutions in the market [28].

2

1.1. CONTEXT AND MOTIVATION

Drawbacks of hardware enabled cryptographic tokens. Hardware tokens are small

enough to be carried in a pocket or bag, facilitating their transportation and ubiquitous

use. However, these devices are also prone to losses or thefts, and also forcing users to

have them permanently, which may counteract many cases assumptions in availability

and convenience. The probability of losing tokens can be reduced in some available

technology by using additional components and services, such as alarms or notifications,

preventive locking mechanisms or body sensors detecting the absence of such devices.

The possible malicious use of stolen or lost tokens is also mitigated providing access

protection by passwords or PINs, and even biometric sensors. However, many times and

in many situations users are reluctant to carry a “yet another” hardware device, beyond

computers or smartphones. Therefore the use of software tokens for two-factor authenti-

cation procedures supported by SMS challenges or computed in applications running in

laptops or smartphones are currently adopted. This way, we avoid those drawbacks [10]

and improve commodity by reducing also the security guarantees. Another inconvenient

founded by users, is the need to use additional devices (such as smart card or token

readers) which involves biggest annoyance and more related costs.

In addition, past literature already revealed some vulnerabilities in the above devices.

Bardou et al [13] successfully discovered a method to extract the private key from several

Public Key Cryptography Standards (PKCS) #11 cryptographic devices. Also, firmware

vulnerabilities can pose huge risk to USB device security as this could allow tokens to be

reprogrammed to steal the contents of anything written to the drives and spread mali-

cious code to any computer [5]. Although, security tokens are external devices connected

to our computers, they are used to authenticate users may times trough untrusted access

networks, being vulnerable to Man-In-The-Middle (MITM) attacks [48], requiring the

complementary support of secure communication channels. Once the computer is com-

promised, it is possible to manipulate the interoperability with the token, as well as the

client-side software, accessing to token functions. Even if the token device firmware is

initially correct, it can be also potentially overwritten without the user’s knowledge. In

this situation, the user may unwittingly connect the device to additional systems, which

can be subsequently compromised.

Flexible solutions for private-keys and cryptographic protection. A more flexible

and versatile solution to avoid the discussed drawbacks, and to achieve security condi-

tions for management of digital certificates and private keys, can be the use of smart-

phones. The idea is to provide such requirements with an object that we carry daily

and we use regularly to do multiple tasks in our daily life [25]. As in token-devices,

smartphones can also be lost and stolen, but the risk is lower: they are in general under

a more permanent surveillance of users, used as ubiquitous supervised devices. Smart-

phones are also bigger than USB tokens for example, and most of the time they are close

to users. Current technology also allows for the device access protection by passwords

or PINs, locking-prevention after a reduced number of unsuccessful attempts. Current

3

CHAPTER 1. INTRODUCTION

smartphones also allow for the possible combination of access-control mechanisms using

secret patterns as answers to cognitive challenges, biometric fingerprints, but also, native

sensor-based data or voice-recognition patterns. Existing solutions for the certificate us-

age in today’s smartphones already involve their correct installation under verification

guarantees from the device OS (e.g, Android OS framework libraries), and the use of in-

stalled certificates for any supported application. For storing private keys and verifiable

access to valid and correct certificates, mobile storage options include: the smartphone

hard flash-disks; SD cards; Secure Element (SE) and related hardware chips, ARM Trust-

Zone technology levered by the ARM processor and Host Card Emulation (HCE) software

facilities and design patterns [24].

The flexibility of using smartphones for the management of certificates and private

keys came from the potential use of such devices to implement cryptographic operations,

particularly digital signatures. A possible idea is to use such devices as mobile crypto-

graphic providers, accessible by wireless Bluetooth (or Bluetooth Low Energy), as well as,

Near Field Communication (NFC) channels. This allows the use of their cryptographic

functions, on demand, by different users’ devices and applications, namely running on

laptops or desktops. However, the approach to implement this idea must be aware of the

possible vulnerabilities too, such as the ones pointed out by Entrust [92]. These include

SMS-based attacks that can redirect SMS to exploit Android-based mobile devices for

illegal financial gain or malicious users’ attempts to clone properly secured applications

to another device. Additionally, many other threats in the mobile execution environment

can be found in literature, as well as, security concerns in protecting communication end-

points for Bluetooth and Bluetooth-enabled Security Operation [19, 26, 36, 51, 59, 67, 87,

88, 93] or NFC channels [3, 15, 27, 70, 73, 91], depending on the adopted communication

technology to materialize the above idea.

1.2 Objectives, Contributions and Validation

The present dissertation addresses the design, implementation and experimental eval-

uation of a mobile cryptographic provider for Android smartphones, used to manage,

store and execute digital signatures for external devices, namely Microsoft Windows com-

puters. The approach of such a solution aims to study technical solutions that increase

the security of Bluetooth connections to support the communication of cryptographic

operations between Windows-based applications and the smartphone used as the mobile

cryptographic provider. In our solution the mobile device is used to store and manage

X509v3 certificates and cryptographic keys, providing its services to Windows-based

applications, in a transparent way. For transparency criteria, the idea is that the mobile

cryptographic provider must be used by Windows-based applications, in a similar way as

using a local-installed crypto provider. Included in the dissertation objectives, security

guarantees must be provided for integrity, authentication and authorization properties,

in accessing the functions offered by the Android-enabled mobile cryptographic provider.

4

1.2. OBJECTIVES, CONTRIBUTIONS AND VALIDATION

Some challenges arise with the dissertation goal. The major ones are the security of

the communication channel and the secure management of certificates and private keys

on the smartphone. The ability of the solution to be integrated in the Android framework

by using the design options for Android Secure Elements (SEs)) in the Android Program-

ming Framework, is another important concern.

In order to build the proposed solution, the following contributions were addressed:

• Analysis of the security properties of currently-enabled Bluetooth secure chan-

nels using the more recent standardized security modes and the required security

enforcements. As such, we can protect the communication between the crypto

provider hosted on the computer (client-side) and the crypto provider running in

the smartphone environment (server-side).;

• Analysis of Android-based storage solutions to manage X509v3 certificates and

secure solutions for the protection of private keys and security-associations with

the stored certificates;

• Design of software attestation guarantees for the crypto provider solution running

in the Android smartphone, with protection provided according to the Android SEs

specification and development guidelines;

• Development of the crypto provider solution as an Android service running under

the SE model;

• Design and development of a Windows crypto provider (more precisely, a Key Stor-

age Provider), that virtually communicates by Bluetooth with the Android crypto

provider service;

• Support for certificate registration and cryptographic operations, particularly, stan-

dardized digital signatures in the Windows OS environment (client-side), executed

in the remote crypto provider (server-side).

From the system model and software architecture in the design solution, we imple-

mented a prototype, addressed as a pre-product approach and funded initiative, in part-

nership between the FCT/UNL and NOVA-LINCS Research Center and Multicert S.A.

With the developed prototype we conducted an experimental evaluation with different

assessment criteria, to validate the proposed solution, including:

• Validity testing on the transparency of the provided solution when used by Windows-

based applications, selecting Adobe Acrobat and Microsoft Word and Outlook as

targeted applications;

• A test bench for performance evaluation of digital signatures provided by the de-

signed and implemented Android mobile cryptographic provider. Measuring the

5

CHAPTER 1. INTRODUCTION

latency conditions observed by Windows-based applications and understanding the

components contributing to latency and operation throughput metrics;

• Performance analysis in the operation of the Bluetooth-enabled communication

channel in the solution, to observe the overheads imposed by the security require-

ments and their support;

• Additional experimental observations on the implemented mobile cryptographic

provider solution, including: packaging metrics; runtime instrumentation and im-

pact on resources allocation; as well as, power consumption observations.

1.3 Document Organization

This dissertation report is organized in six chapters including the current one. In Chapter

2, is presented the dissertation related work and state-of-the-art, which includes the ap-

proaches to secure the communication channel, the techniques to storage and manage pri-

vate keys and the Windows Crypto Provider APIs. Chapter 3 discusses the system model

and architecture, and its components for our proposed mobile crypto provider. Chapter

4 presents the prototype of the proposed solution. In Chapter 5, it is presented the ex-

perimental assessment to validate our proposal and implemented prototype. Finally, in

Chapter 6, we summarize the main conclusions and possible future work directions from

the implementation and observed results in this dissertation.

6

C
h
a
p
t
e
r

2
Background and Related Work

In this chapter we address different state-of-the-art approaches to accomplish the objec-

tives presented in the previous chapter. The two first Sections (2.1 and 2.2) present the

possible solutions founded in literature to our main goals: communication channel and

private key storage security. These include Near Field Communication (NFC) and Blue-

tooth to secure the wireless channel and Host Card Emulation (HCE) and Secure Element

(SE) to store the private key securely. Then, in Section 2.3, we study the available APIs

used to provide access to Windows cryptographic providers. Finally, in Section 2.4, we

present a critical analysis about the related work techniques discussed and also how we

handle their limitations and drawbacks in order to achieve our objectives.

2.1 NFC and Bluetooth Security

Multiple wireless network solutions are available to handle the communication between

a computer and a smartphone such as Bluetooth, Near Field Communication (NFC), or

Wi-Fi [57, 68]. In this dissertation, the goal is to establish a wireless communication

channel without using Internet and that is effectively secure for transmitting sensitive

data across it, i.e, is protected against malicious users. Thus, in this section we will

discuss the Bluetooth and NFC approaches, indicating for each the existing threats and

protection techniques.

2.1.1 Near Field Communication

NFC is a high frequency wireless communication technology which enables the exchange

of data between devices under a 10 centimeter distance [27]. Is based on the "touching

paradigm", which means approximating two NFC-enabled devices close to each other

or simply touching to enable communications between them. This paradigm was firstly

7

CHAPTER 2. BACKGROUND AND RELATED WORK

employed by the Radio Frequency Identification (RFID) technology [45] that consists in a

microchip (called RFID tag) attached to an antenna in a package that resembles a sticker

used for identifying an object or a person. The data transmission between a RFID tag

and a RFID reader is done via magnetic field induction. NFC-enabled devices also have

integrated and are based on this technology.

With NFC users can perform safe and contactless transactions, access digital services

or transfer a file from one device to another. Other great innovation is that credit cards

or tickets can be integrated into the mobile phones, avoiding the need to physically carry

them elsewhere we go [4]. At the same time, NFC can assure the secure storage of personal

information, like private keys, and the storage and execution of NFC-based applications

(e.g, card applications) through the hardware-based secure element (Section 2.2.1) of

mobile phones. However, with HCE technology (Section 2.2.2), emerged the possibility

of having virtual card applications running on the mobile phone’s operating system.

According to ECMA-340 standard [64], NFC enables the establishment of bidirec-

tional communication channels. In one side, we have a Initiator device that initiates and

manages the interaction process. At the other side, we have a Target device that only

responds to the Initiator’s requests. NFC protocol specifies that the communication can

happen in two modes, a mode where the Initiator and Target device generate their own

radio frequency field to transmit the data and a mode where only the Initiator device cre-

ates the radio frequency field, respectively, Active Mode and Passive Mode. In addition,

there are three operating modes for device communication [27], which are Reader/Writer

(R/W), Peer-to-Peer (P2P) and Card Emulation. In R/W, data is transferred between

a mobile and a tag; in P2P, data is transferred between two mobiles (or devices); and

in Card-emulation, the data is transferred between a mobile and a reader. Besides the

standardization of these modes, NFC data messages are also standardized by the NFC

Forum [27] as NFC Data Exchange Format (NDEF) messages [37].

2.1.1.1 NFC Threats and Protection

Due to the proximity paradigm, attackers will encounter difficulties in attacking the data

packets since the channel is very short. However, it does not ensure complete system

security and user privacy [27, 70, 73]. The attacks can be directed to the NFC ecosystem

or to a particular NFC component (i.e, a tag, a reader or a mobile phone).

NFC tags contains sensitive data that attackers can manipulate by replacing with

malicious data, hiding the original tag with a fake tag or cloning the tag. Typical attacks

include infecting the mobile phones with hidden NFC worms, phishing and spoofing

attacks which provides the users with data that looks valid but in reality are fake, or NFC

attacks using empty tags that cause a reaction on the device. A general solution to protect

the tags is integrating digital signatures on NDEF messages to provide data integrity and

authentication. [27, 75]. However, some vulnerabilities on the signature record types

were discovered in another study [76], where some countermeasures to handle them were

8

2.1. NFC AND BLUETOOTH SECURITY

discussed. Recent studies, propose to provide confidentiality to NDEF messages [40].

Despite the advantage of generating a short-range link, the NFC communications can

be target of a variety of attacks due to devices interacting using radio frequency waves.

The distance from which an attacker is able to make an attack can be extremely close

depending on several factors [73]. Generally, the attack surface is composed by eavesdrop-

ping, Denial of Service (DoS), Man-In-The-Middle (MITM), relay and phishing attacks.

Also, data modification and corruption is possible, for example, via RFID jammers [73].

In the case of eavesdropping, the attack success depends on the communication mode:

if Active Mode is used, the attack can be done in less than 10 meters; otherwise, is very

difficult to achieve eavesdropping. However, countermeasures for some of these threats

already exist. For example, to protect NFC from eavesdropping and prevent data manip-

ulation, the solution is to create a secure channel between devices using a key agreement

protocol (e.g, Diffie-Hellman (DH) based on RSA or Elliptic Curve Cryptography (ECC)

algorithms). In the case of MITM attacks, no countermeasure exists, because Passive

and Active Modes implicitly protect the communications making these attacks almost

impossible to happen, although it may happen in specific contexts.

NFC Readers are more sensitive to physical attacks, due to its placement in public

areas, where they can being stolen, destructed or removed, but can also be target of

software attacks given the critical information (e.g, cryptographic keys) they store.

Several NFC security standards have been developed in the past few years with the aim

of providing a reliable basis for accessing NFC services and applications securely [43].

NFCIP-1 standard was the first to define a security protocol focused only on the data

exchanged between two NFC mobiles (i.e, P2P mode). On top of that standardization, a

new security standard (called NFC-SEC or ECMA-385) was built to improve the security

capabilities [65]. This standard is defined as a common framework upon which future

cryptography standards with more advanced security features can be implemented [43].

These standards can effectively deal with security threats, such as eavesdropping, data

manipulation and MITM attacks, in order to guarantee the protection of NFC connections

and the confidentiality, integrity and authenticity of data transmission [43].

2.1.2 Bluetooth

Bluetooth is an open standard for short-range radio frequency communication technology

suitable to replace cables on devices like keyboards, mouses or printers [68]. This allows

users to create an ad hoc network between devices to transfer data, called Piconet, which

is a set of two or more Bluetooth-enabled devices close to each other operating in the same

channel using the same frequency. Bluetooth technology is used in many business areas

and consumer devices such as mobile phones, computers, headsets and watches. Benefits

include disuse of extra gadgets to connect devices, automatic wireless synchronization

between devices, non-proximity demand and ease of file sharing [67]. This technology has

multiple versions and has two major implementations families standardized by the IEEE

9

CHAPTER 2. BACKGROUND AND RELATED WORK

802.15.1 [89]: Bluetooth Classic, which includes Bluetooth Basic Rate (BR), Enhanced

Data Rate (EDR) and High Speed (HS), and Bluetooth Low Energy (BLE).

Bluetooth devices can operate with multiple data rates and change the Media Access

Control (MAC) address and physical (PHY) layers. BR is the first Bluetooth version (v1.x

series) and only supports transmission speeds of up to 1 megabit per second (Mbps). With

version 2.0 + EDR, data rates in the order of 3 Mbps were reached, and Bluetooth EDR was

born. In version 3.0 + HS, devices operate at higher data rates, up to 24 Mbps, by using

alternative MAC/PHYs (AMP). This is known as Bluetooth HS. Nowadays, these several

Bluetooth versions are used by commercial devices and all of them support backward

compatibility. This means that older versions with low data rates are supported in later

versions with higher data rates.

BLE [38], also called Bluetooth Smart, was introduced in the Bluetooth v4.0 spec-

ification with the intent of improving the energy consumption of mobile phones and,

consequently, the throughput. Despite this, BLE also have other important goals, in-

cluding reduced memory requirements, efficient discovery and connection procedures,

short packet lengths and simple protocols and services. This standard is widely used for

wireless BLE solutions, such as battery-powered sensors and devices.

Comparing with available versions, the adoption of Bluetooth v5.0 will be consid-

ered in the implementation baseline, although most devices use (and are optimized) for

Bluetooth v4.x series. Bluetooth v5.0 primary goal is to provide enhancements related

with range, data transfer speed, broadcast capacity and energy consumption, with BLE

implementations emerging as the choice solution for Internet of Things (IoT) [22]. Al-

though, even that BLE specification is the distinctive feature for such case, the Bluetooth

Classic continues to be provided alongside, offering the devices concurrent support for

both implementations.

2.1.2.1 Bluetooth Security

Bluetooth Security Architecture. This is illustrated in figure 2.1, which involves the

participation of Bluetooth protocols to enforce the Bluetooth security policies such as

Link Manager Protocol (LMP), Logical Link Control and Adaptation Protocol (L2CAP)

and Radio Frequency Communication (RFCOMM) protocol. Link Manager participates

in security procedures depending on the Bluetooth Security Mode: only the safest mode

implies Link Manager to implement security [59]. L2CAP is a logical link and manages

the creation and termination of virtual connections, called channels, with other devices.

It also negotiates and determines security parameters for link establishment. RFCOMM

enforces security policy for dial-up networking and other services relying on a serial port.

The key component in the architecture is the Security Manager with functions as: storage

of security-related information on devices and services; grant or refuse access requests

by protocol implementations, such as L2CAP, RFCOMM, and applications; command the

10

2.1. NFC AND BLUETOOTH SECURITY

Link Manager to enforce authentication and/or encryption before connecting to applica-

tion; and initiates setting up “trusted” pairings and asks for PIN codes from users [88].

Figure 2.1: Bluetooth Security Architecture (taken from [88]).

Bluetooth Security Modes. Bluetooth standard [19] specifies four security modes

in which a device can operate. These Security Mode indicate when a Bluetooth device

initiates security procedures (e.g, authentication and encryption), not whether it supports

security features [67]. In Security Mode 1, any security procedure are never initiated and

devices do not prevent other devices from establishing connections. Security Mode 2

is a service level enforced security mode, where security procedures are initiated after

physical and logical link setup. Security Mode 3 is a link level enforced security mode, in

which is required that security services must be performed before any attempt to connect

to other devices. That is, a device initiates security procedures, before the physical link

is fully established. For Modes 1, 2 and 3, all v2.0 and earlier devices can support it, but

v2.1 and later devices can only support it for backward compatibility. Security Mode 4

is service-based as Security Mode 2, in which encryption for all services except service

discovery is required. This mode is mandatory for communications between v2.1 and later

BR/EDR devices. However, for communications involving devices with no support for

Security Mode 4, the Security Mode used can be reduced by backward-compatibility [67].

In addition, Bluetooth allows different levels of trust and service security [67]. A

trusted device is a device authenticated to another device and has full access to all services.

An untrusted device does not have a relationship with another device and has restricted

access to services, although can be authenticated. In the other hand, three levels of

service security are allowed (in Security Mode 2): services that require authentication and

authorization; that require authentication only; and that are open to all devices. Security

Mode 4 specifies multiple levels to classify the security requirements for services.

Each Bluetooth BR/EDR security mode also determines what stage of connection pro-

vides the related security properties and how [19]. In Bluetooth security exists six possible

11

CHAPTER 2. BACKGROUND AND RELATED WORK

security stages. Inquiry: a device in a new environment starts an inquiry to discover new

devices. Paging: is a baseband procedure invoked by a device to synchronize with one of

the responding devices. Link establishment: Link Manager executes its protocol (LMP)

to establish a link with the other device. If Security Mode 3 is enabled, then Pairing

begins in this stage. Service Discovery: LMP uses the Service Discovery Protocol (SDP)

to find the available services. L2CAP channel creation: with information obtained from

SDP, a L2CAP channel is created, which can be used by the application or the RFCOMM

protocol. Pairing is the last stage if devices operate in Security Mode 2.

Bluetooth Security Features. Both Bluetooth specification families define a variety of

security features, which are responsible for covering the encryption, trust, data integrity

and privacy of the user’s data, assuring the security and protection of the communication

channel. This security mechanisms work differently in each implementation, but with

the Bluetooth v4.1 and v4.2 releases, those differences have been minimized. The biggest

feature is the Pairing mechanism (also called as link key generation), which is the process

where the devices involved in the connection exchange their identity information to gain

trust with each other and get the encryption keys ready for the future data exchange.

However, this process differs between implementations [67]. Bluetooth BR/EDR estab-

lishes a link key by key agreement and BLE generates four different keys (Short Term Key

(STK), Long Term Key (LTK), Identity Resolving Key (IRK) and Connection Signature

Resolving Key (CSRK)) using a key transport protocol. All these keys will be essential to

other security procedures, namely the link key (or the LTK), which dominates the secu-

rity of Bluetooth, because these procedures will depend on it to accomplish their security

goals. Figure 2.2 presents the BLE pairing process including the two possible pairing

methods in phase 2 and the multiple keys distributed in phase 3.

Figure 2.2: Bluetooth Low Energy Pairing Phases (taken from [19]).

12

2.1. NFC AND BLUETOOTH SECURITY

Hence, the Bluetooth standard offers five basic security services: authentication, confi-

dentiality, authorization, integrity and pairing. But, does not address other security prop-

erties such as non-repudiation or audit [67]. The authentication mechanism provided by

Bluetooth is a process were devices are validated by a challenge-response protocol that

verifies the knowledge of the link key. One-way and mutual authentication are both possi-

ble [67]. The security of this process is based on the secrecy of the link keys, which should

never leave the device. Bluetooth provides a encryption feature to protect the data (or

messages) exchanged through the communication channel against eavesdropping attacks.

This confidentiality service is composed by three encryption Modes [67]: Encryption

Mode 1 consists in not applying any encryption on the packets that contain the data; in

Encryption Mode 2, data packets sent to individual devices are encrypted via encryption

keys derived from link keys, but packets sent to multiple devices (i.e, broadcasting) are

not encrypted; and Encryption Mode 3 is a generalization of the second mode. Yet, this

procedure derives the encryption key from an artifact of the authentication procedure,

so encryption cannot be done without authentication. In addition, authorization is the

service that determines if a device had previously been authorized as a trusted device.

Although, a device can pass authentication successfully, it could not be authorized to

access restricted services.

Security Features in Bluetooth BR/EDR (Classic). The Bluetooth Core security ar-

chitecture has evolved over time and has been specified in the different versions [19]. In

early Bluetooth BR devices, pairing were performed via a method called PIN Pairing (or

Legacy Pairing) for Security Modes 2 and 3. In Bluetooth v2.1 + EDR, the Security Mode 4

was introduced, defining a new pairing model called Secure Simple Pairing (SSP), which

utilizes Elliptic Curve Diffie-Hellman (ECDH) key agreement for link key generation [87].

SSP also provides association models to simplify the pairing process, i.e, pairing methods

that improve the flexibility in terms of device input/outputs - such as Numeric Compari-

son, Passkey Entry, Just Works and Out of Band [87]. In Bluetooth v3.0 + HS, another link

key generation method was introduced. A new key, named AMP link key, is generated

from a link key previously created (concatenated with itself) plus a ASCII key identifier.

This process is done by the AMP Manager in the host layer of the Bluetooth protocol

stack [67]. Bluetooth v4.0 do not present new significant improvements in the Bluetooth

Classic security services already provided by older versions [19]. Bluetooth v4.1 improved

the strengths of the BR/EDR technology cryptographic key, device authentication, and

encryption by making use of Federal Information Processing Standard (FIPS)-approved

algorithms [67]. More precisely, was introduced the feature Secure Connections, which

consists in the use of P-256 Elliptic Curve (in SSP), HMAC-SHA-256 and AES-CCM al-

gorithms for link key generation, authentication and encryption, respectively. Bluetooth

v4.2 provided means to convert BR/EDR keys to Low Energy (LE) keys and vice versa.

Security Features in Bluetooth Low Energy. In the other hand, BLE offers security

13

CHAPTER 2. BACKGROUND AND RELATED WORK

services that are also expressed in terms of two security modes, called LE Security Mode 1

and LE Security Mode 2, which have multiple levels each one. Security Mode 1 has levels

associated with encryption and authentication and Security Mode 2 has levels associated

with data signing and authentication. BLE supports the ability to send authenticated data

over an unencrypted link from one device to another based on a trusted relationship and

still granting security [19]. This is achieved with Data Signing, which consists in signing

data packets with the CSRK. Encryption uses AES-CCM cryptography to provide confi-

dentiality, authentication and integrity. Then, there is no need to do challenge/response

authentication, because LTK is used as input for the encryption key generation process,

which implicitly grants authentication. However, Data Signing provides integrity and

implicit authentication (i.e, devices have the correct CSRK), but does not provide confi-

dentiality. In addition, BLE has integrated a mechanism called LE Privacy, which consists

in mitigating the threat by which an adversary can track a BLE device by changing the

device address frequently [94]. The mobile phone MAC address will be replaced by a ran-

dom value (i.e, randomized MAC address) that changes periodically according to a timer

implemented in the device firmware by the manufacturer. These randomly generated

addresses are also called private addresses. Thus, any attacker would not be able to know

that the several different addresses correspond to the same physical device and will not

be possible to track your device. Only a trusted device that has been provided with the

corresponding encryption key (IRK) can resolve the private addresses.

In Bluetooth LE devices before v4.2, the pairing process uses SSP (referred as LE

Legacy Pairing after v4.2). However, no eavesdropping protection is provided unlike

BR/EDR, because the LE association models operate in a different way and the pairing

process itself is different, hence Just Works and Passkey Entry methods do not provide

any protection [19]. However, with the release of the Bluetooth v4.2, security is highly

enhanced and a new LE pairing model arises, named LE Secure Connections [19], which

upgrades the LE pairing to utilize FIPS-approved algorithms (i.e, ECDH public key cryp-

tography for key exchange) and adapts the Numeric Comparison association model to be

used on BLE. With ECDH cryptography, eavesdropping attacks can be mitigated, given

it’s high degree of strength against those attacks [19]. Using Numeric Comparison, pro-

tection against MITM attacks is obtained as well as using the Out of Band or Passkey

Entry methods [19]. Bluetooth v5.0 only introduces performance improvements related

BLE while all security mechanisms implemented are inherited from v4.2 [19].

2.1.2.2 Threats and Protection

Bluetooth has multiple weaknesses that result in vulnerabilities that can be later exploited

by attackers such as encryption key lengths restricted by the device that has shorter

maximum length, PINs being easily brute-forced, Just Works model fragility, backward

compatibility forcing the reduction of the Security Mode and no user-authentication sup-

port [26, 36]. Regarding BLE, Passkey Entry-based and LE Legacy pairing are considered

14

2.1. NFC AND BLUETOOTH SECURITY

unsecure. Thus, Bluetooth is vulnerable to Bluejacking, Bluesnarfing, Bluebugging, MAC

Spoofing or MITM attacks [67] and more verified attacks are enumerated in literature [36,

51, 60]. The main threats related with BLE concretely are passive eavesdropping, MITM

attacks and identity tracking [19]. One important factor when discussing Bluetooth vul-

nerabilities is the version currently being used since many of them are specific to early

versions [26, 67] and almost all of them mitigated in the last versions. Also, some vul-

nerabilities could still appear while using the built-in security features. Therefore, we

need to put extra efforts to protect the Bluetooth channel and secure the user data against

future attackers [68].

National Institute of Standards and Technology (NIST) [67] recommends several coun-

termeasures based on the built-in security features in response to the threats presented.

At a educational level, a users must have an adequate level of knowledge and under-

standing about Bluetooth devices and the organizations should establish security policies

related with the use of Bluetooth devices and user’s responsibilities. Also, organizations

should reduce the risks against their Bluetooth implementations by applying methods to

handle specific threats.

At a technical level, recommendations can include changing the default settings of

the Bluetooth device to reflect the organization’s security policy and setting the Bluetooth

devices to the lowest power level so that transmissions remain within the secure perime-

ter of the organization. Using SSP with Just Works association model must be avoided,

because it does not provide MITM protection (other model is preferred). Always use link

encryption for all Bluetooth connections and with the key sizes configured to the maxi-

mum allowable (128-bit), otherwise, transmitted data are vulnerable to eavesdropping

and brute force attacks. Employ mutual authentication for all connections to verify that

all participates are legitimate. Ensure a secure environment to perform pairing where

attackers cannot capture the data packets, since it is a vital security feature and requires

that users are aware of possible eavesdroppers. Apply software and firmware patches

and upgrades regularly, because new vulnerabilities can be discovered in some vendor

products and they should be patched to prevent malicious exploits. Ensure that Blue-

tooth portable devices are configured with a password - such as a pattern, a fingerprint

or a code - to prevent unauthorized access if the devices are lost or stolen. Also, antivirus

should be installed to ensure that malware is not introduced in the Bluetooth connections.

In relation to Security Modes and levels, Bluetooth Classic devices should use Security

Mode 4 Level 4 as it requires Secure Connections and provides the highest security avail-

able for v4.1 and later Bluetooth Classic devices. If not possible, Security Mode 3 should

be the replacement. LE and v4.2 devices should use LE Security Mode 1 Level 4 as it

implements LE Secure Connections and also provides the highest security available [67].

At application-level, NIST [67] recommends to re-encrypt the data before giving

it to the Bluetooth layer and when is received by other device, it should be decrypted.

One drawback of this technique is the time and computational power needed, since the

15

CHAPTER 2. BACKGROUND AND RELATED WORK

transmission will take longer than without encryption and a double encryption will be

quite costly depending the algorithm used. We can also apply the same procedure for

authentication, i.e, Bluetooth-independent re-authentication. Every time a user wants to

access a secure service, re-authentication can be required, which is a repetitive process.

However, fingerprint scanner can be used to ease the process. This type of mechanisms

avoids attacks such as Bluebugging and provides user-authentication.

Many other protection methods can be found in literature [7, 26, 51, 60]. For example,

Mutchukota et al. [60] proposes a improvement to the existing SSP method based on

anti-jamming techniques despite the existing solutions for MITM protection.

2.2 Secure Elements and Host Card Emulation

Secure storage is fundamental when managing keys for cryptographic operations. Mul-

tiple techniques exist to achieve this goal which ensures integrity and confidentiality of

data and enables a trusted environment to execute these operations. The most common

are Mobile Trusted Module (MTM), Trusted Execution Environment (TEE) (e.g, ARM

TrustZone technology leveraged by the ARM processor), Secure Element (SE) and Host

Card Emulation (HCE) [24]. However, only the last two are in the scope of this disserta-

tion.

2.2.1 Secure Element

SE is a tamper-resistant chip where critical code can execute and cryptographic keys can

be stored [24, 77]. This component is based on the chip design that was built for use in

contactless credit cards (e.g, smart cards) and provides the user with a level of security

and identity management to assure the safe delivery of a specific service. The information

stored in this special chip is impossible to read or copy by normal applications installed

on the device, only special and trusted applications (e.g, virtual wallets [74]) are enable

to do it. Also, SE communicates directly with end-applications without passing data

to the smartphone operative system. Therefore, if a malware infects the device, the SE

will be intact and no information can be intercepted by attackers. The main way to

implement a SE is trough hardware [90]: embedded on the smartphone hardware at the

time of manufacturing; or implemented in a removable card format (UUIC/SIM-card or

SD-card), providing a secure environment for applications to execute.

Having a SE-based security architecture eliminates the vulnerabilities of single factor

based authentication systems by adding another layer of security [81]. PKI is the best

possible authentication method, but only if the certificates and keys are stored in the SE,

because storing them out of the SE component makes them vulnerable to attacks.

Given the NFC lack of secure ways to store users’ sensitive information (e.g, bank

account details) in the mobile environment where other applications are running too,

NFC begun to use SE and designed it to be the security base of NFC technology. In this

16

2.2. SECURE ELEMENTS AND HOST CARD EMULATION

solution, SE is embedded together with NFC controller and can be accessed by internal

(i.e, operative system applications) as well as external applications (e.g, NFC reader) [9].

One big drawback of SE is the tight control that mobile operators and manufacturers

exercise over them [90]. This means that mobile developers that wish to access the SE to

accomplish application requirements have no permission to do it. Another problem is

that not all the devices have SEs and the use of UUIC-based SEs or their integration on

mobile phones can bring extra costs to mobile builders and, consequently, to users.

2.2.1.1 Threats and Protection

Despite being safe and secure by themselves, using SEs alongside with NFC-enabled

smartphones can cause the appearance of some threats as discussed by Roland et al. [77].

This paper presents two practical attack scenarios against a SE, given the risks imposed

by the possibility of installing untrusted mobile applications and the mobile phone con-

nectivity to a global network. These attacks are based on the assumption of unrestricted

access to the SE. The first attack is a DoS on NFC-enabled mobile phones, in which succes-

sive authentication attempts are done for card management until it is no longer available.

Then, a Relay attack is presented, in which an application is remotely installed in the

victim’s mobile phone without his knowledge and relays the communications between

the victim’s SE and mobile phone across a network to a card emulator (hosted in another

device) that can then be used as if the victim’s SE was implemented into it.

SE has strong countermeasures and is robust to a wide range of sophisticated attacks.

As consequence, a few number of successfully attacks were registered in literature [82].

However, specific mechanisms must be employed to ensure this high level of security.

The first line of defence to protect a SE is to restrict the access to it, employing access

control policies. Almost all the devices that use a SE already implement this via SE APIs

(as seen before). Cooijmans in [24] discussed that existing APIs to access SE in Android

devices only grant access to them through special permissions only granted by a root user

or the device manufacturer himself. Normal applications with basic permissions can’t

request access to the SE. The SE security can be also enhanced by combining it with a

TEE [33], which can filter the access between the operating system and the SE to allow

only trusted applications to access the SE, and uses well defined certification schemes

to reduce the risk of fraud and malicious operations [82]. Despite the threats verified

in the past, nowadays, using a embedded SE in combination with a NFC controller or a

Bluetooth driver can be very useful for control and prevent remote relay attacks [9].

2.2.2 Host Card Emulation

HCE is a contactless technology that allows the launching of mobile NFC services and

products without making use of SE by allowing the mobile device operating system (i.e,

the "host") to communicate directly over the NFC interface in Card Emulation Mode [9].

17

CHAPTER 2. BACKGROUND AND RELATED WORK

HCE enables software emulation of card-based applications and to perform payment

transactions when the users’ sensitive informations is stored out of the SE. With HCE, no

smart-card chip is required, because applications are held in the operative system and

HCE relies on the mobile phone CPU for processing. Figure 2.3 illustrates the difference

between using SE and HCE in a NFC-based application.

Secure Element Host Card Emulation

Host CPU

NFC
Controller

Secure
Element

NFC Reader

Host CPU

NFC
Controller

Secure
Element

NFC Reader

Android Device Android Device

Figure 2.3: NFC Communications using SE and HCE (based from [9]).

In the SE-approach, the NFC controller routes all the messages from the NFC reader

to the corresponding application residing in the SE. In the HCE-approach, messages can

additionally be routed to an application running on the host CPU. The operating system

is who decides where the messages go, which could be to the SE, but are more likely to be

routed to the host. Besides this difference, HCE service can store the sensitive information

used by in a location different from the application itself and from other secure locations

such as TEE or SE. This new location can be a back-end server in the cloud from where is

possible to retrieve data when devices need to communicate [9]. Unfortunately, network

latency can cause a poor user experience, making this option not so good.

However, NFC Card Emulation services on the SE and in the host can coexist in the

same mobile phone, but is necessary to integrate a mechanism to determine where to

route the messages received from the NFC external reader [9, 29]. This mechanism allows

the NFC controller to implement a routing table that lists the NFC applications stored in

the SE and is used to choose where to forward the messages.

HCE is a benefit for the whole NFC ecosystem, since developers will be capable of

developing innovative applications, creating new NFC use cases and enhancing the NFC

service experience of the users. Another benefit is that companies that wish to deploy a

NFC mobile product don’t need to cooperate with mobile operators and manufacturers to

implement a secure environment for storage and execution that implies extra costs [90].

2.2.2.1 Threats and Protection

The change on storage location of sensitive user data and on the routing of communica-

tions when using a HCE-based applications can introduce new vulnerabilities, because

18

2.3. WINDOWS CRYPTOGRAPHIC PROVIDERS

an application running on the operating system is much more exposed to attacks than

an application executing in the SE [9]. The communications between the host and the

NFC controller can be attacked by malicious applications that live in the same ecosystem.

The threats composing the adversary model can include malware able to exploit, root or

jailbreak the device; spoofing attacks to induce users to do actions; attacks against the

cloud storage if the credentials stored in applications are compromised; or DoS attacks.

The Smart Card Alliance white paper [9] enumerates various countermeasures to

enhance the security of HCE. One technique to secure the applications can be the addition

of software security in order to make it harder for an attacker to modify the software.

Usually, this is accomplished with runtime integrity checking. If an attack is detected,

the tamper-proofed system stops the application and communicates the occurrence.

An ascending technique in the recent years is the use of biometric factors - such as

fingerprint, voice and face recognition - in addition to other authentication methods to

enforce user authentication, providing a very friendly experience for the user.

HCE-based applications can use the TEE [33], which is a secure area in the main

processor of a mobile phone that supports safe execution of trusted applications and

enables the processing and storage of data. TEE offers protection against attacks coming

from the main operating system, assists in the access control and hosts applications that

need to be isolated from the main operating system. Other benefit of TEE is that it runs in

its own operating system, hence it is not affected if the main operating system is attacked.

Methods for encrypting the data transmitted are also recommended. Data used by

HCE-based applications can be encrypted and stored within the applications. End-to-End

Encryption (E2EE) or Point-to-Point Encryption (P2PE) can be employed to ensure data

encryption at the reader and protection while the data is being transmitted.

Another simple but effective method is tokenization, which consist in replacing cre-

dentials with high intrinsic value (e.g, a finance number) for a random value with no

apparent value but equivalent. This method is typically used for masking a card identity.

2.3 Windows Cryptographic Providers

Cryptographic providers are the main way for implementing cryptographic functional-

ities in an operating system, which include cryptographic algorithms, key storage and

generation and authentication of users. Microsoft Windows operating system provides

two cryptographic APIs with which these providers are associated, Cryptography API

(CAPI) and is long-term replacement Cryptography API: Next Generation (CNG). These

SDKs are used to create Windows-based applications that need to use cryptographic

functions to achieve their security requirements and data protection [54].

Providers associated with CAPI are named as Cryptographic Service Providers (CSPs)

and implement cryptographic algorithms and key storage. In addition, CSP can be com-

bined with smart cards to grant an higher level of security and can implement Secure

19

CHAPTER 2. BACKGROUND AND RELATED WORK

Sockets Layer (SSL) and Transport Layer Security (TLS) authentication protocols [54]. On

the other hand, CNG separates the features of algorithm implementation and key storage

in two different providers called Cryptographic Algorithm Providers (CAPs) and Key

Storage Providers (KSPs). CAP implements hashing, key exchange, symmetric and asym-

metric algorithms. KSP manages key operations - such as creating, deleting, exporting,

importing and storing - and are used for asymmetric cryptography and signing.

Lina [49] discusses that CAPI has few algorithms and is becoming outdated with the

current advances in technologies. CNG is more extensible and has support for more

algorithms, including user-defined algorithms. As also, is the most recent SDK and

is planned to be the substitute of CAPI. The next subsection will focus on the CNG

architecture and KSPs design and implementation.

2.3.1 CNG and Key Storage Providers Overview

CNG is divided in six different classes of algorithms from the function perspective and

each class exposes its own primitive API. For example, asymmetric encryption will use

RSA and signature will use DSA or ECDSA [53]. Also, each algorithm can have multiple

implementations offered by providers, but only one will be used at a given time.

KSPs are basically Dynamic Link Libraries (DLLs) 1 (i.e, libraries containing code that

is only loaded at run time when a functionality is requested). We can create our custom

KSPs with our own algorithm implementations, but is necessary to register them first with

CNG, because only after registration it becomes available to system applications [54].

The main advantage of KSP is that it provides a model for key storage that allows appli-

cations to accomplish their asymmetric encryption and key storage requirements [49]. It

could guarantee the security of private keys because after the key is stored, it can’t be read.

Applications access the KSPs on the system to accomplish its functional requirements

through the key storage router which is the main routine in this model and provides

details, such as key isolation, from both the application and the provider itself [49].

KSPs implemented by software define storage and execution mechanisms, but does

not provide a high level of security. On the other hand, KSPs based on hardware im-

plementation can grant a higher level of security, but are more expensive. To balance

this trade-off, we can execute the security computing such as private keys and certificate

storage in the hardware and implement the other functions in the operating system.

In PKI systems, encryption algorithms, certificates and signatures technology is ex-

tensively used to satisfy confidentiality, integrity and authentication requirements, and,

as consequence, the approach used to store certificates and its private keys is very im-

portant [49]. Meanwhile, KSP provides a interface model to connect and communicate

with one of the data storage solutions discussed, then the private key could be stored in a

secure environment with specific function such as encrypt or signature.

1https://support.microsoft.com/en-us/help/815065/what-is-a-dll

20

https://support.microsoft.com/en-us/help/815065/what-is-a-dll

2.4. CRITICAL ANALYSIS

2.4 Critical Analysis

2.4.1 Summary

In the context of the dissertation objectives, NFC and Bluetooth are possible solutions

studied to establish a secure communication channel between the mobile phone (running

the Mobile Cryptographic Provider supported by Android SEs on a conventional smart-

phone) and the computer (where applications running in a Windows-OS execution en-

vironment can request cryptographic operations through local Windows-Cryptographic

Provider functions, transparently executed in the remote Mobile Cryptographic Provider).

NFC is a proximity-based technology to transfer data between devices, that can oper-

ate in a variety of modes and has few security and privacy issues, with the risk managed

under physical awareness control by its users, communicating in very short physical dis-

tance. NFC and its enhancements on security standards are in an on-going in the current

standardization effort, and research solutions to improve the security properties.

Bluetooth is also a wireless technology, with more flexible mechanisms to address

different communication ranges, without the need of extreme proximity between de-

vices. The standard feature Low Energy (particularly related to Bluetooth v4.0 and v5.0)

emerged as a relevant reference designed for generic adoption, from smartphones or lap-

top computers to low-power IoT devices. Apparently, BLE v5.0 will have a strong impact

in the unification of Bluetooth-Communication support, with the new smartphones en-

abling this version, with flexible support at the firmware level to operate the Bluetooth

communication in different settings, for the optimization of trade-offs related to distance

ranges, energy, and throughput rates. Despite that we must also consider the relevance

of the installation base for Bluetooth v4.0 (4.1 and 4.2), Bluetooth is a more flexible and

available solution for our goals, when compared with NFC.

NFC could have advantages over Bluetooth from the technological and economic view-

points, for certain application scenarios. NFC is implicitly resistant to MITM attacks with

the direct control of communicating devices operating in proximity assumptions. This

makes NFC an ideal method for secure pairing for proximity payment systems, for ex-

ample. On the other hand, Bluetooth has higher range and consequently a higher attack

surface, depending on the covered ranges. However, it has an advantage over NFC since

it comes with standard security protocols, parametrizable in different secure modes and

enforcement levels. When using the most secure modes and maximized policy enforce-

ments, it is not required to add extra security mechanisms to protect communications.

However, system-level security can require extra-layers of security, to enforce security

properties at system and application level, or to reinforce the security properties at the

communication layer and wireless data-link level. Depending on the requirements, Blue-

tooth Classic and BLE implement security mechanisms to handle the threats against the

channel, although may be not enough to mitigate other possible attacks.

21

CHAPTER 2. BACKGROUND AND RELATED WORK

To achieve a secure storage and mobile execution environment we studied two ap-

proaches for Android-based solutions: SE support and a virtual alternative, the HCE

framework. SE provides a safe and secure environment to host applications, sensitive

data and cryptographic credentials, and execute operations under isolated abstractions.

Given its high security standards, the SE is mainly incorporated in NFC-enabled de-

vices. Although, not all mobile phones have installed in hardware a SE chip (to minimize

trustability assumptions to hardware-enabled support), or have UUIC-cards for the same

purpose, the software design for SE can be used to address these possibilities in the future.

HCE is a much more flexible solution that creates virtual SEs, bypassing the involvement

of mobile operators and manufacturers in the provisioning of controlled SEs. However, is

more vulnerable in terms of security, since it is executed as an operating system service.

To guarantee the communication between the computer and a mobile phone, a Key

Storage Provider will be integrated, which will be responsible for forwarding requests

for cryptographic operations to the remote mobile cryptographic provider running in

a mobile phone, receiving the correspondent results, as happen in requesting digital

signatures for documents managed in the client computer. This KSP will be registered

through the Windows CNG to be available to other applications in a transparent way.

2.4.2 Discussion for Dissertation Approach

Our conducted study on the related work allowed for the comprehension of issues, to

establish a rationale for the approach of our objectives.

On the choice between NFC versus Bluetooth. From the viewpoint of physical loca-

tions, the NFC proximity demand (which is essential for payment and ticketing applica-

tions) offers very limited device location flexibility in comparison with Bluetooth.

Rationale: NFC offers a good level of security, but for us is not a good option, because the proxim-
ity demand can be inconvenient to users and, like smart cards, would be necessary an additional
reader to allow NFC on the computer. We desire to use our smartphone as a service host in an
office environment, where we can be far from each other, without having to bring together the
service and client devices to perform an action. Therefore, we intend to use Bluetooth technology
as our secure communication channel. To mitigate attacks, a rigorous set of Bluetooth security
mechanisms must be implemented.

On the different versions of Bluetooth and related security assumptions. Different

versions of Bluetooth were promoted in the context of the activities of different Bluetooth

Special Interest Group (SIG) working groups, with different implementations causing

problems in interoperability of different devices from different vendors and different

versions supported by different manufacturers. These problems were progressively cor-

rected in Bluetooth firmware of different manufacturers, particularly, after the version 4.0.

Additionally, Bluetooth security standardization define different security modes, comple-

mentary security levels for devices and services, and two trustability levels (trusted and

22

2.4. CRITICAL ANALYSIS

untrusted), which must be properly employed and depend on a concrete solution.

Rationale: For the objectives and regarding the differences in the above criteria and compatibility
issues on different Bluetooth versions, we will address as our security baseline, Bluetooth Security
Modes and levels, as defined for BR/EDR/HS devices, adopting the Security Mode 4 Level 4 as
it requires Secure Connections. LE and v4.2 devices should use LE Security Mode 1 Level 4 as
it implements LE Secure Connections. From this security baseline for Bluetooth authenticated
pairing and key-establishment processes to setup the secure channel under mutual authentication
assumptions, we can leverage an extra-layer of security, where data is encrypted before the trans-
mission on the established channel. For this extra-layer at service-level we can base our solution
on Numeric Comparison methods, where both Bluetooth devices can display a six-digit number
and allowing a user to enter a “yes” or “no” response.

On mobile trust execution considerations. Mobile execution and storage solutions

such as SE and HCE have similar goal but are implemented in different levels of abstrac-

tion, within the mobile environment. With SE, the data cannot leave the device itself

and a strong level of security and an optimal level of interoperability is provided, with

trusted execution environment guarantees possibly provided in isolated hardware-level,

thus minimising the trust-computing model assumptions to hardware. The main problem

is the need of extra hardware in the mobile phone, because not all mobile manufactures

(or packaged devices promoted by manufacturer and operators) provide such solutions.

HCE can be implemented by a wide range of mobile phones without software or hardware

restrictions, but is less secure than a physical SE, since HCE-based applications use cloud

storage services and run on the OS. The problem in this case is that the trust computing

model assumptions are provided at the level of the Mobile OS services (e.g, Android OS

services), which are vulnerable to attacks compromising the OS behaviour.

Rationale: We want to achieve a secure solution where the certificate private keys are never shared
out of the control of the SE environment, and stored in a secure location where cryptographic
operations that use them can execute. SEs can provide us with this isolation from the operating
system, hence will be the secure storage approach to follow. Recent support of SEs for runtime
services enabled by recent technology of mobile operating systems (e.g, recent versions of Android
OS) enables a robust usage of SEs on almost every mobile phone, then hardware constraints will
not be a problem as discussed above.

On Software Attesttation guarantees. As far as we studied, SEs don’t have many

security issues given their implicit high level of security, but one problem detected was

the possibility of a client computer "to talk"with a fake SE-based crypto provider solution,

after the compromise of its support, in a mobile OS.

23

CHAPTER 2. BACKGROUND AND RELATED WORK

Rationale: To verify or check if client devices (computers) are really integrating with the correct
remote service, we must implement a Remote Attestation protocol. Thus, it will allow devices
communicating with the SE to check the authenticity and the integrity of the software and/or
hardware in the boot process and running in the SE environment of the mobile phone. The
enforcement of the execution of such protocol will be considered as a key-point in the final design
and implementation of our solution.

On managing data in the SE solution. To manage the data stored and the crypto-

graphic operations executing inside SEs, we might need to implement a remote mobile

crypto provider to run inside the SEs. A second crypto provider, particularly a Windows

crypto provider, will be also necessary to send the cryptographic operations requests to

the first crypto provider, allowing the Windows crypto provider to execute these oper-

ations remotely in the smartphone. In our implementation we will consider the client

computer as trusted, focusing in the security design of the remote mobile crypto provider.

Rationale: The mobile crypto provider will be implemented as an application and SEs services
running on the Android OS, and will be remotely used by the client computer whenever a cryp-
tographic operation (namely, a standardised digital signature request) is demanded. The Win-
dows crypto provider, more precisely, a key storage provider as studied previously, will imple-
ment proxy functions, transparently redirecting the local operations from applications (such
as a signature of a PDF managed by Adobe Reader, for example) to the mobile remote crypto-
graphic provider. We will give the necessary support to define policy enforcements at device-
level (mapped on firmware configurations for Bluetooth security enforcement) and system-level
(mapped on complementary designed security services, in an extra-layer of security).

Gomez et al. [38] provides evaluation criteria for BLE performance, regarding different

metrics: (i) for power consumption, the average consumption decreases, since devices may

be in sleep mode for a greater fraction of time, although, fast resynchronization methods

can increase the values; (ii) for latency, with very low bit error rate, the average value of

round-trip and one-way message exchanges are smaller than 2 ms and 1 ms, respectively,

but for high bit error rate values, the average latency increases three times more. Without

errors, the latency of a one-way exchange can reach 676.7 µs. The maximum throughput

measured was 58.48 KBps which can be influenced by many factors.

Rationale: In our dissertation, a low energy consumption is not a primary goal because the num-
ber of cryptographic operations, including signing and certificate registration, is expected to be
low, and does not force a significant energy consumption by the mobile phone. Thus, we intend
to use the Bluetooth BR/EDR implementation as the primary approach to establish Bluetooth
channels, because it offers a solution with better data rate and a bigger payload size, providing a
faster transmission of data, analysing the impact of our designed solution in terms of throughput
and latency conditions, for different security parametrizations.

A recent experience [90] with NFC-enabled devices, including two applications, one

SE-based and the other HCE-based, measured the execution time that devices take to carry

out non-trivial cryptographic operations such as encryption and signing via Application

24

2.4. CRITICAL ANALYSIS

Protocol Data Units (APDUs). For the SE-based application, the testing protocol took

on average 1982 ms to fully execute with 85% of the time spent on digitally signing

messages. For the HCE application, the testing protocol fully executes on average in

213 ms for a CPU running at 960 Mhz and 572 ms for a CPU running at 300 Mhz with

similar signing and encryption execution times, but with a significant variation between

the maximum and minimum values. HCE is faster than SE, but tends to be less secure,

because no security mechanisms were employed and if they were the application would

become much slower. We will observe the equivalent impact in evaluating the proposed

solution.

Rationale: We will prefer to achieve a good trade-off between security and usability, in order to
achieve the best security, instead of high execution speeds or long-range communications. We
expect that cryptographic operations remotely executed in the mobile cryptographic provider will
not be significantly slow, and maintain the same order of magnitude for throughput and latency,
comparing with the studies in performance characterises of Bluetooth connections. Therefore,
the SE approach is compatible with our objectives in the sense that it provides the desired level
of security in the mobile environment to protect the sensitive information on Bluetooth security
association parameters, as well as, on using and managing Private Keys.

25

C
h
a
p
t
e
r

3
System Model and Architecture

In this chapter we present the designed solution to address the Bluetooth-based Mobile

Key Storage Provider (KSP) (or BluetoothKSP), as a generic support for applications run-

ning in Windows machines. As stated before, the main use of the BluetoothKSP, is its

ability to obtain standardized digital signatures of documents (file formats) that can be

generated from Windows-based applications. For the purpose, the BluetoothKSP offers a

transparent support for the local Windows applications, as a local Dynamic Link Library

(DLL) acting as a proxy that implements the conventional cryptographic primitives as

supported by local Microsoft Key Storage Providers (MKSPs), but supported by the inter-

connected mobile system (via Bluetooth) where the real BluetoothKSP runs. Then, from

the Windows-based support, the BluetoothKSP does not implement its own functions,

and the provided DLL acts as a transparent pass-through layer, facilitating the communi-

cation between the operating system and the remote BluetoothKSP implementation. In

the remaining of the chapter we will present and discuss the designed solution, starting

from the generic system model assumptions, including the studied threat model, and

provided architecture (in Section 3.1) and going in the details of the supported facilities

equivalent to conventional local Windows KSP functions, namely those implementing

standardized digital signatures (in Section 3.3). Then, we discuss the particular architec-

ture of the BluetoothKSP and its components executing on Windows OS (in Section 3.2)

and the related configurations required for Windows-based applications use the mobile

crypto provider (in Section 3.4). Finally, we discuss the possible security enforcements

for the Bluetooth pairing functions (in Section 3.5) and present final considerations and

remarks on the designed solution (in Section 3.6).

27

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

3.1 System Model and Architecture

In this section it is described an overview of the system model, including its adversary

model, its core components and the system interactions between these entities.

3.1.1 System Model Overview

Bluetooth Secure Channel

Proxy
BluetoothKSP

SE

Adobe Reader

Remote
BluetoothKSP

Figure 3.1: System Model Overview.

In figure 3.1 is illustrated a simplified version of the system model, composed by a

computer and a smartphone that exchange information via a secure Bluetooth channel

making use of both crypto providers in each node. The system built employs a client-

server architecture between two nodes were the computer acts as client hosting the proxy

BluetoothKSP and the smartphone as server hosting the remote BluetoothKSP (the real

one). The Windows-side (proxy BluetoothKSP) is responsible for ensuring the commu-

nication between the smartphone and different Windows applications running in the

computer. The remote BluetoothKSP is responsible for processing the cryptographic

operations requested by the proxy BluetoothKSP and securely managing access to the cer-

tificate private keys inside the Secure Element (SE). This remote BluetoothKSP can work

as a service running in the background (or not) in the smartphone waiting for remote

signature requests from a client computer. The SE ensures that the signature requests

issued by the proxy BluetoothKSP are securely executed in an isolated context from the

Android OS and other mobile applications.

Besides the signature operations, the mobile application (i.e, the remote BluetoothKSP)

accepts certificate requests from client-computers that desire to import new certificates

into the Windows OS, configuring the crypto provider of the certificates with our Blue-

toothKSP, enabling Windows-based applications to make use of our remote BluetoothKSP.

Plus, this mobile application, provides functionalities of certificate management such as

certificate import into the Android OS, certificate entries removal from the Android Key-

store and displaying of Android Keystore certificate entries. Hence, we can see the remote

BluetoothKSP or mobile application as a certificate manager.

The Bluetooth communication channel has a security baseline composed by the Pair-

ing mechanism and security levels, which is possible to be enforced with an extra layer of

security, specially when working with less secure Bluetooth devices (i.e, mobile devices

with old Bluetooth versions). The data exchanged between the nodes inside the secure

channel is always public, such as a document hash or a certificate containing only the

28

3.1. SYSTEM MODEL AND ARCHITECTURE

public key, and no private data is transported through Bluetooth. All the private data to

be used is stored inside the smartphone SE and never leaves it as mentioned before.

For initial validation, we considered the Adobe Acrobat Reader desktop application

as the case-study of a Windows-based application, but our system has support for other

applications such as Microsoft Outlook and Word. Except for applications that make

usage of PKCS#11 uniquely (for example, Mozilla Firefox and other Linux-based appli-

cations). This is due to the fact that these applications do not support Windows APIs

to interact with cryptographic token drivers, such as our BluetoothKSP. This way, our

system guarantees only transparency for Windows-based applications.

Given this system model assumptions and all the basic mechanisms involved, we

perform an analysis of the potential security vulnerabilities in the following subsection.

3.1.2 Threat Model

As described in section 2.1.2.1, Bluetooth has built-in security mechanisms that provide

a certain level of security depending on the Bluetooth version of the computing device.

However, we have shown that these basic security features do not provide a strong pro-

tection to data transported in the communication channels and some attacks are feasible.

We assume an adversary model where the Bluetooth communication channels are

vulnerable to attacks that intend to tamper or modify the data being exchange such as

Man-In-The-Middle (MITM) and Eavesdropping attacks. More concretely, an attacker

with ability to eavesdrop or tamper the communications between the client and server

endpoints could change the Bluetooth packets content to some data that they desired to be

signed, leading to users signing forged documents without knowing it on the smartphone.

For the mobile execution environment, we assume that the user private keys can not

be compromised by attackers, because only applications with permissions (in this case,

our remote BluetoothKSP) can access the SE through the Android Keystore System to

store keys or execute cryptographic operations. For example, an attacker that tries to

compromise the sealed container used by our mobile application using another applica-

tion that he/she has installed on the device will not have success. Thus, we consider the

SE as our Trusted Computing Base (TCB).

For the scope of this dissertation, attacks coming from the Android OS or malicious

code executing instead of the correct OS were not considered. This means that our solu-

tion nodes not rely on the integrity of the OS to secure their data. For example, attackers

that can acquire the control of the Android OS through a root exploit, allowing them to

run applications with root permissions and access its data and modify its content. Also,

a malicious behaviour on the part of Windows OS, such as a corrupted KSP that changes

the signatures requests or a malicious desktop application that makes use of the KSP to

request forged signatures, was not considered and was leaved out of the scope. However,

we plan to study these potential attack vectors with more detail in the future.

29

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

3.1.3 Architectural Components

Our solution is built as a service with the architecture depicted in figure 3.2. The system

has several entities in each node (client and server), being the BluetoothKSP, the Win-

dowsCertificateManager and the CertificateManager, the core components of our solution

(dark blue boxes). BluetoothKSP is our proxy mobile crypto provider, WindowsCertifi-

cateManager is a graphical Windows desktop application that also has the ability to

import and display certificates existing in the Windows OS and CertificateManager is

the mobile application that has the remote BluetoothKSP and certificate management

functionalities. The remaining (light blue boxes) are the built-in or black-box compo-

nents, which are the components that support and are used by the core elements. All

these entities will be described in this section for a better understanding of the proposed

system model.

User

Desktop
application

Windows
Certificate
Manager

Bluetooth
KSP

CNG
API.NET Framework

Windows
Certificate

Store
Bluetooth

Driver

Android
Bluetooth

API
Certificate
Manager

Windows Desktop Computer Android Smartphone

Bluetooth
Driver

Bluetooth HAL

Secure
Element

Secure Element HALWindows
Sockets API

Figure 3.2: System Architecture and Interaction Flows.

WindowsCertificateManager. This client-side component allows the user to request

certificates to import into the Windows OS from the remote BluetoothKSP running on the

mobile phone, through the .NET framework which forwards the request packet and waits

for the reply using the Windows Bluetooth Driver. Then, it imports the list of certificates

received into the operating system (more precisely, into the Window Certificate Store)

creating a link between each certificate and the BluetoothKSP. This certificates exchange

is required to enable any desktop application to use our mobile crypto provider to request

signatures later, and to use the corresponding user certificate that contains the public key

to verify the signature executed by the remote BluetoothKSP.

BluetoothKSP. The proxy mobile crypto provider that forwards requests for cryp-

tographic operations such as digital signatures from desktop applications (e.g, Adobe

Acrobat Reader) to the remote BluetoothKSP and receives the correspondent signature

result using the Windows sockets API to access the Windows Bluetooth driver. The signa-

ture content is then forwarded to the desktop applications. All these interactions between

30

3.1. SYSTEM MODEL AND ARCHITECTURE

the BluetoothKSP and user applications are done though the Windows Cryptography API:

Next Generation (CNG). This means that, our BluetoothKSP communicates directly with

the CertificateManager by sending unsigned and receiving signed documents hashes, re-

spectively, forwarding them from and to the desktop application, acting as a proxy. When

the CertificateManager receives the signature request through the Bluetooth Service linked

to the Bluetooth HAL, it will execute the signature generation in the SE context, in which

the private keys are stored. This generates a signed document hash that will be forward

back to the BluetoothKSP also through the Bluetooth Service.

CertificateManager. The Android application that represents the remote mobile crypto

provider and implements the features of a KSP, but also enables the importing of certifi-

cates (resident in PKCS#12 files) existing in the mobile device storage into the Android

Keystore, consequently, inside the SE container, and the listing of certificates already im-

ported. This CertificateManager will access the hardware-sealed SE through the Android

Keystore System, which is responsible for managing all SEs integrated in the smartphone

and enables the user to store private keys in these sealed containers, as well as, execute

cryptographic operations. Additionally, these system offers the possibility of implement-

ing control access policies to restrict how and when private keys can be used. Much of

the mobile security relies on the SE which will implement all cryptographic operations

and request our consent for any action evolving sensitive data stored in the SE. Figure 3.3

illustrates where this Android application is placed in the Android Framework, where

the other mobile components are also.

Certificate
Manager

android.bluetooth
(API)

Secure Element
HAL

Figure 3.3: Mobile System Architecture and Android Framework.

Bluetooth HAL and Driver. These two are the low-level components abstracted by the

Android Bluetooth API which is used by our CertificateManager to transmit and receive

Bluetooth packets. While acting as a server, the smartphone runs the CertificateManager
with a Bluetooth service on the background that waits for requests coming from a client

computer and executes the operations demanded, responding with the operation result

31

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

and other useful data. Those requests packets are transported through the Bluetooth

Driver and the Bluetooth HAL as well as the response packets.

Secure Element. The sealed-hardware part of the smartphone that provides a secure

environment for storage, management and access control of cryptographic keys, and exe-

cution of cryptographic operations, reproducing the actual behaviour of a crypto provider,

but using a sealed container for storage. This hardware piece is the main responsible for

the execution of signatures in the context of our smartphone and solution since no other

component implements signature algorithms neither executes digital signatures.

3.1.4 Components Interactions

Before executing the signature operations with the mobile crypto provider, the computer

client must first obtain the respective certificates which will be used in the signature

processes for requesting the signature and further verifying the signature. To obtain the

certificates, the computer and the smartphone must first perform an initialization proto-

col by exchanging two Bluetooth packets (as shown in Table 3.1). This Initialization (or

Configuration) Protocol is started by the WindowsCertificateManager when its demanded

to import certificates into the Windows OS with our BluetoothKSP. A request packet (M1)

is sent to the CertificateManager containing an operation type (op) and the number of

certificates requested (cert_num). Op indicates the Android application which operation

the client is requesting: a certificates register or a signature operation. In this case, a

operation code associated with the certificate register operation is placed in the op field

of the packet. Cert_num provides the possibility to request a specific number of certifi-

cates from the CertificateManager or by default all certificates existing in the smartphone

are retrieved. Then, the CertificateManager replies to the WindowsCertificateManager by

sending a response packet (M2) containing the list of certificates available in the mobile

device. Finally, the user also has the possibility to select which certificates he/she wants

to import and discard the rest.

Initialization Protocol

(M1)C→ S : (op,cert_num)

(M2)S→ C : (certs_list)

Table 3.1: Initialization Protocol.

After the configuration phase, a desktop application can request a signature to the

mobile crypto provider and successfully verify the result. To accomplish this process, the

computer and the smartphone must perform a signature protocol by exchanging other

two Bluetooth packets (as shown in Table 3.2). This Signature Protocol begins when a

desktop application starts a signature process with an imported certificate associated

with the BluetoothKSP. A request packet (M1) is sent to the CertificateManager containing

an operation type (op), the document hash (hash), the certificate sequential number (sn),

32

3.2. BLUETOOTHKSP ARCHITECTURE AND COMPONENTS

the certificate issuerDN (idn) and the Object Identifiers (OIDs) of the hash and encryption

algorithms. Similarly to the previous protocol, the op field is used to distinct the operation

requested, in this case, a op code representing the signature operation is used. The

hash attribute is the document hash computed by the desktop application that must be

signed by the remote BluetoothKSP; the sn and idn (i.e, the combined unique identifier

of the certificate being used in the signature) indicates the CertificateManager from which

certificate it must obtain the private key to execute the signature; and the OIDs indicates

which hash and public-key algorithms must be used to perform the signature, more

precisely, which signature algorithm must be used.

Signature Protocol

(M1)C→ S : (op,hash,sn, idn,hash_oid,enc_oid)

(M2)S→ C : (sign_res)

Table 3.2: Signature Protocol.

3.2 BluetoothKSP Architecture and Components

In this section, we cover the architectural components of the Cryptography API: Next

Generation (CNG) KSPs [53] and the runtime support provided by CNG to them.

3.2.1 Key Storage Provider Architecture

CNG provides a plug-in model for private key storage that allows adapting to demands

of creating applications that use cryptography features such as public or private key

encryption, as well as storage of key material. That is, we can plug into CNG our own

cryptographic key storage provider with our own implementations of the algorithms. All

common Windows-based applications (e.g, Adobe Reader, Microsoft Word and Outlook)

access the cryptographic functions exported by the custom KSP through the Windows

CNG, more precisely, through the Key Storage Router. All access to private keys pass

through the Key Storage Router, which provides a set of functions for storing and using

private keys, and is audited by CNG. Additionally, the CNG API can communicate

with the PKCS#11 API to invoke similar cryptographic functions demanded by common

applications that use hardware cryptographic tokens as solutions for secure storage and

execution. Figure 3.4 illustrates the CNG KSP architecture and all its components.

Our custom CNG BluetoothKSP is responsible for executing signatures remotely with

private keys not stored in the computer, thus it does not manages or stores any private key,

it only stores a reference or handler for the private key by creating a private key container

without any key inside. This container is created when the corresponding certificate

is imported into the Windows OS with BluetoothKSP as the cryptographic provider of

33

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

Figure 3.4: Architecture of the CNG Key Storage Providers (taken from [53]).

the certificate keys. As consequence, it does not perform signature generations, it only

redirects the computed hash that needs to be signed to the CertificateManager.

CNG BluetoothKSP was implemented in a Dynamic Link Library (DLL) that exports

an interface with a set of functions that the CNG Router calls to perform key storage

operations. In general, each CNG KSP implements a list of callback functions provided

by the CNG (available here [53]), so that the Router can call the callback functions imple-

mentations of each provider. The mapping between the generic callback functions and

its implementation is defined using a specific table structure in the KSP DLL. Thus, every

time a desktop application makes a call to CNG to perform a given cryptographic oper-

ation, the CNG Router will select the callback function implementation of the provider

selected by the application correspondent to that operation.

In addition, this architecture provides isolation for the long term keys so that they are

never shown to the application process. This key isolation feature is only available for

the Microsoft KSP (as we can see in Figure 3.4), this mean that, only the Microsoft KSP

is loaded with the key isolation service (or also known as LSA process). Therefore, the

remaining third party KSPs, including our BluetoothKSP, are not loaded with this service.

As previously explained, to make custom third-party KSPs available for use with

Windows-based applications they are required to be plugged into CNG through a provider

34

3.3. CRYPTOGRAPHIC FUNCTIONS

registration function (named BCryptRegisterProvider) that adds the provider to the CNG

Router, making it available for future cryptographic operation calls.

3.2.2 Runtime Support

At runtime, the CNG KSPs can work in user and kernel mode. Such as CAPI, CNG can

also be used in both modes to fully support the cryptography features, but not all the

CNG functions can be called from kernel mode. Microsoft documentation explicitly

states which functions can not be called from kernel mode [53]. Another constraint about

this mode is that CNG does not support third-party providers and algorithms running

in kernel mode. Only the algorithm implementations provided by Microsoft through the

kernel mode CNG APIs are supported in kernel mode. For example, our BluetoothKSP

cannot run in this privileged mode. The cryptographic services are provided to the kernel

components through the Microsoft kernel security support provider interface (named

Ksecdd.sys), which is a cryptographic module residing at the Windows kernel mode level

and runs as a kernel mode export driver. The only exception at the level of cryptographic

constructions supported by the interface Ksecdd.sys is the cryptographic algorithm DSA.

3.3 Cryptographic Functions

Our BluetoothKSP mainly provides digital signatures support, but also offers several ba-

sic cryptographic-related operations that different desktop applications may require to

perform the signature operations, such as public key initialization (e.g, Acrobat Reader)

or the public key exporting (e.g, Microsoft Word). Furthermore, it provides Key Storage

Provider (KSP) management operations, such as KSP properties getter and setter func-

tions, and KSP initialization operations. We can call these basic functions invoked by

desktop applications to execute digital signature processes as KSP pre-operations. Each

desktop application can invoked a different set of these operations.

3.3.1 Windows KSP Functions and Supported Operations

Regarding the Windows CNG, it provides a generic list of functions that each KSP must

implement [53], so that, external desktop applications can invoke all the operations that

satisfy their cryptographic demands through the CNG, independently of the current

crypto provider being used. Our BluetoothKSP only implements or actually uses a small

set of these functions, since we are only focused in cryptographic operations related with

digital signatures and some operations are very application-specific, such that, we are

only interested in functions that conventional Windows applications (such as Acrobat

Reader, Microsoft Word and Outlook) use in order to provide transparency.

The functions provided by our BluetoothKSP API are summarized below:

• OpenProvider: Initializes the provider, retrieving a handle to the provider;

35

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

• FreeProvider: Releases or frees the provider handle created by the OpenProvider
function;

• GetProviderProperty: Retrieves the value of a given property of the KSP;

• SetProviderProperty: Updates a property value of the KSP;

• IsAlgSupported: Determines whether the provider supports a specific cryptographic

algorithm or not;

• EnumAlgorithms: Enumerates the names of the cryptographic algorithms supported

by the KSP;

• EnumKeys: Enumerates the names of the keys stored by the KSP;

• OpenKey: Opens an existing and stored key, i.e, initializes a key object, retrieving a

handle to that object;

• FreeKey: Releases or frees a object or key handle created by the OpenKey function;

• ImportKey: Imports a CNG key from a given memory BLOB;

• ExportKey: Exports a CNG key to a memory BLOB, more precisely, a public key

BLOB. Notice that, this BLOB has a different format according with the key algo-

rithm;

• SignHash: Forwards a Bluetooth packet containing a hash value (plus the remaining

information described in Section 3.1) to the remote BluetoothKSP via a secure Blue-

tooth communication channel and waits until this remote provider signs the hash

and sends back the signature value. In other words, it is performed the Signature
Protocol;

• VerifySignature: Verifies a signature value over a given hash using a specific public

key handle retrieved by the OpenKey or ExportKey function.

Therefore, when a desktop application is calling one of these functions, what it is

really calling is the respective KSP callback function (NCryptX) provided by the CNG

(where X is the name of one of the above functions). For example, when Acrobat Reader

needs a signature, it calls the NCryptSignHash function from the CNG, indicating the KSP

that provides the desired implementation of that function, which consequently calls the

SignHash function of the chosen KSP.

Another supported feature available by our solution is the certificate import previ-

ously described in the Initialization Protocol. Basically, consists in importing a given

certificate into the Windows operative system setting the cryptographic provider of the

certificate private key as our BluetoothKSP, i.e, the private key will be stored and man-

aged by BluetoothKSP. Although, the public key crypto provider is a Windows default

36

3.3. CRYPTOGRAPHIC FUNCTIONS

KSP. Usually, this operation implies that the KSP keeps the private key of the certificate

in a secure storage area, but in our case only the certificate public part is persistently

stored and a link between our BluetoothKSP and the certificate private key is created.

This certificate registration process is similar to the one described in [49] with some dif-

ferences. In general, the steps are: (1) read the certificate file which was already received

through Bluetooth and create a certificate context object from the encoded portion; (2)

set new certificate properties related with key storage (such as configuring the private

key crypto provider as our BluetoothKSP and assign a name to the private key container

which is used by KSPs to distinguish keys) and append them to the certificate context; (3)

add the certificate to the Windows certificate store using the updated context object.

However, to achieve this certificate import from the Windows-side, the certificate and

its respective private key must have been previously imported into the Android Keystore

(more precisely, stored in the Secure Element (SE)). This means that, if no private keys

exists inside the SE, the list of certificates received by the WindowsCertificateManager
application during a certificate request will be empty and will be impossible to further

perform remote digital signatures with the certificates using our BluetoothKSP. As such,

before starting the Initialization Protocol, the user needs to import the certificates through

the CertificateManager in order to be able to import certificates into the Windows OS, and

as consequence, perform digital signatures using our BluetoothKSP. To accomplish this

operation the following sequence of steps is required: (1) search the Android file system

for the certificate file (i.e, a .p12 file); (2) retrieve the public and private key inside that

file; (3) add a new entry in the Android Keystore for that cryptographic keys.

3.3.2 Provided Digital Signatures

By default, the CNG provides several built-in cryptographic algorithm implementations

grouped in different classes according with their cryptographic operation. One of them

is the algorithm class Signature which includes RSA, Elliptic Curve Cryptography (ECC)

and DSA based digital signature schemes. However, our BluetoothKSP does not imple-

ment any of these algorithms, only redirects the signature operation requests to the real

crypto provider running in the mobile environment, restricting in some way which type

of signatures are allowed or supported by the remote BluetoothKSP.

In relation to the digital signatures schemes available by our BluetoothKSP, are in-

cluded the following standard constructions: RSA-based signature schemes, such as RSA-

PKCS#1 and RSASSA-PSS [58, 78, 79], DSA-based signature schemes [31, 61] and its

ECC variant, ECDSA [1, 12, 69]. For this algorithms we selected a group of key lengths

composed by RSA and DSA keys with 1024, 2048, 3072 and 4096 bits; and ECC keys

with P-256, P-384 and P-521 elliptic curves standardized by the National Institute of

Standards and Technology (NIST). These key lengths were chosen according with the

algorithms and respective key sizes supported by the Android Keystore System since it

is the component responsible for performing the digital signatures. The only algorithm

37

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

from the supported digital signatures that can’t be executed with the Android Keystore

provider is DSA, which is already not supported by the Android OS. Therefore, the use

of DSA will be for testing purposes only. Additionally, the desktop applications that

demand digital signatures through our BluetoothKSP must use for signature verification

a crypto provider that offers the same digital signature schemes as BluetoothKSP in order

to validate the signature. Any other desktop application that requires a different type of

scheme, will have it’s request rejected by the BluetoothKSP.

The signature scheme to use is dynamically selected in our solution when some desk-

top application invokes a signature request. That is, given the hash computed by this

application and the certificate chosen to use in the signature, the BluetoothKSP selects

the target signature scheme (i.e, the combination of the hash and encryption algorithms)

to be used and forwards it to the smartphone. More concretely, the BluetoothKSP obtains

the hash algorithm from the hash size and the encryption algorithm from the certificate

public key. The BluetoothKSP, which needs the signature value, indicates the OIDs of the

algorithms in a field of the packet sent to the remote BluetoothKSP, so that it knows which

signature scheme the BluetoothKSP demands to be used in the signature generation. The

next section presents a comparison between these supported digital signature schemes

regarding the level of security offered by each one.

3.3.3 Comparative Analysis on Provided Digital Signatures

The experiments on digital signatures that will be later presented focus on the expected

performance while using RSA, ECC or even DSA based digital signatures, in standard-

ized constructions adopted for our prototype. Yet, we must noticed that standardized

DSA-based constructions using SHA-1 [61] have been discontinued by Google from the

Android OS reference, after version 6.0 (API level 23) 1, due to collision attacks against

the SHA-1 hash function [23, 86]. Therefore, we restricted our following discussion to

RSA and ECC public-key algorithms.

In this section, we intend to compare another interesting perspective on the compari-

son of RSA and ECC based signatures where we must additionally consider the security

level comparison, beyond the performance analysis. As it is well known in general, the

level of security in cryptosystems is becoming a primary concern as we would expect,

with the key size criteria for different algorithms taking a particular relevance, comple-

mentarily to the robustness of each cryptographic algorithm itself and the usage efficiency.

Security level consists in a measure of the strength that a crypto primitive - such as an

algorithm or an hash function - achieves and is usually expressed in bits. Current cryp-

tosystems provide a minimum security level in the form of 128 bits of security, which

is required for systems that communicate and provide information with confidentiality

1https://developer.android.com/about/versions/marshmallow/android-6.0-changes

38

3.3. CRYPTOGRAPHIC FUNCTIONS

protection [14]. The security level of cryptographic algorithms comes from the combina-

tion of each specific algorithm mathematical construction and its key size. For example,

it is known by cryptographic experts that a 128-bit security level can be achieved to-

day with 128-bit Algorithm Encryption Standard (AES) keys (as reference for symmetric

encryption), 256-bit ECC keys (for ECC-based encryption), and 3072-bit RSA keys (for

RSA-based encryption) [14, 83]. If ignoring the implementation issues related to the

mathematical instantiation of the cryptographic schemes, these algorithms alongside

those specified key sizes will generally offer the same level of security.

Table 3.3 illustrates the comparison of security levels, when using today different algo-

rithms and key lengths. As the table dictates, typical RSA implementations that currently

employ 1024 and 2048 bit keys are less secure than the AES-128 reference, showing

that asymmetric cryptography is not necessarily stronger than symmetric cryptography

in each specific use. Also, ECC can provide higher levels of security with smaller keys

comparing with RSA.

Table 3.3: Security Level Comparison for Conventional Cryptographic Algorithms (taken
from [62]).

For our comparative analysis of the trade-off between efficiency and security of RSA

and ECC based signatures, we must take into account the corresponding level of security

of used keys. As it is well known, key lengths generally increase with time and the years

to break a given key length increase with the key size, as the computational power avail-

able to possible attackers continues to increase, which is a manifestation of the so called

cryptographic arms race. Nowadays, it is recommended for example that AES using 256-

bit keys (AES-256) be employed for data encryption rather than the prior accepted AES

with 128-bit keys (AES-128), since it only provides a near term protection (i.e, security

for at least ten years) [83]. In the case of using ECC for key management (or key estab-

lishment) schemes of an AES-256 based session, it is recommended to use 512-bit ECC

session keys to maintain the security level (as shown in Table 3.3), because the security

strength that can be supported by sessions keys is determined by the weakest algorithm

and key length. For example, if a 224-bit ECC key was used, the bits of security provided

would decrease to 112. To achieve the same level of security strength of the AES-256

using RSA encryption, 15 360-bit keys must be required, although are computationally

infeasible in current days, particularly when we use mobile systems with autonomous

39

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

battery or embedded systems and IoT devices. This limitation does not exist when using

ECC, which has very small keys compared with RSA that enables faster processing times

and lower demands on memory and bandwidth.

This notable contrast between the feasibility of ECC over RSA in relation with the

security strength provided clearly indicates that ECC will be the algorithm more and

more adopted in the future for asymmetric-cryptographic operations on systems where

computational power or data storage capacities are limited, such as mobile and IoT de-

vices. Except for these resource-limited systems, or where a strategic long-term migration

is needed, there is no strong reason to employ ECC over RSA based signature schemes.

In the case of our evaluations for digital signatures, beyond the self robustness of

secure hash functions used in standardized constructions (another point of security anal-

ysis), we must consider the comparative security level and efficiency for each achieved

performance, regarding the use of 3072-bit keys for RSA-based signatures and 256-bit

keys for ECC-based signatures (using curve P-256 from NIST), which is their equivalent.

It is important to notice that the security and key length of the cryptographic algo-

rithms do not really matter if an attacker can obtain the secret and private keys through

other methods. This way, we must emphasize the following: security starts and ends with

how well the keys are managed and protected, and how good is the key storage. In ad-

dition, insecure and weak algorithms implementations, bad random number generators

and various malicious attacks can also compromise security.

Finally, for the purpose of this dissertation it is interesting to discuss the use of cryp-

tographic configurations in the combination of four relevant impact factors: the compu-

tation efficiency; the bandwidth (in the case, impacting the Bluetooth communication);

the usability in the mobile environment and the relevance on government and industry

standard recommendations.

As already mentioned, cryptographic algorithms execute two relevant computations

in the process of digital signatures - signature (i.e, encryption using the private key)

and verification (i.e, decryption using the public key) - which accordingly with the given

algorithm have different performances. In general, RSA has an higher signature time than

ECC since RSA keys are significantly larger than ECC keys; and has a lower verification

time due to the fact that ECC executes more complex operations rather than RSA as

stated in literature [42]. More precisely, they tell us that in relation to the performance

or time costs at 128-bit security level, RSA is generally reported to be 10-times slower

than ECC for private key operations such as signature generation, key establishment and

key generation. The divergence in performance keeps increasing drastically as the key

length increases, for example, at 256-bit security levels, RSA (using 15,360-bit keys) can

be 50 to 100 times slower. On the contrary, for public key operations such as signature

verification, RSA does not suffer big time variations as we increase the key size, which

means that even doubling the key size the verification process is still fast compared with

signature generation. The key generation of RSA is also significantly slow compared with

40

3.3. CRYPTOGRAPHIC FUNCTIONS

the key generation of ECC, with RSA being 100 to 1000 times slower and capable of

draining completely the battery of a wireless device when using sufficient large key sizes.

However, this may or may not be a relevant consideration to take into account in systems

that rarely generate keys. In the case of this dissertation, no protocol or functionality

requires the generation of keys frequently, therefore, it does not matter for our goals.

Regarding network bandwidth, the main concern relates to the symmetric algorithm

used for message encryption and Message Authentication Coding (MAC) for integrity

checking. For instance, small embedded system could start sessions often or the asymmetric-

based authentication could represent a big part of the overall traffic and the size of keys

and signatures would make a difference, since small key lengths do not increase the

messages length and less bandwidth is consumed. The length of the public and private

keys, and also signatures, is much shorter for ECC, for example, at 128-bit security levels,

public keys and signatures are 6-times larger for RSA compared to ECC, and private keys

are 12-times larger for RSA. As consequence, ECC has lower bandwidth demands. The

key length generally has no impact on performance, but size matters when it comes to the

cost of secure key storage. However, in our case, these differences are mitigated, because

each cryptographic configuration used for digital signatures will only depend on the size

of the secure hash of the document sent by the computer via Bluetooth to the mobile

device, and the size of the returned signature obtained. In this case, ECC has also the

advantage, because for the same level of security (128-bit) we will return a Bluetooth

packet containing 70 to 72 bytes compared with a packet of 256 bytes in the case of RSA.

For the mobile environment, we consider now the suitability and efficiency of RSA

and ECC based digital signatures with mobile phones. RSA algorithm is usually sus-

pended from use with small wireless devices, because its usage will negatively affect their

performance and consume a lot of resources such as memory and energy, delaying the

verification process [6]. In the other hand, many studies and authors in literature, already

have reported the advantages of employing ECDSA for resource-limited environments

due to its performance and security [6, 17, 42]. Attending our dissertation case and goals,

our performance evaluation helped us to gain more insight into the most suitable public-

key cryptography algorithms for a mobile environment with resource limitations (such

as memory, energy and CPU capability). In our case, the only cryptographic operation ex-

ecuted in the mobile environment is the signature generation with the private key, which

was already demonstrated that its very slow for RSA and very fast for ECC. Only in a

solution that performs signature verification in a mobile device, is ideally to employ RSA

over ECC, because verification times are significantly different from each other and RSA

scales well with the key length increasing. This way, we concluded that ECC-based digital

signatures are more effective and feasible for our mobile environment in many aspects,

since they provide a good security plus a good efficiency.

Considering for last the government and industry standard recommendations, there

is an almost endless list of new standards that are recommending and requiring the use

of public-key algorithms based on ECC rather than traditional key systems, such as RSA,

41

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

DSA and DH. Specially, for the case of constrained environments, where we need security

without impacting severely the performance and resources. A small selection of these

standards is presented below:

• ZigBee and the complementary IEEE 802.15.4 standard: these networking stan-

dards specify the ECDSA and ECDH asymmetric algorithms as the algorithms of

choice for authentication and key management respectively in constrained environ-

ments [18]. Notice that, these standards focus on wireless networking protocols

that are built to operate over ad-hoc networks, where other wireless technologies

such as Bluetooth are less than ideal.

• Security Module PP Standards: the German Federal Office for Information Security

(BSI in German language) agency has published a set of standards for energy meter-

ing gateway security which specifies different cryptographic functionalities based

on ECC as the generation and verification of digital signatures and key agreement

to be employed in Smart Metering Systems [34].

• Intelligent Transportation Systems (ITS) Standards: this set of standards documents

the choice of the automotive standards industry for elliptic curves as the algorithm

of choice for car-to-car and car-to-infrastructure communication security due to the

low power consumption and space required, and because it offers the most security

per bit of any public-key scheme [47].

• Suite B Cryptography Standards: this set of standard algorithms published by the

US government (more precisely, NSA) is approved for use in non-defense appli-

cations [63]. We must notice that currently, this standard includes only ECC for

digital signatures and key management, and RSA has been completely removed due

to various reasons described in [62].

3.4 BluetoothKSP Initialization and Setup

In this section, we group all the configuration or installation processes required to fully

use the BluetoothKSP to perform cryptographic operations executed in a smartphone

environment demanded by Windows-based applications.

Firstly, we should define or configure which Bluetooth security mechanisms (mainly,

the Pairing method), and also the usage of security enforcements, the BluetoothKSP

will provide to the Windows-based applications that use it. Secondly, we must do the

BluetoothKSP registration in the Windows OS, so the OS recognizes it as a valid Win-

dows cryptographic provider as the other installed cryptographic providers. Besides this

registration operation, the representative DLL of the BluetoothKSP must be copied to

the System32 folder of the Windows OS, where common Windows DLLs are also main-

tained [53]. Consequently, Windows starts to recognize our DLL as another Windows

42

3.5. BLUETOOTH SECURITY CONSIDERATIONS AND ENFORCEMENT

DLL. Also, it is important to note that Windows only trust DLLs that were previously

code signed. To ease this whole BluetoothKSP configuration process we could produce

a registration executable program that registers the BluetoothKSP as a KSP and copies

the respective DLL file into the System32 folder. Finally, the Initialization Protocol its

performed through the graphical WindowsCertificateManager application to accomplish

the certificates registration into the operating system with our BluetoothKSP. After these

few configurations, we are able to fully use the BluetoothKSP to sign documents remotely

using a smartphone.

3.5 Bluetooth Security Considerations and Enforcement

Bluetooth Security is a very complex domain and is very dependent on the Bluetooth

version of mobile devices, given that each version implements different security mecha-

nisms and the backward-compatibility feature always tries to provide compatibility for

low Bluetooth versions. Although, it is possible to increase the baseline security pro-

vided to communication channels between devices with low Bluetooth versions via an

Extra-layer of Security at an higher level, such as a secure Transport Layer Security (TLS)

channel. Furthermore, it is possible to discard a security enforcement as the TLS and

only use the most recent and complete version of Bluetooth (i.e, v4.2 or v5.0) that can

provide a low-energy and secure protocol for Bluetooth communications. Unfortunately,

we need mobile devices with these versions or a strong security baseline can’t be pro-

vided. These approaches to Bluetooth Security and secure communication channels are

described throughout this section.

Bluetooth Classic. In a first approach, we implemented the Bluetooth Classic proto-

col between both devices - one acting as server and the other as client - with the security

mechanisms that compose the Bluetooth baseline security. Figure 3.5 represents the es-

tablishment of the Bluetooth communication channel. Before the formation of the link,

the client device scans the local area for Bluetooth-enabled devices that are currently ac-

cepting connection requests. This procedure is called Device or Service Discovery. These

devices running Bluetooth services (through the bluetooth_accept blocking method) are

also called discoverable devices, such as our server device. Using the information ex-

changed in this process, the client device can initiate a connection with the discovered

device (invoking the bluetooth_connect method) to establish Radio Frequency Communi-

cation (RFCOMM) channels to exchange data with a selected device. Then, the Pairing

process initiates if this is the first time a connection is made and a pairing request is

automatically presented to the user according with the Pairing method used (e.g, PIN or

SSP). In this process, both devices exchange security informations (such as the security

features that each one supports), both devices establish a shared link-key to be used for

authentication and to create an encrypted connection with each other. When the devices

are paired, the informations (mainly, the security keys) are saved and can be re-used

43

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

bluetooth_connect

Ti
m
e

CLIENT SERVER

return

client_read

client_write

server_write

bluetooth_accept

Client executes Device Discovery

Bluetooth Pairing

server_read

Execution of the
Cryptographic

Operation

Figure 3.5: Bluetooth Stack Operations Flowchart.

through the Android Bluetoothy APIs, and is no longer needed to execute another Pairing

unless the devices became unpaired. This process is automatically performed when a

connection is initiated or received with the Android Bluetooth APIs. After the pairing

and connection processes are completed, the two devices start exchanging data trough

the Bluetooth socket streams: the server device invokes a blocking method (server_read)

that reads data from the input stream; the client device invokes client_write to write to

the output stream the data to send to server-side and waits for the response invoking

client_read; when the server device reads the data from the stream, executes the crypto-

graphic operation demanded and writes the response to the output stream, so the client

can receive the result from the operation. Once the session is completed, the device that

initiated the pairing request releases the channel created with the other device, but they

remain bounded to each other so the can reconnect automatically during future sessions.

In our system, there are two Bluetooth communications channels that are established:

one during the certificates configuration and other during the remote signature. In situa-

tions where both devices have high Bluetooth versions, these channels are created using

the most recent security mechanisms defined in versions 4.1, 4.2 or 5.0, such as the Secure

Connections (with Numeric Comparison) pairing mechanism required by the Security

Mode 4, which is employed by default by the Bluetooth APIs or libraries used. This

way, we can mitigate the MITM and eavesdropping attacks. Therefore, confidentiality,

authentication and integrity are provided for mobile devices that make use of Security

Mode 4 (i.e, mobile devices with Bluetooth v4.1 beyond). Although, only public data is

transmitted via Bluetooth while critical data (such as private keys) never leave the device

(i.e, the SE), it is important to use mechanisms that grant high security to achieve a more

reliable and secure solution, mainly, in the case of devices with low Bluetooth versions.

44

3.5. BLUETOOTH SECURITY CONSIDERATIONS AND ENFORCEMENT

The Pairing mechanism can be parametrizable (according with the Security Mode em-

ployed by the device) in order to grant flexibility to the solution in terms of which security

features can be used. In the Classic Bluetooth case, the supported Pairing mechanisms are

PIN Pairing (i.e, Legacy Pairing), SSP and Secure Connections (using a given association

model). Although, these mechanisms can be parametrizable for recent mobile devices,

for older devices is impossible since those devices don’t support Secure Connections or

even SSP. Also, some of these mechanisms are more secure than others as we presented

in the previous chapter. PIN Pairing is used by v2.0 or older Bluetooth devices and is

classified as insecure, SSP is used by v3.0 to v4.0 devices and despite its enforced security

algorithms has some well-known faults, and Secure Connections is used by v4.1 or recent

devices and its classified as the most secure Pairing mechanism. This problem can be

aggravated given the high use scale of old Bluetooth versions (below v4.0), which is very

high for the Android devices [20]. Yet, it is estimated that until 2023, 90% of all Blue-

tooth devices will include BLE and also the presence of Bluetooth BR/EDR, enhancing

the rapidly replacement of single-mode BR/EDR for Dual-mode radios.

Bluetooth Security Enforcement. In order to grant support for various Bluetooth ver-

sions ensuring a minimal security base for all Bluetooth mobile devices was implemented

an Extra-layer of security in our solution. This layer has the goals of avoiding to work

only with the Bluetooth security baseline and increasing the protection granted to the

connections between mobile devices with lower Bluetooth versions. Also, it is possible to

enable or activate this Extra-layer of security given the Bluetooth version of the mobile

device. This means that, for old devices we activate the Extra-layer, but for recent mobile

devices with versions equal or higher to v4.0, it has no need given that it would create an

useless overhead over the communication channel.

The security protocol or mechanism that composes the security enforcement is the

TLS protocol, which enables us to create a neutral layer between the application layer

and the network layer (in this case, the Bluetooth channel) as represented in Figure 3.6.

TLS or SSL consists in the establishment of a secure point-to-point channel where data

exchanged between two endpoints is always encrypted. Generally, this protocol provides

three security properties: authenticity, confidentiality and integrity.

The combination of TLS protocol and Bluetooth is analogous to the use of HTTPS, but

Application

Network

SSL/TLSSecurity Extra-layer

BluetoothKSP,
WindowsCertificateManager,

CertificateManager

Bluetooth

Figure 3.6: TLS/Bluetooth Stack.

45

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

with the difference that in this case we create a secure communication channel double-

encrypted that enforces the Bluetooth Security Baseline.

Figure 3.7 represents the establishment of the TLS channel over Bluetooth. The cre-

ation of this secure link is similar to the establishment of the Bluetooth connections,

because a connection request is also executed from the client-side, and the server-side

also is blocking and waiting for these TLS connection requests. Although, in this case, the

difference is that instead of performing the Pairing process, the TLS Handshake protocol

is executed between both devices. After the creation of this secure and encrypted chan-

nel over the already encrypted Bluetooth communication channel, we can perform the

execution of a particular cryptographic operation (such as digital signature or certificate

registration). The data exchange procedure is also equal to the normal Bluetooth protocol,

but using the client_write, client_read, server_write and server_read from the TLS Protocol.

bluetooth_connect

Ti
m
e

CLIENT SERVER

return

client_tls_read

client_tls_write

server_write

bluetooth_accept

Execution of the
Cryptographic

Operation

Client executes Device Discovery

Bluetooth Pairing

server_tls_read

TLS Handshake Protocol

tls_connect

return

Figure 3.7: TLS/Bluetooth Stack Operations Flowchart.

Bluetooth Low Energy. In a final approach we handled the second specification of

Bluetooth technology: the Bluetooth Low Energy (BLE), which is designed to provide

low power consumption for wireless devices that have stricter power resources such as

heart rate monitors, proximity sensors and fitness devices. Regarding the specification

protocol, BLE technology uses different protocols compared with Bluetooth Classic that

uses RFCOMM protocol, which are focused in the functionality and features of the IoT

devices. The main protocol consists in sending and retrieving small portions of data (also

46

3.6. SUMMARY REMARKS

known as attributes) using the minimal bytes possible, being called as Attribute Protocol

(ATT) [19, 38]. On top of this protocol, is built a generic specification for exchanging

these attributes over a BLE secure link named Generic Attribute Profile (GATT). This

notion of profile consists in the specification of how a device works with a specific appli-

cation. Bluetooth Special Interest Group (SIG) provides various conventional profiles for

Low Energy (LE) devices, such as heart monitors and proximity sensors, and these can

implement more than one profile. This combined protocol and specification is commonly

referred as GATT/ATT.

The attribute values transmitted through the ATT are formatted as characteristics and

services that are available on a LE device working as server (or GATT server), and are

uniquely identified by a Universally Unique Identifier (UUID). A characteristic is similar

to a type or class and contains a unique value and a descriptor that specifies the value

description in a human-readable way. A service is basically a collection of characteristics.

LE devices acting as client (or GATT client) can search for services hosted in other LE

devices and read or write the characteristics values or descriptors of that service. We can

think of this protocol as a key-value mapping that is readable and/or writeable by a LE

client devices. For example, this protocol is useful for situations where IoT devices - such

as smart bands, heartbeat sensors or beacons - are constantly measuring metrics such as

heart rate, temperature or proximity, or are simply hosting important information that a

further LE client device can query to know the values of those metrics.

Before establishing a connection, GATT client or server devices adopt one of two

roles: Peripheral or Central. A device in the first role is responsible for advertising

its service to other LE devices and a device in the second role scans, searching for LE

advertisements. For example, if a given device wants to communicate data to other

LE devices, it may start broadcasting advertisements and a second device that wants to

received them, starts looking for that service advertisements in order to further write or

read the service information (i.e, the characteristics values). Notice that, is required to

have both roles for establishing a BLE connection, because two devices in Peripheral role

or two devices that could only support Central role can’t talk to each other.

In relation to the two Bluetooth communication links existing in our model, only

one was created using the BLE technology, which is the channel established during the

certificates configuration. Because this link is based on Bluetooth versions that include

LE (i.e, versions 4.1, 4.2 and 5.0), it can also be created using the most secure mechanisms

available, such as the Secure Connections (with Numeric Comparison) Pairing method,

providing the confidentiality, integrity and authentication of Security Mode 4.

3.6 Summary Remarks

In the beginning of this chapter we presented an overview of the system model and a

vulnerability analysis considering some of the existing threats in both computer and

47

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

mobile side. We defined a thread model where the packets transmitted can be tampered,

the Secure Element (SE) can be replaced by a malicious one, root exploits can clean all

the SE cryptographic content and a corrupted SE can produce incorrect data to be signed

by the user. Given the adversary model, we described in more detail our architectural

components and how they relate with each other by exchanging information, for example,

executing protocols such as the certificates configuration (Initialization Protocol) and the

remote signatures execution (Signature Protocol).

Next, we defined the principal component of the KSPs architecture (i.e, the CNG

Router), which is the responsible for the management of different KSPs registered in the

Windows OS and the access to all cryptographic content of the respective KSP demanded

by desktop applications. Our BluetoothKSP is a third-party KSP, represented as a Dy-

namic Link Library (DLL), that implements a common interface from which the CNG

Router can invoke function implementations.

The primary cryptographic operation provided by our mobile crypto provider is sig-

nature generation using different parametrizable digital signature schemes with different

performance gains, although other operations, as the KSP pre-operations, may be neces-

sary to complete the signature operation when using different desktop applications. We

also presented, the certificate import operation in the Windows (only the public key) and

Android OS (both public and private keys).

Initialization and setup of the BluetoothKSP includes the registration of the provider

in the Windows OS to be available to the CNG Router and the placement of the KSP DLL

in the Windows file system.

Finally, we presented the Bluetooth security mechanisms employed and parametriz-

able by our solution, such as the Pairing method, and the enforcement techniques, such

as TLS, used to increase the communication channel security and protection. As an alter-

native to the Bluetooth Classic specification, we employed the secure and energy-efficient

Bluetooth Low Energy (BLE) for devices with more recent Bluetooth versions, avoiding

the need of adopting costly security enforcements.

Given the risks and threats that exist in our mobile-computer environment and how

our solution can be used to mitigate them, in the next chapter, we discuss the imple-

mentation of the system model and architecture, addressing a prototype to be used for

experimental evaluation.

48

C
h
a
p
t
e
r

4
Implementation

In this chapter, we present the implementation details and decisions related to the proto-

typing effort of the system model proposed in Chapter 3. This way, we start by presenting

an overview of the developed prototype (in Section 4.1), followed by a description of the

software building blocks and technologies used by the prototype (in Section 4.2). Then,

it is shown the development technologies and environment used to build this prototype

(in Section 4.3), and the prototype implementation effort (in Section 4.4). The chapter

concludes with a discussion of the issues that arose during prototype implementation

and related observations (in Section 4.5).

4.1 Prototype Overview

Following the design of the BluetoothKSP system model proposed, we implemented a

prototype in which a mobile phone acts as a crypto provider, enabled with two Blue-

tooth communication modes and with parametrizations for digital signature schemes,

Bluetooth Pairing methods and Security Enforcement, and being possible to be used

transparently with real Windows desktop applications.

As said before, we intended to develop a prototype with strict existing software build-

ing blocks. Regarding the computer operating system, we developed the prototype to run

on a Windows machine, since it is required the usage of the Cryptography API: Next Gen-

eration (CNG) to implement the BluetoothKSP. In relation to the smartphone operating

system, we adopted the Android OS due to its high usage rate in today’s mobile market

and also because Android has a flexible way to communicate with the smartphone’s Se-

cure Element (SE) through the Android Keystore System. For the Bluetooth technology,

the prototype is based on the Bluetooth versions 4.1 and 5.0, because are, respectively,

the versions of the computer and smartphone adopted for development and testing.

49

CHAPTER 4. IMPLEMENTATION

In practice, this prototype was developed essentially as three software programs,

representing the main building blocks or components of the system proposed:

• CertificateManager: a mobile application that acts as a certificate manager and rep-

resents the remote BluetoothKSP, which waits for certificate registration and signa-

tures requests incoming from Windows desktop applications;

• WindowsCertificateManager: a UI-based desktop application in the Windows-side to

import certificates requested to the mobile application;

• BluetoothKSP: the proxy Dynamic Link Library (DLL) responsible for redirecting

the signature requests from Windows desktop applications to the mobile applica-

tion.

In addition to these components, our prototype also includes the implementation of

a benchmark client that executes certificate registration and/or digital signatures opera-

tions. And can be parametrizable in terms of public-key certificates, signature schemes,

Bluetooth-related security mechanisms, tls-based security enforcement, Bluetooth Low

Energy (BLE) and test documents with different sizes for system validation and experi-

mental observations. These benchmark clients will be later detailed.

4.2 Building Blocks and Technology

As a starting point for the development of the prototype, was required to choose which

technologies were to be used to develop the main building blocks. This included choosing

the technology on which we would implementing the WindowsCertificateManager and the

CertificateManager application, as the BluetoothKSP library must be strictly a Windows

DLL. The following Table 4.1 describes the technologies used for each on of these building

blocks. In the next subsections, we describe how the building blocks in each computing

side were implemented using these technologies.

Table 4.1: Technologies of the Building Blocks.

Building Blocks Technologies

Server-side CertificateManager Android app (in Java)

Client-side WindowsCertificateManager .NET app (in C#)

BluetoothKSP DLL library (in C++)

4.2.1 Android-Side or Server-Side

On the Server-Side, the CertificateManager application, or remote BluetoothKSP, was

implemented using the Java programming language and the Android package manager

50

4.2. BUILDING BLOCKS AND TECHNOLOGY

Gradle, targeting smartphones with Android 7.0 (Nougat) or later operating systems. The

adopted Java version was 8 and the Gradle version was 4.5.1.

All support libraries used in this application to develop the functionalities belong

to the Android Framework, including the Bluetooth APIs for creating and managing

the Bluetooth Service, and the Keystore System API for storing, accessing and manage

cryptographic data and execute cryptographic functions. The adopted crypto providers to

satisfy these cryptographic demands were the AndroidKeystore and the Spongy/Bouncy

Castle provider, being the second added to the Android project as a Gradle dependency.

As an exception-case, this second provider was used to enable the possibility of using

digital signatures schemes that are not supported or were impossible to execute in the

desired way by the AndroidKeystore provider, such as DSA and RSA-PSS. Also, it was

used to implement the Security Enforcement, i.e, the server-side of the TLS/Bluetooth

secure channel.

As a sub-component of this application, there is Bluetooth Service supporting Classic

(using RFCOMM protocol) and LE specifications (using GATT/ATT protocol), which is

simply a thread running in the background of the application waiting or listening for

Bluetooth connection requests from the WindowsCertificateManager application or the

BluetoothKSP library. This service is uniquely identified with a UUID and only applica-

tions with its knowledge will send connection requests successfully. In the prototype,

this service is always initiated when the application starts, but the main goal would be to

put this Bluetooth service running in the background of the Android OS along with other

system services. As a result, end users wouldn’t always need to have the application run-

ning to complete signature processes and through notifications they would know when a

signature operation is requested. In the case of BLE, there is a slightly different, which is

the Bluetooth Service advertises the service that it is providing and other client devices

must scan for these advertisements to request some operation to the service.

The server-side implementation of the TLS/Bluetooth secure channel was done through

the Bluetooth sockets already being used in the Bluetooth Service, or more precisely,

through the input and output streams from these sockets. After the server device accept

a connection request, the socket streams are initialized and passed to our TLS service,

where is executed an accept call on the input stream to wait for TLS handshake requests

from clients that invoked a TLS connection request on the output stream from the client-

side. After the handshake is completed, the server device start listening for data in the

encrypted input stream to read.

This mobile application is able to respond to certificate and digital signature requests

via Bluetooth as it acts as a cryptographic provider, import certificates and respective

privates keys in local .p12 files into the Android OS and display of the current certificates

installed. Beside these main functionalities, it is possible to configure the application to

work with BLE-based communication channels or TLS/Bluetooth secure links. For imple-

mentation and testing purposes, this configuration is done through a config.properties

file, but in a real deployed application, it would be configured in the settings menu of the

51

CHAPTER 4. IMPLEMENTATION

Android application.

4.2.2 Windows-Side or Client-Side

On the Client-Side, the WindowsCertificateManager application was implemented using

the .NET Framework and the C# programming language with the goal of providing a

graphical and intuitive application to enable users to manage their certificates (i.e, visu-

alizing them or registering new ones). The versions adopted were, respectively, 4.7.2 and

7.0 for .NET Framework and C#.

In relation to the UI and aesthetics part of the implementation, we adopted the Win-

dows Presentation Foundation (WPF)1 Framework, which is part of .NET . This Windows

UI framework enables the creation of desktop client applications with a broad set of de-

velopment features such as controls, graphics, layout, data binding and security. Other

remark is that WPF uses the Application Markup Language (XAML) to create the layouts

for the application.

This WPF desktop client application includes as support libraries the 32Feet for the

Bluetooth Classic client-side implementation and the Bouncy Castle for the client-side

implementation of the TLS/Bluetooth secure channel. As we used .NET Framework, these

dependencies were added to the WPF application project as NuGet packages. Notice that,

we adopted a third-party Bluetooth library to enable the use of Windows 7 or 8 as the

operating system of the client computer due to the fact that the most recent Bluetooth

APIs in .NET and Windows are only supported in Windows 10 OS, because Microsoft

is fully moving to Universal Windows Platform (UWP) applications and the widespread

adoption of Windows 10, which can be impractical for many developers in many ways.

However, the 32Feet library does not support yet the BLE technology or, more precisely,

the GATT/ATT protocol specification. Therefore, we had to adopt one of these new

Bluetooth APIs in order to implement the BLE support in our prototype. As consequence,

the LE feature will only work on our solution if a Windows 10 computer is used, besides

the implicit restriction that the devices involved in the Bluetooth communication must

support LE technology.

The client-side implementation of the TLS/Bluetooth secure channel was also done

through the Bluetooth sockets streams, where the client device first sends a connection

request to a server device with the target service, obtaining a socket stream if the con-

nection is successfully established, and then sends a TLS connection request via the TLS

Service, initiating the TLS handshake with the server device. After the TLS handshake is

completed, the client can write the data to the new encrypted stream.

The Bluetooth Classic client-side implementation (using RFCOMM protocol) consists,

firstly, on discovering Bluetooth devices and, secondly, connecting to the devices that pro-

vide the target service represented by a given UUID, for then exchange information. For

example, in this case the WPF application sends a connection request for the certificate

1https://docs.microsoft.com/en-us/dotnet/framework/wpf/

52

4.2. BUILDING BLOCKS AND TECHNOLOGY

import operation and the server retrieves the set of certificates to be selected and im-

ported into the Windows OS. Regarding the implementation of BLE (using GATTT/ATT

protocol), the WindowsCertificateManager application scans for LE advertisements of a

specific service, and when it finds the device advertising that service, it sends a connection

request and then a request for read or write a given characteristic/attribute.

Due to some implementations issues regarding the certificate import operation in

C# code, we had to implement it using C++. This is possible because .NET Framework

cryptographic functions usually redirect the function call to CNG functions that are im-

plemented in C++. This means that, in most of the cases, a given sequence of operations in

C# code can be reproduced in C++ code. Our certificate import operation implemented in

C++ was encapsulated in an intermediary DLL to be accessed by C# code. The sequence

of instructions performed by this operation was already explained before, but in general

consists of configuring the cryptographic provider of the certificate private key as our

BluetoothKSP, creating only a link without storing any key material, and registering the

certificate in the Windows Certificate Store.

In the other hand, the BluetoothKSP library was implemented using the C++ program-

ming language as any other DLL library in the Windows OS, which also needs to be

registered as a valid Windows cryptographic provider. The version employed was version

17 and the compiler used was Clang. This library follows and implements the CNG call-

back functions for KSPs as defined previously, but only using some of them to complete

digital signature operations via Bluetooth and using a SE as the real crypto provider.

Besides CNG and CAPI library support at C++ level, other important C++ libraries

were used to accomplish the required functionalities, such as the Windows Sockets in-

terface (or WinsockAPI v2.2) library to conduct the implementation of the Bluetooth

Classic client-side (using RFCOMM protocol2) and the Botan library3 which offered a way

to enable the implementation of a TLS/Bluetooth secure channel. Related with the BLE

support at this lower-level technology, was adopted the same library as in the C# code

(i.e, WinRT APIs, but implemented in C++) to establish a BLE link between the computer

and smartphone. In this case, the use of this library restricts the use of BLE technology

to perform digital signatures only with Windows 10 computers.

Additionally to the BluetoothKSP library implementation, we developed a small Blue-
toothKSP configuration client (using C++) to perform the registration of the BluetoothKSP

in the Windows OS and to validate the implementation of the BluetoothKSP functions.

This client program was also based from a configuration client provided by the Windows

Cryptographic Provider Development Kit.

2https://docs.microsoft.com/en-us/windows/desktop/bluetooth/windows-sockets-support-for-
bluetooth

3https://botan.randombit.net/

53

CHAPTER 4. IMPLEMENTATION

4.3 Other Development Tools

Our development environment included computing devices such as Windows 10 desktop

computers with support for Bluetooth connections (though a Bluetooth interface) and

Android smartphones with embedded-SEs. We consider that the intended solution must

be designed and developed for the support of other Bluetooth versions (classic or BLE-

based), to cover the majority of current devices in the market. In [20] it was announced

that 100% of all smartphones, tablets and laptops shipped in 2018 (estimated in 2.1

billion devices) include Bluetooth natively, predominantly with Bluetooth v4.0 and v5.0.

We evaluated in our development how the current Android platforms include support for

the Bluetooth network stacks, and how we can transparently support different Bluetooth

versions. Therefore, in our approach we guided our developments possibly looking for

the more representative platforms in the Portuguese Android market today: Android

OS 6 (Marshmallow), 7 (Nougat) and 8 (Oreo) versions, trying to obtain data from the

Portuguese operators or from other possible sources.

4.4 Implementation Effort

In terms of implementation effort, the whole source code of the three different software

projects developed has a total of 26.444 lines of code (loc) as shown in Table 4.2. The

Android and .NET applications, which were developed from zero, resulted in around

12,630 and 3,422 lines of code, respectively. The BluetoothKSP was implemented based

on a Sample KSP available through the Cryptographic Provider Development Kit from

Microsoft. The addition of new features and changes to the original functions represented

a total of 1,136 lines of code, since the original codebase from the Sample KSP was totalled

with 9,256 lines of code.

Table 4.2: Prototype Implementation Effort in terms of Lines of Code (LoC).

Building Block LoC

CertificateManager 12,630

WindowsCertificateManager 3,422

BluetoothKSP 10,392

Total 26.444

In developing this solution, the difficulty felt was somewhat high given the numerous

technologies, programming languages and languages paradigms used and the purpose

of bringing these different software and hardware components together into a flexible

computer-mobile cryptographic solution. Furthermore, some of these technologies have

not allowed us to fully meet some of the initial objectives due to the lack of technology

54

4.5. IMPLEMENTATION ISSUES AND FINAL REMARKS

support or the inability of these technologies to provide the means to implement the

required features. In the next section, we describe some of these situations in more detail.

4.5 Implementation Issues and Final Remarks

There are some final issues related with the building blocks and their components that

must be emphasized as relevant implementation concerns, when addressing the devel-

oped prototype.

The first issue was the registration of a new certificate on the Windows OS with

our BluetoothKSP as the cryptographic provider of the certificate private key, because

there are few examples of how to do this with the Cryptography API: Next Generation

(CNG) using C# on the Web. Hence, to solve this problem, we had to implement this

operation in C++, where more samples and better documentation are available to assist

the development of the operation, and in C# code call it through an intermediate library

that has the actual implementation of the certificate registration function.

Other problem was knowing which cryptographic algorithms the desktop application

with signature demands were requiring when calling the BluetoothKSP signature func-

tion. Specially, which hash and public-key algorithm was being used. The point of this

is that the remote BluetoothKSP needs to know which digital signature scheme must be

used in the signature generation process on the Secure Element (SE) context. This issue

was easily solved by appending the respective algorithm OIDs in the Bluetooth packet

sent during the signature process as seen before.

An recurrent obstacle in the prototype development was without doubts the interop-

erability between the computer-side (C#, C++ and .NET) and the mobile-side (Android

and Java). For example, the DSA and ECDSA based signature schemes have different

signature format on each platform. All Microsoft technology employs the IEEE P1363

signature standard format [46] while Java employs the DER format such as OpenSSL.

This constraint has been overcome by converting from DER to P1363 format after the

signature generation in the Android side. Related with this issue was also the format

used in the Bluetooth-based communications, i.e, which format is necessary to encapsu-

late multiple informations that need to be sent to the other endpoint. This format needed

to be generic to the three building blocks for ease of reading and writing data that its

differently formatted in each platform, so, JSON-formatted messages or packets were

employed to prevent interoperability issues. For example, in Java, the bytes are signed

while in C# and C++ the bytes are unsigned.

Regarding the Bluetooth Low Energy (BLE) implementation, we faced some issues

when sending write requests for a given characteristic to a target service. In the first

place, the write request function that enables a responsive execution, i.e, a waiting for

a response from the server-side, was not working correctly given successive errors. In

the second place, the BLE packets exchanged are so small that it is almost impossible

55

CHAPTER 4. IMPLEMENTATION

to execute digital signatures, unless the signature result size does not surpasses the BLE

maximum packet length.

A relevant future issue from the Windows support is the common generalization that

Microsoft is doing of using UWP applications and Windows 10 APIs for the future appli-

cations in order to remove completely the use of older Windows operating systems.

Overall, this solution implementation is complex, mainly in terms of interoperability,

and is very dependent from the cryptographic support from the employed platforms,

in the sense that is not easy and direct to employ a new cryptographic algorithm in the

system since we have to implement the support for it in the different components and

some of them may not support it at all through their respective libraries or APIs. Also,

we have to be careful with the data exchange between these different platforms and how

it is processed.

56

C
h
a
p
t
e
r

5
Experimental Evaluation

In this chapter, it is presented the experimental evaluation of the prototype implemen-

tation described in Chapter 4. Several experiments were made and conducted using a

well-defined testing environment and a set of parametrizations which included different

hash functions, public-key algorithms, key sizes and security enforcements. First, we

describe the components of the test bench environment (in Section 5.1) and present a

test bench to measure the cost of the configuration phase of our solution (in Section 5.2).

Then, we present a use-case of our solution with conventional Windows applications (in

Section 5.3) and proceed to present the results of the experimental benchmarks regarding

digital signatures (in Section 5.4). Next, we present the performance evaluation of Blue-

tooth, more precisely, the Low Energy (LE) impact on the execution of digital signatures

and also the benchmark observations on the overhead imposed by the Transport Layer

Security (TLS) enforcement (in Section 5.5). Additionally, we present other validation

metrics, such as packaging, memory usage and energy consumption (in Sections 5.6). For

last, a brief summary on the results obtained is presented (in Section 5.7).

5.1 Test bench Environment

In this section we present the generic test bench environment, including the system

topology, used resources, test assumptions and test conditions, and also the technical

specifications of the computational systems used.

5.1.1 Generic Test bench

The testing environment for evaluating our prototype, was mounted using the same com-

puting devices presented in the previous Chapters, more precisely, a Windows computer

and an Android smartphone. We set up the following topology between the two: the

57

CHAPTER 5. EXPERIMENTAL EVALUATION

computer was hosting and executing the Windows CertificateManager application and the

Benchmark clients, besides the installed and pre-configured BluetoothKSP; the mobile

phone was hosting and running the CertificateManager application, working as a tiny

server. These two devices were positioned less than ten centimetres apart.

In terms of resources for testing, we used a set of sample documents (i.e, .pdf and .docx

files) with different sizes (more precisely, ranging from 1 MB to 100 MB) as signature

test objects and a set of certificates with keys of one of the three different public-key

algorithms employed(i.e, RSA, Elliptic Curve Cryptography (ECC) and DSA) to be used

in the signing operation. The range of documents size was chosen based on the samples

obtained from an analysis of documents used by 43 users in a typical office environment

- such as in Multicert1. Regarding the certificates, we used the KeyStore Explorer 2 tool

to generate RSA, ECC and DSA self-signed certificates, distributing them in the form

of Public Key Cryptography Standards (PKCS)#12 files to user’s smartphones, so they

can import the certificates into the Android OS. It is important to notice that, these

certificates are self-signed and, consequently, are not accepted as trusted by common

applications and services, they are just for development and testing purposes. In normal

cases, the certificates are distributed to users via Certification Authorities (CAs), which

issue trusted certificates signed by the CA itself and other root CAs that authenticate the

credibility of the issuing CA. In our testing environment, we assume that certificates have

already been obtained by conventional ways.

To obtain better observations and results during the experiments, we executed all

benchmarks in a clean environment where only our applications were running and we

disabled some features which imply user interaction in order to remove the entropy when

measuring the metrics. For example, the Bluetooth Pairing mechanism was already ex-

ecuted and the devices were paired when the benchmarks were running, the Bluetooth

device discovery was configured to search for a specific device and the notifications from

CertificateManager to user to accept certificate and signature requests were turned-off. In

the case of signature requests, this would imply inserting the password of the private key

stored inside the Secure Element (SE) through a PIN or Fingerprint based authentication.

Regarding the Bluetooth security features such as the pairing method, algorithms for

key generation and key establishment and others, they were also negotiated before any

pairing or data communication occurs, but after the Bluetooth devices were selected. In

this case, having one device with Bluetooth v4.0 and other with v5.0 implies the usage

of security features from v4.0 due to the backward-compatibility feature of Bluetooth

devices, as explained before. In this case, the finite security baseline agreed between the

two devices included the usage of Security Mode 4, which uses SSP as pairing method with

P-192 ECC algorithm and HMAC-SHA-256 hash function, and employs the association

1https://www.multicert.com/pt/
2https://keystore-explorer.org/

58

5.2. SETUP AND BENCHMARKING

model named Numeric Comparison. As said before, with this Bluetooth security baseline

we achieve an authenticated pairing and key establishment processes to setup a secure

channel under mutual authentication.

5.1.2 Software Environments and Devices

The following Table 5.1 summarizes the technical specifications of each computational

system.

Table 5.1: Technical Specifications of the Test bench Environment.

Windows Computer Android Smartphone

OS Windows 10 Professional Android 7.0 Nougat

CPU Intel Core i5-3230M 2.60GHz Qualcomm MSM8998 Snapdragon 835

RAM 8GB 4GB

Model Toshiba Pórtege R930-17U Galaxy S8

Bluetooth 4.0 (with LE) 5.0 (with LE)

5.2 Setup and Benchmarking

In this section, it is presented the configuration phase (or setup) benchmark and the

measured performance results - in terms of latency - of our solution using a variable

number of certificates and Bluetooth Classic without any security enforcements.

This benchmark consists in the evaluation of the impact of configuring the certificates

for registration (or import) in the Windows OS before starting the execution of digital

signatures. The main goal of this benchmark was to obtain the latency of the Bluetooth

channel and the time taken by the Windows OS to execute the cryptographic operations

associated with the certificate registration in this phase. Plus, this test allowed us to

measure how much time is taken to validate certification chains, considering also the

possibility of existing intermediary certificates already revoked.

To perform this benchmark, we implemented a small Setup Benchmark client which

executes a sequence of certificate registration requests to the CertificateManager (i.e, the

Initialization Protocol) over the same number of certificates to register existing in the

smartphone environment. This sequence of requests or benchmark runs was done with

the intent of obtaining the average and standard deviation of latency. It is important that

the chosen number of benchmark runs is high so that statistically unique points or effects

can be discarded and the uncertainty principle can be reduced, for example, 20 runs as

in our case. Regarding the number of certificates, was used a set of 3, 5 and 10 certificates.

59

CHAPTER 5. EXPERIMENTAL EVALUATION

The results from this experiment are shown in Figure 5.1. This graph (or Boxplot)

illustrates the distribution of latency values obtained from benchmark runs based on a

five number summary (minimum, first quartile(Q1), median, third quartile(Q3) and max-

imum). Additionally, we can estimate the standard deviation by looking at the skewness

of the central rectangle. As we can observe, we achieved an overall low latency, more

precisely, less than half a second on average to complete a certificate registration with

a variable number of certificates and only obtaining few outlier samples (i.e, individual

high latency peaks). Only with 10 certificates, the latency is higher than 0.5 seconds. The

existing outliers are due to the fact that the first connection that is established between

the devices for each different number of certificates takes longer than the subsequent ones.

This is because, an high number of BluetoothKSP functions are invoked as pre-operations

before the certificate registration. As Figure 5.1 suggests, by varying the number of certifi-

cates, the latency in general tends to increase as the size of exchanged Bluetooth packets

tends to be higher, as we expected. However, the variation isn’t noticeable.

Figure 5.1: Setup for Benchmarking.

For better understanding of what composes the total latency, we divided it into two

relevant temporal intervals (i.e, time chunks) - the Bluetooth Round-Trip-Time (RTT) and

the certificate import duration - and measured how high was the percentage of each time

chunk in the total latency. Note that, other meaningless times while executed auxiliary

functions and computations are discard and not take into account for the total latency,

only the measuring of these two relevant periods of times was done. Table 5.2 presents the

average values of the components in the observed latency. Bluetooth RTT keeps rounding

the same values, not varying to much even when increasing the number of certificates to

exchange. Certificate import time also increases, but more significantly as it can double

the time consumed. As such, we can conclude (on average) that approximately 70% of

the setup time corresponds to time consumed while exchanging small data packets via

60

5.2. SETUP AND BENCHMARKING

Bluetooth, producing the so called Bluetooth overhead. However, when increasing the

number of certificates, this overhead can be reduced to proximately 50%.

Table 5.2: Latency of Certificate Imports

Total latency (s)

Certs Bluetooth RTT Cert Import

3 0.269 0.065

5 0.325 0.118

10 0.358 0.253

The following Figure 5.2 presents the latency results from the Setup Benchmark us-

ing certificates containing certificate chains. We can observe that the latency increases

because the import function must import the certificate chain of each certificate. In

this case we used certificates with a chain containing a total of 3 certificates (including

the root certificate itself), as consequence, a certificate import process, in reality, is a

3-certificate import process. For example, when importing 5 certificates retrieved from

the smartphone, in fact, we are performing an import operation of 15 certificates.

Figure 5.2: Setup for Benchmarking of Certificate Chains.

In a perspective of human time perception, the measured Bluetooth overhead is mean-

ingless to an user, although in general it can perceive time differences until 20-30 mil-

liseconds depending on some factors [32]. As such, the average 0.6 seconds obtained as

the setup latency measured is a small time cost that users are willing to pay (or wait),

which can be almost considered as instantaneous and provides a feeling of pleasure to the

users. However, in real use cases where the users only need to install certificates one time

61

CHAPTER 5. EXPERIMENTAL EVALUATION

per different computers to further execute signature operations, the real observed latency

will be the outliers’ values (i.e, approximately 1 to 2.5 seconds) due to the pre-operations’

slowness. Although, these values continue to be irrelevant for common users. Thus, we

can conclude that even using Bluetooth as a wireless communication channel to exchange

information during the setup phase, this configuration is not an heavy process in terms

of time cost and that the Bluetooth overhead would not be a big bother to people. Yet,

it is not a flexible process to further accomplish digital signatures, because it implies

that this manual configuration must happen, for each new computer, before the computa-

tion of digital signatures through Bluetooth, between that computer and the smartphone

containing the certificates and respective private keys.

5.3 Use of BluetoothKSP with Conventional Applications

In this section, we describe some use cases of our BluetoothRemoteKSP with conventional

Windows desktop applications. It is described the observations that were made and

the results obtained regarding the transparency validation of our solution. With theses

qualitative experiments, we intended to observe how much our solution is transparent

to the conventional applications that make use of it, i.e, how many different applications

can use our BluetoothRemoteKSP to achieve their digital signature demands. Alongside

the toy-application already adopted (Acrobat Reader), we selected two more applications

to conduct this transparency experiment - such as the Microsoft Word and Microsoft

Outlook applications.

5.3.1 Adobe Acrobat

In the case of Acrobat Reader, it offers users a way to protect pdf files through signatures

using certificates from the Windows Certificate Store [2]. This feature is provided as a tool

called “Certificates“ among others. The Acrobat Reader digital signatures are performed

by selecting the “Certificates“ feature from the available tools of the application, where

is prompted a list of installed and validated Windows certificates to select which one the

user pretends to use to perform the signature. When selecting a certificate previously

installed through our Certificate Manager application, Acrobat Reader will invoke our

BluetoothKSP to complete the cryptographic operation. For this test, we performed the

execution of RSA, ECDSA and DSA based signatures successfully with the key lengths

presented before. RSA-PSS based signatures are not possible to perform in this context

or application, because Adobe Reader does not provides any way or feature to enable the

user to choose the padding to use in the case of RSA.

5.3.2 Microsoft Word and Outlook

Microsoft Word also enables users to add digital signatures to docx files [55]. This fea-

ture is provided in the options separator with the name "Protect this document". When

62

5.4. EVALUATION OF BLUETOOTHKSP DIGITAL SIGNATURES

selected, the list of certificates installed in the operating system is shown, so the user can

select the certificate to use in the signature process of the document. However, Microsoft

Word digital signatures are performed differently from Acrobat Reader, i.e, the sequence

of pre-operations invoked from our BluetoothKSP is different. For example, Microsoft

Word calls the method KSPEnumAlgorithms to retrieve and show to the user the list of

certificates existing in the Windows certificate store and KSPExportKey in order to obtain

the public key to execute the verification operation. For this Word test, we only executed

successfully RSA signatures since ECDSA and DSA signatures are strongly dependent

from the implementation of the KSPExportKey function of the BluetoothKSP, which was

left to implement in future work.

Similarly to Microsoft Word digital signatures feature, Microsoft Outlook enables

users to add digital signatures to outgoing messages or emails [56]. Plus, provides the

possibility to encrypt emails’ contents and attachments. Although, in the case of Outlook,

the signatures feature is provided in a different way, i.e, before creating a digital signature,

the user must first configure the signing certificate and the algorithms (hash and encryp-

tion) that desires to be used. Then, when the user creates a new email and hits the send

button, the signature is generated automatically with the signing certificate previously

configured. In the moment of the email creation, the user only chooses the appearance

of the signature, since the signing certificate must be configured always first. The certifi-

cates feature is available in the “Trust Center“ separator which exists in the options menu.

Under “Trust Center“ menu, exists another separator named “Email Security“, where we

can import/export and manage our certificates (or Digital IDs) and all security settings

related. In terms of functions invoked from our BluetoothKSP, Outlook behaves identical

to Word calling also the functions KSPEnumAlgorithms and KSPExportKey, which is com-

prehensive because both applications are owned by the same company (i.e, Microsoft).

For this Outlook test, we successfully signed emails only using RSA-based signatures with

the same reason described in Word experiment.

5.4 Evaluation of BluetoothKSP Digital Signatures

In this section, we present the experimental benchmarks on digital signatures and the

performance results (also in terms of latency) of our solution, using a set of parametriza-

tions that include secure hash functions, key lengths of public-key algorithms, and digital

signature schemes and security enforcements.

These benchmarks relate to the tests made to measure the latency of the BluetoothKSP

supported digital signatures using different combinations of parametrizations. Our goal

with these tests, beside measuring latency, is to compare key sizes, hash functions, types

of signatures and even the time chunks that compose the total latency of executing a

digital signature, as it was done in Section 5.2.

To conducted these benchmarks, we implemented a Signature Benchmark client that

63

CHAPTER 5. EXPERIMENTAL EVALUATION

executes a sequence of digital signatures using a given certificate over the set of sam-

ple variable documents with a given signature algorithm defined through the certificate

public-key algorithm and a hash function. With this client we pretend to simulate a Win-

dows desktop application that communicates with our BluetoothRemoteKSP to complete

digital signature processes. After the execution of a predefined number of signatures (i.e,

benchmark runs) for one document, we calculate the average latency and the standard

deviation. This step is repeated for each test document, which in our case are a group of

5 with sizes of 1MB, 5MB, 20MB, 50MB and 100MB, respectively. As in the setup bench-

marking, we also executed 20 runs of signing requests for each test to discard floating

points and obtain a consistent average latency.

It is also worth to note that each first benchmark run always takes longer than the

subsequent ones due to the higher number of BluetoothKSP pre-operations that are ex-

ecuted before the signing operation. When the subsequent runs are executing, some of

the pre-operations results are already cached by the provider in memory, so there is no

need to execute them again and the signature process will have a lower latency. Yet, these

first runs are not visible in the result graphs since we are interested in the average results

of the execution of multiple signature runs. However, some of these outliers can be seen

through the Boxplots that will be presented.

5.4.1 Client-side Latency Observations

For a first benchmark, our objective was to compare the secure hash functions available

in the SHA-2 hash algorithm family with each other to measure the impact of each hash

function in the signature process. This comparison is extensively discussed in past and

current literature and many experiments were already done [35, 39, 52], although, we are

interested to know in which ways the hash functions could influence our solution. The

results obtained from this experiment are illustrated in Figure 5.3, which shows the total

average latency of digital signatures, using a specific hash function over a specific docu-

ment size. Regarding the test conditions, we used a well-known public-key algorithm, i.e,

the RSA algorithm with 2048-bit keys, and the set of documents described previously.

At first sight, the results clearly confirms the intuition that when the document size

increases, the average latency also increases for each hash function, but slightly in the

case of SHA-256. We can see that (1) for smaller documents below and up to 5MB, the

latency is stable for all hash functions; (2) the SHA-384 and SHA-512 perform worse

when the document size increases and always side by side; and (3) the SHA-256 shows a

good performance for all documents size.

Besides this average of total latency for each hash function and document size, it is

also important to have a good indication of how the latency values obtained from the

benchmark runs are distributed, as done in the previous section. This distribution is

illustrated in Figure 5.4. Notice that, in this Boxplot the latency values include the runs

64

5.4. EVALUATION OF BLUETOOTHKSP DIGITAL SIGNATURES

Figure 5.3: Latency of Secure Hash Functions and Variable Document Sizes.

for every document size used. The results show that SHA-384 and SHA-512 have the

highest range of values and the highest latency values, reaching to maximums of almost

9 seconds to execute a digital signature. But remember, all the singular or outlier points

correspond to the first execution and in this case, we only focus on the median values (i.e,

the green lines inside the boxes in Figure. 5.4). In general, we can achieve an average

latency independently of the document size of 1 and 2 seconds for SHA-256 and SHA-384

or SHA-256, respectively.

Figure 5.4: Latency Specifically Induced by Secure Hash Functions.

65

CHAPTER 5. EXPERIMENTAL EVALUATION

In a second benchmark, we intended to understand how much the key size of the

cryptographic algorithms would influence the signature process time in relation with

the document size. This way, we started by comparing the key sizes of the RSA and the

ECC based algorithms in order to know what key length may imply in latency with our

solution. Many authors in literature [8, 42] already have documented that larger key

lengths increase execution times. As consequence, it is expected that they will increase

the overall latency in our solution environment. In this experiment, we decided to put

aside the DSA because it shares some similarities with RSA in terms of key length and

performance in general [8, 71]. Figure 5.5 shows the experiment results of RSA with

three different key sizes (1024, 3072 and 4096 bits) and ECDSA with three different NIST

curves (P-256, P-384 and P-521), over a specific document size. For this test case, we

choose SHA-256 to be used on the digital signature, which is the hash function measured

with best performance in the previous benchmark.

In general, the results show that the total latency tends to increase with the key size

and the document size, as expected. This increase in latency is mostly consequence of

the key size, since with larger keys the signature execution time quickly rises, delaying

the transmission of Bluetooth packets. The time required for this operation increases

for both algorithms, more significantly for RSA due to the larger keys comparing with

ECDSA, although the results for both algorithms are very similar. This is due to the

fact that the verification execution for ECDSA takes longer than RSA and also increases

with the key size since ECDSA executes more complex operations, inversely, to the signa-

ture execution. Thus, the two algorithms have both heavy cryptographic operations that

increase the latency in similar way. These observations can be seen in the next sub-section.

Similarly to the previous benchmarks, we illustrate the distribution of latency val-

ues through a Boxplot for each of the cryptographic algorithms used, in Figure 5.6. The

results suggests that, the median value oscillates between 1 and 1.5 seconds (for RSA

and ECDSA, respectively) and the values dispersion is similar in each algorithm between

key sizes, except in the case o RSA-4096 and ECDSA-521. For these last algorithms, the

maximum value easily surpasses the 3 seconds and the median value is slightly above

the median of the other algorithms. Our results lead us to conclude that RSA-3072 and

ECDSA-256 have the best performances providing the same level of security.

For the third benchmark, we present the performance comparison of the adopted

digital signature schemes with the corresponding key length in terms of security, i.e, the

RSA key size equivalent to the ECC key size in terms of the security level that they offer.

As previously discussed, RSA or even DSA based encryption needs larger key size while

ECC-based encryption requires significantly smaller key size for the same level of secu-

rity. Opposite to the previous benchmark test, we decided to run an experiment which

includes the DSA algorithm using a key length equivalent in terms of security level to

the RSA and ECDSA with the intent of testing this algorithm with our solution. However,

66

5.4. EVALUATION OF BLUETOOTHKSP DIGITAL SIGNATURES

(a) Latency of RSA and Variable Document Sizes.

(b) Latency of ECC and Variable Document Sizes.

Figure 5.5: Comparison with Different Public-key Cryptography Algorithms and Variable
Key Sizes.

this algorithm is no longer supported by Android mobile phones due to attacks against

cryptography constructions, for example, SHA-1. As such, we stored a DSA certificate

inside a local PKCS#12 file (in the application resources) to simulate a provisional key

store. Consequently, the private keys are not stored in a secure location as in the SE

and can be compromised, therefore, it is not recommended to employ this workaround

in real-world applications. The experiment results for the supported digital signature

algorithms are illustrated in Figure 5.7. These benchmarks were also conducted using

SHA-256 as the hash function of the signature algorithms.

Surprisingly, the results present RSA as the algorithm with best performance in gen-

eral for all documents size, even performing better than ECC. This seems somewhat

contradictory to what we discussed earlier, that the signature generation time of ECC is

67

CHAPTER 5. EXPERIMENTAL EVALUATION

(a) Latency of RSA.

(b) Latency of ECC.

Figure 5.6: Performance of RSA and ECDSA Signatures.

generally faster than the signature generation time of RSA. In the next sub-section, we

will present new pieces of information that will help us to understand and justify this

result. In the other hand, DSA is the algorithm with worst performance, although DSA

is usually presented as fast signature and verification times as seen in documented in

literature [11, 71]. RSA using Probabilistic Signature Scheme (PSS) padding (i.e, RSA-

PSS) [58] also presents a bad performance, but less than DSA. The reason behind the high

latency values for both DSA and RSA-PSS is that our solution needs to access the resource

file which represents a key store to execute digital signatures with these algorithms. To

accurately understand how much time the read file operation takes, we measured this

68

5.4. EVALUATION OF BLUETOOTHKSP DIGITAL SIGNATURES

operation time individually and we found that the application can take on average of

1.9 seconds to access the resource files containing the certificates. If we decrement this

resource overhead in the average latency of DSA and RSA-PSS, we can preview that these

algorithms will have a performance only a bit worst than RSA and ECDSA.

Figure 5.7: Comparison of Different Constructions for Digital Signatures.

Figure 5.8 illustrates the distribution of latency values through a Boxplot for these

digital signature algorithms. The distribution enables us to see more clearly that DSA and

RSA-PSS have the worst performance since the maximum, minimum and median values

are always higher than for the other algorithms, more precisely, achieving signatures with

5 seconds of latency. These algorithms can execute signatures with 1 to 2 seconds of

latency and in extreme cases less than 3 seconds. RSA and ECC based signature have the

lowest value dispersion and the lowest median values, where RSA has the lowest median

value but the highest dispersion.

Despite these results for signature schemes, it is important to notice that the evalua-

tion of the number of operations and data transmissions involved in a security protocol

is required to conclude which is the best algorithm to use on each particular case. Our

mobile-computer environment has an use case, where the user receives signature requests

non-sequentially but with a variable time-interval (i.e, opposite to the Signature Bench-

mark), executing one single signature from time to time. The algorithm that produces

this signature must be secure and fast in signature generation and verification. Thus, we

can concluded that ECDSA is the signature algorithm that best fits our requirements and

objectives.

For a final test bench for latency, we compared the performance between our solution

(i.e, BluetoothRemoteKSP) against the Windows-default provider (i.e, Microsoft Soft-

ware Key Storage Provider) and a token (i.e, SafeNet Smart Card KSP) or smart card (i.e,

69

CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.8: Performance Comparison of Constructions of Digital Signatures and Algo-
rithms, using SHA-256.

Gemalto Classic Card CSP) based provider. Our solution is analogous to token and smart

card based provider solutions in the sense that we use the mobile device as the crypto

provider while in the token solution the provider is installed in a USB dongle, and in

the smart card solution the provider is installed in a card chip, but they all are based

in sealed-hardware devices. The main objective of this ultimate test is to show how our

solution can be better or not in terms of average latency than these existing solutions.

The test conditions for this final benchmark include the cryptographic constructions that

demonstrated the best results in the previous benchmark tests, i.e, SHA-256 with ECC

using a P-256 elliptic curve, for our solution. In the case of the remaining solutions, we

used SHA-256 with RSA-2048 for token and smart card based solutions, and we used

SHA-256 with ECC using P-256 elliptic curve for Windows solution. The results from

this experiment are presented in Figure 5.9, where is shown the average latency of each

provider solution per document size using the most secure and performance-efficient

algorithms in each solution.

Our evaluation results follow the expectable trend that wireless communications im-

pose an implicit overhead in latency measurements and is worst than others. In this case,

is the Bluetooth communication channel that produces this overhead (i.e, the Bluetooth

overhead) and delays the whole signature process of our solution, increasing the latency.

As seen from the previous benchmarks, the Blueetooth RTT has always values between

0.2 and 0.3 seconds, therefore, this is the implicit overhead that Bluetooth imposes in

our solution. However, it performs better than the smart card solution due to the fact

that smart cards are slow chips and are the only solution that needs a card reader, which

imposes a significant overhead. Analysing the results, we can conclude that the Bluetooth

overhead makes our solution, in worst case, 1 second slower than token and Windows

70

5.4. EVALUATION OF BLUETOOTHKSP DIGITAL SIGNATURES

solutions for any document size, which is not a real problem since this delay is mean-

ingless to the final user. Furthermore, the ace of our solution is to provide flexibility,

user-experience and on top of this, security as a priority.

Figure 5.9: Evaluations with Different Cryptographic Providers.

5.4.2 Components in the Observed Latency

Now, we present the components in the observed latency for each one of the signature

benchmarks as a complementary information to help understand the previous results and

observations. This way, we divided the total latency in time intervals (or time chunks), so

that we know which step takes longer time to execute and delays the signature process,

increasing the total latency.

Following the same ordering of the previous sub-section, we start with the secure

hash functions. In this case, we partitioned the latency of the secure hash functions to

understand how much time their computation takes and which percentage of the total

latency it corresponds. Table 5.3 presents the average time duration of each component

in the total latency, where we can see this increase proportional to the hash function. For

Secure Hash Functions, the components are the hash time, the Key Storage Provider (KSP)

pre-operations time and the Bluetooth RTT.

It is normal to think that the time will not increase to much since the only thing that

is transported through the Bluetooth channel is the hash of the document and not the

document itself. And, independently of the document size, the hash will always have the

same size if using the same hash function and as consequence the total latency should be

stable and not increasing with the document size. However, this depends on the compu-

tation of the hash, that takes longer for bigger documents and, consequently, increases

the total latency of the signature. Our results suggests that SHA-384 and SHA-512 are

4-times slower than SHA-256. Bluetooth RTT continues to be similar, only increasing

71

CHAPTER 5. EXPERIMENTAL EVALUATION

with SHA-384 and SHA-512 due to the larger document hashes. KSP pre-operations time

is low and constant for all the secure hash functions.

Table 5.3: Average Latency for RSA Digital Signatures using Different Secure Hash Func-
tions

Total latency (s)

Hash function Hash KSP pre-Ops Bluetooth RTT

SHA256withRSA 0.549 0.229 0.312

SHA384withRSA 2.042 0.227 0.610

SHA521withRSA 2.025 0.232 0.634

Secondly, we present the components in the latency of RSA and ECDSA using different

key sizes. In this case, the total latency was partitioned in order to obtain the signature

and verification times for each algorithm. These components can be observed in the fol-

lowing Table 5.4. We also present the KSP pre-operations and Bluetooth RTT components

to observe how these components change by varying the public-key algorithm and key

sizes used.

Observing the results we can see clearly that ECDSA has always better signature time

than RSA for all key sizes and the verification time tends to be similar to RSA with lower

key sizes, but slightly higher with larger key sizes. However, ECDSA has very large KSP

pre-operations times rather than RSA, where it can be 3-times slower than RSA. These

KSP operations before the signature process delay the ECDSA signature generation in

such way that RSA can perform better than ECDSA in terms of overall latency. Although,

the results presented enhance the efficiency improvement of ECC over RSA for the same

level of security regarding signature generation and verification times. The Bluetooth

RTT continues to be constant once again.

Thirdly, we present the components in the latency of different signature schemes.

Now, we partitioned the total latency in the same way as the previous experiment, but

with the intent of observing the KSP pre-operations, signature and verification times for

different signature schemes. These components in the latency observed are presented in

the following Table 5.5.

As we can see, and as expected, the signature time of RSA is much higher than sig-

nature time of ECC. However, the KSP pre-operations invoked for ECDSA take much

more time to execute than for RSA with a much higher difference than in signature time.

Therefore, RSA has better performance than ECDSA for each document size. In the other

hand, DSA has fast signature and verification times, although has worst performance

due to the access to the resource file and has an high KSP pre-operations time such as

ECDSA. RSA-PSS has the same problem of accessing a resource file, but has low KSP

72

5.5. BLUETOOTH PERFORMANCE EVALUATION

Table 5.4: Average Latency for RSA and ECC Digital Signatures using Different Key Sizes

Total latency (s)

Signature Algorithm KSP pre-Ops Bluetooth RTT Sign Verify

SHA256withRSA (1024 keys) 0.224 0.304 0.044 0.001

SHA256withRSA (3072 keys) 0.231 0.321 0.109 0.002

SHA256withRSA (4096 keys) 0.230 0.332 0.166 0.002

SHA256withECDSA (256 keys) 0.595 0.324 0.036 0.002

SHA256withECDSA (384 keys) 0.604 0.333 0.055 0.003

SHA256withECDSA (521 keys) 0.656 0.309 0.067 0.006

pre-operations time such as RSA-PKCS#1.

Table 5.5: Average Latency with Different Digital Signatures Schemes.

Total latency (s)

Signature Algorithm KSP pre-Ops Bluetooth Sign Verify

SHA256witDSA (1024 keys) 0.753 0.332 0.001 0.002

SHA256withRSA (3072 keys) 0.231 0.321 0.109 0.002

SHA256withRSA/PSS (2048 keys) 0.293 0.359 0.0047 0.0015

SHA256withECDSA (256 keys) 0.595 0.324 0.036 0.002

5.5 Bluetooth Performance Evaluation

In this section, it is compared the impact of using Bluetooth Low Energy (BLE) technol-

ogy and security enforcements, such as Transport Layer Security (TLS), for executing

certificate and digital signatures requests.

5.5.1 Bluetooth Low Energy

Regarding BLE, the goal of this experiment is to understand how this technology could

improve or impact our solution. It was performed a test benchmark with different digital

signature algorithms (equally to third benchmark in Section 5.4) to compare the overall

latency of the execution of digital signatures with BLE. This benchmark was conducted

through the Signature Benchmark client with the same configuration described before,

73

CHAPTER 5. EXPERIMENTAL EVALUATION

varying only the signing certificate with the security equivalent key sizes.

BLE is the second implementation or protocol of Bluetooth technology mainly de-

signed and modelled to accommodate Internet of Things (IoT) applications and low-

battery devices. With this goal in mind, the BLE packet length (more precisely, the

maximum length of the data to be transmitted) is smaller than the packet length used

in Bluetooth Classic. The default and maximum length for the first one is 512 bytes and

for the second is 1021 bytes [19]. Notice that, in the case of BLE, this maximum length

are negotiated between the two Bluetooth devices moments before a connection and data

exchange take place, so the data maximum length is dependent from what both devices

support individually. Bluetooth Classic handles packet length in a different way, because

the communication is based in streams and we can specify the maximum length through

the API. With our test environment, the mobile phone and computer negotiate a maxi-

mum length of 516 bytes for BLE and we specified a maximum length of 1024 bytes for

Bluetooth Classic in the prototype implementation. It is also important to notice that, if

packets have a length higher than the maximum length, they are partitioned in chunks

with the maximum length allowed and are transmitted sequentially.

Regarding the specification protocol, BLE technology uses different protocols com-

pared with Bluetooth Classic, which are focused in the functionality and features of the

IoT devices. The most important one is called GATT/ATT, which is, in fact a combination

of two protocols that consist of providing attributes through a service hosted in a LE de-

vice, from which client LE devices can read current values or write new ones. Therefore,

only attribute values are transmitted through Bluetooth, confirming the reduction of the

packet size and a less power consumption for devices.

In fact, this BLE specification protocol does not correspond to our requirements and

goals, because our solution implies transmitting data over Bluetooth with lengths higher

than the maximum packet length of BLE. For example, in the case of certificate requests,

the data exchanged between our prototype applications are JSON strings that can achieve

lengths higher than 2000 bytes, depending on the number of certificates retrieved. An-

other reason is that using JSON constructions to transmit multiple informations (as in our

solution for certificate and signature requests) in one time is against the goal of the ATT

protocol which is to send one attribute value each time when a LE client device interacts

with a LE server device.

Yet, we successfully employed the BLE technology in our solution and completed dig-

ital signature processes with success. An experiment with certificates requests was not

done, because of the huge exponential packet length when retrieving certificates existing

in the mobile phone, which rounds 4154 bytes for only 5 certificates (even represented

as base 64 strings). This packet length exceeds to much the maximum packet length in

a way that dividing it by chunks would imply only a significant delay in the latency. Is

also important to notice that was only possible to perform digital signatures which length

74

5.5. BLUETOOTH PERFORMANCE EVALUATION

combined, with other pieces of information (such as the timestamps from Android side)

required to transmit in the JSON packet, were less than the maximum packet length (516

bits). For example, RSA-2048 produces 256-bit length signatures, ECDSA-256 produces

70 to 72 bit length signatures and DSA-1024 produces 40-bit length signatures. This

signature length combined with the remaining status and timestamps information length

cannot surpass the maximum packet length. Support for key lengths which produce sig-

nature lengths that cause the JSON packet length to be higher than the maximum packet

length was not completed or finished due to some implementation issues on our prototype

in the moment when ATT protocol generates the chunks of the data to be transmitted,

although the protocol handles the packets fragmentation as stated in documentation.

Plus, the Signature Benchmark performed to measured the performance was done

only with 10 benchmark runs for each document size, because the time to perform a

single signature using BLE is to high. The Bluetooth sockets get stucked in disconnected

mode for a long time delaying the whole signature process. Figure 5.10 shows the results

obtained from this BLE experiment.

Figure 5.10: Average latency of Remote Digital Signatures using BLE.

The results suggest that the usage of BLE with our solution may lead to bad perfor-

mance independently of the signature algorithm used, except for ECDSA, which main-

tains its performance throughout the size of the documents due to the low signature

lengths produced. Although JSON constructions tend to be small and less than the maxi-

mum packet length, the LE specification protocol based in advertisements and in the ATT

protocol imposes a significantly delay in the latency when executing digital signatures.

One of the main causes of these high latency values is because LE protocol has a default

time of 30 seconds to search for advertisements, but it is also possible to re-define a spe-

cific time. Since the default time is to elevated, we defined a specific discoverability time

of 2 seconds in order to have time to discover our target device and Bluetooth service with-

out increasing the latency to much in the process. This means that besides the Bluetooth

75

CHAPTER 5. EXPERIMENTAL EVALUATION

overhead we will also have another implicit overhead due to the Bluetooth discoverabil-

ity time. Another reason for these results its because of the inefficient implementation

of BLE support on our prototype, which has a workaround to successfully perform at-

tribute write requests with responses. This is by default provided by the Windows 10

APIs through a specific function named WriteWithResponse, but without knowing why

the function its not working and due to time restrictions we didn’t investigate completely

the origin of this issue. Therefore, we implemented a workaround that basically consisted

in performing a Write request to demand the execution of a digital signature, and sequen-

tially, a Read request to obtain the digital signature result. However, this involves the

establishment of a connection for each one of the requests, turning the process very heavy

and delaying the whole signature process.

5.5.2 TLS/Bluetooth Enforcement

In relation to the security enforcement, it is compared the performance results of the se-

curity enforcement implementation, more precisely, the TLS channel over the Bluetooth

communication channel. The goal of this evaluation is to know the overhead caused by

the security extra-layer on the process of digital signatures. Due to implementation and

time limitations, it was only performed a test benchmark for the certificate requests and

using only a default cipher suite for the TLS channel (i.e TLS_ECDHE_ECDSA_WITH

_AES_256_GCM_SHA384). This test was conducted using the Setup Benchmark client

with the same configuration explained in Section 5.2. The results of this experiment are

represented in Figure 5.11.

Figure 5.11: Latency measures using TLS Layering Enforcement.

76

5.6. OTHER BLUETOOTHKSP EVALUATION METRICS

Comparing with the results presented in Section 5.2, using an extra-layer of security

as the TLS channel slightly increases the overall latency by 1.5 to 2 seconds in average

for each different number of certificates. The results also show that latency continues

to be proportional with the number of certificates, for example, responses containing

10 certificates have an higher dispersion of values and median than responses with less

certificates and it will increase further if the number of certificates doubles or triples.

Notice that, the main objective of this security enforcement is to conceal a secure and

protected communication channel for Bluetooth-enabled devices with lower and insecure

versions of Bluetooth that have privacy and protection demands regarding the data ex-

changed. Our results show that a security enforcement as the TLS implies an acceptable

overhead in the Bluetooth communications and enhances the security provided by the

solution. Although, in current Bluetooth versions (v4.0 to v5.0), the security and protec-

tion levels provided by Bluetooth security mechanisms are already considered very high,

leading to security enforcement layers being considered as unnecessary overhead.

5.6 Other BluetoothKSP Evaluation Metrics

In this section, it is presented additional evaluation metrics such as prototype packaging,

memory usage, and energy consumption, which help to enhance the validation of our

mobile cryptographic provider.

5.6.1 Packaging Metrics

In relation to the packaging of our mobile crypto provider to be further distributed to

computer users, we need to package each prototype component and its dependencies

in its own package. For example, the WindowsCertificateManager was packaged as a

executable file which can be executed in the user Windows computer to install or run the

.NET application; the BluetoothKSP was also packaged as an executable file that executes

an installer to register our Key Storage Provider (KSP) in a particular Windows computer;

and CertificateManager was converted to an APK file (i.e, the file extension that represents

an Android application) to be further installed in a particular smartphone.

These packagings are generally easy to be generate, except in the case of BluetoothKSP,

where a complete installer, that executes all the KSP register operations, must be cre-

ated. In the case of the Android application, the APK file is automatically generated by

the package manager Gradle when building the application. The APK file of the Cer-
tificateManager application has a total size of 2,5 MB. The Windows .NET applications

also generates the executable file automatically when building the application. The ex-

ecutable or packaging file of WindowsCertificateManager has a total size of 81 KB. For

BluetoothKSP, the process to generate an executable setup file that will install the C++

library on other computers is a bit more difficulty since we need to create a new setup

project (besides our BluetoothKSP project) to accomplish the BluetoothKSP deployment.

77

CHAPTER 5. EXPERIMENTAL EVALUATION

However, From the user perspective, any of these packagings distribution can be seen

as a lightweight process since all the components are not very big, except the DLL library.

5.6.2 Memory Resources and Utilization

In this section, we show other experimental observation on the mobile environment, in

this case, the volatile memory (or RAM) used by the CertiticateManager when computing

signatures or running the Bluetooth service. The objective of this experiment is to evaluate

the memory usage of different digital signature schemes with our solution and which

is the impact compared with the normal execution of the application, i.e, running the

Bluetooth service. Similarly to the previous benchmark, we are also concerned with the

memory used by our solution to complete signature processes in mobile devices due to

their small volatile storage space. As such, we conducted a memory benchmark evaluation

to measure the real memory cost of executing signature generation in mobile devices with

our CertiticateManager.

This memory benchmark consisted in executing the Signature Benchmark client with

the same test conditions described in the previous section. For measuring the Certit-

icateManager memory usage we used the available “Running Services” tool under the

“Developer Options” in the smartphone settings. Notice that, this experiment discards

the data stored on disk or by the Android Keystore in the SE - such as the private key.

Before measuring the memory usage, we measured first the memory cost when start-

ing the CertificateManager application and without receiving any signature requests (just

listening the Bluetooth Socket). The average used memory obtained is 41 MB, which

corresponds to 0.010% of the total volatile memory (4GB).

Table 5.6: Average Memory Usage of the Supported Digital Signatures with Different
Security Levels.

Memory Usage (MB)

Signature Algorithm 128 bits 192 bits 256 bits

SHA256withRSA 45 - -

SHA256withDSA 49 - -

SHA256withECDSA 44 45 45

Table 5.6 presents results obtained of the memory usage of the supported digital

signature schemes. Note that, the values not appearing in the table are due to the fact

that the respective algorithm key size is not supported by the Android OS. As the results

suggest, when the signature operations start to be executed in sequence, the average

memory used slightly increases independently of the signature algorithm. Our results

78

5.6. OTHER BLUETOOTHKSP EVALUATION METRICS

are very coherent with results from other studies [6, 71] in the sense that ECDSA requires

less storage space than RSA and DSA in both ways: key length and signature length. As

seen before, this is because, ECDSA has small keys and computes the signature faster,

which leads to less memory usage. The only difference is that ECDSA with larger keys

has equal memory usage as RSA.

With this results, we can conclude that our mobile crypto provider solution uses on

average 0,011% of the total memory available to generate a signature, which does not

seem to be a big deal comparing with other Android applications even if it is running as

a service in the background listening the Bluetooth Sockets.

5.6.3 Power Consumption Observation

In this section, we present the experimental observations done on the mobile environment

in relation to the energy consumed by the CertificateManager when executing signature

operations and listening for connection requests through the Bluetooth service. The goal

of this experiment is to evaluate the power consumption of different digital signature

schemes with our solution and which is the impact compared to the smartphone common

usage - such as interacting with and navigating through Android applications. This

concern is extremely important due to the limited energy resources that wireless devices

have (for example, the mobile phone battery) which restricts their power use. Although, in

current days, wireless communication technology provides protocols and resources that

lead to low-power and inexpensive Distributed Sensor Networks (DSNs) [71, 80]. Also,

there are standard digital signatures considered as efficient and assumed as less power

consuming for these environments such as ECDSA [6, 71]. Thus, the energy impact of the

signature operation in the mobile phones is expected to be low.

5.6.3.1 Power Consumption of BluetoothKSP Digital Signatures

Then, we conducted an energy benchmark evaluation to know the real cost of executing

digital signatures in mobile devices by our CertificateManager. This energy benchmark

consisted in executing the Signature Benchmark client with 20 runs of signature requests

per document size to generate the average consumption for each digital signature algo-

rithm using SHA-256 and different key sizes corresponding to the security levels: 128,

192, and 256 bits. For measuring the mobile phone energy consumption we used a third-

party mobile application called AccuBattery 3, which calculates the energy consumption

of the mobile device and the individual consumption of each Android application in

milliampere (mA) units. The mobile phone used for the benchmark is equipped with a

Li-ion battery [66] that has a maximum capacity of 3000 mA per hour.

Before we analyze the impact of the supported digital signature schemes, let us first

highlight the measured power consumption when not having any user application run-

ning in first or second plan (i.e, in idle mode); and for a common pattern of use. The

3https://www.accubatteryapp.com/

79

CHAPTER 5. EXPERIMENTAL EVALUATION

average measurements obtained are 139,7 mA and 362,2 mA, respectively. Additionally,

we measured only the power consumption of the CertificateManager application listening

for Bluetooth connection requests, which achieves a consumption of 150,9 mA. Note that,

all these metrics were measured in time intervals of 5 minutes.

Table 5.7: Average Power Consumption of the Supported Digital Signatures with Different
Security Levels.

Power Consumption (mA)

Signature Algorithm 128 bits 192 bits 256 bits

SHA256withRSA 209,5 - -

SHA256withDSA 310,5 - -

SHA256withECDSA 182,2 182,7 184

Table 5.7 shows the power consumption of the supported digital signature schemes.

Considering the initial energy costs measured, we can conclude in general that the impact

of our solution is small and that it can perform better than other applications. This is

due to the fact that our CertiticateManager is an Android application that only listens the

smartphone Bluetooth socket for packets directed to the Bluetooth service that it runs;

executes a cryptographic operation or not when a request is received; and sends back a

response packet through the socket.

Considering that the signature benchmark was executed 20 times for each one of

the five sample documents, we can say that the average value presented in Table 5.7 is

the average of 100 digital signatures over documents with variable length. In the case

of RSA, we have an average of 209,5 mA per signature. Also, to drain completely the

smartphone battery it will be necessary the execution of more than 10.0000 RSA-based

digital signatures.

5.6.3.2 Comparative Analysis

Energy costs of signature generation depends mostly on the security level (i.e, key size)

and the operation execution time, therefore, the energy consumption is proportional to

these two variables. Our results show that RSA and DSA signatures are energetically

more expensive due to the high computation cost of the private key operation, being DSA

the less energy efficient; and ECDSA is the most energy efficient signature algorithm for

all security levels. These results are consistent with previous literature experiments such

as presented in [71].

Thus, we can conclude that our mobile crypto provider solution can impact the energy

consumption on average by 30.42% regarding the idle state energy consumption, but

80

5.7. SUMMARY

consumes much less than other applications running as they can impact the consumption

by 159.27%.

5.7 Summary

In this chapter we presented and discussed our experimental results over the imple-

mented prototype, in six different types of evaluation benchmarks. These experiments

were conducted on both the BluetoothKSP (computer) and CertificateManager (mobile

phone) components of the prototype and two testing benchmarks were implemented to

execute them. A detailed analysis was performed for each benchmark section, which is

briefly summarized next:

• The configuration or setup phase, i.e, the certificates request issued to the Blue-

toothRemoteKSP tends to produce a reasonable average latency for a variable num-

ber of certificates taking into account the human time perception, although is nec-

essary to execute this configuration for each new computer where is further desired

to perform remote digital signatures.

• The hash function SHA-256 has an efficient performance for all document sizes

while SHA-384 and SHA-512 perform worse and worse as the document grows

larger. RSA has a bad performance proportional to the key length and documents

size, i.e, it performs worse as the key length increases and the document grows

larger. The most secure (i.e, 128-bit security level) and efficient key length is 3072.

In the other hand, ECDSA has similar performance with any key length for a specific

document size, being ECDSA-521 a few times the fastest one. For the same security

level as RSA, the most efficient ECDSA key length is 256.

• The signature average latency of our solution tends to be better when using RSA-

3072 algorithm with the hash function SHA-256 for all documents size. ECDSA is

the second with the best performance and with a low margin regarding RSA. RSA-

PSS and DSA are the signature algorithms with worst performances due to the need

of accessing the resource key stores, which increases latency to much. However,

ECDSA is the algorithm with the best performance at 128-bit security level and that

best fits our requirements and goals simultaneously.

• The ECC-based signatures normally perform better than RSA and also provides

an equal security level with smaller keys, offering faster computations, less stor-

age space and less demands on bandwidth, and is ideal for constrained environ-

ments such as our mobile phone. RSA has excellent signature verification times and

ECDSA has great signature generation times. One of the few weaknesses of ECDSA

is only the verification time.

81

CHAPTER 5. EXPERIMENTAL EVALUATION

• The performance of our solution is clearly worst than a Windows default provider

or a a Token-based provider, but only with a difference of 1 second for each different

document size. On the other hand, our solution offers flexibility and transparency

to the final user and protection and security for their data, which helps disguise this

performance flaw.

• The security enforcement, more precisely, the TLS can bring an maximum latency

overhead of 2 seconds independently of the data size (for example, the number of

certificates retrieved), which do not seems to be a great disadvantage regarding the

security and protection that is obtained as trade-off.

• Given the Bluetooth Low Energy (BLE) specification protocol and our objectives -

such as retrieving a variable list of certificates from the mobile phone and requesting

signature operations - this technology is not worth for our use case and environment,

since to take full advantage of BLE we needed to compromise the security of the

solution by reducing the key sizes in order to achieve the required packet length

and change our protocols in order to adapt them to the ATT protocol. Also, this

data exchange can take longer than if it was done with Bluetooth Classic if the data

size to be retrieved is very high. Thus, the use of BLE with our solution worsens the

performance and delays the certificates retrieving and signature generation.

• The prototype software components (and their packaging) are not very heavy, al-

though the final user will need to install two applications in different devices and

one cryptographic provider.

• The CertificateManager application in the mobile environment has less power con-

sumption than other Android applications and only has a small increase during

signature processes compared with the consumption in idle mode. ECDSA and

DSA are the digital signature algorithms with less and most energy consumption,

respectively. The ECDSA consumption stays constant when varying the security

bits.

• Regarding memory usage, our mobile application uses less memory comparing

with other applications when is listening for certificate or signature requests via

Bluetooth or even when its executing signatures generation. The difference between

listening for requests and computing signatures corresponds to only 8MB in the

worst case. ECDSA uses less memory such as RSA while DSA is the signature

algorithm that more memory uses.

82

C
h
a
p
t
e
r

6
Conclusions

In this chapter we present the main findings in the conclusion of the dissertation, regard-

ing the investigation conducted, our system model assumptions and the instantiation in

its prototype implementation. From these conclusions we discuss open issues and limita-

tions, as well as, opportunities for future work directions in enhancements, optimizations

and refinements.

6.1 Main Conclusions and Remarks

In this dissertation we addressed the design, prototyping and experimental evaluation

of a mobile cryptographic provider for Android smartphones, used to manage, store and

execute digital signatures for external devices, namely Microsoft Windows desktops. The

proposed solution, although oriented towards support and testing in particular techno-

logical environments, followed the approach of a generic model that can later be gener-

alized to other computing environments and other supporting technologies. Included in

the dissertation objectives, we addressed the security guarantees provided for integrity,

authentication and authorization properties, in accessing the functions offered by the

Android-enabled mobile cryptographic provider.

In the Related work we survey the characteristics, properties, threats and protection

related with the state-of-the-art solutions in approaching wireless communication chan-

nel and private keys management and storage security. The study oriented the choice of

Bluetooth and smartphone’s Secure Element (SE) to leverage the objectives of the disser-

tation. We studied the APIs and architecture of cryptographic providers of the chosen

platform (i.e, Windows) to be considered as the base for our proposal, considering the

most recent and secure Cryptography API: Next Generation (CNG), although not yet fully

83

CHAPTER 6. CONCLUSIONS

implemented by some technologies. During the dissertation work, we also studied tech-

nical solutions, such as Bluetooth Low Energy (BLE) and Transport Layer Security (TLS),

that increase the security of Bluetooth connections to support secure communication

channels and involved cryptographic operations, between Windows-based applications

and the smartphone mobile cryptographic provider, with insecure Bluetooth versions.

From the studied Related Work, we proposed a System Model and Architecture for

the remote mobile cryptographic provider. As a corollary, we designed the cryptographic

provider services that enable storage and management functions for X509v3 certificates

and cryptographic keys, providing these services to Windows-based applications, in a

transparent way. For Windows-based applications, the solution is regarded as a Windows-

based local-installed crypto provider.

We provided an implementation of the proposed solution. The implementation was

addressed as a ready prototype that is usable as a pre-product in a funded initiative and

partnership between the FCT/UNL and NOVA-LINCS Research Center and Multicert

S.A. Using the provided prototype we conducted an experimental evaluation, following

different assessment criteria, to validate the designed solution, targeting the following

observations: (1) validity testing on the transparency of the proposed solutions regarded

by Windows-based applications; (2) performance evaluation of digital signatures pro-

vided by the designed Android mobile cryptographic provider, observing latency and

operations’ throughputs; (3) Performance analysis of the provided Bluetooth-enabled

communication channel and impact of their security mechanisms, and (4) additional

experimental analysis on the implemented mobile cryptographic provider solution to ob-

serve packaging metrics, runtime instrumentation and use of resources; as well as, power

consumption evaluation.

Overall, the dissertation achieved the defined objectives, as well as the specific contri-

butions beyond the planned goals. We addressed the problems and limitations of using

a smartphone as a cryptographic provider and Bluetooth as the wireless environment

to transmit sensitive data and created a model and proof-of-work of that same model.

The implemented prototype is capable of providing itself as a cost-effective and flexible

alternative to traditional USB tokens or dongles and smart cards, handling independent

end-user scrutiny and better control of their data, with the additional security enforce-

ments together with Bluetooth security mechanisms, thereby preventing tampering and

corruption by a malicious entity.

6.2 Future Work

We were able to implement a functional prototype of our system model, although there

are some features that were not totally implemented according to relevant theoretical

design assumptions, and some related issues were left opened, which could be improved

upon in the future. Besides the effort in a more extensive evaluation and benchmarking

84

6.2. FUTURE WORK

using different and heterogeneous devices from different origins or manufacturers, we

emphasize the following future work initiatives:

• Overlaying enforcement of TLS/Bluetooth communication. Related to our Blue-

toothKSP component, it was left to implement the Transport Layer Security (TLS)

support that would allow in enhancing the security of the communication channel

between the Certificate Manager and the BluetoothKSP components, while exe-

cuting digital signatures. This can be integrated in the short term, as relevant

extended overlaying security enforcement, particularly in the circumvention of

possible fragilities of certain Bluetooth implementations or solutions based in old-

versions. The implementation task for this feature started a bit late than initially

expected and we found some technical issues in the chosen library (Botan1). For

example, the integration of this library in the mobile crypto provider solution was

causing runtime conflicts within software components causing crashes when a sig-

nature requests is performed. A future solution for the implementation problems

would increase the reliability and consistency of the results obtained for the impact

of TLS on our solution (more precisely, on the signature process). Furthermore, we

can address in the future new Signature Benchmark evaluations with TLS, enrich-

ing the completeness and validation of the current prototype. As a direction the

detected problems we must investigate the origin of the conflict or to take a new

decision for a new open source C++ library for TLS to fulfill our requirements and

allowing to us to manipulate TLS/Bluetooth data streams;

• Refinement of standardization formats for Digital Signatures. Regarding the im-

plementation of the Signature Benchmark client, our solution invokes on-demand

requested digital signatures creating on-the-fly hashes for the sample documents.

Our formats are not using the formal standard digital signature formats and pro-

cedures, such as those formats formalized for the Digital Signature Standard (DSS)

construction [61]. Due to the lack of support from .NET documentation and specific

runtime support to provide a consistent API for DSS, as the formal standard ad-

dresses, we were unable to implement the related formalization that could help us

better understanding the latency values obtained from the signature benchmarks

and the investigation of impact factors. Also, this feature would help to elevate

the Signature Benchmark resemblance to any real-world application, which expects

to use the DSS standard. Anyway, for the initial purposes the refinement was not

considered as priority, because what really mattered in the latency and related

throughput observations was the signature processing time (with the dominant ex-

ponentiation time of the DSS signature) and the Bluetooth Round-Trip-Time (RTT),

and not the format processing of final signature objects. A suggestion to address this

as future work could be the reimplementation of the Signature Benchmark Client

1https://botan.randombit.net/

85

CHAPTER 6. CONCLUSIONS

using the Java programming language, where exists reasonable documentation and

various open-source code samples for creating digital signatures using the DSS con-

struction. Unfortunately, Java (more precisely, the SunMSCAPI provider) does not

yet have full support for Cryptography API: Next Generation (CNG) and a future

Signature Benchmark in Java would not be able to execute signature requests 2.

• Remote attestation facilities. One security feature that was not addressed timely

in the dissertation was the Remote Attestation protocol, which would consist in

validating the Bluetooth crypto provider source code installed and loaded in the

Windows OS library and attesting the remote mobile crypto-provider. The main

objective of this protocol is to mitigate attacks against the execution after the possi-

ble injection of tampered data to the user mobile phone in order to obtain a valid

signature, recognizing that the attestation proofs are not correct, stopping malicious

KSPs from requesting forged signatures by the tampered remote crypto-provider

components. This protocol is relevant as a security enforcement of our present solu-

tion and could enhance the protection of the implemented mobile crypto provider.

In this future direction a possible initial approach could consist in modeling the Re-

mote Attestation protocol, validating its specification and integration in the current

solution, and finally conclude the related implementation.

• Bluetooth-enabled pairing enforcements. Our implementation components de-

pend on the secure establishment of a Bluetooth connection. As stated before,

except the Pairing method, all other Bluetooth security mechanisms are usually

defined automatically, during the initial negotiation of devices configurations and

cannot be changed programmatically. These security mechanisms - such as the pair-

ing algorithm, the authentication algorithm and the encryption algorithm - are all

negotiated depending on the Bluetooth versions of the devices. During the Pairing

first-phase, both devices exchange pairing information (for example, capacities and

requirements, as specified in the Bluetooth device configuration). This done via

pairing request and response packets. In each device configuration, the Bluetooth

protocol computes the final security parametrizations for further key generation,

key establishment and connection processes. In the Pairing-first-phase, it is possi-

ble to intercept pairing packets through the Bluetooth service and force the pairing

configuration desired for further connections. The initial idea to deal with the pos-

sible programmatic enforcement of parametrizations was considered, bit were not

finished due to time restrictions. A task in the future work direction would be the

investigation and validation of Pairing methods that can be actually proposed and

the supported ones in different versions of Bluetooth implementations, to create

a smart and secure dynamic negotiation handshake, addressing security default

2https://bugs.openjdk.java.net/browse/JDK-8026953?subTaskView=unresolved

86

6.2. FUTURE WORK

settings and establishing the acceptable or the enforced levels of security, whenever

possible and supported.

• Refinements in transparent use of DSA signatures for Microsoft Word and Out-

look applications. Due to time restrictions, we were not able to implement com-

pletely the KSPEnumAlgorithms and KSPExportKey functions which are required

for the digital signature processes of Microsoft Word and Outlook applications (as

well as other Microsoft Office Applications). Unlike Adobe Reader. This leaves our

mobile crypto provider a little bit limited in the transparency support, an issue that

will be more relevant in offering the solution as a future product in the Multicert S.A

portfolio. Even that this is more a concern for a final product perspective, it makes

sense to address a future work task in finalizing the implementation of those two

Key Storage Provider (KSP) functions, and finally validate the full-fledged trans-

parency support by performing digital signatures with ECDSA and DSA algorithms

requested by Microsoft Office applications.

• New digital signature schemes. There is also space for future research on the im-

provement of the signature schemes supported by our solution. For example, it

is interesting to further investigate and employ the support for signature schemes

based on the elliptic curve named Curve25519 [16], which is an elliptic curve de-

signed for use with Elliptic Curve Diffie-Hellman (ECDH) key agreement scheme,

but is also used in a Edwards-coordinate signature system named Ed25519 [44].

This is an elliptic curve that has gaining considerable interest in recent years. This

support was added to OpenSSL v1.1 2 and also announced as part of the National

Institute of Standards and Technology (NIST) Special Publication 800-186 3 and

considered as the use of secure and efficient elliptic curves in the state-of-the-art,

being an alternative to the used efficient P-256 elliptic curve. Actually, we began

implementation and validation work to integrate this elliptic curve in our solution,

but this is a on-going task that require a future work stream.

• Other refinements and optimizations. Also related with Bluetooth, but in this

case with BLE technology, we successfully implemented the BLE support on our

prototype and performed digital signatures with the supported algorithms via a

BLE-based secure channel. Although, the current implementation has some flaws

and issues that were left to investigate in more detail. More precisely we addressed

initially a workaround to deal with Read/Write requests, to deal with the generation

and establishment of two connections and the problem of JSON packet lengths that

exceeds the BLE maximum packet length specification. A direction for future work

would be to continue the investigation of the root cause of these issues and to correct

and refine them in a new prototype, with expected performance gains.

87

Bibliography

[1] 256-bit Elliptic Curve Cryptography (ECC) - secp256r1 (alias NIST P-256 Algorithm)),
OID 1.2.840.10045.3.1.7. Global OID Reference Database, International Organiza-

tion for Standardization (ISO). url: http://oid-info.com/get/1.2.840.10045.

3.1.7 (visited on 08/17/2019).

[2] Adobe. Securing PDFs with certificates. 2019. url: https://helpx.adobe.com/uk/

acrobat/using/securing-pdfs-certificates.html (visited on 08/17/2019).

[3] N. Akinyokun and V. Teague. “Security and Privacy Implications of NFC-enabled

Contactless Payment Systems.” In: Proceedings of the 12th International Conference
on Availability, Reliability and Security. ARES ’17. Reggio Calabria, Italy: ACM,

2017, 47:1–47:10. isbn: 978-1-4503-5257-4. doi: 10.1145/3098954.3103161.

url: http://doi.acm.org/10.1145/3098954.3103161 (visited on 09/20/2019).

[4] H. A. Al-Ofeishat and M. A. Al Rababah. “Near field communication (NFC).” In:

International Journal of Computer Science and Network Security (IJCSNS) 12.2 (2012),

p. 93.

[5] M. Al-Zarouni. “The reality of risks from consented use of USB devices.” In: (2006).

url: https://ro.ecu.edu.au/cgi/viewcontent.cgi?referer=https://

scholar.google.pt/&httpsredir=1&article=1061&context=ism (visited on

01/16/2019).

[6] M. Al-Zubaidie, Z. Zhang, and J. Zhang. “Efficient and Secure ECDSA Algorithm

and its Applications: A Survey.” In: arXiv preprint arXiv:1902.10313 (2019).

[7] M. A. Albahar, O. Olawumi, K. Haataja, and P. Toivanen. “A Novel Method for

Bluetooth Pairing using Steganography.” In: International Journal on Information
Technologies & Security 9.1 (2017), pp. 53–66.

[8] M Alimohammadi and A. Pouyan. “Performance analysis of cryptography methods

for secure message exchanging in VANET.” In: International Journal of Scientific &
Engineering Research 5.2 (2014), p. 912.

[9] S. C. Alliance. “Host card emulation (hce) 101.” In: A Smart Card Alliance Mobile
and NFC Council White Paper (2014).

89

http://oid-info.com/get/1.2.840.10045.3.1.7
http://oid-info.com/get/1.2.840.10045.3.1.7
https://helpx.adobe.com/uk/acrobat/using/securing-pdfs-certificates.html
https://helpx.adobe.com/uk/acrobat/using/securing-pdfs-certificates.html
https://doi.org/10.1145/3098954.3103161
http://doi.acm.org/10.1145/3098954.3103161
https://ro.ecu.edu.au/cgi/viewcontent.cgi?referer=https://scholar.google.pt/&httpsredir=1&article=1061&context=ism
https://ro.ecu.edu.au/cgi/viewcontent.cgi?referer=https://scholar.google.pt/&httpsredir=1&article=1061&context=ism

BIBLIOGRAPHY

[10] F. Aloul, S. Zahidi, and W. El-Hajj. “Two factor authentication using mobile phones.”

In: Computer Systems and Applications, 2009. AICCSA 2009. IEEE/ACS International
Conference on. IEEE. 2009, pp. 641–644.

[11] P. Anantharaman, K. Palani, D. Nicol, and S. W. Smith. “I Am Joe’s Fridge: Scal-

able Identity in the Internet of Things.” In: 2016 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and Communications (Green-
Com) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData). IEEE. 2016, pp. 129–135.

[12] ANSI X9.62 Elliptic Curve Digital Signature Algorithm (ECDSA) signatures and mod-
ules, OID 1.2.840.10045.4. Global OID Reference Database, International Organi-

zation for Standardization (ISO). url: http://oid-info.com/get/1.2.840.

10045.4 (visited on 08/17/2019).

[13] R. Bardou, R. Focardi, Y. Kawamoto, L. Simionato, G. Steel, and J.-K. Tsay. “Efficient

padding oracle attacks on cryptographic hardware.” In: Advances in Cryptology–
CRYPTO 2012. Springer, 2012, pp. 608–625.

[14] E. Barker. “SP 800-57 Part 1 Rev. 4 Recommendation for Key Management, Part

1: General.” In: NIST special publication 800 (2016), p. 57. doi: 10.6028/NIST.SP.

800-57pt1r4.

[15] C. Bermejo and P. Hui. “Steal Your Life Using 5 Cents: Hacking Android Smart-

phones with NFC Tags.” In: arXiv preprint arXiv:1705.02081 (2017).

[16] D. J. Bernstein. “Curve25519: new Diffie-Hellman speed records.” In: International
Workshop on Public Key Cryptography. Springer. 2006, pp. 207–228.

[17] A. S. Bhala, V. P. Kshirsagar, M. B. Nagori, and M. K. Deshmukh. “Performance

comparison of elliptical curve and rsa digital signature on arm7.” In: Proceedings
of International Conference on Information and Network Technology (IPCSIT), Singa-
pore.(4),(2011). 2011, pp. 58–62.

[18] M. Blaser. Securing ad hoc embedded wireless networks with public-key cryptography.

2006. url: https://www.edn.com/design/other/4025638/Securing-ad-hoc-

embedded- wireless- networks- with- public- key- cryptography (visited on

08/17/2019).

[19] Bluetooth Core Specification - v5.0. Tech. rep. Bluetooth Special Interest Group, 2016.

url: https://www.mouser.it/pdfdocs/bluetooth-Core-v50.pdf (visited on

02/02/2019).

[20] Bluetooth SIG. Bluetooth Market Update Report. 2019.

[21] F. F. Brasser, S. Bugiel, A. Filyanov, A.-R. Sadeghi, and S. Schulz. “Softer Smart-

cards.” In: International Conference on Financial Cryptography and Data Security.

Springer. 2012, pp. 329–343.

90

http://oid-info.com/get/1.2.840.10045.4
http://oid-info.com/get/1.2.840.10045.4
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://www.edn.com/design/other/4025638/Securing-ad-hoc-embedded-wireless-networks-with-public-key-cryptography
https://www.edn.com/design/other/4025638/Securing-ad-hoc-embedded-wireless-networks-with-public-key-cryptography
https://www.mouser.it/pdfdocs/bluetooth-Core-v50.pdf

BIBLIOGRAPHY

[22] M. Collotta, G. Pau, T. Talty, and O. K. Tonguz. “Bluetooth 5: A concrete step

forward toward the IoT.” In: IEEE Communications Magazine 56.7 (2018), pp. 125–

131.

[23] L. Constantin. Stop using SHA1 encryption: It’s now completely unsafe, Google proves.
2017. url: https://www.pcworld.com/article/3173791/stop-using-sha1-

it-s-now-completely-unsafe.html (visited on 08/17/2019).

[24] T. Cooijmans, E. E. Poll, E. E. Verheul, and T. T. P. ter Gunne. “Secure key stor-

age and secure computation in Android.” In: Master’s thesis, Radboud University
Nijmegen (2014).

[25] T. Cooijmans, J. de Ruiter, and E. Poll. “Analysis of secure key storage solutions

on android.” In: Proceedings of the 4th ACM Workshop on Security and Privacy in
Smartphones & Mobile Devices. ACM. 2014, pp. 11–20.

[26] P. Cope, J. Campbell, and T. Hayajneh. “An investigation of Bluetooth security vul-

nerabilities.” In: Computing and Communication Workshop and Conference (CCWC),
2017 IEEE 7th Annual. IEEE. 2017, pp. 1–7.

[27] V. Coskun, B. Ozdenizci, and K. Ok. “A survey on near field communication (NFC)

technology.” In: Wireless personal communications 71.3 (2013), pp. 2259–2294.

[28] M. L. Das. “Two-factor user authentication in wireless sensor networks.” In: IEEE
transactions on wireless communications 8.3 (2009), pp. 1086–1090.

[29] A. Developers. Android 4.4 APIs. Tech. rep. 2019. url: https://developer.

android.com/about/versions/android-4.4 (visited on 01/15/2019).

[30] W. Diffie and M. Hellman. “New directions in cryptography.” In: IEEE transactions
on Information Theory 22.6 (1976), pp. 644–654.

[31] Digital Signature Algorithm (DSA) subject public key. Global OID Reference Database,

International Organization for Standardization (ISO). url: http://oid-info.

com/get/1.2.840.10040.4.1 (visited on 08/17/2019).

[32] D. M. Eagleman and A. O. Holcombe. “Causality and the perception of time.” In:

Trends in cognitive sciences 6.8 (2002), pp. 323–325.

[33] J.-E. Ekberg, K. Kostiainen, and N Asokan. “Trusted execution environments on

mobile devices.” In: Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM. 2013, pp. 1497–1498.

[34] Federal Office for Information Security. Protection Profile for the Security Mod-
ule of a Smart Meter Gateway (Security Module PP). Version 1.03. 2014. url:

commoncriteriaportal . org / files / ppfiles / pp0077b _ pdf . pdf (visited on

08/17/2019).

[35] M. Feldhofer and C. Rechberger. “A case against currently used hash functions in

RFID protocols.” In: OTM Confederated International Conferences"On the Move to
Meaningful Internet Systems". Springer. 2006, pp. 372–381.

91

https://www.pcworld.com/article/3173791/stop-using-sha1-it-s-now-completely-unsafe.html
https://www.pcworld.com/article/3173791/stop-using-sha1-it-s-now-completely-unsafe.html
https://developer.android.com/about/versions/android-4.4
https://developer.android.com/about/versions/android-4.4
http://oid-info.com/get/1.2.840.10040.4.1
http://oid-info.com/get/1.2.840.10040.4.1
commoncriteriaportal.org/files/ppfiles/pp0077b_pdf.pdf

BIBLIOGRAPHY

[36] D. Filizzola, S. Fraser, and N. Samsonau. Security Analysis of Bluetooth Technology.

2018.

[37] N. FORUM. NFC Data Exchange Format (NDEF), Technical Specification, Version 1.0.

Tech. rep. NFC Forum, 2006.

[38] C. Gomez, J. Oller, and J. Paradells. “Overview and evaluation of bluetooth low

energy: An emerging low-power wireless technology.” In: Sensors 12.9 (2012),

pp. 11734–11753.

[39] S. Gurjar, I. Baggili, F. Breitinger, and A. Fischer. “An Empirical Comparison of

Widely Adopted Hash Functions in Digital Forensics: Does the Programming Lan-

guage and Operating System Make a Difference?” In: Proceedings of the Conference
on Digital Forensics, Security and Law. 2015, pp. 57–68. url: https://commons.

erau.edu/adfsl/2015/tuesday/6/.

[40] S. Hameed, U. M. Jamali, and A. Samad. “Protecting NFC data exchange against

eavesdropping with encryption record type definition.” In: Network Operations and
Management Symposium (NOMS), 2016 IEEE/IFIP. IEEE. 2016, pp. 577–583.

[41] R. Hunt. “PKI and digital certification infrastructure.” In: Networks, 2001. Proceed-
ings. Ninth IEEE International Conference on. IEEE. 2001, pp. 234–239.

[46] Ieee. IEEE Standard Specifications for Public-Key Cryptography. 2000. doi: 10.1109/

IEEESTD.2000.92292. url: https://standards.ieee.org/standard/1363-

2000.html.

[42] A. A. Imem. “Comparison and evaluation of digital signature schemes employed

in NDN network.” In: arXiv preprint arXiv:1508.00184 (2015).

[43] E. International. On 17 June 2015, the 109th Ecma General Assembly approved new
editions of NFC Standards. 2015.

[44] S. Josefsson and I. Liusvaara. “Edwards-curve digital signature algorithm (Ed-

DSA).” In: Internet Research Task Force, Crypto Forum Research Group, RFC. Vol. 8032.

2017.

[45] A. Juels. “RFID security and privacy: A research survey.” In: IEEE journal on
selected areas in communications 24.2 (2006), pp. 381–394.

[47] M. Knežević, V. Nikov, and P. Rombouts. “Low-latency ECDSA signature veri-

fication—a road toward safer traffic.” In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 24.11 (2016), pp. 3257–3267.

[48] B. Krebs. “Citibank Phish Spoofs 2-Factor Authentication.” In: The Washington Post
(July 10, 2006). url: http://voices.washingtonpost.com/securityfix/2006/

07/citibank_phish_spoofs_2factor_1.html (visited on 12/22/2018).

[49] Z. Lina. “Design and Implementation of KSP on the Next Generation Cryptography

API.” In: Physics Procedia 33 (2012), pp. 1640–1646.

92

https://commons.erau.edu/adfsl/2015/tuesday/6/
https://commons.erau.edu/adfsl/2015/tuesday/6/
https://doi.org/10.1109/IEEESTD.2000.92292
https://doi.org/10.1109/IEEESTD.2000.92292
https://standards.ieee.org/standard/1363-2000.html
https://standards.ieee.org/standard/1363-2000.html
http://voices.washingtonpost.com/securityfix/2006/07/citibank_phish_spoofs_2factor_1.html
http://voices.washingtonpost.com/securityfix/2006/07/citibank_phish_spoofs_2factor_1.html

BIBLIOGRAPHY

[50] J.-C. Liou and S. Bhashyam. “On improving feasibility and security measures of

online authentication.” In: Int. J. Adv. Comp. Techn. 2.4 (2010), pp. 6–16.

[51] A. Lonzetta, P. Cope, J. Campbell, B. Mohd, and T. Hayajneh. “Security Vulnera-

bilities in Bluetooth Technology as Used in IoT.” In: Journal of Sensor and Actuator
Networks 7.3 (2018), p. 28.

[52] A. Maetouq, S. M. Daud, N. A. Ahmad, N. Maarop, N. N. A. Sjarif, and H. Abas.

“Comparison of Hash Function Algorithms Against Attacks: A Review.” In: IN-
TERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICA-
TIONS 9.8 (2018), pp. 98–103.

[53] Microsoft. Cryptography API: Next Generation. 2018. url: https://docs.microsoft.

com/en-us/windows/desktop/seccng/cng-portal (visited on 02/15/2019).

[54] Microsoft. Understanding Cryptographic Providers. 2018. url: https://docs.

microsoft . com / en - us / windows / desktop / seccertenroll / understanding -

cryptographic-providers (visited on 02/15/2019).

[55] Microsoft. Add or remove a digital signature in Office files. 2019. url: https://

support.office.com/en-us/article/add-or-remove-a-digital-signature-

in-office-files-70d26dc9-be10-46f1-8efa-719c8b3f1a2d#__toc311526848

(visited on 08/17/2019).

[56] Microsoft. Secure messages by using a digital signature. 2019. url: https : / /

support.office.com/en-us/article/secure-messages-by-using-a-digital-

signature-549ca2f1-a68f-4366-85fa-b3f4b5856fc6 (visited on 08/17/2019).

[57] Z Mngomezulu, S Rimer, K Ouahada, and A. Ndjiongue. “A review of Bluetooth

and NFC for financial applications.” In: Sixth International Conference on Advances
in Computing, Control and Networking - ACCN 2017 (2017), pp. 48–51. doi: 10.

15224/978-1-63248-117-7-11. url: https://www.seekdl.org/conferences/

paper/details/8674.

[58] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch. PKCS #1: RSA Cryptography
Specifications Version 2.2. RFC 8017. Nov. 2016. doi: 10.17487/RFC8017. url:

https://rfc-editor.org/rfc/rfc8017.txt (visited on 08/17/2019).

[59] T. Muller. “Bluetooth security architecture.” In: White Paper Version 1 (1999).

[60] T. R. Mutchukota, S. K. Panigrahy, and S. K. Jena. “Man-in-the-middle attack and

its countermeasure in bluetooth secure simple pairing.” In: Computer Networks and
Intelligent Computing. Springer, 2011, pp. 367–376.

[61] “National Institute of Standards and Technology (NIST) Federal Information Pro-

cessing Standard (FIPS) 186: Digital Signature Standard (DSS).” In: Information
Technology Laboratory, NIST, Gaithersburg, MD (1994).

93

https://docs.microsoft.com/en-us/windows/desktop/seccng/cng-portal
https://docs.microsoft.com/en-us/windows/desktop/seccng/cng-portal
https://docs.microsoft.com/en-us/windows/desktop/seccertenroll/understanding-cryptographic-providers
https://docs.microsoft.com/en-us/windows/desktop/seccertenroll/understanding-cryptographic-providers
https://docs.microsoft.com/en-us/windows/desktop/seccertenroll/understanding-cryptographic-providers
https://support.office.com/en-us/article/add-or-remove-a-digital-signature-in-office-files-70d26dc9-be10-46f1-8efa-719c8b3f1a2d#__toc311526848
https://support.office.com/en-us/article/add-or-remove-a-digital-signature-in-office-files-70d26dc9-be10-46f1-8efa-719c8b3f1a2d#__toc311526848
https://support.office.com/en-us/article/add-or-remove-a-digital-signature-in-office-files-70d26dc9-be10-46f1-8efa-719c8b3f1a2d#__toc311526848
https://support.office.com/en-us/article/secure-messages-by-using-a-digital-signature-549ca2f1-a68f-4366-85fa-b3f4b5856fc6
https://support.office.com/en-us/article/secure-messages-by-using-a-digital-signature-549ca2f1-a68f-4366-85fa-b3f4b5856fc6
https://support.office.com/en-us/article/secure-messages-by-using-a-digital-signature-549ca2f1-a68f-4366-85fa-b3f4b5856fc6
https://doi.org/10.15224/978-1-63248-117-7-11
https://doi.org/10.15224/978-1-63248-117-7-11
https://www.seekdl.org/conferences/paper/details/8674
https://www.seekdl.org/conferences/paper/details/8674
https://doi.org/10.17487/RFC8017
https://rfc-editor.org/rfc/rfc8017.txt

BIBLIOGRAPHY

[62] National Security Agency (NSA). The Case for Elliptic Curve Cryptography. 2009.

url: http://www.nsa.gov/business/programs/elliptic_curve.shtml (visited

on 08/17/2019).

[63] National Security Agency (NSA). Suite B Cryptography. 2014. url: https://www.

nsa.gov/ia/programs/suiteb_cryptography/ (visited on 08/17/2019).

[64] Near Field Communication - White Paper. Ecma/TC32-TG19/2005/012. Ecma Inter-

national. 2005.

[65] NFC-SEC, White Paper. Ecma/TC47/2008/089. Ecma International. 2008.

[66] N. Nitta, F. Wu, J. T. Lee, and G. Yushin. “Li-ion battery materials: present and

future.” In: Materials today 18.5 (2015), pp. 252–264.

[67] J. Padgette, K. Scarfone, and L. Chen. NIST Special Publication 800-121 Revision
2, Guide to Bluetooth Security. url: https://nvlpubs.nist.gov/nistpubs/

SpecialPublications/NIST.SP.800-121r2.pdf.

[68] S. K. Panigrahy, S. K. Jena, and A. K. Turuk. “Security in Bluetooth, RFID and

wireless sensor networks.” In: Proceedings of the 2011 International Conference on
Communication, Computing & Security. ACM. 2011, pp. 628–633.

[69] Public Key Cryptography for the Financial Services Industry: the Elliptic Curve Digital
Signature Algorithm (ECDSA). ANSI X9.62. Nov. 2005.

[70] A. Rahul, G. Krishnan G, U. Krishnan H, and S. Rao. “Near Field Communication

(NFC) Technology: A Survey.” In: International Journal on Cybernetics & Informatics
4 (Apr. 2015), pp. 133–144. doi: 10.5121/ijci.2015.4213.

[71] H. Rifa-Pous and J. Herrera-Joancomartí. “Computational and energy costs of cryp-

tographic algorithms on handheld devices.” In: Future internet 3.1 (2011), pp. 31–

48.

[72] R. L. Rivest, A. Shamir, and L. Adleman. “A method for obtaining digital na-

tures and public-key cryptosystems.” In: Communications of the ACM 21.2 (1978),

pp. 120–126.

[73] M. Riyazuddin. “NFC: A review of the technology, applications and security.” In:

ABI research (2011).

[74] M. Roland. “Applying recent secure element relay attack scenarios to the real

world: Google Wallet Relay Attack.” In: arXiv preprint arXiv:1209.0875 (2012).

[75] M. Roland and J. Langer. “Digital signature records for the NFC data exchange

format.” In: Near Field Communication (NFC), 2010 Second International Workshop
on. IEEE. 2010, pp. 71–76.

[76] M. Roland, J. Langer, and J. Scharinger. “Security vulnerabilities of the NDEF

signature record type.” In: Near field communication (NFC), 2011 3rd International
Workshop on. IEEE. 2011, pp. 65–70.

94

http://www.nsa.gov/business/programs/elliptic_curve.shtml
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-121r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-121r2.pdf
https://doi.org/10.5121/ijci.2015.4213

BIBLIOGRAPHY

[77] M. Roland, J. Langer, and J. Scharinger. “Practical attack scenarios on secure

element-enabled mobile devices.” In: 2012 4th International Workshop on Near Field
Communication. IEEE. 2012, pp. 19–24.

[78] RSA Digital Signature Standard with PKCS #1 Scheme and SHA-based Hash Family,
OID 1.2.840.11354.1.1.11 to 1.2.840.11354.1.1.13. Global OID Reference Database,

International Organization for Standardization (ISO). url: http://oid-info.

com/get/1.2.840.113549.1.1.11 (visited on 08/17/2019).

[79] RSA Digital Signature Standard with Probabilistic Signature Scheme (RSASSA-PSS),
OID 1.2.840.113549.1.1.10. Global OID Reference Database, International Orga-

nization for Standardization (ISO). url: http://oid-info.com/get/1.2.840.

113549.1.1.10 (visited on 08/17/2019).

[80] S. Seys and B. Preneel. “Power consumption evaluation of efficient digital signature

schemes for low power devices.” In: WiMob’2005), IEEE International Conference
on Wireless And Mobile Computing, Networking And Communications, 2005. Vol. 1.

IEEE. 2005, pp. 79–86.

[81] SIMalliance. Secure Authentication for Mobile Internet Services - Critical Considera-
tions v1.1. 2011.

[82] SIMalliance. Secure Element Deployment & Host Card Emulation v1.0. 2014. url:

https://simalliance.org/wp-content/uploads/2015/03/Secure-Element-

Deployment-Host-Card-Emulation-v1.0.pdf (visited on 01/15/2019).

[83] N. Smart et al. “Algorithms, Key Size and Protocols Report (2018).” In: ECRYPT—
CSA, H2020-ICT-2014—Project 645421 (2018).

[84] S. Srinivas, D. Balfanz, E. Tiffany, F. Alliance, and A. Czeskis. “Universal 2nd factor

(U2F) overview.” In: FIDO Alliance Proposed Standard (2015), pp. 1–5.

[85] W. Stallings. Network Security Essentials: Applications and Standards. 4th. Upper

Saddle River, NJ, USA: Prentice Hall Press, 2010. isbn: 0136108059, 9780136108054.

[86] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov. “The first

collision for full SHA-1.” In: Annual International Cryptology Conference. Springer.

2017, pp. 570–596.

[87] D.-Z. Sun, Y. Mu, and W. Susilo. “Man-in-the-middle Attacks on Secure Simple

Pairing in Bluetooth Standard V5.0 and Its Countermeasure.” In: Personal Ubiqui-
tous Comput. 22.1 (Feb. 2018), pp. 55–67. issn: 1617-4909. doi: 10.1007/s00779-

017-1081-6. url: https://doi.org/10.1007/s00779-017-1081-6 (visited on

09/20/2019).

[88] J.-Z. Sun, D. Howie, A. Koivisto, and J. Sauvola. “Design, implementation, and

evaluation of Bluetooth security.” In: Wireless Lans And Home Networks: Connecting
Offices and Homes. World Scientific, 2001, pp. 121–130.

95

http://oid-info.com/get/1.2.840.113549.1.1.11
http://oid-info.com/get/1.2.840.113549.1.1.11
http://oid-info.com/get/1.2.840.113549.1.1.10
http://oid-info.com/get/1.2.840.113549.1.1.10
https://simalliance.org/wp-content/uploads/2015/03/Secure-Element-Deployment-Host-Card-Emulation-v1.0.pdf
https://simalliance.org/wp-content/uploads/2015/03/Secure-Element-Deployment-Host-Card-Emulation-v1.0.pdf
https://doi.org/10.1007/s00779-017-1081-6
https://doi.org/10.1007/s00779-017-1081-6
https://doi.org/10.1007/s00779-017-1081-6

BIBLIOGRAPHY

[89] J. M. Tjensvold. “Comparison of the IEEE 802.11, 802.15. 1, 802.15. 4 and 802.15.

6 wireless standards.” In: IEEE: September. Vol. 18. 2007.

[90] A. Umar, K. Mayes, and K. Markantonakis. “Performance variation in host-based

card emulation compared to a hardware security element.” In: Mobile and Secure
Services (MOBISECSERV), 2015 First Conference on. IEEE. 2015, pp. 1–6.

[91] Z. Wang. “Information Security Vulnerabilities of NFC Technology and Improve-

ment Programs.” In: Proceedings of the 2018 International Conference on Information
Science and System. ICISS ’18. Jeju, Republic of Korea: ACM, 2018, pp. 196–

199. isbn: 978-1-4503-6421-8. doi: 10.1145/3209914.3226165. url: http:

//doi.acm.org/10.1145/3209914.3226165 (visited on 09/20/2019).

[92] Why Mobile is the Next Digital Identity. 30129-2-0216. Entrust Datacard. Jan. 2016.

url: https://www.entrust.com/wp- content/uploads/2013/08/Mobile-

Perception-vs-Reality_JAN16_WEB.pdf (visited on 12/22/2018).

[93] T. Willingham, C. Henderson, B. Kiel, M. S. Haque, and T. Atkison. “Testing Vulner-

abilities in Bluetooth Low Energy.” In: Proceedings of the ACMSE 2018 Conference.

ACMSE ’18. Richmond, Kentucky: ACM, 2018, 6:1–6:7. isbn: 978-1-4503-5696-1.

doi: 10.1145/3190645.3190693. url: http://doi.acm.org/10.1145/3190645.

3190693 (visited on 09/20/2019).

[94] M. Woolley. Bluetooth Technology Protecting Your Privacy. Apr. 2015. url: https:

//blog.bluetooth.com/bluetooth-technology-protecting-your-privacy

(visited on 01/23/2019).

96

https://doi.org/10.1145/3209914.3226165
http://doi.acm.org/10.1145/3209914.3226165
http://doi.acm.org/10.1145/3209914.3226165
https://www.entrust.com/wp-content/uploads/2013/08/Mobile-Perception-vs-Reality_JAN16_WEB.pdf
https://www.entrust.com/wp-content/uploads/2013/08/Mobile-Perception-vs-Reality_JAN16_WEB.pdf
https://doi.org/10.1145/3190645.3190693
http://doi.acm.org/10.1145/3190645.3190693
http://doi.acm.org/10.1145/3190645.3190693
https://blog.bluetooth.com/bluetooth-technology-protecting-your-privacy
https://blog.bluetooth.com/bluetooth-technology-protecting-your-privacy

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Context and Motivation
	Objectives, Contributions and Validation
	Document Organization

	Background and Related Work
	NFC and Bluetooth Security
	Near Field Communication
	Bluetooth

	Secure Elements and Host Card Emulation
	Secure Element
	Host Card Emulation

	Windows Cryptographic Providers
	CNG and Key Storage Providers Overview

	Critical Analysis
	Summary
	Discussion for Dissertation Approach

	System Model and Architecture
	System Model and Architecture
	System Model Overview
	Threat Model
	Architectural Components
	Components Interactions

	BluetoothKSP Architecture and Components
	Key Storage Provider Architecture
	Runtime Support

	Cryptographic Functions
	Windows KSP Functions and Supported Operations
	Provided Digital Signatures
	Comparative Analysis on Provided Digital Signatures

	BluetoothKSP Initialization and Setup
	Bluetooth Security Considerations and Enforcement
	Summary Remarks

	Implementation
	Prototype Overview
	Building Blocks and Technology
	Android-Side or Server-Side
	Windows-Side or Client-Side

	Other Development Tools
	Implementation Effort
	Implementation Issues and Final Remarks

	Experimental Evaluation
	Test bench Environment
	Generic Test bench
	Software Environments and Devices

	Setup and Benchmarking
	Use of BluetoothKSP with Conventional Applications
	Adobe Acrobat
	Microsoft Word and Outlook

	Evaluation of BluetoothKSP Digital Signatures
	Client-side Latency Observations
	Components in the Observed Latency

	Bluetooth Performance Evaluation
	Bluetooth Low Energy
	TLS/Bluetooth Enforcement

	Other BluetoothKSP Evaluation Metrics
	Packaging Metrics
	Memory Resources and Utilization
	Power Consumption Observation

	Summary

	Conclusions
	Main Conclusions and Remarks
	Future Work

	Bibliography

