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Abstract. A common variant of the Michaelis-Menten model of enzyme 

kinetics involves inhibition by excess substrate.  This phenomenon is known 

as substrate inhibition and the mathematical description of it requires an 

inhibition constant (Ki) as well as the usual kinetic parameters (Km and Vmax).  

Fitting the 3-parameter substrate inhibition expression to data that might 

reasonably be described by the 2-parameter Michaelis-Menten model yields 

biased estimates of Km and Vmax.  Numerical simulations demonstrate that the 

extent of the bias is related to the magnitude of the estimated Ki.  The quality 

of the data is particularly important in determining the size of Ki and, 

therefore, in the bias of the other parameters.  Consideration of the residuals, 

statistical justification of the inclusion of extra parameters and reporting of the 

estimated values should be matters of routine.  The estimates of Km and Vmax 

obtained from a three-parameter substrate inhibition model can only be 

compared with the corresponding estimates from the two-parameter 

Michaelis-Menten model with caution. 
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1   INTRODUCTION 

We have deliberately adapted the title of a paper published in 1978 by Ellis and 

Duggleby [1] because we have noticed the use of substrate inhibition (SI) models of 

enzyme kinetics that are not justified by the data [2-4].  This involves analysing data 

using a three-parameter model rather than the usual two-parameter Michaelis-

Menten model (Figure 1).  In general, no statistical analysis is given to substantiate 

the significance of the added parameter which might support the use of such 

models.  In at least some cases, even the most cursory analysis would demonstrate 

that the extra parameter is not statistically justified. 

Several other justifications might be made for analysing data that do not exhibit 

SI as though they do.  These include that 
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Figure 1.  The mechanism of (A) a Michaelis-Menten enzyme [5] and (B) an enzyme exhibiting 

substrate inhibition [6].  In each case S, E and P are substrate, enzyme and product, respectively 

and ES and SES are the enzyme-substrate and substrate-enzyme-substrate complex, respectively.  

The ki are rate constants,  is a factor reflecting the relative rate of P release from SES and Ki is 

the dissociation constant of SES.    

(i) they represent a condition in which SI is eliminated as is the case for ent-

copalyl diphosphate synthase [3], 

(ii) related enzymes exhibit SI in the conditions employed, as is the case for 

IMP dehydrogenase [2], and 

(iii) related enzymes may exhibit SI in some conditions, as is the case 

glutamate dehydrogenase [4]. 

Of these examples, Prisic and Peters [3] have the strongest justification because 

they report very pronounced SI of ent-copalyl diphosphate synthase (E. C. 5.5.1.13) 

in the presence of Mg
2+

, but the activity is considerably reduced and SI is 

effectively eliminated when Mg
2+

 is absent.  Obviously, these authors wished to 

compare the kinetic of the enzyme in various conditions, and it might be argued that 

this necessitates the treatment of the data using an SI model.  The latter two 

situations provide much weaker justification.  For example, IMP dehydrogenase 

(E. C. 1.1.1.205) does exhibit SI in some protozoa (such as Cryptospiridium parvum 

[7]), but not in others (such as Leishmania donovani [8]), which makes the 

assumption of SI in the Toxoplasma gondii enzyme [2] suspect.  Similarly, 

glutamate dehydrogenase (GDH, E. C. 1.4.1.3) can exhibit non-Michaelis-Menten 

kinetics, including substrate inhibition [9].  While the behaviour of the enzyme can 

be complicated [10-12], it does depend on the conditions employed.  For example, 

Rife and Cleland [13] pointed out that SI by -ketoglutarate is not apparent in the 

bovine enzyme at low NH3 concentrations. 

We have worked on the nitrogen metabolism, and especially the GDH, of the 

nematode parasite Teldorsagia circumcincta for some time [14, 15].  Recently, our 

own kinetic data [15] have been confirmed using a recombinant enzyme [4].  

Unfortunately, these authors assumed that the enzyme exhibited SI, despite the 

absence of any indication that this was the case, without providing any statistical 

support [16, 17] for their implicit suggestion that the extra parameter was justifiable 

and without even providing a complete set of parameter estimates [4].  To make 

these comparisons it is necessary to know how the assumption of SI impacts on the 

estimates of Km and Vmax. 

These observations prompted us to ask three questions.  First, how large might 

the unreported parameter be?  Second, how might the use of an inappropriate model 
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distort the estimates of the reported parameters?  Third, how the experimental error 

in the measurements influences the parameter estimates obtained.  Here, we outline 

the relevant theory and then address each of these questions in turn using numerical 

experiments. 

2   THEORY 

The Michaelis-Menten reaction [5] in which an enzyme (E) converts a substrate (S) 

to a product (P) involves the transient formation of an enzyme-substrate complex 

(ES) (Figure 1A).  The rate of P formation is given by 

  
sK

sV
sv

m
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 max  (1) 

where s is the concentration of S, Vmax is the asymptotic value of vM at high s and Km 

is sometimes referred to as the ‘affinity’ of the enzyme for S [18].  Equation (1) 

describes a rectangular hyperbola in which vM increases with s, vM = 0.5Vmax when s 

= Km and approaches Vmax as s approaches infinity.  While there is some argument as 

to whether any enzyme functions according to this model [19], it does provide a 

simple means of characterising the kinetic behaviour of many enzymes.   

However, the Michaelis-Menten model really does not describe the mechanism 

of the many enzymes that exhibit SI [9].  In such cases, the initial rise in v with 

increasing s is followed by a decline in v as s is increased further (Figure 2).  A 

number of mechanisms could give rise to this behaviour, but a simple model in 

which S may bind to a second site on the enzyme, forming a ternary SES complex 

(Figure 1B) and thereby eliminating (or at least reducing) the activity of the enzyme 

is commonly described [6].  This results in a modified Michaelis-Menten equation 
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in which Ki is the dissociation constant of SES (Figure 1B).  It is obvious from (2) 

that the maximum vS is 
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and that vS(Km)  vS((KmKi)
1/2

).  It is not possible to put any useful bounds on the 

relative magnitudes of Km and Ki.  The concentrations at which vS = 0.5vS((KmKi)
1/2

) 

are 
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Figure 2.  Kinetics of the Michaelis-Menten reaction (dashed curve) and substrate inhibition 

model (solid curves) for several different values of Ki/Km (as indicated).  The dashed curve was 

calculated using (1), but is equivalent to (2) if Ki/Km → ∞, and the other curves were calculated 

using (2).  In all cases Vmax = 100 units and Km = 1 unit. 

 










































 624

2

15.0

m

i

m

i

m

i

m

i

m K

K

K

K

K

K

K

K

K

s
. (4) 

While the two values of s0.5/Km given by (4) exhibit increase with Ki/Km, they 

exhibit distinct behaviours (Figure 3).  As Ki/Km approaches infinity, the smaller 

value approaches 1 whereas the larger value increases monotonically (Figure 3A), 

reflecting the asymmetry of (2) around the maximum as is apparent in Figure 2.  As 

Ki/Km approaches infinity, the maximum vS approaches Vmax (3) and vS(Km) 

approaches 0.5Vmax, but around Ki/Km = 1 the maximum vS equals vS(Km) (Figure 

3B). 

3   COMPUTATIONAL METHODS 

Experimental data were simulated in R [20] using (1) and a normally distributed 

random error term (; mean = 0, standard deviation = ) was added to each datum 

       ,0 svsv M , (5) 

where s = (0, 0.5, 1, 2, 3, 5, 7.5, 10), Vmax = 100 and Km = 1.  The error term was 

calculated using the rnorm function in R and values of  as specified.  Equation (2) 

was fitted to the eight simulated data points by least squares nonlinear regression to 

obtain estimates of Vmax, Km and Ki.  This process was repeated to obtain n simulated 

replicates yielding a total of 8n data points and n replicates of the parameter 

estimates.  The mean absolute error () was estimated from these 8n points using 
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Figure 3.  Dependence on Ki/Km of  (A) the concentration of S yielding maximum vS (solid line) 

and the concentrations at which vS is half of the maximum values (dashed curves, (4)), and of (B) 

the maxium vS (solid curve, (3)) and the value of vS(Km) (dashed curve).  Note that (KmKi)
1/2

/Km = 

(Ki/Km)
1/2

, but the form used is intended to emphasise the connection with (3). 
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where Sv̂  is the fitted value of (2).  The magnitude of  can be compared with Vmax 

= 100. 

We have previously demonstrated the value of a confidence band for (1)  
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[21] and the same approach yields a confidence band () for (2) 
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where V, K and I are the errors associated with Vmax, Km and Ki, respectively.  As 

for (2) and (1), (8) tends towards (7) if Ki is large. 
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Figure 4.  Fits (grey curves) of (2) to simulated data (○) calculated from (5) assuming  = 3. The 

average parameter values (Km, Vmax and Ki) obtained from the fits to each of 100 simulated 

datasets were used in (2) to calculate the expected curve (solid blue curve) and the associated 

95% confidence band (dotted blue curves) were calculated from (8) using the corresponding error 

estimates (K, V and I).  The dashed yellow curve is the Michaelis-Menten curve (1) on which 

the simulation was based (Vmax = 100 units, Km = 1 unit). 

4   NUMERICAL EXPERIMENT 

Some representative fits of (2) to simulated data (5) are shown in Figure 4.  It is 

clear that the simulated experimental variation leads to a considerable range of 

behaviour, including examples in which there is a clear indication of a decline in v 

with increasing s (see the lowest grey curve for s = 8-10 units in Figure 4).  Using 

the averages of the n = 100 estimated values of Vmax, Km and Ki in (2) yields an 

overestimate of v compared with vM, even when the 95% confidence interval (8) is 

taken into account (Figure 4). 

What is not apparent from Figure 4 is the range of parameter estimates obtained 

even with  = 3.  A larger number of simulations yields distributions of the 

parameters (Figure 5).  Clearly, there is a strong linear relationship between the 

estimated values of Km and Vmax (Figure 5A) and both parameters have unimodal 

distributions (Figures 5, A and B).  However, a significant proportion of the 

simulations yielded parameter estimates that were much larger than the actual 

values (Vmax = 100 units, Km = 1 unit) and a smaller proportion of the estimates were 

smaller (Figure 5, A and B).  The estimates of Ki had a bimodal distribution (Figure 

5C) in which about half of the values were large (about 10
6
) and the remainder were 

10
0
-10

3
.  A Ki of about 10

6
 is sufficient to render (2) essentially indistinguishable 

from (1), but those values that are less than 10
2
 (and even 10

3
) yield curves quite 

distinct from (1), as is clear from Figure 2.  However, high Ki values tended to be 
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associated with estimates of Km and Vmax close to the correct values (Figure 5, B and 

C).  Smaller values of Ki (say < 10
2
) were associated with overestimates of both Km 

and Vmax (Figure 5, B and C). 

Increasing the simulated experimental error by increasing the standard deviation 

() of the error term in (5) yields a corresponding increase in the variation in the 

parameter estimates (Figure 6).  These distributions are similar to those shown in 

Figure 5, but the range of variation in both Vmax and Km increases exponentially with 

increasing  (Figure 6).  The bimodal distribution of Ki is clear because the mean is 

largely unaffected by changes in , whereas the median declined with increasing  

(Figure 6C). 

5   DISCUSSION 

The unjustified use of (2) rather than (1) can distort the estimates of Vmax and Km 

obtained.  In general, this tends to yield overestimates of Vmax and Km, especially if 

experimental error is sufficient to result in estimates of Ki < 10
3
, as is illustrated in 

Figure 2.  It is a simple matter to determine whether the introduction of an extra 

parameter is statistically justified  [16, 17], but this tends not to be done [2, 4] and it 

is difficult to assess without access to the data.  Irrespective of this, if (2) is fitted to 

data, it is important that all three parameter estimates (and the associated error) are 

published because then (8) can be used in conjunction with (7) to assess the viability 

of (1) and (2).   Unfortunately, the parameter estimates are not always given [4].  In 

these circumstances, it is possible only to assess the data by eye, in which case 

systematic patterns in the residuals are a valuable indication [1]. 
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Figure 5.  Distributions and relationships between the parameter estimates (○) obtained from 

fitting (2) to each of 10000 simulations of (5). (A) The relationship between the estimates of Vmax 

and Km and the distribution of Vmax (upper histogram). (B) The relationship between the estimates 

of Km and log10(Ki) and the distribution of Km (upper histogram).  (C) The relationship between 

the estimates of Vmax and log10(Ki) and the distribution of log10(Ki) (upper histogram).  It was 

assumed that Vmax = 100 units, Km = 1 unit and  = 3. 

 

 

Figure 6.  Effect of error on the distributions of the estimates of Vmsc (A), Km (B) and Ki (C) 

obtained by fitting (2) to data simulated using (5).  In each case the solid black column represents 

the 25
th
-75

th
 percentiles, the line extends from the 5

th
 to the 95

th
 percentile and the open (○) and 

grey (●) circles represent the mean and median, respectively. 

In passing, we suggest that the inappropriate use of SI models is partly 

promoted by their availability in popular software packages such as Prism, which 

was used in two of the three examples we outlined in the introduction [2, 4].  

Another common source of bias in parameter estimates [23, 24] is the use of the 

double-reciprocal plot proposed by Lineweaver and Burk in 1934 [22].  We 

speculate that the widespread use of software of this sort promotes the continued 

application of such transformations despite the statistical arguments in favour of the 

use of nonlinear regression [25] and the availability of the necessary software [20].  

The Km or the Vmax obtained from (1) are not necessarily comparable with those 

obtained from (2) because the inclusion of Ki can distort the estimates.  

Consequently the parameter estimates obtained from the models shown in Figure 1 

(1-2) can only be compared with caution, which justifies the approach adopted by 

Prisic and Peters [3].  However, if (2) is used, then all of the parameter estimates 
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should be reported and, if possible, the statistical significance of the third parameter 

(Ki) should be demonstrated [16, 17]. 
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