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Abstract
We formulate and solve a physically-based, phase space kinetic equation for
transport in the presence of trapping. Trapping is incorporated through a waiting
time distribution function. From the phase-space analysis, we obtain a gen-
eralized diffusion equation in configuration space. We analyse the impact of the
waiting time distribution, and give examples that lead to dispersive or non-
dispersive transport. With an appropriate choice of the waiting time distribution,
our model is related to fractional diffusion in the sense that fractional equations
can be obtained in the limit of long times. Finally, we demonstrate the appli-
cation of this theory to disordered semiconductors.

Keywords: kinetic theory, dispersive transport, fractional diffusion equation

1. Introduction

The link between theory and experiments measuring transport properties in either gases or
condensed matter is provided by an advection–diffusion equation or Fokker–Planck equation
for number density n tr( , ) [1]. These configuration-space theories are only valid in the
hydrodynamic regime of smooth spatial gradients [2]. It is therefore fortunate that physical
systems such as crystalline condensed matter and gaseous media rapidly approach this regime.
In these systems, collisions are effectively instantaneous, and memory of the initial condition is
lost after only a few collisions. Any large gradients are quickly smoothed. For such ‘classical’
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transport, the corresponding diffusion equation is a conventional partial differential equation of
first order in t and second order in r. Such systems are characterized by a diffusive regime
wherein the mean square displacement grows linearly, i.e. 〈 〉 − ∼x x t2 2 . In contrast, there is
an increasing body of literature demonstrating ‘anomalous’ diffusion, wherein the mean square
displacement is nonlinear, i.e. 〈 〉 − ∼ γx x t2 2 where γ ≠ 1 [3]. To mention just a few,
subdiffusion (γ < 1) occurs in the transport of charge carriers in disordered semiconductors
[4, 5], and the movement of lipids and proteins of cell membranes [6]; whereas Lévy flight
(γ > 1) has been observed in the diffusion of ultracold atoms in an optical lattice [7, 8].

Subdiffusion is fundamentally slower than regular Brownian diffusion. It arises from
repeated trapping and de-trapping of the transported species, in which periods of ‘classical’
transport are interrupted by (potentially long) periods of immobilization. Consequently, the
memory of the initial condition may persist for long times, and large gradients are not
necessarily smoothed out. Such effects are often accounted for by replacing the conventional
time derivative with a fractional derivative [9–13], which in turn accounts for the memory
effects. However, the spatial gradient terms are left intact, and thus the weak gradient
assumption is therefore still implicit. This is an apparent contradiction that challenges the
validity of the fractional diffusion equations. Until now, this issue has only been addressed in an
ad hoc matter, through solution of an exactly solvable model kinetic equation in phase space
[14]. The phase space system does not require the assumption of weak gradients, so this
questionable assumption is avoided. Trapping effects were incorporated in the ‘collision term’

in a way which, although consistent with other contemporary kinetic equations, is nevertheless
ad hoc in nature, and therefore warrants further scrutiny [14].

This paper resolves the ad hoc nature of the previous approach by revisiting the phase
space formulation. We develop from first principles a new physically-based, exactly solvable
model kinetic equation, whose solution leads, in the weak gradient limit, to a generalized
diffusion equation. This equation provides a general description of transport in the presence of
trapping. In the appropriate limit of instantaneous de-trapping, it reduces to the classical
diffusion equation. Conversely, in the case of traps that possess a divergent waiting time,
dispersive (subdiffusive) transport is obtained, similarly to the fractional diffusion equations
commonly studied [15–18].

2. Procedure

Kinetic theory aims at finding the charge carrier phase space distribution function f tr v( , , ),
from which the quantities of physical interest follow as integrals over velocity space, e.g., the
number density ∫=n t v f tr r v( , ) d ( , , )3 . In the classical kinetic theory of Boltzmann,
collisions are assumed to be instantaneous in time [19], but here collisions times may be non-
zero. We quantify the collision times according to a probability density function, which we call
the ‘waiting time distribution’ ϕ τ( ). A generalized kinetic equation for the phase-space
distribution function f tr v( , , ) is derived, from which we obtain an exact expression for the
number density n tr( , ). In the weak gradient limit, n is shown to satisfy a generalized diffusion
equation, valid for any ϕ τ( ), which can be applied to either classical or trap-limited transport.
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3. The phase space model

Figure 1 outlines the phase space trapping and de-trapping picture schematically. Suppose that
at time t charge carriers moving freely are scattered out of a phase space element centred on
r v( , ) at a constant rate ν into localized or trapped states, i.e., the rate of loss is -νf tr v( , , ).
They remain trapped for a range of various possible times τ, as determined by the waiting time
distribution, defined such that ϕ τ τ( ) d is the probability of de-trapping between times τ and
τ τ+ d after the trapping event. Thus the rate at which particles are re-entering the phase-space
element under consideration at time t is ∫ν τϕ τ τ ν− ≡f tr vd ( ) ( , , )

t

0 detrap
ϕ*f

detrap
, where

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟π

= −f t n t
m

k T

m

k T
r v r

v
( , , ) ( , )

2
exp

2
(1)

B B
detrap

3 2 2

is the distribution function for the de-trapped particles, assumed to be a Maxwellian at medium
temperature T. Here, m is the particle mass (or effective mass), and kB is the Boltzmann
constant. The corresponding free particle function is thus

 ⎡⎣ ⎤⎦ν ϕ∂ + · + · ∂ = − − *( ) f f fv a , (2)t v detrap

where a is the external force per unit mass. Note that only the second (de-trapping) term on the
right hand side is convolved with ϕ, corresponding to a delayed release from the localized
states. In contrast, scattering into traps takes place without any delay, and the first term on the
right hand side is not convolved. We note that the classical BGK equation [20], well known in
gas and crystalline semiconductor transport studies, is regained when collisions are
instantaneous. Instantaneous collisions are recovered by setting the waiting time distribution
to be the Dirac delta, i.e. ϕ τ δ τ=( ) ( ).

Figure 1. Key processes occurring in the kinetic model. Freely moving charges may be
scattered into localized states. The newly detrapped charges emerge with a Maxwellian
distribution of velocities at the medium temperature.
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We now define the operator

ν ϕ∂ ≡ ∂ + − *∼
[1 ], (3)t t

and write equation (2) in the equivalent form

 ⎡⎣ ⎤⎦νϕ∂ + · + · ∂ = − * −∼( ) f f fv a . (4)t v detrap

Integration of (4) over all velocities yields the equation of continuity,

 Γ∂ + · =∼
n 0, (5)t

where ∫Γ = v f tv r vd ( , , )3 is the free particle flux. A further integration over r yields

∂ =∼
N 0, (6)t

where ∫=N t d r d v f tr v( ) ( , , )3 3 is the total free particle number. Since this implies
ν ϕ∂ = − − * ≠N N[1 ] 0,t it is clear that the number of free carriers is not constant in time,

unless either ν → 0 or ϕ δ→t t( ) ( ).
The solution of equation (2) in infinite space, with the initial condition,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟δ

π
= −f N

m

k T

m

k T
r v r

v
( , , 0) (0) ( )

2
exp

2
(7)

B B0

3 2 2

0

corresponding to release of N (0) particles from the origin of coordinates with a Maxwellian
distribution of velocities with an initial temperature T0, can be obtained exactly through Fourier
and Laplace transformation in space and time respectively, following the same mathematical
procedure as [14] and [21]. The transformed number density then follows

⎡⎣ ⎤⎦
∫ ∫

ξ ν ξ

νϕ ξ ν ξ

= − · −

=
− +

− ˆ − +

−∞

∞ ∞

( ) ( )

n p i t pt n t

N
T Z p T

p T Z p T

k r k r r( , ) d exp ( ) d exp ( ) ( , )

(0)
( )

1 ( ) ( ) [ ( ) ( )]
, (8)

0

0 0

where k is the Fourier variable, p is the Laplace variable,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ξ = + ·

−

T
i

k T

m

i

k
a k

k
( )

1

2
, (9)B

2

1 2

·Z [ ] is the plasma dispersion function defined by ζ π ζ= −ζ−Z i e i( ) erfc ( ),
2

and
∫ϕ ϕ^ = −

∞
p t pt t( ) d exp ( ) ( )

0
is the Laplace transform of the waiting time distribution.

Inversion of the Laplace transform of equation (8) could be carried out, if desired, through
the usual contour integral, which would be evaluated using the residue theorem in terms of the
singularities of n p k( , ), which are given by the zeroes of the denominator of (8), i.e.,

νϕ ξ ν ξ− ˆ − + =p T Z p T1 ( ) ( ) [ ( ) ( ) ] 0. (10)

However, here the interest is confined to the asymptotic, weak gradient, long time regime,
which is determined by the small | |k solutions of (10). Since in this case ν ξ| + | ≫p T( ) ( ) 1, the
asymptotic representation
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⎜ ⎟⎛
⎝

⎞
⎠ζ

ζ
ζ ζ≈ − + + +− −Z ( )

1
1

1
2

3
4

... (11)2 4

of the plasma dispersion function [22] may be used. Proceeding in this way, the solution of (10),
valid to second order in | |k , is found to be

I
⎡
⎣⎢

⎤
⎦⎥ν ν ν

= − · − +∼p i
k T

m

a k kk aa
: , (12)

T
B

T

2

where a and k are column vectors, I is the unit matrix,

ν ϕ≡ + −∼p p p[1 ( ) ], (13)

and : denotes a double contraction over tensor indices1. A similar result follows from
Laplace–Fourier transformation of the generalized diffusion equation

D  ∂ + · − =∼( ) nv : 0 , (14)t d

with ∂̃t specified by equation (3). The singularities of n p k( , ) in this case are found from

D= − · −∼p iv k kk : , (15)d
T

which, to be consistent with equation (12), requires the drift velocity and diffusion tensor to be
given by

D I
⎡
⎣⎢

⎤
⎦⎥ν ν ν

= = +
k T

m
v

a aa
,

1
. (16)d

B
T

2

It is clear that the effect of trapping enters equation (14) only through the operator ∂̃t, while the
spatial gradient terms are determined by free carrier transport. Moreover, the free carrier
transport coefficients are unaltered by trapping, e.g., equation (16) provides exactly the same
expressions that one obtains from the classical (non-trapping) BGK model kinetic equation
[20, 21].

At this point we note that we can obtain the same result in a more direct way, by simply
assuming Fickʼs law for the free carriers,

DΓ = −n nv (17)d

and substituting into the right hand side of equation (5), furnishing equation (14) once more.
From this perspective, the preceding phase space analysis may be taken as confirming the
validity of Fickʼs law even in the presence of trapping and de-trapping.

To summarise this section, we have developed a microscopic phase-space kinetic theory
including trapping. This theory was physically motivated and did not require the ad hoc
introduction of ‘fractional’ terms to incorporate memory effects, as was done previously [14].
By solution of this microscopic theory, we have identified the regime of validity for the
macroscopic Fickʼs law, and consequently, justify the generalized diffusion equation (14). In
the following section, we proceed to apply this model to a time-of-flight experiment.

1 = ∑ ∑ X YX Y:
i j ij ji.
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4. Solution of the generalized diffusion equation

Consider now a slab of material of thickness L between two plane-parallel electrodes, the
normal direction defining the z-axis of a system of coordinates. Assuming all spatial
dependence to be in this direction only, equations (14) and (3) together yield the generalized
diffusion equation in one dimension

ν ϕ∂
∂

+ − * + ∂
∂

− ∂
∂

=n

t
n v

n

z
D

n

z
[1 ] 0. (18)d L

2

2

For an impulse initial condition, δ= −n z N z z( , 0) (0) ( )0 , and perfectly absorbing
boundaries, = =n t n L t(0, ) ( , ) 0, we solve this by firstly taking the Laplace transform and
then applying the Poisson summation theorem as outlined in [23], to obtain

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

 

 
 

β

β β
= − −

−

λ
β β

β

−
− − − + ( ) ( )

n z p
N e

D
l e e

z z

e
( , )

(0)

2

4 sinh sinh

1
, (19)

( )z z

L

z z z z

L

0

2

0

0 0

where functions of the Laplace variable p are denoted with a hat,

β ν ϕ λ= + − +( )p p D[1 ( ) ] , (20)L
2

and λ = v D/2d L.
The current that would be measured in a time-of-flight experiment is the spatially averaged

flux [23]

⎡⎣ ⎤⎦

⎛

⎝
⎜
⎜

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎞

⎠
⎟
⎟






 

ν ϕ

β

β
=

+ −
− + −λ β λ β− − −

( ) ( )( )
( )

j p
v N

p p L
e e

z

L
e e( )

(0)

1 ( )
1

sinh

sinh
. (21)d z z L L0

0 0

To this point the discussion is quite general, but to go further, we must specify ϕ t( ).

5. Role of the waiting time distribution

5.1. Waiting time distributions ϕ(t ) with a finite first moment—‘classical’ transport

To study the impact of the waiting time distribution on the solution, we initially considered
several simple ϕ t( ) functions. Time of flight transients were calculated using equation (21),
numerically inverting the Laplace transform. Dimensionless results are shown in figure 2, where
time is scaled to the transit time =t L v/tr d through a sample of thickness L, and concentration is
scaled to the initial concentration N (0). In this system of units, the normalized drift velocity is
equal to 1. We set the normalized diffusion coefficient to =D t d/ 0.02L tr

2 .
The simplest choice for the waiting time distribution is the Dirac delta, ϕ δ=t t( ) ( ). In this

case, de-trapping occurs instantaneously and consequently has no impact. The system reduces
to the standard advection–diffusion equation.

Another choice is an exponential distribution, ϕ τ= τ−t e( ) /t / . Two examples with
exponential distributions are shown in figure 2, which different first moments, τ. The initial
trap-free transport transitions into trap-limited transport on a timescale governed by the collision
frequency ( ν∼ −1). The trap-limited transport is characterized by an increased transit time (and
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hence decreased effective drift velocity) for increased τ because of the additional time spent in
traps. For the same reason, the current density j falls with increased τ. Nevertheless, the
transport is not dispersive, and there exists a clear time-of-flight arrival time.

A final option explored is a first-order truncation of the series expansion of the exponential
waiting time distribution in Laplace space: ϕ τ^ ∼ −p p( ) 1 , where again τ is the first moment of
the waiting time distribution function. As can be seen from figure 2, the first moment of ϕ
controls the long-time behaviour. Higher moments can only influence the behaviour at shorter
times, as is demonstrated by the differences between the cases with an exponential distribution
and those with the Laplace domain series expansion.

5.2. Relating the waiting time distribution to a density of trapped states

Rather than assuming an ad hoc waiting time distribution, it may be useful to calculate it from a
more fundamental physical model. In what follows, we give a specific example for how this
might be achieved. We consider a semiconductor with traps that form a density of localized
states below the band gap. The release times ϕ t( ) are determined by the distribution of these
traps in energy space.

To describe this semiconductor, we use a multiple trapping model with a uniform capture
(trapping) cross-section [24] for charge carriers. We define the density of localized states to be
g(E), where <E 0 is the energy relative to the conduction band. If the rate of escape from a trap
at energy E is proportional to ( )E k Texp / B then

∫ϕ ν ν= −
−∞

{ }t g E e t e E( ) ( ) exp d , (22)E k T E k T
0

0

0
B B

Figure 2. Modelled current transients for ideal time of flight experiments, showing the
impact of various waiting time distributions ϕ. Results are plotted in normalized units,
where j

0
is the initial current for the trap-free model, and =t L v/tr d is the trap-free transit

time. When ϕ δ=t t( ) ( ) (top line), no trapping occurs. In the other cases, the transients
are influenced by trapping but the results exhibit ‘classical’ transport with well-defined
drift velocities and diffusion coefficients. The trapping rate is ν = t10 / tr

3 , the reciprocal
of which gives the timescale for the transition to trap-limited transport in the case of an
exponential waiting time distribution. The first moments of the waiting time distribution
functions from top to bottom are respectively 0, 0.01, 0.03, 0.1, 0.3, in units of ttr. The
dimensionless diffusion coefficient is =D t d/ 0.02L tr

2 . The initial delta-function pulse is
at =x L/ 0.10 . (In the legend, ϕ p( ) is the Laplace transform of ϕ t( ).)
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where ν0 is a frequency characterizing the rate of escape from traps. The density of states g(E)
can be measured experimentally [25, 26]. In this case we assume an exponential distribution,
which occurs in organic and inorganic materials [27, 28]. Then =g E e k T( ) /E k T

B c
/ B c , where Tc is a

characteristic temperature that describes the width of the density of states. Equation (22) yields

ϕ αν ν γ α ν= +α− − ( )t t t( ) ( ) 1, , (23)0 0
1

0

where γ · ·( , ) is the lower incomplete Gamma function2, and α = T T/ c. This distribution appears
in the literature of the multiple trapping model, for example, equation (9) of [29]. This
distribution is normalized, and it has a divergent first moment, sufficient to describe dispersive
transport [15, 30, 31].

Figure 3 shows typical time of flight transients based on equation (19) together with the
waiting time distribution equation (23). Initially, all carriers are assumed to be untrapped. At
short times the profiles are classical, with a transition to dispersive behaviour at longer times as
the carriers begin to enter the trap states. In the dispersive regime, the sum of slopes is −2,
exactly as expected for an exponential density of states [4]. We note that a different form of
dispersive transport may arise from a different density of states, and that our model can be
readily adapted by evaluating equation (22) with the appropriate g(E) function.

The parameters used for figure 3 were chosen as follows. The attempt to escape frequency
ν0 is extremely fast (e.g. ∼1012 Hz [24]), so we consider only the situation where ν ≫t 1tr0 .

Figure 3. Modelled current transients for ideal time of flight experiments using the
waiting time distribution (23), which was calculated for a semiconductor with an
exponential distribution of localized states. An initial trap-free regime transitions into
strongly-trap limited dispersive transport. Transport parameters are the same as figure 2,
except for the alternative waiting time distribution. These plots were calculated for
ν = ×t 5 10tr0

5. The transition between ‘classical’ and dispersive regimes occurs at
ν∼ −t t t/ ( )tr tr

1.

2 The lower incomplete gamma function is ∫γ ≡ − −a z t e t( , ) d
z a t

0

1 .
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We selected ν = ×t 5 10tr0
5 for figure 3. The trapping frequency ν, which is a new feature of our

model, must be large enough that ν >t 1tr , otherwise there will be negligible trapping events
before the time of flight experiment has concluded. In figure 3(top), we demonstrate the
influence of this parameter. It controls the time scale for the transition between classical and
dispersive transport. Finally, if the transport is dispersive, the temperature T must be below the
critical temperature Tc [24]. We examine the range ⩽ ⩽T T0.5 / 0.9c in figure 3(bottom). It can
be seen that the slope of the current transient is controlled by the temperature.

Our generalized diffusion equation (18) provides a framework for a unified analysis of
transport, whether dispersive or classical. It is pertinent at this point to highlight that in the long
time limit, one can make direct connection to the fractional diffusion equation literature
[15, 30, 31]. If we consider the Laplace transform of the waiting time distribution (23)

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ϕ απ
απ ν

α α
ν

= − + − − −
α

p
p

F
p

( )
sin

1, ; 1 ; , (24)
0

2 1
0

where F2 1 is a hypergeometric function, then the small p (long time) representation of this is

ϕ ≈ − α
αp r p( ) 1 . (25)

Here the coefficients of the αp term have been collected into a single parameter
ν απ απ≡α

α−r /sin0 , which weights the relative importance of trapping effects. By substituting
equation (25) into (18), and taking the limit of small p, one obtains a fractional diffusion
equation, with a Riemann–Liouville or Caputo form of the fractional derivative depending upon
whether one solves for untrapped charge or total charge. These fractional equations result from
a waiting time distribution that was calculated using an exponential density of trap states. It
remains to be seen whether alternative ‘fractional’ equations could be formed by considering
different distributions for the density of trapped states.

6. Concluding remarks

In this paper we have developed a generalized diffusion equation (18) for transport in
disordered materials. This equation is grounded in a phase-space kinetic model that accounts for
both free particle transport and trapping/detrapping from localized states, described by a waiting
time function ϕ t( ). This model provides a unified framework for the analysis of transport,
whether dispersive or not. The nature of the transport is strongly influenced by the waiting time
distribution, and in particular, the first moment of this distribution plays a dominant role. By
way of example, this model was applied to a disordered semiconductor, obtaining dispersive
transport if the density of states is exponential. Other distributions (e.g. a Gaussian) might be
expected to yield different detailed behaviour, which could be calculated using the generalized
diffusion equation presented here.
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