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Abstract

Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a widespread disease of amphibians
responsible for population declines and extinctions. Some bacteria from amphibians’ skins produce antimicrobial
substances active against Bd. Supplementing populations of these cutaneous antifungal bacteria might help manage
chytridiomycosis in wild amphibians. However, the activity of protective bacteria may depend upon environmental
conditions. Biocontrol of Bd in nature thus requires knowledge of how environmental conditions affect their anti-Bd activity.
For example, Bd-driven amphibian declines have often occurred at temperatures below Bd’s optimum range. It is possible
these declines occurred due to reduced anti-Bd activity of bacterial symbionts at cool temperatures. Better understanding of
the effects of temperature on chytridiomycosis development could also improve risk evaluation for amphibian populations
yet to encounter Bd. We characterized, at a range of temperatures approximating natural seasonal variation, the anti-Bd
activity of bacterial symbionts from the skins of three species of rainforest tree frogs (Litoria nannotis, Litoria rheocola, and
Litoria serrata). All three species declined during chytridiomycosis outbreaks in the late 1980s and early 1990s and have
subsequently recovered to differing extents. We collected anti-Bd bacterial symbionts from frogs and cultured the bacteria
at constant temperatures from 8uC to 33uC. Using a spectrophotometric assay, we monitored Bd growth in cell-free
supernatants (CFSs) from each temperature treatment. CFSs from 11 of 24 bacteria showed reduced anti-Bd activity in vitro
when they were produced at cool temperatures similar to those encountered by the host species during population
declines. Reduced anti-Bd activity of metabolites produced at low temperatures may, therefore, partially explain the
association between Bd-driven declines and cool temperatures. We show that to avoid inconsistent antifungal activity,
bacteria evaluated for use in chytridiomycosis biocontrol should be tested over a range of environmental temperatures
spanning those likely to be encountered in the field.
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Introduction

Emerging wildlife diseases can cause species declines and

extinction [1], and disease emergence and pathogenicity may

depend on environmental context [2]. Therefore, patterns of

decline and disease management strategies may be understood by

examining the effects of environmental context on disease

emergence. One way environmental context might affect disease

dynamics is by altering species interactions in the complex

assemblage of microbiota inhabiting wildlife [3]. Chytridiomyco-

sis, a disease caused by the fungal pathogen Batrachochytrium

dendrobatidis (Bd) and responsible for rapid and extensive population

declines in over 200 amphibian species since the late 1970s [4,5],

serves as a model system for understanding other wildlife diseases

[6]. Twenty years of research on Bd and its interaction with

amphibians and their environment can provide insight for anyone

interested in the effects of diseases on the conservation of wildlife

[5,7].

Currently, no effective treatments or preventative actions are

available to manage chytridiomycosis in wild populations of

threatened amphibians [8]. However, bioaugmentation, by

supplementing populations of anti-Bd bacteria, has proved

effective in laboratory trials and may be a viable option for

disease management if it also provides increased protection in

nature [9–11]. Previous experimental work on anti-Bd bacteria

was conducted under constant laboratory conditions [11,12].

However, naturally-occurring symbiotic bacteria, including anti-

biotic producers, vary in abundance and physiological activity with

environmental context [13–15]. This variation can affect the

success of biocontrol programs [16–18], and can have strong

PLOS ONE | www.plosone.org 1 June 2014 | Volume 9 | Issue 6 | e100378

tipping point between epidemic and endemic disease: amphibian chytridiomycosis as a model system" (DP130101635). JHD was supported by a U.S.
''

''
''

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ResearchOnline at James Cook University

https://core.ac.uk/display/303768142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0100378&domain=pdf
http://www.arc.gov.au/
http://www.fulbright.com.au


evolutionary and ecological impacts [3]. Bacteria chosen for

probiotic use based on high levels of anti-Bd activity under

constant conditions in the laboratory could have lower levels of

anti-Bd activity in the more variable conditions occurring in

nature. If this occurs, then choosing bacteria for use in the

management of chytridiomycosis, will require knowledge of how

candidate bacteria are affected by a range of environmental

conditions [9].

Environmentally induced variation in the protection afforded to

amphibian hosts by bacterial symbionts might also partially

explain patterns of past chytridiomycosis-driven declines. In the

tropics, where the impacts of chytridiomycosis have been most

severe, higher elevations and cooler seasons have been associated

with higher prevalences of infection, more intense infections, and

more frequent declines [19–24]. Bd’s relatively cool thermal

optimum (17–25uC) [25] may partially explain this pattern [21],

but many declines have occurred at temperatures well below this

window, where one might expect chytridiomycosis to be less severe

[26].

There are a number of reasons why declines might occur at very

low temperatures. In natural environments, Bd may respond to

low temperatures by increasing fecundity [27], and amphibian

hosts’ immune defenses may be weaker [28]. Another possible

contributor to the high incidence of Bd-driven declines at

temperatures below Bd’s in vitro thermal optimum is that symbiotic

cutaneous bacteria, which would otherwise reduce the severity of

chytridiomycosis, may have reduced activity or population density

at cooler temperatures. At present, there is no published

information on how the composition or antifungal activity of

assemblages of anti-Bd bacteria responds to changes in environ-

mental context.

To examine the effect of temperature on the production of anti-

Bd metabolites by bacteria, we sampled bacterial symbionts from

the Australian hylid frogs Litoria serrata and Litoria nannotis in 2010.

We also examined bacteria isolated by Bell [29] and Bell et al. [30]

from Litoria rheocola, L. serrata, and L. nannotis in 2009. All three

species experienced population declines following chytridiomycosis

outbreaks, although some populations have since recovered or

recolonized [23,31]. We identified the bacteria and characterized

their antifungal activity across a range of the temperatures

experienced by their amphibian hosts.

Materials and Methods

Ethics Statement
All procedures involving animals received clearance from the

James Cook University Animal Ethics Review Committee

(approval number A1316) and all field sampling was permitted

by the Queensland Department of Environment and Resource

Management (permit WITK05922209).

Collection and Isolation of Bacteria
To screen for anti-Bd activity, we collected bacteria from twelve

frogs (six L. serrata, six L. nannotis) caught at Windin Creek in

Wooroonooran National Park, Queensland, Australia (,750 m

a.s.l., S 17u219570 E 145u429540) in February 2010. We rinsed

each frog with a stream of sterile distilled water to remove non-

resident bacteria [32,33], then swabbed its dorsal and ventral

surfaces and legs twice, using a sterile rayon swab (MW112,

MWandE, Bath UK). We streaked each frog’s swab onto a low

nutrient agar plate (R2A, Becton, Dickinson and Company, New

Jersey, US). We used new gloves and plastic bags to catch, handle,

and hold each animal to prevent disease transmission or

contamination of samples. We released frogs at their point of

capture immediately after swabbing. After returning our samples

to the laboratory, we isolated each morphologically-distinct

bacterium into axenic (pure) culture using standard microbiolog-

ical techniques, and checked Gram stains of each isolate using light

microscopy to ensure purity [34]. Axenic isolates were stored on

ceramic Microbank microbeads (Microbank, Pro-Lab Diagnostics

U.K.). The beads are stored dry at 280uC. When a live culture is

required, a bead can be dropped into liquid media or streaked

across solid agar.

Identification of Anti-Bd Bacteria
To determine whether bacterial isolates inhibited growth of

Bd in vitro, we performed challenge assays using a method

developed by Bell et al. [30] with slight modifications described

here. We inoculated bacteria from Microbank microbeads into

one mL TGhL broth (eight g tryptone, one g gelatine, two g

lactose per liter of water) in 24-well plates (Costar 3524, Corning,

New York, US) and incubated them for 48-hours at 23uC. We

then centrifuged each liquid culture for five minutes at 75006g,

and filtered the supernatant through a 0.22 mm syringe filter

(Millex GV, Millipore, Massachusetts, US). This left a cell-free

supernatant (CFS) containing bacterial metabolites.

In 96-well assay plates (Costar 3595, Corning, New York, US),

we inoculated 1.06105 live Bd zoospores (isolate Gibbo River, L.

Les, 06-LB-1 isolated by L. Berger in 2006 from a Litoria lesueri and

passaged weekly) suspended in 50 mL of fresh TGhL into each of

five replicates containing 50 mL of each CFS. We included

replicates of positive and negative controls consisting of 1.06105

live and heat-killed Bd zoospores, respectively, suspended in

100 mL TGhL. We incubated the plates at 23uC and monitored

progress of Bd growth in each well with daily spectrophotometric

readings at 492 nm [35]. We continued monitoring until

maximum growth was observed in the positive control and in

the majority of wells containing CFS (four days). This is the most

conservative point in the assay at which to determine anti-Bd

activity; i.e., this is the point at which the ratio of Bd growth in

CFSs to Bd growth in the positive control is maximized. We

examined 96-well plates using light microscopy and excluded from

our analyses any replicates that had become contaminated.

We transformed mean optical densities at 492 nm (OD492) for

each isolate-temperature combination on each day, to correct for

initial coloration of CFSs (by subtracting the mean initial OD492)

and background absorbance of inoculated zoospores on that day

(by subtracting the mean negative control OD492) [30]. Using the

corrected value on the maximum growth day for both the positive

control and for each CFS by temperature combination, we

standardized isolate-specific values against the similarly corrected

value for the positive control. This produced a measure of Bd

growth in each CFS by temperature combination as a proportion

of that in the positive control. Finally, we multiplied the corrected

and standardized values by 100 percent. This returned the

following values: 100% for the positive control; 0 for total

inhibition of Bd growth; .0 but ,100% for partial inhibition, and

.100% for CFSs in which Bd grew better than in the positive

control. Thus, the values are the percent Bd growth relative to that

in the positive control. Following Bell et al. [30] we considered

CFSs in which Bd growth was reduced on average at least 63.5%

below that in the positive control to be strongly inhibitory. This

value is a conservative correction for the maximum observed

effects of nutrient depletion in the media carried into challenge

assay wells along with inoculated CFSs. When Bd is inhibited more

than 63.5%, it is assumed to be true CFS-driven inhibition, and

not due to nutrient depletion [30].
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We extracted DNA from each isolate that strongly inhibited Bd,

first by three freeze-thaw cycles of 10 minutes each at 280uC and

70uC, and then, if freeze-thaw cycles alone did not yield sufficient

DNA for successful PCR, using a Qiagen (Hilden, Germany)

DNeasy blood and tissue kit with pretreatment for Gram-negative

bacteria, as per the manufacturer’s protocol. DNA was amplified

using universal bacterial 8F and 1492R primers [36], and

sequenced by Macrogen, Inc. (Seoul, South Korea). We aligned

forward and reverse sequences in Geneious [37] and matched to

sequences in the NCBI GenBank database (http://ncbi.nlm.nih.

gov) to identify bacteria. We have submitted genetic sequence data

to GenBank.

Experimental Challenge Assays
To test for temperature-induced changes in bacterial anti-Bd

activity we performed additional challenge assays and quantitative

analysis using bacteria identified in the initial screening assay as

strongly inhibitory. In addition to the bacteria isolated from frogs

sampled in February 2010, we included strongly inhibitory

bacteria isolated from Litoria nannotis, L. serrata, and L. rheocola at

Windin Creek in the Austral winter of 2009 and tested using the

methods described above [29]. In total, we tested 24 isolates in the

experimental challenge assays, all of which inhibited Bd growth by

more than the 63.5% threshold in initial challenge assays (Table 1).

We inoculated each bacterium from a Microbank microbead

into a 25 cm2 flask (TPP, Trasadingen, Switzerland) containing

10 mL TGhL broth and incubated it at 23uC for at least 48 hours

until growth was observed. We then added 500 mL of each

bacterial inoculum to one mL TGhL in each of six, 24-well plates.

One plate was placed in each of six incubators set at 8, 13, 18, 23,

28, and 33uC, respectively. We chose temperatures to approxi-

mate the range of conditions experienced by Litoria spp. in the

Australian Wet Tropics [38].

We grew bacterial cultures for two to five days, based on the

time to maximal absorbance at 492 nm (a surrogate for maximal

bacterial concentration) and used these cultures to produce the

CFSs included in the next round of challenge assays. Growing

cultures to maximum absorbance minimized any differences

among treatments that might have arisen if metabolite production

was triggered by quorum sensing, a mechanism of detection and

response in bacterial colonies based on population density [39].

When OD492 stopped increasing (qualitatively determined from

the plateauing of absorbance values) we produced bacterial CFSs

as described for the initial screening assay. We harvested each

individual bacterium as it reached maximum growth; i.e, we did

not wait for absorbance of all bacteria in a plate to plateau before

harvesting. This method does not account for possible differences

in the maximum achievable concentration of any given bacterium

at different temperatures. CFSs were held at 220uC until use in

the challenge assays. We completed challenge assays at 23uC with

five replicates inoculated from each growth treatment temperature

for each bacterium’s CFS, and with 2.96104 zoospores initially

inoculated in each 100 mL assay well. Bd was therefore not

cultured at a range of temperatures; only the bacteria used to

produce CFSs were. This allowed us to evaluate the effects of

temperature on the bacteria independent of the well-known effects

of temperature on the growth of Bd [25]. We removed from the

analysis any replicates that appeared to be contaminated when

observed by light microscopy. As in the initial assays, the challenge

assays continued until maximum growth was achieved in the

positive controls (here six days).

Statistical Analysis
Corrected and standardized absorbance data were averaged

across replicates of each CFS-temperature combination. The

resulting averages were not normally distributed and could not be

normalized by standard transformations. Therefore, we used a

Kruskal-Wallis test to examine the effects of temperature on the

anti-Bd activity of CFSs from tested bacteria. We performed

analyses in S-PLUS (version 8.0, Insightful Corporation, Seattle)

and R 3.0 (R core team, 2013).

Results

Identification of Anti-Bd Bacteria
Four of 720 replicates (0.6%) were removed from the initial

challenge assay due to contamination. Bd growth expressed

relative to the positive control was not normally distributed

among CFSs in the initial screening assay (Figure 1). Thirty-seven

percent of CFSs tested at this stage inhibited Bd growth strongly.

Bd grew poorly or not at all when exposed to these CFSs (Figure 2).

We also observed a small number of CFSs (e.g., Pseudomonas sp.

SBR3-slima, Figure 3) that apparently enhanced Bd growth, a

phenomenon also reported by Bell et al. [30].

After removing duplicate isolates that came from the same

individual frog and matched identical GenBank entries, 16

distinct, strongly inhibitory bacterial isolates remained from

samples collected in 2010. These 16 matched the 13 operational

taxonomic units (OTUs) listed for 2010 in Table 1; one OTU was

found on two frogs, and one was found on three. Pseudomonads

constituted six of the 13 OTUs, making them the most common

group among inhibitory bacteria. The strongly inhibitory isolates

collected in 2009 and included in experimental assays are also

listed in Table 1.

Experimental Challenge Assay
The experimental challenge assay continued for six days, at

which point Bd in the positive control and in 136 of 157 CFSs had

reached its maximum growth. All the 21 remaining CFSs had Bd

growth and absorbances already well above the point at which

they would have been considered inhibitory. Forty-one of 785

replicates (5.2%) became contaminated and were subsequently

removed from analysis of the initial challenge assay. Bacterial

responses to temperature included all of increased, decreased, and

non-directional changes to CFS anti-Bd activity (Figure 3).

The temperature at which bacteria were cultured significantly

affected the antifungal activity of their CFSs (Kruskal-Wallis test,

x2 = 15.35, df = 5, p,0.01). Antifungal activity tended to be lowest

in CFSs produced at 8uC (Figure 4). Using the cutoff from the

initial screening assay of 63.5% or greater inhibition of Bd growth

relative to the positive control, 46% of tested CFSs had no strong

antifungal activity when produced at 8uC, whereas no more than

28% produced at any of the warmer temperatures lost strong

antifungal activity.

Bell et al. [30] observed various fungicidal (leading to the

breakdown of Bd cells) and fungistatic (arresting Bd’s life cycle)

effects of CFSs on Bd. We observed similar effects in the cultures

we monitored visually by light microscopy. For example, in the

CFSs of Pseudomonas fluorescens strain 1408 grown at 8uC, the

zoospores of Bd appeared dead and deformed, whereas in the

CFSs of Chryseobacterium sp. CH33 grown at 8uC, zoospores

developed into sporangia without producing viable zoospores.

Frog Symbionts Less Protective when Cool
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Discussion

Variation in Antifungal Activity
The metabolites of many of the defensive bacterial symbionts of

amphibians we tested had reduced antifungal activity when

produced at 8uC. Such reductions in anti-Bd activity were likely

caused by changes in the quantity, identity, or both of bacterially-

produced substances, and could have contributed to chytridiomy-

cosis-driven declines that occurred in high elevation populations of

the three Litoria species sampled here [23,31,40]. Winter air

temperatures in the high elevation habitats of these species can

often be lower than 8uC [26,41]. Therefore, frogs may experience

decreased bacterial protection from Bd in winter, which in

Australia and elsewhere is when chytridiomycosis causes greater

morbidity and mortality [19,23,42]. While Bd physiology may also

be altered under variable temperature regimes and it will be

important to test bacteria and Bd exposed together to a range of

temperatures, our design and the in vitro assay we used did not

allow for testing such effects. Nonetheless, our experiment is an

incremental step towards understanding context-dependency in

amphibian-Bd-bacteria interactions.

Anti-Bd bacteria occur on a wide geographic and phylogenetic

range of amphibians [12,43,44], and the pattern that chytridio-

mycosis is more virulent at cool temperatures is also widespread

[19–21,23]. Many bacteria can alter their rates of antibiotic

production in response to environmental temperatures [17,45,46].

Table 1. Bacteria identified as strongly inhibitory of Batrachochytrium dendrobatidis and used in the experimental challenge assay.

Taxonomic name Frog species`, Year GenBank Accession ID, % Matching* GenBank Accession Number

Actinobacteria

Microbacterium sp. HY14(2010) LN, 2010 HM579805, 99.5 KJ191412

Bacilli

Bacillus thuringiensis isolate CCM15B LN, 2010 FN433029, 99.8 KJ191418

b-Proteobacteria

Uncultured Silvomonas sp. clone ntu63 LS, 2010 EU159476, 98.5 KJ191396

Bacterium H2 LR, 2009 AY345552, 99.1 KJ191380

Iodobacter sp. CdM7 FJ872386, 98.8

Flavobacteria

Chryseobacterium sp. CH33 LN, 2009 GU353129, 99.1 KJ191375

Uncultured bacterium clone nbw1150f04c1 LS, 2010 GQ082309, 99.1 KJ191421

Chryseobacterium hispanicum type strain VP48 AM159183, 98.7

c-Proteobacteria

Hafnia alvei LN, 2009 AB519795, 99.9 KJ191378

Pseudomonas fluorescens strain 1408 LS, 2009 GU726880, 99.9 KJ191384

Pseudomonas fluorescens strain d3_16s LS, 2010 HQ166099, 99.7 KJ191426

Pseudomonas fluorescens strain KU-7 LR, 2009 AB266613, 98.9 KJ191386

Pseudomonas koreensis strain Ps 9–14 LR, 2009 NR025228, 99.9 KJ191376

Pseudomonas koreensis strain SSG10 LN(3), 2010 HM367598, 99.8; 99.8; 99.7 KJ191409

Pseudomonas koreensis strain SSG5 LN, 2010 HM367599, 99.9 KJ191405

Pseudomonas mosselii strain WAB1873 LN, 2010 AM184215, 99.7 KJ191414

Pseudomonas mosselii strain R10 LN, 2010 DQ073452, 99.6 KJ191411

Pseudomonas putida strain PASS3-tpnb LR, 2009 EU043325, 99.7

Pseudomonas sp. SBR3-slima LN, 2010 EU043328, 99.3 KJ191420

Pseumonas tolaasii strain NCPPB 2325 LR, 2009 AF320990, 100

Serratia marcescens strain C1 LS(2), 2010 GU220796, 99.9; 99.7 KJ191397

Stenotrophomonas maltophilia strain 6B2-1 LR, 2009 AB306288, 99.9 KJ191382

Stenotrophomonas maltophilia strain YLZZ-2 LS, 2009 EU022689, 99.6 KJ191387

Stenotrophomonas sp. 7-3 LR, 2009 EU054384, 99.6 KJ191381

Uncultured bacterium clone nbw969a06c1 LN, 2010 GQ043359, 98.4 KJ191393

Xanthomonas sp. CC-AFH5 DQ490979, 98.1%

Uncultured bacterium clone P7D82-747 LN, 2010 EF509545, 99.6 KJ191417

Stenotrophomonas sp. TSG4 HM135101, 99.6%

Where the closest GenBank match was an unnamed bacterium, the closest named match is included immediately below (smaller, bold text) to give the best possible
sense of phylogeny.
*Where more than one inhibitory isolate most closely matched the same OTU, the percent matching is listed for both. We used the isolate with the first listed percent
matching for the experimental challenge assay.
`LN = Litoria nannotis, LR = Litoria rheocola, LS = Litoria serrata; (number of individuals from which the bacteria was isolated, if .1).
doi:10.1371/journal.pone.0100378.t001
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Like the Litoria spp. we sampled, other amphibians may be more

vulnerable to chytridiomycosis at cool temperatures if their

bacterial protection from Bd is reduced. Larger scale, longitudinal

studies characterizing the diversity and abundance of amphibian

bacterial symbionts and their metabolites, Bd infection loads, and

chytridiomycosis severity across environmental gradients and

among seasons, are required to test this hypothesis.

Although the general trend was towards decreased anti-Bd

activity when CFSs were produced at cooler temperatures, some

bacteria did not show unidirectional responses to temperature

(e.g., Pseudomonas sp. SBR3-slima, Figure 3); they produced

metabolites without anti-Bd activity at the lowest temperature

and at moderate temperatures. These complex temperature

responses may have been caused by production of different

antibiotics at different temperatures. Many bacteria produce more

Figure 1. Frequency (%) of the bacterial isolates which produced cell-free supernatants (CFS) showing a change in Bd growth
relative to the positive control (Bd alone; 100%) for 110 isolates screened in the initial challenge assay. A bimodal pattern of activity
was observed. The arrow indicates the cutoff for considering a CFS strongly inhibitory ($63.5% inhibition relative to the positive control, i.e., #36.5%
the growth of the positive control). Thus, black bars represent strongly inhibitory CFSs and the highest bar at the far left represents those isolates
producing cell-free supernatants showing 100% inhibition.
doi:10.1371/journal.pone.0100378.g001

Figure 2. Example growth curves ±SD of the positive control, the negative control, two inactive, and two strongly inhibitory cell-
free supernatants from an initial screening assay. Higher optical density at 492 nm (y-axis, OD492) indicates greater Bd growth. Day 0 OD492

varies with original cell-free supernatant color, which is corrected for in calculations (see Methods).
doi:10.1371/journal.pone.0100378.g002
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than one antibiotic [45], and some regulate their production

through multiple genes [47] that could possess different temper-

ature thresholds.

We selected the bacteria we tested in the experimental challenge

assay because their supernatants were inhibitory when produced at

23uC in the initial screening assay. It is possible that a different

subset of the entire sampled bacterial community could have been

classed as inhibitory if the CFSs for the initial screening assay had

been produced at different temperatures. One of our aims,

however, was to document context-dependency in bioaugmenta-

tion candidates identified as inhibitory in ‘standard’ challenge

assays conducted at 23uC [12,30]. Conducting this sort of

laboratory assay under ecologically-relevant conditions has been

identified as a necessary step towards selecting effective bioaug-

mentation strategies [9]. However, it is entirely possible that some

bacteria that live on the skin of the Litoria species we sampled are

effectively antifungal at low temperature and were not selected

because they are not inhibitory at 23uC. Equally, the possibility of

density-dependent responses of Bd to CFSs, if for example

zoospores can degrade some bacterial products in the CFSs,

means that had we conducted the initial challenge assay using

more or fewer zoospores, different bacteria may have been

identified as inhibitory and subsequently included in the exper-

imental challenge assay. We used slightly different concentrations

of Bd zoospores in the initial and experimental challenge assays

due to temporal variation in the productivity of laboratory Bd

cultures. However, all CFSs tested in the experimental challenge

assay were inoculated with the same concentration of Bd zoospores

and therefore any possible density-dependent responses of Bd to

CFSs could not have affected the temperature-driven effects on

CFS anti-Bd activity reported here.

To produce CFSs for the experimental challenge assay, we grew

bacterial cultures to maximum absorbance in each temperature

treatment. Because some bacteria may have been dying and their

cells breaking apart at this stage, it is possible that these by-

products, in addition to anti-fungal metabolites produced by live

bacteria, could be partially responsible for observed anti-Bd

activity. If bacteria died and broke apart to a greater extent in

the higher temperature treatments, it could explain some of the

reduced anti-Bd activity at 8uC. Further experiments employing

chemical methods will be needed to definitively identify and

evaluate the products responsible for differential anti-Bd activity of

CFSs.

Our present study is the latest to find a substantial number of

Pseudomonas species, a well-known group of antibiotic producers

[45,48], among the antifungal cutaneous microbiota of amphib-

ians [12,30,40,49]. Walke et al. [44] offered several ecological and

physiological reasons for the prevalence of Pseudomonads among

the defensive microbiota of amphibians. Our results show that the

anti-Bd activity of at least some Pseudomonads depends on

Figure 3. Growth curves (uncorrected optical density at 492 nm, OD 492 nm) vs. day of the experimental challenge assay for Bd
growth in cell-free supernatants from four bacteria chosen as examples to show the range of responses observed following the
temperature treatments applied during cell-free supernatant production. Values are means 6SD. Where not visible, SD bars are smaller
than the plotted symbols. All bacterium-temperature combinations have N = 5 replicates in the challenge assay, except P. fluorescens with N = 4 at
23uC and 18uC, N = 3 at 33uC and no data at 13uC due to contamination. Cell-free supernatants were produced once at each temperature.
doi:10.1371/journal.pone.0100378.g003
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environmental context (e.g., Pseudomonas sp. SBR3-slima, Figure 3).

Only the most robustly antifungal isolates should be used in

bioaugmentation, regardless of how common they may be.

Management Implications and Future Research
Bacterial antifungal activity observed under a narrow spectrum

of laboratory conditions could be lost on exposure to variable field

environments. Using antifungal bacteria with inconsistent activity

in bioaugmentation efforts could cost managers time and

resources, and could create the illusion that bioaugmentation is

less effective than if more appropriate isolates were used. Even

closely related bacteria may respond differently to environmental

variations, as did the Pseudomonads in Figure 3. One produced

strongly antifungal metabolites across the entire 8–33uC range,

whereas at 8uC others produced metabolites with no antifungal

activity.

Only a few studies have characterized the metabolic products of

amphibian symbionts [50–52]. Based on our observations of

varied responses of Bd to CFSs from different bacteria, and the

phylogenetic range represented in addition to the many Pseudo-

monads found, it is likely that a variety of different antifungal

compounds were produced by the bacteria we tested. As

mentioned above, future workers should seek to identify these

compounds, so that it is possible to measure their concentrations

on amphibian skin.

Our study focused on environmental context-dependent

changes in the bacterial production of anti-Bd metabolites, but

not on possible context-dependent changes in the fungus itself, or

in the direct interaction between bacteria and Bd on the skins of

live frogs. This study constitutes a step towards understanding

environmentally induced variation in the amphibian-Bd-bacteria

symbiosis, but no study has yet simultaneously assessed the

responses of both Bd and bacteria to varying temperatures.

Additionally, no mesocosm or field study of bioaugmentation in a

natural environment has been published to date, and a host of

questions remain surrounding the best methods of application of

beneficial bacteria, non-target effects, and the term of protection

afforded. Carrying out Bd-bacteria research in vivo, and ultimately

in natural systems, will be necessary preliminary steps for

bioaugmentation application, even if interpretation of specific

experimental treatments is complicated. Given the opportunity to

apply bioaugmentation for restoration and protection of many

amphibian species globally, it is most important to develop

effective management protocols for use with robustly-antifungal

bacteria commonly found on target species’ skin.

Research on the drivers of other wildlife diseases should also

consider the possible effects of environmental context dependence.

Some coral disease is exacerbated by warmer environmental

temperatures [53]. White-nose syndrome in bats is driven by

changes in the temperature of bat hibernacula, which may allow

management by artificial temperature regulation in caves [54]. In

the case of chytridiomycosis, seasonal and local temperature

variation are important, both for their direct effects on the host-

pathogen relationship [3,55] and because they modify relation-

ships within the skin microbe assemblage as described here. The

effects of environmental context can thus occur through multiple

pathways and can determine the extent to which a disease

threatens biodiversity. A thorough understanding of environmen-

tal context dependence must therefore be a priority when

designing disease management strategies.
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Figure 4. Percent Bd growth relative to the positive control (Bd-alone; 100%) in bacterial cell-free supernatants from 24 bacteria
identified in initial screening at 236C as strongly inhibitory to Bd and grown in each of six temperature conditions. A value of 0
indicates complete inhibition of Bd growth, and a value of 100% indicates growth equivalent to that of the positive control (for details see above and
[30] ). Boxes show the interquartile range (IQR) and the median. Brackets are the most extreme values to 1.5X the IQR, and individual points are those
beyond this span. Where boxes are not visible, IQR was near zero.
doi:10.1371/journal.pone.0100378.g004
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