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ABSTRACT 

 

 

The aim of this work is to present some models of load transfer between 

porous matrix and fibers in ceramic matrix composites. An analytical 

model for short fibers is developed, based on the earlier shear-lag 

models used for polymeric composites. Moreover, geometry and 

strength of fibers in addition to the matrix porosity are included in the 

present analysis. The theoretical curves for the longitudinal and shear 

stress distribution along the fiber-porous matrix interface are presented. 

They exhibited a maximum strength point at the middle of the short 

fibers. It became evident that the critical length is governed by the 

relative properties of the fibers, matrix and porosity, which greatly 

influenced the load carrying capacity of the fibers in the composites. In 

addition, the present simplified solution facilitates the understanding of 

the interface mechanism using porous matrix. In addition, a bundle 

testing routine is implemented using Monte Carlo methods. It is 

common knowledge that for bundles of fibers in composites, that the 

bundle strength is always less than the sum of the fiber strengths. This 

behavior can be explained by load-sharing models. At this work, 

different load sharing models were implemented on a simulated tensile 

test of ceramic oxide fibers. The results are in agreement with the 

experimental results of single-fiber and bundle testing and constitute a 

useful tool for the design of fiber-reinforced materials.  

 

Keywords: modeling, load transfer, ceramic matrix composites 

 





 

RESUMO 

 

 

Este trabalho se dedica a apresentar alguns modelos de transferência de 

carga entre uma matriz porosa e fibras em compósitos de matriz 

cerâmica. Um modelo analítico para a transferência de carga em fibras 

curtas é desenvolvido, baseado em modelos já existentes para 

compósitos poliméricos. Além disso, a geometria e a resistência das 

fibras, juntamente com a porosidade da matriz são incluídas na presente 

análise. As curvas teóricas para as tensões longitudinais e de 

cisalhamento ao longo da interface fibra-matriz são apresentadas. Elas 

alcançam um máximo no meio das fibras curtas. Torna-se evidente que 

o comprimento crítico é governado pelo conjunto de propriedades da 

fibra e da matriz, que influenciam a capacidade de transferência de carga 

nos compósitos. Adicionalmente, a solução simplificada apresentada 

facilita o entendimento dos mecanismos interfaciais se utilizando de 

uma matriz porosa. Outro foco do trabalho é um algoritmo que simula o 

teste de feixes contínuos de fibras cerâmicas usando-se métodos de 

Monte Carlo. É mostrado que a resistência do feixe é sempre menor que 

a resistência média das fibras testadas individualmente. Tal 

comportamento é explicado por modelos de transferência de carga. 

Neste trabalho, diferentes modelos de transferência de carga foram 

implementados em uma simulação de um ensaio de tração em feixes de 

fibras. Os resultados estão de acordo com os experimentos de fibra 

simples e feixe realizados e constituem uma ferramenta útil para o 

projeto de materiais reforçados com fibras cerâmicas.  

 

Palavras-chave: modelamento, transferência de carga, compósitos de 

matriz cerâmica. 
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1 INTRODUCTION 
 

 

Modern structural ceramic composites possess a number of 

unique properties that cannot be achieved by other materials. Therefore, 

they have a potential for saving energy, reducing wear, and increasing 

the lifetime of components [1]. 

Ceramic Matrix Composites (CMCs) have attracted attention 

for thermomechanical applications, due to their damage tolerant fracture 

behavior. This is the result of toughening mechanisms, particularly 

crack deflection into fiber-matrix interface, as well as subsequent fiber 

pullout and bridging [2, 3]. Among the different categories of CMCs, 

all-oxide systems have recently been in the focus of research [4-9] 

because of their inherent high oxidation resistance compared to their 

non-oxide counterparts. This is interesting particularly at high 

temperature applications in oxidizing environments such as gas turbines. 

Due to the complexity and responsibility of these materials, 

there is a growing need to models which can predict the bulk properties 

of the composite based on their microconstituents, e.g. fiber and matrix 

properties. This leads to micromechanical modeling (Fig. 1.1), which is 

an idealization of the interaction of the fibers and the matrix on the 

microscale. 

 
Fig. 1.1 Top-bottom approach for micromechanical modeling. Adapted from: 

[10] and [11] 
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The philosophy of this thesis is based on the recognition that 

mechanism-based models are needed, which allow for an efficient 

correlation to a well-conceived experimental procedure. The emphasis 

here is on the creation of a framework which allows models to be 

inserted in different complexity levels (Fig. 1.2), as they are developed, 

and which can also be validated by carefully chosen experiments. 

 

 

Fig. 1.2 Different complexity levels on a continuous fiber composite, each 

corresponding a failure probability function. From left to right: Single Fiber, 

Dry Bundle, Infiltrated Bundle and Consolidated Composite. 

 

1.1 OBJECTIVES 
 

This work has the main objective of understanding and modeling the 

mechanical behavior of ceramic matrix composites and fiber bundles, 

and the influence of processing and the matrix material in the 

mechanical behavior of the referred materials. 

To achieve this goal, the following objectives were set: 

 

 Develop a simplified shear-lag model for short-fiber ceramic 

matrix composites; 

 Relate single-fiber properties and bundle properties; 

 Simulate diverse load-sharing models for fiber bundles and 

determine the best suited for the studied ceramic fibers; 
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2 LITERATURE REVIEW 

 

 

 

2.1 CERAMIC FIBERS 

 

The high potential of CMCs is directly related to the use of 

high-resistance ceramic fibers of small diameters (usually around 10 

μm). Covalent non-oxide fibers, as carbon or silicon carbide, are the 

ones showing better high-temperature mechanical properties (specially 

in terms of creep resistance), but are highly susceptible to oxidizing 

environments, calling to the use of surface treatments for protection, or 

the use of inert atmospheres [12]. 

In the other end of the spectrum, oxide fibers (as alumina and 

mullite-alumina), by their chemical nature, show an excellent oxidation 

resistance, good mechanical properties at room temperature, but present 

issues with creep resistance even in moderate temperatures. As 

consequence, the carbon and SiC fibers are the most used as 

reinforcement in commercial high-temperature CMCs [13]. 

By their small diameters, those ceramic fibers are extremely 

fragile and should be put into a ceramic matrix (either oxide or non-

oxide), in a manner to protect them and permit the load transfer between 

the matrix and the fibers. The high cost of these composites is related to 

the high cost of those fibers, which are used in volumetric fractions 

ranging from 40% to 50%. Nanometric reinforcements, as carbon 

nanotubes, SiC nanofibers or whiskers, are not used in CMCs due to 

processing difficulties, cost and health hazards [12]. 

 

2.1.1 Oxide Ceramic Fibers 
 

Nextel
 

610 and 720 are denominations amongst a group of 

aluminum oxide fibers specifically designed for use as reinforcement in 

ceramic and metal matrix composites. Both continuous fibers are 

designed as composite reinforcements, but their compositional 

differences result in differing properties. Nextel
 

610 was designed to 

have higher strength characteristics but is susceptible to creep at 

elevated temperatures. Nextel
 

720 was then designed to have better 

creep resistance for elevated temperature applications, but was reduced 

in strength. The Nextel
 

 fibers are mostly comprised of alumina, 

produced via sol-gel processing, which in turn makes them less 

expensive to produce than some other fibers, such as SiC. 
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The high strength of Nextel fibers is one of its primary 

characteristics that make it appealing as reinforcement for composites. 

Their high strength is attributed in part to the fine grain structure of the 

material that is achieved through careful control of the processing 

technique. Nextel
 

610 fibers are comprised almost entirely of a pure α-

Alumina, and the Nextel 720 possess mullite specially placed on the 

grain boundaries. Through proper use of nucleation agents and careful 

control during processing, Nextel fibers are produced with a uniform 

microstructure comprised of grains 0.1 μm in size and little residual 

porosity [12]. 

 
Table 2.1. Nextel 610 and 720 fiber properties [12]. 

Property Nextel 610 Nextel 720 

Composition Alumina Alumina + Mullite 

Weibull Modulus (m) 11.4 8 

Characteristic Strength (MPa) 3200 2200 

Mean Diameter (μm) 10 10 

 

2.2 MECHANICAL PROPERTIES 

 

 The mechanical properties of ceramic matrix composites have 

not been studied until the 1990’s [2, 14-18]. Extensive reviews of 

mechanisms and mechanical properties of ceramic matrix composites 

are found in the literature [19, 20]. The main topics studied are dense 

and porous matrix composites. 

For a dense-matrix composite (porosity higher than 90%), a 

surface treatment on the fibers is needed for crack deflection [21]. The 

development of oxide-oxide composites is based in a fragile fiber/matrix 

interface for crack deflection, giving place to oxidation-resistant 

coatings which are chemically stable. Monazite (LaPO4), hibonite and 

scheelite are among the various materials studied. Morgan et al. [22] and 

Chawla et al. [23] have shown that due to the chemical compatibility of 

monazite with alumina at high temperatures, this coating would be a 

good candidate for an interface material in alumina-based composites. 

Since that time, numerous manufacturing trials of monazite films and its 

use with different combinations of matrix and fibers were investigated 
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[24, 25]. The degradation of fiber resistance caused by the film and the 

need for expensive thermal treatments were identified as barriers to the 

application of these materials [25]. 

It was shown also that a similar behavior in relation to crack 

deflection can be achieved by the means of a finely distributed porosity 

in the matrix instead of a separate interface between matrix and fibers 

[14]. 

For a highly porous matrix, the main objective is to insulate the 

fibers from cracks that can start on the matrix. Due to the highly porous 

matrix material, the energy is dissipated and the stress concentration 

around the fibers is reduced. The crack propagation for the neighboring 

fibers is inhibited and the same are intact even with the matrix fracture 

(Fig. 2.1) [26]. 

 

 
Fig. 2.1 Fracture surface of ceramic composites, showing: a) high-porosity 

matrix and b) low porosity matrix [14]. 

 

 Although the matrix rules the pullout and crack deflection 

phenomena, the mechanical properties of the composite are strongly 

dependant of the fibers used as reinforcement. For composites with a 

volumetric fraction between 0.35 and 0.4, the typical values are of an 

elasticity modulus between 60 and 110 GPa and a bending strength 

between 140 and 220 MPa [14]. The higher values are from alumina 

fiber-reinforced composites (Nextel 610) and the lower from alumina-

mullite fibers (Nextel 720). 

 This porous matrices are usually produced by pressure 

infiltration of slurries (Fig. 2.2) in a perform with the fibers, followed by 

drying and sintering [16, 27-29].  
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Fig 2.2 CMC production by slurry infiltration [14]. 

 

2.2.1 Damage Tolerance in Ceramic Composites 

 

 The damage tolerance in composite materials is thoroughly 

attributed to the crack deflection phenomenon between matrix and fiber 

(Fig. 2.3). The toughening occurs by the microcracking of the matrix 

and crack deflection, which keeps the fiber structure intact until the 

material fracture.  

 
Fig. 2.3 Crack deflection phenomena in: a) dense matrix composite with weak 

interface and b) porous matrix composite [20]. 
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 The crack-deflection phenomena in two different materials of 

different elastic modulus were studied by He and Hutchinson [30]. One 

important variable to be considered is the Dunders parameter (α), which 

is a measure of the mismatch between the elastic modulus of matrix 

(Em) and fiber (Ef): 

 
(2.1) 

 When using an energy balance, it is noted that the ratio between 

the energy release rate when the crack propagate between the interface 

Gd and the energy release rate on crack penetration Gp should be equal 

to the ratio of the interfacial toughness between interface and matrix 

[30] (eq 2.2): 

 

 
(2.2) 

 A semiempiric relationship for Gd/Gp is given by Fujita et al. 

[27]: 

 
(2.3) 

 The graphical representation of this criterion is given by Fig. 

2.4, showing where the usual porous ceramic matrix composites can be 

found. 

 
Fig. 2.4 He-Hutchinson criteria for crack deflection [20]. 
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 Replacing (2.1) in (2.3) and assuming Γi = Γf: 

 

 
(2.4) 

 

where Σ is a non-dimensional parameter which represent the propensity 

for crack deflection for values higher than 1. So, by knowing the 

relationship between the elasticity modulus between matrix and fiber, 

their interfacial toughness and their evolution, it is possible to predict 

their behavior in service and the optimal sintering parameters. 

 Using those criteria, Fujita et al. [27] have determined the 

service time of mullite-alumina composites, reinforced with Nextel 720 

fibers. A model to predict the evolution of matrix properties in relation 

to the time was developed (Fig. 2.5): 

 
Fig 2.5 Evolution of Σ with sintering time [27]. 

 

The indexes denote the matrix composition. 100M/0A would be 

a composite with 100% mullite and 0% alumina, and so on. Composites 

with a higher mullite content show a better service time, what can be 

explained by the lower mullite sinterability [27]. 
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2.2.2 Load transfer in short fiber composites 

 

As a pioneer model for load transfer in short-fiber reinforced 

composites, Cox [31] published a shear-lag model to predict the strength 

of paper (which is indeed a composite of cellulose and lignin fibers). 

The model is explained briefly in the next section: 

A loaded composite made of a dense fiber with length 2L is 

embedded in a porous matrix made of the same material as the fiber, as 

shown in Fig.1. It is assumed that no slippage occurs between fiber and 

matrix. It should also be considered that the Poisson’s ratio of fiber and 

matrix is the same, which implies the inexistence of transversal stress 

when the loading is applied along the fiber. Considering the 

displacements in the fiber u and distant from the fiber v: (Fig. 2.6): 

 

 
Fig. 2.6 Simplified scheme of the stress field around the fiber. a) without 

loading. b) loaded. [11] 

 

From Hooke’s Law and taking the differential: 

              (2.5) 

Cox proposes similar behavior [31]: 

 
(2.6) 

where Pf is the load acting on the fiber and B is a constant that depends 

on the fiber distribution and the Young’s modulus of fiber and matrix. 

Differentiation of Eq. 2.7 leads to: 

 
(2.7) 

The derivatives of u and v can be taken as the deformations in 

the fiber and matrix, respectively: 

 
(2.8) 

 
(2.9) 

Substitution of (2.8) and (2.9) in (2.7), gives: 
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(2.10) 

A solution to this differential equation leads to: 

 (2.11) 

where: 

 

(2.12) 

and S and T are constants depending on the boundary conditions of the 

system. 
 

2.2.3 Strength statistics for fiber bundles 
 

  It is well-known for bundles of fibers, that the bundle strength 

is always less than the sum of the fiber strengths, sometimes as much as 

50% [32-37]. This is because the fibers are real materials and thus they 

have variable properties, and so the statistical variation needs to be taken 

into effect, and also the grouping and overloading effect due to the 

grouping. In Fig. 2.7 typical Weibull plots for single fiber strength, the 

strength of a bundle of these fibers, and the strength of a composite 

made with the bundle are shown. 

 

 
Fig. 2.7 Weibull plots for fiber tensile strength, bundle strength, and composite 

bundle strength [32]. 
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Note that going from the fiber to the bundle, the average 

strength is decreased, but, as the bundle is made into a composite, the 

strength goes up; also notice that the Weibull modulus (m) increases, 

meaning the variability decreases. There are clearly things happening in 

the bundle and composite that cannot be explained deterministically. 

 

2.2.3.1 Statistics for bundle strength. Daniel’s Theorem 

 

Consider a simple tensile experiment on a bundle of six fibers. 

Suppose that they are all the same size, and we know their breaking 

loads P1 = 2.0 N, P2 = 2.2 N, P3 = 3.2 N, P4 = 3.4 N, P5 = 3.6 N  and P6 = 

3.8 N. Assume that the bundle load when the load in each surviving 

fiber is P, G6(P) and denote the bundle strength by G6*(P). In a 

deterministic world, an ultimate bundle strength G6*(P) = 3.03, the 

average fiber strength, would be the value used [32]. 

Then, by putting the bundle of 6 fibers in a commercial testing 

machine and monotonically increasing the strain, a result as the Figure 

2.8 is obtained. The load in each of the fibers is identical and increases 

until each fiber carries a load of 2 N, and then fiber #1 fails. The 

surviving fibers still carry a 2 N load, but now the bundle strength is 

only 0.83 of its original value at the instant that the fiber broke. Now 

continue the extension until #2 breaks at a fiber load of 2.2 N, and the 

bundle strength drops again [32]. 

 

 
Fig. 2.8 Simple experiment for bundle and single fiber strength [32]. 
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Continuing on until the remaining fibers break, the peak load in 

found to occur when fiber #3 breaks, and this is the bundle strength G*. 

A general expression for the bundle strength of a bundle with n fibers 

can be written [33]: 
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More desirable, however, is being able to predict the bundle 

strength distribution from a knowledge of the fiber strength distribution, 

as well as being able to predict the strength of a large bundle of fibers; 

as n reaches infinity, the calculation of the former expression becomes 

extremely tedious. Looking more closely at equation (2.13) it can be 

seen that the first of the two terms is the fraction of surviving fibers 

while the second is the load at which they are still surviving. Motivated 

by this, if F(σ) is the failure probability for the individual fibers in the 

bundle, then the bundle strength, G*(x) can be found to be [32]: 

  )(10sup* FxxG   (2.14) 

 Daniels [34] was the first one to provide an analytical result to 

predict the bundle strength (eq. 2.15). However, it can be seen that with 

an increasing number of fibers, the expression itself becomes really 

unfeasible to calculate. 
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  (2.15) 

 

2.2.3.2 Load Sharing 

 

In the model above it was assumed that, in a bundle under load, 

when a fiber fails, its load is shared equally among the surviving fibers. 

Such a load sharing arrangement is called an equal load sharing (ELS) 

rule [32-35]. Suppose the bundle load, Gn, on n fibers at the instant 

before the weakest fiber breaks is P-ε, where ε is very small. At this 

point each fiber carries the load. When the first fiber fails at P, under 

ELS, each of the remaining n-1 fibers must be overloaded to carry the 

load from the broken fiber, so each fiber immediately after the breakage 

will bear the load P(n/n-1). The term in brackets at eq. 2.16 is called the 
load concentration factor, in this case K1. In general the ith load 

concentration factor, Ki, under ELS is [35]: 



35 

 

11, 









 ni

in

n
K i  (2.16) 

For example, suppose a bundle has 10 fibers and the weakest 

fiber has strength 1. When G10 = 1, the first fiber will break, and 

immediately, each fiber will now carry a load of 1.1. At this point there 

are a few possibilities depending upon the strength of the next weakest 

fiber. If the strength is higher or equal to 1.1, all of these fibers will 

survive to the failure of the first. But, if only one has strength lower than 

1.1, it will fail immediately and the remaining fibers will bear a 1.25 

load. That means, the failure of only one fiber can lead to the 

catastrophic failure of the bundle relating to the overloading of the 

remaining fibers [32,35]. 

This model has some interesting implications. First, it explains 

why the bundle strength is lower than the mean fiber strength, as seen on 

Fig. 3.11. Second, it shows that the way to increase the strength of the 

bundle is not by simply adding stronger fibers, but rather by removing 

the weak ones. Because of load transfer, when many weak fibers have 

failed the overload will be enough to overcome any contribution of the 

stronger fibers. Third, another way to increase the bundle strength is that 

the fiber strength distribution has a high mean and as little variability as 

possible [32,35]. 

 

2.2.3.3 Local Load Sharing 

 

The equal load sharing rule generally gives the most 

conservative value for bundle strength. Moreover, because the matrix in 

a composite tends to isolate the effects of a fiber break to the immediate 

vicinity of the failed fiber, the fiber’s immediate and nearest neighbors 

bear a larger part of the overload, more than a fiber at a some distance 

away. A number of alternate rules to ELS have been proposed, the 

simplest being local load sharing, LLS [33]. Under LLS the load carried 

by a broken fiber is transferred only to that fiber’s nearest, unbroken 

neighbors. Figure 2.9 illustrates this rule for several arrangements of 

broken fibers within a 7-fiber bundle. 
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Fig. 2.9 Load intensity factors for a bundle of 7 fibers, assuming LLS [32]. 

 

Other important quantity is the number of fiber breaks required 

for the bundle to fail, called the critical cluster size, and is often denoted 

by k*. If we know the Weibull modulus for fiber strength, m, and find 

the Weibull modulus for bundle strength,  , then the critical cluster size 

is [32]: 

m
k


*  (2.17) 

When k* > 1, the Weibull modulus for bundle strength is higher 

than that for fiber strength, explaining the change in slope of the curves 

in Fig. 2.7. 
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3 MODELING 
 

 

3.1 SIMPLIFIED SHEAR-LAG MODEL 

 

3.1.1 Previous Considerations and Analysis 

 

The majority of the load transfer models for short-fiber reinforced 

composites was created to describe the behavior of polymer matrix 

composites. These include the following assumptions: 

 The elastic modulus of the fibers (Ef ) is much higher 

than the matrix (Em); 

 The deformation until failure from the fibers (εf) is much 

lower than the matrix(εm); 

 The matrix has some degree of ductility. 

Those criteria are particularly not true in the case of ceramic 

matrix composites, where the material of the matrix is almost the same 

from the fibers, so it is possible to take into account different load 

sharing phenomena. 

The proposed model in this Thesis tries to take into account the 

compatibility between the fibers and matrix in porous-matrix 

composites, by a function of load transfer in the tip of the fibers, 

inversely proportional to the porosity of the matrix. Some effort is made 

to approximate the load transfer functions, trying to avoid the use of 

hyperbolic functions, which will complicate further the solution of the 

problem. 

 

3.1.2 Linear Shear-Lag Model 

 

According to Fig. 3.1, let’s consider a composite with fibers 

whose length is 2L, diameter 2r and Young’s modulus Ef, embedded in a 

matrix with porosity ρ, made of the same material of the fiber. Hereby 

we define the critical length Lc, in which from the tip of the fiber the 

stress distribution isn’t constant by the shear-lag between matrix and 

fiber. It is more feasible to work with α, the ratio between the critical 

length and fiber length, being Lc =α∙L. 
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Fig. 3.1 Proposed stress distribution and boundary conditions 

 

 Therefore, it can be proposed that the stress distribution 

between the points L-αL and L follows a linear behavior such as: 

 (3.1) 

 By using the boundary conditions defined in Fig. 3.1, and 

substituting then in (3.1): 

 (3.2) 

 (3.3) 

 Isolating B  in (3.2) and replacing in (3.3): 

 (3.4) 

 (3.5) 

 And then: 

 
(3.6) 

By replacing A from (3.1) with (3.6): 

 
(3.7) 

Therefore, B is given by: 

 
(3.8) 

 By replacing the constants in (3.1), we have the stress 

distribution behavior: 

 
(3.9) 
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 To determine the shear stresses along the fiber, the force 

equilibrium in a fiber element with diameter 2r and length dx is made in 

the x direction, resulting in: 

 (3.10) 

 
Fig. 3.2 Force equilibrium in an infinitesimal fiber element. 

 

Then, the shear stresses are given by: 

 
(3.11) 

By the differential of (3.9): 

 
(3.12) 

With the stress distribution along the fiber, it is possible to 

calculate the average stress carried by the fiber in the composite, given 

by: 

 
(3.13) 

For α ≥ 1, i.e. the fiber is shorter than the critical length: 

 
(3.14) 

Then, 

 
(3.15) 

Simplifying the equation: 

 
(3.16) 

 
(3.17) 

Therefore, the average stress carried by the fiber is given by: 

 
(3.18) 
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And for 0 < α < 1, i.e., the fiber is longer than the critical 

length: 

 
(3.19) 

Then, 

 
(3.20) 

 Therefore: 

 
(3.21) 

 
(3.22) 

 
(3.23) 

Simplifying the equations, we get the average stress carried by 

the fibers longer than the critical length: 

 
(3.24) 

 With the average stresses well defined, we can define the 

stresses in the ply longitudinal and transversal directions. When the 

matrix material is the same as the fiber, it is possible to write the elastic 

modulus of the matrix in a function of the fiber modulus: 

 (3.25) 

where b is a shape factor that depends on the pore shape and 

distribution, according to Watchman [38]. 

 The stress on the transversal direction is equal to the matrix 

maximum stress, given by: 

 (3.26) 

 The stress on the longitudinal direction is given by the average 

value between matrix and fiber, based on the volumetric fractions of 

fiber and matrix: 

 (3.27) 

 Therefore for 0 < α < 1: 

 
(3.28) 

 And for α > 1: 

 
(3.29) 
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3.1.3 Quadratic Shear-Lag Model 

 

 
Fig. 3.3 Proposed stress distribution and boundary conditions 

 

In a similar manner as the linear model, it can be proposed that 

the stress distribution between the points L-αL and L follows a quadratic 

behavior such as: 

 (3.30) 

 By using the boundary conditions given in Fig. 3.3, and 

substituting then in (3.30): 

 (3.31) 

 (3.32) 

 (3.33) 

 Isolating B  in (3.33) and replacing in (3.31) and (3.32): 

 (3.34) 

 (3.35) 

 (3.36) 

Subtracting (3.36) from (3.35): 

 (3.37) 

 (3.38) 

 (3.39) 

 (3.40) 

 And then: 

 
(3.41) 

By replacing A from (3.33): 

 
(3.42) 
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Therefore, B is given by: 

 
(3.43) 

To find C, we replace A in (3.34): 

 
(3.44) 

 
(3.45) 

 By replacing the constants in (3.30), we have the stress 

distribution behavior: 

 
(3.46) 

 To determine the shear stresses along the fiber, the force 

equilibrium in a fiber element with diameter 2r and length dx is made in 

the x direction, resulting in: 

 (3.10) 

 Then, the shear stresses are given by: 

 
(3.11) 

By the differential of (3.46): 

 
(3.47) 

With the stress distribution along the fiber, it is possible to 

calculate the average stress carried by the fiber in the composite, given 

by: 

 
(3.13) 

For α ≥ 1, i.e. the fiber is shorter than the critical length: 

 
(3.48) 

Then, 

 
(3.49) 

Simplifying the equation: 

 
(3.50) 

 
(3.51) 

 
(3.52) 
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Therefore, the average stress carried by the fiber is given by: 

 
(3.53) 

And for 0 < α < 1, i.e., the fiber is longer than the critical 

length: 

 
(3.54) 

 Therefore: 

 

(3.55) 

 

(3.56) 

 

(3.57) 

 

(3.58) 

 
(3.59) 

 
(3.60) 

Simplifying the equations, we get the average stress carried by 

the fibers longer than the critical length: 

 
(3.61) 

 With the average stresses well defined, we can define the 

stresses in the ply longitudinal and transversal directions. When the 

matrix material is the same as the fiber, it is possible to write the elastic 

modulus of the matrix in a function of the fiber modulus: 

 (3.25) 

where b is a shape factor that depends on the pore shape and 

distribution, as discussed previously. 

 The stress on the transversal direction is equal to the matrix 

maximum stress, given by: 

 (3.26) 
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 The stress on the longitudinal direction is given by the average 

value between matrix and fiber, based on the volumetric fractions of 

fiber and matrix: 

 (3.27) 

 Therefore for 0 < α < 1: 

 
(3.62) 

 And for α > 1: 

 
(3.63) 
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3.2 MONTE CARLO SIMULATION OF BUNDLE TESTING 

 

The approach used to predict the ceramic bundle strength was a 

Monte-Carlo simulation of a tensile bundle test of dry fibers. The 

Matlab algorithm consisted of two main steps: generation of a random 

fiber bundle based on the Weibull parameters of single-fiber testing 

(Fig. 3.4) and simulated test of the created bundle (Fig. 3.5). 

A Matlab routine was created in order to simulate the 

mechanical behavior of fiber bundles, with different load sharing rules, 

as a way to take into account the effects of processing and matrix in the 

fiber bundles. 

The main steps on the simulation are the following: 

 Generation of bundle of n fibers via a random fiber 

population from input Weibull parameters (m and σ0); 

 Increasing the load stepwise and individually compares 

it with the fibers. If the load is not enough to break a 

fiber, the load is increased. Otherwise, the compared 

fiber is broken and the load is redistributed according 

to the load-sharing rule; 

 The above step is repeated until all fibers are broken; 

 The ultimate load is recorded and the whole procedure 

is repeated 50 times in order to obtain a Weibull 

distribution; 

 The program calculates the output Weibull parameters 

in bundle testing. 

 

 

Fig 3.4 Scheme of the bundle generation algortithm. 
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Fig 3.5 Scheme of the bundle testing algorithm. 

 

3.2.1 Implementation of Load Sharing 

 

 The basis for the implementation of the load sharing is in the 

concept of load concentration factor, K. The bundle is seen by the 

program as a matrix of N×M fibers, each with a random breaking load, 

based on the Weibull distribution of the single fiber data. 

 The program compares this bundle-matrix with the load in the 

machine, if one fiber breaks, this load is multiplied by a load 

concentration matrix, K, which has also N×M items. In the case of equal 

load sharing, this factor is simply the total of fibers in the bundle divided 

by the number of remaining fibers. 

 In the case of local load sharing, whenever a fiber fails, it is 

marked and the program counts for each fiber the number of fractured 

neighbors, as can be seen in Fig. 3.6 for a hexagonal array. The failed 

fibers are the red Xs. 
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Fig 3.6 Neighbor counting in a hexagonal array.  

 

 Then, the load concentration factor is calculated from the 

literature, based on the number of failed neighbors, according to Table 

3.1. 
Table 3.1 Load concentration factors 

Number of Broken 

Neighbors 

Circular 

LLS Rule 

Argon, Elastic 

Matrix 

Zweben and 

Rosen 

0 1 1 1 

1 1.5 1.49 1.33 

2 2 1.76 1.6 

3 2.5 1.92 1.83 

4 3 2.07 2.03 

10 6 2.72 2.97 

 

Also, the neighbor counting method can be done in two ways: 

Considering a square (Fig. 3.7) or a hexagonal (Fig. 3.8) array. The 

implementation of the hexagonal array on a matrix is also shown, just 

being implemented by conditional counting in odd or even rows. 
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Fig 3.7 Neighbor counting for a square array.  

 

 

 
Fig 3.8 Neighbor counting for a hexagonal array.  
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4 MATERIALS AND METHODS 

 

 

4.1 FIBER PREPARATION AND SAMPLE MOUNT DESIGN  

 

Textiles of Nextel
 

610 fibers were obtained from 3M for the 

purposes of this study. The fiber bundles were carefully separated from 

the textiles and the fibers were desized according to the manufacturer’s 

recommendations. The Nextel
 

fibers could not be easily placed into the 

testing grips, due to their small size and fragile nature. Through multiple 

trials, key aspects that came to light regarding the testing of individual 

fibers included fiber handling, successfully loading fibers for testing, 

and preserving fibers so that fracture surfaces of the tested fibers could 

be examined. As a result, a sample mount technique was adapted from 

techniques available on the literature and modified to fit with this 

examination [39].  

Providing support for handling of the Nextel fibers, while still 

allowing for the ease of tensile testing, was of main importance. Index 

cards were cut to 70 mm in length and 50 mm in width, with a hole with 

a diameter of 25mm punched in the center (Fig. 4.1). A fiber would then 

be glued into place on the card using superglue (cyanoacrylate glue). 

Once secured in the tensile grips, the card was then separated into two 

separate pieces through the use of a scissor. The same approach was 

used to the tensile testing of bundles, although the literature [40] 

recommends different gripping methods, in order to produce comparable 

results between single-fiber and bundle testing. 

 

 
Fig. 4.1 Single fiber specimen mounted on the clamps for testing.  



50 

 

4.2 TENSILE TESTING  

 

The tensile testing of single fibers and bundles (1500 den, ~400 

fibers per bundle) was conducted with a controlled load on a Instron 

testing machine, with a 5N and 200 kN (for single-fiber and bundle 

tests, respectively) load cell using fiber tension test clamps. The fibers 

were tested using a controlled deformation mode, with preloading and a 

constant displacement ramp rate of 1 mm/min to a maximum of 4000 

MPa. At least 29 specimens were tested in order to determine the 

statistical distribution.  
 

4.3 DATA TREATMENT  

 

In order to observe the statistical nature of the fiber and bundle 

strength, the resulting values on the mechanical testing were plotted 

according to Weibull’s distribution (4.1). 
m

ePf
















 01




 
(4.1) 

The mechanical testing data was ranked and each one was given 

a failure probability of n/N+1, were n is the rank of the data and N is the 

total number of tests. Those values were fitted with the linearized form 

of the distribution (4.2), yielding to the m and σ0 values of the 

distribution (Fig. 4.2). 

 

   0lnln1lnln  mmPf   (4.1) 

 
Table 4.1 Data Treatment for the fiber testing. 

Data 

Rank 
Pf 

Load 

(N) 
ln(-ln(1-Pf)) 

Tensile 

Strength 

(MPa) 

ln(σ) 

1 0,033 47,3 -3,384 1215,9 7,103 

2 0,067 49,2 -2,697 1264,7 7,142 

3 0,1 49,3 -2,250 1267,3 7,144 

4 0,133 52,6 -1,944 1352,1 7,209 

5 0,166 54,9 -1,701 1411,3 7,252 

... ... ... ... ... … 
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Fig. 4.2 Weibull fit of the single-fiber testing.  
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5 RESULTS AND DISCUSSION 

 

 
5.1 SHEAR-LAG MODEL THEORETICAL RESULTS 

 

To evaluate the models herein described, it is possible to apply 

the equations to an idealized composite, made of a porous alumina 

matrix and alumina fibers. The following table summarizes the 

important properties, taken as typical values from the literature: 
Table 5.1 Simulated Composite Properties.  

Property Value 

Fiber Volume Fraction 0.45 

Matrix Porosity (%) 24 

Fiber Length – 2L (mm) 50.8 

Fiber Diameter (μm) 10 

Critical Length / Length Ratio (α) 0.25 

 

5.1.1 Linear Shear-Lag Model 

 

5.1.1.1 Stress distribution 

 

 
(3.9) 

 

 
Fig. 5.1 Stress distribution along the fiber, for different matrix porosities.  
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Fig. 5.2 Stress distribution along the fiber, for critical length ratios.  

 

5.1.1.2 Shear Stresses 

  

 
(3.12) 

 

 
Fig. 5.3 Shear stress distribution along the fiber, for different matrix porosities.  
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Fig. 5.4 Shear stress distribution along the fiber, for critical length ratios.  

 

5.1.1.3 Average Stresses 

 

     for α > 1 (3.18) 

   for 1 ≥ α ≥ 0 (3.24) 

 

 
Fig. 5.5 Average stress carried by the fiber, for critical length ratios. 
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Fig. 5.6 Average stress carried by the fiber, for different matrix porosities.  

 

5.1.1.4 Longitudinal Ply Strength 

 

  for 0 < α < 1 (3.28) 

  for α > 1 (3.29) 

 
Fig. 5.7 Longitudinal Ply Strength, for critical length ratios.  
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Fig. 5.8 Longitudinal Ply Strength, for different matrix porosities.  
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5.1.2 Quadratic Shear-Lag Model 

 

5.1.2.1 Stress distribution 

 

 
(3.46) 

 

 
Fig. 5.9 Stress distribution along the fiber, for different matrix porosities.  

 

 
Fig. 5.10 Stress distribution along the fiber, for critical length ratios.  
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5.1.2.2 Shear Stresses 

  

 
(3.47) 

 

 
Fig. 5.11 Shear stress distribution along the fiber, for different matrix porosities.  

 

 
Fig. 5.12 Shear stress distribution along the fiber, for critical length ratios.  
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5.1.2.3 Average Stresses 

   

 

   for α > 1 (3.53) 

   for 1 ≥ α ≥ 0 (3.61) 

 

 
Fig. 5.13 Average stress carried by the fiber, for critical length ratios. 

 

 
Fig. 5.14 Average stress carried by the fiber, for different matrix porosities 
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5.1.2.4 Longitudinal Ply Strength 

 

  for 0 < α < 1   (3.62) 

  for α > 1 (3.63) 

 
Fig. 5.15 Longitudinal Ply Strength, for critical length ratios.  

 

 
Fig. 5.16 Longitudinal Ply Strength, for different matrix porosities.  
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5.1.3 Comparison with Literature 

 

 As to evaluate the effectiveness of the models developed, model 

predictions are compared to a porous silicon carbide matrix composite 

reinforced with random-aligned silicon carbide fibers, as reported by 

Qin et al. [41]. 

 The following parameters are assumed in order to make the 

calculations: 
Table 5.2 Simulated Composite Properties. 

Property Value 

Fiber Volume Fraction [41] 0.53 

Fiber Length – 2L (mm) [41] 0.3-1 

Fiber Diameter (μm) [41] 13 

Bulk bending strength (MPa) [41] 300 

Critical Length / Length Ratio, α 1 

Fiber and bulk density (g/cm³)  [41] 2.5 

Sintering parameter, b [38] 4 

 

 The matrix porosity was obtained from the published composite 

densities, using the law of mixtures [11], leading to the following 

equation: 

 
fth

ffc

m
v

v
p






1
1




 (5.1) 

 

Table 5.3 Simulation Results. 

Sintering Temperature 1650 °C 1750 °C 

Composite Density (g/cm³) 2.03 2.46 

Matrix Porosity (%) 40 3.4 

Measured Bending Strength (MPa) 

[41] 
50.75 155.75 

Predicted Strength (MPa) – Linear 

[Error] 

47.55 

[6.31%] 

168.31 

[8.07%] 

Predicted Strength (MPa) – 

Quadratic [Error] 

50.73 

[0.04%] 

168.58 

[8.24%] 
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As can be seen, the predictions are in a good agreement with the 

experimental values reported on the literature, even with considerable 

simplifications leading to the calculation of matrix porosity and the 

determination of bulk bending strength. The difference between the 

linear and quadratic model predictions isn’t negligible and both models 

provide a good range of predictions, considering the boundary 

conditions adopted in this case. 
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5.2 MONTE CARLO SIMULATION RESULTS 

 

5.2.1 Theoretical Tests for ELS 

 

 As a way to test the accuracy of the program, some tests were 

performed to compare its results to the analytical expressions derived by 

Daniels (eq 2.15).  

 Test runs with one to five fibers in the bundle were performed 

and the results were compared to the theoretical predictions based on 

Daniels’ Theory. The fiber input data was as provided from the 

manufacturer, and as can be seen, both the characteristic strength (σ0) 

and Weibull modulus (m) are successfully predicted in these conditions 

with the Equal Load Sharing algorithm. 
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Fig. 5.17 Simulation for ELS, dependence of characteristic strength with 

increasing number of fibers.  
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Fig. 5.18 Simulation for ELS, dependence of Weibull modulus with increasing 

number of fibers. 

 

 The test runs were also made with a higher number of fibers in 

the simulated bundle. The results of the evolution of σ0 and m with 

increasing number of fibers are shown in Figs (5.19) and (5.20). 
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Fig. 5.19 Simulation for ELS, dependence of characteristic strength with 

increasing number of fibers.  
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Fig. 5.20 Simulation for ELS, dependence of Weibull modulus with increasing 

number of fibers. 

 

 Note that for an increasing number of fibers in the bundle, the 

characteristic strength reaches a limit, just as like the equation (2.14), 

showing that the numerical routine follows the analytical reasoning. One 

interesting result is in Fig 5.20. It shows that under ELS, the Weibull 

modulus increases to unrealistic amounts. This shows clearly that even 

within a dry bundle, the increasing number of fibers also isolate local 

failures, and the theoretical prediction of ELS are unsuitable for a high 

number of fibers in the bundle. 
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5.2.2 Simulation Results for ELS and LLS 

 

 Figs. (5.21) and (5.22) show the evolution of the Weibull 

parameters in the LLS simulations using a Circular LLS rule for the 

stress intensity factors. 

 
Fig. 5.21 Simulation for LLS, dependence of characteristic strength with 

increasing number of fibers.  

 

 
Fig. 5.22 Simulation for ELS, dependence of Weibull modulus with increasing 

number of fibers. 
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It can be seen that the LLS theory is more suitable for a bundle 

with a higher number of fibers, even for dry, desized bundles. One 

reasonable explanation can be that with the increasing number of fibers, 

the slippage and friction between the fibers can transmit some part of the 

overloading locally via shear stress, like the bundles infiltrated with a 

consolidated matrix. 
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6 CONCLUDING REMARKS 

 

 
This thesis developed some models of load transfer between 

porous matrix and fibers in ceramic matrix composites, concerning 

short-fiber reinforced composites with a porous matrix, and the 

mechanical behavior of dry fiber bundles. 

An analytical model for short fibers was developed, based on the 

earlier shear-lag models used for polymeric composites. Moreover, 

geometry and strength of fibers in addition to the matrix porosity were 

included in the present analysis. The theoretical curves for the 

longitudinal and shear stresses distributions along the fiber -porous 

matrix interface were presented. It became evident that the critical 

length is governed by the relative properties of the fibers, matrix and 

porosity, which greatly influenced the load carrying capacity of the 

fibers in the composites. In addition, the present simplified solution 

facilitates the understanding of the interface mechanism (shear stress 

transfer) using porous matrix. 

 Using data from experiments in the literature, the model was 

validated, predicting in a successful manner the bending strength of SiC 

short-fiber reinforced silicon carbide, predicting the influence of the 

porosity of the matrix. 

In addition, a bundle testing algorithm using Monte Carlo 

Methods was developed. The local-load sharing model results were in a 

good agreement with the experimental results of single-fiber and bundle 

testing, showing that for even dry fiber bundles some degree of local 

load sharing due to friction and slippage. Further development in the 

model is being made, in order to include factors as damage in the 

handling of the fibers and slurry infiltration. The model proved flexible 

and resilient enough to be further complicated. 
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