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Abstract

The optimised reduction of dissolved nutrient loads in aquaculture effluents through bioremediation requires selection of
appropriate algal species and strains. The objective of the current study was to identify target species and strains from the
macroalgal genus Ulva for bioremediation of land-based aquaculture facilities in Eastern Australia. We surveyed land-based
aquaculture facilities and natural coastal environments across three geographic locations in Eastern Australia to determine
which species of Ulva occur naturally in this region and conducted growth trials at three temperature treatments on a
subset of samples from each location to determine whether local strains had superior performance under local
environmental conditions. DNA barcoding using the markers ITS and tufA identified six species of Ulva, with U. ohnoi being
the most common blade species and U. sp. 3 the most common filamentous species. Both species occurred at multiple land-
based aquaculture facilities in Townsville and Brisbane and multiple strains of each species grew well in culture. Specific
growth rates of U. ohnoi and U. sp. 3 were high (over 9% and 15% day21 respectively) across temperature treatments. Within
species, strains of U. ohnoi had higher growth in temperatures corresponding to local conditions, suggesting that strains
may be locally adapted. However, across all temperature treatments Townsville strains had the highest growth rates (11.2–
20.4% day21) and Sydney strains had the lowest growth rates (2.5–8.3% day21). We also found significant differences in
growth between strains of U. ohnoi collected from the same geographic location, highlighting the potential to isolate and
cultivate fast growing strains. In contrast, there was no clearly identifiable competitive strain of filamentous Ulva, with
multiple species and strains having variable performance. The fast growth rates and broad geographical distribution of U.
ohnoi make this an ideal species to target for bioremediation activities at land-based aquaculture facilities in Eastern
Australia.
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Introduction

Many intensive aquaculture industries generate nutrient-rich

waste water streams which, if untreated, can cause eutrophication

of coastal waters and negatively impact downstream biological

communities [1,2]. The use of live algae to remove excess

dissolved nutrients from aquaculture effluents – algal bioremedia-

tion - is widely accepted as an efficient and cost effective waste

water treatment method [3–7]. This is particularly the case for

land-based aquaculture operations, where production is often

limited by strict environmental regulations around water quality of

point-source discharges [8,9]. The application of algal bioreme-

diation at these sites can reduce nutrient loads in effluents prior to

discharge, thereby providing an opportunity to increase feed

inputs and consequently farm productivity [10].

A significant reduction of nutrient loads in aquaculture effluents

through algal bioremediation requires the selection of appropriate

species. A range of characteristics should be considered when

choosing species for bioremediation. It is essential for species to

have high growth rates as this generally translates into high

bioremediation capability [3,7]. Species should also be able to

grow across a wide range of conditions [11], with the aim of year

round production in open culture systems. Additionally, species

should occur locally and, if possible, have a broad geographic

distribution [3,7,12]. This will minimise the risk of cultivated

species invading natural ecosystems and impacting on native

biodiversity. It may also identify target species within diverse

genera that have more suitable traits for bioremediation, including

growth and nutrient uptake [13,14].

Selecting appropriate target species is therefore the first critical

step in implementing an algal bioremediation programme. If

algal bioremediation is to be used at multiple locations then the

second critical step is to consider whether a single strain of the

target species is used across all locations or local strains are

isolated and used at each location. (We use the term strain to

refer to individual samples or variants within a species, including

ecotypes or genotypes). If there is a strong genotype 6
environment (G 6 E) interaction, local strains may possess traits
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that provide an advantage under local conditions leading to

superior performance under these conditions compared to strains

originating from other habitats [15]. Adaptation of populations

to local environments has been demonstrated across a range of

phototropic organisms including terrestrial plants [16,17], aquatic

plants [18] and algae [19–21]. Based on these results, we would

expect local strains of algae to have higher growth, and therefore

bioremediation capability, in their local habitats compared to

non-local strains. However, experimental studies have not always

found that local strains are superior under local environmental

conditions [22–26]. Therefore, assessing the performance of

strains sourced from multiple locations under a range of

environmental conditions is important in the selection of target

species for algal bioremediation.

The objective of the current study was to firstly identify target

algal species, and secondly identify strains, for bioremediation of

land-based aquaculture facilities in Eastern Australia. Specifically,

we first wanted to identify target species with high growth rates

and a broad distribution along the east Australian coastline. Such

a species could then be used for algal bioremediation across

multiple aquaculture facilities, resulting in a consistent supply of

algal biomass for commercial applications and removing biose-

curity concerns associated with the use of non-endemic species.

Second, we wanted to determine whether local strains of the

selected species had superior performance under local environ-

mental conditions. Many marine algae species may be suitable for

bioremediation; however, we focus here only on species from the

genus Ulva. Species from this genus are ideal candidates for

bioremediation of aquaculture effluents as they have high growth

rates, a broad environmental tolerance, and relatively low

susceptibility to epiphytism [9,27–30]. In addition, species of Ulva

can rapidly absorb and metabolise inorganic phosphorus and

nitrogen – the two primary nutrients of concern in intensive

aquaculture [27–30]. Furthermore, many Ulva species have a

cosmopolitan distribution in Eastern Australia and are commonly

found in coastal intertidal habitats [31,32]. To achieve our aims,

we surveyed coastal environments across three locations in Eastern

Australia over 14u of latitude, including land-based aquaculture

facilities, to determine which species of Ulva occur naturally in this

region and in aquaculture bioremediation areas. We then

maintained strains of algae collected from all three locations in

laboratory cultures and conducted growth trials on a subset of

strains which had survived in culture for more than three months.

These trials tested the hypothesis that locally derived strains have

higher growth rates under local conditions.

Methods

Sample Collection
Eighty-four strains of Ulva were collected from intertidal

environments in three distinct regions – Townsville (19uS,

146uE), Brisbane (27uS, 153uE) and Sydney (33uS, 151uE) – along

the east coast of Australia, and six land-based aquaculture facilities

located in the Townsville and Brisbane regions. Permission was

obtained from owners and local authorities where appropriate to

collect Ulva from these sites. As strains were collected during the

dry season period, salinity levels were constant (,360/00) between

locations. Strains were transported in water taken at the collection

site back to James Cook University, Townsville, where they were

maintained in nutrient enriched autoclaved seawater (Guillards F/

2 medium; 12.3 mg L21 nitrogen, 1.12 mg L21 phosphorus ) in a

temperature and light controlled laboratory (12:12 light: dark

cycle, 49.2 mmol photons m22 s21, 23uC). These nutrient values

are similar to those found in aquaculture facilities [8]. A small

subsample of each specimen was dried and retained as a voucher.

Forty strains which survived in culture for more than four weeks

were identified to species level using DNA barcoding (Table 1;

Table S1) due to the well established difficulties associated with

identifying Ulva specimens to species using morphological and

cytological characteristics [32]. DNA barcoding is an alternative

approach to species identification for groups in which phenotypic

plasticity is an issue, cryptic taxa are likely to exist, and

morphological keys are ineffective for particular life stages or

genders [33]. This approach compares short DNA sequences from

a standardised region of the genome - the ‘barcode’ - to a library of

reference sequences derived from individuals of known identity

[33].

Species Identification
We used the DNA barcode markers tufA and ITS to identify

strains of Ulva. The plastid elongation factor tufA has been used to

discriminate amongst green algal species in a range of studies

[31,34] and this marker had high levels of discriminatory power

between species in a recent evaluation of barcode markers for

marine green macroalgae [35]. The internal transcribed spacer

region of the ribosomal cistron (ITS) has been widely used in

species-level phylogenetic studies of green algae [36–38], including

several studies of Ulva species in Australia [32,39].

A small piece of fresh tissue was isolated from each strain, rinsed

in autoclaved seawater and scrapped to remove any epiphytes.

Total DNA was extracted from this tissue using a Qiagen DNEasy

Plant Mini Kit following the manufacturer’s instructions. The tufA

region was amplified using the primers tufGF4 and tufAR [35];

the ITS region was amplified using the primers ITS1 [36] and G4

[40]. Polymerase chain reaction (PCR) amplifications were

performed in 25 mL reaction mixture containing 1.5 U of MyTaq

HS DNA polymerase (Bioline), 56MyTaq reaction buffer, 0.4 mM

of each primer and 0.5 mL of genomic DNA (25–30 ng).

Amplifications were performed on a BioRad C1000 Thermal

Cycler with a touchdown PCR cycling profile (cycling parameters:

5 min at 94uC, 30 cycles of 30 s denaturing at 95uC, 45 s

annealing at 60uC with the annealing temperature decreasing by

0.5uC each cycle, 60 s extension at 72uC, and a final extension at

72uC for 5 min). PCR products were column purified using

Sephadex G-25 resin and sequenced in both directions by the

Australian Genome Research Facility (Brisbane, Australia). If

sequences were unreadable or appeared to contain mixed template

a second PCR attempt was performed and products resequenced.

Sequences were edited using Sequencher v 4.5 (Gene Codes

Corporation, Ann Arbor, MI, USA) and submitted to GenBank

under the accession numbers given in Table 1.

Strains were identified based on their DNA sequences by

constructing phylogenetic trees using sequences downloaded from

Genbank. All publically available tufA Ulva sequences published as

part of peer reviewed journal articles were downloaded. Due to the

large number of ITS Ulva sequences in Genbank we downloaded

all newly generated sequences from the recent phylogenetic studies

of Australian Ulva by Kraft et al. [39] and Hawaiian Ulva by

O’Kelly et al. [41] and all previously published ITS Ulva

sequences used in these two studies for analysis. Duplicate

sequences were removed from each dataset and then all remaining

sequences were aligned with ours and trimmed to a standard

length in MEGA 5.0 [42]. The tufA dataset included 78 sequences,

39 of which were retrieved from GenBank and the alignment

consisted of 660 positions. The ITS dataset included 104

sequences, 68 of which were retrieved from GenBank and the

alignment consisted of 595 positions. Maximum likelihood (ML)

and neighbour joining (NJ) phylogenetic trees were constructed in
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MEGA using an Ulvaria obscura sequence (tufA: HQ610405; ITS:

AY260571) as an outgroup. jModelTest 2.1 [43,44] showed that

the TIM3+G model of molecular evolution best fitted the TufA

data and the TIM1+G model best fitted the ITS data. However, as

these models were not available in MEGA we used the simple

Kimura two-parameter model to estimate genetic distance [45] as

this is the standard model of molecular evolution used in

barcoding studies [46]. The reliability of tree topologies was

estimated using bootstrapping (1,000 replicates). As both maxi-

mum likelihood and neighbour joining trees produced very similar

Table 1. Sample information.

Accession number2

Species1 Strain Collection site Morphology ITS tufA

Ulva compressa BA2 Bare Island, NSW Filament KF195484 KF195520

U. fasciata BI2 Bribie Island, QLD Blade KF195485 KF195521

U/I BI4 Bribie Island, QLD Blade KF195486 KF195522

U. sp. 3 BI6 Bribie Island, QLD Filament KF195487 U/R

U. ohnoi BI9 Bribie Island, QLD Blade KF195488 KF195523

U. ohnoi BI13 Bribie Island, QLD Blade KF195489 KF195524

U. sp. 3 BI15 Bribie Island, QLD Filament KF195490 KF195525

U. torta CL2 Clovelly, NSW Filament KF195491 KF195526

U. fasciata CL7 Clovelly, NSW Blade U/R KF195527

U. australis CL8 Clovelly, NSW Blade KF195492 KF195528

U. compressa CL9 Clovelly, NSW Filament KF195493 KF195529

U. compressa CL10 Clovelly, NSW Filament KF195494 KF195530

U. ohnoi C02 Coogee, NSW Blade KF195495 KF195531

U. ohnoi GC1 Gold Coast Marine, QLD Blade KF195496 KF195532

U. ohnoi GFB1 Good Fortune Bay Fisheries, QLD Blade KF195497 KF195533

U. sp. 3 GFB2 Good Fortune Bay Fisheries, QLD Filament KF195498 U/R

U. ohnoi GFB5 Good Fortune Bay Fisheries, QLD Blade KF195499 KF195534

U/I GFB6 Good Fortune Bay Fisheries, QLD Filament KF195500 KF195535

U. ohnoi JCU1 James Cook University, QLD Blade KF195501 KF195536

U/I JCU2 James Cook University, QLD Filament KF195502 KF195537

U. sp. 3 JCU3 James Cook University, QLD Filament KF195503 KF195538

U. ohnoi KP1 Townsville, QLD Blade KF195504 KF195539

U. ohnoi KP2 Townsville, QLD Blade KF195505 KF195540

U. ohnoi KP3 Townsville, QLD Blade KF195506 KF195541

U. ohnoi MA1 Malabar, NSW Blade KF195507 KF195542

U. compressa MA6 Malabar, NSW Filament KF195508 KF195543

U. fasciata MA9 Malabar, NSW Blade KF195509 KF195544

U. fasciata MR3 Maroubra, NSW Blade KF195510 KF195545

U. intestinalis MR4 Maroubra, NSW Filament KF195511 KF195546

U. fasciata MR5 Maroubra, NSW Blade KF195512 KF195547

U. sp. 3 PR3 Pacific Reef Fisheries, QLD Filament KF195513 KF195548

U. ohnoi PR4 Pacific Reef Fisheries, QLD Blade KF195514 KF195549

U. ohnoi RC1 Redcliffe, QLD Blade KF195515 KF195550

U. compressa RC3 Redcliffe, QLD Filament U/R KF195551

U. ohnoi RC6 Redcliffe, QLD Blade KF195516 KF195552

U. sp. 3 SA4 Australian Prawn Farms, QLD Filament KF195517 KF195553

U/I SB1 Caloundra, QLD Filament U/R KF195554

U. sp. 3 SB5 Caloundra, QLD Filament KF195518 KF195555

U. sp. 3 SB12 Caloundra, QLD Filament KF195519 KF195556

U. sp. 3 TV3 Townsville, QLD Filament U/R KF195557

Collection information, mophology and GenBank accession numbers for ITS and tufA sequences for all study samples. See Table S1 for further details.
1U/I – unidentifiable,
2U/R – sequence unreadable.
doi:10.1371/journal.pone.0077344.t001
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outcomes we only present results based on the maximum

likelihood tree.

Growth Trials
To determine which naturally occurring species of Ulva would

be suitable for targets for algal bioremediation, growth trials were

conducted under three temperature treatments on a subset of

samples from each location. Strains were categorised as having

either a blade or filamentous morphology and three strains of each

morphology from each location, where possible, which had

survived in culture for more than three months were selected for

these experiments. Only two strains with blade morphology from

Sydney were used in the experiment as all other strains from this

location did not survive in culture. The two species with blade

morphology used in the experiment were U. ohnoi (Sydney,

Brisbane, Townsville) and U. fasciata (Sydney). Notably, U. ohnoi

was the only blade species to survive the initial three month period

of growth across all locations, and subsequently, seven of the eight

strains used in the growth trial are U. ohnoi. As multiple strains of

filamentous Ulva survived in culture, strains from four species were

used in the experiment – U. compressa (Sydney, Brisbane), U.

intestinalis (Sydney), U. sp. 3 (Brisbane, Townsville) and an

unidentified species (strain JCU2, Townsville). Nine replicates of

standardised size were isolated from each strain using a 6 mm

diameter hole punch for blade morphologies and an 8 mm

diameter hole punch for filamentous morphologies. Three

replicates of each strain were then grown at each of three

temperatures (17.5uC, 23uC, and 28.5uC) in culture cabinets with

12 hour light: 12 hour dark cycles and a light level of 49.2 mmol

m22 s21 for 7 days. These temperatures were chosen to be

representative of the minimum average monthly sea surface

temperature in Sydney (17.5uC), the average monthly sea surface

temperature in Brisbane (23uC), and the maximum average

monthly sea surface temperature in Townsville (28.5uC) (http://

www.metoc.gov.au/products/data/aussst.php). This range of

temperatures also represents the lower range of Townsville

(23uC), the upper range of Brisbane (28uC) and the upper range

of Sydney (23uC).

Each individual replicate was maintained in a sterile 60 mm

petri dish with nutrient enriched autoclaved seawater and

photographed under a stereo dissecting microscope at the start

and end of the 7 day period to determine the 2- dimensional

surface area. Specific growth rates were calculated for each

individual replicate of each strain using the equation SGR (%

day21) = Ln(Bf/Bi)/T*100, where Bf and Bi are the final and initial

surface areas (mm2) and T is the number of days in culture.

Growth rates for blades and filaments were analysed separately.

Permutational analyses of variance (PERMANOVAs) were used to

analyse the effect of collection location (Sydney, Brisbane and

Townsville) and temperature on specific growth rate of blades and

filaments. As seven of the eight blade strains included in the

experiment were the species U. ohnoi, we also separately analysed

the effect of temperature and strain on specific growth rates of this

species. This analysis allowed us to statistically test whether there

were differences in the growth rates of strains within a single

species. All analyses were conducted in Primer v6 (Primer-E Ltd,

UK) using Bray-Curtis dissimilarities on fourth root transformed

data and 999 unrestricted permutations of raw data [47].

Results

Species Identification
Based on the tufA and ITS phylogenetic trees we were able to

assign species names to 35 of our 40 strains (Table 1, Figs. 1 & 2).

Twenty-one strains were assigned to the same species by both tufA

and ITS sequence data (Table S1). Nineteen of these strains had

identical ITS and tufA sequences to GenBank samples of U. ohnoi

(BI9, BI13, CO2, GFB1, GFB5, JCU1, KP1, KP2, KP3, PR4,

RC6), U. fasciata (BI2, MA9, MR3, MR5) and U. compressa (BA2,

CL9, CL10, MA6). A further two strains had identical tufA or ITS

sequences to GenBank samples of U. australis (CL8) and U.

intestinalis (MR4), and their sequences for the remaining marker

formed clades (99% bootstrap support for MR4) with GenBank

samples of these species. GC1, MA1, RC1 were identified as U.

ohnoi as they had identical tufA sequences to GenBank U. ohnoi

samples and their ITS sequences fell within a supported clade

(72% bootstrap support) that contained U. ohnoi and the closely

related U. fasciata. Eight strains (BI6, BI15, GFB2, JCU3 PR3,

SA4, SB5, SB12) had ITS sequences that formed a distinct, well

supported (99% bootstrap support) clade with a GenBank sample

from Japan identified as U. sp. 3 [AB298458, 48]. The tufA

sequences of BI6 and GFB2 were unreadable and the tufA

sequences of the remaining six strains (BI15, JCU3, PR3, SA4,

SB5, SB12) formed a distinct clade with strong support (100%

bootstrap support) that did not include any GenBank samples with

which they could be identified. tufA sequences are not available for

the Japanese U. sp. 3 sample. However, we have provisionally

called these eight strains U. sp. 3 due to their similar grouping in

both the tufA and ITS phylogenies and the high support (99%

bootstrap support) for these clades. Strain TV3 has also been

provisionally called U. sp. 3 as, although its ITS sequence was

unreadable, the tufA sequence was identical to the six other strains

provisionally named as U. sp. 3. ITS sequences were unreadable

for CL7 and RC3, however, as their tufA sequences were identical

to GenBank samples for U. fasciata and U. compressa respectively

they have been assigned to these species. Species identification of

BI4 was not possible as the tufA sequence for this strain was

identical to U. ohnoi, while the ITS sequence was identical to U.

fasciata, suggesting that it may be a hybrid of these two species.

Similarly, species identification was not possible for CL2 as the

ITS sequence for this strain formed a clade with U. clathratioides

GenBank samples, while the tufA sequence formed a clade with U.

torta Genbank samples. Species identification was also not possible

for GFB6, JCU2 or SB1 - in both the ITS and tufA phylogenies,

each of these strains formed a distinct clade that did not contain

any other samples. In both the ITS and tufA phylogenies there was

no clear grouping of blade or filamentous strains, with both types

of morphologies occurring within multiple nodes of the trees.

In total, five species of Ulva were found in Sydney, four in

Brisbane and two in Townsville (not including the five samples

where it was not possible to identify to species level). The most

common blade species was U. ohnoi (14 strains, Fig. 3a) and this

was also the only species found in all three locations. The most

common filamentous species was U. sp. 3 (9 strains, Fig. 3b) and

this was only found in Brisbane and Townsville. The species found

at aquaculture farms were U. ohnoi, U. fasciata and U. sp. 3.

Growth Trials
Average specific growth rates of blade morphologies (predom-

inantly U. ohnoi) ranged from 9.8% day21 (61.3 S.E.) at 17.5uC to

12.5% day21 (62.4 S.E.) at 25uC, while those of filamentous

morphologies ranged from 15.6% day21 (62.9 S.E.) at 25uC to

18.4% day21 (62.3 S.E.) at 28.5uC. There was a significant

difference in growth rates between blade morphology strains

collected from different locations (Fig. 4a; Table 2). Across all

temperature treatments, Townsville strains had the highest growth

rates (11.2 (62.8 S.E.) –20.4 (62.6 S.E) % day21) and Sydney

strains had the lowest growth rates (2.5 (61.0 S.E)28.3 (61.5
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S.E.) % day21) (Fig. 4a). For species from each location, the

highest growth rates were attained at the temperature treatment

that most closely matched ambient temperatures at that collection

location. For example, Sydney strains grew most at 17.5uC (8.3

Figure 1. Ulva ITS phylogenetic tree. Maximum likelihood tree of Ulva internal transcribed spacer (ITS) sequence data (scale at bottom). Numbers
near each node refer to bootstrap support values, nodes with ,50% bootstrap support are not labelled. Samples collected in this study shown in
bold. Shading indicates strains with blade morphologies. Numbers accompanying the species names are GenBank accession numbers for the
sequences used in the analysis.
doi:10.1371/journal.pone.0077344.g001
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(61.5 S.E.) % day21), Brisbane strains at 23uC (12.6 (60.9 S.E.) %

day21) and Townsville strains at 28.5uC (20.4 (62.6 S.E) % day21)

(Fig. 4a).

Strains with filamentous morphologies had higher growth rates

overall compared to blade morphologies; however, patterns were

more variable, reflected by a significant temperature by location

interaction effect (Fig. 5a and 5b; Table 2). Brisbane strains had

the highest growth rates at 23uC (23.7 (62.7 S.E.) % day21), while

Townsville strains had the highest growth rates at both 17.5 and

28.5uC (22.5 (66.4 S.E.) and 22.8 (62.2 S.E.) % day21

respectively), Sydney strains had the lowest growth rates (10.6

(63.1 S.E) –14.4 (65.8 S.E.) % day21) across all temperature

treatments (Fig. 5a). One cause of the higher variation in growth

rates between filamentous strains compared to blade strains may

have been the occurrence of reproductive events in some of the

filamentous strains. Over one third of all filamentous strains

released propagules during the course of the experiment, possibly

affecting growth and confounding the effects of temperature.

There was no effect of location or temperature on propagule

release.

When specifically analysing U. ohnoi growth rates to identify

differences between strains within a single species, we found

significant variation in growth between individual strains (Fig. 4b;

Table 2). At each temperature treatment there was at least a two-

fold difference in growth rates between samples collected from the

same location. For example at 17.5uC one Townsville sample grew

at 5.9% day21 (61.1 S.E) while another grew at 15.4% day21

(63.7 S.E), at 23uC one Townsville sample grew at 10.9% day21

(65.8 S.E) while another grew at 22.4% day21 (62.3 S.E), and at

28.5uC one Brisbane sample grew at 5.9% day21 (60.9 S.E) while

another grew at 13.5% day21 (61.1 S.E) (Fig. 4b).

Figure 2. Ulva tufA phylogenetic tree. Maximum likelihood tree of Ulva tufA sequence data (scale at bottom). Numbers near each node refer to
bootstrap support values, nodes with ,50% bootstrap support are not labelled. Samples collected in this study shown in bold. Shading indicates
strains with blade morphologies. Numbers accompanying the species names are GenBank accession numbers for the sequences used in the analysis.
doi:10.1371/journal.pone.0077344.g002
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Discussion

Our survey of natural populations and land-based aquaculture

facilities in Eastern Australia identified six Ulva species, with U.

ohnoi being the most common blade species and U. sp. 3 being the

most common filamentous species. Both species occurred com-

monly at land-based aquaculture facilities in Townsville and

Brisbane. Multiple strains of each species grew well in culture,

surviving for more than 3 months under laboratory conditions.

Specific growth rates of both blade and filamentous Ulva species

were high (over 9% and 15% day21 respectively) across a range of

temperature treatments and comparable to, or greater than,

growth rates recorded for species of Ulva and other algae used for

bioremediation in both laboratory and outdoor studies, e.g., U.

clathrata [12% day21, 49], U. lactuca [17.9% day21, 50], U. rigida

[13.8% day21, 51], Gracilaria lemaneiformis [11% day21; 52],

Laminaria saccharina [9% day21; 53] and Porphyra linearis [16%

day21; 14]. These characteristics confirm the suitability of Ulva for

algal bioremediation of aquaculture facilities in Eastern Australia.

Most land-based aquaculture facilities in Eastern Australia

supply their ponds using unfiltered seawater (with its associated

biota) taken directly from coastal environments. As such, endemic

algal species often occur naturally in these ponds and can form

large blooms [9]. These species are ideal candidates to target for

bioremediation activities as their natural occurrence in aquacul-

ture ponds demonstrates that they can survive and grow under

conditions typical of land-based aquaculture, which are often quite

different to conditions in natural intertidal habitats [9]. Addition-

ally, the risk of cultivated species being over grown and

outcompeted by other naturally occurring algae (e.g., [12]) will

be low if cultivated species already form a significant component of

the naturally occurring biota. Five of the six aquaculture facilities

we sampled had species of Ulva growing in their ponds –U. ohnoi

and U. sp 3 each occurred at four farms in Townsville and

Brisbane, while U. fasciata was found at a single farm in Brisbane.

Use of these locally occurring species will minimise the risk of

cultivated algae escaping and impacting on native biodiversity.

Furthermore, their broad distribution in intertidal habitats across

multiple locations facilitates the translocation of these species

between aquaculture facilities. In addition to its high survival rates

Figure 3. U. ohnoi and U. sp. 3 light micrographs. Light
micrographs of Ulva ohnoi and U. sp. 3 in culture. Thallus morphology
of U. ohnoi (A) and U. sp. 3 (B); surface view of middle part of U. ohnoi
thallus (C) and U. sp. 3 thallus (D); transverse section of middle part of U.
ohnoi thallus (E) and of a mature axis of U. sp. 3 (F).
doi:10.1371/journal.pone.0077344.g003

Figure 4. Specific growth rates of Ulva blades. Mean (6S.E.)
specific growth rates (% day21) of Ulva blades grown under three
temperature treatments grouped by (A) collection location (Sydney,
Brisbane and Townsville) and (B) strain. Strain codes from left to right
are MA1, MR5, BI9, GC1, RC1, GFB1, GFB5 and JCU1. Species
abbreviations: U. fas - U. fasciata; U. ohn - U. ohnoi.
doi:10.1371/journal.pone.0077344.g004

Table 2. Results of permutational analyses of variance
(PERMANOVAs) testing the effects of temperature (Te) and
location (Lo) on specific growth rate of blade and filamentous
Ulva; and the effects of temperature (Te) and strain (St) on
specific growth rate of Ulva ohnoi.

Blade Ulva
Filamentous
Ulva U. ohnoi

Source df F P F P F P

Te 2 0.52 0.635 2.25 0.073 0.644 0.607

Lo/St 2 10.48 0.001 2.57 0.068 3.29 0.001

Te6 Lo/Te 6 St 4 0.88 0.482 3.27 0.008 1.28 0.178

Analyses were conducted in Primer v6 (Primer-E Ltd, UK) using Bray-Curtis
dissimilarities on fourth root transformed data and 999 unrestricted
permutations of raw data. Pseudo F (F) and P values are presented, significant
terms shown in bold.
doi:10.1371/journal.pone.0077344.t002
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in culture for long time periods and fast growth rates, the natural

occurrence of U. ohnoi at multiple aquaculture farms makes it an

ideal species to select and develop for algal bioremediation in

Eastern Australia. U. sp. 3 also has potential to be used for

bioremediation due to its broad distribution and natural occur-

rence at aquaculture farms. However, there was no differentiation

in growth rate over other filamentous species and therefore

alternative filamentous species, such as U. compressa, may also be

suitable targets for bioremediation.

Ulva ohnoi has only recently been described as a species [54] and

is most commonly recorded in ‘‘green tide’’ algal blooms around

Japan [54,55]. The same traits considered to be nuisance

characteristics in species forming ‘‘green tide’’ algal blooms - high

growth rates, board environmental tolerance and ability to use

multiple sources of nitrogen [56,57] - are in fact desirable

characteristics in target species for bioremediation [3,7]. Conse-

quently, the occurrence of U. ohnoi in green tide blooms supports a

role in bioremediation. Further support for the suitability of U.

ohnoi for bioremediation is provided by the high growth rates

(12.8–23.6% day21) and nitrogen extraction rates (4.2–13.9 mg N

g DW21 day21) reported for this species when cultivated next to a

coastal fish farm in Japan [58], high nitrogen extraction rates of up

to 12.9 mg N g DW21 day21 in Australia [59] and high biomass

productivities of up to 40 g DW m2 day21 when receiving effluent

water from a fish hatchery (L. Mata, unpublished data). These

rates are among the highest of those reported for a range of algae

commonly used for bioremediation of aquaculture facilities.

Following identification of target species, suitable strains for

bioremediation also need to be identified, particularly if popula-

tions are adapted to local environmental conditions. Strains of

Ulva ohnoi had higher growth rates in temperatures corresponding

to local conditions. These results were not an instantaneous effect

as all samples were held at 23uC for three months prior to the start

of the experiment. Studies of local adaptation in macroalgal

species are relatively rare. Over large spatial scales (e.g., ocean

wide) there is evidence both for [19,21] and against [25] local

adaptation of macroalgae. Likewise, over small spatial scales

results are mixed with evidence for local adaptation over 100 s of

kilometres [26] and two out of three populations showing evidence

of local adaptation across intertidal zones [20]. The superior

performance of local strains under temperatures corresponding to

local conditions in the current study implies that strains of U. ohnoi

are adapted to local temperatures to some extent. However, across

all temperature treatments Townsville strains of U. ohnoi had the

highest growth rates and Sydney strains had the lowest growth

rates. Similarly, superior performance of a single ‘‘strain’’ across

multiple habitat types or conditions has been reported for the red

alga Ceramium tenuicorne [26] and the aquatic plant Potamogeton

pectinatus [23]. Accordingly, it should not be assumed that growth

rates will be highest in strains sourced from local environments

and there may be selective pressure in local environments for traits

other than growth and temperature tolerance.

In addition to significant differences in growth rates over large

spatial scales (e.g., between locations), we found significant

differences in growth rates between strains of U. ohnoi collected

from the same location. Variation in growth between strains could

be due to genetic differences (e.g., different genotypes); alterna-

tively, strains may have the same genotype but respond differently

to temperature treatments (e.g., phenotypic plasticity) [60]. As

genetic differences between populations are expected to increase

with geographic distance, genotypic differences may be causing

variation in growth between locations, while variation within

locations may result from phenotypic plasticity. Such a pattern is

typical of widespread terrestrial plants, which often show

phenotypic plasticity as well as high levels of genetic variation

and adaptation to local environmental conditions [61,62]. In

contrast, widespread aquatic plants commonly have limited

genetic variation [63] and macroalgae often exhibit striking

phenotypic plasticity across large spatial scales [64,65]. It is not

possible to determine whether genotypic differences or phenotypic

plasticity are causing variability in growth rates based on the

results of our experiments or the molecular analyses we conducted.

Although 11 out of the 14 strains of U. ohnoi we analysed had

identical ITS and tufA DNA sequences, these molecular markers

are intended for species discrimination rather than identification of

genotypic differences within species. Further analysis using

appropriate molecular markers is required to determine whether

there are genotypic differences between strains of U. ohnoi.

Regardless, significant differences in growth rates between strains

of U. ohnoi opens up the possibility of isolating a strain which is able

to maintain high growth rates across a range of temperatures and

can be used for bioremediation of aquaculture facilities in Eastern

Australia. While the domestication of macroalgal species for

bioremediation is still in its infancy, the current study demonstrates

that prior to undertaking genetic improvement programmes to

selectively breed for desirable traits (e.g., [66]), large gains in

productivity and bioremediation capability can be achieved by

utilising existing natural genetic variation to identify and isolate

fast growing species and strains.

Figure 5. Specific growth rates of Ulva filaments. Mean (6S.E.)
specific growth rates (% day21) of Ulva filaments grown under three
temperature treatments grouped by (A) collection location (Sydney,
Brisbane and Townsville) and (B) strain. Strain codes from left to right
are CL9, CL10, MR4, BI6, RC3, SB12, GFB2, JCU2 and PR3. Species
abbreviations: U. com - U.compressa; U. int - U.intestinalis; U. sp3 - U. sp.
3; U/I – unidentified species.
doi:10.1371/journal.pone.0077344.g005
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