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ABSTRACT

Digital Medical information had an astonishing growth on the last decades, driven
by an unprecedented number of medical writers, which lead to a complete revolution in
what and how much information is available to the health professionals.

The problem with this wave of information is that performing a precise selection of
the information retrieved by medical information repositories is very exhaustive and time
consuming for physicians. This is one of the biggest challenges for physicians with the
new digital era: how to reduce the time spent finding the perfect matching document for a
patient (e.g. intervention articles, clinical trial, prescriptions).

Precision Medicine (PM) 2017 is the track by the Text REtrieval Conference (TREC),
that is focused on this type of challenges exclusively for oncology. Using a dataset with a
large amount of clinical trials, this track is a good real life example on how information
retrieval solutions can be used to solve this types of problems. This track can be a very
good starting point for applying information extraction and retrieval methods, in a very
complex domain.

The purpose of this thesis is to improve a system designed by the NovaSearch team
for TREC PM 2017 Clinical Trials task, which got ranked on the top-5 systems of 2017.
The NovaSearch team also participated on the 2018 track and got a 15% increase on
precision compared to the 2017 one. It was used multiple IR techniques for information
extraction and processing of data, including rank fusion, query expansion (e.g. Pseudo
relevance feedback, Mesh terms expansion) and experiments with Learning to Rank
(LETOR) algorithms. Our goal is to retrieve the best possible set of trials for a given
patient, using precise documents filters to exclude the unwanted clinical trials. This work
can open doors in what can be done for searching and perceiving the criteria to exclude or
include the trials, helping physicians even on the more complex and difficult information
retrieval tasks.

Keywords: Medical Text Retrieval; Query expansion; Information Retrieval ; Rank Fusion;
Information Extraction;
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RESUMO

A informação médica no formato digital teve um crescimento estonteante nas últimas
décadas, o que desencadeou uma revolução total em como e quanta informação está
disponível para os profissionais de saúde.

O problema desta onda de informação prende-se com o facto de se tornar um trabalho
extremamente exaustivo para os profissionais de saúde, fazer uma selecão precisa da
informação espalhada pelos repositórios médicos. Este é um dos maiores desafios para os
médicos nesta nova “Era” digital: Como reduzir o tempo despendido a ler e a selecionar
documentos para concluir formas de criar uma correlação entre os pacientes e estes
(intervenções médicas, clinical trial, receitas médias, etc.) .

O Precision Medicine 2017 é um desafio proposto pela Text REtrieval Conference
(TREC), em que o foco principal é a resolução de problemas como os descritos anteri-
ormente, no âmbito da oncologia. Usando um dataset que devido ao elevado número
de clinical trials, está muito perto dos casos reais onde sistemas de information retrieval
são implementados em hospitais ou clinicas. Este desafio é um bom ponto de partido
para aplicar information extraction e métodos de information retrieval, num dominio tão
complexo como é a oncologia.

O objetivo deste trabalho é melhorar o sistema que foi previamente desenvolvido e
submetido para o dataset de clinical trials do TREC PM 2017. Trabalho este que ficou no top-
5 dos sistemas de 2017. A equipa da NovaSearch baseando-se no trabalho desenvolvido
nesta Tese conseeguiu um aumento de 15% de precisão no dataset de 2018, quando
comparado com 2017. Para o desenvolvimento deste trabalho foram utilizadas várias
técnicas de IR para a extração e processamento de informação relevante, incluindo rank
fusion, Query expansion (Pseudo relevance feedback, Mesh terms expansion, etc.) e
experiências com algoritmos de Learning to Rank (LETOR). O objectivo é obter para cada
paciente o melhor conjunto possível de clinical trials que possam ajudar a curar o paciente,
usando filtros para excluir os documentos indejesados e para dar mais relevância a outros.
Este trabalho tem o potencial de abrir portas no que diz respeito ao que pode ser feito para
melhorar a pesquisa e a interpretação dos criterios de exclusão e inclusão dos documentos,
ajudando os profissionais de saúde nos desafios mais complexos de obtenção e extração
de informação das bases de dados médicas
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1
INTRODUCTION

1.1 Context and Motivation

The towering amount of biomedical data accessible to physicians is one of their most
helpful resources. Most of the medical world information is available on search engines as
PubMed and Clinicaltrials.gov (Figure 1.1), where users can search for almost any kind of
medical information. Among physicians, digital literature is now the most popular way to
either read or publish articles, all throughout the world this new digital era is becoming
the standard. The work developed by [64], clearly shows how this digital growth has
influenced positively the medical panorama on China, a country with a record growth
both technologically and economically.

The digital medical literature gives users the opportunity to create documents not only
with narrative notes, but also with multiple ontology references which help others on their
synthesis work. MeSH1 terms as "Neoplasm" and "cancer" are an example of ontology
references, that can be used to help on the retrieval of documents. As the digital literature
evolves and grows in numbers, a lot of new challenges emerge: having a gigantic database
of articles and references can be a problem if there is no simple and effective way to query
the dataset for very precise answers.

The complexity of certain diseases and the differences in opinion between physicians
regarding correct treatments makes the evaluation of solutions very complex and time-
consuming. The oncological diseases are a good example, because for the same cancer
different patients could have multiple reactions. These assumptions can be extracted from
the examples of relevance documents for each query, provided by the TREC PM 2017
organization.

Misjudging this disorders can be the difference between life and death. Since the

1Medical related vocabulary
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number of medical literature in collections like Medline2 can reach 27 millions articles,
manually sifting through all these documents to structure a treatment is not feasible. So
the goal of this thesis is to create a system that can rank clinical trials according to their
relevance to a query (i.e. Clinical Report of a patient) made by a physician. Such systems
can help finding candidate patients to on-going or future clinical trials, saving physicians
the hardship of manually performing this selection.

TREC (Text REtrieval Conference) Precision Medicine Track aims to provide clinicians
with important information to support the medical decision process, and to help them
avoid choosing solutions that can be potentially armful for the patients (e.g. not recom-
mending trials that explicitly exclude patient with diabetes for a diabetic patient). The
"Precision medicine" paradigm is based on the assumption that domain specific techniques
are needed in some cases, as expanding the terms used on a query with Medical Subject
Headings (MeSH) terms to help matching the query to MedLine articles (manually anno-
tated with MeSH terms). Existing systems can be improved to fulfill this need, by adding
such to the retrieval process, beside applying this techniques this work extends them not
only to articles but for clinical trials. This was one of the main insights from organizers of
TREC Precision Medicine 2017. They found that systems with specific domain information
achieved better performance that generic retrieval systems [56].

Figure 1.1: clinicaltrials.gov official site initial page, with search for disease in clinical
trials at clinicaltrials.gov database.

1.2 Objectives

The purpose of this work is to understand how information retrieval (IR) methods applied
with Natural Language Processing (NLP) and Machine learning (ML) techniques can
improve medical IR, specially for cases when a high level of precision is required. More
specifically, the system is going to be focused on oncology cases, characterized for its
specificity regarding each individual person type of cancer and genes mutation. So the

2bibliographic database of life sciences and biomedical information.
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Figure 1.2: Input data used for the development of this retrieval system.

developed methods scrutinize the most important aspects present on clinical trials and
patients information, to perceive how relevant a given document is for a specific patient.
For example, using domain specific Named Entity Recognition techniques to find genes in
clinical trail text, and filtering out the ones that do not match the patient gene mutation.

At the core of this work was the TREC PM 2017 Clinical Trials dataset. It contains
structured clinical trials from oncological interventions and 28 patient cases, shown on
Table A.4. Since the query topics for TREC PM 2017 are all oncology cases (i.e. including
patient demographics, type of cancer and specific gene mutation), it is necessary to retrieve
the documents as precisely as possible so that the IR system can only retrieve trials fitting
both gene and disease information. So having a dataset divided into narrative fields
(e.g. textual descriptions) and non-narrative fields (e.g. fields that contain very specific
information like age, gender or primary purpose of the trial) enables us to reach not
only relevant documents on the topic, but also filter those that are highly relevant to the
topic but cannot be applied to that specific medical case (e.g. patient does not fit the trial
requirements). To create the retrieval system, multiple NLP methods were applied on
the narrative descriptions, enabling the IR system to match queries and documents. In
addition to NLP techniques, it was also used multiple retrieval functions, and it was also
applied machine learning techniques in order to learn new relations between data from
its structure. For example using decision trees algorithms to perform ordinal regression
on the clinical trials, based on the information extracted with the developed IR methods.
This work is based on [4], which details NovaSearch work group submission for TREC
PM 2017, where we applied some of the previously described techniques.

To improve retrieval results IR techniques such as, Pseudo Relevance Feedback were
used to perform Query Expansion, by adding to the query new terms that may be relevant
to the medical case. Rank fusion is another set of techniques used on this work, which
consists in combining the results of different retrieval algorithms and techniques for the
same query. In this work, we have used two Rank Fusion algorithms: Reciprocal Rank
Fusion (RRF) and CombSUM Rank Fusion.

The final result is a clinical decision support system, capable of understanding medical
clinical trials and make correlations between this data and patients conditions, focused
entirely on cancer patients (figure 1.2). The idea of the system is to retrieve relevant doc-
uments for a specific cancer in a given patient. Utilizing multiple information retrieval
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CHAPTER 1. INTRODUCTION

methods, created by applying natural language processing and information extraction
principles. And it was also used the machine learning algorithms based on these infor-
mation retrieval methods. System’s quality was ensured by TREC PM 2017 relevance
judgment.

1.3 Thesis Structure

This remainder of the thesis is subdivided in 6 chapters:

• Chapter 2: describes background and related work techniques.

• Chapter 3: gives insights on basic oncology fundamentals.

• Chapter 4: explains how the benchmarks for this work were created (Indexing,
Retrieval, Query Expansion, Re-ranking)

• Chapter 5: explains how machine learning task, learning to rank (LETOR), was used
on this work.

• Chapter 6: describes the Evaluation process and retrieval results.

• Chapter 7: details the future work that could be done to improve the system.
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2
ONCOLOGY DOMAIN

This chapter was created with the purpose of providing readers with some basic knowl-
edge, on the oncology domain. The goal is to provide the tools to perform a quick and
simple parallelism between, the oncology field of medicine and some of the options taken
during the system implementation. Studying domain specific information helped me on
understanding the theoretical effectiveness of certain domain assumptions, which were
later applied to the system on the following chapters (4 and 5) results.

2.1 Introduction to Cancer diseases

Cancer is a disorder on cells, and although the term is commonly (and correctly) associated
to tumor, this mass of cells only represent the final stage of cancer. Changes on cells take
years to reach a tumor. These cell changes are the real classifiers of cancers: different types
of changes are created by different gene mutations on different body areas, which will end
up on very different cancer diseases. Cancer, as described on [38], consists on a continuous
abnormal response to the cells control mechanisms. This disorders affect two important
mechanisms: cell growth (size of individual cell) and proliferation of cells.

Normal cells follow a cycle for pre-defined growth, proliferation and death scenarios.
For example, if an injury occurs on a tissue, some of the cells that make up this tissue
are programmed by these control mechanisms to grow and proliferate on higher rates
until the tissue is fully reestablish. When the process of healing is completed all cells
return to their normal life cycle, balancing the cells count and production on that tissue.
What happens during the formation of cancers is exactly the opposite: cells stop following
normal control mechanisms which could cause abnormal proliferation, or abnormal
growth of cells because cells stop dividing. These small changes could lead to the creation
of dense masses of modified cells, the so called tumors.
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Figure 2.1: All fundamental stages of cancer development. This image was extracted from
[38].

2.1.1 Types of tumors

The process of cancer development (carcinogenesis), is the sum of multiple abnormal cells
within a tissue, which is known by the name of dysplasia the actual condition the patient
suffers when the cancer is developing [38, 60]. The severity of the tumor is correlated
to the stage of dysplasia, and their invasive capability. Figure 2.1 shows the difference
between multiple stages of the cancer development.

Given this two parameters (dysplasia and invasive capability), according to [38] tumors
can be classified as following.

Benign Tumor: Shows the initial stages of dysplasia, already with a considerable cell
count of abnormal types. This types of tumors are the least serious, as the common
form of tumor is not yet perceptible, there is no significant mass change, and no type
of tissue invasion is possible.

In situ Tumor Also called pre-cancer, is the second stage of cancer development. On
this tumors, the dysplasia becomes a serious issue, leading to the growth of cell
masses that become noticeable. On this stage, there is no invasion of blood system
or neighbouring cells, and thus it is not technically classified as cancer.

Malignant Tumor The final stage of cancer, characterized by the existence of big masses
of cells pressuring and invading neighbouring tissues and vessels. On this stage,
the cancer reaches very high proliferation rates, that tend to increase as the cancer
grows. This types of tumors also called "Solid tumor" or "Solid neoplasm" are the
main focus of this work, since clinical trials are last resource procedures applied to
very specific clinical cases.

6



2.2. DIAGNOSIS AND RELEVANT FACTORS TO CANCER DISEASES

2.2 Diagnosis and relevant factors to cancer diseases

Cancer diseases as explained previously have multiple factors that influence the carcino-
genesis (i.e. process of cancer development), but what is really relevant for diagnosis and
following treatment is the location of the cancer and gene mutation responsible for cell
changes. Since cancers are developed by genes that have been expressed inappropriately
or mutated.

To correctly diagnose a specific cancer and thus, understand which actions should
be taken, one should know what gene mutations are in action. After detecting the genes,
it is necessary to characterize all relevant mutations for the domain, according to their
function for the carcinogenesis. Some genes may be the initiators, others developers and
others are responsibly for the maintenance of the cancer. All genes can perform one of
these previous functions, and depending on the tumor stage some types of mutations
must be prioritized over others. So, it is mandatory to understand what genes are doing
what on the tumor development process. With this information well defined, it becomes
much more simple for physicians to create groups of patients with the same genes and
disease, leading to much more controlled environments for this therapies. It is important
to understand that cancer therapies have come a long way, but still have a long way to go.
Having this controlled environments is very important for helping improve individual
therapies overall survival rate.

In terms of the work developed, these diagnosis notions will be used as the base for our
queries, using both disease and gene mutations extracted from a single patient to query
the database of clinical trials. The goal is not only to use the exact disease and gene text
but deriving queries from these texts, which will be explained on the following section.

2.3 Treatments and Clinical trials enrollment

According to the National Cancer Institute (USA) [35], from 1990 to 2014 the overall
death rate of cancer in the U.S.A. dropped some astonishing 25%. However, the institute
estimates that around 600.000 patients will die from cancer only on 2018. This huge number
is the main reason why a multi-area and multi-country effort is being made to fight this
group of diseases.

Since cancer treatments are still a work in progress and drastically vary from patient
to patient, they are enrolled in clinical trials for procedures and medications that were
previously tested in animals. Figure 2.2 shows some of the basic ideas to differentiate
clinical trials and which patients should be part of it. But in order to assign patients
to clinical trials that will not harm and possibly help the patient, clinical trials must be
filtered according to cancer treatments assumptions and the patients actual disease. First,
as explained on [38], as clinical trials exist not only for cancer diseases, these must be of an
interventional type and not an observation. Only interventional trials attempt to treat the
cancer. Beside that only a small range of intervention types are expected to be performed,
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Figure 2.2: The clinical trial workflow, extracted from [65].

either: Chemotherapy, radiotherapy or biological medication use.

On the other hand, patients information is very important to help exclude undesired
trials for that specific person. Features such as their gender and age are essential for
physicians to match patients and trials. Demographic information is viewed as one of the
most relevant features for cancer treatments throughout medical literature [38]. As said on
[38], age is definitely one of the biggest risk factors, since most of the cancers take a few
years to developed and should normally occur on older population.
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2.3. TREATMENTS AND CLINICAL TRIALS ENROLLMENT

Clinical trials have disease and genes explicitly expressed as conditions, inclusion
criteria, or as keywords. That could be automatic keywords (from MeSH and SNOMed),
or manual keywords introduced by the clinical trial author. These fields on clinical trials
have a considerable level of accuracy and can be very helpful for clinical trials readers to
match between clinical trials focus and the patient needs. On the other hand, the expressed
exclusion criteria is used for exclude patients from trials, also based on their gene, disease
and other conditions the patient may suffer from. For more detail on how this oncology
assumptions can be used for information retrieval, and how they were implemented on
this work go to Chapter 3 and Chapter 4 respectively.
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3
BACKGROUND AND RELATED WORK

Several information retrieval systems have been created for computing the extraction
of documents information and consequently retrieve and rank them from most to least
relevant, as [50] were a clinical decision support system was created. These systems were
designed to address the continuous growth of medical related information and the need to
access it in a simple and quick fashion. This section describes some of the more commonly
used techniques and their performance on existing retrieval systems.

3.1 Information Extraction

Information Processing is indispensable for information retrieval systems. It enables com-
paring documents and queries, making documents easier to manage for the retrieval
process. It can be focused on two major ideas: processing structured text and unstructured
text. Information Extraction (IE) is a computer science task, focused on processing unstruc-
tured data. IE goal is to find and give structure to relevant information (i.e. medical terms)
on unstructured data (i.e. free text). For this purpose a lot of different approaches had
been used in the midst of natural language processing: application of text parsing filters,
IE detailed sub tasks(e.g. named entity recognition, relation extraction) already developed
from NLP methods or information extraction based on domain specific taxonomies and
ontologies.

3.1.1 Text parsing

NLP on its core consists on methods used for processing and understanding text written
by and for humans, enabling system matching between blocks of unstructured text, as
described by [8]. This subsection is entirely dedicated to some of the base methods that
could be used for information extraction with NLP. All of them capable of processing

11



CHAPTER 3. BACKGROUND AND RELATED WORK

chunks of text in a pre-defined fashion, aiding matching between indexed information
and query information. The primary idea of these methods is both to emphasize relevant
pieces of information, while at same time non relevant textual information is discarded or
shown in a way easy to perceive as irrelevant.

If we analyze the phrase, "the patient suffers from a Meningioma with already shown
AKT1 mutation.", what is really necessary for the system is the disease and gene references.
So the processed text should look something like "patient suffers Meningioma AKT1
mutation", removing most of the irrelevant information. The following are commonly
used NLP techniques, extracted from the previous cited book and the following published
books: [46], [15] and by [48].

Tokenization: Used to remove all form of punctuation and split text into little chunks of
text, normally separated by white space or punctuation, called tokens.

Lower case filter: Converts all words into lower case.

Stop word removal: Remove common words like "this", "a", "or", that will occur in most
of the English literature.

Word grams: This filter creates tokens from other tokens. For example, considering a
minimum of 2 and a maximum of 3 for the size of tokens for each word gram, we
get the following word grams for the sentence "Pancreatic ductal adenocarcinoma":

Pancreatic ductal
ductal adenocarcinoma
Pancreatic ductal adenocarcinoma
This way terms as "Pancreatic ductal neoplasm" that previously wouldn’t be matched,
will be matched because of the word gram "Pancreatic ductal" which exist on both
word grams lists.

Character grams: Creates n-grams of words, with a minimum and a maximum length for
the words is given as a parameter. This is a technique that has been been successfully
applied in the medical domain due to the complex spelling of medical terms (many
common prefixes and suffixes). For example, using 3 as a minimum, 5 as maximum,
in the sentence "Solid tumor", we would have the following n-grams: sol, soli,
solid, oli, olid, lid, tum, tumo, tumor, umo, umor, mor.

Stemming: Stemming is a process for reducing words to their word stem. For example:
cancerous, cancers, and cancer would all be reduced to their root word cancer.

Part-of-speech tagging: The POS tagging consists in marking each word in the text with
a specific grammatical group (e.g. nouns, adverbs, verbs). This techniques takes
into account the context in which the word appear on the text, to correctly infer the
grammatical meaning. A good example of POS usage is Stanford Part-Of-Speech
Tagger developed on [62].
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NLP can be very useful for scientific information retrieval. [21] shows how these
techniques can be very useful for IR in the biology domain, where these techniques are
applied at two essential points for IR. First at indexing, as said before and given that
biology articles tend to be very extensive, NLP techniques removes irrelevant information
and subsequently reduces the number of indexed terms, and is even a good practice when
used to populate a database. Second it helps at searching time, applying exactly the same
transformations on queries and helping on matching biology related information to either
index or databases.

3.1.2 Named Entity Recognition (NER)

Named Entity Recognition is a sub-task of Information Extraction, which consists on
the recognition of named entities within the text. These named entities are descriptors
of terms or agglomeration of terms on the narrative. The challenges within NER can be
broken-down into two problems: identifying the boundaries of a entity (identifying the
terms that make up an entity), and the type of entity (e.g. Location, Person, Organization).
NER can be applied to very different domains so for each domain, specific descriptors
were designed. The framework Apache cTakes (referred on Section 3.6) is a good example
of NER applied to the medical domain, including components as "Drug Named Entity
Recognition" where Drug related descriptors are extracted. To perform this recognition
multiple NLP techniques can be used.

3.1.3 Relation Extraction (RE)

Another sub-task of information extraction is Relation extraction, that is the next natural
step after performing NER. It is commonly perceived as the prelude of Relation extraction,
where the already named entities will be used to understand the relationship between
them. One simple way of performing RE is with a set of two entities of types: A and B, and
a pattern "s". Always on the same form (A, s, B). So for instance if entity A is described by
"PERSON", entity B is described by "LOCATION" and the pattern "s" is equal to "lives in",
we can automatically get the reference of persons that live on a certain location for every
narrative already processed with NER.

3.1.4 Domain Taxonomies and Ontologies

The domain resources represented are predefined terminologies for the medical domain.
These resources are used to create a consensual medical information representation across
medical literature, and simplify the process of storing and finding relevant information.
Information Retrieval systems can benefit greatly from these terminologies.

Medical Subject Headings (MeSH) [41] is a hierarchically-organized vocabulary, used
for indexing and cataloging of medical information on databases as PubMed. These head-
ings can be used in multiple ways but ideally they are automatically or manually annexed
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to medical literature to serve as keywords at searching time. This way, Information re-
trieval systems tasks can be simplified when the documents being inspected discriminate
these headings. This headings provide systems with a quick and easy way of perceiving
not only the specific set of diseases detailed on the documents, but also possible interven-
tions or drug use specifications, that could be unnoticed when performing text parsing.
The following are examples of MeSH terms found on a clinical trial, from the TREC PM
2017 dataset, that is highly relevant for a person with a liposarcoma in which a CDK4
inhibitor was already administrated: e.g. "Liposarcoma", "Palbociclib". Where liposarcoma
is the disease aimed on the trial, and palbociclib is a type of drug treatment intended to
inhibit CDK4/6 gene mutations.

SNOMED Clinical Terms (CT) is a clinical health terminology, used to detail several
types of medical information (e.g. diseases, conditions, interventions) in a very comprehen-
sive and precise manner [27]. It uses a hierarchically structured, predefined terminology
in order to detail medical information with the minimum noise possible. For example,
using the query: "Retrieve the findings which have a benign tumor morphology". The
SNOMED CT associated with this query are "benign" and "neoplasm", where the word
tumor was changed for the more precise term for it on SNOMED CT database: "neoplasm".
While all the remaining text was removed beside "benign". Since the documents to retrieve
also have SNOMED CT, all of those who contain the terms "benign" and "neoplasm" are
retrieved.

On Information retrieval, these terms can help improve the systems precision matching
both document indexed with these taxonomies and queries extended also with them.
Query expansion provides systems with a wide range of keywords for matching both
queries and documents. Meanwhile the efficiency of systems using this taxonomies is
co-related to the level of accuracy automatically or manually select keywords have, to
each individual query or document.

3.2 Information Retrieval

3.2.1 Indexing

Indexing of information is one of Information Retrieval primitives. Consists in parsing
and storing documents on a structure designed for efficient inspection. This structure
is called an index, that can be interpreted as a dictionary of terms or documents. Index-
ing techniques are more effective when combined with NLP methods such as: splitting
terms, normalizing terms, removing unwanted terms for search and many more methods.
Creating text analyzers responsible for documents parsing and query parsing.

For term-based search the most used and efficient type is the inverted index, in which
each term on the collection gets indexed with a list of documents that contain it. Figure
3.1 shows the creation process of an inverted index. Both query text and documents text
are processed by the same analyzer, which will increase the matching possibility between
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Figure 3.1: Inverted index creation methodology.

them. Terms and the references of the documents where each terms appear are indexed.
At search time, the query terms are matched to the document terms, and the documents
were each term appear are retrieved. To infer which documents are best for the query,
retrieval models are used which are going to be explained on section 3.2.2.

3.2.2 Retrieval Models

These models (also called ranking/retrieval functions) are responsible for ranking the
documents according to each one individual extracted terms. Retrieval functions are
the core of the IR systems; they calculate the similarity between query and documents
and rank these documents by their relevance to the query. Various models were created
using different assumptions on how to score the document according to the extracted
information. Some models are based on geometrical/linear spaces, as the TF-IDF model,
while other models use probabilistic ranking models or Language models (i.e. based on
probabilistic models but also taking into account the context in which the terms appear
as LMD explained bellow). This section is based on techniques described on two key
Information Retrieval books, [46] and [15].
Term frequency-Inverse document frequency (TF-IDF): Statistical method to define the
importance of words for a specific document and simultaneously for the collection. If a
word frequency in a collection is low, and its frequency in a document is high, its TF-IDF
value is higher than the value for words that occur more often in the collection, even if they
have high frequency in a few documents. This model has two functions: Term frequency,
as the name suggests is the total frequency of a term within a document. Inverse document
frequency, calculates how relevant a given term is within the entire collection.

The following are the TF and IDF equations:

TFi(d) =
ni(d)

∑k nk(d)
(3.1)
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where ni(d) is the number of times the term i appears on document d, and nk(d) is the
total number of terms in the document.

IDFi = log
|D|

d f (ti)
, d f (ti) = |d : tiεd|, (3.2)

where |D| is the total number of documents and df is the document frequency of term i
(number of documents i appears on).

To calculate the similarity between documents, one can represent them as vectors of
tf-idf values where each term is a dimension on the vector space. To find the document
more similar to the query, one uses the tf-idf values of the query to create the query vector.
The smaller the angular distance between queries and document vectors, the more similar
they are.

BM25: Probabilistic model that uses TF (term frequency) and IDF (inverse document
frequency) functions to rank documents according to the terms from the query. This
retrieval function uses a bag-of-words approach, which means the inter-relation that each
term have inside the documents is not taken into account. The documents are perceived
as unordered collections of terms; there is no idea of a sentence for instance. TF-IDF as
BM25 uses this bag-of-words approach. The implementation and assumptions made for
this model are described in detail in [57] and also [46].

BM25 is widely used due to its simplicity and effectiveness in the retrieval of docu-
ments. The equation used to calculate the similarity between a document (D) and a given
query (Q) with BM25 is as follow:

Score(D, Q) =
n

∑
i=1

IDF(qi) ·
f (qi, D) · (k1 + 1)

f (qi, D) + k1 ·
(

1− b + b · |D|avgdl

) (3.3)

where f (qi, D) represents the frequency of the term i of query Q on document D, avgdl is
the average document length on the text collection, |D| is the number of documents on
the collection. k1 and b are constants with a default value of k1 = 1.2 and b = 0.75. Where
parameter k1 increase so does TF importance increase for the model. The b parameter is
not that trivial but as [45] explained, b helps on reshaping the overall algorithm awareness
of document size. Using the default value normally gives more relevance to average sized
documents, while with values between [0.3;0.6] is ideal to help level long and average
sized documents relevance.

BM25L: Due to the Term Frequency (TF) normalization made by BM25, long documents
tend to be scored poorly, because a term relevant on a long document will appear less
often (as a percentage of the terms in the document) than a relevant term on a small
document. Thus, small documents will end up being scored higher than long documents
with the same number of relevant terms. To overcome this problem, BM25L [45] was
created with an improved TF normalization equation, adding a new constraint to avoid
overly-penalizing very long documents. It uses a shift parameter δ>0 to ensure that a
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positive lower bound exists on the new TF normalization equation. It makes sure that
small values on the TF normalization on BM25 will now be favored, intuitively giving
higher score to bigger documents that will normally score very low in terms of TF on
BM25. This model uses b values between [0.3;0.6] as said before, to ensure even better
results for long documents. This model is an expansion of the BM25 that tries to boost
long documents so that these documents can be better interpreted by the retrieval model,
increasing the performance of the IR system over BM25 in some cases.

Language Models: The Language Based Retrieval Models, as [46] explains, use the context
in which each of the terms appear, to classify the similarity between documents, instead of
only taking in account the frequency of terms appearing in the collection and documents
(as in Bag of words). Language models uses a few primitives from the probabilistic models
like the term frequency, but in a different way from TF-IDF and BM25: the probability of
a certain term appearing after or before a term or sequence of terms. It is used to mark
the document as relevant if the query sequence of terms exists in the exact same order.
On this work, two language models will be used: Language model with Jelineck-Mercer
smoothing (LMJM), language model with Dirichlet smoothing (LMD).

3.2.3 Query Expansion

This is an IR method in which the initial query is reformulated adding new terms related
to the query itself. Query expansion can be done by doing global analysis of the collection
of documents as described by [67], using dictionaries to add terms related to the query
topic (as [5] experimented), natural language synonyms, etc. The primary purpose is
to bridge the gap between queries and documents by finding similar concepts that are
represented as different words.

3.2.4 Rank Fusion

Rank fusion enhances the reliability of the system produced, combining multiple rankings
lists produced with many retrieval methods (analyzer, retrieval function, IE algorithms).
The goal is to leverage on multiple techniques to increase the overall performance of the
system [39].

Rank Fusion can be divided into two groups: score-based fusion (i.e. based on the
score provided by the retrieval function) and Rank-based Fusion (i.e. based on the rank
provided by the retrieval function). Systems like the one developed by [28] create multiple
simulations for comparing multiple rank fusion techniques. A notable result that can be
extracted is that when dealing with ranking lists with more than 500 elements, rank fusion
algorithms tend to overcome the performance of score fusion algorithms. To corroborate
this results [51] and [52] applied multiple types of Score fusion(CombSUM, CombMAX
and CombMNZ), and 3 types of rank fusion algorithms (RRF, ISR, RR). In all cases the
Rank based algorithms outperformed the score based algorithms.
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Reciprocal Rank is the most basic rank-based fusion, in which both RRF and ISR were
based. It simply sums the inverse of the document i ranking in every retrieval function
used on the rank fusion, as equation 3.4 shows where N(i) represents the total of ranking
lists used and r(i) is the document actual ranking.

RR(i) =
N(i)

∑
k=1

1
r(i)

(3.4)

The Reciprocal Rank Fusion [22] is one of the most used algorithms for fusion (equation
can be seen on 3.5), which performed well with multiple systems as for example [49, 50].
RRF was a technique applied on both top performance runs on both years. It is very similar
to RR the only difference is that a fixed value k is added to the ranking, so that top ranked
documents do not get over benefited, normally k=60 for better results as described by [22].

RRF(i) =
N(i)

∑
k=1

1
k + r(i)

, k = 60 (3.5)

The Inverted Squared Rank (ISR) takes the inverse ranking approach of RR and RRF, with
the frequency of ranking lists the document appears, so that documents who appear more
often on the ranking lists get boosted,

ISR(i) = N(i)
N(i)

∑
k=1

1
r(i)2 (3.6)

ISR was the algorithm with the best performance on [51]. Rank-based algorithms not
always perform better than score-based ones. The Luxembourg Institute of Science and
Technology (LIST) TREC CDS 2015 [3] and 2016 [2] submissions that used Score-based
algorithm, combSUM outperformed RRF-based runs. CombSUM sums the scores of each
retrieval functions for a given documents, as equation 3.7 shows, where Sk(i) represents
the score of document i on a given ranking list.

CombSUM(i) =
N(i)

∑
k=1

Sk(i) (3.7)

In NovaSearch TREC CDS 2015 submission [50] a new algorithm for supervised Rank
Fusion was developed, called Learning to fuse (L2F) that used the results of multiple
systems fusion to infer which of the fusions are best for the specific problem, in terms of
number of retrieval functions to use on the fusion and which retrieval functions to use.

3.3 Learning to Rank (LETOR)

Learning to Rank is described by [40], as the field that emerged form the intersection of
machine learning applications, information retrieval (IR) and natural language processing
(NLP). The purpose of learning to rank is in a wide sense, to use machine learning
techniques to perform rankings. The basic idea is to create ranking models to be used for
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Figure 3.2: Ranking creation sub task. Figure extracted from [40]

Figure 3.3: Ranking aggregation sub task. Figure extracted from [40]

ranking creation and ranking aggregation. Two different sub-tasks within Learning to
rank, detailed on [40].

Ranking creation: Consists in the creating rankings of objects (commonly documents)
for a given query, based on the information extracted from IR and NLP techniques.
This sub task is well described on [40, 42, 43] and is also implemented in both papers.
For the purpose of ranking creation, [42] show a quick and easy implementation of a
learning to rank system. Figure 3.2 shows how rank creation sub task works. Given
a query (qi) from the set Q and a set of offerings O for each query, all offerings (oi)
for that query are ranked according to it.

Ranking Aggregation: The creation of a global ranking list, given a set of ranking list
already computed (independent of the query). More details are available on [40].
The output of ranking creation can be used on ranking aggregation. Figure 3.3 shows
how this sub task works, where each πi is a ranking list, regardless of the query. The
final ranking list is an aggregation of all previous lists.

Ranking creation is the learning to rank sub-task fitted for this thesis problem, and is the
one that will be described in more detail throughout this section.
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3.3.1 Rank Creation Framework

To elucidate the development and understanding of the rank creation algorithms, it
is essential to follow some abstract structure in terms of components needed, and the
disposition/interaction of these components. On [43] and [40] that structure is called rank
creation framework. Figure 3.4 shows the basic structure of a learning to rank system,
and their subsystems interaction. This framework is formed by two systems: Learning
system and Ranking system. The first component is the learning system, responsible for
the creation of an hypothesis (model) from the hypothesis space. It takes as initial insight
a relevant part of the dataset, the training data. There is no fixed size for the training data,
but it must represent a meaningful percentage of the queries with their associated list of
"offerings" (documents). Too little data results on a biased learning process, producing
hypothesis not fitted for a "good" overall prediction of the rank of documents. The second
component of the framework is the ranking system, which applies the model previously
trained by the learning algorithm, in order to predict the labels/values of the training set.
To assure the quality of the models used, a loss function is used to choose the models that
best learned the correlation between training set and ground truth. These models are then
used on the ranking system to predict the test set documents ranking, based on the testing
set insights.

The ranking creation sub-task of learning to rank, which is commonly a supervised
learning task, can be implemented by multiple algorithms. But in order to correctly
implement it, these methods must always follow two simple proprieties [43]:

Feature based: The documents being used ("offered") for the learning process on each
query, must be characterized by a vector of features that can be extracted by various
applications. This features can be any kind of score, or statistical information that
could describe either the occurrence of words on documents or in the query. The
features are the learned properties for each entry of the training set, the discrepancies
across features values will be understood by the system and learned to predicted
results for future queries. Different implementations of learning to rank systems [40,
42, 43, 63] show the wide variety of features that could be used to perform learning to
rank, including: Term Frequency (TF), Term Frequency Inverse Document Frequency
(TF-IDF), BM25 score [57], Language Models.

Discriminative training is the core of the learning to rank system. It models the de-
pendence of target variables y on observed variables x computing the conditional
probability distribution p(y|x) to predict y values. This learning process is subdi-
vided in four major components: Input space (documents described by a feature
vector), output space (the learning target, e.g. a continuous value, ranked list of
documents, target label), hypothesis space (the models created by the learning pro-
cess), loss function (function responsible for measuring in what degree the model is
in concordance with the ground-truth). The idea in learning to rank is to perform
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Figure 3.4: The basic structure of a learning to rank system. Originally from [43]

discriminative training with feature vectors from a (document, query) pair as input
space, and a ranked list of documents as output space. LETOR algorithms are re-
sponsible for creating an hypothesis space, and utilize a loss function to choose the
best hypothesis. RankBoost [29], Ranking SVM [17] or LambdaMART[14], are just
some of the many algorithms developed for this purpose.

3.3.2 Decision Trees Learning

To implement learning to rank frameworks, multiple predictive models can be used. One
of the most used models to develop learning algorithms is the decision trees model. The
basic concept of a decision tree, as said by [12], is the construction of tree structured rules.
The algorithms developed with this structure as backbone, have one goal in common:
find a systematic way to create rules/boundaries to nodes in order to also systematically
predict classes/values.

The induction tasks performed with Decision trees are a commonly used approach
to the wide spectrum of machine learning problems [55]. These structures consist in a
tree-like graph where as shown by [55] they consists in a group of nodes interconnected
in a exponential manner, each node has 2 child nodes until the final nodes (leaf nodes)
are reached. In order to perceive the initial information (training data) and predict results
upon new input these trees create on each node thresholds for the input data, an opting
for the left or right child according to a specific feature value for a given input element.
These Input values (features values) can either be statistical, textual information or even
Boolean references, extracted from each element of the dataset, as [43] experimented
where multiple values are used as feature. In order to produce for each element either: A
label, grouping them according to the labels; Continuous values, enabling the creation of
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rankings for the elements. The basic idea of the trees is take the complexity of the job to
the nodes, each one performing simple tasks and passing the flow to the following branch
(node). Where these tasks are simple conditions checks used to predict results for each
input element (e.g. probability of outcome, costs of a given outcome, utility).

Two main types of trees exist, according to the output format of the problem faced:
Classification trees predicts the class of a certain point (dataset element), where each
classes is a pre-defined label for a subset of the dataset. The nodes of the tree propagate
the flow but only on the final node the point is assigned to a class; Regression trees in
other hand perform the same calculations but instead of leaving the result to the final
node, each node calculates a part of the final result, according to the feature value checked
on it. This process results on a continuous value for each point from the dataset. These two
types of trees will be used with other machine learning methods called ensemble methods
in order to improve the performance and are detailed on 3.3.3

To perform supervised learning on these structures, the first step is to create and train
a predictive model [42]. Ground-truth is used to assess how feature values are distributed
on the training set (subset of the dataset), training the model with the correlation between
features and the element’s ground-truth description (e.g. class, continuous value). Only
after the creation of the model (training step), the decision trees can be used to predict the
results of each individual entry of the dataset. On the LETOR context seen on [43] and
[42] these entries are documents, and the ground-truth is a document containing each
document relevance to a given query.

When testing, the feature values are processed by nodes throughout the tree model
that had already learned the training set, and according to the information extracted from
the training set the model will either classify the element or give it a single continuous
value.

3.3.3 LETOR algorithms approaches

Learning to rank algorithms are based on general machine learning algorithms as for
example: Decision trees, Support vector machine, Naive Bayes classifier. As said on the
previous sub-section 3.3.2, the algorithms used on this project are all based on decision
trees predictive model. However, regardless of the type of model used, all algorithms fit
into three specific approaches: Pointwise, Pairwise and Listwise approaches.

Pointwise approach This is the more straightforward of the approaches. It applies com-
monly used learning algorithms to perform classification, regression and ordinal
classification on each point (document) of the dataset, predicting for each document
its relevance to the query. Since this approach doesn’t take into account the group
structure, the loss function used to select the best hypothesis at learning time must
be applied to each object individually. Consequently the best models will be selected
according to the results on each of point presented on the training set.
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Pairwise approach Instead of assessing the relevance of each individual object (docu-
ments), the pairwise approach checks the relative order of a pair of documents,
compared with the ground truth relevance. Assuming there’s a document di more
relevant than document dj, the pairwise approaches loss functions and scoring
functions will discriminate the hypothesis, according to the hypothesis relevance
assumptions made for documents di and dj. This is a more natural approach to the
learning to rank problem, when compared with the pointwise approach, being able
to design hypothesis based on the documents relations and was the natural next step
after pointwise. Due to that, this approach is one of the more used for development
of algorithms: some of the more known algorithms are build on this pair schema.
For example: RankNet [13], RankBoost [29], LambdaMART [14]. LambdaMART was
the best algorithm for the "Yahoo! learning to rank challenge" [19].

Listwise approach This approach is the most natural when facing a ranking problem:
instead of using single documents or pairs of documents, the training and prediction
instances are ranked lists of documents. To perform learning on the training set, each
feature value (document) gets a score, and later, they are ranked according to this
score. This has been the most developed class of algorithms in most recent years. For
example: AdaRank [68] and ListNet [18].

Both pointwise and pairwise approaches solve problems by performing multi-class
classification, regressions and ordinal classifications. Solving ranking problems as regres-
sion can be done by assigning to each object a real number, according to its relevance to
the query (for example: 0, 1, 2). Subset Ranking with Regression developed by [23], and
Polynomial Regression Function by [31] are two examples of algorithms that utilize the
regression approach for learning to rank. When using Multi-class classification, the idea
is to classify each instance as one of n classes for the problem, and later sorting elements
inside each class by using equation 3.8.

f (xj) =
y−1

∑
y=0

y · P(ŷ = k) (3.8)

where xj represents a document from an instance, ŷ is the prediction class of that document
and k is the number of classes existing, the higher the probability of a documents belonging
to a class, higher the rank inside that class. Knowing that each class will represent levels
of relevance, for example from 1 to 5 where 5 is high relevance and 1 is no relevance. The
last one, ordinal classification consists on assigning to each instance a continuous value,
that must be representative of the relevance of the instance to the query. To achieve the
final ranking, all this values most be sorted by this value.

Listwise algorithms, which address instances as ranking lists, can’t directly apply
classification or regression solutions for machine learning problems, because they do
not intend to give a class or a value to each element individually, since it uses ranking
lists as elements. This type of algorithms follows two different ideas, as [43] described:
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Figure 3.5: Example of bootstrap aggregation used for classification

Optimization of IR Evaluation Measures and Minimization of Listwise Ranking Losses.
The first as the name implies, tries to optimize information retrieval metrics as NDCG or
Mean Average Precision (MAP) to perceive which ranking list were better according to IR
metrics. The other approach goes by the same ideology but instead uses a lost function to
measure inconsistencies between the ranking list and the ground truth.

3.3.4 Ensemble Methods

On regular machine learning algorithms, given a training set, a classifier (hypothesis) is
created for predicting each input instance label for an unseen query. Ensemble methods
try to optimize the accuracy of the final hypothesis by creating and converging multiple
hypothesis into a single one, in multiple possible ways. The goal is to improve effectiveness
of the hypothesis created by algorithms without ensemble methods, by applying this
methods to hypothesis created by regular ML algorithms. Ensemble techniques are used
across nearly every machine learning sub task (learning to rank included). To achieve
success on the optimization of classifiers predictions, as [26] explained, these methods
are restricted by a couple of conditions, to either maintain or improve quality of the final
hypothesis. First, all individual classifiers created must be accurate (i.e, maintaining the
error rate below 0.5). This ensures that the final classifiers is a merge of accurate classifiers.
Second, all classifiers must be diverse. So, different classifiers must produce a wide variety
of errors on the same input data. This ensures that errors are not propagated.

The following are some of the more commonly used ensemble methods, as detailed on
[26]:

Bayesian Voting: Enumerating the Hypotheses Is a set of statistical methods, in which
as all hypothesis h are defined by: h(x) = P( f (x) = y|x, h), where x is the input data,
h is the hypothesis and y is the prediction. Tuning this to the problem of ensemble
all this hypothesis can be seen as computing P( f (x) = y|S, x), where S is a new
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training set sample (system). This ensemble consists on the sum of all hypothesis
weighted by their posterior probability P(h|S), represented by: P( f (x) = y|S, x) =

∑hεH h(x)P(h|S).

Manipulating the Training Examples This method consists on creating multiple differ-
ent subsets of the same training set, and converging the hypothesis, created by each
of the new subsets, into one final hypothesis. Algorithms like bootstrap aggregation
[10] or adaptive boosting [30], are some of the most used algorithms using this tech-
nique. Each algorithm creates training subsets in his own manner and using them
in different ways. Figure 3.5 is a good example of bootstrap aggregation applied
to classification. Where we have two classes (red and blue) of points, and each line
represents a classifier (hypothesis). The final hypothesis is a merge of all those lines
splitting the two classes of points.

Manipulating the Input Features This feature selection technique consist on changing
the feature vector, which is used to detail each of the entries of the dataset. This
method implies that not all of the features used are truly relevant for the model
creation. As this redundant features can cause under-performance of the learning
algorithms, the idea is to remove features that are not relevant for the problem.
The new subset of features is expected to benefit the creation of the converging
hypothesis. If a better hypothesis cannot be achieved with a new subset of features,
then the complete feature values set is used.

Manipulating the Output Targets Based on the number of classes K for the problem, it
creates for example two subsets were the classes are randomly divided based on
the labeled classes. For example, inputs labeled as k=1;2;3 are all in one subset and
k=4;5;6 in the other subset. This subsets are the only classes presented to the learning
system; the ensemble part happens by converging all the hypothesis created, each
one with two new randomly created subsets of labeled data.

Injecting Randomness Consists in inserting any type of randomness to the learning
model. It can be made by adding previously predefined values in a random fashion,
like initial weights for an algorithm or randomly selecting the features that will be
used on the learning process. While being widely used for its simplicity, this is not
the best ensemble method, since most of the previous used methods test the quality
of the new random value, while this method just simply inserts randomness.

3.4 Clinical Information Systems

A lot of work has been done on the field of information retrieval for medical literature
in the last decade, as [27, 58, 59] all systems and system components to be used for
biomedical information retrieval, focusing on very different IR system components. These
components can help the retrieval of biomedical documents, either with new algorithms
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and methods developed to improve a wide range of IR systems, or development of topic
related implementation, creating more tailored IR systems.

3.4.1 Clinical Information Extraction

To retrieve query related topics, it is indispensable to have a good information extraction
implementation, as retrieval is only as good as the information it can be extracted from
the documents. Information Extraction (IE) processes unstructured text from collection of
unstructured data and semi-structured data. When dealing with unstructured data, a full-
text processing will be made to extract the relevant information from the document. This is
a hard problem, as the system has no prior idea of what is discussed on the document, and
means that a lot of information can be incorrectly classified or discarded. A good example
is the RobotReviewer framework [47] detailed on section 3.6. In RobotReviewer, references
of Population, Intervention, Control and Outcome (PICO) of Randomized controlled trials
(RCTs) are extracted without any feedback from the user, using machine learning and NLP
to do a full-text processing and search. Not all RCT get good extraction results, as there is
no way of knowing if all the PICO fields are explicitly mentioned on the document.

When dealing with semi-structured data (i.e. documents that have separated fields
some with narrative note, written text, or specific fields like gender: Male or Female), one
knows which fields characterize the document. This means that a lot of new retrieval
ideas can be used, enabling the creation of systems such as the one created by [36] where
a real-time monitoring system is created using the information stored on the databases
of Hospitals Intensive Care Units (ICUs). Using information extraction similar to the one
used on Apache cTakes, machine learning regression and classification to fulfill the ICU
needs. For example, using classifications to understand if the patients respiratory health
and heart rate is inside life threatening values or not. The important part when dealing
with this type of collections is to study the dataset and understand what is relevant for the
problem.

As with most of TREC tracks, the Clinical Decision Support track (CDS) and Precision
Medicine track (PM) datasets are composed by a collection of semi-structured documents,
containing narratives notes (e.g. full text of the purpose of the study, summary of the
intervention, outcomes) and fields characterizing the article (e.g. MeSH terms, gender of
patients, age). Both CDS and PM tracks are composed of biomedical articles from the Open
Access Subset of PubMed Central (PMC). The PM track is subdivided into two tracks: one
to retrieve biomedical articles and other to retrieve clinical trials from clinicaltrials.gov
database. The main difference between both tracks is that the CDS is focused on answering
general medical questions, normally concerned with diseases that have a consensus of
multiple acceptable interventions to treat patients. On the other hand, PM as the name
suggest, tries to answer very specific questions, retrieving information about oncology
diseases. Information that need special attention due to its severity and the lack of proven
good interventions. That is why the clinical trials are very important to TREC PM, where
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new trials can unveil new treatments.

The papers [49, 50] are 2014 and 2015 submissions of NovaSearch, group from Uni-
versidade Nova de Lisboa, for TREC CDS. Both papers show how documents fields can
be used to extract data, that will be used on the text-search engine and for search time
filtering of documents. For example, on the 2015 submission, the fields that describe the
document itself like summary, title and description will be used on the search, while
fields that give the information about the journals where the articles were published, were
used to create a search-time filtering called Journal-based filtering. This excluded articles
from journals deemed irrelevant for the specific query type. Excluding criteria is a type
of filtering that can be applied to the results. Even if some similarity is found between a
document and the query, the exclusion criteria extracted from the document can exclude
it automatically. Filtering the results is one of the basic techniques that can be applied to
information retrieval to guarantee a minimum limit bound on efficiency of the IR system.
Belkin [7] study shows that a system without filtering is more likely to perform worse
than one with filtering.

This type of implementation can be used in a lot of different approaches, leading
to performance boosts on information extraction. But dealing with the given fields and
making no assumptions of their interconnection leaves a lot of relevant information hidden
in both unstructured and structured fields. This means that feature extraction ideas could
be applied taking a combination of fields to infer new features. The top ranked-team of
TREC Precision Medicine track, from the University of Delaware [1], used a different
approach where besides storing the search fields and those that will later be used for
filtering at search time, they grouped four fields: Primary Purpose, Intervention, Study
Type and Phase (of treatment). What they discovered is that when these fields are within
a range of specific values, the trials normally are relevant to oncology treatments. Their
algorithm gave trials that contain them an increase in score, which will be added to the
scoring of the searching fields. The following are the values that grouped all together
indicate a oncology treatment:

• Study type: Is the type of medical study performed on the clinical trial. For the
purpose detailed before, the trials with study type: intervention, are given an extra
boost;

• Intervention: A medical intervention is the act of curing or helping patients with
direct actions to ones condition. This can be done in numerous ways, but when
we are dealing with cancer patients few options remain. Only drug, biological or
radiation treatments are performed, so clinical trials with this type of interventions
have higher chance of being cancer related;

• Phase: The phase of the clinical trial. As shown on figure 2.2, 4 types of clinical trials
exist. Patients are assigned to phases according to their condition and the study itself.
Cancer related trials are normally around phases 2, 3, or 4.
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• Primary purpose: The principal idea behind the clinical trial. When dealing with
cancer related treatments the primary purpose is treatment.

One final and more complex approach that can be used either with unstructured or semi-
structured collections are the Part-of-speech taggers such as the Stanford POS tagger [62],
or other frameworks like Apache cTakes [58]. They process the information and extract
the relevant entities referred on the texts. These techniques benefit from using Unified
Medical Language System (UMLS)-like dictionaries, to store unambiguous UMLS ids for
the given disease instead of the retrieved terms. So the more specific the dictionary better
the results. In [37] and [44], Human disease ontologies are created or improved based on
multiple biomedical resources, each one with different approaches. Using POS taggers
enables matching documents that describe similar diseases and procedures using different
terms, creating better links between query and collection documents for searching and
indexing with automatic biomedical term extraction.

3.4.2 Clinical Query Expansion

The key idea behind query expansion is to fill the gap between the terms in the query and
those on the collection, by adding terms related to those on the original query in order to
get a wider range of results. For example a query for "Car" can also benefit by querying
the system for "Car" and "Automobile" simultaneously. To perform this technique, two
major mechanisms can be applied: Analysis of terms on the collection and Domain specific
Ontologies.

Analyzing terms on the collection to perform query expansion can be done using
local and global analysis. As described in [67], Local Analysis combines the query with
local feedback results (Documents chosen by the user), extracting the top terms of the
selected documents. One very popular method is used to provide users with automatic
local analysis, pseudo-relevance feedback (PRF). It consists in adding to the query the
top scoring terms of the top retrieved documents, using the initial query and not chosen
by the user directly. This method was used on [52], NovaSearch CDS 2015 and 2014 [49,
50] with an Apache Lucene method designed for PRF, called more like this (MLT), that
provided users with a parameterizable method to perform PRF query expansion. Besides
these three previous papers, [69] and [53], also submissions for TREC CDS 2014 track,
used PRF and the results show that the system performance benefits from it. If PRF is not
carefully parameterized, it can have the opposite result, downgrading the performance of
the system as shown on [16], by adding new terms that may be irrelevant to the initial
query. On other hand, Global analysis processes the corpus of the collection to infer which
terms should be used on the new query, perceiving the co-occurrence of query terms and
these new terms around the collection.

Local context analysis, based on both previous analysis, selects expansion terms based
on co-occurrence with the query terms (global analysis) within the top-ranked documents
(local analysis). It as performed better than any of the other analysis as shown in [67], where
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local context analysis improved the performance of the query expansion in comparison
with any of the previous techniques.

An alternative to local and global analysis is to use the benefits of Language Models
to use the context of the terms to achieve better results on the Ranking functions, instead
of simply applying a pseudo-relevance feedback to perform query expansion with local
and global analysis. The authors in [6] proposed algorithms for Query Expansion that
were aware of the interrelations of the words and based the system on the co-occurrence
of terms on the same context. The expansion could be either with a creation of a HAL
(Hyperspace Analogue to Language) space, where words were perceived as a vector of
co-occurring terms and their respective weight. Another expansion method uses what is
called information flow that creates queries that can be seen as part of the same information
flow, so all terms must be correlated according to the corpus and the furthest the terms
on the new query, the more sparse their co-occurrence is. This algorithms shows what
advantages can be taken from using language models on Query expansion and how to
use them.

Not all expanded query are assumed to be good. Based on this idea, [24] developed an
algorithm that tries to ensure that IR system gets the best possible results using QE, even
if this means to not use the expanded query. Cronen showed a method of inspecting the
results of both unexpanded and expanded query and infer which of the ranking lists best
answer the initial query.

All of the previous methods used to perform query expansion can improve the retrieval
performance but are based on information present in the documents on the Corpus. For
expert domains such as the biomedical domain, a lot more can be done with external
sources of information to help create better IR systems. External biomedical ontologies
like SNOMed CT and MeSH are commonly used to fill the semantic gap between query
specific terms (terms that could be mentioned on those dictionaries) and their alternative,
preferential (label that more correctly identifies the given term) or synonyms terms. These
terms are the ones that will be used to perform query expansion, adding them to the initial
query. A considerable amount of work have been done on this field. For example in [52] the
query was expanded with only synonym terms from MeSH. While on [20] only the MeSH
MajorTopic terms were used, both on [20] and [52] the results show that the performance of
the system benefits from the usage of MeSH terms. [49] used the preferred and alternative
terms, while [50] used all the preferred, alternative and synonyms provided in MeSH and
also used terms and relations of the Web Ontology Language (OWL) version of SNOMed
CT, achieving good results on the competition.

Other approach to use these external sources may be seen on [1] where these dictionar-
ies are always used in all system to give more specific terms for the Disease expansion
and not for the overall query. This distinction was made to ensure that only topic related
terms are expanded, since the disease field description is not ambiguous.
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3.5 Evaluation Test-beds

This section will detail some of the more relevant tracks for which the previous explained
systems were developed. The goal is to give insights on the Datasets and how they were
structured, the primary purpose of each challenge and the test queries used for submission.

3.5.1 Medical ImageCLEF 2013

The goal of the medical retrieval task of ImageCLEF 2013 is to find images and textual
information from the subset of PubMed Central containing 305,000 images and journal
articles [34]. For ImageCLEF 2013 there were 4 subtopics (Modality Classification, Com-
pound figure separation, Ad-hoc image-based retrieval and Case-based retrieval) but the
only relevant for this work is the Case-based retrieval, as it is also focused to the textual
retrieval. This task contains 35 topics (case description) with patient demographics, limited
symptoms and test results including imaging studies, but not the diagnosis (they will be
extracted from the retrieved cases/journal articles).

A query for the Medical ImageCLEF 2013 is for example figure 3.6 accompanied by a
text with description: "A 43-year-old woman with painless, gross hematuria..."

Figure 3.6: Medical ImageCLEF query example.

3.5.2 TREC CDS

The Clinical Decision Support (CDS) Track is focused on the retrieval of biomedical articles
for answering generic clinical questions about medial records. The dataset for the Task is
a snapshot from January 2014 of the Open Access Subset of PubMed Central. Both 2014
and 2015 use the same subset with 733,138 full-text biomedical articles. Topics are medical
cases narratives containing two fields description and summary of the case. Both are
divided into multiple types of topics: 10 Test topics, 10 treatment topics and 10 diagnosis
topics. Each topic represent the purpose of the physician on the case, describing either
if the physician is looking for tests to experiment with the patient, treatment to perform
on the patient or simply the diagnosis of a certain case. The Track is subdivided in two
tasks A (no diagnosis field on the test and treatment queries) and B (explicit diagnosis
field on the test and treatment queries), the first one is the only task for CDS 2014 and CDS
2015 contains both. Queries with test and treatment have a diagnosis annexed to it, which
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may improve the overall performance of the retrieval system, giving more precision to the
query. The following is an example of a test topic for TREC CDS 2015:

Listing 3.1: Example of query provided in a xml document showing the topics structure
1 <topic number="19" type="test">

2 <description>

3 A 66yo female with significant smoking history...

4 </description>

5 <summary>

6 A 66-year-old female smoker presents with worsening dyspnea...

7 </summary>

8 <diagnosis>Chronic Obstructive Pulmonary Disease</diagnosis>

9 </topic>

3.5.3 TREC PM

This Track aims to provide physicians with a system capable of retrieving article and trials
for very specific use cases, Oncology cases. It contains 2 datasets each one for the 2 tasks
that make part of PM 2017:

• Scientific Abstracts: Articles from the biomedical domain, targeted toward cancer
therapy. January 2017 snapshot of PubMed abstracts, which additionally contains
abstracts obtained from AACR and ASCO (Associations totally dedicated to cancer
research).

• Clinical Trials: Documents detailing observations and experiments performed on
patients to answer specific questions. April 2017 snapshot of from ClinicalTrials.gov.

The topics contain four fields: Disease, Gene Variant, Demographic and Other. Disease is
the actual cancer the patient suffers from (e.g. Melanoma, Liposarcoma), the Gene Variant
is the actual gene which led to the cancer, Demographic is age and gender specifications
of the patient. The Other field contains key exclusion criteria such as other diseases
or important information of the patient record that may change the relevance of some
documents for this specific patient. The corpus and queries, detailed on figure A.4, that
were used on this work was the TREC PM 2017 clinical trials dataset. The final number of
queries was 28; queries 10 and 12 were excluded from testing since no relevant documents
could be found on the collection.

3.6 Clinical Information Processing Frameworks

Multiple systems have been designed to simplify the applications of these techniques. The
detailed frameworks are analyses and knowledge systems used to perform information
retrieval.

31



CHAPTER 3. BACKGROUND AND RELATED WORK

3.6.1 Apache Lucene

Lucene is a library for information retrieval that can provide users with a full-text search,
with High-Performance and scalable indexing tools and search techniques which could be
matched to the requirements of the system. It supports most of the previously described
indexing and search methods (e.g. inverted index, retrieval methods). It can work with
multiple types of data, enabling the creation of numerical range queries, specific textual
queries (e.g. is gender equal to "male" or "female") and textual queries. This framework
uses 4 types of methods to perform textual queries:

• Should: Scoring documents according to their relevance to the query, but not de-
creasing the score or excluding documents with low relevance.

• Must Not: Excludes documents that contain query terms. Used only as a filter, not
changing the score of documents at all.

• Must: Increase the score of documents which contain the query terms, and down-
grades the score of documents not showing query terms.

• Filter: Excludes documents with no relevance to the query. Doesn’t change the score
of documents.

3.6.2 RobotReviewer

Evidence Based Medicine (EBM) as the names suggests, is the approach to medical practice
that uses evidences from cases and scientific research to help the physicians in the decision
making. For that purpose, systematic reviews are commonly used EBM tools: they critically
analyze literature in multiple manners providing an exhaustive and complete summary
of it.

RobotReviewer [47] aims to semi-automate the systematic Randomized Controlled
Trials (RCT) review creation process, extracting from the trials multiple information and
synthesizing it in two ways:

• Quantitative: PICO (Population, Intervention, Control, Outcome) process aims at
getting a sense of what exactly as been wrote on the clinical trial. A good example is
the work developed by [59], where PICO annotations were extracted and used to
frame and answer clinical questions.

• Qualitative: To perform systematic reviews, it is very important to take notice of the
correct formation of the RCT’s. Badly created reviews may be biased, which may
lead to distorted results (e.g. if the patients are aware of the type of study and the
types of treatments being made, placebo effect could occur). For that, RobotReviewer
also extract four bias fields to ensure the quality of the study: Random sequence
generation, Allocation concealment, Blinding of outcome assessment and Blinding
of participants and personnel.
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Robotreviewer utilizes machine learning techniques and combines them with NLP to
extract the information from the RCTs in a simple way, with no technological knowledge
needed to use the software.

3.6.3 Apache cTakes

This software was developed by [58], to extract the information from multiple types of
clinical records. It processes the clinical notes using Apache OpenNLP technology and
Machine Learning techniques. Even though it is based on similar tools as RobotReviewer,
the goal is different. Apache cTakes uses this tools to identify clinical named entities like
diseases, symptoms, drugs, dosage, procedures and much more entities relevant in a
clinical point of view.
cTakes is made up by multiple components each extracting different insights from the
clinical note, the following are examples of these components:

• Drug Named Entity Recognition

• Part-Of-Speech Tagger

• Context Dependent Tokenizer

• Others

This software can be used to compute multiple types of medical related dictionaries. One
good example are ICD-10 dictionaries, that gives codes to multiple medical entities (e.g.
diseases, drugs, symptoms, social circumstances) and facilitates the retrieval process on
the literature that uses this types of dictionaries. For example, if the patient as a condition
on the respiratory system a code between J00–J99.

3.7 Critical Summary

This chapter showed some of the more commonly used techniques for information retrieval
and for the study fields surrounding it. What is very much noticeable on information
extraction is that most of the systems try to overcome their problems by using as much
structured information as they can. This means that fields that are extracted are either to
perform a full-text search on a specific field, or to match information from specific fields
(e.g. MeSH terms, age, condition). This type of information extraction can only lead to
results with median precision, as the most explicit information will be on the text fields.
On the other hand, systems that deal with full-text search in order to extract characteristics
from the text, as described by [47] with PICO annotations, can easily deal with full text
characterization. Being nearly impossible to understand human like discrepancies on text,
as for example: "the purpose of this trial is strictly for lung neoplasm, not for female breast
cancer". Imagine this text is on the exclusion criteria field of an article, using either one
of the text searches described for searching "lung cancer" on the exclusion criteria, will
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produce a lot of incorrect classifications for the document. So what is needed is a way of
processing each line of the given text and infer which words have a certain meaning or
have a certain form (positive/negative). Tasks like NER can be very helpful to overcome
this problem.

In terms of query expansion, various ideas are present in the literature, from per-
forming collection analyzes to add terms to the query or even using external sources,
providing the query with more precise or general terms depending on the IR purpose. PRF
is a very interesting technique to perform collection analyzes that was used during the
implementation of this work to provide more precise queries. Using MeSH and SNOMED
CT terms can also be a very good idea, since the systems normally benefit from it.

Rank fusion have been widely used across the IR community, providing consistent
performance improvements when compared to individual system results. Algorithms such
as RRF and CombSum are two of the more commonly used, and it will be interesting to
measure how these algorithms can improve the global system performance. The difficulty
in rank fusion is the same as query expansion. How do we know which of the used
methods improve the system? This question can be answered again with a supervised
learning algorithm (e.g. L2F).

In terms of learning to rank, given the variety of different approaches within decision
trees framework it would be very interesting to understand how each algorithm deal with
the problem in hands. Testing how pointwise, pairwise and listwise approaches behave on
the thesis dataset. Besides that, the small amount of queries makes this system very good
to evaluate and understand how these algorithms deal with small training information,
and how can ensemble methods be used to overcome this problems.
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UNSUPERVISED RETRIEVAL SYSTEMS

Throughout the previous chapter, the state of the art of medical retrieval systems was
discussed, including some of the more common problems of those systems. The set of
problems include: filtering according to demography, using correct medical relevance
assumptions and filtering according to exclusion criteria. This thesis goal is to create a
system capable of achieving very precise results for the problem of matching patients to
clinical trials. The developed systems were based on the TREC Precision Medicine 2017
Track. Table 4.1 shows the notations used throughout this chapter.

Table 4.1: Notation used in this thesis.

Notation Definition

ct Clinical Trial
Ru A set of methods used to cre-

ate a rank list with unsupervised
learning

Ru_methods Retrieval run. Methods detail the
set of methods the implementa-
tion is focussed on.

ct_ f ield Field content given Clinical Trial
ct.

tp_ f ield Topic (Query) field content.

4.1 Document parser

The documents parser uses a pipeline of filters to mitigate factors like the number of
non relevant words and variation of words (e.g. reduce words to their root forms cancers
and cancerous to cancer), which leads to more effective retrieval results. The filters used
on the benchmarks were as described on Table 4.2. The combination of these filters are
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the components of the text information analyzer described on section 3.2.1. As Table 4.2
shows, the filters used have two main principles: Normalization of words and removal of
unnecessary words. Tokenization and stemming are example of word normalization. The
first is responsible for removing the punctuation and reducing all words to lower case,
while stemming is responsible for reducing all words to their root forms. The remaining
filters are used to remove stop words, very common words across English literature (e.g.
"and", "that", "for"), and convert all text into lower case.

Table 4.2: All the filters used on the Lucene text analyzer.

Method Definition

Tokeinzation filter Removal of punctuation and splits of text by white spaces
into chunks.

Lower case filter Converts all text to lower case.
Stop Word Removal Curated list of common words that should be excluded

during processing (e.g "this","is","a").
Stemming English language stemming, used to reduce English terms

to their root form.

4.2 Information Extraction and Indexing

To index the information contained in the documents, it was necessary to extract the
ct_ f ields that could be relevant in a medical environment. This choice was supported by
the Information Extraction examples used on the systems described on the articles on
section 3.4.1, and also inspired by some of the oncology principles detailed on chapter 2.
The chosen fields to be extracted from each ct are detailed on table 4.3.

The format of the documents provided in the collection (a field-structured document),
helped us minimize the workload on the pre-processing of the text before indexing it.
For example, <minimum_age> 18 Years </minimum_age>, there is only need to split the
text by white spaces and the result is an array containing ["18", "years"]. The specification
ensures that the first value on the array is a string containing a number, that represents
the minimum age of the patients for this clinical trial.

The information contained in the larger text fields such as, ct_brie f _title or ct_summary
is first processed using the analysis process explained on 4.1, and then indexed. Note that
not all the fields are available in all clinical trials.

4.3 Matching: Retrieval and Filtering

The created runs reflect the impact of multiple methods for information extraction on the
retrieval. Table 4.4 details each one of the tp_ f ields extracted from the patients clinical
record, used to scrutinize documents in the most relevant manners. The following sec-
tions will show in detail the iterative process of choosing the best methods for retrieval
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Table 4.3: Detailed description of the fields extracted from the clinical trials.

Fields Id Description

Official Title ct_o f f Title The official title of the clinical trial.
Brief Title ct_brie f Title A brief title containing only some

keywords of the title.
Brief Summary ct_summary A compact summary of the clinical

trial.
Detailed Description ct_detailedD A detailed description specifying

the goal of the clinical trial.
Text ct_text Contains a concatenation of the text

fields: Official Title, Brief Title, Brief
Summary, Detailed Description

Inclusion Criteria ct_inclusion Inclusion criteria for the patients
(other diseases, allergies, previously
used drugs, cancer gene mutations).

Exclusion Criteria ct_exclusion Exclusion criteria for the patients
(other diseases, allergies, previously
used drugs, cancer gene mutations).

Max Age ct_maxage The maximum patient age on this
trial.

Min Age ct_minage The minimum patient age on this
trial.

Gender ct_gender The patient gender accepted on the
trial. Given the value "1" to female
only trials, "2" for male only and
value "0" to trials with no gender
restriction.

Study Type ct_studytype The type of the study the clinical
trial is focused on.

Intervention ct_intervention Explicit the intervention made on
the patient (e.g. drugs, radiation).

Primary Purpose ct_purpose The purpose of the trial: the goal
is either the treatment, diagnosis,
prognostic or prevention of a dis-
ease.

Condition ct_condition Keywords for the disease the trial
intendeds to treat

Condition MeSH ct_meshCondition Automatic keywords, from MeSH,
for the disease the trial intendeds to
treat

An exhaustive benchmarking of such techniques is available on Chapter 6. Regarding
retrieval functions, all techniques will be tested in combination with one or more of the
following retrieval models: BM25, TFIDF, BM25L or LMD similarity, as they achieved
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Table 4.4: Detailed description of the fields extracted from the patients clinical record.

Fields Id Description

Disease tp_disease The disease where the patient treat-
ment will be focussed on.

Gene tp_gene Gene mutation associated with the
previous described disease.

Demographic tp_demo Age and gender information of the
patient.

Age tp_age Age of the patient, extracted from
the field tp_demo

Gender tp_gender Gender of the patient, extracted
from the field tp_demo. Given the
value "1" to female patients and "2"
for male.

Other tp_other Other conditions the patient may
suffer, that are not oncology related
diseases.

Figure 4.1: Information retrieval system with some of the used features.

good retrieval performance on previous biomedical information retrieval systems [49,
50, 53, 69]. Throughout this section the implementation of each module described on
Figure 4.1 is going to be explained, and other documents processing methods that were
not present on it.
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Table 4.5: Retrieval runs with methods focused on gene and disease search.

Lines in x(n) format, n is the Lucene boost applied to that specific Gene pr Disease match (only present in
cases were boost is different than 1).

Run Gene Disease

Ru_gen x
Ru_dis x
Ru_gendis x x
Ru_gendisB x (2.0) x (1.5)

4.3.1 Gene and Disease

According to chapter 2 description of cancer diseases and genes, it becomes clear that
both are indispensable for finding matches between patients and clinical trials. A trial that
neither mentions the patient disease or gene mutation, will probably not be a relevant
document for that patient. The initial step for all retrieval methods, is to use both tp_gene
and tp_disease as query and search for these terms on ct_text. This query was implemented
following Equation 4.1

Qi = (tp_disease ∪ tp_gene; Search on : ct_text) (4.1)

Table 4.5 shows the implementations focused solely on gene and disease search, with
two Ru searching for both gene and disease. Ru_gendisB was manually tuned to achieve
the best possible results, giving a boost to both gene and disease search.

4.3.2 Demographic filtering

Throughout the top retrieved trials from either Ru on table 4.5, age and gender stand out
as a relevant feature that should be used to improve the retrieval system. Many of the
trials incorrectly retrieved as relevant, have age and gender restrictions outside of the
desired values. Even if the patient is eligible for a specific trial, age and gender can be
outside the intended demographic group.

An inspection of relevant documents (according to the provided relevance judgments
on TREC PM 2017 dataset), confirmed that demographic is mandatory for a trial to be
relevant. This was the case on all patients on all trials except 10 patient-trial pairs that
were, most likely, incorrectly classified as "relevant" (the trials clearly specified a different
age or gender from those patients).

All three Ru on Table 4.6 apply demographic filtering to the best retrieval function seen
on sub section 4.3.1, using ct_minge, ct_maxage and ct_gender to check patients eligibility
for each trial. Following the Equation 4.2 to filter documents, where only documents with
tp_age and tp_gender within acceptable values are not filtered.

Qi = (ct_minage <= tp_age <= ct_maxage)∩ (tp_gender = ct_gender ∪ ct_gender = 0)
(4.2)
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Table 4.6: Retrieval runs with methods focused on demographic filtering.

Run Gene / Disease Age Gender

Ru_age x x
Ru_gender x x
Ru_demo x x x

Table 4.7: Retrieval Runs with methods, focused on Exclusion and Inclusion criteria.

Run Gene / Disease Demo Inclusion Exclusion

Ru_inclusion x x x
Ru_exclusion x x x
Ru_criteria x x x x

4.3.3 Inclusion and Exclusion criteria

One of the most evident flaws on the retrieved trials was the lack of compliance with both
ct_inclusion and ct_exclusion fields. Following the patterns observed on trial data, it is
clear that "Exclusion criteria" should work as a filter: if any match between patient and
the trial exclusion criteria terms exists, then the trial is automatically non relevant. The
exclusion criteria query was built using Equation 4.3, where both tp_gene and tp_other are
used to search for gene and other diseases the patient suffer from on ct_exclusion, which
is expected to not occur. So documents which have a reply for this query are automatically
excluded.

Qi =!(tp_gene ∪ tp_other; Search on : ct_exclusion) (4.3)

On the other hand, matching "Inclusion criteria" should not greatly impact the direct
removal of false positives from the top retrieved functions, as non relevant documents
can have inclusion criteria that match the patient condition. Even so, matching terms in
the inclusion criteria to patient information is key to corroborate and boost the scores of
true positives. Inclusion criteria was implemented following Equation 4.4, where tp_gene
and tp_disease are used for search references of gene and disease on ct_inclusion. Table
4.7 shows the Ru created using inclusion and exclusion criteria filter.

Qi = (tp_gene ∪ tp_disease; Search on : ct_inclusion) (4.4)

4.3.4 Domain Specific Methods

The core idea behind domain related methods is to retrieve all documents related to cancer
treatments, even if the trial is not an exact fit for that specific patient. Since the imple-
mentations that are detailed in this chapter are incremental, most top ranked documents
are already related to the patients disease or genetic mutation (both gene/disease and
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Table 4.8: Retrieval Runs with methods focused oncology related trials specifications.

Run Study Type Intervention Primary Purpose

Ru_studytype x
Ru_intervention x
Ru_primaryporpuse x
Ru_domain x (10) x (10) x (10)
Ru_domainBstd x (10) x (20) x (15)

demographic searching are always applied on all runs). So these methods are intended to
find which trials are focused on cancer treatment and rank them higher.

For this purpose, this section implementation was based on some ideas that were
described in the TREC PM 2017 system by [1]. They found that trials were the study
type, ct_studytype, is interventional were more relevant. The rationale behind the dataset is
that all patients have malign tumors, so only intervention type trials can be useful. Other
relevant factor described on [1] is the actual intervention type, ct_internvention. Cancer
treatment are of three main types, as detailed on chapter 2: radiotherapy, chemotherapy
and drug related. The other feature used was the primary purpose, ct_purpose that can
only be a treatment. Equation 4.5 explains how this fields would be used to query the
documents, not using any reference from the patient but only using ct_ f ields: ct_purpose,
ct_intervention and ct_studytype.

Qi = (ct_intervention = true ∪ ct_studytype = true ∪ ct_purpose = true) (4.5)

4.4 Query Expansion

Query expansion, as the name suggest, consists on adding new synonyms terms to the
original query, leading to an increase on possible matching terms to that specific query. For
the purpose of this work three types of expansion were used: Pseudo relevance Feedback
(PRF), manual expansion and expansion with MeSH terms.

4.4.1 Pseudo Relevance Feedback

Pseudo Relevance Feedback (PRF) is a method for automatic local analysis as described
on [46] and [67]. It provides possible relevant terms for a new query to the user, without
any user intervention. We expanded our queries using the top terms of the "text" field,
terms with higher TF-IDF scores, from the top retrieved documents on the collection
search. Our implementation of PRF query expansions was implemented with Lucene
MoreLikeThis (MLT) library. We selected terms from the top-3 retrieved documents and
extracting exclusively terms bigger than 4 characters. For example, if our initial query
contains the term "Adenocarcinoma" (type of lung cancer), we can create a MLT query
with terms like, "lung cancer", "NSCLC" (Non-Small Cell Lung Cancer). The final query
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will contain the initial query, and 3 new expansions, each created from one of the top-3
Documents.

The following are the base parameters that are going to be changed to perform pseudo-
relevance feedback:

• Minimum Document Frequency

• Minimum Term Frequency

• Maximum Expansion Length

All runs were tested with BM25, BM25L, TFIDF and LMD. The initial query performed is
the run detailed on section 4.3 named Ru_domain(BM25L) and the final query is named
according to the Minimum Document Frequency (MDF) of documents in which the term
appears, Minimum Term Frequency (MTF) on the document and Maximum Expansion
Length (MEL): Ru_qe_{MDF}_{MTF}_{MEL}. Table 4.9 shows the QE implementa-
tions.

Table 4.9: Query Expansion runs parameters.

Run MDF MTF MEL

Ru_qe_10_10_10 10 10 10
Ru_qe_10_10_5 10 10 5
Ru_qe_25_10_5 25 10 5
Ru_qe_25_25_5 25 25 5
Ru_qe_50_10_5 50 10 5
Ru_qe_50_25_5 50 25 5
Ru_qe_50_50_5 50 50 5
Ru_qe_50_70_5 50 70 5

4.4.2 Manual Query Expansion

After the experiments shown on Table 4.8, and analyzing the top-10 retrieved documents
for both Ru_domain and Ru_domainB, two very common definition for "in situ" tumors
appear throughout these documents: "Solid tumor" and "Solid neoplasm". So these terms
were added to the query and used the same way gene and disease, as Equation 4.6 shows.
This idea was already implemented by [33] with proven results on TREC PM 2017. This run
was based on Ru_domain, and since this was the best run so far after a lot of new retrieval
ideas were applied, it would be interesting to see how the search for tp_other and tp_gene
on ct_inclusion affect results. This runs are shown on Table 4.10 as: Ru_manualexp using
search on ct_inclusion, and where domain features consist on using Ru_domain search
for documents with specific study types, interventions and primary purpose of the trial.
Ru_manualexpNoInc applies manual expansion and Ru_domain leaving out search on
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Table 4.10: Retrieval Run with methods focused on manual query expansion.

Run Inclusion Manual Expansion Domain features

Ru_domainInc x x
Ru_manualexpNoInc x x
Ru_manualexp x x x

ct_inclusion. Just for control Ru_domainInc was created were Ru_domain added the search
on ct_inclusion.

Qi = (tp_gene∪ tp_disease∪ ”solid tumor”∪ ”solid neoplasm”; Search on : ct_text) (4.6)

4.4.3 MeSH Expansion

Most of the disease and genes references present on tp_disease, tp_other and tp_gene may
be expressed with different terms on relevant documents. Leading to assuming relevant
documents as irrelevant because no disease or gene reference were found. To overcome
this problem query terms were expanded with synonyms from MeSH, extracting all
synonyms with the same level of relevance. For example for the a patient with tp_disease
"lung cancer" a term with the same level of relevance may be "lung neoplasm", on the
other hand a less relevant terms is "cancer".

This MeSH expansion was only used on Section 4.5, were ranking lists are re ranked
according to the documents ct_condition, ct_meshCondition and ct_exclusion. This tech-
nique was also applied on Section 5.2.4 not exactly the same way, but also using MeSH
keywords to expand the total number of query terms.

4.5 Re-ranking of previously retrieved trials

Not all features can be correctly evaluated using Lucene queries. Thus, filters to work with
retrieval system results (ranking lists) were developed, applying functions to Lucene scores
for a final re-ranking step. All runs were based on Ru_manualexp(BM25L). Figure 4.2
shows an example of how both implemented filters work. Green documents have matching
condition so condition filter re-ranking will be applied, only increasing the score of
matching documents. Red documents have exclusion criteria occurrences, their score will
be downgraded using the exclusion filter. Figure 4.3 shows the multiple iterations made
from benchmark to benchmark, from the more intuitive methods to more complex and
domain specific methods. The diagram doesn’t follow a timeline, the flow only show in
what order methods were introduced to the system and which implementations make up
which benchmarks. The only methods that were not used at retrieval time were: Manual
and MeSH expansion that were used before retrieval, and condition re-ranking that was
made after retrieval.
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Figure 4.2: Re-ranking methods example. Condition re-ranking examples shown in green
and exclusion criteria re-ranking examples in red.

4.5.1 Exclusion filter

Two different features were used for this class of methods: the first one utilizes a pre-
viously used field, exclusion criteria, but in a completely different fashion. Instead of
completely removing documents from the ranking, this method will lower documents
scores according to the number of exclusion occurrences.

Filter method start by expanding tp_other information for each query and finding
synonyms of the disease from MeSH, in order to increase matching probability to the
exclusion criteria. These terms are later used for counting matches on ct_exclusion. On
other hand in order to correctly count the exclusion matches for genes it was also necessary
to expand genes with synonyms from MeSH, but also to reduce the specificity of the gene
query. For example, gene mutations as "NRAS (Q61K)", extracted from query number
6, gives the system too much accuracy on the gene mutation (amino acid substitution
of the position 61 on the NRAS gene [32]). ct_exclusion text normally discriminates the
gene itself and not the specific amino acid. Thus, using the gene representation present on
MeSH definitions instead of "NRAS Q61K" using "NRAS" or "BRAF (V600E)" to simply
"BRAF", improved the overall performance of the system.

Besides this simplification, other issue was the towering amount of criteria containing
usage references of gene mutations inhibitors. The completeness of the exclusion criteria
can lead to misleading matches between patients gene mutations and gene mutations
inhibitors as exclusion criteria. After finding matches for a simplified gene mutation in
the exclusion criteria, the four following words are checked on tp_gene for gene inhibitors
usage: Amplifications, translocation, duplication or inhibitor. The ideas implemented on
[33], for TREC PM 2017, were a good starting point for using this gene inhibitors. By
not counting genes references to inhibitors usage on ct_exclusion , one can reduce the
number of false negative and false positives. The exception is unless tp_gene definition
explicitly shows the presence of "Amplifications", "translocation" or "duplication" which
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Figure 4.3: Benchmarks for the unsupervised learning system and their respective
retrieval methods incremental process.

are associated with inhibitors use.

The re-ranking function is represented in equation 4.7, were Sx is the final score from
the retrieval function and Wx is the weight applied manually, and this weight is expected
to be the same for an entire ranking list re-ranking.

Sx ∗ (1−Wx ∗ #occurrences) (4.7)

4.5.2 Condition filter

The other re-ranking method is based on the official and MeSH conditions present on each
clinical trial. After inspecting the top 20 results for each query, it was clear that all relevant
documents had the disease or one of its expansions on ct_condition or ct_meshCondition.

To implement this method, tp_disease was first expanded, similar to tp_gene and
tp_other expansions for exclusion criteria, using MeSH terms. This filter will work as a
Boolean filter signalling if some of the conditions described on the clinical trial matches
patients condition. If the condition present on the query is equal to one of the condition
presented on the trial, then this filter will be assigned to "1" and "0" otherwise.

The final score for documents will be given by equation 4.8, were documents have their
score increased if their condition feature is "True". Weight Wx is expected to be 0 < Wx ≤ 1,
is a constant value for a ranking list re-ranking.

Sx ∗ (1 + Wx) (4.8)
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Table 4.11: Retrieval runs with methods focused on re ranking.

Run Inclusion Domain Condition Exclusion re-rank Weight (Wx)

Ru_excludererank x x x 0.2/0.1/0.05
Ru_conditionrerank x x x 0.2/0.1/0.05
Ru_rerank x x x x 0.2/0.1/0.05

Table 4.12: Average term frequency distribution (Relevance judgment documents).

Terms Relevance Text field Det. Description Off. Title Summary

Genes Relevant 4.60 1.28 0.45 0.96
Genes Not Relevant 1.22 0.36 0.08 0.20

Disease Relevant 8.17 2.26 1.49 2.81
Disease Not Relevant 10.16 4.19 1.30 3.07

Table 4.13: Average term frequency distribution (top-10 form Ru_conditionrerank).

Terms Relevance Text field Det. Description Off. Title Summary

Genes Relevant 8.57 1.86 0.55 1.28
Genes Not Relevant 6.34 1.88 0.40 1.30

Disease Relevant 7.91 2.44 1.41 2.50
Disease Not Relevant 7.40 2.65 1.10 1.95

4.6 Failure Analysis

In order to methodically develop this thesis and to try to improve existing results, it was
indispensable to perform a detailed failure analysis. The goal is to help understand the
statistical distribution of relevant terms, and how medical domain references scattered
across the clinical trials affect the system performance.

This section is based both on the ranks created by the system developed on this chapter,
but also on others implementations for these kind of systems under the same domain. For
a more complex analysis, this section is sub divided into two distinct analysis: one for
statistical information, and other for domain specific problems faced by the unsupervised
learning system.

4.6.1 Statistical Information

The statistical analysis is based on the queries terms frequency on the clinical trials, by
independently extracting both disease terms frequency and gene terms frequency. What
is intended with this analysis is to understand how these features behave according to
the clinical trials relevance to the query. To do so, the average frequency of all relevant
and non relevant documents for all queries is computed, getting and overall idea of gene
and disease terms distribution across the dataset. The following indexed fields where
selected: ct_text, ct_detailedD, ct_o f f Title and ct_summary. The average is for all queries
as measuring frequency for individual queries may lead to biased results.
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Two different group of documents were used to perform this analysis: using all the
documents from the relevance judgment file, and using each query top-10 retrieved
documents from Ru_conditionrerank with BM25L. First, using the relevance judgment an
inspection of all the relevant documents was performed. The inspection showed a total of
1132 relevant documents and 11466 non relevant documents. This inspection is not the
most specific or fault tolerant, since a lot of non relevant documents are left out. But still,
it was considered that most of the non relevant documents that are somehow related to
the specific patient are present, so the results presented on Table 4.12 are adequate enough
for a global inspection.

The term frequency on the previously detailed case can help understand the dataset
discrimination in terms of tp_gene or tp_disease distribution throughout relevant and
non relevant documents. Table 4.12 shows that even though the disease term is more
frequent, non relevant documents appear to have higher count of disease terms. While
the gene frequency column shows exactly the opposite: relevant documents have more
gene references than non relevant ones. This disease count results clearly corroborate the
assumption that most of the non relevant documents for each query on the relevance
judgment document (qrels) are somehow related to the query. But, more important to
the problem itself, it shows that matching the gene between query and document is
significantly more relevant that matching only the disease. This factors also apply when
searching for these terms on the full text field, or on the other indexed fields as: ct_title,
ct_summary or the ct_detailedD.

The second statistical group of documents in which the failure analysis was based,
was the top-10 documents from Ru_conditionrerank with BM25L, the run with one of the
best performance on this precision medicine problem. The extraction idea is to understand
how the system itself is behaving, and corroborate or not the previous results. Since these
top-10 documents were all extracted under the same searching rules, it is natural that the
results from relevant and non relevant be more similar than the ones previously extracted
from all qrels file. Table 4.13 shows two important results. First, the gene is indeed more
relevant since the difference on relevant and non relevant documents in terms of disease
terms frequency is very small. In the other hand the gene, clearly provided the system
with high levels of precision (accuracy) for the selection of relevant documents. Second,
these results show that the system may be giving too much relevance to the disease as a
lot of non relevant documents appear to have high counts of disease terms frequency.

The solution to improve the results based on this information can be implemented by
increasing the weight of gene searching and decreasing the disease searching relevance.
Tuning of the system parameters may increase the performance and subsequently reduce
the variance of results, with less false positives on the top ranked documents.
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4.6.2 Domain failure analysis

For problems as the one faced on precision medicine, it becomes mandatory to use a
more detailed and domain specific filtering implementation. Ignoring domain specific
techniques means that results will always reach a threshold due to the inability to detect
some of the relevant documents that match according to some domain specific criteria.
The demographic filter is a good example on how this threshold works: if the exclusion
of gender and age was not performed, then a great number of good trials for a given
demographic group, will be outperformed by highly relevant trials that don’t fit the age
and gender of the patient. This way, some relevant documents will always be out of
the top results. Ignoring some of the domain specific information is one of the causes
of the high level of variance experienced on the results for unsupervised techniques
on this chapter. The need for specific filters at searching and re-ranking time is evident
after performing two methodical inspections: evaluating the top-10 documents for each
query, and understanding the differences between relevant and non relevant documents;
evaluating the relevant documents that are out of the relevance zone (out of top-50
documents).

When detailing the top-10 documents for each query, it was evident by the information
extracted from the worse performing queries (e.g. 5, 16, 26, 28) that the exclusion criteria
is indispensable in order to achieve correct results. This filtering of exclusion criteria is
actually more relevant in some queries than others, not that the query itself is harder than
the other, but the relevance judgment of the documents leads to a more difficult job in some
queries. Nevertheless this filtering should be applied to all queries even to the ones that
performed well without it. It was clear after the last implementation using ct_exclusion for
re-ranking, seen on Section 4.5.1, that to correctly understand the exclusion criteria better
natural language processing methods should be developed, and can be a good starting
point to continue the work developed on this thesis.

For the second type of inspection, the idea was to understand why some documents
are ranked so low, given that they’re relevant for that given query. Most of the times it
was because either tp_disease, tp_gene or both were scarcely referred throughout the trial.
But this is a problem also related to ct_exclusion, this only happens because there are a
lot of non relevant documents, that should be excluded, retrieved in front of this relevant
documents.
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Information retrieval techniques as seen on chapter 4 can deal with categorical or numeric
field filtering, as age or gender exclusion. But in cases where a more detailed and precise
filtering of clinical trials is needed, these IR techniques may not have the flexibility to solve
this problem, with the required precision. As shown on section 6.4, some of the queries
(e.g. 15, 16, 26 and 28) are poorly answered. The next step in order to overcome some
problems of the IR methods, is to use supervised learning techniques. More specifically,
solving learning to rank problems, which predict the ranking of documents for a given
query. These learning to rank systems are made up by two different sub systems: learning
system and ranking system [40]. Table 5.1 explains all used notations throughout the
chapter.

Table 5.1: Notation used in this thesis.

Notation Definition

ct Clinical Trial
Rs A set of methods used to create

a rank list with supervised learn-
ing

Rs_algorithm Retrieval run. Algorithm detail
the algorithm used on the run.

ct_ f ield Field content given Clinical Trial
ct.

tp_ f ield Topic (Query) field content.

5.1 Decision trees on Clinical Trials

When using medical features with unsupervised techniques, one of the most difficult
jobs is to correctly weight the relevance of features for the query search, leading to the
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question: which one of the medical features should be more relevant for the query? And,
is it necessary that all match the expected results? The three main problems of using
unsupervised learning for this types of problems are that: Medical features extracted can
be irrelevant, each feature have different importance and Individually weighing these
features can be a very hard and time consuming job. Supervised learning models can
overcome this problem because it learns the training data information, so the assumptions
made about features are entirely based on correct information.

The types of limitations described previously for unsupervised learning can be over-
come with supervised learning, because the learning module of the system will understand
how the feature vector of a relevant document can be composed, and weight all features
according to their correlation to relevant clinical trials. Which are not necessarily the
assumptions made by the developer, when creating the unsupervised learning system, so
even if irrelevant features are extracted the system has the ability to understand it and
reduce their importance on the learned model.

Even doe this problem could be solved with many different machine learning struc-
tures, for this thesis the only structure used for supervised learning was decision trees. But
why using decision trees and not other structures? The two main reasons are: First they
are non-linear decision algorithms. As the name suggest, being a non-linear algorithm
means that data does not follow a linear equation. This is easy to understand if we look at
the Figure 5.1 left graph showing a linear regression. All prediction made assume that, as
a certain feature increases or decreases the other features follow as expected according
to a linear equation (F(x) = mx + b), so features are dependent of each other. On non-
linear algorithms features are independent of each other so their equation is non-linear,
which is the case with the features from the problem in hand and exactly as shown on the
right graph of Figure 5.1, were a decision tree regression is made. The second reason is
the induction task which is used to create these tree like structures, as detailed on [55].
Such model simplifies decision interpretability, giving a more human-like structure to
algorithms users, were each node represents a certain features and one of many possible
thresholds for that feature, as Figure 5.2 shows and as explained on [12].

5.2 Clinical trials features

This chapter will be dedicated to supervised learning techniques for solving ranking
problems. It details how one can make better use of these supervised learning assumptions
and how can we make them specific for the clinical trials data used on this work. To do
so, the chosen algorithms are based on decision trees models and multiple applications
of ensemble methods. The task performed by these trees, induction on [55], is ideal for
the types of queries we are facing in clinical decisions. The trees create boundaries and
rules within their nodes, as explained on [12], to differentiate the documents either by
performing regression, classification or ordinal regression.

While parsing clinical trials, the extraction of annotation fields (i.e. fields containing
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Figure 5.1: Linear vs non-linear algorithms. Left graph shows a linear regression extracted
from [61] and the right graph shows a decision tree regression extracted from [54].

simple annotations instead of descriptive text) is very important, since, if the correct
information is extracted, these systems can create boundaries for filtering documents.
These can be used to filter documents according to demographic information, to oncology
related information and exclusion and inclusion criteria. Figure 5.2 shows a good example
on how can these boundaries help the system differentiate each new instance. Each one of
the documents goes through this structure and is given a final value accordingly to the
documents relevance to the query, so that documents can be ordered by their relevance.
Final scores and BM25 score threshold are just examples of values to better represent how
the structure works.

Performing this type of earning with decision trees, for cases as a clinical trial informa-
tion extraction is becoming a commonly applied practice. Chapter 3 shows some examples
of its usage, such as: [40, 42, 43], all three containing multiple implementations of learning
to rank algorithms with decision trees, showing features used, how they were used and
results of all used algorithms.

5.2.1 Features from the Clinical trials

Before performing any Learning to Rank, its mandatory to have a good set of feature
vectors that describe documents as thorough as possible. These features must be a mixture
of medical related features, described on 5.2.2, and statistical features extracted by applying
multiple information retrieval algorithms (e.g. BM25 (L,+), LMD, LMJM).

From the clinical trials dataset 58 features were created, as shown in Table 5.2. In order
to achieve even better results, continuous valued features were individually tested by
ranking each individual feature to later calculate their individual precision at five, ten,
twenty and thirty, Table 5.2 show these results for P@10. For reading full results of this
feature selection go to Table A.5, which shows all values of precision for each feature,
ordered by their precision at five (the primary metric in which the selection of feature was
based), showing which are the best features and worst feature to be used on the supervised
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Figure 5.2: Example of a decision trees structure used for ordinal regression on the
oncology domain.

learning system.

Table 5.2: All features used for learning to rank with TREC PM 2017 (28 queries).

ID Feature Description Precision@10
1 Primary Purpose of document (Boolean) –
2 Intervention type (Boolean) –
3 Study type (Boolean) –
4 Trial Condition check (Boolean) –

5 Inclusion criteria references count –
6 Exclusion criteria references count –

7 Gene Keywords count on full text 0.23928571
8 Gene Keywords count on detailed description 0.225
9 Gene Keywords count on official title 0.20714286
10 Gene Keywords count on brief summary 0.17142858
11 Gene Keyword percentage on full text 0.24285714
12 Gene Keyword percentage on detailed description 0.225
13 Gene Keyword percentage on official title 0.071428575
14 Gene Keyword percentage on brief summary 0.060714286
15 Disease Keywords count on full text 0.075
16 Disease Keywords count on detailed description 0.08214286
17 Disease Keywords count on official title 0.11071429
18 Disease Keywords count on brief summary 0.075
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Table 5.2 – continued from previous page

ID Feature Description Precision@10
19 Disease Keyword percentage on full text 0.08928572
20 Disease Keyword percentage on detailed description 0.09642857
21 Disease Keyword percentage on official title 0.08214286
22 Disease Keyword percentage on brief summary 0.071428575

23 BM25L score for disease and gene search on full text 0.03214286
24 BM25L score for disease and gene search on detailed description 0.075
25 BM25L score for disease and gene search on official title 0.08214286
26 BM25L score for disease and gene search on brief summary 0.071428575
27 BM25 score for disease and gene search on full text 0.03214286
28 BM25 score for disease and gene search on detailed description 0.075
29 BM25 score for disease and gene search on official title 0.08214286
30 BM25 score for disease and gene search on brief summary 0.071428575
31 BM25+ score for disease and gene search on full text 0.03214286
32 BM25+ score for disease and gene search on detailed description 0.075
33 BM25+ score for disease and gene search on official title 0.28214285
34 BM25+ score for disease and gene search on brief summary 0.175
35 LMD score for disease and gene search on full text 0.2
36 LMD score for disease and gene search on detailed description 0.19642857
37 LMD score for disease and gene search on official title 0.042857144
38 LMD score for disease and gene search on brief summary 0.07857143
39 LMJM score for disease and gene search on full text 0.05
40 LMJM score for disease and gene search on detailed description 0.05357143
41 LMJM score for disease and gene search on official title 0.19285715
42 LMJM score for disease and gene search on brief summary 0.14642857
43 TFIDF score for disease and gene search on full text 0.29642856
44 TFIDF score for disease and gene search on detailed description 0.22857143
45 TFIDF score for disease and gene search on official title 0.15
46 TFIDF score for disease and gene search on brief summary 0.10357143
47 TF score for disease and gene search on full text 0.225
48 TF score for disease and gene search on detailed description 0.13571429
49 TF score for disease and gene search on official title 0.13214286
50 TF score for disease and gene search on brief summary 0.017857144
51 full text length 0.17857143
52 detailed description length 0.08928572
53 official title length 0.08928572
54 brief summary length 0.1
55 IDF score for disease and gene search on full text 0.092857145
56 IDF score for disease and gene search on detailed description 0.08928572
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Table 5.2 – continued from previous page

ID Feature Description Precision@10
57 IDF score for disease and gene search on official title 0.11071429
58 IDF score for disease and gene search on brief summary 0.18928571

5.2.2 Medical Related Features

As shown on Chapter 4, medical related information can be very helpful for boosting the
performance of IR systems when ranking documents. Though most of these features are
scattered across unstructured clinical trials texts (e.g brief summary, detailed description),
and may produce incorrect assumptions when searching for medical terms (e.g. radiology,
chemotherapy) on text fields. These features are based on document fields that serve
as guidelines (annotations) for the intervention detailed on the clinical trial: Primary
purpose, Intervention and Study type. These three features will be used as binary features,
depending on whether the fields correspond to cancer related assumptions or not. They
help the system perform a more human-like dissection of the information within the
document, understanding with more precision the documents relevance for any kind of
cancer related condition, and not the patient specific condition.

One last binary feature was created, this time representing the specific condition the
clinical trial is focused on, and whether it matches the patient condition. Using exactly the
same implementation used for unsupervised learning on the condition filter for re ranking
detailed on section 4.5.2. These features are represented on Table 5.2 from feature 1 to 4.

5.2.3 Extracting Exclusion criteria from CT Narrative

After inspecting a couple of relevant documents and the top 10 retrieved documents for
the queries with the worst individual precision (e.g. 5, 26, 27), it becomes clear that one of
the obvious reason for this bad performance is the incorrect use of ct_exclusion. The high
variance in retrieval performance found among the answered queries may be correlated
to the importance of ct_exclusion field on a given document. Queries who have more
documents were ct_exclusion is indispensable for the document relevance assertion, tend
to be worse answered than queries with less important information on ct_exclusion .

It was clear that developing a system capable of understanding the medical literature
in a more human fashion (i.e. understanding what term was actually intended to be
excluded on a sentence or if the sentence is on positive or negative form (e.g. Gene BRAF
is not to be excluded)), was a job out of range for this work. So in order to understand if
this was a problem where decision trees could lead to new ways of understanding the
data and more accurately, infer which documents are to be excluded or not. We used
the methods described in the unsupervised learning re-ranking, section 4.5.1, as features.
Feature development was not only focused on exclusion but in a symmetric way applied to
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inclusion, counting both occurrences of tp_other, tp_gene and their respective expansions
on in_exclusion and in_exclusion. These features are represented on Table 5.2 by both
features 5 and 6.

5.2.4 Automatic keywords matching

Clinical trials contain fields with keywords extracted from MeSH database, that serve
as a quick and easy summary of the intervention and acceptable patients characteristics.
Unfortunately, not all documents contain them or existing keywords may be incomplete.
In addition to these provided terms, the system developed in this thesis is capable of
automatically extract MeSH keywords from text, using keywords lists from three different
categories within MeSH database: "Diseases" (C), "Chemicals , Drugs" (D) and "Analytic,
Diagnostic and Therapeutic Techniques and Equipment" (E). This implementation was
based on Novasearch runs for TREC CDS 2015 [50]. This enables extracting disease
information, names of drugs and other chemicals used for treatment, and the interventions
actually performed (detailed) withing the clinical trial text.

Extracting keywords from documents smaller text fields (e.g. ct_o f f title) may lack
precision, because descriptions not always detail the specific disease or gene for the trial.
On the other hand longer text fields (e.g. ct_detailedD) can create unrelated keywords,
because the clinical trials text may refer other diseases and genes mutations as example
or for comparisons. For this two motives, the keywords are extracted from the query
and then matched to all the text fields on the indexed documents, and not the other way
around. For example: on the gene "IDH1 (R132H)", (R132H) details the gene mutation
too strictly for what the relevant documents actually describe about the gene, and so the
keyword "IDH1" is added.

The implementation extracts MeSH keywords, creating two keyword lists for each
query: one for genes and the other for the diseases. The terms on the collections are added
as keywords when

• The keyword is equal to the query term or is contained on it;

• The keyword contains the first two query terms together (also adding both terms
individually if terms are more than three characters long);

• The keyword contains the first query term individually, only the first query is added.

After some preliminary experiments, we observed that no irrelevant (low accuracy) list of
keywords was created. For example on query "Pancreatic adenocarcinoma", a irrelevant
list of keywords would be the three following lists: ["pancreatic"], ["adenocarcinoma"] or
["pancreatic","adenocarcinoma"]. Where no composed keyword is extracted for a multi-
term query, which can lead to high scores for non relevant documents.

Matching these keywords and documents is not trivial. For example, automatically
creating the keywords for tp_disease "Lung Cancer", creates three keywords: "lung", "can-
cer" and "Lung cancer". The frequency of keywords on the documents was used to get
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keywords and documents co-relation in a quantitative manner. It was also used the per-
centage of keywords from the list that were found on the document, to get their co-relation
in a qualitative way. Since keyword lists with composed keywords also contains the
individual term, for example if a list contains "lung cancer" it also contains "lung" and
"Cancer". This technique ensures that if a text doesn’t contain a high % of the keyword
terms, the keyword that is missing is always a relevant keyword. Following from the
previous example of a keywords list, if not 100% of the keywords are found then at least
one of the missing keywords is the composed one, "lung cancer". These features are shown
on Table 5.2 from feature 7 to 22.

5.3 Learning-to-Rank algorithms

As described on chapter 3, all algorithms used on this thesis are based on a specific ma-
chine learning model, decision trees. The goal is to ensure more methodical and controlled
experiments, helping on the comparison of multiple machine learning approaches to
learning-to-rank (e.g. pairwise, listwise), and the effect of ensemble methods on ranking
problems even when, as the TREC PM 2017, we have a small amount of queries available
to train and test the system. The following algorithms explanations are all detailed accord-
ing to the papers in which they were presented to the scientific community, or papers
exclusively focused on them, so some of the ideas presented on this section are adapted
from the following papers: [11, 14, 66, 68].

5.3.1 LambdaMART

LambdaMART is a combination of two machine learning algorithms, lambdaRank and
MART as detailed on [14]. LambdaRank is a neural network ranking model, where the
idea is to use a cost function that minimizes the number of incorrect order pairs in the
results. But instead of applying this to a simple cost function that utilizes a single point
(as RankNet), lambdaRank uses the gradient of the cost function of a pair of points as the
cost function, as detailed on [66]. This way, when optimizing the cost function, two points
will be used at once, increasing and decreasing their ranks while leaving the other points
untouched. MART (Multiple Additive Regression Trees) is a gradient boosting decision
trees model, that combines multiple "weak" learners outputs to create a final strong learner.
It is based on the adaptative boosting ensemble method, explained on section 3.3.4. Given
the need for optimization of a cost function, the combination of these learners is going to
build up iteration after iteration to create a strong learner. Algorithm 1 shows a top level
idea on how lambdaMart works.

5.3.2 AdaRank

AdaRank is the only listwise algorithm used on the implementation of this work, and it
is based upon the AdaBoost (adaptive boosting) algorithm. As follow from [68], paper
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Data: Samples (each sample is a ranked pair of documents for a given query)
Result: Trained model ready for test
Parameter :nTrees (number of trees parameter), nTreeLeaves (number of leaves

parameter), learningRate
for i = 0; i < nTrees; i = i + 1 do

Learning Phase
Compute Lambda (for each training sample lambda serve as a training label);
rt = RegressionTree(nTreeLeaves, samples)

TreeModel = rt. f it;
leaves = TreeModel.leaves;
for k = 0; k < leaves.length; k = k + 1 do

leavesSamples = leaves[k].samples;
for l = 0; l < leavesSamples.length; l = l + 1 do

score[leavesSamples[l]] =
score[leavesSamples[l]] + learningRate ∗ leaves[k].output;

end
end
Validation phase
for k = 0; k < modelScoresOnValidation.length; k = k + 1 do

for j = 0; j < modelScoresOnValidation[k].length; j = j + 1 do
modelScoresOnValidation[k][j] = modelScoresOnValidation[k][j] +
learningRate ∗ rt. f eatureEval(validationSamples[k][j]);

end
end

end
Algorithm 1: LambdaMART algorithm detail. Extracted from [25] implementation of
LambdaMART algorithm.

detailing the algorithm, it utilizes a specific type of boosting: instead of optimizing the cost
function, this algorithm change the weight of misclassified points in a adaptive manner.
This makes the classification of points with higher weights, a priority for the learner. The
difference is that AdaRank, being a listwise approach, weights the entire list (ranking list
for a query) instead of increasing the weighting of individual points. Each "weak" learner
represents a given ranking list for a specific query. At each iteration, the algorithm changes
the weights of the queries lists with the purpose of optimizing a set IR metrics (e.g. NDCG,
Precision).

This algorithm takes instances as ranking lists, avoiding known problems for pair-
wise and pointwise approaches such as document pairs for the same query that are not
independently distributed. Training on the ranking list top results is unfeasible with both
pointwise and pairwise, since the document pairs will be from any part of the list. This
problem does not occur in listwise approaches since the ranking list will be affected on
places were relevant swaps on the ranking will affect the IR measure, normally is the top
of the ranking list. Listwise algorithms are also unaffected by the number of document
pairs vary from query to query, which may lead to biased results towards queries with
more documents on point or pairwise algorithms. Algorithm 2 shows how the Adarank
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Data: Samples (each sample is a RankList of documents)
Result: Trained model ready for test
Parameter :nIterations (number of iterations), max (maximum number of round

without improvement)
bestModelScore = 0
for i = 0; i < nIterations; i = i + 1 do

Learning Phase
WeakRanker = WeakRankerLearner
for RankList Sample: Samples do

tmp = Score(Rank(Sample))
trainedScore = trainedScore + tmp

end
if trainedScore! = lastTrained then

UsedFeatures = null
else

if lastFeature == WR.BestFeature then
consecutive = consecutive + 1
if consecutive == max then

UsedFeatures = null
end

else
UsedFeatures = null
consecutive = 0

end
end
Validation Phase
if ValidationSamples! = null then

score = Score(validationSamples)
if score > bestModelScore then

bestModelScore = score
end

end
end

Algorithm 2: AdaRank algorithm detail. Extracted from [25] implementation of the
AdaRank algorithm.

algorithm behaves and how it created the model to be used for ranking creation.

5.3.3 Random Forests

This algorithm was developed by [11] and is based on ensemble ideas to overcome
limitations of decision trees models, such as the tendency to overfitting the data at learning
time. More specifically, this algorithm is very similar to the ensemble procedure called
bootstrap aggregation or bagging. Bootstrapping samples are random generated samples,
created by sampling points uniformly and with replacements (i.e. duplicate values will
appear on the samples) from an initial training set D, creating multiple new training sets
based on D. These sets are later aggregated by selecting the mode when dealing with
classification problems, and mean average for regression problems.
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Data: Samples (each sample is a ranked pair of documents for a given query)
Result: Trained model ready for test
Parameter :nBags (number of bags parameter), nTrees (number of trees parameter),

nTreeLeaves (number of leaves parameter), learningRate
Learning phase
for i = 0; i < nBags; i = i + 1 do

bag = samples randomly sampled f rom the training set
Model = new LambdaMartModel(nBags, nTrees, nTreeLeaves, learningRate)
Learn(Model)

end
Validation phase
if ValidationSamples! = null then

scoreOnTraining = Score(rank(samples))
score = Score(validationSamples)

else
scoreOnTraining = Score(rank(samples))

end
Algorithm 3: Random Forest algorithm detail. Extracted from [25] implementation of
the Random Forest algorithm.

On [11] we have an example of an random generated vector of features in Random
forests called random subspace method or feature bagging. For each new training sample,
it creates a random subset of the initial set of features. This process increases the correlation
between the features that are better predictors, creating the model with a better estimation
of which features are better for the classification/regression task. This random use of the
dataset is expected to improve the results of variance on the training set, subsequently
reducing one of the biggest problems with decision trees, over-fitting. The implementation
of the algorithm used was based on lambdaMART algorithm, so it is expected that the
results of random forests are better than lambdaMART original results. This ensemble
methods can be a good solution to overcome our limitation in terms of number of queries.
Algorithm 3 shows how the ensemble based algorithm random forests workS.

5.4 Baselines for supervised Learning

To benchmark supervised learning implementation, we tested LambdaMART, AdaRank
and Random Forests from the RankLib Library, a library specialized on out of the box
learning to rank algorithms. RankLib gives users access to a lot of features and parameters
to dynamically correlate the algorithm to anykind of dataset. This library utilizes IR
measures as a way to compare and optimize the models created.

Contrariwise to what would be a natural choice, precision was not used as training
metric. Precision can only tell us the percentage of relevant documents withing a certain
ranking (e.g. 5, 10, 20, 30), and doesn’t provide any insight in terms of what documents
come first on the ranking. Lets assume we trained a model with precision at 10. Such
model could reliably retrieve a considerable number of relevant documents, but always
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Table 5.3: RankLib Baselines

Baseline Algorithm IR metric

Rs_lambdaM LambdaMART NDCG@10
Rs_randomF Random Forests NDCG@10
Rs_adarank AdaRank NDCG@10

rank them out of the top-5, while the top-5 is full of non relevant documents.
On the other hand, NDCG, which is explained on Chapter 6, takes into account the

documents actual ranking, so the best model would be the one that continuously retrieves
more relevant documents with a higher rank. The baselines shown on Table 5.3 were
all implemented after performing cross validation for parameter tuning as explained on
Section 6.3.2 on the following chapter.
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This chapter results are based on implementations for the TREC PM 2017, as [1], and
multiple systems based on other retrieval tasks as [50] and [49], NovaSearch team systems
for TREC CDS 2015 and 2014 respectively. Using both implementations and results of
each system to compare this thesis implementations results and ideas. Throughout this
chapter all evaluation metrics, experiments and results will be summarized, analyzed and
explained in order to perceive the quality of the developed systems. Showing the actual
benefits or not of each individual retrieval method.

6.1 Methodology

6.1.1 Dataset

TREC PM 2017 clinical trials dataset was extracted from clinicaltrials.gov, and provided in
a semi-structured way subdivided in fields. The fields extracted and used on this work
are the ones detailed on table 4.3. The following listing shows an example of a clinical trial
from the dataset used:

Listing 6.1: Example of a clinical trial from the TREC PM 2017 dataset
1 <brief_title>Additional Benefit of Cilostazol to Dual Antiplatelet Therapy

After Biolimus-eluting Stent Implantation</brief_title>

2 <acronym>ABCD</acronym>

3 <official_title>A Trial of Evaluating Additional Benefit of Cilostazol to

Dual Antiplatelet Therapy in Patients With Long or Multi-vessel Coronary

Artery Disease Underwent Biolimus-Eluting Stent Implantation</

official_title>

4 <sponsors>

5 <lead_sponsor>

6 <agency>Yonsei University</agency>

61

clinicaltrials.gov


CHAPTER 6. EVALUATION

The topics (clinical reports) used to query the system were all from oncology patients.
They are divided into four fields: disease, gene, demographic and other. The disease is
the actual disease the patient suffer from. The gene mutation the patient suffers from is
under the field "gene". Demographic represents the age and gender of the patient with no
personal information provided. "Other" field is all the other conditions the patient suffers,
that may be relevant for physicians. All the queries used for this work are detailed on
table A.4.

6.1.2 Metrics

For this work the metrics used for evaluation were Precision at (5, 10, 15, 20), Recall and
Normalized Discounted Cumulative Gain, all extracted from [46]. As the names suggests,
TREC Precision Medicine (PM) 2017 is a system in were the principal metric utilized for
evaluation was precision. Precision is represented by the following formula:

Precision =
RelevantDocs ∩ RetrievedDocs

RetrievedDocs
(6.1)

It is the relationship between the number of relevant documents within the number of
documents retrieved. So for example, P@5 represents the ratio of relevant documents on
the top 5 retrieved documents.

Recall measures the number of relevant documents retrieved from the total of relevant
documents:

Recall =
RelevantDocs ∩ RetrievedDocs

RelevantDocs
(6.2)

Recall can also be measured at specific number of documents retrieved (e.g. 5, 10, 15, 20).
We used the total number of relevant existing on the dataset and total of relevant retrieved.

Discounted Cumulative Gain is a commonly used measure to evaluate ranking quality.
It measures the ranking effectiveness of relevant documents, relative to each other. This
metric goes by the following equation 6.3:

DCGp =
p

∑
i=1

2reli − 1
log2(i + 1)

, rel ∈ 0, 1 (6.3)

p is the total number of retrieved documents, rel is a binary variable with value 0 when
the document i is not relevant and 1 otherwise. Ideal Discounted Cumulative Gain is the
particular case where the n relevant documents retrieved are on the first n positions of the
ranking. So IDCG is the maximum possible score with n relevant retrieved documents.

IDCG =
|rel|

∑
i=1

2reli − 1
log2(i + 1)

, rel ∈ 0, 1 (6.4)

The normalization 6.5 or NDCG is the relation between Discounted Cumulative Gain and
the Ideal Discounted Cumulative Gain.

nDCG =
DCG
IDCG

(6.5)
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6.2 Experiments and Results: unsupervised learning

The results were divided by the different techniques utilized, including results for multiple
information extraction techniques, the usage of QE and for the re-ranking experimnets.
All the results are fully detailed by tables on Section A.

6.2.1 Unsupervised learning Protocol

The first step is the index creation, as explained on section 4.2. Where all the fields detailed
on Table 4.3 are extracted from the semi-structured documents, and processed to make up
the index. To retrieve documents from the dataset, the query also needs to be processed,
using the same analyzer as the index. After query terms assessment is made, multiple
techniques were applied for searching on each of the indexed text fields, filtering with
other fields (e.g. age, gender), or applying query expansion and rank fusion algorithms.

To test the system relevance judgment files and a system called trec_eval was used. The
relevance judgment files serve as "ground truth" providing some of the non relevant and
all the relevant documents for each of the topics represented on Table A.4. The relevance
goes on a scale from 0 to 2, where 0 is non-relevant, 1 is partially relevant and 2 definitely
relevant for the query. The trec_eval evaluation system, is a system capable of inferring
multiple types of metrics(e.g. the ones referred on 6.1.2) for a ranking list, with options
for average results over multiple queries or individual queries results.

6.2.2 Retrieval Function Comparison

The first results on table 6.1, show a clear distinction between TFIDF and the rest of the
models. TFIDF had much worse results when compared to other retrieval functions. The
LMD model did not performed as well as BM25 or BM25L with the demographic filter
but produced very good results when using the oncology specific filter(see table A.8).
BM25 and BM25L are good solutions for ranking functions for this problem, but given the
towering amount of long documents found on the corpus, BM25L achieved even better
results, and was seen as the best retrieval function for this problem.

6.2.3 Demographic and Domain Specific Filters

From the results on Table 6.1, one can see that both demographic filters increase the
precision (P@5, P@10 and P@15), NDCG and recall metrics. The IR system that utilizes
both filters together (age, gender filters) gets the best results, meaning that demographic
filtering helps to return better documents. In terms of retrieval functions, BM25L achieved
the best overall scores in all baselines, since the documents we are dealing are considered
very long. It is closely followed by BM25 and LMD while TFIDF was the worse performing
technique.

Table 6.2 shows the results for inclusion and exclusion criteria, where both "other" and
"gene" were used to create queries with inclusion and exclusion criteria. The introduction
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Table 6.1: Demographic filter results.

Baseline P@5 P@10 P@15 NDCG Recall

Ru_gendisB (BM25L) 0.4500 0.3714 0.3405 0.5375 0.7563
Ru_demo (BM25L) 0.4714 0.4000 0.3667 0.5455 0.7588

Ru_gendisB (BM25) 0.4286 0.3679 0.3405 0.5297 0.7496
Ru_demo (BM25) 0.4500 0.3964 0.3643 0.5403 0.7528

Ru_gendisB (LMD) 0.4143 0.3857 0.3214 0.5067 0.7470
Ru_demo (LMD) 0.4286 0.4036 0.3333 0.5154 0.7464

Ru_gendisB (TFIDF) 0.3643 0.3357 0.3000 0.4886 0.7083
Ru_demo (TFIDF) 0.3714 0.3321 0.2929 0.4615 0.6937

Table 6.2: Exclusion criteria results.

Baseline P@5 P@10 P@15 NDCG Recall

Ru_demo (BM25L) 0.4714 0.4000 0.3667 0.5455 0.7588
Ru_exclusion (BM25L) 0.4343 0.3964 0.3643 0.5165 0.7047
Ru_inclusion (BM25L) 0.4657 0.4107 0.3714 0.5500 0.8003
Ru_criteria (BM25L) 0.4143 0.3964 0.3452 0.4721 0.6668

Ru_demo (LMD) 0.4286 0.4036 0.3333 0.5154 0.7464
Ru_exclusion (LMD) 0.4357 0.3893 0.3524 0.5544 0.7908
Ru_inclusion (LMD) 0.4286 0.3857 0.3333 0.4893 0.6879
Ru_criteria (LMD) 0.4071 0.3571 0.3238 0.4582 0.6541

of exclusion criteria decreased retrieval performance for both BM25 and BM25L on all
metrics, probably caused by an increase on the number of relevant documents excluded
by a misleading match between additional diseases and exclusion criteria. LMD was the
only similarity used that takes into account the inter relationship of the terms on the
documents, and was the only which increased the performance of the system using the
exclusion criteria. So term inter relationship can be very helpful for future work on the
exclusion criteria. On the other hand inclusion decreased on precision at 5 (P@5) but all
other metrics increased when compared to Ru_demo, since the optimal ranking list should
have the best score on P@5 this method was discarded for now.

Using the fields Study Type, Primary Purpose and Intervention greatly increased
the performance of the system, This process increases on the count of cancer related
documents returned. The results can be seen on Table 6.3 for BM25L retreival function.
Using these fields helps increasing the score of cancer related documents, as explained
on 3.4.1. The last and best experiment within this domain related features was manual
query expansion by adding "solid tumor" and "solid neoplasm" to the query on all text
information within the trial. Since this was the best run so far before performing any type
of re-ranking, the previously used method for search on the inclusion criteria was re-used
and leveraged the results in all metrics, this showing how important it is to create runs in
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Table 6.3: Oncology filter results.

Baseline P@5 P@10 P@15 NDCG Recall

Ru_demo (BM25L) 0.4714 0.4000 0.3667 0.5455 0.7588
Ru_domain (BM25L) 0.5214 0.4250 0.3762 0.5108 0.6864
Ru_domainBoosted (BM25L) 0.5214 0.4179 0.3714 0.4938 0.6443
Ru_domainInc (BM25L) 0.5000 0.4393 0.3762 0.5000 0.7550
Ru_manualexpNoInc (BM25L) 0.5286 0.4321 0.3548 0.5187 0.6722
Ru_manualexp (BM25L) 0.5500 0.4500 0.3976 0.5243 0.7175

Table 6.4: Results for the re ranking implementation.

Baseline P@5 P@10 P@15 NDCG Recall

Ru_excludererank(BM25L) 0.5571 0.4357 0.3905 0.5220 0.7175
Ru_conditionrerank(BM25L) 0.5643 0.4607 0.4119 0.5331 0.7175
Ru_rerank(BM25L) 0.5571 0.4500 0.4119 0.5301 0.7175

a methodically and iterative manner.

This experiment achieved very good results and matches the best team on TREC PM
2017 P@5 results. For more results go to Table A.6, Table A.8 and Table A.7 on appendix.
These tables show all implementations results for all retrieval functions.

6.2.4 Re-ranking experiments

Re ranking implementations were all based on Ru_manualexp, the best retrieval base-
line so far. Results are really positive, specially when applying the condition filter, as
table 6.4 shows. The other two baselines also increased Ru_manualexp results, shown on
Table 6.3, which shows that re ranking is a very good practice after performing the initial
retrieval process. Ru_excludererank best results used a weight(W(x)) of 0.05, meanwhile
Ru_conditionrerank best run used a W(x) of 0.1.

6.2.5 Pseudo Relevance Feedback Experiments

As shown on table 6.5, with the best PRF implementations, query expansion had a small or
no increase on the performance of the system. The expansion of new words from the actual
dataset led to a small increase on P@5 results with some baselines but decrease all other pre-
cision metrics in all other runs for QE. Applying query expansion to Ru_domain(BM25L),
only had a little increase on P@15 results in some QE baselines. Check table A.9 to see the
full set of detailed results.

Since results on query expansion were not as expected, two options could be taken:

• expand the query with specific words from external sources (i.e. queries are based
on very precise genes and disease so expansion terms may be less specific for the
topic than the initial terms if extracted from the dataset);
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Table 6.5: Results for the query expansion technique.

Baseline P@5 P@10 P@15 NDCG Recall

Ru_domain (BM25L) 0.5214 0.4250 0.3762 0.5108 0.6864
Ru_qe_10_10_10 (BM25L) 0.5214 0.3750 0.3119 0.4780 0.6337
Ru_qe_10_10_5 (BM25L) 0.5143 0.3857 0.3405 0.4881 0.6410
Ru_qe_25_10_5 (BM25L) 0.5143 0.3929 0.3405 0.4864 0.6410
Ru_qe_25_25_5 (BM25L) 0.4714 0.4036 0.3595 0.4904 0.6461
Ru_qe_50_10_5 (BM25L) 0.5143 0.3929 0.3405 0.4803 0.6401
Ru_qe_50_25_5 (BM25L) 0.4714 0.4071 0.3595 0.4898 0.6454
Ru_qe_50_50_5 (BM25L) 0.5214 0.4179 0.3738 0.4980 0.6512
Ru_qe_50_70_5 (BM25L) 0.5214 0.4250 0.3833 0.4974 0.6476

Table 6.6: Best teams results for Precision at 5 results for TREC PM 2017.

Team Run Score

UD GU BioTM UD_GU_CT_3 0.5500
prna-mit-suny pms_run5_tri 0.4714
udel udelT2Comb 0.4571
NaCTeM Broadc 0.4571
NOVASearch NOVAtr2 0.4500
UTDHLTRI UTDHLTAFT 0.4500
UCAS UCASSEM2 0.4429
teckro teckro1 0.4286
CSIROmed cCSIROmedAll 0.4286
KISTI KISTI02CT 0.4000

• if there is no way of improving these results with query expansion, the solution
becomes to find better quality filters for excluding non relevant documents, even if
they are related to the topic according to the text fields search.

6.2.6 NOVA at TREC PM 2017

The system developed on this work is an improved version of the NovaSearch system
for TREC PM 2017 clinical trials track, where the information extraction techniques were
used without much feedback for proper calibration, due to the lack of training data. The
results of NovaSearch submissions were very good: one of the submitted runs was one of
the two runs who was on Top 5 of the submitted runs for all the main metrics (P@5,P@10
and P@15), as shown on Tables 6.6, 6.7 and 6.8. These results were achieved by the run
"NOVAtr2", which is similar to the run Ru_demo(BM25).
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Table 6.7: Best team results for Precision at 10 results for TREC PM 2017.

Team Run Score

UD GU BioTM UD_GU_CT_3 0.4429
UTDHLTRI UTDHLTFFT 0.4143
teckro teckro1 0.4000
NOVASearch NOVAtr2 0.4000
udel udelT2Comb 0.3821
UCAS UCASSEM2 0.3786
NaCTeM Broadc 0.3750
KISTI KISTI02CT 0.3714
POZNAN_SEMMED LGDraw 0.3714
CSIROmed cCSIROmedAll 0.3679

Table 6.8: Best team results for Precision at 15 results for TREC PM 2017.

Team Run Score

UD GU BioTM UD_GU_CT_3 0.3881
UTDHLTRI UTDHLTAFT 0.3762
teckro teckro1 0.3619
UCAS UCASSEM2 0.3548
NOVASearch NOVAtr2 0.3452
POZNAN SEMMED LGDraw 0.3381
udel udelT2Comb 0.3357
KISTI KISTI02CT 0.3357
CSIROmed cCSIROmedAll 0.3262
prna-mit-suny pms_run5_tri 0.3262

6.3 Experiments and Results: supervised learning

6.3.1 Training and Test sets for supervised learning

The number of queries available on the ground truth for TREC PM 2017 was only 28
queries. Thus, the challenge was how to predict documents rankings for a given query
without over-fitting the learned model to the query. In order to extract results in the most
methodical fashion possible, "leave one out" cross validation was used which is explained
on Section 6.3.2.

Twenty eight different training and test sets pairs were created, all with the same
feature types. On each training/test pair set, one query was left out of the training set
and it was used as the the only query on test set. This techniques improves the chances of
getting a model that generalizes and returns unbiased results at testing time, as the only
query that was not learned was the one being tested.
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Figure 6.1: Example of cross validation training and validation data splits. Extracted from
[9]

6.3.2 Cross Validation

Given the small number of queries presented to the learning system, and since we use
ensemble methods with the occurrence of random values, cross validation was used to
ensure that the results are stable, as described by [43], creating at learning time multiple
validation sets from the initial training data, this way ensuring that each new fold created
is somehow different from the previous folds. Figure 6.1 shows how each new fold
(round) is created, each fold has exactly the same initial training data, but each validation
and training set used at learning time has a small difference. On this case, five and
ten folds cross validation was used, where each fold produces one model. The first CV
implementation was with five folds and was used for parameter tuning. Ten folds were
used to create the final ranking list so that we could have more data to train, reducing the
number of data for validation. More folds (rounds) implies smaller number of queries for
the validation set, because each query must be at least once represented on the validation
set. Both cv implementations used leave one out cross validation where one query was
initially extracted from the training set to be left out for testing, otherwise would be
impossible to test all queries individually.

The first approach was to perform parameter tuning using multiple types of parameters
combinations, creating five models for each different combination of parameters for a
given algorithm. With five folds, four queries were used for validation, and on the last
fold nine queries. After obtaining all results from the validations sets, we can calculate
and average mean for each cross validation execution, and perceive which parameters
are better suited for our problem. This first stage of cross validation was essential because
the algorithms are designed for a wide range of problems, and without parameter tuning
the parameters used may not be the best for that specific problem, leaving out possible
better parameters combinations. This could lead to assuming a certain algorithm works
poorly on the dataset, but instead is simply not tuned to it. Tables 6.10, 6.9 and 6.11 show
the results of this parameter tuning for all three algorithms.

68



6.3. EXPERIMENTS AND RESULTS: SUPERVISED LEARNING

Table 6.9: Results for Cross validation on LambdaMART

Parameter Used Values Best Value Best value Avg. Precision

Learning Rate 0.025/ 0.05/ 0.1/ 0,2 0.1 0.1952

Trees
25/ 50/ 100/ 200/ 500/

1000/ 1500
1000 0.1949

Leafs 5/ 10/ 40/ 50/ 100 10 0.2014

Table 6.10: Results for Cross validation on AdaRank

Parameter Used Values Best Value Best value Avg. Precision

Round 100/ 200/ 700/ 500/ 1000 500 0.2036
Max 2/ 5/ 10/ 20/ 30 5 0.2105

Table 6.11: Results for Cross validation on Random Forests

Parameter Used Values Best Value Best value Avg. Precision

Bag 600/ 300/ 150/ 50 300 0.3435
Trees 1/ 2/ 3 1 0.3411
Leafs 20/ 50/ 100/ 150 100 0.3619
Learning rate 0.2/ 0.05/ 0.1 0.1 0,3410

After performing the parameter tuning process, the goal was the creation of a single
ranking list. But since these algorithms performance change considerably with each new
run, they could lead to either overfitted or underfitted models. So, cross validation was
used, creating from each training set ten new validation sets (so ten new models for each
query) using two queries from the training set to validate the models. Except for the last
validation set which contain nine queries. RankLib developers [25] use this last model
with more queries than in other models so that when extracting the results, developers
can perform a controlled test to check the variance of the results of the learning system,
so basically it checks the quality of the models from that run. If the variance is high
between models created with two queries on validation set, and the ones created with
more than two queries, then it shows that the models created may be over fitting the
system. After creating ten models for each training set, we tested each individual model
with the respective test set, and obtained ten ranking lists for each. So in order to obtain
the final ranking for each query Reciprocal Rank Fusion was used, described on chapter 3,
matching all ten ranking list and creating one single list.

6.3.3 Protocol

For the supervised learning implementation, it was necessary to transform the dataset
into two distinct sets: A training set, to be used on the learning system, and a Test set, to
be used on the ranking system. These sets were further subdivided into more training
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and test sets, as explained above. The first one is created by extracting all documents
existed on the index that are present on the relevance judgment provided by TREC PM
2017. This way, we can ensure that the learning system will have the maximum available
information for him to correctly create a prediction/ranking model. Lucene was used to
get all statistical and medical related information from the unsupervised learning previous
implementation. This information is needed to construct the feature vector shown on 5.2.
The Lucene index gives us the support to extract the necessary statistical information
from each document-query pair (e.g., TF or IDF). After this step, the full dataset will be in
following format:

Listing 6.2: Dataset format to perform LETOR
1 <line> .=. <target> qid:<qid> <feature>:<value>... <feature>:<value> # <info>

2 <target> : <positive integer>

3 <qid> : <positive integer>

4 <feature> : <positive integer>

5 <value> : <float>

6 <info> : <string>

where the feature id detailed on Table 5.2, is the positive integer on each <feature>, <value>
is the value of the feature and it must be a continuous value, <qid> is the actual query
number, <target> gives the relevance of that document for the query with the given id.

After the creation of the training set, the learning system can be executed to create
a ranking model. Note that ten models will be created per execution since we are using
10-folds cross validation.

Since no groundtruth assumption should be made for the test set, a conventional
IR ranking should be created, to obtain the documents that should be used for testing,
extract statistical and medical information for them to use as a feature. In order to have
the maximum correlation possible between the model and the ranking lists (test set), the
documents that are considered relevant should be as fully represented as possible on
the test set, which is achieved by using baselines for IR with high Recall results. Since
we assume that we have no ground truth information when testing we did not use the
baseline with the best recall, but the one that would be considered the best in terms of
precision. which was still one of the best in terms of recall, so even doe is not the best we’ll
accept the lost of 10, 20 documents it won’t retrieve. After the IR ranking is created the
same idea as on the training set is used, using the document provided by the index to
create their own feature vector, but on this case removing all queries except the one that is
going to be used for testing.

Since this problem is going to be solved as an ordinal regression, each feature vector
(document) is given a final score and they are not ordered by score, so all ranking list must
be ordered, and later, RRF is used as explained on sub section 6.3.2 to obtain the final
ranking list.
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Table 6.12: Precision at 10 results for NovaSearch at TREC PM 2018.

Run Thesis implementation Score (Median: 0.468)

Run 1 Ru_conditionrerank 0.544
Run 2 Ru_manualexp 0.516
Run 3 Rs_lambdaM 0.484
Run 4 Rs_adarank 0.416

6.3.4 Features and Feature selection

Most of the created features were created based on both [42] and [40] LETOR implementa-
tions, were a lot of statistical information was extracted. Feature selection was fundamental
on these types of features, these feature selection can be seen on Table A.5, showing each
one of the feature ranked by their precision results when applying these features for
retrieval. For example, three out of four LMJM features got low precision results on all four
metrics (precision at 5, 10, 20, 30). For this reason all features with precision scores lower
than the ones for feature 13 will be excluded. Gender and age specifications, were also
removed because the retrieved documents had already passed a demographic filtering
process, so these features were irrelevant.

6.3.5 NOVA at TREC PM 2018

Supervised learning was undoubtedly one of the main focus for NovaSearch team at TREC
PM 2018. Leveraging on the ground truth assessments made for the previous year track,
it was possible to utilize the 28 queries from 2017 dataset to train a LETOR model for
each one of the used algorithms. Besides that, based on last year unsupervised learning
implementations, new ideas for improving the retrieval were applied with very good
results. Even doe both LambdaMart and Adarank runs were around the median and were
still considered good, Table 6.12 clearly shows that the results of the unsupervised learning
implementations improved the overall results of the system. Probably because of the lack
of training data for both LETOR models.

To correctly understand the differences between both years implementations, all runs
for the 2017 task were used on the 2018 dataset. What Figure 6.2 shows is that the super-
vised learning methods for 2018 were much more accurate then the ones for 2017 task
(Ru_demo was the best from 2017 submission). Previous year best run results were around
the same results as LambdaMart algorithm (run 3 of 2018 task), which was considered
under fitted because of the lack of training data. So as this figure shows, from 2017 to 2018
the best run improved some very good 15%.
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Figure 6.2: Precision at 5, 10 and 15 for the best run for 2017 and the best runs from 2018
task

6.4 Unsupervised learning Discussion

The overall results for the Clinical Trials retrieval were very positive when compared
with the TREC PM 2017 results on [4]. We introduced methods such as rank fusion, filters
based on the demographic information of the patient, boosting documents according to
cancer related trials suppositions, or even re rank these documents according to some
specific fields on each clinical trial. All these methods were rearranged to create multiple
good solutions for the retrieval on the clinical trials dataset. After inspecting the relevance
judgment file (i.e. file containing a list of files relevant and non relevant to the predefined
queries) provided by TREC, one can infer that the problem is mainly with the exclusion cri-
teria. The hypothesis is that is not being correctly used and so all query related documents
will appear, even those that should be excluded for the given query.

By examining the results from the re-ranking implementations (the best results for this
system), one can see that using the condition field can really improve results, but some of
the old problems still persists. It is still very difficult for the system to be precise when
dealing with queries that have got very small number of relevant documents (some with
only 2 or 3 relevant documents in all clinical trials dataset). Figure 6.3 shows the bench-
marks created for the unsupervised system, where each new benchmark represent new
ideas and implementations, in a way that we can incrementally start from the benchmark
with the worst performance until we reach the one with best performance by adding up
new querying methods.

72



6.5. SUPERVISED LEARNING DISCUSSION

Figure 6.3: Precision at 10 for unsupervised learning benchmarks.

6.5 Supervised learning Discussion

The three used algorithms were considered feasible for real-world cases, obtaining accept-
able results even on some of the already proven to be hard to answer queries. Despite that,
results of unsupervised learning system (information retrieval) were overall better than
the supervised ones, reducing precision results by a margin of about 10%, 20%. Given the
limitations at hand, we can assume that these results will even out or improve if a real-
world case with more available queries. In terms of individual results, Table 6.13 shows
Random forests was the algorithm with the best results, followed by lambdaMART and
AdaRank. The difference on the results between algorithms can definitely be explained
by the type of learning to rank method used. For example, lambdaMART and random
forests were both pairwise, while AdaRank is a listwise approach. Our assumption is that
it needed more training data in order to correctly model the problem. As Table 6.13 shows
and as it was expected, training these algorithms with more queries increases the overall
quality of the system. Since TREC PM 2018 groundtruth files are already acessible for
participants, all training set was created with the 50 queries for 2018 track, and in order
to correctly compare the results the test set was composed by 2017 task queries. Always
comparing to the system with best results, which still had better results than the new
random forest system.

One very positive point extracted from the results (Random Forests and lambdaMART
baselines) was the improvement in some of the more difficult queries. Query 5 is a perfect
example of this, were the learning to rank algorithms used the combination of all features
to understand which documents are probably more relevant, and got improvements of
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Table 6.13: Results from learning to rank algorithms

Baseline P@5 P@10 P@15 NDCG Recall

Rs_lambdaM 0.4571 0.3929 0.3452 0.5189 0.7175
Rs_randomF 0.4929 0.4179 0.3571 0.5321 0.7175
Rs_randomF (50 queries train) 0.5143 0.4357 0.3762 0.5382 0.7175
Rs_adarank 0.3357 0.2643 0.2238 0.4373 0.7175

almost 30% on Rs_randomF (random forest) and Rs_lambdaM (lambdaMART). To corrob-
orate this, Figure 6.4 shows the individual query results for the system trained with 50
queries and the same individual results for the best unsupervised learning implementation
Ru_conditionrerank. What is very relevant on these results is that it was the first system
that had at least one relevant document on the top-5 (P@5>0) for all queries.

Figure 6.4: Each query P@10 results for compare Ru_conditionrerank and Rs_randomF
(trained with 50 queries)

The analysis of these results leads us to believe if we had even more queries to train, the
results could surpass the information retrieval system. improving not only top performing,
but also the more difficult queries with very small number of assessed relevant documents

74



6.5. SUPERVISED LEARNING DISCUSSION

(queries 26, 28 are a good example). Supervised learning may be the solution for these
types of problems in real life, capable of being applied unto an medical clinic or a hospital.
In both scenarios, the amount of training data will increase with further editions of TREC
PM, leading to an increase on the systems quality over time and not a static solution. This
is key for an always mutating domain like oncology, where new discoveries are performed
daily.
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CONCLUSION

This thesis work shows two very different approaches to the same problem, matching
patients to clinical trials, using unsupervised and supervised learning. Both approaches use
information extraction to later perform information retrieval and/or supervised learning
to better retrieve information. Even though the limitations of the TREC PM track (e.g. the
small number of queries and examples) distantiate the work from real-world cases. The
heterogeneity between patients information from clinical trials used on this work, give us
some kind of assurance that those results will probably be acceptable for real-world cases,
and work as good or better than it worked on this controlled environment.

7.1 Contributions

The contributions of this thesis are divided into two parts. The first one is the information
extraction performed, which is capable of helping other researchers and developers under-
stand how to deal with oncology domain problems and the types of information that can
be extracted from medical related text and it’s application to retrieval. For example, which
information should be used to search in a more broad manner and which information
should be used in a more fine-grained filtering (e.g., to automatically include or exclude
documents).

The second part, is the application and thorough benchmarking of multiple information
retrieval and machine learning algorithms to the information extracted. This thesis can
help on understanding which methods achieve good results for this types of expert domain
problems, both from a technical and domain related perspective.
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7.2 Impact

This thesis work is a good example on how can computer science be used to enhance other
areas, more specifically on this case oncology treatments. Physicians and other healthcare
experts can use any of the developed systems to reduce human workload for choosing the
best trial for a patient. An ideal system would have professionals need only to inspect top
10 retrieved documents, instead of having to methodically inspect dozens or hundreds of
documents, in a very exhaustive and fault prone manner.

Both systems are a good fit for medical institutions where a lot of information flows in
daily, both being able to dissect clinical trials and understand which ones are more relevant
to the patient. The only difference between both system is that, the supervised learning
implementation can be a more reliable solution to be applied in long term solutions, to aid
physicians to continuously improve their system instead of using a static solution, that
could only be upgraded by an developer.

7.3 Achievements

1. TREC PM submission: The first achievement was the participation on both TREC
Precision Medicine 2017 and 2018 challenges, which provided this thesis with a use
case very similar to the ones on real-world. Besides that, since it was a competition it
was easy to understand where our ideas and systems stand, compared to a group of
teams from all around the world. This greatly helps seeing which implementations
were similar to other teams, and which ideas were completely new and effective to
the problem.

2. Methodically detailed work: the goal of this work was to create a guidebook, to
help other researchers and developers understand what methods can be used on
other ranking problems, which implementations proved to be good and why. In
addition, it also helps distinguishing between the good and bad implementations
and try to overcome some persistent problems. All experiments and results were
methodically implemented and later tested, always creating this work in an iterative
manner, adding methods to the system layer by layer.

3. Information retrieval explained to Medical personal and other domain experts:
This work shows to medical professionals limitations and difficulties developers
have when creating expert systems. It shows what should be their concerns when
writing clinical trials or other medical essays to improve the quality of such retrieval
systems. For example, create textual fields without irrelevant and misleading infor-
mation. Criteria field is a very good example of this, since it is without the doubt,
a hard field to extract precise information from. Not that the medical literature is
being incorrectly done, but if medical professionals are more aware of developers
problems then both can benefit from it.
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7.4. LIMITATIONS AND FUTURE WORK

For researchers and developers, this work shows which information is truly indispens-
able in order to achieve good results when creating systems related to oncology. A lot of
features and proven good implementations were made by performing small assumptions
about clinical trials and cancer treatment. These ideas also apply to other problems in the
oncology domain.

7.4 Limitations and Future Work

As it was explained throughout this document, the one true limitation on this work was
the reduced number of queries (28+50) and ,consecutively small number of relevant
documents to infer. This led to an increased difficulty for algorithms to perceive which
features characterize relevant documents. In addition, limitations in terms of computation
power, for instance, when extracting keywords it would be interesting to extract keywords
from all documents at least one time, but given the amount of time it took to extract from
one single document, it was expected that the full dataset would last at least three/four
weeks to get all keywords.

For future work, I think is necessary to split it into three parts. The first one is im-
provement of some retrieval methods: utilize more sophisticated systems as Stanford PoS
tagger [62] to extract more complex information, as exclusion criteria which was one of
the big struggles to perform this work. This would enable understanding what else could
be missing in terms of domain specific information or could be extracted from the genes
information (for example understand lineage between genes, difference between a certain
gene being the first to appear or being the second or third).

The second part of this future work should be focused on improving the features
precision and create new features for learning to rank problems. Other possibility would
be to try out different algorithms inside the decision trees, or experiment with other
machine learning frameworks as neural networks.

The last should be try to implement this type of system in a real-world case, using
a different dataset, to corroborate some of the decisions made during the systems im-
plementation. This could be combined with a user friendly visualization tool, that helps
physicians quickly use the system and enroll patients into clinical trials as soon as possible.
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A.1 Rank Fusion

This technique is very common among IR system, and as proven to performed well in
multiple systems. Two distinct rank fusion algorithms were implemented: Reciprocal
Rank Fusion (RRF) and CombSUM. Both algorithm were implemented combining results
from IR methods and based on section 3.2.4 formulas for each algorithm. The following
Table A.1 shows the Rank Fusion runs, detailing the methods used on each one (all runs
were tested with RRF and CombSum algorithms).

Table A.1: Rank fusion runs composition.

Runs Ranking 1 Ranking 2 Ranking 3

RF1 Ru_demo(BM25) Ru_domainBoosted(BM25) Ru_domainBoosted(LMD)
RF2 Ru_demo(LMD) Ru_domainBoosted(LMD) Ru_domainBoosted(BM25)
RF3 Ru_demo(BM25L) Ru_domainBoosted(BM25L) Ru_domainBoosted(BM25)
RF4 Ru_qe_50_70_5 Ru_domainBoosted(BM25) Ru_qe_50_50_5
RF5 Ru_domainBoosted(BM25L) Ru_domain(BM25L) Ru_qe_50_50_5
RF6 Ru_domainBoosted(BM25L) Ru_int(LMD) Ru_demo(LMD)

A.1.1 Rank Fusion Experiments

As we can see by the results on Table A.2, both rank fusion algorithms used cam im-
prove the results. Combining some of the previous techniques leading to good values in
precision, Discount Cumulative Gain and Recall. The problem with this technique is to
understand which ranking lists should be used for the fuse. A good example is baseline
CombSum4 which is formed by: Ru_qe_50_70_5(BM25L), Ru_domainBstd(BM25) and
Ru_qe_50_50_5(LMD). Although, the P@5 and P@10 values were the best among all other
rank fusion baselines, the rankings involved on the fuse were not the ones with the biggest
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Table A.2: Results for the rank fusion technique.

Baseline P@5 P@10 P@15 NDCG Recall

CombSum 4 0.5214 0.4321 0.3786 0.4933 0.6484
CombSum 5 0.5143 0.4214 0.3667 0.4965 0.6494
CombSum 6 0.4929 0.4286 0.3762 0.5251 0.7167

RRF 4 0.5000 0.4321 0.3786 0.4964 0.6475
RRF 5 0.5214 0.4250 0.3738 0.5355 0.7557
RRF 6 0.4857 0.4250 0.3810 0.5399 0.7551

Table A.3: Used ranking lists for rank fusion.

Runs Ranking 1 Ranking 2 Ranking 3

RF4 Ru_qe_50_70_5 Ru_domainBoosted(BM25) Ru_qe_50_50_5
RF5 Ru_domainBoosted(BM25L) Ru_domain(BM25L) Ru_qe_50_50_5
RF6 Ru_domainBoosted(BM25L) Ru_int(LMD) Ru_demo(LMD)

precision results, Table A.3 shows each one of the fusions made for the results on Table A.2.
To solve this problem, algorithms like the Learning to Fuse (L2F) or LETOR referred on
Section 3.2.4 could be very useful to overcome this problem and further increase the
results.

A.2 Patients clinical records

Table A.4: Full list of clinical trials query topics: disease, gene, demographic, and other.

Topic Disease Gene Demographic Other

1 Liposarcoma CDK4 Amplification 38-year-old male GERD
2 Colon cancer KRAS (G13D), BRAF (V600E) 52-year-old male Type II Diabetes, Hypertension
3 Meningioma NF2 (K322), AKT1(E17K) 45-year-old female None
4 Breast cancer FGFR1 Amplification, PTEN (Q171) 67-year-old female Depression, Hypertension, Heart Disease
5 Melanoma BRAF (V600E), CDKN2A Deletion 45-year-old female None
6 Melanoma NRAS (Q61K) 55-year-old male Hypertension
7 Lung cancer EGFR (L858R) 50-year-old female Lupus
8 Lung cancer EML4-ALK Fusion transcript 52-year-old male Hypertension, Osteoarthritis
9 Gastrointestinal stromal tumor KIT Exon 9 (A502_Y503dup) 49-year-old female None

11 Gastric cancer PIK3CA (E545K) 54-year-old male Depression
13 Cholangiocarcinoma BRCA2 72-year-old male Diabetes
14 Cholangiocarcinoma IDH1 (R132H) 64-year-old male Neuropathy
15 Cervical cancer STK11 26-year-old female None
16 Pancreatic cancer CDKN2A 54-year-old male Diabetes, Hypertension
17 Prostate cancer PTEN Inactivating 81-year-old male Hypertension, Depression
18 Pancreatic cancer CDK6 Amplification 48-year-old male None
19 Colorectal cancer FGFR1 Amplification 35-year-old female None
20 Liposarcoma MDM2 Amplification 26-year-old male None
21 Lung adenocarcinoma ALK Fusion 64-year-old female Emphysema
22 Lung cancer ERBB2 Amplification 70-year-old male Arthritis
23 Breast cancer PTEN Loss 54-year-old female Congestive Heart Failure
24 Lung cancer NTRK1 58-year-old female Depression, Hypertension, Diabetes
25 Lung adenocarcinoma MET Amplification 48-year-old male Emphysema
26 Breast cancer NRAS Amplification 35-year-old female None
27 Pancreatic adenocarcinoma KRAS, TP53 49-year-old female None
28 Pancreatic ductal adenocarcinoma ERBB3 73-year-old female Whipple, FNA
29 Ampullary carcinoma KRAS 61-year-old male None
30 Pancreatic adenocarcinoma RB1, TP53, KRAS 57-year-old female None
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A.3 Feature selection

Table A.5: All features and respective P@5, 10, 20 and 30 for supervised learning. Intended
for feature selection.

Feature Number P@5 P@10 P@20 P@30
43 0.33571428 0.29642856 0.225 0.18214285
33 0.29285714 0.28214285 0.21607143 0.20833333
47 0.27857143 0.225 0.17321429 0.14404762
44 0.27142859 0.22857143 0.16964285 0.15357143
9 0.2642857 0.20714286 0.21428572 0.20595238
7 0.24285714 0.23928571 0.22321428 0.20119047
11 0.23571429 0.24285714 0.23392858 0.21309523
34 0.23571429 0.175 0.16428572 0.15357143
35 0.22142857 0.2 0.16607143 0.15476191
36 0.22142857 0.19642857 0.17142858 0.16547619
8 0.21428572 0.225 0.20535715 0.19285715
41 0.21428572 0.19285715 0.17678571 0.15952381
12 0.20714286 0.225 0.20535715 0.20952381
42 0.20714286 0.14642857 0.14642857 0.13452381
58 0.18571429 0.18928571 0.16964285 0.15119047
45 0.17857143 0.15 0.12321428 0.11309524
10 0.17142858 0.17142858 0.16428572 0.16309524
48 0.16428572 0.13571429 0.12142857 0.11071429
51 0.15714286 0.17857143 0.16785714 0.16071428
49 0.15 0.13214286 0.10892857 0.09166667
17 0.14285715 0.11071429 0.0875 0.08452381
20 0.13571429 0.09642857 0.08571429 0.08095238
57 0.12857144 0.11071429 0.09821428 0.0952381
46 0.12857144 0.10357143 0.094642855 0.098809525
19 0.12857144 0.08928572 0.08035714 0.08095238
52 0.114285715 0.08928572 0.07857143 0.07857143
18 0.114285715 0.075 0.071428575 0.07261905
54 0.10714286 0.1 0.08214286 0.06428572
15 0.10714286 0.075 0.0625 0.071428575
22 0.10714286 0.071428575 0.08571429 0.09166667
26 0.10714286 0.071428575 0.08571429 0.09166667
30 0.10714286 0.071428575 0.08571429 0.09166667
24 0.1 0.075 0.08571429 0.09166667
28 0.1 0.075 0.08571429 0.09166667
32 0.1 0.075 0.08571429 0.09166667
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Table A.5 – continued from previous page

Feature Number P@5 P@10 P@20 P@30
53 0.092857145 0.08928572 0.09821428 0.08571429
56 0.092857145 0.08928572 0.09821428 0.08571429
55 0.08571429 0.092857145 0.094642855 0.08452381
38 0.08571429 0.07857143 0.092857145 0.08571429
16 0.07857143 0.08214286 0.0875 0.083333336
21 0.071428575 0.08214286 0.08392857 0.092857145
25 0.071428575 0.08214286 0.08392857 0.092857145
29 0.071428575 0.08214286 0.08392857 0.092857145
13 0.06428572 0.071428575 0.073214285 0.065476194
14 0.05 0.060714286 0.051785715 0.046428572
39 0.042857144 0.05 0.042857144 0.04404762
40 0.035714287 0.05357143 0.0625 0.06904762
37 0.035714287 0.042857144 0.0625 0.06904762
23 0.035714287 0.03214286 0.046428572 0.046428572
27 0.035714287 0.03214286 0.046428572 0.046428572
31 0.035714287 0.03214286 0.046428572 0.046428572
50 0.028571429 0.017857144 0.04464286 0.05
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A.4 Results full extension

Table A.6: Demographic filter results.

Baseline P@5 P@10 P@15 NDCG Recall

Ru_gendisB (BM25L) 0.4500 0.3714 0.3405 0.5375 0.7563
Ru_age (BM25L) 0.4643 0.3786 0.3524 0.5416 0.7596
Ru_gender (BM25L) 0.4643 0.3929 0.3524 0.5426 0.7563
Ru_demo (BM25L) 0.4714 0.4000 0.3667 0.5455 0.7588

Ru_gendisB (BM25) 0.4286 0.3679 0.3405 0.5297 0.7496
Ru_age (BM25) 0.4429 0.3750 0.3571 0.5364 0.7534
Ru_gender (BM25) 0.4429 0.3929 0.3524 0.5368 0.7497
Ru_demo (BM25) 0.4500 0.3964 0.3643 0.5403 0.7528

Ru_gendisB (LMD) 0.4143 0.3857 0.3214 0.5067 0.7470
Ru_age (LMD) 0.4214 0.3857 0.3238 0.5105 0.7485
Ru_gender (LMD) 0.4286 0.4000 0.3286 0.5128 0.7471
Ru_demo (LMD) 0.4286 0.4036 0.3333 0.5154 0.7464

Ru_gendisB (TFIDF) 0.3643 0.3357 0.3000 0.4886 0.7083
Ru_age (TFIDF) 0.3500 0.3250 0.2905 0.4632 0.6945
Ru_gender (TFIDF) 0.3714 0.3429 0.3000 0.4747 0.6964
Ru_demo (TFIDF) 0.3714 0.3321 0.2929 0.4615 0.6937

Table A.7: Exclusion criteria results.

Baseline P@5 P@10 P@15 NDCG Recall

Ru_demo (BM25L) 0.4714 0.4000 0.3667 0.5455 0.7588
Ru_exclusion (BM25L) 0.4343 0.3964 0.3643 0.5165 0.7047
Ru_inclusion (BM25L) 0.4657 0.4107 0.3714 0.5500 0.8003
Ru_criteria (BM25L) 0.4143 0.3964 0.3452 0.4721 0.6668

Ru_demo (BM25) 0.4500 0.3964 0.3643 0.5403 0.7528
Ru_exclusion (BM25) 0.4229 0.3929 0.3643 0.5120 0.7002
Ru_inclusion (BM25) 0.4414 0.3964 0.3690 0.5511 0.7824
Ru_criteria (BM25) 0.4214 0.3821 0.3315 0.4684 0.6501

Ru_demo (LMD) 0.4286 0.4036 0.3333 0.5154 0.7464
Ru_exclusion (LMD) 0.4357 0.3893 0.3524 0.5544 0.7908
Ru_inclusion (LMD) 0.4286 0.3857 0.3333 0.4893 0.6879
Ru_criteria (LMD) 0.4071 0.3571 0.3238 0.4582 0.6541

Ru_demo (TFIDF) 0.3714 0.3321 0.2929 0.4615 0.6937
Ru_exclusion (TFIDF) 0.3714 0.3357 0.2905 0.4435 0.6604
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Table A.8: Oncology filter results.

Baseline P@5 P@10 P@15 NDCG Recall

Ru_demo (BM25L) 0.4714 0.4000 0.3667 0.5455 0.7588
Ru_int (BM25L) 0.5000 0.4250 0.3857 0.5427 0.7389
Ru_pp (BM25L) 0.4857 0.4250 0.3738 0.5408 0.7357
Ru_st (BM25L) 0.4786 0.4179 0.3714 0.5407 0.7391
Ru_domain (BM25L) 0.5214 0.4250 0.3762 0.5108 0.6864
Ru_domainBoosted (BM25L) 0.5214 0.4179 0.3714 0.4938 0.6443
Ru_manualexp (BM25L) 0.5500 0.4500 0.3976 0.5243 0.7175

Ru_demo (BM25) 0.4500 0.3964 0.3643 0.5403 0.7528
Ru_int (BM25) 0.4786 0.4143 0.3690 0.5337 0.7383
Ru_pp (BM25) 0.4643 0.4107 0.3643 0.5273 0.7225
Ru_st (BM25) 0.4571 0.4179 0.3571 0.5280 0.7289
Ru_domain (BM25) 0.4929 0.4143 0.3762 0.4978 0.6633
Ru_domainBoosted (BM25) 0.5071 0.4143 0.3857 0.4855 0.6339
Ru_manualexp (BM25) 0.5286 0.4500 0.3786 0.5104 0.6826

Ru_demo (LMD) 0.4286 0.4036 0.3333 0.5154 0.7464
Ru_int (LMD) 0.5000 0.3929 0.3500 0.5085 0.7126
Ru_pp (LMD) 0.4714 0.3679 0.3286 0.4936 0.6908
Ru_st (LMD) 0.4714 0.3714 0.3262 0.4961 0.7021
Ru_domain (LMD) 0.5000 0.3857 0.3452 0.4715 0.6294
Ru_domainBoosted (LMD) 0.5000 0.3857 0.3452 0.4677 0.6220
Ru_manualexp (LMD) 0.5286 0.4500 0.3714 0.4996 0.6631

Ru_demo (TFIDF) 0.3714 0.3321 0.2929 0.4615 0.6937
Ru_int (TFIDF) 0.4286 0.3536 0.3048 0.4613 0.6647
Ru_pp (TFIDF) 0.4071 0.3357 0.2929 0.4494 0.6413
Ru_st (TFIDF) 0.4071 0.3393 0.3000 0.4543 0.6515
Ru_domain (TFIDF) 0.4429 0.3500 0.3119 0.4464 0.6047
Ru_domainBoosted (TFIDF) 0.4500 0.3714 0.3262 0.4479 0.5954
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Table A.9: Results for the query expansion technique.

Baseline P@5 P@10 P@15 NDCG Recall

Ru_domain (BM25L) 0.5214 0.4250 0.3762 0.5108 0.6864
Ru_domainBoosted (BM25L) 0.5214 0.4179 0.3714 0.4938 0.6443
Ru_qe_10_10_10 (BM25L) 0.5214 0.3750 0.3119 0.4780 0.6337
Ru_qe_10_10_5 (BM25L) 0.5143 0.3857 0.3405 0.4881 0.6410
Ru_qe_25_10_5 (BM25L) 0.5143 0.3929 0.3405 0.4864 0.6410
Ru_qe_25_25_5 (BM25L) 0.4714 0.4036 0.3595 0.4904 0.6461
Ru_qe_50_10_5 (BM25L) 0.5143 0.3929 0.3405 0.4803 0.6401
Ru_qe_50_25_5 (BM25L) 0.4714 0.4071 0.3595 0.4898 0.6454
Ru_qe_50_50_5 (BM25L) 0.5214 0.4179 0.3738 0.4980 0.6512
Ru_qe_50_70_5 (BM25L) 0.5214 0.4250 0.3833 0.4974 0.6476

Ru_domainBoosted (BM25) 0.5071 0.4143 0.3857 0.4855 0.6339
Ru_qe_10_10_10 (BM25) 0.4857 0.3857 0.3333 0.4820 0.6352
Ru_qe_10_10_5 (BM25) 0.5000 0.4036 0.3476 0.4853 0.6389
Ru_qe_25_10_5 (BM25) 0.5143 0.4000 0.3476 0.4845 0.6389
Ru_qe_25_25_5 (BM25) 0.4714 0.4107 0.3762 0.4901 0.6425
Ru_qe_50_10_5 (BM25) 0.5143 0.3964 0.3500 0.4781 0.6373
Ru_qe_50_25_5 (BM25) 0.4714 0.4107 0.3690 0.4899 0.6430
Ru_qe_50_50_5 (BM25) 0.5071 0.4107 0.3786 0.4911 0.6406
Ru_qe_50_70_5 (BM25) 0.5000 0.4143 0.3857 0.4874 0.6360

Ru_domainBoosted (LMD) 0.5000 0.3857 0.3452 0.4677 0.6220
Ru_qe_10_10_10 (LMD) 0.4571 0.3321 0.2833 0.4345 0.6206
Ru_qe_10_10_5 (LMD) 0.4929 0.3679 0.3048 0.4513 0.6328
Ru_qe_25_10_5 (LMD) 0.4929 0.3679 0.3048 0.4513 0.6329
Ru_qe_25_25_5 (LMD) 0.4786 0.3821 0.3286 0.4604 0.6258
Ru_qe_50_10_5 (LMD) 0.5000 0.3643 0.3048 0.4485 0.6307
Ru_qe_50_25_5 (LMD) 0.4786 0.3857 0.3310 0.4598 0.6251
Ru_qe_50_50_5 (LMD) 0.5143 0.4071 0.3429 0.4701 0.6269
Ru_qe_50_70_5 (LMD) 0.5071 0.4000 0.3500 0.4706 0.6264

Ru_domainBoosted (TFIDF) 0.4500 0.3714 0.3262 0.4479 0.5954
Ru_qe_10_10_10 (TFIDF) 0.4429 0.3571 0.2952 0.4333 0.6056
Ru_qe_10_10_5 (TFIDF) 0.4714 0.3607 0.3071 0.4329 0.6054
Ru_qe_25_10_5 (TFIDF) 0.4714 0.3607 0.3071 0.4329 0.6054
Ru_qe_25_25_5 (TFIDF) 0.4714 0.3679 0.3119 0.4424 0.5900
Ru_qe_50_10_5 (TFIDF) 0.4643 0.3607 0.3048 0.4305 0.6042
Ru_qe_50_25_5 (TFIDF) 0.4714 0.3643 0.3119 0.4418 0.5888
Ru_qe_50_50_5 (TFIDF) 0.4714 0.3786 0.3262 0.4480 0.5967
Ru_qe_50_70_5 (TFIDF) 0.4571 0.3750 0.3333 0.4488 0.5969
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Table A.10: Results for the rank fusion technique.

Baseline P@5 P@10 P@15 NDCG Recall

CombSum 1 0.5071 0.4214 0.3857 0.4856 0.6349
CombSum 2 0.5071 0.4179 0.3786 0.4874 0.6339
CombSum 3 0.5143 0.4214 0.3690 0.4927 0.6443
CombSum 4 0.5214 0.4321 0.3786 0.4933 0.6484
CombSum 5 0.5143 0.4214 0.3667 0.4965 0.6494
CombSum 6 0.4929 0.4286 0.3762 0.5251 0.7167

RRF 1 0.5071 0.4250 0.3833 0.5340 0.7547
RRF 2 0.4857 0.4214 0.3690 0.5313 0.7516
RRF 3 0.5071 0.4214 0.3738 0.5325 0.7535
RRF 4 0.5000 0.4321 0.3786 0.4964 0.6475
RRF 5 0.5214 0.4250 0.3738 0.5355 0.7557
RRF 6 0.4857 0.4250 0.3810 0.5399 0.7551

Table A.11: Results for the re ranking implementation.

Baseline P@5 P@10 P@15 NDCG Recall

Ru_excludererank(BM25L) 0.5571 0.4357 0.3905 0.5220 0.7175
Ru_conditionrerank(BM25L) 0.5643 0.4607 0.4119 0.5331 0.7175
Ru_rerank(BM25L) 0.5571 0.4500 0.4119 0.5301 0.7175
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