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Abstract

From November 2008-May 2009 Cairns Queensland Australia was struck by an explosive epidemic of DENV-3 that exceeded
the capacity of highly skilled dengue control team to control it. We describe the environmental, virological and
entomological factors associated with this outbreak to better understand the circumstances leading to its occurrence.
Patient interviews, serological results and viral sequencing strongly suggest that the imported index case was infected in
Kalimantan, Indonesia. A delay in notification of 27 days from importation of the index case until Queensland Health was
notified of dengue transmission allowed the virus to amplify and spread unchecked through November 2008. Unseasonably
warm weather, with daily mean temperatures exceeding 30uC, occurred in late November and would have shortened the
extrinsic incubation period of the virus and enhanced transmission. Analysis of case movements early in the outbreak
indicated that the total incubation period was as low as 9–11 days. This was supported by laboratory vector competence
studies that found transmission by Aedes aegypti occurred within 5 days post exposure at 28uC. Effective vector competence
rates calculated from these transmission studies indicate that early transmission contributed to the explosive dengue
transmission observed in this outbreak. Collections from BG sentinel traps and double sticky ovitraps showed that large
populations of the vector Ae. aegypti occurred in the transmission areas from November – December 2008. Finally, the
seasonal movement of people around the Christmas holiday season enhanced the spread of DENV-3. These results suggest
that a strain of DENV-3 with an unusually rapid transmission cycle was able to outpace vector control efforts, especially
those reliant upon delayed action control such as lethal ovitraps.
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Introduction

Dengue is the leading arboviral cause of morbidity worldwide,

with an estimated 390 million infections occurring annually [1].

There is currently no vaccine, and dengue control is limited to

vector control and community engagement/public education

programs. The primary vector of urban dengue, the mosquito

Aedes aegypti, utilizes artificial containers for immature development

while adults prefer to harbor within man-made premises. The

control of Ae. aegypti typically involves ‘house-to-house’ treatment

of water-holding containers and interior residual spraying (IRS) of

premises [2,3]. Source reduction campaigns consisting of removal

of potential water holding containers are also employed [4].

Large dengue epidemics are particularly costly. A delay in

recognition of a dengue epidemic can exponentially increases the

total number of cases and total cost to the community [5]. Despite

a relatively low mortality rate, the large number of cases

cumulatively creates relatively high disability-adjusted life year

(DALYs) values for dengue. A mean loss of 658, 465 and 127

DALYs per million individuals annually has been reported in

Puerto Rico [6], Thailand [7] and Latin American+Caribbean
regions [8], respectively.

Dengue has emerged as a leading arboviral health issue in

Australia, with hundreds of imported cases annually, and local

transmission resulting in multiple outbreaks in northeastern

Queensland [9,10]. A large multi-city outbreak of DENV-2 in

1992–93 led to the development of the Dengue Fever Manage-

ment Plan (DFMP) by Queensland Health (QH; http://www.

health.qld.gov.au/dengue/managing_outbreaks/default.asp) in

1994. Since this time (1995–2012) there have been 42 outbreaks

comprised of 3,086 confirmed dengue cases and three deaths; the

majority (37 outbreaks and 2,364 cases) have occurred since 2000.

Queensland Health’s DFMP has generally been successful in

constraining outbreaks, eliminating dengue viruses and preventing

dengue from becoming endemic. Only 5 (14%) of the dengue

outbreaks have exceeded 100 confirmed cases, and 19 (53%) of the

outbreaks were restricted to less than 8 weeks duration. Most of

the cases (2529, 82%) have come from sporadic large outbreaks

(n = 5). The vector control program within the DFMP focuses on

insecticidal treatment of containers and IRS in response to active

dengue cases [2]. A public education program emphasizes the
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need for residents to maintain clean yards and eliminate

receptacles that could serve as larval habitats. A limited source

reduction campaign undertaken by vector control staff supple-

ments these activities. The causes of sudden explosive transmission

leading to widespread epidemic dengue are manifold [11].

Reduced herd immunity, caused in part by a successful decade-

long dengue control program, has led to the resurgence of dengue

epidemics in Singapore [12]. On a shorter time scale, high

temperatures that reduce the extrinsic incubation period (EIP) in

the vector Ae. aegypti can lead to sudden increases in transmission

rate [13,14]. Heavy rainfall and associated high humidity and

vapor pressure can increase both vector production [15] and

survival [11], increasing the risk of dengue transmission.

Conversely, dry weather can amplify dengue transmission by

increasing water hoarding and production of Ae. aegypti, especially

in close association with humans, increasing vector densities that

potentiate dengue outbreaks as observed in Brazil [16] and in

Barbados [17]. Changes in the viral genome due to mutation and

selection can produce dengue strains that have greater epidemic

potential and virulence [18–21] and that replicate faster within the

mosquito, as was the case with chikungunya virus (CHIKV)

[22,23], and DENVs [24–25].

In 2008 an explosive epidemic of DENV-3 resulted in the first

publically declared dengue epidemic in Australia since the DFMP

was launched in 1994. The outbreak caused 931 confirmed cases

and one death, and cost Queensland Health ca. $AUS3 mil. in

direct costs [5]. The epidemic spread was especially rapid, with a

basic reproduction number (Ro; the number of secondary cases

generated per case) of 2.19, and an effective reproductive number

(Rt; relative increase in cases over a 14 day incubation period)

ranging from 2–12 during the first 2 months of the epidemic [5].

This particular dengue outbreak overwhelmed vector control staff,

with an additional 50–60 field personnel required to conduct

vector control.

What was unique about this dengue ecosystem that resulted in

an outbreak that overwhelmed a well-funded, experienced and

historically successful dengue control program? In response to this

overarching question, we: a) investigated epidemiological, envi-

ronmental and entomological features of the outbreak, b)

undertook genetic analysis of the virus strain responsible, and c)

studied the vector competence of the Cairns Ae. aegypti for the 2008

epidemic strain and a strain of DENV-3 which circulated in the

Cairns region from 1997 to 1998 [10]. This later outbreak was also

severe, resulting in 498 confirmed cases, 20% of which were

hospitalized, in three communities over a 70 week period. These

investigations provide valuable insight into what caused the

magnitude of the epidemic and how it could potentially influence

dengue control strategies in the future.

Materials and Methods

Dengue Case Definition and Epidemiology
Queensland Health was notified of suspected dengue cases (i.e.,

detection of dengue IgM antibodies or viral RNA in serum

samples) by medical practitioners and pathology laboratories. The

test results, name, address, phone numbers and specific symptoms

for each case were then supplied to QH public health nurses, who

immediately conducted contact tracing telephonic interviews to

determine a patient’s travel history and onset of illness (used to

estimate date of infection). Furthermore, they obtained the most

likely place of infection by epidemiologically-linking the places

visited (home, work or other places) during the 4–7 days before the

onset of illness [27]. Locations where patients recalled mosquito

biting and addresses with confirmed dengue the previous 2–4

weeks were considered a likely place of infection. For two or more

epidemiologically-linked locations, the most likely acquisition site

was based on the relative amount of daylight time spent at the

address. The most likely place of infection was updated if

additional information was obtained (i.e., confirmed dengue cases

in an area). Dengue cases and case data were compiled on a

database and analyzed in Excel.

Entomological and Environmental Conditions Associated
with the Outbreak
Aedes aegypti, the only competent dengue vector in the Cairns

region, was sampled using Biogents Sentinel (BGS) traps [28,29]

and double sticky ovitraps (SOs) [30]. We retrospectively

examined routine Ae. aegypti surveillance data collected by QH

staff, consisting of BGS traps at 13 fixed locations [31] and SOs set

at ca. 70 locales. QH also deployed BGS traps opportunistically to

assess vector numbers at dengue case residences, although

unfortunately they did not have sufficient resources to conduct

expanded surveillance during the outbreak. Weather data were

obtained from the Australian Bureau of Meteorology for Cairns

Airport station located ca. 1 km. northwest of where the dengue

outbreak started.

Ethics
The Queensland Health Forensic and Scientific Services

Human Ethics Committee reviewed the manuscript, with refer-

ence to Australia’s National Health and Medical Research

Council’s National Statement on Ethical Conduct in Human

Research. No ethical issues were identified with regard to

collection of sera and use of data, and ethical approval to publish

this paper has been granted. All virological samples were taken

from the preexisting Queensland Health Forensic and Scientific

Service’s collection and were anonymized. All dengue case data

were obtained from QH dengue database held at Cairns and were

anonymized. Informed consent to collect mosquitoes from

properties was obtained from residents by Queensland Health

staff.

Viral Genome Sequencing
Viruses. DENV-3 was isolated from patients who had

contracted locally acquired infections during each of the respective

Cairns 1998 (accession number GenBank JN406514) and 2008

outbreaks (accession number 2008a - GenBank JN406515). The

1998 DENV-3 was used as a comparator of an earlier DENV-3

strain that resulted in a severe outbreak in the Cairns region, and is

not meant to be a control in terms of incubation periods). The two

DENV-3 isolates selected for phenotyping, designated Cairns 1998

and Cairns 2008a, were grown in C6/36 Aedes albopictus cells in

Opti-MEMH reduced serum growth medium (GM; Gibco BRLH,
Invitrogen, California) supplemented with 0.2% bovine serum

albumin (Gibco BRLH, Invitrogen, California) at 28uC. To

produce the virus stocks for the vector competence experiments,

passage 4 viruses were harvested and pelleted by high speed

centrifugation for 17 hours at 10,000 x g before resuspension in

Opti-MEMH reduced serum medium supplemented with 10%

foetal bovine serum (FBS; Gibco BRLH, Invitrogen, Australia).
RNA extraction and nucleotide sequencing. Viral RNA

was extracted from 140 mL of infected C6/36 culture supernatant

using the QIAmp Viral RNA Extraction Kit (Qiagen, Germany)

according to the manufacturer’s instructions. Full-length genome

amplification and sequencing was performed using the Super-

scriptH III One-Step reverse transcription, polymerase chain

reaction (RT-PCR) System with PlatinumH Taq High Fidelity
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(Invitrogen Life Technologies, California) according to the

manufacturer’s instructions, specific DENV-3 PCR primers (Pyke

A.T., unpublished data) and the Big DyeH Terminator v3.1 cycle

sequencing kit (Applied Biosystems, U.S.A) using the supplier’s

protocols. Sequencing of the respective 59 and 39 untranslated

regions was performed using the 59/39 RACE Kit (Roche Applied

Science, U.S.A) and methods provided by the manufacturer.

Sequence and phylogenetic analyses. Nucleotide sequenc-

es were aligned with publicly available samples using TranslatorX

[32] and confirmed by hand-inspection using Se-Al v2.0a11

software [Rambaut 1996; http://evolve.zoo.ox.ac.uk/. Accessed

10 Sept 2011]. Maximum-likelihood (ML)-based phylogenetic

analysis was implemented using RAxML Black Box webserver

[33] under the GTR+I+ C 4 model of evolution as selected by

jModeltest 0.1.1 [34]. Phylogenetic support was simultaneously

generated in RAxML based on 100 ML replicates under the same

model of evolution.

Vector Competence Experiments
Characterization of the Cairns 1998 and Cairns 2008 DENV-3

in Ae. aegypti involved examining: a) susceptibility to infection; b)

infection, dissemination and transmission rates; and c) the length

of the extrinsic incubation period (EIP) to determine the day on

which transmission first occurs. Five to seven day old F2 female Ae.

aegypti collected from Cairns were exposed to blood meals

containing DENV-3 stock, using a membrane feeding apparatus

[35]. For the susceptibility trials, serial dilutions of the stock virus

in the blood meal were prepared. For the other experiments,

mosquitoes were exposed to a single dose of virus only. Blood

engorged mosquitoes were maintained on 10% sucrose at 28uC,
75% RH and 12:12 L:D (light:dark).

After 14 days, the modified capillary tube method of Aitken [36]

was used to demonstrate transmission of the virus in remaining

mosquitoes. To determine the length of the EIP, transmission was

attempted using the capillary tube technique, and a sugar-soaked

substrate technique [37]. On days 0–6, 9 and 13, individual

mosquitoes were placed separately in 50 mL vials. A 1 cm square

of honey-soaked filter paper card (FP; Bio-Rad, Hercules, CA) was

placed over a hole that had been cut in the lid of the vial. After

approx. 24 hr, each mosquito was then induced to expectorate

into a capillary tube as described above. All whole bodies, body

remnants, legs and wings, saliva expectorates, and honey-soaked

filter cards were stored at 280uC.
Virus assay. The infectious blood meals were titrated as 10-

fold dilutions in the wells of a 96 well microtiter plate seeded with

confluent monolayers of C6/36 cells. Plates were incubated at

28uC for 10 days before being fixed with PBS/acetone. The

mosquito whole bodies were homogenized separately from legs

and wings in 1 mL of GM +3% FBS containing antibiotics and

antimycotics using sterile glass beads. The homogenates and the

saliva samples were filtered through a 0.2 mm SuporH membrane

filter (Pall Corporation, Ann Arbor, MI). Filtrates were inoculated

in duplicate into the wells of a 96 well microtiter plate seeded with

confluent monolayers of C6/36 cells, which were then incubated

and fixed as described above.

Virus infection was identified in the fixed cell monolayers using

a cell culture enzyme immunoassay (CCEI) [38]. The flavivirus-

reactive monoclonal antibody, 4G2 (TropBio, Townsville, Aus-

tralia), was used as the primary antibody.

Viral RNA expectorated on the honey-soaked filter cards was

detected using a real-time TaqMan RT-PCR assay [39] with the

following modifications to the primers and probe: forward primer

(D3UTRfor) 59-AAGGACTAGAGGTTAGAGGAGACCC-39,

reverse primer (D3UTRrev) 59- CGTTCTGTGCCTGGAAT-

GATG -39 and fluorogenic probe (D3UTR) 59 FAM- AACAG-

CATATTGACGCTGGGAGAGACCAGA-TAMRA 39. The

RNA was eluted from the cards and extracted as described

previously [37]. The Taqman RT-PCR was performed using the

ABI 7500 Fast Real-Time PCR System (PE Applied Biosystems,

U.S.A.). Detection of DENV-3 RNA and amplification of the

107 bp product was carried out using a single-tube, one-step RT-

PCR format in a final reaction volume of 20 mL. The reaction mix

was prepared using the Superscript III Platinum one-step qRT-

PCR system (Invitrogen, U.S.A.) and contained 0.4 mL Super-

scriptTM III RT/PlatinumH Taq mix, 9.5 mL of 2X reaction mix,

300 nM primers, 150 nM dual-labelled probe, 47 nM ROX

Reference Dye and 5 mL of extracted viral RNA or diluted

synthetic control. The cycling conditions were as recommended by

the manufacturer (Fast Mode) and consisted of one cycle at 50uC
for 5 min, one cycle at 95uC for 10 min and 40 cycles at 95uC for

3 sec and 60uC for 30 sec. The threshold cycle number (Ct) was

determined for each sample and a negative result indicating no

RNA detection corresponded to any Ct value which was $40

cycles.

Analysis. The susceptibility of Ae. aegypti to infection with the

two DENV-3 strains was calculated by Probit analysis, and was

expressed as ID50 and defined as the virus dose per mL at which

50% of mosquitoes tested positive for DENV-3 infection in the

CCEIA (SPSS. SPSS for Windows, Rel. 16.0.0. Chicago: SPSS

Inc.; 2007).

Day 14 infection, dissemination and transmission rates for Ae.

aegypti exposed to the two DENV-3 strains were compared using

the Fisher exact test.

In addition, effective vector competence (EVC) rates were

calculated as in [40]. Briefly, EVC is calculated by determining the

rate of change of vector competence over time in combination

with the survival function from the traditional vectorial capacity

equation to weight vector competence in terms of vector mortality.

Here the daily survival rate was held constant at 0.90; the Ae aegypti

model CIMSiM uses 0.91 as the nominal value for adult female

survival [41]. From this, an EVC curve was produced and the area

under this curve gives a measure of the cumulative vector

competence for a period of time weighted by mortality. Using

MCMC methods to calculate confidence intervals, we then

determined whether areas under the EVC curves were statistically

different [40].

Results

Environmental Conditions
Weather conditions prior to and during the epidemic were

favorable for the production of Ae. aegypti. The Cairns dry season

(May – November) generally has low rainfall, with an average of

133 mm of rain for the period from July to October. However, in

2008, rainfall during this period totaled 172 mm, with rain events

.25 mm in July, September and October 2008. Heavy rains in

late Sept. - mid Oct. (121 mm from 4 events) could have hatched

Ae. aegypti eggs leading to the rapid escalation in Ae. aegypti numbers

collected in BGSs traps and SOs in November (Fig. 1). Overall,

mean collections of Ae. aegypti in both trapping methods were not

unusually high for the early wet season, with mean female Ae aegypti

collections reaching typical wet season peaks of 2 per BGS trap by

Dec. 2008 ([31] and Fig. 1). However, foci of high populations

existed. For instance, from 7 BGS traps set in Cairns North, the

suburb where the epidemic started, a mean of 12.7 Ae. aegypti per

trap day were collected in Dec. 2008, with 58 collected from a

single trap.
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Unusually warm weather occurred during November 2008, the

first month of the outbreak, which could have enhanced dengue

transmission. During Nov. 2008, the mean daily temperature was

28.0uC, which is 1.5uC above the 1941–2011 mean daily

temperature for November in Cairns. Importantly, during a three

day period from 22–24 November the daily high temperature and

daily mean was 35.8uC and 30.8uC, respectively. Daily mean

temperatures fell to normal levels in February-March, averaging

about 27.5uC. Monthly rainfall from Nov. 2008– March 2009 was

58, 165, 868, 620 and 155 mm, respectively. This consistent

rainfall should have provided sufficient precipitation for persistent

production of Ae. aegypti in artificial containers.

Epidemiological Factors
Health authorities were not notified of dengue activity in Cairns

North until 28 Nov. 2008, with vector control initiated on 1 Dec.

Active case finding retrospectively identified a resident (our

purported index case), residing within the initial cluster of cases,

who had visited Kalimantan, Indonesia in October 2008. This

person returned to Cairns by 3 Nov. and became symptomatic on

5 Nov. 2008. It was strongly suspected that this individual

imported the virus and initiated the outbreak as there had been no

reported cases of DENV-3 in Cairns since the 1998 outbreak. A

subsequent positive IgM ELISA test to dengue confirmed the case.

The first pulse of locally-acquired DENV-3 cases (10–26 Nov.)

were reported within 200 m of the as yet unknown suspected index

case’s residence. Alarmingly, a total of 27 days had elapsed since

the index case was viremic in Australia (4 November) and vector

control was initiated (1 December). Dengue activity then rapidly

spread throughout much of the Cairns region (Fig. 2).

Analysis of patient histories, and in particular, details of travel,

suggested that the virus was transmitted from human to human

exceptionally fast. The extrinsic incubation period (EIP) of dengue

viruses is reported to range from 10–14 days [42] but varies with

temperature and virus titers in viremic humans [13]. Potential

EIPs, based upon modeling of vector competence experiments,

suggests that the EIP of DENV could be as low as 5 and 2 days at

25uC and 30uC, respectively [43]. The intrinsic incubation period

(IIP) in humans ranges from 3–14 days (average 4.5–7 days) [44].

Summing the EIP and the IIP creates a total incubation period

(TIP) of 13–21 days. This value can be approximated by the

period between successive rounds of transmission. For example,

the time from onset of symptoms of the imported case and the first

locally acquired case was 16 days for an outbreak of DENV-1 in

Cairns in 2012 (G. Devine, personal communication), 17 days for

DENV-2 in 2003 [9] and 18 days for a cluster of cases on Lizard

Island in 1998 for the DENV-3 virus used in our vector

competence studies. However, in the initial stages of the 2008–

09 DENV-3 outbreak, there were already 6 locally acquired cases

by 17 days (1 case each on day 10, 14, 15, and 16; 2 on day 17). In

three instances we were able to identify the first new cases in what

were previously uninfected suburbs, each of which were a

considerable distance from suburbs with active transmission.

Upon interview by a public health nurse, neither the suspected

case, which initiated a new focus of transmission, nor the first

recognized new case, reported that other householders or

neighbors were ill. Each of these patients had a different scenario

which contributed to the outbreak: a) the first locally-acquired

case, who was a neighbor of the index case; b) an autoworker who

was infected near the imported case, and then infected 4 co-

workers at his workplace 2 km away; and c) a laborer who

contracted dengue in Cairns and then infected a neighbour in

Aloomba, an isolated hamlet (pop. 317) 15 km south of Cairns.

Retrospective analysis of the time from onset of the locally

imported case until onset of the first locally acquired case was 10, 9

and 11 days, respectively. We realize that this could be

confounded by cryptic transmission, but the circumstances are

supportive. Importantly, in each case there was no evidence of

dengue transmission in the previous year within 2 km of where the

imported case introduced dengue.

These observations suggest that the total incubation period of

the DENV-3 affecting the Cairns region was relatively short.

Considering a low IIP of 3–4 days, an EIP of ca. 6–7 days during a

period of average daily temperatures of 28–29uC could have led to

the rapid amplification and spread of the virus, with no obvious

Figure 1. Aedes aegypti populations during the epidemic. Collection of female Aedes aegypti in sticky ovitraps (n= 64) and Biogents sentinel
traps (BGS, n=14) set in Cairns, Australia. Low SO collections from May-Nov. 2008 reflect poor capture by a dry glue temporally used in the trap.
doi:10.1371/journal.pone.0068137.g001
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gap between the imported case and subsequent rounds of weekly

dengue transmission (Fig. 2). Transmission was especially intense

during the first month of the epidemic; with the biweekly effective

reproduction number (Rt; the average number of secondary cases

per primary case at time t) estimated at 12 and 3.1 [5]. This is

higher than Rt values of 4.5 and 7.1 for the DENV-2 epidemic in

Cairns in 2004 [5], which did not overwhelm control resources to

the same degree [9].

The epidemic curve also shows that DENV-3 activity spread

rapidly throughout the Cairns region. Indeed, by 1 January 2009,

2 months after the initiation of the outbreak, and 1 month after

vector control commenced, dengue was active in at least 10

different suburbs (Fig. 2). The number of weekly confirmed cases

rapidly increased during the holiday period in late December-

January, and again in February, before the rate of infection

dropped precipitously in March and April. Initial vector control

activities included treatment of water-holding containers with

methoprene, and IRS inside premises, supplemented with the

deployment of lethal ovitraps to control adult Ae. aegypti [44,45].

Detailed analysis of the impact of mosquito control on dengue

transmission during the 2008–09 epidemic will be presented in

another paper.

The Collapse of the Epidemic
After declaration of the epidemic in January 2009, QH

employed additional vector control personnel. When control

activities were at their peak in February – April 2009, up to 50

vector control officers were actively engaged in in the field. QH

also implemented a disaster response plan that involved the

formulation of an incident management team. After peaking at a

high of 104 cases per week in mid February 2009, transmission of

dengue declined rapidly (Fig. 2). The onset of the last case was 31

May 2009 and the epidemic was declared over 3 months later. A

total of 915 cases of DENV-3 were confirmed in the Cairns region,

6 cases fulfilled WHO criteria for dengue hemorrhagic fever (John

McBride, personnel communication), and there was a single death

on 4 March 2009.

Viral genome sequencing. In order to ascertain and

compare molecular characteristics of the Cairns DENV-3 2008

strain, full-length genomic nucleotide sequencing was performed.

Scrutiny of the nucleotide data revealed that the Cairns 2008a

strain (GenBank Accession number JN406515) was most

closely related to the previous 2004 Indonesian strain BA51

(GenBank Accession number AY858037) with 98.9%

homology and only shared 93.1% homology with the Thailand-

derived Cairns 1998 strain (GenBank Accession number
JN406514). Similarly, at the amino acid level, the Cairns 2008

strain was 99.7% and 98.1% homologous to the Indonesian BA51

2004 and Cairns 1998 strains respectively. The Cairns 2008a virus

was identical to a 2008 Indonesia isolate (strain 94, GenBank

Accession number ) for the envelope (E) gene (1479 bp).

Phylogenetic Analysis. To establish the phylogenetic rela-

tionship between the Cairns DENV-3 2008 strain and other

DENV-3 viruses and determine its likely geographical origin, a

phylogenetic tree was constructed. Whole genome sequences of

Cairns 2008 viruses, from isolates obtained from human sera

during the 1st month of the outbreak (Nov. 2008), were compared

with 12 other DENV-3 isolates from locally imported cases,

including the 1998 Cairns virus, along with sequences retrieved

from GenBank (Genotypes I to V). The Cairns 2008 viruses

grouped with other Genotype I DENV-3 viruses and were very

distinct from the Cairns 1998 strain, which was shown to belong to

Genotype II (Fig. 3). Genotype II was not observed in our study

after 1998, and appears to be restricted within southeast Asia.

Figure 2. Epidemic curve of the DENV-3 outbreak. Number of confirmed cases of DENV-3 in Cairns region by week, and number of suburbs
with active weekly transmission.
doi:10.1371/journal.pone.0068137.g002
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More recent dengue activity in Queensland, Australia, based on

our sequence data from both Cairns and Townsville between 2006

and 2008, involves the circulation of genotypes I and III (Fig. 3).

Genotype I viruses are widespread throughout the region,

including nearby East Timor, Papua New Guinea, and the

Philippines, and accounted for the 2008 outbreak in Cairns. Strain

Cairns 2008a, used in the vector competence experiments, was

most closely related to a 2008 Indonesian isolate (100% ML

bootstrap support, Fig. 3), supporting the epidemiologic link made

from case interviews.

The two strains under comparison for different transmission

kinetics differ by many genetic substitutions: 7% at the nucleotide

level and 2% at the amino acid level, distributed throughout the

genome. The amino acid differences are particular candidates for

conferring phenotypic changes, any or all of which could affect

the transmission potential. One amino acid difference at site

2062, which occurs in the NS3 gene and involved a change from

arginine (Cairns 1998) to lysine (Cairns_a 2008), was under

positive selection across the alignment according to selection

analyses. Selection analyses were implemented on the Adaptive

Evolution server at UC San Diego (http://www.datamonkey.

org/).

Vector Competence Experiments
Susceptibility to infection. The susceptibility of Ae. aegypti to

infection with the 1997–98 and 2008–09 DENV-3 strains,

expressed as Probit ID50 (SPSS 2007), was 105.3(105.0–105.6,

95% CL) CCID50 per mL (x2 = 2.98, df = 2, P.0.05) and

105.7(105.4–106.0, 95% CL) CCID50 per mL (x2 = 1.88, df = 2,

P.0.05), respectively.

Infection, dissemination and transmission. When ex-

posed to titers ranging from 105.2 to 107.8 CCID50 per mL,

infection and dissemination rates were higher, and in some cases

significantly higher, in Ae. aegypti exposed to the 2008/09 strain

than those exposed to the 1997/98 strain (Table 1). However, at

titers $106.3, transmission rates were higher for the 1997/98

strain, and significantly higher in one trial, when compared to the

2008/09 strain.

Length of the extrinsic incubation period. For the time

series experiment, disseminated virus was first detected on day two

for the 1997/98 strain and on day 4 for the 2008/09 strain

(Table 2). Transmission occurred first in the mosquitoes exposed

to the 2008/09 strain, when on day 5 post exposure, 2/20 and 3/

20 mosquitoes transmitted the virus via the capillary tube and

honey-baited FP, respectively. Transmission of the 1997/98 strain

was first observed on day six when 3/20 mosquitoes expectorated

virus on the honey-baited FP. Transmission peaked at 25% for the

2008/09 strain on day seven and did not increase after this day. In

contrast, the highest transmission rates observed with the 1997/98

strain was 32% and 40%, with the capillary tube and honey-baited

FP, respectively, at day 14 post exposure.

The effective vector competence (EVC) values for the 2008/09

strain was 69.61%; and for the 1997/98 strain (Fig. 4), EVC was

calculated as 66.92%, showing that the 2008/09 strain did have a

slight advantage because of its shorter EIP, though this difference

was not statistically significant. Given the disparity in the ultimate

transmission rates of these two strains, where the 1997/98 strain

reached rates 1.6 times that of the 2008/09 strain, the fact that

EVC values are so close demonstrates the potential importance of

shorter EIP in transmission potential. That is, given the much

higher transmission rates of the 1997/98 strain, if the shorter EIP

of the 2008/09 strain was not important, we would expect the

difference in the EVC values to be greater.

Discussion

A combination of conditions in Nov. and Dec. 2008 may have

enhanced dengue transmission in the Cairns North suburb where

the outbreak started. Rainfall in the winter and again in late Sept.

– Oct. would have flooded containers and facilitated Ae. aegypti

production which peaked during December. The period of high

temperatures during Nov. 2008 would have probably reduced the

EIP in mosquitoes [13,14], resulting in a potential escalation of

dengue transmission. Hot weather continued through December

2008 when the mean daily temperature was 28.6uC, which is 1uC
above average. Heat waves have previously been associated with

epidemic transmission of dengue in Sumatra [47], Indonesia [48],

the Caribbean [49], and the South Pacific [50]. This period of

high temperature would have had a multifaceted impact on

mosquito physiology, whereby higher temperatures increase Ae.

aegypti biting rates [51] and reduce the length of the gonotrophic

cycle [14], potentially leading to a higher frequency of contact

between infected mosquitoes and humans.

Perhaps the most crucial factor that led to the explosiveness of

the epidemic was the apparently short EIP of the 2008–09 DENV-

3 strain, whereby transmission was demonstrated only 5 days after

mosquitoes fed on a viraemic blood meal. The EIP of DENV is

temperature dependent, with higher temperature increasing the

rate of virus dissemination and subsequent transmission [14].

Therefore, it is possible that higher temperatures in late November

2008 (ca. 30uC) may have resulted in an even shorter EIP than the

5 days we observed at laboratory temperature of 28uC. The EIP

temperature was maintained at 28uC in our experiments to allow

for a direct comparison between virus strains without the

compounding influence of temperature. Although a previous

study observed infected salivary glands after 4 days [52], we are

aware of no reported instances of DENVs being transmitted this

rapidly, irrespective of the temperature that mosquitoes were

maintained at. While the EIP of dengue viruses is typically

reported to range from 8–12 days, a recent study suggests that

there is more variability, and the extreme low range is 2–5 days

[43].

Importantly, when daily transmission rates were included in the

EVC model, it was revealed that transmission of the 2008/09

strain a day earlier had the potential to cause a larger outbreak

than the 1997/98 strain. This is despite Cairns Ae. aegypti being

more susceptible to the latter strain and ultimately transmitting it

at a higher rate than the 2008/09 strain. Thus, we conclude that

the 1 day shorter EIP rescued the population-level transmission

potential of the 2008/09 strain even though the transmission rate

is 1.6 times less than the 1997/98 strain. This phenotype of rapid

virus transmission is supported by epidemiological data. We

identified 3 likely isolated transmission scenarios where the TIP

was 9, 10 and 11 days. Furthermore, Rt for the first 4 weeks of

transmission was 12 and 3.1, higher than transmission rates for the

2003 DENV-2 epidemic.

A reduced EIP has important epidemiological implications. A

reduced EIP with CHIKV in Aedes albopictus of 4–5 days resulted in

a massive epidemic of Reunion Island [18]. Similarly, the reduced

EIP exhibited by the WN02 genotype has been a factor in the

replacement of NY99 as the dominant of West Nile virus genotype

in the USA [53]. Similar to these two viruses, the rapid

transmission of DENV would also allow for a larger number of

mosquitoes to transmit. With a nominal daily survival of 0.90 for

female Ae. aegypti [41], a conservative reduction in the EIP from 8

days to 5 days would allow for up to 37% more mosquitoes to

potentially transmit dengue. Of course, as the vector competence
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Figure 3. Phylogeny of DENV-3 from Cairns, Australia. Maximum likelihood (ML) phylogeny of DENV-3 from Cairns, Australia, from 1998 and
2008 (in bold, with asterix), based on whole-genome sequences. Several other isolates from the region were also sequenced and included (shown in
bold, GenBank Accession numbers JN575563-80), along with publicly available sequences (accession numbers available upon request). Analysis was
implemented in RAxML Black Box webserver [33] under the GTR+I+G model of evolution, including support at nodes based on 100 ML replicates.
Sample labeling includes serotype/ISO country code/strain/year of collection. Genotypes I through V are indicated on the far right.
doi:10.1371/journal.pone.0068137.g003
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experiments demonstrate, not all individuals get infected, nor are

able to transmit so quickly.

The EVC calculations provide evidence for the advantage of a

shorter EIP. Traditional vector competence measurements are

often static and taken at longer EIPs, discounting time to

transmission in the overall calculation of transmission potential.

A static transmission rate of 24% (Table 2, 14 days) would not

suggest such an explosive transmission potential as seen with the

2008/09 strain in Cairns. The effective vector competence results

suggest that the 2008/09 shorter EIP is enough to compensate for

its lack of overall transmission rates, as we show by comparing it to

a strain with much higher transmission rates (1.6 times higher at

the highest titer). This suggests not only a means to explain how

the 2008/09 strain spread so quickly, but also suggests that

multiple replicative strategies exist among dengue strains. For

example, a virus strain may become transmissible more slowly

(longer EIP) but attain an overall higher transmission rate due to

higher transmission rates in the mosquito (exhibited by the 1997/

98 strain). Alternatively, a viral strain may become transmissible

more quickly (with a shorter EIP such as the 2008/09 strain) that

can compensate for a lower overall rate of transmission in

mosquitoes. Certainly, beyond these examples other fitness

scenarios are likely, which could impact transmission intensity.

These two strains of DENV-3 exhibited two distinct patterns of

dissemination yet achieved near-identical effective vector compe-

tence values, suggesting two divergent fitness strategies and

Table 1. Infection, dissemination and transmission rates in Cairns Ae. aegypti 14 days after exposure to 1997/98 and 2008/09
strains of dengue virus type 3, as determined using a cell culture-enzyme immunoassay and the monoclonal antibody, 4G2.

Experiment Virus Virus titera % infectionb % disseminationc % transmissiond

A 1997/98 5.2 15 (3/20) 15 (3/20) 0 (0/20)

2008/09 6.0 70 (14/20) 65 (13/20) 10 (2/20)

P valuee P=0.001 P= 0.003 P=0.487

B 1997/98 6.3 92 (23/25) 92 (23/25) 48 (12/25)

2008/09 7.2 100 (25/25) 96 (24/25) 16 (4/25)

P valuee P=0.489 P= 1.000 P=0.032

C 1997/98 7.6 84 (21/25) 80 (20/25) 32 (8/25)

2008/09 7.8 100 (25/25) 100 (25/25) 20 (5/25)

P valuee P=0.109 P= 0.050 P=0.520

See Materials and Methods section for details on conduct of the three trials.
aTiter (log10CCID50/mL) of the infectious blood meal to which mosquitoes were exposed.
bPercentage of mosquitoes containing virus in their bodies (number positive/number tested).
cPercentage of mosquitoes containing virus in their legs and wings (number positive/number tested).
dPercentage of mosquito expectorates in which virus was detected (number of positive expectorates/number tested).
eP value calculated by Fisher’s Exact test.
doi:10.1371/journal.pone.0068137.t001

Table 2. Infection, dissemination and transmission rates in Cairns Ae. aegypti on various days post exposure (PE) to the 1997/98
and 2008/09 strains of dengue virus type 3.

2008/09 DENV-3 (105.1 CCID50/mosquito) 1997/98 DENV-3 (104.9 CCID50/mosquito)

Day PI % infectiona % dissem.b % trans.c % trans.d % infectiona % dissem.b % trans.c % trans.d

0 100 (20/20) 0 (0/20) 0 (0/20) 0 (0/20) 95 (19/20) 0 (0/20) 0 (0/20) 0 (0/20)

1 80 (16/20) 0 (0/20) 0 (0/20) 0 (0/20) 100 (20/20) 0 (0/20) 0 (0/20) 0 (0/20)

2 95 (19/20) 0 (0/20) 0 (0/20) 0 (0/20) 100 (20/20) 5 (1/20) 0 (0/20) 0 (0/20)

3 55 (11/20) 0 (0/20) 0 (0/20) 0 (0/20) 95 (19/20) 10 (2/20) 0 (0/20) 0 (0/20)

4 90 (18/20) 45 (9/20) 0 (0/20) 0 (0/20) 85 (17/20) 0 (0/20) 0 (0/20) 0 (0/20)

5 95 (19/20) 25 (5/20) 10 (2/20) 15 (3/20) 100 (20/20) 60 (12/20) 0 (0/20) 0 (0/20)

6 95 (19/20) 80 (16/20) 5 (1/20) 10 (2/20) 90 (18/20) 65 (13/20) 0 (0/20) 15 (3/20)

7 100 (20/20) 85 (17/20) 0 (0/20) 25 (5/20) 85 (17/20) 70 (14/20) 10 (2/20) 15 (3/20)

10 100 (20/20) 100 (20/20) 10 (2/20) 24 (4/17) 90 (18/20) 84 (16/19) 11 (2/19) 20 (4/20)

14 100 (25/25) 100 (25/25) 20 (5/25) 24 (6/25) 84 (21/25) 80 (20/25) 32 (8/25) 40 (10/25)

Shaded rows denote the first day post infection day that transmission was observed.
aPercentage of mosquitoes containing virus in their bodies (number positive/number tested); days 0–1 likely represent infected blood bolus.
bPercentage of mosquitoes containing virus in their legs and wings (number positive/number tested).
aPercentage of saliva expectorates collected using the capillary tube method of [**UNRESOLVED**] that were positive by cell culture-enzyme immunoassay (number
positive/number tested).
bPercentage of saliva expectorates collected using the honey-baited filter paper method of Hall-Mendelin et al. [37] that were positive by TaqMan RT-PCR (number
positive/number tested).
doi:10.1371/journal.pone.0068137.t002
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potentially accounting the rapid and intense transmission of the

2008/09 strain despite its lower ultimate transmission rate.

While the outbreak appears to have been initiated by the

purported index case from Kalimantan, it is possible that multiple

introductions of DENV-3 may have occurred. However, the

multiple DENV-3s detected in Cairns in 2008–09, Cairns_b 2008

was distinct from Cairns a 2008 both in that the former was part of

a distinct incident of local transmission in the nearby community

of Port Douglas Queensland earlier in February of 2008, whereas

the latter was sampled in late November, 2008, as part of the

epidemic described in this study. The phylogenetic analysis further

indicates that the Cairns 2008 samples are different, with closest

relatives in the tree from Indonesia 2008 (Cairns a) and Singapore

2005 (Cairns b) representing separate incursion events. The

association of Cairns b 2008 with an older Singapore isolate as

opposed to a more recent one simply reflects the sparse sampling

of dengue by sequencing in the region. Even if unknown

introductions of DENV-3 did occur, this does not distract from

Figure 4. Effective vector competence of the Cairns DENV-3. Top: The change in vector competence over time through a population of
vectors is a dynamic process. Here the difference in dynamic vector competence between the 2008/09 (dashed line) and 1997/98 (solid line) strains is
shown. These linear functions then replace the static measure of vector competence and are used to calculate the effective vector competence (EVC).
Bottom: EVC curves for the two strains- 2008/09 (foreground, solid) and 1997/98 (background, checkered)- are shown. These curves utilize the
dynamic vector competence function over time and also weight each day’s value for the effect of mosquito mortality.
doi:10.1371/journal.pone.0068137.g004
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the fact that high transmission during the initial 2 months of the

outbreak directly contributed to the overall size of the epidemic,

and that environmental conditions and virological characteristics

of the virus resulted in the explosive early transmission.

Despite a relatively low transmission rate (from the vector

competence experiments), rapid transmission of the virus could

still have profound implications on its management, especially with

high vector populations. A 2–4 day faster transmission cycle would

create situations where there could already be a second round of

transmission (i.e., mosquitoes feeding on a notified case would

already be transmitting the virus) especially when the median

delay in notification of a dengue case of 7 days is taken into

consideration [53]. This would greatly compromise the ability to

institute control measures, such as interior residual spraying to kill

adult mosquitoes, in response to individual cases with a view to

disrupting the transmission cycle (Fig. 5). Furthermore, delayed

action control methods, such as lethal ovitraps (LOs) that kill

gravid mosquitoes .5 days old [45,46], would similarly be

rendered ineffective by a rapidly transmitted strain of virus.

Indeed, we had continued dengue transmission after deployment

of LOs in Cairns North in Dec., and reverted to IRS for a more

rapid insecticidal knockdown. While there was some evidence of

tolerance of Ae. aegypti to bifenthrin used in the LOs, resistance

testing did not detect physiological resistance to the insecticide (N.

Endersby, University of Melbourne, unpublished data).

The delayed identification of dengue activity in November 2008

also contributed to the epidemic. Vector control was not initiated

until 27 days after the index case became viremic. By this time, the

third cycle of dengue transmission was occurring in Cairns North.

Delays in case notification have been identified as a risk factor for

dengue outbreaks in north Queensland [54], and helped trigger

large outbreaks in 1997 [55] and 2003 [9]. Dengue control efforts

were also hampered by the rapid geographic spread of the virus

(Fig. 2). December and January are the Christmas holiday season

in Cairns, and people often travel to friends and relatives. The

human-mediated dispersal of dengue associated with the Christ-

mas holiday season, the so-called ‘Christmas Rush’, is evident by

the rapid escalation in both affected suburbs and active cases in

late December-January (Fig. 2).

Low herd immunity would have also contributed to the

explosive nature of the outbreak. While Cairns has regular

outbreaks, most are small, with generally less than 100 confirmed

cases. Analysis of blood donations from non-febrile residents

during the epidemic indicated that IgG to DENVs was 10.1%

(95% CI: 8.7–11.5%) [56], and as the Cairns region had not had

an outbreak of DENV-3 since 1998, herd immunity to DENV-3

would be expected to be very low.

The epidemic collapsed rapidly following its peak in February

(Fig. 2). Several key factors contributed to this rapid decline in

cases. The epidemic received widespread media attention, so the

public were well informed of their roles and responsibilities

(removal of water-holding containers, and use of pyrethroid

surface sprays indoors). A number of new strategies of control were

also implemented. The Queensland State Emergency Service door

knocked, and delivered information kits and cans of pyrethroid

surface spray to residents in suburbs at risk. A SMS texting service

sent messages to mobile phones warning residents of active DENV

transmission within their residential area. An increased number of

vector control teams conducted widespread source reduction and

treatment of larger water-holding containers with s-methoprene

pellets. Both BGS traps and sticky ovitraps (Fig. 1) depict a rapid

decline in female Ae. aegypti populations in February – March

2009, reflecting the implementation of these enhanced control

strategies. There was hardly any suburb in Cairns that had not

reported cases of dengue, and had not been subject to vector

control by April 2009. Thus, untreated suburbs with high

mosquito populations were probably increasingly rare. The last

active transmission of DENV-3 occurred in Earlville in May,

where IRS teams rapidly responded and treated the residence and

surrounding houses.

Figure 5. Proposed transmission cycle of the Cairns DENV-3.
Schematic of transmission cycle (A) and intervention results (B) for
typical dengue (EIP = 10 days) and quick dengue (C; EIP = 5 days).
doi:10.1371/journal.pone.0068137.g005
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This outbreak highlights the impact that DENV strains with a

reduced EIP can have on public health. The apparent speed of

transmission and its rapid geographic spread overwhelmed what

had been a successful, organized first world dengue control

program. This outbreak also emphasises the need for a strategic

shift in dengue control from a reactionary response to cases to a

preventative approach to minimize vector populations. Since the

outbreak, high-risk areas have been subject to preventative larval

control and source reduction campaigns to suppress populations

prior to the next wet season. Despite a record number of imported

viremic dengue cases into north Queensland (51) and 4 distinct

outbreaks in 2010, the total number of locally acquired cases was

only 24. Commensurate with what has occurred previously with

dengue, CHIKV and WNV, the 2008–09 Cairns DENV-3

epidemic suggests that small genetic changes in arboviruses might

express altered phenotypes in humans and mosquitoes that

potentially increase transmission creating outbreaks that can affect

epidemic transmission and overwhelm public health programs

[18–26]. It also emphasizes the important role that rapid case

recognition and reporting, and effective preventative mosquito

control programs, can play in minimizing the ability of these virus

strains to escalate into a widespread epidemic. Finally, the

occurrence of the closely related strains of DENV-3 serotype 1

in Cairns, Indonesia and Singapore from 2008 (Fig. 3) are

suggestive of the evolution of new strains and rapid movement of

dengue viruses regionally that initiate local outbreaks [57].
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