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Abstract

This thesis seeks to enhance our ability to map the extent of large

floods in near real time using coarse resolution C-band radar remote

sensing. The microwave part of the electromagnetic spectrum has a

great advantage over visible and infrared light in its ability to pene-

trate cloud cover, and as radar is an active system, it does not rely

on daylight hours for reflected solar radiation. The European Space

Agency’s Advanced Synthetic Aperture Radar aboard the Envisat

satellite, operating in Global Monitoring Mode (GM), is targeted for

particular consideration due to its high temporal frequency, compre-

hensive coverage and ease of acquisition. Challenges are identified

which relate both to the use of radar generally, and also in particular

to GM data, in the demarcation of water and land, as well as to the

practical business of data processing.

These challenges relate to the way that water is identified, which can

be by a low signal where specular surface reflection away from the

sensor occurs, or by a high signal where multiple interactions occur

between the water surface and emergent structures such as vegetation.

Thresholds must make the distinction between the two cases, and as

such, some prior knowledge of land cover is needed in the segmenta-

tion process. With such coarse data as GM, mixed pixels comprising

both high and low water signals are often encountered, which result

in a mid-range pixel value that masks the presence of water. The

thresholding process is further complicated by the relationship of the

signal returned to the sensor with incidence angle, which varies be-

tween about 14–44◦ with GM data. Under some wind conditions,

waves of a particular pitch and orientation on the surface of open wa-

ter cause resonance effects, returning a very high signal - sometimes



even a gain - to the sensor. In particular circumstances, where flood

waters flow through arid land, the low signal returned from open wa-

ter due to specular reflection cannot be distinguished from the low

signal returned from desert due to attenuation and absorption. In lit-

erature surrounding research in this field, results from observations of

radar response in wetlands and flooded grasslands are mixed, point-

ing to the importance for further work in this area. In Australia, the

need for a better understanding of the expected backscatter response

from inundated areas in tropical savanna, which covers one third of

its landmass, is clear.

The computational framework was set up for the efficient download,

registration and orthorectification of GM data using scripting and

open source software. Full advantage was made of the parallel process-

ing capabilities of James Cook University’s High Performance Com-

puting network, scripts were tailored to GM data’s characteristics and

test results proved the method appropriate for the high volume pro-

cessing required by the large GM dataset. This capability was used to

carry out regression on a pixel-wise basis across a year’s worth of GM

data, categorised by seasonal rainfall periods, in order to normalise

backscatter values with respect to incidence angle. Correlation of the

resulting characteristics with surface parameters, such as regolith, veg-

etation and soil type were observed. The potential confusion between

absorption in dry, homogeneous soils, and specular reflection on sur-

face water was predicted. It was observed that the degree of change of

backscatter with incidence angle on open water appeared independent

of the presence of Bragg Resonance, despite absolute values being at

opposite ends of the scale, depending on whether resonance did, or

did not, occur.

A major flood event in Pakistan was successfully mapped and made

available in near-real time for the disaster relief effort. An image dif-

ferencing technique allowed the successful separation of low backscat-

ter response from open water with that from the immediately sur-



rounding desert. GM data were found to fill a gap in the period

where the flood was obscured to visible and infrared sensors, dur-

ing the crucial first week of the event. Definition of the extremities

of the flood were tackled with a spatial threshold using a region-

growing algorithm, and the radiometric backscatter threshold was

established using an incremental convergence technique, employing

multiple κ-statistic calculations with contemporaneous MODIS SWIR

data. Both the stability of the radar threshold, and the instability of

the MODIS SWIR reflectance threshold, were highlighted.

The backscatter responses to two large flood events in the tropical

savanna of northern Australia were investigated, showing markedly

different results. One flood, in the floodplain of Queensland’s Flinders

River, involved total inundation of tussock grasslands over an area of

9000 km2, allowing accurate classification using GM data (κ = 0.7),

with predictable dihedral scattering returns as the flood receded and

the emergent tussock grasses caused multiple interactions between

the radar signal and the surface water. Inundated areas covered by

emergent vegetation in the other flood, in Cape York’s Staaten River

floodplain, were almost completely indistinguishable from the sur-

rounding wet vegetation. Data from water height loggers established

in the neighbouring Mitchell floodplain over a dry/wet season period

provided an insight into the interaction of these particular vegetation

conditions under flood. Results concurred with the work of others,

that backscatter response is a complex combination of effects depend-

ing on relative water height, vegetation spacial density, biomass, and

verticality, or enmeshment, of super-surface grasses.

The need for further work is discussed, together with spin-off opportu-

nities, in the context of current and planned alternative C-band satel-

lite data sources. The planned contribution of C-band data, along

with contemporary visible/infrared products in the upscaling of cur-

rent and ongoing JCU research into greenhouse gas emissions in the

Mary River in the Northern Territory is outlined, together with the



possible use of C-band radar to gauge fuel moisture content and fire

potential, in the light of our findings in the tropical savanna. The

potential use of GM data to explore correlation between Gravity Re-

covery and Climate Experminent (GRACE) data and surface water

and soil moisture over time is discussed.
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Introduction

The primary objective of the research described in this thesis is to enhance our

ability to map the extents of large floods.

In recent decades, our dependence on empirical data for such a task has given

way to rapidly developing satellite imaging technology, which has enabled us to

successfully map flood inundation to a fine degree of accuracy, and has contributed

greatly to the study of flood dynamics and to our efforts in disaster relief and

prevention.

0.1 Relevance and Importance

Flooding amounts to nearly 50% of natural disasters, and accounts for over 70%

of all lives affected by natural disasters (Kugler et al., 2007). Justification for

research into the understanding of floods covers a broad area of science. In order

to understand the hydrology of large river systems, it is vital that the dynamics

of inundation patterns are better understood (Frappart et al., 2005). Wetlands

receive increasing attention as indicators of changing biodiversity. Powell et al.

(2008) tell us that “Recent research into water requirements for wetland sys-

tems shows that duration, frequency, depth, timing and extent of flooding are the

most important influences on ecological communities”, and that “Modelling these

systems is hampered by a lack of data and inappropriate model structures”. Sig-

natories to the Ramsar Convention are encouraged to set up national wetland

inventories in order to advise government on policy and management strategies,

yet a review has discovered gaps in coverage of such inventories and problems

with the associated information management systems; Rosenqvist et al. (2007)

point out that The Asian Wetland Inventory and Convention Resolution VIII.6
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specifically highlight remote sensing as a key tool in rectifying this situation.

Environmental degradation is an increasing concern in respect of river catch-

ments. Some changes in land use and management practices cause increases in

surface run-off which, in turn, can have a major effect on the volume and rate

of discharge of water. This can cause erosion and large-scale changes to fluvial

behaviour patterns as well as increasing the potential for increased phosphates to

be carried downstream (Bonn & Dixon, 2005). Henderson & Lewis (2008) point

out that mangroves are considered “the world’s most productive ecosystem based

on net productivity”, and that over 54% of the world’s mangroves have disap-

peared over the last few decades. The characteristics of the annual inundation

pulse in the Amazon are, according to Rosenqvist et al. (2002), the “dominant

environmental factor affecting aquatic biota on the floodplain” .

Rosenqvist et al. (2002) bring up another issue which is widely discussed,

and that is the quantities of methane which are produced in flooded areas. This

amounts to some forty times the quantity produced by wet soils (Arnell, 2002).

Wetlands also play a part in the accrual of heavy metals in surface waters (Bagh-

dadi et al., 2001). Methane is produced during the anaerobic decomposition of

biota, and thus is particularly prevalent during the inundation of terrestrial vege-

tation (Noernberg et al., 1999), and therefore an understanding of flood patterns

against vegetation maps will become an increasingly important tool to assist in

the modelling of greenhouse gas emissions (Rosenqvist et al., 2002).

Under certain environmental conditions, perhaps the best satellite instruments

to use for the separation of water from land are “passive” instruments (relying

on reflected solar energy or on thermal emissions, for example) that operate

at wavelengths between the visible and infrared ranges of the electromagnetic

spectrum, due to the fact that radiation through much of the infrared spectrum

is absorbed by water.

There are, however, inherent limitations to the use of passive sensors. The

reliance on the relative position of the sun halves the data acquisition period (on

average, depending on latitude and season), rendering us blind to night-time flood

activity. Perhaps more significantly, radiation at these wavelengths is absorbed,

reflected or attenuated by atmospheric water vapour to such an extent that the

surface flooding is hidden from the satellite sensors by cloud cover, commonly
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present at most flood events.

The research described in this thesis, therefore, singles out the use of active

sensors operating in the microwave range (λ ≈ 1mm – 1m). Such instruments

analyse reflected radiation originating from their own source, and therefore are

not reliant on the sun. In addition, atmospheric effects on microwave radiation at

certain wavebands (such as C-band, studied here), are negligible by comparison

to those which effect the light used by passive sensors.

0.2 Challenges and opportunities

The use of radar data, specifically, to map flooding, is well researched and re-

ported. Although the advantages over passive sensors, as described above, have

been confirmed and put to good use, much of the published material on the sub-

ject comprises conspicuously large sections documenting the limitations of radar

data for the purpose, and for good reason. These limitations stem from major

differences between microwave and optical data, and the methods used to acquire

images:

1. Optical data is two-dimensional, the physical position of receipt of data on

the “retina” of the instrument is analogous to the relative position on the

earth’s surface from which the energy was reflected.

Radar data is one-dimensional, the position of the reflector having to be

calculated using a variety of geometric and temporal parameters. Terrain

affects radar imagery differently to optical imagery, and requires different

processing. Terrain also causes radiometric, as well as geometric distortion

of values, and in some cases causes total masking, which must be taken into

account.

2. Microwave sensors operate in narrow wavebands, and the radiation is there-

fore subject to summation interference effects to which all coherent radiation

is susceptible, causing a “salt and pepper” effect on the resultant image,

known as speckle.
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3. Regular textural patterns at certain orientations, such as small wind-induced

waves on the surface of water, cause additive effects due to resonance, which

result in an amplified signal, the value of which lies at the opposite end of

the scale to what we would expect from water.

4. Received values have a relationship with the angle of the transmitted ra-

diation incident to the surface of the reflector. This angle must therefore

be known, and the relationship understood. The relationship itself depends

on the nature of the reflector (in terms of scale, structure and dielectrics),

which compounds the complexity of requirements at the processing stage.

5. Where structures such as vegetation or buildings emerge through flood wa-

ter, multiple reflections can cause a deceptively high signal response, which

falls into the range of values expected from wet soil, making it difficult to

accurately define the boundaries of a flood.

6. The radar backscatter response to open water is usually characterised by a

low value, due to specular reflection away from the sensor by the surface of

the water. Errors in classification are contributed to by other smooth sur-

faces causing a similar reflection, or by extremely dry, homogeneous surfaces

such as desert sand, which present a low radar value due to attenuation and

absorption of the incident radiation.

As stated, the above are factors which limit the use of radar data to map

flooding, and most have been well documented. What is lacking, however, is

a measure of the precise extent to which these factors may be mitigated, and

beyond which the use of radar data to map flooding is precluded.

Mapping relatively small floods (such as in urban areas) to a fine detail re-

quires relatively high spatial-resolution data. Data at such a resolution is usually

confined to a temporal frequency of one per orbit cycle (usually just over a calen-

dar month). Thus for a fast flood event, there is an element of luck in employing

such data, and even when timing is favourable, unless the flood is extraordinar-

ily slow in progression, its dynamics may only be interpreted from one or two

instances in time.
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Mapping floods that occur on a large scale, spanning tens or hundreds of

kilometres, however, may make use of coarse resolution data such as that made

available by the European Space Agency (ESA) from their Advanced Synthetic

Aperture Radar (ASAR) instrument aboard the Envisat satellite, when operating

in Global Monitoring Mode (GM). Much higher temporal frequency is achieved,

as this instrument records data across a swath over 400 km in width, which

overlaps considerably (depending on the latitude) with each consecutive orbit

cycle.

Analysing the response of GM data to large flood events gives us the oppor-

tunity to fill the gap in research - to define the constraints governing the use of

such data for the important task of understanding large and rapid flood events.

At the same time, the massive dataset of GM output affords us the ability to

understand the relationship of incidence angle with different surface reflectors,

and allows us to investigate how this, and the other effects which compromise the

accuracy of flood maps, may be mitigated.

0.3 Objectives

The ultimate objective is, therefore, to record an optimum method to monitor

and map large flood events quickly, to a reasonable degree of accuracy, and to un-

derstand the environmental and geophysical conditions to which such a method

is limited. This objective is approached by seeking to address the following ques-

tions:

� How can the large dataset be managed, the incidence angle and other

geospatial data be extracted and the imagery preprocessed in a fast, ef-

ficient way, and in such a manner as to maintain complete control and

transparency for all calculations performed in the process?

� What is the relationship between incidence angle and radar backscatter for

different surface properties? Can knowledge of this relationship be used

to enhance our ability to delineate flooded regions? If necessary, how can

incidence-angle effects be most accurately mitigated?
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� How can ambiguities in radar backscatter due to absorption, under par-

ticular environmental conditions, be reduced? How can the most accurate

thresholds be established in floods whose scale, timing and geographical

constraints forestall the acquisition of empirical data? Answering such a

question may be critical for disaster response efforts.

� How do existing vegetation and rapidly-growing aquatic vegetation affect

radar response in flooded regions? To what extent can these effects be

mitigated or taken advantage of? To what degree do these effects preclude

the use of GM and other radar data under certain environmental conditions?

0.4 Thesis structure

This thesis records research and analysis that was carried out in order to answer

these questions. Following the introductory sections which cover theory and re-

lated research, the questions are tackled systematically in independent chapters.

The major successive chapters are structured as comprehensive stand-alone pa-

pers, for submission to research journals. Two of the articles are under review,

and one has been published. The format and content of the articles are altered

here only to provide continuity and to avoid undue repetition of common but nec-

essary theoretical explanations which will appear independently in the individual

submissions.

0.4.1 Thesis flow diagram

Figure 1 shows a schematic outline of the structure of this thesis. The diagram

shows the overall flow of the work, the broad reasons for paths taken, the direct

and indirect outcomes of the research and brief summary of work that is proposed

to follow on from it. Colours are coded roughly as follows:

Black Sections, chapters of the thesis

Red Gaps, questions, obstacles

Blue Solutions

Green Outcomes, direct or indirect
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Figure 1: Flow diagram outlining structure of thesis
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Headings in the left margin refer to relevance within the thesis. In the di-

agram, what is shown in the Introduction and Literature Review sections are

summaries of the major challenges and the logic that leads on to the decided

focus of research, whereas these actual chapters in the thesis cover much more

detail which need not be shown schematically here. The Gaps section of the dia-

gram results from the concluding part of the literature review, and represents the

focus of the work to follow. From this point of the diagram onwards, items are

arranged in a matrix, with horizontal groupings separating articles from direct

and indirect outcomes, and with vertical columns grouping problems, solutions

and outcomes under the article, and therefore chapter, in which they arise. The

findings listed in these groups all form a part in the Conclusion section of the

thesis, which is not explicitly labelled in the diagram.

A Chapter context diagram is shown at the beginning of each chapter to

explain the relevance of the chapter in the context of the whole thesis, and to

prevent the reader from becoming lost. These are based on the Thesis Flow

Diagram above (Figure 1). The connectivity diagrams are milestones, or place

markers, and therefore do not appear in the List of Figures.

0.4.2 Chapter flow

The chapters appear as follows:

� The front matter of the thesis includes the contents, lists of figures and ta-

bles and a list of the nomenclature (symbols and acronyms) used through-

out.

� Following the introductory chapter, a literature review presents an expla-

nation of the theory behind the use of radar remote sensing in the mapping

of floods, in the context of research literature to date. Here we discuss the

parameters that play a part in the processing of radar data for this purpose,

and the challenges that they present.

� The method of managing the data, extracting the parameters and perform-

ing the geo-referencing and orthorectification, using object-oriented script-

ing and parallel processing over a distributed network, is detailed. This
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is a necessary precursor to all the work that follows. Methods to address

the questions discussed in this introduction, and arising from the literature

review, form the basis of the following chapters, each of which represents a

journal submission:

– The effects of incidence angle on radar backscatter, given different

surface characteristics, such as regolith, vegetation and soil types, is

investigated. In particular, the separability of water in comparison

to those parameters is measured. The relationship of incidence angle

with backscatter is established by carrying out regression for each pixel

over time, making full use of the high temporal frequency of GM data

available. The work results in a means to normalise radiometrically

across a wide swath with respect to incidence angle, which is essential

to be able to apply a threshold to the pixel values to determine the

presence of flooding. Two problems are highlighted as a result of this

chapter. One is a phenomenon known as Bragg Resonance, for which

a potential solution is discussed. Another is a problem with ambiguity

in backscatter values which could represent water, due to absorption

in dry sand. A solution to this problem is tackled in the following

chapter.

– Is this problem with ambiguity due to absorption likely to present a

real problem? How might a solution be found? A case study is per-

formed, mapping the rapidly developing extents of a major flood event

in Pakistan in 2010. This study was initiated as the result of a request

by a UNESCO team, who were about to fly to the region as part of the

relief effort, lacking maps detailing the extent of the flooding. Meth-

ods to mitigate incidence angle effects and sand absorption ambiguities

are successfully carried out, and a method to non-empirically optimise

thresholding is detailed.

– Having successfully established the suitability of complementing re-

mote sensing data from the optical / infra-red spectra with GM data

to map floods in an arid / semi-arid environment with a low-height

vegetation matrix, the applicability of this method to a northern Aus-
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tralian environment is investigated. This addresses the fourth major

challenge highlighted in the gaps section of the literature review, re-

lated to dihedral scattering. An investigation into the limitations pre-

sented by vegetation on the use of radar remote sensing to delineate

water is carried out, by studying two major floods in the north of

Queensland, which took place in catchments with different vegetation

matrices. This chapter highlights the need for more detailed research,

which is outlined in the subsequent chapter. Backscatter observations

are compared to fieldwork data, with interesting results.

� The following chapter outlines the proposed next step, to take the benefits

arising from the research carried out for this thesis and pave the way for

its application to the broader environment. The suggested work builds on

research that has been commenced and is ongoing by a team from JCU’s

Hydrology department, who are taking measurements in the field in a bid

to estimate fluctuations in greenhouse gas emissions in a flood plain in the

Northern Territory. The research described in this proposal would serve

to provide the existing team with the remote sensing function required to

upscale their own results to the wider floodplain, whilst at the same time

using its spatially detailed data to work towards a better inversion model

for the interpretation of radar data to map flooding. The potential use

of C-band radar to investigate fire fuel conditions, given findings from the

previous chapter, is outlined.

� A conclusion summarises the results of the thesis, discusses shortfalls and

summarises the avenues of future research that arise from it.

� The appendix contains the program code developed to pre-process the data,

as discussed in Chapter 2, and that used in the regression analysis discussed

in Chapter 3. It also lists the data used in some of the chapters.

10



Chapter 1

The Theory & feasibility of

mapping surface water with

satellite radar data - a literature

review

Chapter context

11



1. Literature review

Abstract

A review of the mapping of water extents, using radar data, is made, briefly out-

lining the theory behind the field, as well as the many challenges faced, including

speckle, spatial resolution, variance with incidence angle, temporal frequency and

ambiguity in interpretation. With regards to opportunities presented by the large

time series of data available, four broad areas are identified that contain gaps in

existing literature: The practical methodology behind the registration and or-

thorectification of a very large data set; the relationship of backscatter response

with incidence angle specific to pixel-scale regions; the separation of water with

dry soil, which share low backscatter values due to absorption; the separation of

high backscatter response from dihedral scattering with that from wet soil.

1.1 Introduction

This review aims to study the use of radar remote sensing to map the extents of

water inundation over time. Of particular interest is the feasibility of using En-

visat Advanced Synthetic Aperture Radar (ASAR) Global Monitoring Mode (GM)

data as a source for this task, complimented with data from other ASAR modes

and from other active and passive sensors. The detailed specifics of GM data will

be discussed later in section 1.2.3. Briefly, ASAR provides radar backscatter mea-

surements in the C-band (λ = 5.6cm) in a 35 day repeat cycle orbit, with data

being provided in a variety of modes with different specifications (ESA, 2007a).

For certain modes, temporal frequency is greatly increased using ASAR’s abil-

ity to steer its beam to different elevation angles. A consequence of this is that

spatial resolution is compromised, and a greater complexity associated with data

coming from a variety of incidence angles is introduced. GM is one such mode,

having the lowest spatial resolution and highest temporal frequency of all of the

ASAR modes. A graphic representation of the temporal frequency of GM data

available covering the Australian continent is shown in figure 1.1.

GM data has a swath width of 405km, a pixel size of 500m and a spatial

resolution of 1km. Such a spatial resolution would seem to constrain the value of

GM data to broad-scale views of radar-distinguishable features that cover areas

12
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Figure 1.1: Map showing the frequency of ASAR GM mode coverage acquired for the Aus-
tralian mainland for the first 128 days of 2009

greater than a few square kilometers. The European Space Agency (ESA) orig-

inally envisaged GM data’s greatest value being in the monitoring of Antarctic

ice sheets, with ASAR’s Image Mode Precision (IMP) mode targeted for flood

monitoring, having 30m spatial resolution and a 5 day repeat coverage avail-

able on request (ESA, 2007a). However, in the past some frustration has been

expressed over the tendency for the data request and acquisition process (gen-

erally) to cause peak flood events to be missed (Oberstadler et al., 1997; Sanyal

& Lu, 2004). Additionally, it will be shown that the potential for detailed and

extensive time series analysis afforded by the high temporal frequency and ready

availability of GM data allows us, to some extent, to overcome issues of low spatial

resolution, providing us with the means for the effective distinction and mapping

of inundated areas not envisaged previously, enabling also the mapping of flood

durations and patterns. Broadly, this review seeks to explore the extents (and

therefore the limitations) of using GM data for this purpose.

13
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1.2 Theoretical context

1.2.1 Radar remote sensing

This section is intended to serve as a theoretical introduction to radar remote

sensing for the mapping of water extents.

1.2.1.1 Modulation

The first step to analysing any image data is to understand what the values

associated with each pixel represent. The two parameters considered in respect

of coherent electromagnetic radiation are amplitude and phase.

The phase difference between two radar signals is used in interferometry to

provide a very accurate elevation value in, for example, SRTM DEM data (Lille-

sand & Kiefer, 2004). The value of each pixel in a DEM image represents this

elevation. Phase information is included with some data products (Single Look

Complex, for example) usually in the form of two files comprising the real and

complex conjugates.

The value dealt with in this analysis is the Digital Number (DN), which is the

pixel value of the GM data and is related to radar brightness β0 by the equation

DN2 = K · β0 = K · σ0

sin(α)
(1.1)

where σ0 is the radar backscatter coefficient, α the local incidence angle and K

the absolute calibration constant (ESA, 2004). The significance of σ0 will be

dealt with in detail in section 1.4.1.5.

Whilst the radar brightness β0 is a measure of amplitude and is analogous to

the brightness value from an optical sensor, there is a fundamental difference, and

this is to do with the way that a return signal’s spatial attributes are determined.

Most electromagnetic sensors, such as a camera, are directional, in that the part

of the sensor in which the signal is received depends on the spatial position of

the area from which the signal was reflected. In this respect, the received signals

form a two-dimensional analogy of the area under observation. With a radar

sensor carried on an aeroplane or a satellite, only the spatial dimension along the
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azimuth, or flight path, is controlled. The returning signal is one-dimensional,

and the spatial dimension perpendicular to the azimuth (the range dimension), is

determined by calculating the time it takes for the signal to get back to the sensor.

This leads to a problem which is fundamental to understanding radar images: a

single signal can return to the sensor at the same time from two different positions

along the swath. This is demonstrated in Figure 1.2, taken from Delio Tortosa’s

website Geoforum (Tortosa, 2008). In this case, C and D are are in separate

locations along the swath, but are combined in the return signal (represented

by C’D’), as they are the same distance from the sensor. This phenomenon,

tending to shorten the apparent displacement between two points, is known as

foreshortening.

Figure 1.2: Relief displacement and foreshortening (Tortosa, 2008)

From the transformation of AB to A’B’, it can be seen that an identical

physical structure can be represented differently, depending on where it lies along

the swath.

Figure 1.3: Layover (Tortosa, 2008)

Figure 1.3 shows another symptom of the radar imaging process, known as
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layover, where the relative positions of A and B are actually reversed in the

output image.

Knowing the relative heights of such features gives us the ability to calculate

the distortion effects, and to some extent make corrections to the data. Different

levels of processing offered by distributors of radar data take such effects into

account.

Another limiting factor which can be seen from Figure 1.4 is radar shadow.

It can be seen that objects over a certain height at a certain incidence angle

will obscure adjacent areas below that incidence angle. These radar shadows can

be “filled in” by combining two sets of data covering the exact same area, but

taken from opposing sides. Such image pairs from, for example ALOS PALSAR,

are available in one file. Another way to mitigate this problem to some extent

is by choosing a smaller incidence angle, but this has effects on resolution and

attenuation, as will be seen.

Figure 1.4: Radar Shadow (Tortosa, 2008)

1.2.1.2 Backscattering and Attenuation

The strength of a returned radar signal depends on a variety of response param-

eters, including physical structure, surface properties, electrical characteristics

and attenuation. Figure 1.5 shows how different surfaces will produce different

responses. Specular surface reflection will produce very little backscatter towards

the sensor. ‘Rough’ surfaces cause varying degrees of backscattered signal, largely

determined by the Rayleigh Criterion. Lillesand & Kiefer (2004) cite a preferred

modified Rayleigh Criterion, which determines a surface to be rough when
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hrms >
λ

4.4× cosα
(1.2)

and smooth when

hrms <
λ

25× cosα
(1.3)

where hrms is the rms surface height variation, λ is the wavelength and α is the

local angle of incidence (Lillesand & Kiefer, 2004). The summary shown in Table

1.1 gives an idea of how this relates to X and L-band at, for example, α = 45◦.

There are alternative definitions—for example for the Fraunhoffer criterion for

smoothness, replace 25 with 32 in equation 1.3.

Root-Mean-Square
Surface Height X Band L Band
Variation (cm) (λ = 3.2cm) (λ = 23.5cm)
0.05 Smooth Smooth
0.10 Smooth Smooth
0.5 Intermediate Smooth
1.5 Rough Intermediate
10.0 Rough Rough

Table 1.1: Synthetic Aperture Radar Roughness at a Local Incident Angle of 45◦ (Lillesand
& Kiefer, 2004)

Figure 1.5: Radar reflection from various surfaces: (A) specular reflector, (B) diffuse reflector,
(C) corner reflector. (Tortosa, 2008)

Attenuation of radar radiation through a medium is largely a function of the

medium’s complex dielectric constant. For our purposes, it is sufficient to know

that water has a dielectric constant over ten times that of most dry minerals

(Lillesand & Kiefer, 2004, p671).
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Microwave radiation is refracted through media with higher dielectric con-

stants in much the same way as optical light through optically denser media.

It is slowed down, its path is refracted towards the normal (thus usually made

shorter) and its wavelength is actually increased according to

λ = λ0

√
ε0εa (1.4)

where λ0 and ε0 are the wavelength and permittivity through free space, and

εa is the average dielectric constant through the penetrated medium (Schaber,

1999).

Radar response specifically to water will be dealt with in section 1.2.1.9.

1.2.1.3 Noise

Noise appears on radar images mainly in the form of speckle, and this is largely

due to constructive and destructive interference of incident and reflected radia-

tion. It therefore stands to reason that cross-polarised data (where the incident

and reflected light are polarised in orthogonal planes) will be less subject to this

form of interference. This and other forms of speckle are mitigated by processing

multilook images, where multiple images of the same area are added, and in which

such noise is averaged out (Lillesand & Kiefer, 2004). Despeckling filters, both

spatial and temporal, will be looked at in relation to GM data in section 1.3.1.

1.2.1.4 Radar Wavebands

Radar wavelengths are grouped into ranges, or wavebands, identified by a single

letter. Table 1.2 shows all of the common wavebands and their wavelengths and

frequencies. Currently only L, C and X-bands are available from active sensors

aboard satellites.

A more detailed look at response characteristics of the wavebands is taken in

Section 1.2.1.9.
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Band Wavelength λ Frequency ν = cλ−1

Designation (cm) [MHz (106 cycles sec−1)]
Ka 0.75–1.1 40,000–26,500
K 1.1–1.67 26,500–18,000
Ku 1.67–2.4 18,000–12,500
X 2.4–3.75 12,500–8,000
C 3.75–7.5 8,000–4,000
S 7.5–15 4,000–2,000
L 15–30 2,000–1,000
P 30–100 1,000–300

Table 1.2: Radar band designations (Lillesand & Kiefer, 2004)

1.2.1.5 Polarisation

Emitted radiation may be polarised either horizontally (H) or vertically (V). The

received signal may be similarly polarised. There are, therefore, four possible

polarisation configurations — HH, HV, VH, VV. Reflection by different materials

at certain incidence angles and at certain wavelengths has a polarising effect, and

the use of polarisation therefore has a filtering effect, which can either be beneficial

or detrimental. Lillesand & Kiefer (2004) note that due to the complex nature

of the relationship between polarity and the parameters at play, it is difficult to

know whether using cross-polarised or co-polarised radiation is going to be best

for a particular application until they are tried.

1.2.1.6 Local incidence angle

The local incidence angle α is the angle between the radiation vector and the

normal of the object surface. Whilst the look angle (or angle of elevation), which

is the angle between the sensor direction and the nadir, is known, the local

incidence angle is usually not, and unfortunately it is this latter parameter which

has a direct bearing on how incident radiation will be scattered. It has complex

effects. An increased angle gives us worse layover, foreshortening and shadow, as

discussed in Section 1.2.1.1. However, according to Equation 1.2, a given surface’s

‘roughness’ will increase with an increased incidence angle (and therefore look

angle), as found by Robinson et al. (2006) (Section 1.2.1.1 above refers). It will

also be seen later that greater angles of incidence allow structural characteristics
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to have an enhanced effect on backscatter, which is particularly important in the

investigation of biomass (section 1.2.2.3 refers).

Schaber et al. (1997) tell us that a reduced incidence angle results in less

speckle for co-polarised images, whereas not much difference is observed with

cross-polarised images.

It should also be noted that increasing the incidence angle improves the range

resolution, according to the following equation, adapted from Lillesand & Kiefer

(2004):

Rr =
cτ

2 sinα
(1.5)

where τ is the pulse duration (discussed next).

1.2.1.7 Pulse Frequency

Radiation is emitted from radar sensors in bursts, or pulses, of energy at a given

frequency. Two object points very close together may return pulses which overlap,

or merge, making the two points indistinguishable. Therefore, a shorter pulse

duration (i.e. a higher pulse frequency) serves to improve range resolution. This

may not seem important for our purposes, as range resolution is always quoted

with available data products, but it serves to illustrate that increasing the look

angle will also improve range resolution.

1.2.1.8 Resolution

Having discussed the range resolution (perpendicular to the azimuth), there re-

mains the azimuth, or line-of-flight, resolution. Synthetic Aperture Radar (SAR)

devices use a very wide broadcast angle, which would normally result in a very

poor azimuth resolution. However, spatial position of an object parallel to the

azimuth is finely resolved by measuring the frequency of the return signal, which

is increased ahead, and reduced behind, the position of the sensor (due to the

Doppler effect). Thus the azimuth resolution depends on the smallest discernible

difference in frequency that can be detected by the sensor. Effectively, it seems

that with most data products, the azimuth and range resolutions are coordinated

towards a similar figure.
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1.2.1.9 Radar Response to Water

Open water, in the absence of resonance effects, or roughness due to weather

causing waves, has a relatively smooth surface which causes radar radiation to

be reflected away from the sensor, resulting in a low return signal (Henderson &

Lewis, 2008).

Schaber et al. (1997) describe a phenomenon which is akin to Bragg Resonance

in optics, where regularly spaced scatterers can cause resonant amplification of

a signal, even if the scatterers and their distances apart are tiny with respect

to larger undulations on which they are superimposed, and that this signal can

“dominate” the response in the case of satellite sensors. Resonance conditions

take the form

2Λ

λ sin θ
= n n = 1, 2, 3 · · · (1.6)

where Λ is the spatial wavelength, θ the incidence angle and n any integer.

This is relevant where any regularly-spaced deposits are found. The phenomenon

allows for the possibility of tiny ripples caused by a breeze on the surface of

still water to produce a high backscatter signal, where we would expect specular

reflection to cause a low signal. In a large body of water, these capillary waves

(on a scale of centimetres) are combined with the gravity waves (which occur

on the scale of metres) to form a range of waveforms called the wave spectrum

(Woodhouse, 2006).

Given that wind gives this structural component to water, and that the orien-

tation of the ripples vary, it follows that the resultant backscatter is also a function

of the relationship between the horizontal azimuth look angle and the orientation

of the waves. The resultant backscatter coefficient σ0 can be represented by the

idealised function

σ0 = A+B cos(φ− φR) + C cos2(φ− φR) (1.7)

where φ is the azimuth look angle, φR the orientation of the waves with respect to

the same reference, A is the mean backscatter, B the upwind/downwind variation

and C the asymmetry of the ripples (Ulaby et al., 1982; Woodhouse, 2006).
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1.2.1.10 Hydrological features and parameters

In the absence of water, hydrological features can be determined mainly by their

structural characteristics. In a single, uncalibrated image, a feature can be de-

termined if it contrasts with its surroundings. In the case of radar imaging, this

contrast is likely to be due either to dielectric or scalar/roughness inhomogeneities

between the feature and its surroundings. If a structure such as a drainage chan-

nel is significant enough in scale, it may have edges facing the radar sensor which

appear very bright, with dark bands behind them due to layover, foreshortening

and shadow effects as discussed in Section 1.2.1.1.

Vining & Wiseman (2006) record that relict meander scars appear as low-

return “radar dark” arcs in Radarsat data, which is attributed purely to differ-

ent textural qualities. This is corroborated by Schaber et al. (1997), who point

out that non-calcified small-gravel alluvium is specular, and hence radar-dark.

Schaber et al. (1997, p344) tell us that co-polarised data are more sensitive to

surface roughness on the scale of the particular band’s wavelength, whereas cross-

polarised data may be more sensitive to geometry or texture.

Surface infiltration capacity is a parameter in flood prediction, and surface

moisture an indicator of saturation. In fact, soil moisture, surface roughness

and incidence angle together combine to produce large variations in backscatter

(Pathe et al., 2009). Surface roughness in itself is an important parameter in

flood prediction, as it controls the speed of surface run-off (Bonn & Dixon, 2005).

1.2.2 Contemporary radar research

Henderson & Lewis (2008) carried out a review of the use of radar remote sensing

in the detection of wetland ecosystems, consolidating prior reviews and updating

the contemporary status of such research. This serves as an excellent source of

information.

In his review of the past and potential use of Synthetic Aperture Radar (SAR),

Gens (2007) gives us a statistical comparison of the volume of journal publications

on the use of SAR, against their subject, which is reproduced in figure 1.6.

As mentioned previously, there are many examples of the use of radar remote

sensing to map flooding. Some examples are the assessing of the extents of flooded
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Figure 1.6: Journal papers published on SAR techniques and applications between 1985 and
2006 (reproduced from Gens (2007))

paddies by Waisurasingha et al. (2007), the mapping of the 1997 flooding of the

Red River by Wilson & Rashid (2005), and the mapping of flood extents and

surface roughness (for flood prediction) by Bonn & Dixon (2005). Parmuchi et al.

(2002) map wetlands using multi-temporal data with a decision tree classifier, and

Töyrä & Pietroniro (2005) examine the relationship between flood duration and

vegetation patterns. All of these examples use RADARSAT data. Rosenqvist

et al. (2002) use a time series of JERS imagery to model flood extents in the

Amazon.

Research using radar remote sensing can be classified according to the at-

tributes of the data which effect the scope of detection capabilities: wavelength,

polarisation, incidence angle, modulation and the use of complimentary data.

These attributes are considered in the following sections.
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1.2.2.1 Wavelength

It has been seen that certain parameters which effect backscattering by a respon-

der are a function of wavelength — refraction (equation 1.4), Bragg resonance

(equation 1.6) and roughness (equation 1.2), for example. These dependencies

conspire to dictate that structural scale of responders effect backscatter from ra-

diation of different wavelengths, differently. It therefore follows that the choice of

waveband when considering the use of radar remote sensing depends on the pre-

dominant structure of the object under investigation, or that of its environment.

When attempting to map the extents of flood inundation in a river catchment,

it is the aquatic, riparian and terrestrial vegetation which must be considered in

addition to physical structure and orientation, as it is these which interact with

the incident radiation and scatter it.

What soon becomes clear when reviewing research in this field is that when a

vegetated area becomes flooded, one cannot consider the expected response of the

water and that of the vegetation separately, as their effect is synergistic. As we

have seen, water, when smooth, is a specular reflector. Vegetation, depending on

its type, size and structure, and on the wavelength of the radiation, is a volume

backscatterer and will therefore tend to return a higher signal to the sensor.

During inundation, therefore, in cases where such vegetation is totally submerged,

the net effect is a drop in backscatter to some degree. During partial submersion,

however, radiation which is scattered by the vegetation towards the water (which

under dry conditions would most likely be absorbed by the soil or substructure)

undergoes specular reflection from the surface of the water and enters back into

the volume scatterer. This process is often called “double-bounce” (Parmuchi

et al., 2002), or “dihedral scattering” (Rosenqvist et al., 2002). This will be

discussed further in section 1.3.4.

Generally, C-band is considered most suitable for the study of smaller-structured

vegetation components (Noernberg et al., 1999)—leaf-off low biomass conditions

of deciduous trees, for example (Henderson & Lewis, 2008), aquatic plants (Hen-

derson & Lewis, 2008) and wetlands dominated by herbaceous vegetation (Par-

muchi et al., 2002). It is also to be expected that growth of a plant will see

its relative scattering effects on C-band and L-band, for example, change. Pope
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et al. (1997) found that a rise in water levels in a marsh following burning show

no increase in backscatter in L-band, but a 6 dB increase in C-band response ,

presumably from dihedral reflection. In fact, Pope et al. (1997) go on to say that

an increase in C-band backscatter can sometimes correspond with a decrease in

that of L-band.

For reasons of scale, it is not surprising that C-band is more sensitive to ripples

on water surfaces (Hostache et al., 2009a), and we would expect L-band to better

respond to slightly larger wavelets. Of course, for the purposes of this study, it is

not the observation of such waves that concerns us, so much as their elimination,

as their presence only serves to make water bodies less distinguishable from the

surrounding environment.

It may generally be considered that longer wavebands, such as L-band, pro-

duce a higher response in forested areas, and C-band in areas of shorter, sparser

vegetation (e.g. Henderson & Lewis (2008)). Multiple wavebands would obviously

be the optimal acquisition. On an encouraging note for the use of the C-band

GM data, many consider C-band to be the most sensitive to flooding. Pope et al.

(1997), whose data included phase information (section 1.2.1.1 refers), found that

in a comparison of C and L-band co-polarised and cross-polarised configurations

(amplitude modulated) and C and L-band phase modulated data, the most sen-

sitive to flooding was C-band phase difference. Perhaps unfortunately for GM

data users, the same study found that C-band HH data was the worst for detect-

ing some flooded marshes, but that, once again, this was very much dependent

on the size and structure of the vegetation—Cattail and Sawgrass marshes, in

the Yucatan Peninsula, showed a significant increase in C-HH backscatter when

flooded.

1.2.2.2 Polarisation

As discussed previously, it is difficult to predict the best cross-polarised or co-

polarised configuration for a particular purpose until they have been tried and

tested on the particular area under investigation. This notwithstanding, Hender-

son & Lewis (2008) tells us of parallels drawn by Ramsey (1998) “between the

interaction of radar parameters (especially polarization) with vertically oriented
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flooded trees at L-band and vertically oriented stalks of flooded herbaceous vegeta-

tion at shorter wavelengths.”. Interestingly, Ramsey (1998) found that variation

in attenuation of C-band signal with incidence angle was not dependent on po-

larisation, whereas this was not the case at L-band (Henderson & Lewis, 2008).

Noernberg et al. (1999) show us that like-polarised signals (HH and VV) give

us clear separation of open water with various vegetation types in the area of

-25dB to -31dB, but with cross-polarised signals, the water response may be

confused with that of dead trees. This is perhaps intuitive, in that both water

and tree trunks present a dominant structure which is orthogonal to one of the

two axes of polarisation.

In their evaluation of the suitability of C-band SAR data for the mapping of

wetlands, Baghdadi et al. (2001) classified 3 images at various polarisations as a

function of incidence angle, reporting accuracies of 74%, 76% and 59% for HH,

HV/VH and VV respectively (based on error methods which will be discussed in

section 1.4.4).

Bourgeau-Chavez et al. (2001) found HH polarisation to be better than VV

for the discrimination of wetland while mapping riparian ecosystems in Virginia

using C and L-band data.

1.2.2.3 Incidence angle

The theoretical contribution of the local incidence angle to radar backscatter was

briefly discussed in section 1.2.1.6. A more detailed look at this relationship will

be taken when considering the proposed preprocessing of GM data. In terms of

contemporary research, the consideration depends, once again, largely on the use

to which the data is put.

There is general consensus that, where canopy needs to be penetrated in

order to experience the maximum dihedral scattering to discriminate flooded

from non-flooded woodland or forest, a low angle of incidence is best (Bourgeau-

Chavez et al., 2001; Henderson & Lewis, 2008; Ramsey, 1998; Sanyal & Lu, 2004;

Töyrä & Pietroniro, 2005; Töyrä et al., 2001). This, as Ramsey (1998) points

out, is due to the increased signal/canopy interaction at higher incidence angles.

Later in this review, when considering the preprocessing of GM data, the issue
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over the possible normalisation of pixel values in terms of incidence angle will

arise. Given the potential for dihedral scattering and other interactions that vary

with incidence angle (and with the structural nature of the scatterer) that are

discussed here, it is reasonable to suggest that no such normalisation is possible

without a precise knowledge of the underlying structure and orientation. Given

how quickly vegetation can change, especially in the tropics, this may never be

practicably achievable in the scale at which this review wishes to look. Section

1.4.1.5 deals with this issue.

If, indeed, a lower angle of incidence increases dihedral scatter in flooded

forests, then it follows that a ratio between data from a higher incidence angle

and that from a lower angle will be an excellent indicator of flooding in wooded

environments. As discussed, with smooth open water, the predominant response

results from specular reflection away from the sensor. For this reason, Kandus

et al. (2001) recommend large incidence angles to discriminate the interface be-

tween land and water (Henderson & Lewis (2008),Kandus et al. (2001)). A ratio,

therefore, of high incidence angle with low would seem a good method for distin-

guishing open water. In fact, such a combination was found to have significantly

higher accuracy when classifying open water, as compared to the use of single

images by Töyrä & Pietroniro (2005).

1.2.2.4 Modulation

Potentially, any of the parameters mentioned in sections 1.2.1.1 and 1.2.1.2 which

effect the scattering of incident radar radiation on a subject may be used in

detection. The Rayleigh and Fraunhoffer criteria were discussed, which govern the

property roughness. As part of their research into flood forecasting by estimating

surface run-off risk, Bonn & Dixon (2005) make use of this relationship to attempt

to measure surface roughness using Radarsat data. Incidentally, with reference

to the previous section, Bonn & Dixon (2005) find that greater incidence angles

provide greater radiometric resolution in terms of surface roughness.

Due to the fact that water tends to reflect most of the incident signal away

from the sensor, a simple threshold is the most common method used to classify

water in the research studied (Abhyankar et al. (2007); Baldassarre et al. (2009)
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and Hostache et al. (2009a) are examples). There are variations on this theme—

Chandran et al. (2006), for example, use a threshold on the variance of an 11×11

moving window to discriminate flooded areas. Shifting in phase in HH and VV

polarisations at C and L-bands may be used do discriminate flooded from non-

flooded forests (Henderson & Lewis, 2008).

Grings et al. (2009) use electromagnetic models of structural and dielectric

properties of soil and vegetation to predict backscatter response of marshland

locations and to extract water level estimates, with some success, particularly

when using interferometric techniques. Frappart et al. (2005) also use radar

altimetry to gauge heights and estimate water storage volumes in the Negro basin

in South America.

1.2.2.5 Ancillary data

Having established that there are a variety of parameters at play affecting how

an object or area scatters or absorbs radar radiation, the inversion of the signal

response necessarily involves having a qualitative and quantitative understanding

of properties which cannot be extracted from the radar data. These may include

the following:

Terrain and elevation: Governed by both the requirement for orthorectifica-

tion and by the dependence of backscatter on local incidence angle. A Digital

Elevation Model (DEM) is an essential component of the orthorectification pro-

cess (section 1.4.1.3 refers). Further, any corrections due to local incidence angle

or height calculation will necessarily require an accurate DEM. Waisurasingha

et al. (2007), for example, use a DEM (unidentified) and Radarsat-derived flood

extents to estimate flood depth to a high degree of accuracy. Usually an excep-

tional level of height accuracy is required of a DEM to derive water levels, such

as that attainable using LIDAR (Töyrä & Pietroniro, 2005).

Soil moisture: The dielectric properties of water changing the signal response

significantly, and a valuable tool in flood prediction, as discussed.
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Regolith: The dielectric properties of the surface material having a direct result

on the signal attenuation.

Soil types: As regolith, but in addition may play a part in soil infiltration

capacity and flood propensity estimates.

Meteorological data: For covariant analyses of flood-related events.

In situ hydrological data: Data collected in the field is an essential require-

ment for calibrating and verifying the results derived from remote sensing.

Other: Many other satellite data products were used in the literature researched

to verify derived results or to play an integral part in class segmentation. Zhou

et al. (2000) use multi-temporal NOAA AVHRR and Radarsat data to monitor

flooding in China. Landsat data was used by Bartsch et al. (2008) to compare

inundation mapped with GM data. Seiler et al. (2009) use ASTER data to

compare texture analysis methods with ASAR. Töyrä & Pietroniro (2005) use

multi-temporal SPOT and Radarsat data over a five year period to accurately

map wetland variations. In the latter paper, the importance of spatio-temporal

databases built up over time, with the understanding of relationships between

vegetation patterns and flood dynamics over an entire delta, are stressed.

1.2.3 Envisat ASAR Global Monitoring mode

ENVISAT ASAR’s Global Monitoring mode uses ScanSAR technology, incorpo-

rating beam steering, to cover wide swaths with varying look angles (ESA, 2007a),

and has the potential to operate continuously, making it unique amongst SAR

instruments aboard satellites (Pathe et al., 2009). The resulting product has an

excellent temporal coverage (figure 1.1 refers), at the expense of the spatial res-

olution at around 1km, and a significant noise component to the signal (Sabel

et al., 2008). Figure 1.7 shows the swath configurations against their look angles.

Table 1.3 shows the specifications for GM data.
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Figure 1.7: ASAR swath designations (ESA, 2007b)

Table 1.3: ASAR Global Monitoring Mode Image product summary, taken directly from ESA’s
ASAR Product Specifications (ESA, 2007b). Note that ENL refers to Equivalent Number of
Looks(ESA, 2007a)

PRODUCT NAME ASAR Global Monitoring Mode Image

DESCRIPTION ASAR product generated from data collected when the instrument

is in global monitoring mode.

It is a multi-look coarse resolution image.

APPLICATIONS It is for users wishing to perform applications-oriented analysis of

large scale phenomena, where high resolution is not needed.

COVERAGE Up to 400 km across track by up to 40000 km along track.

THROUGHPUT 1 product per orbit

PRODUCT SIZE Stripline Max: 139 MB

(80000 MDSRs × (850 samples × 2 bytes/sample +

17 bytes header)). Extracted Scene Max: 1.40 MB (800 MDSRs).

Continued on next page...
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Table 1.3: ASAR Global Monitoring Mode Image product summary (contd.)

Totals include all aux. data.

GEOMETRIC pixel spacing 500 m by 500 m

SAMPLING

GEOMETRIC approximately 1000 in ground range by 1000 m in azimuth

RESOLUTION

GEOMETRIC absolute location accuracy: 1000m + orbit data error

ACCURACY

RADIOMETRIC Product ENL > 15 (TBC); Rad. resolution = 10 log(1 + 1√
ENL

)

RESOLUTION

AUXILIARY Orbit State Vectors, Time correlation parameters, Main Processing

DATA INCLUDED Parameters ADS, Doppler Centroid ADS, Chirp ADS,

Antenna Elevation, Pattern ADS, Geolocation Grid ADS, PQS ADS.

ALGORITHMS data decompression;

USED raw data correction;

replica construction and power estimation;

calibration pulse processing;

antenna elevation gain function calculation;

noise power estimation;

image formation (SPECAN);

geolocation.

NOTES Produced systematically from the GM Level 0 product.

The product covers a continuous area along the imaging swath.

User extracts child product of region of interest, subject to minimum

scene size

The ASAR instrument operates at a wavelength of 5.6cm (C-band), poten-

tially with HH or VV polarisation. All GM data covering the Australian mainland

acquired to date has used HH polarisation.
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1.3 Methodological challenges with radar data

1.3.1 Speckle

As with all measurement processes using coherent radiation (e.g. Pathe et al.

(2009)), GM data suffers noise in the form of speckle, resulting from additive

and subtractive interference processes. Although the worst of this is removed

by averaging over 7–9 equivalent numbers of looks (ENL) (ESA, 2007a), further

filtering is generally required. There are many tried and tested spatial filters used

to mitigate the effects of speckle, possibly the most popular of which is the Lee

Adaptive filter (Henderson & Lewis, 2008).

Essentially all spatial filters are identifying a pixel as speckle by some criterion

based on its variation from its neighbourhood. They are then adjusting the value

of this pixel, again, according to some function of the values of the neighbour-

hood. This function may simply be an average—though the median is often used

(Bourgeau-Chavez et al., 2001), as this ensures that the value used belongs to

the domain of actual values received.

1.3.2 Temporal resolution

The importance of adequate temporal frequency of data in respect of the mon-

itoring of inundation dynamics has been touched upon in the introduction and

elsewhere. Oberstadler et al. (1997) express frustration at the time taken to ac-

cess data when a flood event has occurred, a sentiment agreed with by Sanyal &

Lu (2004). Rosenqvist et al. (2002) consider adequate time series of data to be

the “prime factor” governing the reliability and accuracy of flood models. Limi-

tations of single frequency images are identified by Parmuchi et al. (2002), who

also anticipate the emergence of greater availability of multi-temporal data and

some of its possibilities.

When considering a particular region over a period of time, for which multi-

temporal data of high frequency is available, there exists the opportunity to

establish parameters which are very specific to each square kilometre of the region

by analysing data taken at varying incidence angles and at various times under

different environmental conditions.
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1.3.3 Spatial resolution

Most applications of radar remote sensing would benefit from data with as high

a spatial resolution as possible, but this must be played off against constraints

in terms of data transfer practicality, storage and processing time. Increasingly,

data storage and processing time become less of an issue. This review is concerned

with the use of GM data, which has a nominal spatial resolution of 1km. The

constraint that this imposes is fairly straightforward, but the consequences may

be more complex. Certainly, the ability to derive details about the environment

within a pixel is reduced, thus increasing the requirement for more auxiliary data

against which to analyse the radar signal.

The obvious limitation of coarse resolution data is the minimum scale at which

classes can be distinguished. With multi-temporal data, this can be mitigated

to a limited extent for structures that are stable over a long period, which can

be discriminated by temporal averaging at a finer resolution—an example of this

may be seen in figure 1.8, which shows a mean of many GM images over Cape

York at a resolution of 16” (≈ 500m).

However, for the purposes of analysis, the minimum size for a homogeneous

class such as a river channel to be discernible will be a function of pixel size

and the contrast between the backscatter value of the interfacing classes we wish

to separate. The following section will have some bearing on the minimum dis-

cernible features.

1.3.4 Ambiguity of response

Simplistically, if water presents itself with a low backscatter value, and dry land

with a high value then a mid-range value will tell us we have some of both within

a pixel, and the actual value may give us an indication of the proportion of each.

Further to this, if we know the terrain precisely, we may know the pattern adopted

by the rising stage of water and in theory could even predict the extents within

the pixel. Unfortunately we are not looking at a region that is made up of water

and dry homogeneous land.

During a flood, in fact, the high moisture content of the surrounding soil will

result in an increased backscatter (e.g. Pope et al. (1997)). The flooded area itself

33



1. Literature review

Figure 1.8: Southern Cape York Peninsula: Mean of 12 GM images in 2009

may also be returning an almost lossless signal due to dihedral scattering from

the interaction of water with emergent vegetation, as discussed in section 1.2.2.1.

Some researchers approach the complexity introduced by vegetation by masking it

out (Bonn & Dixon, 2005). However, many wetlands and floodplains are covered

with aquatic vegetation, which renders this approach counter-productive.

Therefore, having detailed vegetation mapping which takes into account the

type and structure of the vegetation, allowing us to predict its response, and its

corresponding contribution to the received signal, is important. There are various

ways to do this. Bracaglia et al. (1995) develop an electromagnetic model for the

analysis of crops using radiative transfer theory and matrix doubling. Grings

et al. (2009) adapt this model for a technique to monitor flooded marshes, using

cylinders and discs to model different species. The role of vegetation is not a
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static one, as it is dynamic in both spatial extent and in size, and the emergence

of vegetation and differential leaf geometry in different seasons can lead to a

different (and, in fact, opposite) response (Bartsch et al., 2009).

Data in known conditions, together with empirical data, may allow us to es-

tablish a baseline with which to analyse backscatter during periods of inundation,

enabling the pixel values to be inverted and to derive a measure of the extent of

inundation. Knowing the degree of effects such as dihedral scattering is impor-

tant. There seems to be a minimum scale of vegetation for which the phenomenon

occurs—Pope et al. (1997) tell us that during their study of marshes, this effect

was only observed with C-band HH data in tall marshes with less than one third

spatial coverage. Henderson & Lewis (2008) tell us of the interaction between

specular reflection, volume scattering and dihedral scattering, and that the ratio

between them changes as the water level varies. Martinez et al. (2001) observe

peaks in backscatter from regrowth interaction with water in marshland. Bartsch

et al. (2009) find that inundated areas with emergent vegetation are difficult to

distinguish from areas of soil with a high moisture content.

The effect of wind on water has been discussed. Parmuchi et al. (2002) observe

large variations in water response even with low wind conditions, whereas Wilson

& Rashid (2005) experience near perfect (specular) reflection from water in the

absence of wind. The fact that wind does effect the ability to distinguish water

is a problem discussed by various researchers (Hostache et al., 2009a; Sanyal &

Lu, 2004; Töyrä et al., 2001). Mitigation of this problem can, apparently, only

come by recording wind conditions (and direction—equation 1.7 on page 21 refers)

against all data. Additionally, we may consider our choice of incidence angle from

the available data during times of strong wind conditions. Töyrä & Pietroniro

(2005) point out that higher incidence angles provide data that is less subject to

this effect. A good visual example of the effects of certain wind conditions on the

radar response from water can be seen in Figure 3.11, later in Chapter 3.

Of course, having discussed only those ambiguities which are peculiar to radar

data, we must also consider the simple fact that many different responders pro-

duce a similar brightness value or DN value for any single-band electromagnetic

sensor.

It is felt that the uncertainties inherent in this evaluation of radar data should
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form an integral part of the segmentation analysis when seeking the demarcation

of water. Binary decisions early in the process propagate and magnify errors

through to the final output. This project seeks to improve accuracy over single-

image thresholds, by effectively adding data channels using displacements in re-

spect of time and of incidence angle.

Multi-temporal data lends itself well to classification based on decision tree

analysis, examples of which will be dealt with in section 1.4.2. Such an approach

allows for a series of logical steps, each of which may involve different evaluation

techniques.

1.3.5 Local incidence angle

ESA’s ASAR Product Handbook identifies the potential of high incidence angles

and HH polarisation to map flooding, but concedes that “Combined use of images

acquired with different incidence angles poses a new set of challenges” (ESA,

2007a).

The theoretical relationship between backscatter and local angle of incidence

was covered in section 1.4.1.5. The main consideration is, in fact, that the local

incidence angle is not known, and when dealing with pixel sizes of 500m, the

aggregate contribution of all of the structural orientations within a pixel would

be too complex to calculate, even with an accurate DEM, as the effects of radar

shadow, foreshortening, layover (section 1.2.1.1 refers) and corner reflection etc.

would vary in relation to each other with the changing look angle.

GM data gives us the time series capability that allows us to establish the

relationship between local incidence angle and relative backscatter by observation.

An example of this process using GM data is given to us by Sabel et al. (2008)

in their investigation into the detection of surface soil moisture in Australia. In

this case, the full time series was used to fit a function to the incidence angle

and then the data was normalised to an angle of 30◦. This was modelled on a

linear fit, as described by Pathe et al. (2009), who demonstrated the relationship

between backscatter and local incidence angle determined using a scatterometer

in the Grasslands of Oklahoma—their plot is reproduced in figure 1.9. The two

vertical lines in the plot highlight the region used in GM data, and demonstrate
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the suitability of a linear approximation under these conditions (Pathe et al.,

2009).

Figure 1.9: Dry and wet backscatter reference curves for winter conditions with minimum
vegetation cover and summer with maximum vegetation cover (Pathe et al., 2009).

There is an approximate 50% split between data taken from an ascending

orbit and from a descending orbit. Backscatter values from an area taken from

the same look angle but opposing directions may, where structural components

of the backscatter are significant, bear little relationship to each other. However,

the flat nature inherent in floodplains and open water make orbit direction less

consequential for these cases.

The varied incidence angles used in GM data provide an opportunity to better

distinguish water from land. Ahmed (2006), for example, uses local incidence

angle as part of the classification process, and Töyrä & Pietroniro (2005) describe

the use of the low incidence angle Radarsat S1 data with the high incidence angle

S7 data to obtain a “significant increase” in the classification of open water.
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Certainly the experimentation with images having a close temporal proximity

but having different incidence angles is worthy of pursuit.

1.3.6 Data acquisition

One of the strengths of GM data is the fact that it is generated systematically and

made available over the Internet very easily. The process requires a Category-1

fast registration with the European Space Agency through its Earth Observation

Principal Investigator Portal (ESA, 2009a). Data is downloaded directly from

one of two processing stations, at Kiruna in Sweden (ascending orbits) and at

the ESA Centre for Earth Observation (ESRIN), at Frascati in Italy (descending

orbits). Other satellite data is available from ESA and other space agencies

through the submission of project proposals.

In order to make full use of the abundance of GM data available globally, it

will be necessary to consider the software and hardware required to download

and process a high volume of such data.

1.4 Data analysis

1.4.1 Preprocessing

1.4.1.1 Despeckling

The occurrence and cause of speckle have been discussed in section 1.3.1. When

confronting its mitigation there are several options to consider. Firstly is the type

of filter. In the broadest terms, and in respect specifically of GM data, averaging

or sampling can take place spatially or temporally. For each of these there are

then many choices of method. Whether applying a single filter, or a combination

of filters, there is also sequence and staging to consider.

There are some good reasons to consider despeckling measures prior to the

georectification process. The grid axes of the raw data bear a direct relationship

to the azimuth direction and therefore the planar axes parallel and orthogonal to

the incidence angle. If any terrain corrections due to orientation are to be taken

into account, then maintaining this relationship would be a distinct advantage.
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Despeckling would necessarily need to take place prior to such corrections. Also,

as speckle is largely the result of interference due to the coherence of the electro-

magnetic waves (Pathe et al., 2009), analysis using, for example, wavelets (Amir-

mazlaghani et al., 2009) would benefit from knowledge of the emission angles.

Finally, applying despeckling measures prior to the interpolation process neces-

sary for georectification would avoid “contaminating” any neighbouring pixels

with the erroneous speckle value. Practically speaking, only spatial filters may

be applied prior to georectification, as the latter process is what ties the temporal

snapshots together.

Notwithstanding such arguments in favour of despeckling prior to georecti-

fication, there is also a strong reason to leave this process until after orthorec-

tification. This is due to the fact that, as will be seen later in Section 2.2.2,

terrain effects (foreshortening, for example) can cause backscatter values from

several locations to be added to a single pixel, where the terrain causes the slant

range distances to differ less than a critical amount, depending on the resolution.

For example, using GM data, taking a central look angle of 30◦, and assuming

a satellite height of 800km, a difference in elevation of adjacent pixels of around

300m would cause the entire value of a pixel to be added to that of its neighbour.

Lesser elevation differences incur value transfers to lesser degrees, but they occur

nonetheless. Speckle filters seek to “iron out” contrasting pixel values such as

would be created by this effect. Thus, if orthorectification, which reverses the

terrain effect described, were carried out after despeckling, then we could end up

with artificially low, or even negative, pixel values as a result.

Choice of spatial filter can be done in a testing phase. There is much informa-

tion available on other comparisons of filters for different purposes, from which to

draw. Henderson & Lewis (2008), for example, describe a test involving 18 spatial

despeckling filters which found that the Lee Sigma filter, with three iterations of

different window sizes, increased the accuracy of brackish marsh detection from

79% to 95%.

It is envisaged that the processing required to combat other distorting effects

will involve raster algebra with more than one data file. This, in itself, must

have an averaging effect which can only serve to diminish outlying values. Also,

a strong contender as a despeckling approach, as we are intending ultimately to
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produce a binary determination of whether a pixel does or does not represent

flood waters, would be a post-classification clustering algorithm, which accounts

for texture rather than individual value; alternatively, a simple modal filter would

be appropriate.

1.4.1.2 Georeferencing

The geolocation of GM data makes use of the Geolocation Grid which is included

within Annotation Data Set Record (ADSR) of the binary data file. This grid

includes the incidence angle and a geodetic latitude and longitude for a number of

data points throughout the image. These data points occur at a nominal distance

of 40km in azimuth, and at 11 locations across the swath, the spacing of which

depends on the incidence angle (ESA, 2007a). Typical root-mean-square (RMS)

errors, in the third-order polynomial fit used in the georeferencing process during

this research, were calculated at around 0.16 pixels (≈ 80m). The corresponding

incidence angles, which are the calculated incidence angles with respect to the

WGS84 ellipsoid (ESA, 2004), are required for further processing.

1.4.1.3 Orthorectification

Orthorectification serves to minimise the geometric distortions in an image caused

by terrain. Methods specific to ScanSAR images are documented (Low & Mauser,

2003). The fact that the terrain under investigation (flood plains) is usually

flat means that relative distortion and therefore displacement will be minimum.

Bartsch et al. (2009) orthorectify GM data over flat terrain using GTOPO30 data.

Open source software, the NEXT ESA SAR Toolbox, which is being developed on

ESA’s behalf (Array S. C. Inc., 2009), will orthorectify GM data (amongst many

others), and will download SRTM3 DEM data automatically in the process. The

software also includes speckle filtering and many analysis tools.

In the case where it is intended to download and pre-process all GM data

systematically, benefits of an alternative means to orthorectify must be consid-

ered. In order for data to be registered, as will be discussed in the next section,

bespoke scripts are used to extract header information from the data files. Query-

ing the data files in this way using an abstraction layer from the Geospatial Data
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Abstraction Library (GDAL)1, gives us all the information we need to carry out

the orthorectification ourselves, giving us control over the whole process. Using

open-source programming languages such as Perl2 or C++3, could allow us to

run our scripts on the university’s High Performance Computer (HPC), allowing

us to take advantage of high-speed parallel processing capabilities. To this end,

the scripts will need to be written with multi-threading in mind.

1.4.1.4 Database registration

The binary GM data files contain a header in text format. From this header,

much salient details of the file can be extracted prior to any further processing,

and fed through to a database. This data includes corner coordinates which

allow the image outlines to be mapped without any georectification (which were

used, for example, for the production of figure 1.1 on page 13), and this, together

with other information, allow the efficient selection of data for further analysis

prior to full processing. The data file may then be temporally co-registered with

other data such as wind, rainfall and other remotely sensed data to build an

environmental context for analysis.

1.4.1.5 Sigma-nought versus beta-nought

Most satellite radar data comes with DN values which are a function of radar

brightness β. Conversion of GM data to β involves squaring the DN and dividing

by a calibration constant. Most analysis of radar data converts the raw DN values

to the coefficient of backscatter, σ0, which involves further multiplication by the

sine of the local incidence angle of the transmitted signal to the surface reflecting

it. This common approach is questioned (and answered) by Raney et al. (1994)

in their article entitled “Plea for radar brightness”, and by others (David et al.,

1998). By way of clarification, it is first necessary to examine exactly what the

GM data pixel values (DN) represent.

The ASAR sensor on board the satellite is able to measure, in raw terms,

power. Knowing the angle from which the power is received and the distance it

1http://www.gdal.org
2http://www.perl.org
3http://www.cplusplus.com
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has travelled, the system uses an algorithm to estimate the incidence angle (based

on the WGS84 ellipsoid) and attribute this power to an area, giving a measure of

power per unit area (called, in most fields, intensity, though this term has some

ambiguity, as shall be seen). Knowing the dimensions of the receiving antenna

and (approximately) the relative displacements of the satellite and the scatterer,

allows the determination of the solid angle over which the backscattered radiation

is received, giving a measure of the power per unit area (of the backscatterer)

per unit solid angle (or steradian). This, in radar terms, is also sometimes called

intensity (Woodhouse, 2006), but from here on shall be called brightness, which

has units Wm−2sr−1.

As mentioned, most articles using radar remote sensing for some sort of clas-

sification refer to backscatter values in terms of the normalised radar backscatter

coefficient, σ0, usually converted to decibels. This is due to the fact that, in order

to describe the backscatter response of a feature, a quantity which is independent

of the sensor is sought. σ0 is derived from the radar cross-section, σ, where

σ =
Ireceived
Iincident

· 4πR2 (1.8)

where, I is the intensity in the classical sense of power per unit area (Woodhouse,

2006). σ has units m2. However, as a greater incidence angle θ causes the power

to be spread over a larger area, σ is dependent on θ. This gives rise to σ0, which

is the radar cross-section per unit ground area, or

σ0 =
σ

A
(1.9)

(Woodhouse, 2006). This makes σ0 dimensionless. ESA’s ASAR calibration

guidelines (ESA, 2004) tell us that DN , β0 and σ0 are related by

DN2 = C · β0 = K · σ0

sinα
(1.10)

where C is some constant and K is known as the absolute calibration constant.

K is described as being

“...processor and product type dependent, and might change be-
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tween different beams for the same product type” (ESA, 2004).

For the GM data in this study, it has been found that K has had the same

value throughout (2.19×107), although the preprocessing script has been designed

to extract the value from each individual file during every calibration.

For a volume scatterer, as α increases, the incident power is distributed over

a larger area (Woodhouse, 2006), making σ0 a function of cosα. To take this into

account, it therefore may become more convenient to talk in terms of γ (or the

range independent backscatter coefficient (Shimada, 2010a)), such that

γ =
σ0

cosα
(1.11)

However, it must be understood (and indeed it is pointed out in the guidelines

(ESA, 2004)) that α is the local incidence angle, which is not usually known. In

fact, the derivations of γ and σ0 above assume volume scatterers and a flattish,

smooth surface (based on the WGS84 ellipsoid). Water, being largely a specular

reflector as discussed, and wet surfaces, are more greatly effected by varying

incidence angle, as shall be seen. Also, as pointed out by Raney et al. (1994)

and David et al. (1998), the actual incidence angle is not one angle, but rather

a complex quality made up of all of the orientations of structural components

within a pixel. This is especially true when considering what was discussed in

section 1.3.5, that scatterers will respond differently in an ascending orbit and

a descending one due to irregular structural orientation (effectively making the

real incidence angles different, where the nominal ones are the same).

Therefore the DN (or perhaps β0, simply reversing the output scaling opera-

tion (Parmuchi et al., 2002)), should be taken on its own merits, and processed

according to the intention of the analysis, rather than being automatically con-

verted to an erroneous σ0.

In fact, the effects of incidence angle are greater than the gamma conversion

in equation 1.11 accounts for. This fact is illustrated in figure 1.10.

Baghdadi et al. (2001), in their evaluation of C-band SAR data for mapping
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Figure 1.10: Two GM data images of the Mitchell catchment using GM data. The first has
undergone a conversion to σ0 using equation 1.10, and the second to γ using equation 1.11. It
is clear that the effects of the geodetic “local” incidence angles have not yet been fully factored
out, as viewed by the tendency for higher values (seen here in red) on one side of the swath.

wetlands, normalise σ0 using a function F (α) where

σ0
n =

σ0
α

F (α)
(1.12)

where F (α) is the mean angular dependence for a given date and given polar-

isation. This is shown as a cosine function, which for HH typically ≈ cos2.5 α.

Baghdadi et al. (2001) derive this function by assuming the relationship

σ0
α ≈ σ0

n cosψ α (1.13)

(adapted from Ulaby et al. (1982)), where ψ is the slope of the linear fit of σ0(dB)

against 10 log(cosα) (Baghdadi et al., 2001).

Pathe et al. (2009) model radar backscatter as a function of incidence angle,

soil moisture and time, where

σ0(θ, t) = σ0
dry(30) + β(θ − 30) + Sms(t) (1.14)

where ms is the relative soil moisture content and S(t) the sensitivity of the radar

backscatter to relative soil moisture changes at time t. Note that Pathe et al.

(2009) assume a linear change with respect to incidence angle θ, which varies only
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between 20◦ and 40◦. Sensitivity S for each 30’ tile is estimated as

S = σ0
wet(30)− σ0

dry(30) (1.15)

Wet and dry references are established through time series analysis.

The research following this review will seek to fit a function similar to that

in equation 1.13 to observed values in the time series. As a single region is being

examined, it is felt that rather then attempting to fit one parameter across the

(heterogeneous) area, parameters specific to subregions of a few pixels can be

mapped and applied more discriminatingly.

Further, much analysis will be on the basis of change detection, in which case

the operative values are relative to a subregion or pixel, and normalising becomes

unnecessary. Here even using the linear DN values are an option, eliminating

some steps in the preprocessing of data, an approach adopted by, for example,

Rosenqvist et al. (2002) when modelling inundation patterns in the Amazon, and

as advocated by Raney et al. (1994) and David et al. (1998).

1.4.2 Classification

Radar images, with essentially a single band, do not allow the same comparison

of signatures of different responders at different wavelengths possible with opti-

cal and multi-spectral images. However, there are other comparisons which may

be made in the same way by choosing different modes of image as channels in

place of wave bands. The ASAR product Alternating Polarisation (AP) modes,

for example, offer two images taken at the same time, being one of the following

combinations: HH–VV, HH–HV, VV–VH (ESA, 2009c). There are techniques

to classify single radar images. The most simple of these in the discrimination

of water from land is a threshold. Abhyankar et al. (2007), for example, recom-

mend a simple threshold of -15dB for this purpose, but point out the problems

already discussed, where the presence of waves on the water causes an increase

in backscatter value. Hostache et al. (2009a) take a less deterministic, more

probabilistic approach by classifying in terms of likelihood of values representing

flooding. A minimum threshold is established by choosing the lowest backscatter

value found in the definite non-flooded regions. Below this threshold, it is as-
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sumed that values represent flooding. A maximum threshold is then established

by selecting the highest values observed in the non-flooded water bodies (lakes,

permanent river channels, etc.). Values above this threshold are assumed to rep-

resent non-flooded areas. Values between the thresholds are then classified as

potentially flooded (Parmuchi et al., 2002). Outliers would need to be taken into

consideration with this approach, and in the case of strong winds, for example, it

might be possible for most of the flooded areas to fall only within the “potentially

flooded” classification, making the exercise of limited use.

A common method for classifying single radar images is to take into account

textural relationships between pixels. The Grey Level Co-occurrence Matrix

model (GLCM), for example, is a two-dimensional histogram of grey levels for a

pair of pixels which are separated by a fixed spatial relationship (Antoniol et al.,

2005). Various different textural measures are calculated from this histogram,

and depend on the choice of window size and pixel displacement. These include

entropy, a measure of the similarity of values within the local window, correla-

tion, a measure of linear dependency of values of neighbouring pixels, and angular

second moment, a measure of local homogeneity (Antoniol et al., 2005).

Seiler et al. (2009) use variance and entropy from an ASAR Image Mode

product, together with a Normalised Difference Vegetation Index (NDVI) and

Normalised Difference Water Index (NDWI) using ASTER data, to good effect,

in deriving eight classes around a flood plain. The improvements found by intro-

ducing textural components to the segmentation process are reproduced in figure

1.11.

Töyrä & Pietroniro (2005) note that their GLCM texture analysis increased

the accuracy of their classification from 22% with a single Landsat image to

74%, based on a Kappa coefficient (κ) test (section 1.4.4 refers). Arzandeh &

Wang (2002) use outputs from a GLCM analysis as channels for the supervised

classification of a single Radarsat image. An interesting comparison of the use of

different window sizes and the resulting accuracy was carried out (see figure 1.12).

Whilst many categories such as swamps and forests seem to be more accurately

identified with larger window sizes, water remains with a reasonably constant

(and high) level of accuracy, which seems to benefit from smaller window sizes

(Arzandeh & Wang, 2002).
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Figure 1.11: Detail of ASAR scene (a) and composite image of ASAR, Variance, Entropy (b)
(Seiler et al., 2009).

One classification method which exploits the use of a spectral class model

known as a Gaussian mixture distribution is the Sequential Maximum A Posteriori

(SMAP) method. The model works by segmenting the image at various scales

or resolutions and using the course scale segmentations to guide the finer scale

segmentations (Bouman & Shapiro, 2004), and is available with some remote

sensing software such as GRASS (GRASS Development Team, 2009).

Grandi et al. (2009) use wavelet variance analysis to derive textural signatures

from radar data, and in particular use the Fischer Criterion (Grandi et al., 2009)

to demonstrate the feasibility of such a tool as a supervised classifier. Among the

five methods described by Baldassarre et al. (2009) is an active contour model,

which uses a region growing algorithm to minimise an energy function which seeks

to encircle as many “good” pixels as possible.

The segmentation processes discussed are pertinent to a single radar image.

With the benefit of a high frequency time series, classification methods can take

into account backscatter responses of an area over a range of environmental condi-

tions and incidence angles, giving a more complex choice of signatures to analyse.
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Figure 1.12: Influence of window size on the average overall accuracy of the classification
results of texture features for different land cover types (Arzandeh & Wang, 2002)

This offers a much greater potential for accurate classification of a single image, as

well as behavioural classification of the whole series. A number of approaches to

dealing with this complexity present themselves in the available literature, two of

which are Artificial Neural Networking (ANN) (Ahmed, 2006; Quan et al., 2008)

and Decision Tree Analysis (DTA) (Baghdadi et al., 2001; Parmuchi et al., 2002).

In some cases both approaches are adopted, either together, or for comparison

(Zhou et al., 2000).

A good example of a decision tree based on individual thresholds in a hier-

archical step-wise process, is reproduced in figure 1.13. It is conceivable that

certain decisions may be made, not only on the basis of a cross-image thresh-

old, but also on some pre-classification process, that effectively allows a different

threshold for a different geographical location. Also, the threshold can be made

dependent on incidence angle, and orbit direction. Any analysis method can be

contained within such a decision tree, including an index, for example, such as

that combining the response to high and low incidence angles, as used by Töyrä &

Pietroniro (2005) and discussed in section 1.3.5. Also discussed in this section

was the likely difference between two backscatter signals representing the same
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Figure 1.13: Decision tree design from multi-temporal RADARSAT SAR images (Parmuchi
et al., 2002)
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area with the same angle of incidence, but with opposing orbit directions, due to

structural asymmetry. One responder that is structurally closest to the ellipsoid

estimation, and thus would suffer less from this effect, is water.

Ahmed (2006) provides a comparison of accuracies for a K nearest neighbour

analysis and that of an artificial neural network (ANN) in the classification of

land cover, including water. Overall it is determined that the ANN provides the

most robust results, with water being well distinguishable using both techniques.

Interestingly, temporal comparisons are made only with like incidence angles.

Bourgeau-Chavez et al. (2001) describes a semi-automatic hierarchical classi-

fication process that uses a cost reduction algorithm to produce an optimal model

for classification of, in this case, SIR-C data, in which an accuracy of ≈ 90% is

measured for the open water classification.

Oberstadler et al. (1997) use the Evidence-Based Interpretation of Satellite

images (EBIS) algorithm to perform a supervised classification of water and non-

water classes. The classifier is based on the “Dempster–Shafer theory”, assigning

a pixel to a class based on the relative probability of the value belonging to

that class, the probabilities being established for all values in the initial training

(or parametric) stage, using a multinomial distribution model. The conclusions

which were relevant to flood mapping emphasised the fact that the resolution of

the ERS-1 data was too coarse for the purpose of flood mapping in Germany, and

that temporal frequency was insufficient.

Noernberg et al. (1999) use coefficients of variation for different polarisation

configurations to discriminate classes, and find open water easily distinguishable

in all cases—this is, however, using C-band to a resolution of 6m.

Quan et al. (2008) combine Probabilistic Neural Network (PNN) with Multi-

scale Auto Regressive (MAR) models to extract multi-scale features of SAR im-

ages. The MAR is used to train the PNN. Interestingly, the MAR is a borrowed

time-series analysis technique, used here for spatial analysis of the same image.

The scale recursion device used in this algorithm seems akin to the SMAP model

discussed above. This combination of techniques is interesting, as the scaling

method can identify and account for speckle; the method appears to produce

particularly good results from homogeneous areas returning heterogeneous val-

ues (see figure 1.14).
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Figure 1.14: (Top) Original SAR image, (left) Segmented image obtained using PNN algo-
rithm and (right) Segmented image obtained using MAR and PNN (Quan et al., 2008)
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Parmuchi et al. (2002) conclude their research with two findings which fit well

with the aims and methodology of the research proposed in this review:

“(1) the need for multi-temporal SAR data acquired under different

environmental conditions for mapping wetlands, and (2) the advan-

tages and flexibility of physically based reasoning classifiers for syn-

thetic aperture radar (SAR) data classification.” (Parmuchi et al.,

2002)

1.4.3 Output

Figure 1.15 shows a basic schematic representation of the processing and output

of GM data proposed. The normalisation function F (DN,K, r, α) represents the

function derived from the time series data describing the relationship between

orbit direction, computed local incidence angle α and the backscatter, together

with the reversal of the scaling operation at the sensor, being a function of α and

the absolute calibration constant K, as discussed in section 1.4.1.5. Final output

might be, for example, single flood extent maps, relative soil moisture maps, or

flood duration maps (Rosenqvist et al., 2002). An important compliment to such

data will be a measure of their accuracy.

1.4.4 Analysis of accuracy

Each stage of processing changes values or assigns categories based on assump-

tions, and the magnitude of error of each stage should be considered indepen-

dently.

The GM data itself is understood to have a radiometric accuracy of 1.2dB

(Pathe et al., 2009; Sabel et al., 2008). As stated previously, georectification and

orthorectification are expected to contribute low spatial errors in the case of GM

data in flood plains (see sections 1.4.1.2 and 1.4.1.3).

For automated classification processes involving training areas, pixels within

the training areas may be randomly assigned to either training or testing, follow-

ing classification (Bourgeau-Chavez et al., 2001). A common method of analysis

against a known accurate classification is the use of error matrices, where differ-
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Figure 1.15: Flow diagram outlining one possible processing sequence using methods discussed
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ences are quantified by the kappa coefficient κ (Ahmed, 2006; Arzandeh & Wang,

2002; Töyrä et al., 2001; Waisurasingha et al., 2007), simplified by the estimation

κ̂ as follows (Campbell, 2007):

κ̂ =
observed− expected

1− expected
(1.16)

As this represents a sample, some researchers go on to test the statistical

significance of the results using a z -test (Waisurasingha et al., 2007). In the

case of the mapping of inundation (a binary decision), accuracy can be stated in

overall terms, or separately in respect of errors of omission (εo) and commission(εc)

(Rosenqvist et al., 2002).

1.5 Gaps in existing research

Computing power to manage multi-temporal time series

analysis

Much research has been done on river systems using radar remote sensing (Bonn

& Dixon, 2005; Chandran et al., 2006; Frappart et al., 2005; Waisurasingha et al.,

2007; Wilson & Rashid, 2005). However, multi-temporal analysis has been con-

fined to a handful of images, perhaps taken in different seasons. Where data needs

to be ordered in advance, it is often done post facto, and it is highly unlikely that

a pre-flood image will be obtained unless the flood itself is highly predictable.

GM data affords us the opportunity to analyse data from a high-frequency time

series with near-global coverage, from which data may be drawn hours after a

flood event.

The challenges which face any attempt to separate flood water from unflooded

areas, as described, are amplified when dealing with such a large dataset, par-

ticularly in terms of computing constraints. Ever-increasing advances in data

storage capacity and processing speed make the task of managing the compu-

tation required to pre-process and analyse GM data feasible. It is, however, a

necessary prerequisite for such analysis to set up a robust, automated system

that can download, register and pre-process GM data to suit the needs of this
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research, and that can, preferably, make full use of the HPC distributed net-

work available to researchers at James Cook University. This involves choices of

software and languages which are sympathetic to the HPC server environment,

with which tasks may be multi-threaded and assigned to some of several hundred

processing nodes. Apart from the orthorectification and geolocation operations

as described, consideration must be given to our ability to customise the process,

to drive the system towards different types of output, depending on the opera-

tion being performed. In certain instances, for example, it may not be necessary

for the processing of a single data file to result in an individual image output,

where the information gleaned from the data is merely required to contribute to

an aggregate. In such cases, there exists the opportunity to save on input/output

procedures and on memory, making the overall calculation process more efficient.

It seems clear that the research to follow would benefit from (and, indeed, may

prove to be conditional upon) a bespoke pre-processing set-up which concedes

control of each part of the process for the sake of flexibility.

Pixel-specific normalisation for incidence angle

The broad-brush standard for “normalising” for incidence angle effects which are

commonly adopted, have been discussed. The limitations in relying on differen-

tial measurements across a swath to apply linear corrections to the radiometric

value of a pixel include the potential loss of differences due to flooding. The

large time series available with GM data allows us to test for localised param-

eters against previously described models, to use in normalising for incidence

angle. This involves calculations for local incidence angle based on a DEM and

on satellite coordinates extracted from the data file, and on regression analysis

of backscatter against local incidence angle (or functions of these) over the time

series. Such calculations therefore build upon the ground-work done in setting

up the computational system described above.

The resultant measure of the behaviour of a target area with respect to in-

cidence angle can be correlated with various environmental parameters such as

ground cover, regolith and soil types in order to determine the drivers behind

particular radar signatures.
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Limitations in the use of radar remote sensing due to land

cover

Usually, the ground in the region surrounding flood waters has been saturated,

by surface flow, by direct rainfall or by flood waters themselves where the level

has dropped. For this reason, the backscatter values seen in these areas are usu-

ally very high, as characterised by wet soil, contrasting well with the expected

low return values from open water. As discussed in Section 1.3.4, a similar high

backscatter response is received from areas where vertical structures, such as tree

trunks or dense grasses, protrude through the surface of the water, causing dihe-

dral backscattering. For a particular radar data product, at its spatial frequency,

wavelength and at a particular incidence angle, there must be environmental con-

ditions such that, as flooding progresses over a certain proportion of a pixel, there

will never be sufficient open water to drop the aggregate pixel value significantly

enough to detect flooding. This means that there are land cover conditions for

which, for example, C-band radar data with 500m pixels could not be used to

monitor flooding under (almost) any circumstances. Given the overall objective

of this thesis, an understanding of these conditions, in respect of GM data needs

to be achieved.

Ambiguity of low backscatter response due to absorption

It may be for the same reason as described above, i.e. that flood waters are

usually surrounded by wet soil, that ways to overcome ambiguity due to radar

attenuation and absorption by dry soil or sand have not been investigated to any

significant degree. The perception of the problem may not have any prominence

in the field, as it may not be expected to be a problem at all. However, in a

country such as Australia, where we see how heavy rainfall in Queensland causes

surface flows between two deserts to flood the Eyre basin in South Australia,

hundreds of kilometres away, we can perhaps see this phenomenon more clearly

as a potential problem. This is, of course, a potential issue for all rivers running

through arid regions, and the question as to whether the advantages brought by

radar remote sensing to the mapping of floods can be applied to these cases, in

light of this problem, deserves investigation.
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1.6 Conclusion

The mapping of inundation using GM data seems, given certain constraints,

feasible. The difficulties faced by this task are worth attempting to overcome,

due to the benefits that GM data can offer. Indeed, GM data may provide the

only means of monitoring large scale inundation and recession which occur very

quickly, in hydrological systems which need, increasingly, to be understood. The

challenges are complex. Firstly, given the coarse spatial resolution of GM data,

its use is limited to large flood plains with continuous coverage of a few square

kilometres at least. In fact, it is the large, flat, quickly-changing flood plains that

benefit most from the use of GM data, due to difficult timely access to gather

data from the ground. Secondly, it is important that the effects on radar response

of parameters such as local terrain, vegetation, soil moisture and incidence angle

are understood, so as to be able to interpret the radar data to a known and suf-

ficient degree of accuracy. It is envisaged that the opportunity to compare signal

responses from an area using two or more incidence angles in very close temporal

proximity will allow the segmentation of water to a degree not possible from a

single angle. Also, there are opportunities to take advantage of the high temporal

frequency of GM data to explore different segmentation methods beyond simple

thresholding of single radar images. More specifically, the following questions

arise from this review:

1.6.1 Research questions

1. How does radar backscatter vary with incidence angle for different surface

conditions? How does this affect the segmentation of open water?

2. Under what vegetation conditions (vegetation type, size, density, orienta-

tion) does multihedral backscatter distort the radar signal so as to make

flood water indistinguishable from its surroundings?

3. How can we separate dry soil/sand from floods through arid regions? How

significant is this problem?

4. How can the processing of such a large dataset be managed? How can we
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automate the download, registration and orthorectification of a high volume

of GM data files to allow efficient analysis?

These questions represent the primary thrust of what is to follow. If we can

answer them to some degree of success, then the contribution of this thesis will

be the demonstration that GM data, and its foreseen successors, can be counted

as valuable tools with which to map large floods, crucially within a time-frame

in which immediate action may be taken to assist the many people whose lives

may be affected. Any contribution to such a cause, however small, must surely

be significant.
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Abstract

A means to pre-process a large volume of Envisat ASAR Global Monitoring Mode

(GM) radar data, using open source software and abstraction layers, is described.

The preprocessing includes orthorectification, in which case the Digital Elevation

Model (DEM) is projected into the local frame of reference of the data file and

header parameters are extracted, to calculate the local incidence angle and to

make along-swath adjustments against terrain displacement effects.

The objective is to develop a practical method to pre-process GM data using

the tools available on James Cook University’s High Performance Computing fa-

cility. The method allows for control throughout the whole preprocessing stage,

so that adjustments can be made early on to eliminate unnecessary calculations in

cases where, for example, parameters may be factored out, to avoid undue over-

head. Spatial accuracy tests well against alternative software. Tools to extract

and interpolate tie-point coordinates, incidence angles and slant-range times into

Grass ASCII data files from GM data files will be made available for contribution

to the GRASS GIS development community.

2.1 Introduction

From the inception of Geographic Information Systems several decades ago, ad-

vances in GIS and remote sensing instrumentation and methodologies have run

concurrently with increasing computation and data storage capabilities required

to take advantage of the expanding field. Satellite radar data has been widely

recognised as having an important role in the application of remote sensing, due

largely to its independence from solar radiation and for its abilities to penetrate

cloud cover (Alsdorf et al., 2007; Badji & Dautrebande, 1997; Leblanc et al.,

2011). Within the Radar field, ScanSAR technology has allowed increased tem-

poral frequency of radar coverage, enabling its use to track rapid events such as

floods, where the use of other data is precluded by the presence of cloud (Baup

et al., 2007), and has provided temporally denser time series data sets, increasing

the scope of methods available for, for example, temporal speckle filters (Ciuc

et al., 2001; Trouvé et al., 2003), and change detection (Colesanti & Wasowski,
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2006; Quegan et al., 2000).

This increase in data volume requires increased computing capacity to meet

preprocessing requirements. Radar data, for example, commonly requires georec-

tification, terrain correction and usually some form of recoding or normalisation,

together with some form of spatial filtering to reduce effects such as speckle.

Prior to the recent demise of Envisat (see Section 6.2.1 towards the end of this

thesis), GM data was made available in near real-time for download to parties

with at least a Category-1 fast-track agreement with ESA. The data was avail-

able quickly because it was preprocessed at the sensor, before being transmitted

down to one of two ground stations in Europe. This was made possible by keep-

ing file sizes and processing requirements low, by using a coarse resolution (pixel

size: 500m, spatial resolution: 1km) (ESA, 2007b). The main use to which GM

data was perceived to be put was the monitoring of large-scale changes in polar

ice extents, with ice and open water having readily distinguishable backscatter

characteristics (Zink et al., 2001), but the frequency of coverage of GM data (see

Table 2.1) extend the possibilities to other variables such as soil moisture (Pathe

et al., 2009) and flood extents (O’Grady et al., 2011).

Latitude (+/-) 0◦ 45◦ 60◦ 70◦

Frequency 5 7 11 16

Table 2.1: Average revisit frequency capability per 35-day orbit cycle as a function of latitude,
for descending orbit path only (ESA, 2007a)

There are a couple of software tools available to preprocess GM data, such

as NEST (Next ESA SAR Toolbox) and BEAM (Basic ERS & Envisat (A)

ATSR and Meris Toolbox) as made available for download by ESA via their web-

site1. Partly in recognition of the access and computing requirements for the near

real-time processing of large data sets, ESA has developed a web-accessible grid

environment called Earth Observation Grid Processing On Demand (G-POD),

which gives fast access to data and computing resources and allows verification of

algorithms (Cossu et al., 2009). However, as our analysis requires a greater con-

trol over the georectification and terrain correction process, and as a high volume

of data is required to be transferred, it was considered beneficial to write bespoke

1https://earth.esa.int/web/guest/pi-community/toolboxes
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code to handle the process (e.g. Rees & Steel (2001)). This chapter outlines a

practical method of preprocessing large volumes of GM data, employing parallel

processing over James Cook University’s (JCU) high performance network using

open-source software and part procedural, part object-oriented code.

2.2 Theory

2.2.1 Theoretical basis

The adopted algorithms adjust for range shifts and ignore azimuth shifts. The

consequences of this are tested against the results of tools provided by ESA, using

data files covering areas of mixed topography. The algorithms adjust for cross-

track displacement caused by the fact that the process used by the ASAR sensor

to geo-locate the source of a backscatter value assumes that the source lies on the

surface of the WGS84 ellipsoid, without taking into account its height above the

datum. The algorithm therefore requires an elevation for each pixel, and for this

purpose, a SRTM 250m DEM (Jarvis et al., 2008) is resampled to the 500m pixel

spacing of the GM data. In the raw GM data file, the position of a pixel within

a row corresponds to its position across the ground range swath. For this reason,

the processing is done in the local x-y grid of the raw data prior to rectification

to geographical coordinates. In order to convert the raw GM data values into

backscatter values, the local incidence angle α is required, which in turn requires

the (nominal) incidence angle θ and the local orientation of the target pixel with

respect to the incident radar beam. This latter parameter is established using

the DEM values adjacent to the target pixel.

2.2.2 Orthorectification

2.2.2.1 Establishing the displacement error

This algorithm works within the frame of reference of the raw data, whose rows

and columns lie parallel to the swath and azimuth respectively. Consider Figure

2.1, where R represents the distance of the sensor from the centre of the WGS84

ellipsoid, r is the radius of the ellipsoid at the target coordinates, h is height
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Figure 2.1: Geometry used in the calculations for orthorectification

above WGS84 of the target, (i.e. the DEM value) and s is the slant range, or the

direct distance from the target to the sensor.

The target pixel is positioned in the data according to its distance along

the ground-range swath as calculated using the slant range s. This calculation

assumes a target positioned precisely on the WGS84 ellipsoid. Where the target

has height h, it can be seen that the calculated distance has a displacement ∆

closer to the nadir than the actual target position. In Figure 2.1, two triangles

can be seen for which the length of all of the sides are known. From this, we can

calculate angles Ω and ω, which in turn gives us the displacement arc ∆.

∆ = r(Ω− ω) (2.1)

where Ω and ω are in radians. This assumes that r is constant over the

displacement ∆, despite the ellipsoidal, rather than spherical model. This is

perfectly acceptable, as the difference would only amount to a few millimetres

over an entire pixel width (e.g. Rees & Steel (2001)). Angles Ω and ω are

calculated as follows.
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According to the cosine rule, in any euclidean triangle,

a2 = b2 + c2 − 2bc cosA

where A is the angle subtended by the side of length a, and b and c are the

lengths of the other two sides.

Rearranging gives us

A = cos−1

(
b2 + c2 − a2

2bc

)
If we equate A with Ω, then

Ω = cos−1

(
(r + h)2 +R2 − s2

2R(r + h)

)
(2.2)

and similarly for ω

ω = cos−1

(
r2 +R2 − s2

2Rr

)
(2.3)

Equations 2.2 and 2.3 may then be substituted into Equation 2.1 to obtain

the displacement ∆.

2.2.2.2 Redistribution of cell value

Figure 2.2: Orthorectification value reassignment

Consider the cell (the yellow cell in Figure 2.2) in column (or range address) C
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of our desired terrain-corrected final image, whose terrain correction displacement

is ∆. Due to the difference in height between the datum ellipsoid and the target,

the value from this cell has been wrongly assigned, partly to the cell at C − n,

and the remainder to the cell at C − n− 1. Let η be the number of cells within

displacement ∆, where

η =
∆

P
and n = bηc (2.4)

We cannot simply reassign the values from the cells in columns C−n and C−
n− 1, as their overall brightness value may be the sum of contributions of values

from more than one cell experiencing foreshortening or layover. It is therefore

necessary first to establish how many contributions to each cell value were made,

and then to determine what proportion of the overall value was contributed by the

target cell. We cannot determine the precise contribution from various locations

along the swath to an aggregated value. The best we can do is to give equal

weight to each contribution, effectively redistributing a contribution average to

each correct location. In practice, this requires a two-pass algorithm. Let Ki be

the total number of cells contributing to the final value of the cell in column i.

Then, given Equation 2.4:

KC−n ← KC−n + 1− η + n

KC−n−1 ← KC−n−1 + η − n

The second pass of the algorithm may then assign a new value Vi to the cell

in column i, such that

VC = (η − n) · UC−n−1

KC−n−1

+ (1− η + n) · UC−n
KC−n

(2.5)

where Ui is the original value of the cell in column i.

If desired, we can record the K values and output a raster to give a measure

of the degree of foreshortening encountered. Whether layover has occurred is

trivial, as it is simply a matter of the relative value of the displacement ∆ of a
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cell with respect to that of its neighbours. What is of far greater importance is

that no contributions are allocated to cells from which no backscatter has reached

the sensor due to radar shadow.

2.2.2.3 Establishing Radar Shadow

Figure 2.3: Satellite–Target geometry, showing Slant Range S, Nominal Zero-Doppler Slant
Range S′, Incidence Angle θ and Off-nadir Angle φ

With reference to the diagram in Figure 2.3, if θ is the incidence angle of the

target at the WGS84 ellipsoid, then φ is the incidence angle at the target height,

or the Off-nadir angle, being the angle between the zero-Doppler slant range S

and the normal to the ellipsoid at the target pixel, in the plane containing the

sensor, the target and the ellipsoid center. Let φi be the Off-nadir angle for a cell

with range address i, where i is zero closest to the nadir. If there exists a range

address j closer to the nadir for which φj > φi, then i is obscured by j and is

therefore in shadow:

Shadow = {i | ∃j 3 (i > j) ∧ (φi < φj)} (2.6)

2.2.3 Local incidence angle

Figure 2.4 shows the signing convention used here. The X and Z axes lie in the

plane containing the sensor, target and swath. The Y axis comes out of the

page. Λ and θ are the Look angle and Incidence angle respectively. n̂ is the unit

vector normal to the target surface, and r̂ of incident radiation returning to the
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Figure 2.4: Signing convention for the following calculations. The X axis lies on the plane
containing the satellite and the target, and is tangential to the WGS84 ellipsoid. Λ, θ and α
are the look angle, incidence angle and local incidence angle respectively. The direction of n̂ is
dependent on topography, and is arbitrary in this diagram.

sensor. Using this convention, the X and Z components of r̂ are − sin θ and cos θ

respectively:

r̂ =

 − sin θ

0

cos θ

 (2.7)

We are interested in finding the local incidence angle α, which is the angle

between n̂ and r̂.

Let n̂ =

 A

B

C


We know that a · b = ab cosα where α is the angle between vectors a and b.

⇒ n̂ · r̂ =

 − sin θ

0

cos θ

 ·
 A

B

C


= C cos θ − A sin θ
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⇒ Local Incidence Angle

α = cos−1(C cos θ − A sin θ) (2.8)

as n̂ and r̂ are both of unit length.

2.2.3.1 To establish normal vector

Figure 2.5: DEM Grid surrounding target pixel of height e

The vector n can be established from the cross product of two vectors con-

tained in the target surface. Figure 2.5 represents the target pixel in the centre,

with DEM height e, where the X axis from our local frame of reference described

in Figure 2.4 points upwards, with the origin at the centre of the target pixel at

height e. Thus a vector v1 from the origin to the top-right pixel would be

v1 =

 p

−p
a− e


where p is the pixel spacing, and a vector v2 from the origin to the bottom-left

pixel would be

v2 =

 −p
p

i− e


A diagonal vector d1 from the bottom-left to the top-right pixel would there-
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fore be

d1 = v2 − v1 =

 2p

−2p

a− i


Similarly, another diagonal vector

d2 =

 2p

2p

g − c


We can derive a vector normal to the plane containing vectors d1 and d2 by

calculating their cross-product using the determinant of the formal matrix

d1 × d2 = det

 i j k

2p −2p (a− i)
2p 2p (g − c)


= i(−2p(a− i)− 2p(g − c))

− j(2p(g − c)− 2p(a− i))

+ k(4p2 + 4p2)

giving us the normal vector

n1 =

 2p(i− a+ c− g)

2p(a− i− g + c)

8p2

 (2.9)
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Similarly two other vectors contained with the target plane are

d3 =

 p

0

d− e

−
 −p

0

f − e

 =

 2p

0

d− f


and

d4 =

 0

p

h

−
 0

−p
b

 =

 0

2p

h− b


whose cross product

d3 × d4 = det

 i j k

2p 0 (d− f)

0 2p (h− b)


giving us another “normal” vector

n2 =

 2p(f − d)

2p(b− h)

4p2

 (2.10)

Of course, neither of the vectors in equations 2.9 nor 2.10 represent the true

normal to the target plane (which only really exists as a mathematical concept),

but they are approximations to the normal based on the surrounding terrain. It

seems reasonable that our best approximation of the normal could be taken as

the bisector of these two vectors, found by averaging n1 and n2 to give us

n =

 p(i− a+ c− g + f − d)

p(a− i− g + c+ b− h)

6p2


To obtain the unit vector we divide n by its length
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n̂ =
1

|n|

 p(i− a+ c− g + f − d)

p(a− i− g + c+ b− h)

6p2

 (2.11)

where

|n| =

√√√√ p2(i− a+ c− g + f − d)2 + 36p4

+p2(a− i− g + c+ b− h)2

= p ·

√√√√ (i− a+ c− g + f)2 + 36p2

+(a− i− g + c+ b− h)2

2.2.3.2 Final algorithm

This gives us the final algorithm for the local incidence angle α. We recall from

equation 2.8 that

α = cos−1(C cos θ − A sin θ)

Into this we can now substitute the X and Z components of equation 2.11,

such that

A =
S√

S2 + 36p2 + T 2

and

C =
6p√

S2 + 36p2 + T 2

T = a− i− g + c+ b− h

S = i− a+ c− g + f − d
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Figure 2.6: Errors (∆α) in local incidence angle (degrees) as a consequence of adopting the
use of the incidence angle θ provided in the GM data without adjusting for DEM height, over
the full range of incidence angles θ.

Thus α is fairly easily calculated from DEM values, the pixel spacing p and

θ, which is the angle of incidence with respect to the WGS84 ellipsoid. These

angles are provided within the raw data files for sample tie points along each

swath line. Keeping the calculations in the frame of reference of the raw data

(ie prior to georectification) allows us to derive such values for all intermediate

pixels by interpolation, along with the slant range times which are used in the

orthorectification process, described in Section 2.2.2.

2.2.3.3 Methodological errors

There is an error caused by the use of the nominal incidence angle θ, as opposed

to the off-nadir angle φ (see Figure 2.3), to arrive at the vector r̂ representing

incident radiation in Equation 2.7. This error is plotted in Figure 2.6. In extreme

cases, for example where θ = 44◦ and with an elevation of 4000m, the this error

would amount to less than 0.2◦. This is considered negligible for our purposes.

The SPECAN algorithm used by the ASAR sensor in GM mode corrects for

antenna elevation gain using functions derived from the periodic calibration data

(ESA, 2007a). The correction is updated when a new periodic calibration cycle

occurs according to continually shifting relationship between the sensor location

and the datum ellipsoid. The error in incidence angle described above has a

consequence on the output data, as the Antenna Elevation Pattern (EAP) is
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Figure 2.7: Antenna elevation pattern against Elevation angle, for each of the five predeter-
mined overlapping antenna beams operated in the ScanSAR modes, extracted from a GM data
file centred over Australia.

indirectly dependent upon the incidence angle. A typical relationship between

the elevation angle and the EAP is shown in Figure 2.7.

The relationship between the ground-projected backscatter γ before and after

orthorectification, the incidence angle θ and the off-nadir angle φ is as follows:

γORTH = γSRT

(
G2
ele(θ)

G2
ele(φ)

)
where G2

ele is the two-way antenna elevation pattern gain (Shimada, 2010b).

Thus when converting to decibels, this gives us

∆γ (dB) = ∆G2
ele (dB)

The greatest rate of change of G2
ele with respect to elevation angle observed

was below −6 dB degree−1. This would result in an extreme case (4000m target

height above datum, 44◦ look angle) in a difference of 1.2 dB to the final γ figure.

Whilst this amount is significant, it is within the stated radiometric accuracy of

GM data (1.54–1.74 dB, ESA (2007a)), and in most cases the error would be

considerably less, and it is not accounted for in this procedure.

73



2. High-volume preprocessing

2.3 Method

2.3.1 Choice of software and programming languages

The decision to use the Geographic Resources And Support System (GRASS) GIS

package to manage raster files in a prototype image preprocessing module is not

a difficult one to make (GRASS Development Team, 2009). GRASS adheres to

the Unix Philosophy (Kernighan & Pike, 1984), ensuring that its modules can be

combined into shell scripts or can be easily incorporated into other modules. It is

open source, meaning that its source code is readily available, and that any work

done to build functionality that is not currently available, such as is intended by

this research, may contribute source code in turn that is then available to the

wider community, and in this way GRASS, which has been around for nearly

three decades, maintains currency in the ever-broadening field of GIS. GRASS

can be used in a multi-user environment (Neteler & Mitasova, 2008), lending itself

to be set up for parallel tasks, and it is able to handle large data sets with low

memory load (Huang et al., 2011; Jasiewicz, 2010).

Although GRASS is written in C++1, Perl2 was used for the prototype for a

variety of reasons. Perl is known for its strength as a rapid prototyping language,

being high level and having lazy memory management. It is compiled just-in-

time, rather than being interpreted, and allows pre-execution syntax and sanity

checks. Perhaps the three most valuable benefits of Perl are its ready availability

on almost all Unix servers, important when considering the use of High Power

Computing (HPC), its ability to run inside the GRASS shell environment, and

its powerful REGEX engine. This latter virtue is of particular importance in

handling output streamed from GRASS and from auxiliary software to extract

header information from binary data files, and allows rapid data exchange be-

tween arrays and data stored in text files, buffering output to reduce expensive

system calls.

1http://www.cplusplus.com
2http://www.perl.org
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2.3.2 Structure

The code was organised in a hybrid procedural/object-oriented manner. It was

designed so that the task of preprocessing a large number of data files could

be split among multiple nodes in an HPC. For each node, a unique GRASS

environment is set up, including the automated output of a GRASS batch script,

the setting of the GRASS BATCH JOB variable and the creation of a unique

MAPSET within which to work, to avoid any locking conflicts. Each node is

set to run a procedural batch script, the arguments of which include a target

output directory and the allocated file input list. This script then calls GRASS

commands and initiates Perl object instances, ultimately to output a GeoTIFF

file, containing a minimum of two bands, representing the orthorectified DN values

and the local incidence angles. A radar-shadow mask and a representation of

layover/foreshortening can easily be produced (as these are calculated), but in

this first instance this explicit output is avoided, to reduce I/O system calls and

free up memory. Radar shadow is manifest in the output image in the form of

null values.

Figure 2.8 shows the salient features of the principle classes used. The pivotal

class is GrassAscii, which comprises the attributes and methods necessary to

write to and read from an ASCII raster file compatible with GRASS GIS. Classes

Alpha and Ortho are themselves child classes of GrassAscii, Alpha containing

the method by which to calculate local incidence angles, and Ortho the method

to perform the terrain correction. The GM class represents the raw data file,

and comprises the methods required to extract the Annotation Data Set Records

(ADSR) within the GM file and to interpolate the Slant Range Times (SRT),

Latitudes and Incidence angles. These, together with the DN values and the

recoded DEM, are exported as GrassAscii objects.

Figure 2.9 shows the operation flow and exchange of data between the pro-

cess gm procedure and the various modules. Operations on the left side are

carried out in geographical lat-long coordinates, while those on the right occur

within the x–y grid local to the raw data file. Data exchanges via ASCII grid

files are shown in yellow.

Algorithm 1 shows pseudo-code demonstrating the orthorectification proce-
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GrassAscii
+fullPath: string
+north: float
+south: float
+east: float
+west: float
+type: string = 'float'
+decimalPlaces: int = 2
+data: array ref

+WriteAscii(): void
+ReadData(): void

GM
+fullPath: string
+width: int
+height: int
+tiePoints: array ref
+sampleNumbers: array ref

+GetR(): int
+Interpolate(): void
-OutputRaster(type:string): GrassAscii
+OutputRasters(): void
Outputs THETA, SRT, LAT

<<GrassAscii>>

Alpha
+dem: GrassAscii
Digital Elevation Model

+theta: GrassAscii
Incidence Angles

+CalculateAlpha(): void

<<GrassAscii>>

Ortho
+theta: GrassAscii
Incidence Angles

+srt: GrassAscii
Slant Range Times

+latitudes: GrassAscii
Geographic latitudes

+dem: GrassAscii
Digital Elevation Model

-GetR(latitude:float): float
+Orthorectify(): void

<<GrassAscii>>
theta, srt, latitudes

<<GrassAscii>>
theta

Figure 2.8: Class outline used

dure carried out by the Ortho class. For each row (each azimuth address) in the

Digital Number (DN) array, two passes are made through the pixels, effectively

travelling across the radar swath in the direction away from the nadir. The first

pass (lines 5–19) determines the off-nadir angle φ. If there has been a previous

value of φ higher than the current value on the same swath, the pixel is marked as

shadow ; otherwise, the misplaced contribution value of the current pixel, based

on its SRT and incidence angle, is added to the relevant address in the CON-

TRIBUTIONS array. In the second pass (lines 20–24), now knowing the total

number of contributions that were aggregated to produce the pixel values in the

raw data, these values are then redistributed according to the displacement ∆

recorded in the first pass.

The function RedistributeDNValue in line 22 then apportions values in

accordance with Equation 2.5 and as shown in Figure 2.2 in Section 2.2.2.2, as
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process_gm.pl

Create unique MAPSET

in lat-long LOCATION

For each N1

Create GM object

Rectify DEM to

Create ORTHO object

Create ALPHA object

Import ASCIIs

Rectify ODN, λ to
lat-long LOCATION

GM

Import raw data

Extract tiepoints data

Interpolate θ, SRT, LAT
Output ASCIIs:

Extract R
Destroy GM

ALPHA

Calculate local incidence angles

Output ASCII

α

SRT, LAT, DN

DEM

θ

ORTHO

Orthorectify

Output ASCII

ODN

Destroy ORTHO

Destroy ALPHA
TIFF: 16 bit integer

Band 1: ODN (Wm−2sr−1)
Band 2: α (×100 Degrees)

Output TIFF

x–y LOCATION

R
aw

d
at

a
x

–
y

g
ri

d

Figure 2.9: Flowchart showing preprocessing carried out by one node running process gm.pl

follows:

ODN[c]

←
[
(∆− b∆c) · DN[c− b∆c − 1]

CONTRIBUTIONS[c− b∆c − 1]

]
+

[
(1−∆ + b∆c) · DN[c− b∆c]

CONTRIBUTIONS[c− b∆c]

]

where c is the current pixel range address. Pseudo-code representing the

interpolation method provided in the GM class is shown in Algorithm 2. The

algorithm interpolates firstly between tie-points across the swath to produce a

full raster row (lines 3–7), and then interpolates down the columns for each pixel
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Algorithm 1 Orthorectify()

1: Fetch into arrays (DEM, DN, LAT, SRT, THETA)
2: for each row in DN do
3: Zero-fill arrays (SHADOW, CONTRIBUTIONS, DELTA)
4: φmax ← 0 # Max Off-nadir angle so far
5: for each pixel in row do
6: s ← Calc Slant Range Distance (SRT)
7: φ← Calc Off-nadir Angle (s, THETA, DEM)
8: if φmax > φ then
9: SHADOW ← true

10: else
11: φmax ← φ
12: r ← Calc Radius At Latitude (LAT)
13: Ω← Calc Omega (r, DEM, R, s)
14: ω ← Calc Little Omega (r, R, s)
15: ∆← Calc Delta (r, Ω, ω)
16: Add contribution (CONTRIBUTIONS)
17: Update Arrays (DELTA, SHADOW)
18: end if
19: end for
20: for each pixel in row do
21: if NOT SHADOW then
22: RedistributeDNValue (DELTA, DN, ODN, CONTRIBUTIONS)
23: end if
24: end for # Next Pixel
25: end for # Next Row

between the current raster row and that corresponding to the previous tie-point

row (lines 8–10).

2.3.3 Parameters

The GM binary data contains within it a data set pertaining to a series of tie

points, numbering precisely eleven across the swath (approximately 37 km apart)

the number of rows in the azimuth direction depending on the length of the frame

strip, which varies. For each tie point is given geodetic latitudes and longitudes,

allowing ground control points to be derived. These, together with SRT, incidence

angles and 2-way antenna elevation gains are extracted from the ADSR by calling
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Algorithm 2 Interpolate()

1: for each Pointfile Row do
2: RasterRow ← Get Corresponding Raster Row (PointfileRow)
3: for each Tiepoint in PointfileRow do
4: lastTPval ← Get Tiepoint Value (This)
5: nextTPval ← Get Tiepoint Value (Next)
6: lastTPcol ← Get Raster Column of Tiepoint (This)
7: nextTPcol ← Get Raster Column of Tiepoint (Next)
8: for each col ← raster column between lastTPcol and nextTPcol do
9: Pixelvalue ← lastTPval + ( (nextTPval - lastTPval) × (col - lastTP-

col) / (nextTPcol - lastTPcol) )
10: end for # Next col
11: end for # Next Tiepoint
12: end for # Next Pointfile Row

the command line tool Pds2Ascii, provided within EnviView by ESA (ESA, 2010).

Parameter Function Dataset Field
Absolute Calibration Constant K Conversion to σ0 2 calibration factors
Orbit State Vectors X,Y,Z Calculation of Rsatellite 2 orbit state vectors
Tie Points Lat, Long, SRT, θ 7 * line tie points
AEP EAP, Λ 6 elevation pattern.*

Table 2.2: Parameters extracted from GM data file using Pds2Ascii

Table 2.2 shows the parameters extracted from the GM data file, together

with the particular data set and field in which they are contained. Data set 2

refers to the Main Processing Parameters ADS, 6 is the MDS1 Antenna Elevation

Pattern ADS and 7 is the Geolocation Grid ADS. Rsatellite is the distance of the

satellite from the center of the WGS84 ellipsoid, used in Equations 2.2 and 2.3

in Section 2.2.2.1. The radius r (ellipsoid radius at target location) used in the

same equations is calculated as follows (e.g. Groten (2004)):

rΘ = a(1− f sin2 Θ)

where a = Equatorial Radius = 6378137m (WGS84)

f = flattening = (a− c)/a
c = polar radius = 6356752.3m

Θ = Geocentric Latitude
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The Geocentric Latitude Θ relates to the Geographic Latitude Φ by

tan Θ = (1− f)2 tan Φ

2.3.4 Multi-node network distribution

The key benefit of having control over the scripts which manage the preprocessing

of a large number of GM data files is the ease with which the task can be split

and allocated to a High Power Computing network (HPC). The HPC used in

this instance managed multiple nodes on a Portable Batch System (PBS1). The

perl script which manages the distribution of work to the HPC may be found in

Appendix A, Listing 6. The essence of the workings of the script is described in

Algorithm 3 below.

The script looks for all GM data files under the current directory and sepa-

rates them into batches, creating a directory for each batch and symbolic links

within each to those folders. Each batch will then be processed concurrently.

Two batch scripts are then created by the main script for each batch - one be-

ing the instructions for Grass GIS, the other being the PBS batch script. The

latter is submitted to the HPC server. The start of each PBS script sets the

GRASS BATCH JOB variable to point to the individual Grass batch script, and

starts a new instance of GRASS GIS, creating a unique temporary MAPSET

within which to work.

2.4 Results and discussion

The decision to develop a bespoke method for the preprocessing of GM data

was based on the need to have control over the process, partly due to the sheer

numbers of data files to be managed, but partly also to allow for interruption

to parts of the process where appropriate - to allow for deviation from the usual

methods under certain circumstances. Examples of this would be the case of

work done using image differencing techniques involving data taken from the

same orbit track, where certain incidence angle multipliers may be factored out

1http://www.OpenPbs.org/
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Algorithm 3 PBS algorithm

1: for each Batch do
2: Create Batch Directory
3: Link allocated GM files to Batch Directory
4: end for # Next Batch
5: for each Batch Directory do
6: Write to ThisGrassBatch “process gm.pl ThisGrassBatch ThisDirectory”
7: Make ThisGrassBatch executable
8: Write to ThisPBSBatch“Load Grass”
9: Write to ThisPBSBatch “Set GRASS BATCH JOB = ThisGrassBatch”

10: Write to ThiSPBSBatch “Start Grass using MAPSET name MThisDirec-
tory”

11: Make ThisPBSBatch executable
12: Submit ThisPBSBatch to PBS Server
13: end for # Next Batch Directory

of the calculations early in the processing (O’Grady et al., 2011), and in the case

of regression calculation applied over hundreds of images, where the individual

results of image processing are not kept, but rather, following preprocessing, their

pixel-wise contribution to running sums used in the final calculations is aggregated

(in the case of linear regression, for example, aggregate images would store Σx,

Σx2, Σxy, Σy2, Σx2y2 and n).

Adequacy of the methods described here, in terms of fitness for purpose,

accuracy and speed are an issue. Once adequate accuracy is established, fitness

for purpose is gleaned from the use of the methods, the worth of their results

and the ability for the process to be run in a reasonable time. In this regard, the

speed requirement for the purposes of our research was actually a binary condition

of fitness for purpose. Using the HPC in the manner described, hundreds of

GM data files were able to be processed in a matter of minutes. Having the

data-download and preprocessing of the (typically) 70 or so daily images being

automated remotely overnight by the cron (time-based scheduler) daemon, this

fact meant an easy tick for the speed criterion. Speed benchmarking tests were

not carried out for this reason.

Accuracy was tested by comparing outputs from our process with that for

the same data files processed by what is perhaps the most suitable contender -
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the well resolved NEST (Next ESA SAR Toolbox) package developed by Array

Systems Computing 1 and made available online through ESA’s website 2.

The tests were confined to the range of latitudes and elevations for which

our methods were to be used in Australia. A number of bodies of open water

were chosen around the region at various heights above sea level. Transects were

sampled across the centre of the water bodies in azimuth and range directions.

The resultant values from three images were overlain against each other in plot

outputs; MODIS Band 6 (SWIR λ ≈ 1620 nm), radar backscatter (σ0) from our

preprocessed data and that from the data processed using NEST. The MODIS

plot shows us a good indication of the spatial demarcation between land and

water for comparison with the responses from the two separately derived radar

images. The differences observed, in terms of pixels, are tabulated and can be

seen in Table 2.3. Accuracy for both of the radar images was worse in the azimuth

direction, with displacement averaging at 2.56 pixels for NEST and 2.33 for our

method. In the range direction, average displacement for NEST was 1.63, against

our 1.31. The apparent greater accuracy in the azimuth direction using out

method comes as somewhat of a surprise, due to the fact that our calculations

work solely in the range direction, but it is considered likely that the results

would be reversed in more extreme terrain, which would be outside the scope of

our research with this method.

Figure 2.10 shows some of the output of the analysis as it appeared graphically.

The conclusion was that our method produced a level of spatial and radiometric

accuracy that was certainly comparable with a very worthy third-party alterna-

tive.

1http://www.array.ca/
2http://nest.array.ca/web/nest
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Figure 2.10: Transect value profiles in Azimuth (left) and Range (right) directions across three
bodies of water in Australia. The red profile corresponds to MODIS Terra or Aqua Reflectance
in thousands (scale on the right of the plots), the green corresponds to σ0 output using our
algorithm, and the blue using NEST software, both scaled in dB on the left axes.
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Azimuth Range
Our diff NEST diff Our diff Our diff NEST diff Our diff

Ref from MODIS from MODIS from NEST from MODIS from MODIS from NEST
1 1 2 3 1 2 1
2 2 2 0 2 2 0
5 2 1.5 0.5 2 1 1
6 3 2.5 0.5 1 1 0
7 6 5 1 - - -
8 1.5 3.5 2 1.5 2.5 1
9 1.5 1.5 1 1 1.5 0.5
10 0 3 3 1 2.5 1.5
11 4 2 2 1 0.5 0.5
MEAN 2.33 2.56 1.44 1.31 1.63 0.69

Table 2.3: Spatial displacement (“diff”) in pixels between edges of sampled water bodies as
identified in outputs from our described process, ESA’s NEST software and MODIS Band 5.
Values were obtained by comparing profiles for transects across the water bodies in the azimuth
and range directions. Water thresholds were chosen as σ0 = −16dB for the radar data, against
a reflectance of 0.2 for MODIS Band 5.
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2.5 Conclusion

Preprocessing of GM data was performed using GDAL functions, GRASS raster

manipulation techniques and Perl scripting, allowing control and transparency

over the whole procedure, and allowing a very high volume of data to be processed

quickly on JCU’s HPC. The accuracy of the process was tested to the extent

that enabled us to determine the method’s fitness for purpose. Throughout its

subsequent use, many “one-off” comparisons were possible with occasional data

processed by ESA’s NEST software, and in this way the ongoing satisfactory

performance of the method described above was further verified.

The philosophy of collaboration, transparency and sharing which enables the

development of tools that are so valuable to the GIS and remote sensing commu-

nity, such as GDAL and GRASS, as well as the hugely important and ubiquitous

tools such as Perl and C++, ties in very well with the philosophy of collaborative

research in the scientific field. Whilst many of these tools pre-date much of the

commercially-developed software available, the open source model is becoming

increasingly prominent, and we envisage it playing a vital role in meeting the

increasing needs of emerging technologies in remote sensing.
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for different surface conditions
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Abstract

This chapter aims to exploit the use of multiple angles of incidence, and the high

temporal frequency of Envisat’s Advanced Synthetic Aperture Radar (ASAR)

Global Monitoring Mode data to observe the relationship between the radar

backscatter response from different land surfaces with varied angles of incidence.

The primary objective is to establish a parameter surface for a region against a

model relating the variation in backscatter with incidence angle, in order that

backscatter values across the swath in a GM image can be normalised. Backscat-

ter response characteristics to varied incidence angles are examined against vari-

ous surface categories using pixel-level regression across a large time series, with

regolith displaying the strongest correlation. The potential use of the slope of the

linear model approximating the relationship of incidence angle with backscatter,

to directly map open water accurately, is observed, with the method’s possible

reduction of Bragg Resonance effects in C-HH data being apparent.

3.1 Introduction

Much research has been carried out to investigate the value of satellite radar data

in the classification of ground surface properties (Bindlish et al., 2009; Bonn &

Dixon, 2005; Chandran et al., 2006; Frappart et al., 2005; Waisurasingha et al.,

2007; Wilson & Rashid, 2005). Where data taken from differing look angles is

used for comparison or change detection, the elimination of the effects of differing

incidence angle by normalisation to some common angle is usually attempted

alongside despeckling, as a necessary part of preprocessing.

However, change in backscatter with respect to incidence angle is a function

of the structural and dielectric properties of the target surface, being sensitive,

therefore, to differences in regolith, soil types, vegetation and land use, for exam-

ple. As these are the very parameters by which researchers mean to classify the

surface, it is important that normalisation functions applied in the preprocessing

stage are specific to these properties, in order that changes in backscatter ob-

served at a particular location can be confidently attributed to an environmental

change, rather than to a difference in the incidence angles used to obtain the
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respective values.

The high frequency of coverage provided by Envisat ASAR’s Global Monitor-

ing Mode (GM) products affords us a time series across multiple incidence angles

that gives us sufficient data to carry out regression, across the time series, for

all locations, in order to derive a relationship of backscatter with incidence angle

specific to the ground conditions in each location.

3.2 Theoretical Context

Recapping a little from Section 1.4.1.5, GM data, as made available by the Eu-

ropean Space Agency (ESA), comprises digital numbers (DN) which are related

to the local incidence angle α by

DN2 = K · β0 = K · σ0

sin(α)
(3.1)

where σ0 is the radar backscatter coefficient and K the absolute calibration

constant (ESA, 2004). For a volume scatterer being comprised of random scat-

terers of varying sizes and orientations, we expect

γα =
σ0
α

cosα
(3.2)

where γα is the range independent backscatter coefficient at incident angle α

(Shimada, 2010a).

3.2.1 Local incidence angle

The quantity of GM data available affords us the opportunity to directly inves-

tigate the relationship between the incidence angle and σ0 or γ, as derived from

equations 3.1 and 3.2.

Recalling the assumption by Baghdadi et al. (2001) that

88



3. Incidence angle effects

σ0
α ≈ σ0

n cosΨ α (3.3)

(adapted from Ulaby et al. (1982)), where Ψ is the slope of the linear fit of σ0(dB)

against 10 log(cosα) (Baghdadi et al., 2001).

From Equations 3.2 and 3.3 we can say

γα ≈ σ0
n cosψ α (3.4)

where ψ = Ψ− 1.
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f(α) = 25 log(cos α)
g(α) = -0.252α + 3.4

Figure 3.1: Function f(x) = cosψ α for ψ = 2.5 and ψ = 10 within the range of incidence
angles α relevant to GM data

Some researchers have assumed a near linear relationship between σ0 and α

(e.g. Pathe et al. (2009)), in cases where incidence angles are confined to a narrow

range. Based on equation 3.4, typical values of ψ were found to be between 2.5

over land and 10+ over water. Figure 3.1 shows that a linear approximation

of these powers of cosine within the range of incidence angles found in GM data

(15◦–44◦) would be reasonable, especially in the context of the 1.2 dB radiometric

resolution of GM data (Pathe et al., 2009; Sabel et al., 2008).
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3.2.2 Physical models

Simple physical models class radar scatterers as surface scatterers, volume scatter-

ers and heterogeneous combinations of the two. The backscatter of surface scat-

terers depends on the dielectric properties of the surface for scattering strength,

and on the surface roughness for the distribution of scatter with respect to inci-

dence angle. With volume scatterers, dielectric discontinuities and heterogeneous

densities dictate scattering strength, with the dependence on incidence angle

being governed by boundary surface roughness, average dielectric constant and

structural scale within the medium (Ulaby et al., 1982).

The effects on backscatter of a variety of different types of surface must be

considered, especially where pixels are 0.5km in size. The response of bare soil

is governed mainly by surface roughness and soil moisture content, with volume

scattering contributing in the case of extremely dry soil. Studies have found that

for bare soil at a given angle of incidence, radar backscatter (in decibels) has a

near-linear relationship with the soil moisture content / moisture capacity ratio

(Ulaby et al., 1982). Where the soil is covered by vegetation, the relationship

between the structural dimensions of the components of the vegetation and the

wavelength of radar signal, together with the extent of cover, add to the response

characteristics of the soil. C-band radar is more sensitive to smaller-structured

vegetation components (Noernberg et al., 1999), such as grasses and herbaceous

vegetation (Parmuchi et al., 2002) and aquatic plants (Henderson & Lewis, 2008).

3.3 Methodology

3.3.1 Data

GM data were downloaded systematically from ESA’s Earthnet Online Portal

through a Category 1 Fast Registration agreement (ESA, 2009b). This data

comprised all GM acquisitions for the year 2009 between latitudes 10◦ S and

29◦ S and from longitude 140◦ E to 155◦ E.

MODIS data were downloaded via NASA’s GSFC web portal (NASA, 2011).

A comprehensive list of data used may be found in Appendix B.
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3.3.2 Procedure

For each GM data file, a raster surface representing local incidence angles was

created with 18” pixel spacing, using satellite geo-location parameters, digital

elevation models and tie-point data provided within the data header files.

Firstly, DN values were converted to backscatter according to equation 3.1,

to obtain σ0
α, and orthorectified. An investigation was carried out assuming the

relationship described in equation 3.4. This equation may be written

γα(dB) ≈ ψ · 10 log(cosα) + σ0
n(dB) (3.5)

the slope of γα, as a function of 10 log(cosα), being ψ. Regression was carried

out for each pixel over the time series for each quarter of 2009.

To analyse the variance of γ30 and ∆γ/∆α for different physical parameters,

20,000 point sites were randomly chosen within a region of Queensland. For each

of the points, values of the following parameters were extracted from the ancillary

data:

1. Dominant vegetation species

2. Vegetation growth form

3. Soil type

4. Geology

5. Lithology

6. MODIS Band 6 (λ ≈ 1.6µm)

The value of ψ derived for the whole of 2009 over Queensland compared

reasonably well with those of Baghdadi et al. (2001) for horizontally co-polarised

C-band data over different land covers. Coefficient of Determination R2 showed

a poor fit over land, averaging 0.1, but averaged around 0.8 over the sea, where

values of ψ were typically above 10.

Further regression was carried out on the same dataset based on the relation-

ship described for σ0:
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σ̄0
α = σ̄0

0e
−α/α0 (3.6)

by Ulaby et al. (1982) after Moore & Fung (1979), who found the e-folding

angle α0 to be 5.35◦ for HH polarised 13.9 GHz Skylab scatterometer data over

the sea (Ulaby et al., 1982). In our case a comparable e-folding angle over sea

was found to have a mean of 5.1◦, with a standard deviation of 0.6◦. The same

regression resulted in an average e-folding angle over land of 48.5◦. However

analysis of the R2 showed goodness-of-fit to be confined once again to open water.

The second round of analysis was based on the assumption that, given the

narrow range of incidence angles from which the GM data was derived (15◦– 44◦),

and the radiometric resolution of 1.2 dB (see Figure 3.1), the range independent

backscatter coefficient γ could be normalised with respect to α based on a linear

function whose slope and intercept were derived for each pixel over the time series.

Due to the great influence of surface wetness and soil moisture on backscat-

ter values, and considering the seasonal variation in rainfall over Queensland,

regression was carried out over each of the quarters of 2009 separately.

3.4 Results and discussion

3.4.1 Relationship of backscatter with incidence angle

Figure 3.2 shows the range independent backscatter coefficient γ30, calculated

by feeding 30◦ into the linear best-fit function for each pixel, over each quarter.

Figure 3.3 shows the slope of the same function, ∆γ/∆α . It can be seen that γ30

and ∆γ/∆α show quite different features over the surface of northern Queensland.

It is also apparent that the significant difference seen between the γ30 values in

the first (wettest) quarter and the other drier quarters are not matched with quite

such a difference in the values of ∆γ/∆α . This is to be expected, as while wet

soil and vegetation return a higher backscatter value than their dry equivalent,

they remain diffuse reflectors.

Figure 3.4 shows a comparison of the γ30 and ∆γ/∆α values for the third
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Figure 3.2: Range independent backscatter coefficient γ30 (dB), calculated from the linear
best-fit function at 30◦, for each quarter of 2009. High backscatter values caused by the wet
season in the tropical far north of Queensland dominate the whole of Cape York Peninsula in
the first quarter.

quarter of 2009. The greater separability between terrestrial values and those

of the sea in the ∆γ/∆α image over the γ30 image are clear. Additionally, the

γ30 image shows bright areas of increased value in the sea along the east coast.

These are the result of wind effects due to Bragg resonance on the surface of the

water (Schaber et al., 1997). The prevalence of these effects is confirmed by their

presence in this image despite the fact that, rather than being instantaneous, the

image is a composite modelled on some 40 data files. It is significant that these

effects are not seen, at least to the same degree, in the ∆γ/∆α image.

The difference in separability of land and water between γ30 and ∆γ/∆α can

be seen by comparing Figures 3.5 and 3.6. The density plot in the former shows

that the separation of land from water would be problematic, whereas the latter

shows us that, given sufficient data surrounding a flood event by which to establish

∆γ/∆α , the separability between water and land is greatly increased. The con-
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Figure 3.3: Slope ∆γ/∆α (dB per degree) from linear regression for each quarter of 2009

sequence of this is that, given a sufficient temporal data frequency, ∆γ/∆α may

give us a means to accurately separate open water from land, despite the presence

of Bragg resonance effects.

3.4.2 Variation with land surface properties

In the categorical analysis to determine, if applicable, the driving factor behind

∆γ/∆α characteristics in terms of surface conditions, separability between cat-

egorical groups was examined both between each group pair, and over each cat-

egorical group as a whole. In the latter case, the singular values (SV), which

give the ratio of the between- and within-group standard deviations on the linear

discriminant variables, were calculated (the SV is the square root of the canonical

F-statistic), with the results shown in Table 3.1.

The results of Table 3.1 tell us that the factors regolith and dominant vege-

tation species in Queensland have demarcations which fall closer into line with

the variation of both γ30 and ∆γ/∆α , in comparison with the other classifiers.
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Figure 3.4: Comparison of γ30 (above) and ∆γ/∆α (below) for the third quarter of 2009
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Figure 3.5: (Top) Scatter plot showing MODIS Band 6 reflectance against γ30, which clearly
separates water from land, and (bottom) the corresponding density plot of γ30 values, demon-
strating their separability (or lack thereof)
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Figure 3.6: (Top) Scatter plot showing MODIS Band 6 reflectance against ∆γ/∆α , which
clearly separates water from land, and (bottom) the corresponding density plot of ∆γ/∆α val-
ues, demonstrating their separability
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Classifier SV
γ30 ∆γ/∆α

Soil type 18.99 66.24
Gross rock Descriptor 19.08 48.24
Growth form 23.79 79.27
Dominant species 29.64 109.08
Regolith 30.07 109.14

Table 3.1: Singular values indicating categorical separability among land cover classifiers,
using γ30 and ∆γ/∆α

From Figures 3.7 and 3.8 it can be seen that there is some spatial correlation

between regolith and species. The clue as to which factor influences backscatter

lies with the SV result for the classifier growth form, which groups the γ30 values

according to the following forms:

� Hummock Grasses

� Low shrubs < 2 metres

� Low trees < 10 metres

� Medium trees 10–30 metres

� Other herbaceous plants

� Tall Shrubs > 2 metres

� Tall trees > 30 metres

� Tussocky or tufted grasses

If the relatively high separability of vegetation classes using γ30 were due to the

structural properties of the vegetation itself, we might expect to see a similar SV

value for growth form as we see for vegetation (the Dominant Species classifier),

but this is not the case. This suggests that, of the classifiers studied, regolith has

the highest correlation between incidence angle and backscatter.

Figure 3.9 shows us dominant vegetation species, displaying standard devi-

ation (boxes), 25% and 75% percentiles (outer tics) and median values (central

tics) of γ30 and ∆γ/∆α for each class. From the γ30 plot on the left, it is clear

that the characteristically low γ30 values of water are shared by some vegetation

classes, particularly Chenopodiaceae (Saltbush and Bluebush), Astrebla (Mitchell

Grass) and Acacia. The plot on the right, showing ∆γ/∆α values against the
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Figure 3.7: Map showing regolith of Queensland (source Geoscience Australia)

same vegetation species, separates water from everything else due to its relatively

high change in backscatter with respect to incidence angle.

The mean and standard deviations for γ30 and ∆γ/∆α against regolith classes

are shown in Table 3.2. Figure 3.10 shows the corresponding box plots. In the

γ30 plot on the left of Figure 3.10, the backscatter values for water have the

biggest overlap with classes representing aeolian sand and residual material. As

can be seen from the regolith class map in Figure 3.7, these classes occupy the

dry interior in the south-west of Queensland, and the low backscatter represents

absorption and attenuation of the signal. Perhaps the only specular reflectors

other than water represented here are lacustrine sediments. All of these classes

become clearly separable from water in the ∆γ/∆α plot.

If we return once again to the vegetation species which are less easily separa-

ble from water in terms of their γ30 values (i.e. Chenopodiaceae , Astrebla and

Acacia), and look at their distribution over the region (Figure 3.8), we find that

they are, to a large extent, confined to those areas of the western interior where

absorption dominates the nature of backscatter response.
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Figure 3.8: Map showing dominant vegetation species of Queensland (source Geoscience
Australia)

3.5 Conclusion

We have established the slope for a linear model describing the location-specific

variation of backscatter with incidence angle, by which we may normalise backscat-

ter values to mitigate the effects of the variance of incidence angle across a swath.

This is an important precursor to the appliance of a threshold in the classification

of water.

Surface soil moisture and Bragg resonance have less of an effect on the change

of backscatter with respect to incidence angle than on absolute backscatter values,

providing a possible means to mitigate their hindering of land-water segmenta-

tion. The potential for the use of multiple images, at multiple incidence angles, to

observe a quasi-instantaneous rate of change of backscatter with incidence angle

in order to determine the presence of water with a greater degree of confidence is

apparent. The potential use of such a method may be considered in the event of

future C-Band ASAR missions providing sufficiently frequent coverage. This is
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Figure 3.9: Box plots showing median, 25% and 75% percentiles (tics) for values of ground
range projected backscatter γ (dB, left) and ∆γ/∆α (right) against dominant vegetation
species, based on 20,000 randomly-selected sites in Queensland. Box widths are proportional
to number of sites within each category
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Figure 3.10: Box plot showing ground range projected backscatter γ (dB, left) and
∆γ/∆α (right) against lithology classes, based on 20,000 randomly-selected sites in Queensland.
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γ30 ∆γ/∆α
REGOLITH MEAN STD MEAN STD
Aeolian sand -13.19 1.98 -0.21 0.11
Alluvial sediments -11.73 1.58 -0.14 0.09
Coastal sediments -11.69 1.97 -0.18 0.08
Highly weathered bedrock -10.60 1.75 -0.11 0.07
Lacustrine sediments -12.43 1.10 -0.13 0.05
Moderately weathered bedrock -10.30 1.13 -0.08 0.07
Residual clay -12.24 1.14 -0.18 0.05
Residual material -12.12 2.30 -0.18 0.07
Residual sand -10.93 1.38 -0.08 0.07
Soil on bedrock -9.54 1.28 -0.07 0.07
Terrestrial sediments -11.20 1.79 -0.12 0.08
Very highly weathered bedrock -11.45 1.49 -0.14 0.08
Water -13.47 1.38 -0.78 0.13

Table 3.2: Mean and standard deviation γ30 and ∆γ/∆α , for regolith classes

especially the case if, as seen, the high backscatter observed as a result of Bragg

Resonance varies to a similar degree as would be observed from water where the

phenomenon were not present. This would provide a possible means to eliminate

an effect which is a significant barrier to the broad use of C-HH radar for the

classification of water (Figure 3.11 demonstrates the results of Bragg Resonance

well).

From the above analysis, we may conclude as follows:

1. For GM signals, the underlying regolith is the most important contributor

to the level of backscatter under dry conditions.

2. Where there are sufficient contemporary GM images of a water body at

varied incidence angles, the rate of change of backscatter with incidence

angle may provide a far clearer means to map the water extents than a

single threshold on backscatter alone.

3. Where absolute backscatter values are to be used as a threshold in the

detection of water, absorption in very dry soils and specular reflection on

lacustrine sediments are potential sources of commission errors.

103



3. Incidence angle effects

Figure 3.11: GM images of the Aral Sea on 18 June (above) and 21 June 2010 (below).
The contrast is all but eliminated by what can only be the effects of Bragg Resonance due to
particular wind conditions on 21 June.
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Abstract

Envisat ASAR Global Monitoring Mode (GM) data were used to produce maps

of the extent of the 2010 flooding in Pakistan which were made available to the

rapid response effort within 24 hours of acquisition. The high temporal frequency

and independence of the data from cloud-free skies makes GM data a viable tool

for mapping flood waters during those periods where optical satellite data is

unavailable, which may be crucial to rapid response disaster planning. Image

differencing techniques were used, with pre-flood baseline image backscatter val-

ues being deducted from target values to eliminate regions with a permanent

flood-like radar response due to volume scattering and attenuation, and to high-

light the low response caused by specular reflection by open flood water. The

effect of local incidence angle on the received signal was mitigated by ensuring

that the deducted image was acquired from the same orbit track as the target

image. Poor separability of the water class with land in areas beyond the river

channels was tackled using a region-growing algorithm which sought threshold-

conformance from seed pixels at the center of the river channels. The resultant

mapped extents were tested against MODIS SWIR data where available, with

encouraging results.

4.1 Introduction

4.1.1 Pakistan floods

Over the 2010 monsoon season, Pakistan saw extensive flooding of the Indus river

and its tributaries, which affected over 20 million people, damaging over 2 million

hectares of crop land and causing the loss of 1,985 lives (NDMA, 2011). Heavy

rainfall in the northern regions of the Khyber Pakhtunhwa, reaching 280 mm

on 29 July, damaged major irrigation headworks on the Swat River at Munda,

which were built to a discharge capacity of 4.5 Mls−1 and which were damaged

by the peak discharge of 8.5 Mls−1. Further rainfall in Gilgit and Jammu and

Kashmir and further south in Balochistan, contributed further to the huge body

of water which flooded irrigation channels and agricultural land covering tens of
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thousands of square kilometers. The UN Food and Agricultural Organization

estimate losses of wheat stocks at around 450,000 tonnes (Fair, 2011). The Dam-

age Needs Assessment conducted by the World Bank estimated that the recovery

from the floods would cost between $8.7 and $10.9 billion (WBG, 2011).

To facilitate the international relief effort in such crises, maps are made avail-

able in near real time by facilities such as NASA’s MODIS Rapid Response Sys-

tem, which makes use of the Moderate Resolution Imaging Spectroradiometer

(MODIS) on board NASA’s Aqua and Terra satellites. Such instruments are,

however, limited by the cloud cover that is often present for some time after such

flood events. It is largely for this reason that, in recent years, satellite-borne radar

instruments have attracted much research into their viability as a means to map

flooding, due to their ability to penetrate cloud cover and to their independence

from the relative position of the sun (Rosenqvist et al., 2007; Waisurasingha et al.,

2007; Wilson & Rashid, 2005).

The classification of water with satellite radar data is problematic and error-

prone, particularly when some of the main environmental factors affecting the

result, such as wind speed and direction and soil moisture, are unknown. The

clear advantage of the independence from cloud cover may result in the availability

of radar data where more reliable optical data is not available. Revisit time

is an important feature of remotely sensed data used for disaster management.

The COSMO-SkyMed constellation 1 comprises a cluster of four X-band SAR

sensors on the same orbit path which are capable of a revisit time of less than

12 hours. Most radar sensors such as the Advanced Synthetic Aperture Radar

(ASAR) aboard the European Space Agency’s (ESA) Envisat satellite, and the

Phased Array type L-band Synthetic Aperture Radar (PALSAR) on the Japanese

Aerospace Exploration Agency’s (JAXA) ALOS satellite2 have repeat orbit cycles

of more than a month, but are able to provide a higher repeat coverage thanks to

operation modes which overlap regions at different incidence angles on adjacent

orbits. Here we take a closer look at data from the ASAR sensor operating in

Global Monitoring (GM) mode, which is systematically acquired when data in

other configurations is not required. GM data is made available in near real-time

1http://www.cosmo-skymed.it/
2both of which satellites have unfortunately become defunct recently
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for download to parties with at least a Category-1 fast-track agreement with ESA.

The data is available quickly because it is preprocessed at the sensor, before being

transmitted down to one of two ground stations in Europe. This is made possible

by keeping file sizes and processing requirements low, by using a coarse resolution

(pixel size is 500m, spatial resolution is 1km). Such a coarse resolution over the

full range of incidence angles (12◦ to 44◦) may prohibit the data’s viability as an

alternative means to map flooding, but we believe that its temporal frequency

and ready availability give the data potential advantages that warrant further

investigation. The following questions emerge:

� Is the frequency of GM coverage such that it can provide an alternative

source of data to map flooding when cloud cover prohibits the use of optical

data?

� Can effects due to factors such as incidence angle be eliminated?

� Will the radiometric uncertainty of signals received from partially and to-

tally inundated areas and non-flooded areas allow the classification of flood-

ing to a level of accuracy sufficient to produce useful maps, given the coarse

resolution of GM data?

4.2 Study Area

The flood plain of the Indus River occupies nearly half of Pakistan’s area. Bounded

by the Karakoram, Hindu Kush and Pamir mountain ranges to the north and the

Balochistan Plateau to the west, the Indus and its tributaries flow southwards

from the northern ranges to the Arabian Sea more than 1000km to the south (see

Figure 4.1).

Having left the ranges, the river falls only a few hundred metres across this

distance. Outside of the major cities of Lahore in the north and Karachi in the

south, much of Pakistan’s population lives close to the Indus and Chenab rivers,

farming wheat, cotton, rice and other crops to sustain its population of some

170 million. The 2010 monsoon season saw higher than usual rainfall (Figure 4.2

refers), contributing to floods which started affecting populated areas in the north
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Figure 4.1: Pakistan and the Indus-Chenab flood plain

in July and progressed southwards throughout the following months, remaining

in some areas throughout October and beyond.
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Figure 4.2: Daily rainfall (mm) across the Pakistan region (Lat.28N–35N, Long.70E–74E) in
July/August 2009 (above) and 2010 (below). Reproduced from GESDISC (2011).
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4.3 Theoretical Basis

Fundamental choices of radar data rest on wavelength, polarisation configuration,

spatial and temporal frequency. Radar signals will interact with their target in

a manner dictated by structural, textural and dielectric properties of the target

surface. Structural and textural properties are matters of scale, and must be

considered in relation to the wavelength of the radar signal. When considering

the detection of flood water, we are interested in the radar response from water

itself, from the surrounding land cover and, where partial inundation occurs, a

combination of the two. The radar response from each of these three categories is

a complex combination of effects. In the case of vegetation, C-band radar (wave-

length λ = 3.75–7.5 cm) will tend to interact with small branches and leaves,

and L-band (λ = 15–30cm) with larger branches and trunks, each in a scale of

order comparable to their own wavelength. Where partial inundation occurs, the

radar signal may interact multiple times between the emergent structure (vege-

tation or buildings, for example), in a phenomenon known as dihedral scattering

(or “double-bounce”), resulting in a very high return signal. The extent of this

occurrence is dependent, therefore, on the relative scale of the emergent structure

with respect to the wavelength of the signal. Where open water is found, if the

surface is smooth, much of the radar signal is reflected away from the sensor,

resulting in a low backscatter response. The extent of the return signal in this

case has a sinusoidal relationship with the angle that the radar is incident to the

surface of the water. However, where there are regular waves on the surface of the

water, Bragg resonance can result in a very high return signal (e.g. Schaber et al.

(1997)). The degree to which this occurs depends once again upon the relation-

ship between the scale of the wave and the wavelength of the radar signal. C-band

radar is sensitive mainly to small capillary waves and L-band to larger “chop”,

as might be expected. The alignment of the waves with respect to the direction

of the incident radar wave is also important here. The effect is greatest when the

incident signal is orthogonal to the alignment of the wave (or parallel to the wind

direction), and may not occur at all when the radar signal and the wave direction

are parallel (Liebe et al., 2009).Finally, the strength of the radar signal returned

to the sensor is reduced by an increasing incidence angle (Monsiváis et al., 2006).
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Whilst simple geometry allows us to calculate the theoretical degree of this effect,

its precise value is the combination of various target characteristics averaged over

a pixel-space, and is therefore not readily known for a given time. The change in

radar signal for a given degree increase in incidence angle is greater for a specular

reflector such as smooth water, than for a diffuse or volume scatterer such as bare

soil or vegetation. The particular environment encountered in Pakistan presents

a further complication in the detection of flood waters using radar data. Desert

areas which remain dry during the flood event absorb and attenuate microwave

radiation (Robinson et al., 2006; Schaber et al., 1997), returning a low signal

which encroaches into the range of that expected by open water. The difference

with the desert response is its relative permanency, and so by deducting values

from a GM image taken from the same orbit track prior to the flood, we are able

to discern the water from the desert. Digital Numbers (DN) in ASAR detected

products correspond to brightness amplitude. The radar backscatter coefficient

σ0 may be calculated from the DN values by:

σ0 =
DN2

K
· sinα (4.1)

where K is the absolute calibration constant (ESA, 2004). However, the

received backscatter is further dependent on α by some function F which is

peculiar to the target environmental conditions (Baghdadi et al., 2001; Ulaby

et al., 1982) such that

σ0
0 = σ0

α · F (α) (4.2)

Given a reasonably close temporal separation of images, and in the absence of

flooding, the environmental conditions, and therefore the nature of F , are similar

for a given pixel in the target image to the corresponding pixel in the dry baseline

offset.

Converting to decibels and deducting the base backscatter values σ0
b from the
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target values σ0
t gives

∆σ0 = 10
[
log(σ0

t ) + log(F (α))− log(σ0
b )− log(F (α))

]
(4.3)

Substituting 4.1 into 4.3 gives

∆σ0 = 20 · log

(
DN1

DN0

)
(4.4)

This assumes that the difference in α between the two images is negligible.

This difference between local incidence angles for the image pairs was found to

have a mean value of -0.02◦, with a standard deviation across the region of interest

of 0.08◦. Taking an extreme case of MEAN− 3× STDDEV gives a difference of

-0.26◦, which would result in an error in the final difference image of 0.02 dB at

44◦ and 0.07 dB at 15◦. Given the radiometric uncertainty in the GM data of

1.54–1.74 dB (ESA, 2007a), such differences may be disregarded for our purposes.

4.3.1 Expected values

Figure 4.3: Key map to describe range of ∆σ0 values derived from image differencing process

The range of values encountered in the resultant ∆σ0 image are represented

graphically in Fig. 4.3, and may be categorised as follows:
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1. Areas with values common to both the target and the baseline image are

shown in red (values close to zero), and include permanent water and desert,

shown in Box 1, together with all other unchanged values between Boxes 4

and 5.

2. Would occur where water were present in the baseline image and not in

the target image (which is unexpected). Such values are far more likely to

represent the surface of desert or very dry radar-dark soils becoming wet,

which greatly increases backscatter (Robinson et al., 2006). These values

can also represent the occurrence of Bragg Resonance due to wind effects

on permanent water (Schaber et al., 1997).

3. Flooding. Mid-high values in the baseline image have become mid-low.

4. These have values below the threshold which may therefore be rightly or

wrongly classified as flood water. It is with the intent to capture such errors

that the region-growing algorithm, making spacial association relevant to

the classification decision process, is adopted here.

5. Mid-high baseline values which undergo a small-large increase in backscatter

values between the baseline and target images. Again, this can represent

a dry surface becoming wet, but could also encompass open flood waters

where conditions are right for wind-induced Bragg resonance to return a

high backscatter signal.

In the image differencing process, permanent water bodies, which are common to

the baseline and target images, are removed. However, where water bodies are

permanent and semi-permanent, their extents are easily mapped and overlain if

required. We are interested here in mapping inundation outside of the current

river coarse. The filling-in of permanent water after the flood classification and

prior to testing would increase accuracy, but the results here are left as they

are, with such limitations remaining exposed. Part of the reason for this is that

the flood dynamics of the Pakistani rivers are complex, punctuated by sudden

effects such as the breaching of the many levees which regulate their flow, and

we therefore prefer in this instance to make no assumptions as to any possible

deviations to the normal channel flow.
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4.4 Method

4.4.1 Data acquisition

Data was acquired systematically via download from ESA’s Kiruna and ESRIN

ground stations, made available in a two-week moving window through the Cat-

egory 1 Fast Track Registration agreement.

4.4.2 Coverage

Area and frequency of cover of the region of interest was compared with MODIS

Aqua and Terra data. In order to test comparative coverage, a mask was created

by buffering the Indus river by 50km. For each day of August, the sum of pixels

covered by GM data for that day were recorded along with the number of cloud-

free pixels contained within the MODIS Terra and Aqua images, as a percentage

of the total pixels for the masked region.

4.4.3 Image Preprocessing

Incidence angles (θ), slant-range times (SRT) and geographical coordinates are

provided within the raw GM data file, corresponding to tie points that form a grid

with a spacing of 80–85 pixels across the image. Interpolation of θ and SRT was

carried out first across the swath, and then the azimuth direction, to obtain values

for each pixel. Terrain correction was also carried out in the frame of reference

of the raw data file, due to the fact that columns and rows run parallel to the

azimuth and swath respectively, making the geometry involved in the calculation

much simpler. For this purpose, SRTM 7.5 arc-second Digital Elevation Model

(DEM) data (Jarvis et al., 2008; Reuter et al., 2007) were projected into the local

x–y coordinate system. The incidence angles θ and the DEM were then used to

calculate local incidence angles (α) for each pixel. Both the orthorectified Digital

Number (DN) and α surfaces were then transformed to geographic coordinates

by third order polynomial transformation.
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4.4.4 Image Differencing

For each target image acquired over the study area, a matching image from the

same orbit track was chosen as a baseline, being the latest available image covering

all of the azimuth extent of the target and occurring prior to the commencement

of the flood event. Details of the data used are shown in Table 4.1. The raw

data files were registered in a database, at which time tie point data, including

coordinates, incidence angles and slant-range times were extracted.

Table 4.1: GM Data used in this study. The Baseline Cycle refers to the orbit cycle corre-
sponding to the deducted baseline data

Orbit Orbit Baseline

Date Cycle Track Cycle

1 2010-04-01 88 134 -

2 2010-04-17 88 363 -

3 2010-05-13 89 234 -

4 2010-05-16 89 277 -

5 2010-05-26 89 420 -

6 2010-06-01 90 5 -

7 2010-06-06 90 84 -

8 2010-06-07 90 91 -

9 2010-06-12 90 170 -

10 2010-06-15 90 213 -

11 2010-06-17 90 234 89

12 2010-06-19 90 270 -

13 2010-06-20 90 277 89

14 2010-06-22 90 313 -

15 2010-06-23 90 320 -

16 2010-06-28 90 399 -

17 2010-07-01 90 442 -

18 2010-07-03 90 463 -

19 2010-07-04 90 485 -

20 2010-07-05 90 499 -

21 2010-07-09 91 48 -

22 2010-07-11 91 84 90

23 2010-07-12 91 91 90

24 2010-07-15 91 134 88

25 2010-07-17 91 170 90

Continued on next page
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Table 4.1: GM Data used in this study (Contd.)

Orbit Orbit Baseline

Date Cycle Track Cycle

26 2010-07-22 91 234 89

27 2010-07-24 91 270 90

28 2010-07-25 91 277 89

29 2010-07-27 91 313 90

30 2010-07-28 91 320 90

31 2010-07-31 91 363 88

32 2010-08-02 91 399 90

33 2010-08-04 91 420 89

34 2010-08-05 91 442 90

35 2010-08-07 91 463 90

36 2010-08-08 91 485 90

37 2010-08-09 91 499 90

38 2010-08-10 92 5 90

39 2010-08-13 92 48 91

40 2010-08-15 92 84 90

41 2010-08-16 92 91 90

42 2010-08-19 92 134 88

43 2010-08-21 92 170 90

44 2010-08-24 92 213 90

45 2010-08-26 92 234 89

46 2010-08-28 92 270 90

47 2010-08-29 92 277 89

48 2010-08-31 92 313 90

49 2010-09-01 92 320 90

50 2010-09-04 92 363 88

51 2010-09-06 92 399 90

52 2010-09-08 92 420 89

53 2010-09-09 92 442 90

54 2010-09-11 92 463 90

55 2010-09-12 92 485 90

56 2010-09-13 92 499 90

57 2010-09-14 93 5 90

58 2010-09-17 93 48 91

59 2010-09-20 93 91 90

60 2010-09-25 93 170 90

Continued on next page
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Table 4.1: GM Data used in this study (Contd.)

Orbit Orbit Baseline

Date Cycle Track Cycle

61 2010-09-28 93 213 90

62 2010-10-05 93 313 90

63 2010-10-06 93 320 90

64 2010-10-09 93 363 88

65 2010-10-14 93 442 90

66 2010-10-17 93 485 90

4.4.5 Baseline datasets from MODIS

MODIS data were chosen from the results of the cloud-cover study described

in Section 4.4.2, for three dates, with which to establish GM data classification

thresholds and by which to gauge the accuracy of the classification process.

4.4.6 Thresholding and Classification

In order to obtain a binary map of the inundated regions, a region-growing func-

tion provided as part of the GRASS GIS package (GRASS Development Team,

2009) was used. The r.lake function is primarily intended to fill a lake to a tar-

get water level from a given start point, or seed. This starting point can be a

set of coordinates, or a raster map in which the seed points are represented by

non-null values. The function will grow a region, starting at the seed points,

until a specified water level is reached, as determined by a given DEM. In our

case, the seed was a rasterised line-type shape file of Pakistan’s river channels,

the “DEM” was the ∆σ0 image, and the “water level” was set to the various

thresholds tested. This method allows the use of a threshold value that is well

inside the standard deviation of values for non-flooded areas, with the provision

that the selected pixels are adjacent to other selected pixels as grown from the

river channels. In order to try to mitigate errors of commission on the outskirts

of the selected regions, a 3 × 3 modal neighbourhood filter was then applied to

the binary classification.

MODIS band 6 data, representing Short Wave Infra-Red (SWIR) radiation (λ
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= 1628–1652 nm), were used to map flooding and to establish thresholds to use

with the radar images. Light in this short-wave infra-red waveband is absorbed

by all but the most turbid water, and is therefore often used to map water (e.g.

Dheeravath et al. (2010); Ordoyne & Friedl (2008)). Whilst MODIS reflectance

bands provided by USGS attempt to achieve surface reflectance values, it is the

case that attenuators such as thin cloud, that vary from image to image, preclude

the use of a single absolute threshold applied to MODIS data in order to establish

the benchmark. Fig. 4.4 shows the density plot of MODIS Band 6 reflectance

values over the flooded region from two images, taken two days apart. There is

a clear full-range displacement of reflectance values of 0.03–0.05.

Figure 4.4: Density plot of MODIS Band 6 reflectance values over the flooded region on 27
and 29 August 2010. The peaks at reflectance values of 0.05 and 0.1 represent water, as is seen
later in the kappa analyses.

To account for this uncertainty, a bivariate sensitivity analysis was carried out,

matching conformance of a range of radar backscatter thresholds in the radar im-

ages against a range of thresholds in the contemporaneous MODIS images. A

peak in cross-correlation outside of the extreme threshold values (which would

classify the whole image as flooded or non-flooded) would only likely represent

common optimal flooded/non-flooded thresholds, as beyond the low signal re-

sponse to water common to SWIR and radar data, the characteristic responses
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of each of the wavebands are largely independent. In order to gauge the per-

formance of classifications under varied thresholds, it is insufficient to simply

determine the percentage of coincidence of allocated classes, as this gives a dis-

torted result. If, for example, a flooded area comprises 5% of the region under

study, then a classification omitting all the flooding would, with such a method of

assessment, be 95% correct. For this reason, Cohen’s kappa statistic is often used

as a “coefficient of agreement” between two classification processes (Cohen, 1960;

Foody, 2006; Hunt et al., 2010; Tolpekin & Stein, 2009). The kappa statistic κ is

calculated as

κ =
p0 − pc
1− pc

where p0 is the proportion of pixels in which agreement is observed and pc

is the theoretical proportion expected by chance selection (Cohen, 1960). It is

the latter parameter which is perceived in certain instances to be problematic,

as the observed proportion of allocation to each class is used as a basis to calcu-

late random expectation (in effect, assuming that the decision process will always

allocate the correct proportion of pixels to each class, whether the specific allo-

cations are correct or not). This is not considered an issue in our case. Firstly,

the assumption of proportion is observed to be approximately correct. Secondly,

we are, while in pursuit of an optimal threshold, seeking a relative measure of

classification accuracy rather than an absolute one.

Where good clear MODIS data were available during the flood event, κ

was calculated for a matrix of classifications made with SWIR reflectance up-

per thresholds ranging between 0.05 and 0.25, and GM (difference image) ∆σ0

upper thresholds ranging between -10 and 0 dB. From this, the optimal backscat-

ter thresholds could be observed, together with their sensitivity and inter-image

variability. A comparison was made using the single target GM image, with a

ground-range projected backscatter (γ) upper threshold range between -20 and 0

dB. A threshold to be used where MODIS data were unavailable was decided in

this way, and its suitability assessed on a further series of κ analyses on another

date for which MODIS data were available.
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4.5 Results

4.5.1 Coverage

During the 98 days between 11 July and 17 October 2010, the average repeat

coverage period by GM data over the region studied was around 9 days (see

Figure 4.5). Though this would be insufficient for a complete time series of the

flood dynamics, it can feasibly serve to fill the gaps in information gained from

optical sensors such as MODIS caused by the presence of cloud cover. Figure 4.6

shows a comparison of percentage of the full flood extent captured independently

by MODIS Terra, MODIS Aqua and GM data, for each day of August 2010.

Cloud cover limited the use of MODIS data through the first week of August,

during the build-up of flood waters north of Sukkur, whilst there were sufficient

GM data to build a picture of the flood extents at this time. Much of the rain

that caused the floods in Pakistan fell on the ranges to the north, and as such,

there were significant periods free of cloud further down stream where most of

the catastrophic flooding occurred, and so in this respect, as a “dry flood”, this

event enjoyed better coverage than most similar events with optical data, and

in many other flood events, it may be reasonably assumed that the difference in

availability of data could be far greater.

4.5.2 Image Differencing

It can be seen from the probability density functions shown in Figure 4.7 that

attempts to map flooding using a simple threshold would result in large errors

of commission and omission, due to the range of overlap of values. In the non-

flooded areas, as we have chosen a region close to the known flooding, the slight

rise in average backscatter value may be due in part to increased surface soil mois-

ture (Pathe et al., 2009) in the vicinity of the flood and possibly from dihedral

scattering from vegetation emergent from flood waters at the boundary of the

flooded class regions (Hess et al., 2003). In addition to native vegetation close to

the main river channel, wheat, cotton, onion, sunflower, rice, pulses and dates are

all grown in the region (Ashraf & Majeed, 2006). The large standard deviation

of ∆σ0 values in the non-flooded regions can be explained by a couple of factors.
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Figure 4.5: Count of frequency of cover by GM data over the 98 day study period. The black
outlines represents the maximum flood extent

Firstly the propensity of radar data to contain noise, most of which is speckle.

This is characterised by high and low valued pixels whose values represent inter-

ference arising from the use of a coherent electromagnetic radiation source, rather

than having anything to do with the target. Speckle can lead to sharp differences

in values between any two radar images. Secondly, variations in the immediate

recent rainfall history can cause large differences in backscatter value. Not only

moist soil, but also wet vegetation tends to give a high backscatter response at

C-band (e.g. Ulaby et al. (1982)). A drop in radar value in non-flooded areas

can be seen where smooth specular reflecting alluvial sediments, for example, dry

out. Low backscatter also occurs where the signal is absorbed / attenuated by

very dry sand (Robinson et al., 2006; Schaber et al., 1997), though such a fall

from relatively wet to very dry conditions necessary to produce a low ∆σ0 value

are unlikely to have occurred so close to the main channel.
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Figure 4.6: Percentage of full flood extent covered on each day of August 2010 by MODIS
Terra, MODIS Aqua and GM data

Figure 4.7: Probability density functions for ∆σ0 for water and land over the flooded region
on 29 August 2010, as determined by classification using MODIS SWIR Reflectance Threshold
of 0.13

The distribution of ∆σ0 values in the flooded region is perhaps best explained

in terms of what may be observed in Figure 4.8. The images centre on the segment

of the Indus river running between Sukkur and Dadu, where its course changes

from a south-west to a south-east direction. The image on the left shows radar

backscatter values acquired on 20 August 2010. The image on the right shows

the same values, with those of a previous cycle deducted. The regions labelled

D and F represent sections of the river characterised by a large flood channel

superimposed with the meandering and anabranching main Indus channel (see

Figure 4.9). At the time of acquisition, this large channel was completely flooded,

and appears as radar dark in the first image. However, due to the fact that
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alluvial sediment can also act as a specular reflector in the same way as water,

much of the D region is punctuated with mid-range value pixels in the difference

image, and region F is all but indistinguishable from non-flooded land. The

large area at A with low backscatter values in the first image shows that part

of the lowlands which protrudes into the Sulaiman mountains of Balochistan,

comprising mainly the districts of Bolan and Sibi. This region is normally dry,

with an annual rainfall of 200–250 mm. The low backscatter is considered to be

the result of attenuation and absorption of the signal, rather than of specular

reflection. The low backscatter values are clearly offset in the difference image,

leaving only those low values representing the rivers that run west below A and

then south towards Lake Manchar below B. Similarly, the dark region in the first

image at C is at the western edge of the Thar Desert. The bright strip running

north-south immediately to the right of C shows the relatively high backscatter

from the vegetation bordering the Nara Canal and its irrigated hinterland. As

with A, the response of both the irrigated strip and the desert are common to

the consecutive orbit cycles, and hence do not appear in the difference image.
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Figure 4.8: The region between Jacobabad and Nawabshah in mid August 2010. The image
on the left shows backscatter values in decibels. Smooth open water is commonly represented
by values of around -16dB or below. The image on the right shows the same data, with the
values from the previous cycle along the same orbit track having been deducted. A better
understanding of the true extent of flooding can be discerned by a difference of around -4dB in
this image.

126



4. Pakistan floods

Figure 4.9: Landsat composite colour image of the Indus and its floodplain southwest of
Sukkur. The Nara canal is seen running north–south to the right of the image
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4.5.3 Thresholding and Classification

A comparison of value profiles of ∆σ0 and MODIS Band 6 across a section of the

flooded Indus, as at 10 August 2010, is shown in Figure 4.10. It can be seen that,

at this scale, the choice of threshold of Band 6 to classify water is not particularly

sensitive between around 0.2 and 0.15 units, where the profile crosses the flooded

area, with relatively few pixels taking intermediate values. There is little doubt

that where SWIR reflectance values fall close to zero on all legs, there is open

water. In these areas along legs 1, 2 and 3, the corresponding ∆σ0 values fall

below -2 dB, corresponding to a fall in backscatter values caused by increased

specular reflection, due to the increased presence of water. Along legs 4 and 5,

however, there are large fluctuations of ∆σ0 values. This is mainly due to the

fact that, as mentioned before, the alluvial sediment can also act as a specular

reflector in the same way as water, thus the dry baseline low pixel values are

offset from the target image, producing mid-range difference values. Areas where

a slight rise in SWIR reflectance coincides with a sharp rise in ∆σ0 (such as at

40km and 120km on the x-axis) are believed to represent partial inundation with

emergent vegetation, the high ∆σ0 values being the result of dihedral scatter.

These profiles demonstrate the volatility of ∆σ0 values, especially in those

areas that show a low backscatter response under non-flooded conditions, as

discussed above. It was found that the choice of a simple ∆σ0 threshold to

suit conditions in the main river channel would result in many regions mapped

incorrectly as flooding in areas well away from the river channels. For this reason

it was decided to make contiguousness with other flooded pixels adjacent to the

river channels a condition of the flood class, in addition to the satisfaction of the

∆σ0 threshold. Therefore flooded regions were mapped by growing contiguous

areas that satisfied the threshold criterion from pixels at the centre of the river

channel outwards, using the technique described in Section 4.4.6.

4.5.3.1 Bivariate sensitivity analysis to determine threshold

κ statistic values calculated in the sensitivity analysis described in section 4.4.6

are shown in Figs. 4.11, 4.12 and 4.13. It can be seen that, while the optimal

SWIR reflectance threshold varies between the dates, the optimal ∆σ0 threshold
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Figure 4.10: Comparison of value profiles of ∆σ0 (top-left image, red profile) and MODIS
Band 6 (1628–1652 nm) (top-right image, blue profile) from a section of the flooded Indus on
10 August 2010

of around -2dB is common to the three instances. The reasons for the differences

in the MODIS thresholds was discussed in section 4.4.6 and the difference be-

tween the optimal reflectance thresholds of 0.07 and 0.11 on 27 and 29 August

respectively are manifest in the shift in distribution of values between the two

MODIS images that was shown in Fig. 4.4.

Fig. 4.14 shows flood extent estimates from MODIS (top), the single contem-

poraneous GM image (centre) and the GM Difference image (bottom), each using

thresholds optimized from the process described above.

With the single image in the centre, there are two processes resulting in the

low backscatter response. To the north-west of the dashed line, the low response

is dominated by specular reflection from the surface of flood waters. To the south-

east of the dashed line, the low backscatter response is caused by absorption in

desert sands. The wrongly classified desert area is eliminated in the third image,

as this low response from the desert areas is common to both the target image
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Figure 4.11: κ statistic calculated for individual classifications of flooding on August 10,
2010, based upon ∆σ0 thresholds ranging from -10 to 0 dB. The series represents corresponding
MODIS Band 6 reflectance thresholds used in the reference image, ranging from 0.05 to 0.25

and its baseline partner, and is therefore subtracted out.

When comparing the MODIS (top) image with the Difference image (bottom),

it can be seen that whilst the boundaries of the flood are well defined, areas

of permanent water or radar-dark flood plain regions are also eliminated. In

the central image derived from the single GM data set, such areas which do fall

within the flooded region are more completely defined. With a priori knowledge of

terrain and environmental conditions, one can mask out desert areas and achieve a

more accurate classification using the single image. Masking must be very precise,

however, as some absorption areas can lie extremely close to the flooded region, as

can be seen from the area encircled in red in the middle image. Assuming sufficient

information is available within the time frame allowed, the higher accuracy which

may be achieved by such masking is demonstrated in Fig. 4.15, where a κ value

of 0.7 is achieved. Note that the precedence of MODIS SWIR thresholds matches

that seen in Fig. 4.12, as expected.

Where a fast indicator of the extent of flooding through otherwise dry land

is urgently required, we propose that the image differencing technique offers a
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Figure 4.12: κ statistic calculated for individual classifications of flooding on August 27,
2010, based upon ∆σ0 thresholds ranging from -10 to 0 dB. The series represents corresponding
MODIS Band 6 reflectance thresholds used in the reference image, ranging from 0.05 to 0.25

reasonably stable means to identify those extents between periods where optical

data are unavailable, enabling a broad scale view of the flood dynamics with a

better temporal resolution than could otherwise be achieved.
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Figure 4.13: κ statistic calculated for individual classifications of flooding on August 29,
2010, based upon ∆σ0 thresholds ranging from -10 to 0 dB. The series represents corresponding
MODIS Band 6 reflectance thresholds used in the reference image, ranging from 0.05 to 0.25
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Figure 4.14: Flood extent estimates from MODIS (top, κ = 1), the single contemporaneous
GM image (centre, κ = 0.3) and the GM Difference image (bottom, κ = 0.6), using optimised
thresholds.
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Figure 4.15: κ statistic calculated for individual classifications of flooding on August 27, 2010,
based upon γ thresholds ranging from -20 to 0 dB, following precise masking of radar-dark
dry land established from the image differencing process. The series represents corresponding
MODIS Band 6 reflectance thresholds used in the reference image, ranging from 0.05 to 0.25
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4.5.4 Inundation Dynamics

Figure 4.16 shows instances from the resultant time series of binary flood maps.

The first two images show the build up of the upper reaches of the Indus. By

August 7, the Chenab has flooded and the main flood has reached Kashmore.

The image at August 12 shows the situation following the breaching of a bund at

Thori in Kashmore. By August 20 the flood has reached the Hyderabad district.

The August 29 image shows the results of two significant breaches, one at Sukkur,

allowing the flood to split and inundate the Jacobabad region to the north of the

Indus, and another at Sarjani to the south, where part of a dyke collapsed on

August 26. This resulted in the extensive flooding in the south which is evident

on September 11. The final two images, set three weeks apart, show the flooded

region covering over 7,000 km2 between Jacobabad and the Manchar Lake in

Dadu, which remained for many weeks. Beyond 20 October 2010, there followed

a period in which the Envisat satellite underwent a scheduled program change,

during which time GM data was unavailable.

Figure 4.17 shows the duration of flooding over the full extents, up to 17 Oc-

tober 2010, as derived from the GM data. Many regions remained inundated for

several weeks, the greatest duration being observed in the area around Jacoba-

bad described above. The greatest flood duration shown at 97 days represents

the enlarged Lake Manchar to the southwest of this region.

An idea of the propagation speed of flood waves can be gained from Fig-

ure 4.18, which shows the distance along the Indus river channel of the head

of the main flood, and the receding tail end. The initial advance covered some

500km in 5 days (about 4 km per hour), with the flood reaching the southern

extents towards the end of the first week in September. The greatest length of

flooding occurs where the recession curve is flattest at around 21 August. The re-

cession rate is seen to increase at the end of August, following the bund breaches

at Sukkur and Sarjani, flattening off once more in early September, when the

front of the flooding is seen to retreat back to localised areas.
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Figure 4.16: Selected instances from the time series showing the build-up of flooding and
much of its recession. Flooding is still evident in the third week of October 2010, at which time
data temporarily ceased to be available, due to ESA’s scheduled preparations for Envisat’s
project extension program.
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Figure 4.17: Map showing the extent and duration of inundation surrounding the Indus and
Chenab rivers as derived from satellite radar data acquired between July and October 2010.
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Figure 4.18: Distance of the flood head and tail along the Indus channel from the foot of the
northern ranges at 71◦ N, 32◦ S

Figure 4.19 shows the flooded area over the time series, derived from the

combination of GM and MODIS data. The lower curve shows only the flooding

around the main Indus Channel. The upper curve shows the total area, including

the near-static flooding between Jacobabad and Dadu, which remained well into

October 2010.

4.5.5 Accuracy

A measure of the classification accuracy of this method was known throughout

from the κ statistic values used to ascertain the optimal thresholds to use. The

consequence of fixing a ∆σ0 threshold of -2 dB based on the κ tests done on 10

and 27 August was further tested on the classification done for 29 August, the

results of which are tabulated in Table 4.2 and shown graphically in Figure 4.20.

The κ statistics over the full range of MODIS Band 6 reflectance values and ∆σ0

values were also seen in Fig. 4.13.
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Figure 4.19: Area of inundation over time, of the Indus Channel and the total flood.

The following factors are considered to be the main contributors to inaccuracy:

� As discussed in Section 4.5.2, much of the flooded region covers the immedi-

ate flood plain which ordinarily contains large meanders, anabranching and

ox bow lakes. Low backscatter returns from these semi-permanent water

bodies contribute to to a lower value in a larger area of the baseline image

when averaged to a pixel size of 500m. This is offset from similar values in

the target image, resulting in mid-range values, incorrectly interpreted as

land.

� Semi-submerged vegetation can cause high backscatter values due to multi-

hedral scattering as discussed, which, again, when averaged with low values

from open water may return a mid-range value.

� Wind conditions may be such that Bragg Scattering occurs, causing rela-

tively high return values. Determination of the extent of this effect would
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Figure 4.20: Comparison of the ∆σ0-derived flood map on from 29 August 2010 against
MODIS flood classification.

require detailed wind speed and direction data, which were not available

for this period.

4.6 Discussion

4.6.1 Natural disaster response

For regions which face a high risk of flooding that may be ever increasing (Schier-

meier, 2011), mitigating the impact of flooding can fall within two broad cat-

egories: planning and organisation based on predicted scenarios, and reactive

response during and after an event. Action under the first of these requires an
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Table 4.2: Error matrix and κ statistic for the flood map on 29 August 2010 when compared
with MODIS flood classification.

MODIS
Category Flooded Non-Flooded Row Sum

∆ Flooded 34761 10464 45225
σ0 Non-Flooded 18662 228902 247564

Col Sum 53423 239366 292789

Cats % Commission % Omission Est. κ
Flooded 23.1 34.9 0.71
Non-Flooded 7.5 4.4 0.59

κ κ Variance
0.65 0.000004

Obs Correct Total Obs % Observed Correct
263663 292789 90.1

understanding of processes which govern the magnitude and extent of possible

floods. Such an understanding cannot rely exclusively on historical data where

land use and climate are changing, but must instead require predictive modelling.

Remote sensing has played an increasingly important role in this process in

recent years. The establishment of parameters in hydrological models have called

upon, for example, leaf area index calculations or on surface water extents using

data from optical sensors such as Landsat Thermal Mapper (Chen et al., 2004;

Milzow et al., 2009a; Stisen et al., 2008) and have increasingly incorporated soil

moisture values gained from Envisat ASAR in such modelling (Decharme et al.,

2009; Liu et al., 2010; Saux-Picart et al., 2009). Radar-derived DEM’s have been

assessed and used in hydrological modelling widely (e.g. Ludwig & Schneider

(2006)). More directly, hydraulic processes involved in flooding have been mod-

elled to estimate flood magnitudes (Conesa-Garcia et al., 2010; Hostache et al.,

2009b) and to develop flood inundation models (Schumann et al., 2007). Cou-

pled models using SAR data have been employed in the last few years to useful

effect. Montanari et al. (2009) investigate the usefulness of SAR data to gauge

flood extents and stage heights in deriving soil saturation values. Milzow et al.
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(2009b) seek to verify hydrological models by comparing simulated flood patterns

with flood maps derived using AVHRR and ASAR data. Pauwels et al. (2009)

calculate soil hydraulic conductivity values through a combination of SAR-based

moisture maps and land surface modelling.

Predictive modelling has significant limitations in certain instances. An ex-

ample of this can be observed in the case of the floods in Pakistan. There are

limitations to ascertaining water volumes for the modelling process in large areas

of very low gradient, necessitating a spatially and radiometrically high resolu-

tion DEM (Sanyal & Lu, 2004). Further to this, the use of levees on a large and

small scale is widespread throughout the floodplain, many of which are built “pri-

vately” and therefore remain unmapped 1. In this case, therefore, the importance

of flood mapping based on observation, increases. So too does the significance of

data availability, speed of acquisition, spatial coverage and temporal resolution.

4.6.2 Use and limitations of the GM data for flood map-

ping

The swath width of GM data is ∼405 km and permits a synoptic assessment of

large flood events at the basin scale. Capturing the onset of a flooding event as

early as possible is critical for emergency response. ENVISAT ASAR GM was one

of the few sensors capable of capturing the full extent of the flooding in Pakistan

during the first week and a half (e.g. MODIS data were unavailable from 2 to 9

August 2010 due to high cloud cover). ENVISAT ASAR GM acquisition is not

systematic but will depend on other modes being switched off. Hence the coverage

of a particular region can be variable. Across Asia, we found from September 2009

to May 2011 an average of 2–3 weekly observations at a single location. Over the

same period there were no GM data acquired over New Zealand and 8 per week

in parts of North America. Average frequency of land coverage per week by GM

data over this 600 day period is shown in Figure 4.21. The temporal distribution

is not evenly spread. South-east Asia, for example, received virtually no coverage

for the first four months of the study period.

1see http://tribune.com.pk/story/219602/private-dykes-on-public-land-may-lead-to-
another-bout-of-floods/, for example
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Figure 4.21: Average frequency of terrestrial coverage per week by GM data between Septem-
ber 2009 and May 2011

In Pakistan, we found the coverage of the ENVISAT ASAR Global Mode data

was adequate to capture the dynamics of the propagation of the 2010 flood across

the entire Indus Basin (Figs. 4.5 and 4.6). However, a lower acquisition frequency

from 17 August 2010 onwards only allows for partial coverage of the recession of

the flood.

A major limitation of the ASAR GM mapping technique used here is that

inundated area with emergent vegetation can be confused with land area of high

soil moisture. Wind-induced waves can also generate a roughening of the water

surface which increases the scattering of the radar signal due to Bragg resonance;

a phenomenon that is more pronounced in C than L-band over inland water

bodies (Alpers, 1985; Alsdorf et al., 2007). Finally, partial flooding inside a pixel

can be a common feature at this scale (spatial resolution of ∼1 km) especially

along braided channels and will result in mixed pixels composed of land, water

and flooded vegetation, which can return a wide range of signals.

The original mapping presented here was carried out in response to a request

for a timely indication of the extent of flooding by a UN emergency response

team when the event was in full throw, when expediency and simplicity competed

with sophistication of technique as priorities. The methods lend themselves to

seek greater accuracy by further analysis, building on thresholding and region-

growing techniques by, for example, Galland et al. (2009); Matgen et al. (2011);

Yu & Clausi (2007) and Silveira & Heleno (2009). Other successful segmentation

methods for SAR images involving texture and shape (van der Werff & van der

Meer, 2007), active contours (Ben Ayed et al., 2005; Chakraborty et al., 2009;
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Fu et al., 2008) and multi-objective algorithms (Collins & Kopp, 2008) may be

suitable. However, it is felt that the basic premise of same-track image differenc-

ing (to mitigate incidence-angle effects and ambiguous low-backscatter response

due to absorption), coupled with a robust region-growing segmentation technique

(e.g. Matgen et al. (2011)) to account for the small inter-modal range in the prob-

ability density functions of flooded and non-flooded areas, is well suited to map

flooding in arid regions using SAR data.

4.6.3 A complement to other mapping techniques

Optical sensors, such as Landsat TM and MODIS, can easily detect open water

using the strong absorption of solar energy by water in the near and middle infra-

red. Shallow depths and turbid waters, are better detected at greater wavelengths

(> 1µm; short-wave infra-red) where the illumination of the suspended materials

or of the shallow bottom of a water column is considerably reduced (Bukata,

2005; Li et al., 2003). However during storm events the use of optical data can

be severely limited by cloud cover. Radar imaging is less affected by cloud cover

and can penetrate vegetation at a depth which depends on the wavelength used

and the structure (density and height) of the vegetation (Alsdorf et al., 2007;

Hess et al., 2003; Martinez & Le Toan, 2007; Rosenqvist et al., 2007). The use

of L band data from the JERS and ALOS PALSAR sensors for flood monitoring

is mainly restricted by acquisition times and limited archives, rather than by

weather or vegetation condition. ALOS PALSAR data in the wide swath mode

are particularly attractive to cover large regions, but unfortunately the system

failed in April 2011 and this resource is therefore no longer available for data

beyond that time1. Passive microwave data (e.g. SSM/I and ISCCP) are helpful

for delineating inundated areas (e.g., Hamilton et al. (2002); Sippel et al. (1998)),

in particular when used in conjunction with other sensors to limit confounding

factors such as atmospheric condition and vegetation (Prigent et al., 2007), but

their use in natural disaster response is limited by their low spatial resolution (tens

of km). The geosynchronous weather satellites (e.g. Meteosat II, GOES, GMS)

may often be able to bypass clouds with their high temporal resolution allowing

1http://www.palsar.ersdac.or.jp/e/
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for the mapping of open water at ∼1km spatial resolution. In the specific case of

flooding events occurring in semi-arid and arid regions, such as the Pakistan flood

studied here, water under flooded vegetation can also be mapped using composite

data from the thermal bands of these weather satellites (Leblanc et al., 2003,

2011).

Amongst the most promising potential developments in remote sensing of

surface water is the future Surface Water and Ocean Topography (SWOT) mis-

sion. It is currently planned to be launched in 2020 and will provide significant

improvements in our abilities to map inundated areas from space 1. Using wide-

swath altimetry technology, SWOT will provide temporal and spatial variations

in water volumes stored in rivers, lakes, and wetlands at unprecedented resolution

(Biancamaria et al., 2010). SWOT will generate a global 3D mapping of all ter-

restrial water bodies whose surface area exceeds 250 m2 and rivers whose width

exceeds 100 m (Biancamaria et al., 2010). The principal instrument of SWOT

will be a Ka-band Radar Interferometer (KaRIN), which will provide heights and

co-registered all-weather imagery of water over 2 swaths, each 60 km wide, with

an expected precision of 1 cm/km for water slopes, and absolute height level pre-

cision of 10 cm/km2. ESA will also be extending and improving C-band SAR

capabilities with the launch of the Sentinel-1 system, expected in 2013. This pair

of satellites is planned to provide data with a spatial resolution of 20 m, with a

revisit time of between 1 and 3 days for Europe and Canada 2.

4.6.4 Other applications of GM data

Space borne technologies are increasingly found to be a key source of information

for wetlands conservation and management, as many of the World’s wetlands have

insufficient on-ground data in part due to their size, number and limited accessi-

bility (Jones et al., 2009). Even at such a time when technological advancement

in data processing, storage and communication enables ever higher spatial reso-

lutions from airborne and satellite sensors, the use of coarser resolution data still

has a very firm place in the remote sensing field where broad-scale monitoring

1http://swot.jpl.nasa.gov/mission/
2http://www.esa.int/esaLP/SEMBRS4KXMF LPgmes 0.html
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is required, such as the monitoring of algal blooms (Ahn & Shanmugam, 2006),

assessing risks of fire (A. & R., 2008; Chéret & Denux, 2007) or drought (Rojas

et al., 2011), the development of land surface models (Jarlan et al., 2005), the

assessment of animal stocking rates (Hunt & Miyake, 2006) and the mapping of

shorelines (M.-Muslim et al., 2007). The perceived role of GM data was primarily

in the monitoring of sea ice (ESA, 2007b), to which field it has indeed contributed

(e.g. Quincey & Luckman (2009)). However, its coverage and availability have

already been identified as useful advantages in other areas, and have been put

to good use, particularly in the areas of relative soil moisture (Bartsch et al.,

2008, 2009), surface soil wetness (Pathe et al., 2009; Scipal et al., 2005) and in

wetness dynamics (Scipal et al., 2005). The implication of GM data’s sensitivity

to surface wetness has recently led to the interesting extension to its potential use

in the monitoring of freeze-thaw cycles in permafrost regions (Park et al., 2011).

The need for coarse scale inundation mapping has been identified and acted

upon, resulting in, for example, the 25 km resolution surface water product de-

scribed by Schroeder et al. (2010) which tests favourably against finer resolution

products, and the 0.25◦ global inundation map produced by Prigent et al. (2007).

This study aims to contribute to this latter group at a resolution that falls

between those global-oriented scales and the finer river-channel-scale resolutions

that can be achieved with other sensor-mode configurations such as JERS, ALOS

PALSAR or ASAR in its finer modes. It is felt that ENVISAT ASAR GM data

could be used to monitor inundation patterns over large wetlands in complement

to estimates from other sensors (e.g. Sakamoto et al. (2007)).

4.7 Conclusions

It is clear that during periods of cloud cover, in which optical satellite data with

which to map a flood event are not available, GM data may be available to varying

degrees that cover the region of interest. Much of the rain (and the cloud) that

affected the flooding in Pakistan occurred in the mountains away from the flood

plain, and so it is fair to say that the relative availability of GM data with optical

data may be greater in flood events closer to the precipitation source, making the

use of GM data of greater value.
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Ambiguity resulting from low backscatter values from non-flooded areas have

been shown to have been reduced greatly by the image differencing process, as

these low backscatter values are reasonably consistent between orbit cycles. A

greater challenge is presented by the ambiguities in origin of data values, where

effects such as dihedral scattering, Bragg resonance and speckle can raise and

lower pixel values and prohibit the accurate classification of water. Where the

objective is to ascertain the extent of flooding in near real time, there is little

that can be done about Bragg resonance unless precise wind conditions are known,

other than to hope that temporal frequency of data is sufficient to allow us to

understand where this effect may have occurred and to rectify it in an updated

image. The effects of speckle can be reduced with filtering. Dihedral scattering

can, to some extent, be managed by acceptance that only open water is being

mapped, or by further analysis using textural measures. Where, for example,

dihedral scattering is dominant in a pixel, we expect the ∆σ0 value to be high,

and would expect such areas of partial inundation to surround areas of total

inundation. Further analysis could therefore encompass such regions into the

flooded class and improve the overall accuracy. The coarse spatial resolution of

GM data compounds all of the above problems, where adjacent regions of low

and high backscatter values return an averaged mid-range value.

It has been shown, however, that a reasonable level of overall accuracy can

be achieved using GM data which allows an understanding of the dynamics and

broad-scale extents of a large flood during periods when there are no other means

by which to judge these parameters. In the interests of flood mitigation planning,

where thousands of lives are at stake, we feel that the potential use of GM data

for this purpose is significant.
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Abstract

The viability of mapping the extents of flooding in two rivers in northern Queens-

land, Australia, using Envisat ASAR Global Monitoring Mode (GM) data, is

examined, through observations of a major flood in each. In the Flinders River

event, the flooding, which covered over 9,000 square kilometres, can clearly be

distinguished, from low backscatter values in the case of total inundation, to high

backscatter where partial inundation occurs. The Staaten flood event demon-

strates neither of these characteristics. The resulting classification of the Flinders

flood achieves a kappa statistic of 0.7, with the region of lowest accuracy being

topographically distinct, and more similar to that of the Staaten region. Wa-

ter height loggers were set up in the lower Mitchell flood plain, neighbouring

the Staaten, and the GM data response monitored throughout a year, during a

quarter of which time the vegetation was partially inundated. It was found that

extensive flooding under local conditions resulted in a barely perceptible drop

in backscatter values, due to the mixing of high and low values, confining the

use of GM data for the monitoring of floods to regions with particular surface

conditions.

5.1 Introduction

The use of radar as a consistent and reliable tool for the mapping of floods has

been shown to be complicated, and requires an understanding of when to ex-

pect, under particular environmental conditions, a low backscatter response due

to specular reflection on the surface of water, and a high backscatter response

due to dihedral scattering (double-bounce) (e.g. Bartsch et al. (2008); Costa &

Telmer (2006); Grings et al. (2009); Kasischke et al. (2003)). To further com-

plicate the process, open water can exhibit Bragg Resonance, where coherent

additive effects return very bright signals from targets with regular textural qual-

ities, such as waves on the surface of the water (Alsdorf et al., 2007; Liebe et al.,

2009; O’Grady et al., 2011; Schaber et al., 1997), or furrows in a ploughed field

in a particular orientation (Bonn & Dixon, 2005; Sanyal & Lu, 2004). While

such limiting phenomena can occur in any environment under study, there are
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some ground-cover characteristics which render a region particularly prone to

ambiguous radar signals, and therefore preclude the use of radar of particular

specifications for the mapping of flood extents. It is useful to understand what

some of these conditions may be in the context of a particular data product, to

avoid abortive work and erroneous inundation maps. Here we look at two large

floods in near-neighbouring catchments in the Gulf Plains of north-west Queens-

land, observing a major difference in our ability to map their extents using GM

radar data, and examine the likely reasons. From this, it may be possible to

determine those areas that are off-limits to the use of GM data for flood map-

ping, and also help in our understanding of the particular radar characteristics

of grasslands and tropical savanna.

5.2 Study Area and Flood Events

Figure 5.1: Catchments under study in Northern Queensland, Australia
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5.2.1 Flinders

The Flinders Basin occupies an area of nearly 110,000 square kilometres of the

northern Queensland Gulf Plains bioregion, draining into the Gulf of Carpentaria.

The lower floodplain is dominated by grasslands, in particular Dichanthium, or

Bluegrass. Tussock grasses such as these occur in clay soils through which water

does not readily penetrate, resulting in either water logging or an absence of

moisture, depending on rainfall (Spessa et al., 2005). Such conditions are not

favourable to trees, and this region is therefore dominated by open grassland

plains. In February 2009, a period of sustained rainfall resulted in the flooding

of the lower basin, the inundated area covering over 9,000 square kilometres.

Figure 5.2 shows the rainfall average for the whole basin, leading up to the flood

event. The largest extent of the flood occurred following the final large rainfall

peak in mid-February. At this time the gauge height at Walkers Bend, situated

downstream of the largest flooded area, was on the decline from its peak at 15m

(Fig. 5.2). Following 15 February, the gauge height increased as the upstream

flood evacuated.
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Figure 5.2: Flinders basin rainfall (blue) and river height (red) at Walker’s Bend gauging
station on the Flinders river in early 2009

Figure 5.3 shows a MODIS Band 6 reflectance image (left) of the flooded
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region on 15 February 2009, in which the low values representing absorption of

the short-wave infra-red radiation by water appear as dark. The image on the

right shows GM data acquired on the same day, with radar backscatter values

ranging from close to zero dB (bright) to -25 dB (dark), the latter representing

the specular reflection of the radar signal on open water. It is clear that the

main body of flood water in the centre of the images has been captured in the

GM data, along with the coastal wetlands of the Southern Gulf Aggregation to

the north-west of the images. However, the fan of laden tributaries running into

the Norman River to the east of the MODIS image is less clearly defined in the

GM data. The bright patch in the GM image to the west of the gulf coast is

attributed to Bragg Resonance.

Figure 5.3: ASAR GM image of flooding in the Flinders catchment on 15 Feb 2009 (left),
compared with an image derived from MODIS Band 6 reflectance values from the same date
(right)

5.2.2 Staaten

Covering an area of 25,572 square kilometres, the Staaten Basin ranges from the

Bulleringa National Park in central Cape York to the west coast of the cape,

narrowing as it reaches the Gulf of Carpentaria. The basin comprises ephemeral
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riverine channels in an alluvial plain dissected with many streams, oxbow lakes

and billabongs, or drainage depressions, in widely spaced valleys that form a

uniform pattern shared with the neighbouring Mitchell and Gilbert basins.

The tropical savanna woodland of the Staaten region comprises tall dense

grasses, together with various densities of mainly Eucalypt trees, predominantly

Melaleuca.

A continually wet January in 2007 preceded a significant rainfall event on

7 February (see Figure 5.4). The gauge at Dorunda peaked at around 7.2m on

10 February, at which time a substantial part of the lower reaches of the Staaten

basin were flooded.
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Figure 5.4: Staaten basin rainfall (blue) and river height (red) at Dorunda gauging station
on the Staaten river in early 2007

The extent of the flood at this time in the Staaten Basin can be seen in the

MODIS Band 6 image in the left of Figure 5.5. From the image on the right,

it can be seen that the only open water visible from the GM data is along the

coast, which represents the semi-permanent wetlands of the coastal South-east

Karumba Plain Aggregation. The inability to distinguish the presence of flooding

is representative of all the GM radar data seen during this event.

The relative separability of water and land between the two instances is high-
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Figure 5.5: (left) Flooding (in black) of the Staaten river on 10 Feb 2007, derived from MODIS
Band 6 reflectance values, and (right) the near-simultaneously acquired GM backscatter image

lighted in the density plots shown in Figure 5.6. Ground-projected values, nor-

malised to an incidence angle of 30◦ (γ30) for flooded regions are represented by

the blue lines, non-flooded by red. The Flinders plot on the left shows that γ30

values for the flooded region appear to have at least two means, one at around

-15 dB and another at around -10 dB, the latter made up largely of those pixels

in the vicinity of the Norman River alluvial fan already discussed, that is suscep-

tible to misclassification. The Staaten plot on the right shows that, beyond the

tail of low values returned from the coastal wetlands, the flooded region shows

a distribution around a mean that is perhaps a decibel higher than that of the

non-flooded land.

The Staaten and the Flinders flooded regions are both very flat, and GM

data was acquired at similar angles of incidence, and so it must be concluded

that the vastly different radar responses represent differences in the nature of the

vegetation, in the nature and pattern of the floods themselves, or a combination

of the two. The positive displacement of the flooded density plot for the Staaten

Basin indicates a higher set of backscatter values for the flooded region than
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Figure 5.6: Backscatter value density plots of the Flinders (left) and Staaten (right) regions,
during their respective flood events. Values from pixels representing flood waters, as identified
in MODIS SWIR data, give the blue curve, non-flooded pixel values the red.

the surrounding land. We know that the C-Band signal used to produce GM

data is liable to interact with structures at the physical scale of leaves and small

branches of trees, and that the Staaten and the neighbouring basins do experience

floods which reach the lower tree crown (see Figure 5.7). Flooding of this extent,

which completely covers the grasses, tends to return a low value due to specular

reflection and to attenuation and volume scattering from the upper branches.

Figure 5.7: Part of the Mitchell River during a flood (Source: Kowanyama Aboriginal Land
and Natural Resources Management Office)

Where flood levels are much lower, the radar signal is liable to interact with

grasses, and a flood level rising through the height of the grass and then covering

it should be characterised by an increase in backscatter due to dihedral scattering,

followed by a sharp drop in value at total inundation. Grasses form the tallest
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stratum growth form of the Flinders flooded region.

5.3 Theoretical Basis

As has been seen, the two regions under study have different land cover regimes.

Both are extensively covered by grasses—in the case of the Flinders flood region,

these are dominated by Dichanthium Sericeum, or Bluegrass (see Figure 5.8), the

stems and leaves of which stand erect and rarely reach 30 cm in height (FAO,

2012). The major contrast in the Staaten region is the woody over-storey of

ironwood / eucalypt species, with various grass species (Themeda Triandra, Het-

eropogon Contortus, Heteropogon Triticeus, Sorghum Plumosum, Chrysopogon

Fallax, Alloteropsis Semialata, Eriachne Obtusa) which can grow up to anywhere

between 70 and 300 cm tall, depending on phenology and fire history (see Fig-

ure 5.9).

Figure 5.8: Dichanthium Sericeum, < 30 cm (Image: D. Greig, Source: ANH (2012)

Figure 5.9: Sorghum Plumosum, 70–300 cm (Image: L. Wallis, Source: GBIF (2012)

The characteristics of radar backscatter reflected from a surface comprising

water with emergent vegetation has been extensively studied (Costa & Telmer,

2006; Grings et al., 2009; Henderson & Lewis, 2008; Hess et al., 2003; Noernberg
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et al., 1999; Parmuchi et al., 2002; Pope et al., 1997; Rosenqvist et al., 2007;

Silva et al., 2008; Töyrä & Pietroniro, 2005; Töyrä et al., 2002; Wang et al.,

1995). Some work presents evidence as to the merits, or otherwise, of the use

of C-band horizontally co-polarised radar (C-HH, in which both the sent and

received signals are filtered in the horizontal plane). Töyrä & Pietroniro (2005)

note that SAR has difficulty separating inundated shrub or forest from other

vegetation which is dry. They tackle this problem with the use of auxiliary

visible/infrared (VIR) data. Pope et al. (1997) identify an apparent threshold in

the height and density of grasses that determines the response (whether rising or

falling) of backscatter to inundation, and suggest that the use of C-HH data to

detect partial flooding in marshes with sparse cover “will probably not be possible”.

This conclusion is shared by Pope et al. (1992), who note the lack of distinction

between flooded emergent grasses and non-flooded grasses using C-HH. Another

potential problem with C-HH data is that, due to the polarisation of incident

radiation on the surface of water, co-polarised signals (HH and VV) are more

susceptible to Bragg resonance than cross-polarised, although HH appears less so

than VV (Liebe et al., 2009).

For both C- and L-band data, Wang et al. (1995) found that HH data displayed

a greater flooded/non-flooded backscatter ratio than VV in their study of response

to flooding in the Amazon forests, as was the case for Grings et al. (2009) when

exploring the use of Envisat ASAR data to estimate water storage in the marshes

of the Paraná Delta in Argentina.

In studies of aquatic or flooded vegetation, the presence of water is generally

manifest in a higher backscatter signal (e.g. Bartsch et al. (2008); Costa & Telmer

(2006)), but this is not always the case. While total submersion of vegetation,

in the absence of Bragg scattering, results in a low backscatter response due to

specular reflection away from the sensor, the behaviour of the signal response as

the water rises to that point depends on several factors.

Grings et al. (2009) found that verticality of the vegetation determined the

behaviour of backscatter from flooded marshes: they observed that the response

went up when the inundated marsh was mainly of vertical orientation, and down

when of random orientation, a finding shared by Silva et al. (2008), Töyrä et al.

(2001) and Pope et al. (1997). The latter describe a similar trend reversal in terms
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of vegetation density, observing an increasing backscatter value with flooding

where the density of emergent Cattail and Saw Grass was greater than 60%

cover, and a decrease in densities less than 50%. Flooding was also associated

with a decrease in backscatter where small-stemmed rushes occurred at 50%–80%

cover (Pope et al., 1997).

Costa & Telmer (2006) used RADARSAT and JERS-1 data to examine the

lakes of the Brazilian Pantanal. They found that taller denser aquatic species

give the highest C-band backscatter values due to dihedral scattering. However,

Ramsey (1998) found that in taller marshes, C-band and X-band returns were

dominated by volume scattering, with dihedral scattering being predominant in

shorter marsh grasses.

Kasischke et al. (2003) studied ERS SAR data at 13 sites in the South Florida

wetlands, and found that in all but one of the study sites, radar backscatter

decreased with increasing water level. The one exception, i.e. where backscatter

increased with increasing water level, was the site with the highest above-ground

biomass.

It is clear that certain combinations of structural orientation / homogeneity,

vegetation density and spatial coverage preclude the ability to distinguish flooded

and non-flooded vegetation, as was found by Parmuchi et al. (2002) in the case

of marshes in the Paraná Delta, despite the knowledge that there existed a large

difference in water levels between data acquisitions. The vegetation species in this

case was Scirpus giganteus with 100% coverage, which comprised vertical stems

rising to 1.5–2m. This inability to distinguish between flooded and non-flooded

states would seem to contradict the findings of Grings et al. (2009), mentioned

above, who apparently observed a marked separability between ASAR readings

in flooded and non-flooded states of the same species (identified in this case as

Cortadera), in the same region. Marsh density and biomass conditions during

winter are suggested as possible reasons for the phenomenon by Parmuchi et al.

(2002).

Considering the varied results, it seems that the flooding of grasslands may

be observed either as a drop in backscatter due to specular reflection, or a rise

due to dihedral scattering, both of which may conceivably be experienced within

the bounds of a single pixel. Pope et al. (1997) refers to the trade off between

158



5. Vegetation effects

increasing backscatter from dihedral interactions and decreasing backscatter from

forward scattering. The determination as to which of these is dominant, is gov-

erned by some vegetation cover threshold, which may vary between species and

growth stage. It seems unavoidable that there must be a range of cover within

which the presence of flooding is undetectable with radar data. In either case,

the detectability of water depends on the amount of attenuation present through

volume scattering above the water level. Töyrä & Pietroniro (2005) note this fact,

finding difficulty separating inundated shrub or forest from non-flooded vegeta-

tion or bare soil without the help of auxiliary data in the form of optical imagery.

Pope et al. (1997) acknowledges that there “appears to be an important height-

density threshold in C-HH”. Töyrä et al. (2001) found that their ability to detect

flooded sedges and grasses was confined to the summer when the newly-grown

stalks were upright, and that in the spring, the dihedral backscatter became

attenuated by brown vegetation and thatching.

The mechanisms which conspire to render the Staaten flood invisible using GM

data can only be understood by measuring backscatter responses under known

vegetation and flood conditions.

5.4 Method

GM data covering the two flood events was preprocessed according to methods

described in Chapter 2. A list of data used may be found in Appendix B.

The ability to use GM data to map the Flinders flood was tested by classi-

fying flooded and non-flooded pixels using the methods described in Chapter 4

O’Grady et al. (2011), which involve a region-growing algorithm and track-for-

track baseline image deduction. This was done on three dates for which near-

simultaneous cloud-free MODIS data were available, in order that the accuracy

of the map could be tested. Kappa tests (Cohen, 1960; Foody, 2006; Hunt et al.,

2010; Tolpekin & Stein, 2009) were carried out to this end.

In order to analyse the radar response to varying water levels in the savanna

of the western Cape York river basins, a series of capacitance-type water level

loggers (Fig. 5.11) was set up across a transect running south from the Mitchell

River, over a distance of 22km, approximately 2km apart (see Fig. 5.10). These
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Figure 5.10: Location of water height loggers in the Mitchell floodplain
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recorded data over the period of one year, including dry periods and periods of

flooding at various depths.

Figure 5.11: Capacitance loggers set up in the Mitchell floodplain (as numbered). The main
channel of the Mitchell near Shelfo Station is shown in its dry season state in the lower right-
hand image

5.5 Results and Discussion

5.5.1 Flinders

Figure 5.12 shows the backscatter response at arbitrary points in the Flinders

floodplain from the middle of the 2008/9 wet season through a complete wet-
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dry-wet season cycle. From this plot, it can be seen that the tussocky grasses

dominating the floodplain produce high backscatter values, between -5 and -9 dB

at the height of the wet season, and low values of -11 to -13 decibels during the

dry. Total submersion of the grasses in February 2009 produced a backscatter

value of around -17 dB, but the same sample point a few weeks later returned

a value at the high end of the observed range. Where no flooding occurred, the

range of values at any time throughout the year across the sample points was

fairly consistent at -3 to -4 dB.

Figure 5.12: Variation of average GM backscatter values through the year from the same
orbit track, at various points in the Flinders floodplain

The seasonal variation of backscatter values is consistent with findings by

others (e.g. Bartsch et al. (2008); Kasischke et al. (2003); Wang et al. (1995)) as to

the domination of backscatter signals by soil moisture. In fact, high soil-moisture

response is all but indistinguishable from the response of semi-submerged grasses

causing dihedral backscatter.

The build-up of water from dry soil through to increased wetness, to inun-

dation, to reduction in water level below the top of vegetation and increased

dihedral scattering may be seen in Figure 5.13.

On 31 January, the dry conditions across the floodplain are evident from the

general low backscatter values below around -10 dB. By 15 February the flooding

can clearly be seen, surrounded by much higher (-5 – 0 dB) backscatter corre-

sponding to wet soil and dihedral scattering. In the next two images showing
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Figure 5.13: Progression of projected backscatter (γ30) values in the Flinders region before
and after the flood event.

19 February and 3 March, the area of total inundation represented by the homo-

geneous region of values at or below -16 dB reduces, and the radar-bright areas,

tending towards zero loss, increase, as the flood water drops below the height of

the vegetation, and interactions between the water surface and emergent vegeta-

tion result in dihedral scattering. Between 4 March and 9 March these areas are

replaced by lower pixel values as the water level drops.

The effect of incidence angle on dihedral scattering is evident when comparing

the images in Fig. 5.14, taken 11 hours apart on 9 and 10 March 2009. The former

was taken was taken on an ascending orbit, where the data corresponding to the

flooded region was acquired at a high incidence angle (≈ 40◦). The latter was

acquired on a descending orbit, with the flooded region corresponding to lower

incidence angles (≈ 15◦). The normalisation process with respect to incidence

angle, using parameters derived from the methods described in Chapter3, and

the classification described in Chapter 4 and in O’Grady et al. (2011), mitigate

this effect to a large extent.
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Figure 5.14: Two GM images of the Flinders floodplain, acquired 11 hours apart on 9–
10 March 2009. On the left, the region of interest (ROI) is on the outside of the swath of an
ascending orbit, where incidence angles are around 40◦. On the right, the ROI is on the inside
of a descending orbit, with incidence angles around 15◦.

Progression of flooding

In order to observe the various states of vegetation–water interaction through the

Flinders flood, an unsupervised classification was performed on the time series of

images that were acquired through the flood event. This resulted in the grouping

together of those areas with a similar behaviour of backscatter response over time.

Figure 5.15 follows the progress of the mean backscatter returned by four value

groups, from the resultant classification, through the flood event. Prior to the

build-up of flood water in late January 2009, pixels in the red, blue and orange

classes showed a mean backscatter values of -11 dB consistent with dry soil. The

green class, dominated by the highly-weathered bedrock to the southwest of the

region, and the dry sand of the coastal areas to the north, returned a lower mean

value of -12 dB, consistent with absorption and specular reflection. The next

period, up to 15 February, sees a peaking of the gauge height at Walkers Bend of

around 15 m. The blue-red class values dive to -15 dB, where total submersion

is reached. It is unfortunate that no GM data were available earlier in February,
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Figure 5.15: (Below) Mean γ values for classes determined using an unsupervised classification
of five GM images straddling the Flinders flood event, shown against gauge height at Walker’s
Bend. The geographical location of the classes is shown at the top.
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when we would expect to see, for these two classes, the backscatter values rise

due to dihedral scattering, prior to total submersion. However, we do see this

occur as the waters recede. In early March we see the blue class values approach

those of the orange class at around -6 dB, representing those areas where the

flood has drained, exposing wet soil. The red class values peak at an average of

-2 dB, and represent those areas where the grasses remain emergent through the

remnant flood waters. The orange class shows those areas which did not flood,

and the progression from dry soils to wet soils can be seen between late January

and mid February, where they remain fairly constant at around -6 dB until the

gauge height at Walkers Bend is seen to drop off in early March. At this time,

the average backscatter values for all of the classes begin their descent to their

normal values for the time of year (driven by soil moisture), averaging around

-9 dB.

Class map of Flinders flood

The full extend of the Flinders flood was mapped using the preprocessing, image

differencing, thresholding and classification techniques described in Section 4.4.

The results of the subsequent classification of flooded and non-flooded pixels

are shown in Figure 5.16. Correctly classified water and land are shown in blue

and yellow respectively, and pixels incorrectly classified as water and land are

shown in cyan and red. The κ-statistic resulting from the error analysis on the

15-February classification is 0.70 (see Table 5.1). No hard and fast rule exists

to determine a definitive interpretation of the κ value, though some attempts

have been offered (e.g. Fleiss (1981); Landis & Koch (1977)). In all assessments,

a κ-statistic value 0.7 ranks highly, indicating a good classification result. It is

significant that errors of omission, where water is classified incorrectly as land, are

concentrated to the greater part on the north-east area, which actually represents

the lower reaches of the Norman River. This error is demonstrated best in the

classification for 3 March, seen in the lower left image in Figure 5.16.
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Figure 5.16: Accuracy of flood classification using GM data against a MODIS Band 6 thresh-
old classification, at various stages of the flood.
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Figure 5.17: Water level measured at five logger locations (in blue) in the Mitchell floodplain
over a nine month period, together with ground-range projected backscatter (γ30, in red) derived
from GM data. The bottom right-hand plot shows daily rainfall at Kowanyama Airport for
the same period (Courtesy Australian Bureau of Meteorology http://www.bom.gov.au) Logger
locations were shown in Fig. 5.10
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MODIS B6
Class Land Water Row Sum

G Land 102136 10758 112894
M Water 10941 42209 53150

Col Sum 113077 52967 166044

Class % Commission % Ommission Estimated κ
Land 9.529293 9.675708 0.701270
Water 20.585136 20.310760 0.697725

κ κ Variance
0.699493 0.000003

Obs Correct Total Obs % Observed Correct
144345 166044 86.931777

Table 5.1: Kappa (κ) results from the accuracy test performed on the classification of flooding
in the Flinders basin on 15 February 2009

5.5.2 Staaten

Figure 5.17 shows the backscatter values being returned under certain flood levels

in very similar environmental conditions to the Staaten flood, in the neighbouring

Mitchell floodplain. Five data loggers were set up and left for one year, recording

water height above ground level hourly. The results are plotted in Figure 5.17.

Although the loggers were a few kilometres apart, the region is extremely flat, at

around 11m above sea level. The three loggers furthest away from the Mitchell

channel (33901, 34762, 34828) recorded two peaks, in early and late February,

taking the water height up to between 200 and 1100 mm. It is only the first

peak in early February, however, common to all of the logger data, which causes

a discernible drop in the backscatter (γ) value which we would expect to see due

to specular reflection on open water. In the case of loggers 33901 and 34827,

it is certainly true that a water height of at least 300mm would be required to

submerge the grasses, and this height was only achieved during this peak.

We can determine from the plots that values returned during the flooded

period are of a broad range whose mean tends to follow the range of values

expected as a result of soil moisture alone, at this time of year. We have seen

the seasonal trend of backscatter values in the Flinders region in Figure 5.12, in

which the low backscatter values during the dry season reflect the extremely low
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soil moisture content during that period.

Figure 5.18: Tallest stratum growth-form in flooded areas

In the tussock grass-dominated Flinders floodplain, we see, in late January 2009,

when the soil was dry, a backscatter value across the floodplain of around -11 dB.

From this point, we see the flooded region drop to -15 dB, and then rise sharply as

the flood recedes. This is consistent with the findings by others that short, more

vertically oriented grasses are more inclined to return a response resulting from

dihedral scattering. Another difference between the two regions is the presence

of trees in the Mitchell and Staaten floodplains, in contrast to the Flinders flood

region, the tallest stratum growth form of which is grass (see Figure 5.18). We

know that C-Band radar will interact with structures of the order of scale of the

small branches and foliage within the canopy of the eucalypts which dominate

the Mitchell and Staaten, which can only serve to dilute the signature resulting

from the grass and water interactions, with volume scatter.
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5.6 Conclusion

From the classification and accuracy test performed using the Flinders data, GM

data was shown to be a useful tool in the mapping of floods, given favourable

surface conditions. It was mentioned in section 5.5 that the errors of omission

in this classification were concentrated in the Norman River section of the study

region. This is the section of the greater Flinders floodplain that shares a similar

vegetation growth form class to the Staaten region, as can be seen in Figure 5.18.

Findings by others regarding the influence of vertical orientation and above-

surface density in grasses on C-HH data is mixed. We found that in the short,

vertically-oriented bluegrass of the Flinders floodplain, during partial inundation,

a lower water level produced a higher backscatter value as dihedral scattering in-

creased. In the denser, thatched grasses of the Mitchell and Staaten floodplains,

the presence of water was barely distinguishable. Our findings straddle the demar-

cation of the expected radar response in flooded grasslands and wooded savanna,

depending on the nature of vegetation. To model precisely the synergy between

vegetation structure, density, orientation and phenology may not be possible,

given the diversity of species and distribution. It is clear that certain environ-

mental conditions preclude the use of GM data for the monitoring of floods.

When radar is used to detect the presence of flooding, we rely on a low return

in the case of total inundation, due to specular reflection, and on a high return

where emergent vegetation is present, due to dihedral scattering.

The benefits of the use C-HH radar data to monitor shallow but extensive

flooding may therefore come with the cost of a similar study on a floodplain-

by-floodplain basis as needed, to calibrate thresholds, or to discount the use of

C-band radar entirely.

171



Chapter 6

Conclusion

6.0.1 Research questions

The research questions posed in Section 1.6.1 were addressed as follows:

How does radar backscatter vary with incidence angle for different

surface conditions? How does this affect the segmentation of open

water? The variation of backscatter with incidence angle showed a close fit

(R2 = 0.8) to a sinusoidal model over open water, but a far less close fit (R2 =

0.2) over land, due, most likely, to environmental variations of the target areas

throughout the time series over which the regression was carried out. Despite this,

the slope of a linear approximation to the model showed clear regional clustering.

This clustering, when compared with various land cover classifiers, was found to

correlate best with regolith.

The slope of the linear approximation to the variation of backscatter with

incidence angle proved less sensitive to soil moisture and to Bragg resonance

than the absolute backscatter values themselves, suggesting a potential avenue

of research into more accurate mapping of water, in the event of future C-Band

missions providing sufficiently frequent coverage.

The calculation of slope and offset of the linear model for particular regions

of interest provided a reasonable means to normalise individual GM images with

respect to incidence angle through the rest of the research done for this thesis.
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Under what vegetation conditions (vegetation type, size, density, ori-

entation) does multihedral backscatter distort the radar signal so as to

make flood water indistinguishable from its surroundings? The short,

vertically-oriented bluegrass of the Flinders floodplain demonstrated a predictable

backscatter signature throughout the process of soil saturation, partial flooding

and total inundation, allowing a flood to be mapped to a high level of accuracy

(κ-statistic = 0.7).

The inundation of the taller, denser thatched grasses of the Mitchell/Staaten

floodplains returned backscatter signals that were indistinguishable from the sur-

rounding wet soil and vegetation through periods of partial inundation, with the

only predictable signal being the fall in backscatter values at total inundation.

Prior knowledge of vegetation characteristics of the Flinders region would

further increase the accuracy of the flood classification, by segregating the image

into regions of greater and lesser certainty.

How can we separate dry soil/sand from floods through arid regions?

How significant is this problem? Track-for-track image differencing tech-

niques can be used to to eliminate ambiguity between low backscatter response

due to specular reflection on flood waters and low backscatter response due to

absorption in dry sand.

The problem was found to be potentially significant, with, in one example, the

area of absorption surrounding flood waters in one GM image having the same

order of scale as that of the specular reflection on the flood itself.

The work done to resolve this problem also demonstrated the ability of GM

data to fill-in the flood mapping function during critical early stages of a major

flood, were VIR data were unavailable due to cloud cover, and also demonstrated

the stability of the backscatter threshold for flood demarcation, in comparison to

that for SWIR reflectance from MODIS images.

The combination of techniques and data sources allowed a large flood to be

mapped in its entirety over the course of several months.

How can the processing of such a large dataset be managed? How

can we automate the download, registration and orthorectification of
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a high volume of GM data files to allow efficient analysis? The open

source geospatial community, led by the Open Source Geospatial Foundation

(OSGeo1) play a vital role in the provision of fundamental tools to read, write

and process most file formats used by the GIS field, and these are relied upon by

both commercial and non-commercial software providers.

By developing the scripts used in this thesis, I have demonstrated that open

source tools can be used throughout the whole data download, registration, pre-

processing and analysis process, allowing control, transparency, flexibility and

efficiency, at very little cost.

The primary reason for the decision to take the time to carry out this stage of

the work, rather than relying on bespoke software such as ESA’s NEST tools, was

the fact that the whole process could be carried out using the university’s high-

performance computing system, in a parallel processing environment. It is easy

to underestimate the resultant advantage of being able to run and re-run scripts

many times, tweaking parameters in each case, making and correcting mistakes

without having to wait a considerable time to find out that a mistake may have

been made in the first place. A fast and efficient processing system allows for an

environment of exploration, in which trial-and-error can lead to new paths in the

research, as it has done for many people in all fields of research.

6.1 In summary

I have investigated the potential role that Envisat ASAR Global Monitoring Mode

data plays in the mapping of broad scale flooding. Now that Envisat is no longer

operational, although we have alternative C-band satellite sensor data available

to us, we await a contender for GM data which matches its coverage and ready

availability. We can be sure that, as technology in processing circuitry, data

storage capacity and, in particular, battery power storage and solar recharge

capabilities advance, we may not have to rely on such coarse spatial resolution as

that of GM data. Any increase in resolution will pose further challenges to the

processing involved in the type of research that makes use of large time series,

1http://www.osgeo.org/
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such as that with which I have dealt here. Depending on the scales being looked

at, the type of pre-processing described in Chapter 2 may involve generalisation

computations where they were absent here, in order that resultant data sets were

spatially comparable to other data with which they were to be compared. We

can see this process happening even with GM data at its 1km resolution, where

for example, soil moisture products have been derived and compared to similar

products that have 25km or even 50km spatial resolutions. The foreseen finer

spatial resolutions to be dealt with in the next generation of research will present

plenty of new opportunity to gain a better understanding of the complexities of

backscatter response. To take advantage of these resolutions, orthorectification

must be carried out in compliance with comprehensive and proven techniques

as set out by, for example van Zyl et al. (1993) and Ulander (1996), using a

similarly fine-scaled DEM. More careful consideration will need to be given to

georeferencing, though it is expected that much of this preprocessing will be

offered by the data providers, as was the case, for example, with L-band ALOS

PALSAR. Given such anticipated increased requirements in terms of processing, it

is felt that the principles described in this thesis, in the use of universally available

open source data interoperability tools, open platform scripting and GIS software

and multi-threading techniques that can easily be ported to super-computers such

as JCU’s HPC, will continue to offer the best solutions.

Whilst the use, on the same broad scale, of data at a much finer resolution,

will lead to less ambiguity caused by the aggregation of sub-pixel backscatter

responses from a surface of varied structural, textural and dielectric properties,

many factors which contribute to the complexities faced with the use of GM

data will remain. The availability of finer resolution data at a similar temporal

frequency as GM will open the path for the extension of work described here.

More precise matching of radar response with topographical parameters will lead

to a better understanding of the variance of backscatter with incidence angle.

Flooding extents will be able to be mapped with greater precision. Reduced

pixel-mixing will lead to better segregation of soil moisture, for example, from

dihedral scatter at the boundaries of floods. Partially flooded vegetation may be

more precisely matched with radar response categorically in terms of vegetation

species, which, we have learnt, is vital in order to interpret backscatter from such
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environments to derive the presence of water, or even its relative height.

At the outset of the work described here, the decision was made to concen-

trate on GM as a primary source of data with which to investigate the mapping

of floods. This decision was made for a number of reasons. The time constraints

governing most Ph.D.. research (which are really the manifestation of financial

constraints), impose the necessary trade-off between depth of research and scope.

The temporal frequency of GM data provided a huge time series with which to

investigate the behaviour of backscatter against various topographical parame-

ters, as well as giving me the opportunity to test the availability of data in flood

events against VIR alternatives. Also, from research by others it was found that,

of all possible wave bands and polarisation configurations, the C-HH configura-

tion offered by GM data might well be the best one for the job. It is worth

noting here that one of the most confounding problems found in all research in

the detection of water using both C- and L-band data was the phenomenon of

Bragg Resonance. As I have discussed, this is dependent on the orientation, as

well as relative scale, of regular waves on the surface of the water. As such the

effect is far reduced using a cross-polarised, C-HV or C-VH configuration, al-

though this may come at the cost of a lower radiometric resolution on surfaces

where no polarity shift has occurred. Sentinel-1 will provide both cross-polarised

configurations (ESA, 2012b).

From my initial review of literature on the subject of water detection using

radar remote sensing, fundamental questions emerged: What were the effects of

incidence angle on backscatter? How could specular reflection be distinguished

from absorption in flooded arid regions? How did backscatter response vary with

vegetation conditions under partial inundation? To answer these questions, I

devised a means to process and manage the large dataset, necessary for such

analysis at a pixel-by-pixel level. I used regression to gain values, for each pixel

and under seasonal conditions, of slope and intercept in a linear approximation of

the relationship between incidence angle and backscatter, by which to normalise

the data. I managed to further mitigate incidence angle effects through image

differencing, and with this method I also separated flood from desert, successfully

tackling a problem that had not been dealt with before. In this way I captured

the progress of an entire flood event, stretching across a thousand kilometres over
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a hundred days. I investigated radar response to total and partial submersion

of vegetation in two regions in the tropical savanna of northern Queensland,

and gained an understanding of the interaction of radar with different vegetative

conditions, adding to a field of research that was, and is, in great need of further

investigation. The study reinforced my conviction in the ability of GM data to

map a large rapid flood event covering nine thousand kilometres with open water,

while at the same time highlighting the failure of GM to capture a similarly sized

event in a neighbouring region, with a population close to zero; where floods,

even on this scale, can conceivably pass by unnoticed.

In attempting to answer these questions, other questions inevitably arose,

and some were answered. I observed the correlation between the variation of

backscatter with incidence angle and regolith. I found that the unique and highly

separable value of ∆γ/∆α on open water appeared to be relatively independent

of Bragg Resonance, paving the way to the possibility of taking advantage of this

fact to map flooding using C-HH data under unfavourable wind conditions, with

impunity. Further, it was found the this opportunity was unlikely to be met us-

ing GM data, due to margins of error in consecutive images where the difference

in incidence angle was insufficient. The question of how to optimise radiomet-

ric thresholding was answered with a unique incremental threshold convergence

method using complementary MODIS data, in a process which highlighted both

the stability of the resultant GM-derived threshold, and the instability of the

MODIS SWIR reflectance threshold for open water.

The understanding gained from this research, and the questions raised, coin-

cide well with the opportunity offered by JCU for further research, to use radar

and optical/thermal satellite data to contribute to knowledge being gathered by

a team under the Hydrology Department, as well as to investigate further the

interaction of radar with vegetation and water in a tropical floodplain. I look

forward to this work, and to the discoveries that await the field of remote sensing

as new satellite missions come online.
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6.2 Beyond the thesis

6.2.1 C-band synthetic aperture radar

On 8 April 2012, while the conclusions to this thesis were being written, the

European Space Agency lost contact with Envisat. After spending a month try-

ing to restore contact to the satellite, ESA declared the mission at an end on

9 May. As with many successful earth observation satellite missions, Envisat was

in operation for well over its planned lifetime, having been in orbit since 2002.

With the corresponding loss of the ASAR sensor, there is a gap in availability

of data data similar to ASAR’s GM mode, with its temporal frequency and

availability. In the short term, this will have an immediate effect on research

such as this, which seeks to take advantage of this particular data mode that

has been peculiar to Envisat ASAR, and at least one systematically generated

product derived from GM data, that being ESA’s Tiger Innovator project Soil

moisture for Hydrometeorological Applications over SADC (SHARE) (Bartsch

et al., 2008).

Thankfully, the end of Envisat does not mark the end of satellite C-band

radar availability. The Canadian Space Agency’s (CSA) remarkable Radarsat-1

has been earmarked to fill part of the gap left by Envisat’s demise (Boucher,

2012). Radarsat-1, launched on a 5 year mission in November 1995, is still going

strong in May 2012. Though having no GM mode as such, Radarsat-1 does have

a wide ScanSAR mode with a nominal resolution of 100m, as well as fine-beam

modes operating up to an 8m nominal resolution. The later Radarsat-2 satellite,

launched in December 2007 and being capable of dual-sided imaging to a nominal

resolution of 3m, also adds to the available list of C-band data. Further to this,

CSA are planning the continuation and improvement of Radarsat-1 and -2 in the

planned launches in 2016 and 2017 of the RADARSAT Constellation, which is

intended to provide daily C-band SAR coverage of 95% of the world (CSA, 2012).

ESA has been planning to launch its next C-band SAR sensor aboard the

Sentinel-1 mission in 2013 (ESA, 2012b), and the cessation of operation of En-

visat gives this mission renewed significance. Sentinel-1 will be one of a string of

satellites launched under a programme entitled Global Monitoring for Environ-
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ment and Security (GMES), headed by the European Commission in partnership

with the ESA and the European Environment Agency (ESA, 2012a). The subse-

quent Sentinels 2–5 will include high resolution VIR sensors for the monitoring

of land, ocean and atmosphere.

The Indian Space Research Organisation (ISRO) launched its Radar Imaging

Satellite-1 (RISAT-1) on 26 April 2012 (ISRO, 2012), though the future avail-

ability of data from the C-band SAR sensor on board to the global scientific

community is unclear.

6.2.2 Mary River, Northern Territory

The need to monitor greenhouse gas emissions from floodplains in Aus-

tralia

One vital component in gauging the extent of the greenhouse-gas-induced climate

change problem is the monitoring of emissions. The United Nations Convention

on Climate Change (UNCCC) identified the systematic observation of surface

greenhouse gases as an essential component of climate change policy (Onoda,

2008). Currently there are large uncertainties in surface fluxes of CO2, CH4 and

N2O, but an increasing feedback between climate change and greenhouse gasses

is expected (Bréon & Ciais, 2010). The Global Warming Potential (GWP) of

CH4 is 25 times that of CO2 (Dalal et al., 2008), which amounts to 20% of the

total global warming effect. To put the GWP of CH4 in context, Dalal et al.

(2008) tell us that, since 1750, CO2 concentrations have gone up by 33%, while

CH4 concentrations have gone up by 75%.

Somewhere between a quarter and a third of global CH4 emissions come from

wetlands and lake sediments (Chen et al., 2011; Dalal et al., 2008). The feedback

between climate change and methanogenesis in such environments in Australia is

poorly understood, due to a lack of research data, but we do know that there is

a positive feedback between atmospheric CO2 concentrations and CH4 emissions

(Dalal et al., 2008). Law & Garnett (2011) assess the use of the National Car-

bon Accounting Toolbox (NCAT) for estimating and mapping carbons stocks in

Australia’s Northern Territory, and conclude that further work is needed on soils,
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fire, grasslands, wetlands and woody debris in order to improve the validity of

NCAT for carbon estimates.

The role of C-band radar

Soil and vegetation characteristics are major factors governing the production

and emission of CH4 in wetlands. In addition, the hydrodynamics of wetland

systems are crucially important to understand, for a number of reasons. Flooded

wetlands can produce forty times the amount of CH4 as wet soils (Arnell, 2002).

In dry ecosystems, methane fluxes are linked largely to soil porosity, whereas,

once flooded, methane emissions are a function of vegetation characteristics and

the actual level of the water (Chen et al., 2011; Dalal et al., 2008). Also, the

very dynamic density and composition of aquatic vegetation in a floodplain are

governed by its hydrology and morphology (Coops et al., 1999).

Vegetation types determine relative CH4 emissions. There is a positive cor-

relation between the distribution of vegetation with well-developed aerenchyma

and CH4 production and emission. Such emissions may also be influenced by the

provision of carbon substrates though the roots. In addition, vegetation can be

an indicator of soil types, which in turn effect CH4 production through relative

levels of trace elements, electron acceptors, pH and salinity (Dalal et al., 2008).

Research is currently underway by a team here at JCU, monitoring greenhouse

gas emissions in a section of the Mary River floodplain in the Northern Territory.

The intention is to upscale results to the broader floodplain, and beyond, based

on common indicators that can be correlated to the results. In light of what has

been discussed here, data must be collected in terms of vegetation type, density

and phenology, as well as the hydrodynamics of the flood plain - water height,

flood duration and water body connectivity. Cost and practical accessibility

limit the provision of large scale data of this sort to remote sensing as a method.

Research described in this thesis has outlined the limitations of VIR data alone as

a continuous monitoring tool, due to cloud cover. We have seen that microwave

radar data are largely free from this problem, and that C-band data, in particular,

have been the radar data of choice for many studies of aquatic vegetation. We

have also seen that C-band radar allows us to determine the presence of water
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and, in certain vegetation environments, gives us an indication of the level of

submersion of aquatic vegetation.

We have also learnt the important limitations of C-band data. The disad-

vantage of coarseness of scale suffered by GM data is somewhat irrelevant, given

that there remains no similar contender with a 500m pixel spacing. However, as

mentioned, Radarsat-1 and -2 do provide an invaluable stepping-stone until the

advent of ESA’s Sentinel mission, at which time we can hope for a 1–3 day repeat

coverage once again (ESA, 2012b). Other limitations, such as we found in the

ambiguity of signal in the Staaten grasslands under flood, are peculiar to a par-

ticular vegetation regime. In this regard, the particular conditions of the Mary

River ecosystem can be evaluated on their own merits. In addition to radar, VIR

remote sensing will necessarily be used to distinguish, as needed, the vegetation

types and stages. Such requirements can be met by a number of available satellite

sensors, depending on the resolution required, ranging from MODIS and Land-

sat TM at 500, 250 or 30m resolutions, all the way to the 0.3m panchromatic,

2m VIR and the almost daily revisit time offered by DigitalGlobe’s WorldView-2

(DigitalGlobe, 2012).

Participation in the research at Mary River constitutes not only a contribution

as a tool to upscale the observed data, but also provides the opportunity to answer

questions arising from the work described in Chapter 5 and by others, surrounding

the complex relationship of C-band backscatter, with water level and structure,

density, orientation and height of emergent vegetation.

6.2.3 Combination with other data types

The satellite Gravity Recovery and Climate Experiment (GRACE) is a twin satel-

lite mission which provides data in the form of a set of Stokes coefficients to a

truncated spherical harmonic expansion of the geoid. The data are used to com-

pute gravity anomalies, which are deviations from the large-scale gravity field,

caused by density variations in the subsurface. As ground and surface water con-

stitute a substantial fluid mass with significant variation over time, GRACE’s

potential contribution to the field of hydrology is clear. A significant amount of

literature directly related to GRACE data are devoted to the establishment of the
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accuracy of the reduction process used to derive the anomaly figures, as this is a

complex procedure. The further derivation of hydrological parameters, and the

apportioning of values to various components of the hydrological cycle are even

more complex. GM data allows us the opportunity to test the relationship of

observed rainfall extent and relative soil moisture with GRACE anomaly deriva-

tions for the Australian region, forming a component of the ground-truthing work

necessary to increase the accuracy of GRACE derived products. I am currently

involved in discussions towards the design of a research model to take advantage

of this opportunity.

Back in Section 4.6.3 I commented on the potential of the future Surface Water

and Ocean Topography (SWOT) mission, to be launched in 2020. Using wide-

swath altimetry technology, SWOT will provide temporal and spatial variations in

water volumes stored in rivers, lakes, and wetlands at unprecedented resolution

(Biancamaria et al., 2010). SWOT will generate a global 3D mapping of all

terrestrial water bodies whose surface area exceeds 250 m2 and rivers whose width

exceeds 100 m (Biancamaria et al., 2010). The principal instrument of SWOT

will be a Ka-band Radar Interferometer (KaRIN), which will provide heights and

co-registered all-weather imagery of water over 2 swaths, each 60 km wide, with

an expected precision of 1 cm/km for water slopes, and absolute height level

precision of 10 cm/km2. The high spatial and radiometric resolution of SWOT

data, with repeat coverage occurring at least twice every 21 days, will enable

cross-validation of C-band derived flood extents, facilitate volume calculations

and add precision to the derivation of GRACE products. The contribution of

SWOT to flood mapping will be enormous.

6.2.4 Characteristics of fire occurrence and spread under

a changing Australian environment

Tropical savannas (TS) cover more than one third of the continent of Australia

(Landsberg et al., 2011). Globally, they contain almost 15% of the world’s carbon

stock, and contribute 38%, 19% and 59% of emissions of CO2, CH4 and NO2

respectively (Spessa et al., 2005). This makes TS a significant component of
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the global greenhouse gas budget. The TS landscapes of northern Australia are

dynamic, continually changing due to anthropogenic and natural effects. One

important feature straddling both of these categories is fire. In their study of

fire patterns in two regions within the TS in northern Australia, Felderhof &

Gillieson (2006) found that up to 74% of of the Cape York study region burnt

in a single year, and determined that an understanding of fire patterns in the

TS was a necessary step towards understanding the vegetation dynamics in the

region.

Fire patterns are determined by ignition and propagation characteristics (Chu-

vieco et al., 2004). Propagation depends on fuel and environmental conditions.

Ignition depends on man or nature, and the latter takes the form of lightning

(Felderhof & Gillieson, 2006). Neilson (1995) models fire likelihood on lightning

conditions and intensity of rainfall in summer, as do M.B. & Pivello (2000), who

note that most fires occur in the transition from the dry to the wet season. In

the context of greenhouse gas emissions, it is expected that lightning occurrences

will increase, with an increased concentration of CO2 in the atmosphere (Cardoso

et al., 2008).

Many researches have used remote sensing in an attempt to gauge fire risk.

Chuvieco et al. (2004) cite three disadvantages in their endeavours to this end,

being insufficient temporal frequency, obscuration by cloud cover and calibration

difficulties. Certainly the GM data used in this thesis would overcome the first

two of these - to the third problem it may offer its own brand of challenges. The

authors also highlight the disadvantage with their VIR data in the case of dead

fuel, in that wetness is not followed by greenness, and therefore the moisture

content is less discernible. Spessa et al. (2005), in their investigation into the re-

lationship of fire frequency, rainfall and vegetation patterns in northern Australia,

used a Normalised Difference Vegetation Index (NDVI) to distinguish vegetation

patterns, but note potential errors due to differences in “background soil colour”.

The importance of dead fuel moisture to the spread of fire in grasslands is em-

phasised by Sullivan (2010), who also reiterate the difficulty in measuring this

parameter. They also list the grass curing rate as a factor influencing fire spread,

and note that whilst rainfall does not slow down the curing rate of annual grasses

(which continue to cure once they have started), it does slow down the curing

183



6. Conclusion

rate in perennial grasses through regeneration.

The scale of TS regions under study confine any broad-reaching real-time

fire occurrence or likelihood mapping to remote sensing. Apart from the use of

thermal infrared data to detect fire occurrences directly, VIR reflectance data is

limited in its response purely to surface reflection. Thermal emissions have been

used to some effect by, for example, Vidal et al. (1994), who relate fire occurrences

to the ratio between actual and potential evapotranspiration (AET/PET) derived

from daily NOAA-AVHRR surface temperatures and synoptic air temperature

(Leblon, 2005).

Little work has been done to explore the use of radar to add a measure of

biomass density to fire likelihood detection. Leblon (2005) explore the use of

Radarsat-1 to help determine the fuel moisture component of fire probability, but

find that the 35 day revisit time is prohibitive, and see the contribution to the

signal by soil moisture as noise. As we have seen in Chapter 5, it is important

to know the characteristics of the vegetation species that cover the region of

interest, as, depending on the density, structure and orientation of grasses, C-band

backscatter may represent the wetness/dryness of the grass almost independently

of the surface beneath. As discussed, the context of vegetation species is also

crucial where rainfall may or may not effect fuel curing.

Bartsch et al. (2008) showed how GM data could provide an effective and, at

1km resolution, spatially fine (compared to alternatives) soil moisture product.

We have shown that in some grasslands, C-band backscatter is representative of

the wetness of grasses, rather than the surface below. The temporal frequency of

GM data allows us to see, during the dry season, where in the savanna rain has

recently fallen.

Figure 6.1 shows four GM images over the Flinders region in Queensland dur-

ing the dry season. The top left image shows the low backscatter values where

no rain has fallen recently, whereas the other images show where rain has fallen

in the previous 24 hours or so. It may be, that analysis of the time taken for the

radar response to drop, following a rain event, could give us an indication as to

whether the backscatter is representative of the soil moisture, or the wetness of

the vegetation. Where soil moisture is represented, the use of X-band data could

be explored, the shorter wavelength of which ensures interaction of the radar sig-
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Figure 6.1: Four images of the Flinders region in Queensland, in which the high backscatter
response following rainfall is manifest as bright patches against the otherwise low response due
to dry surface conditions

nal with the smaller structured grass components. At the very least, with GM

data we can conceivably generate maps showing rainless periods throughout the

dry season. Work by Felderhof & Gillieson (2006) shows us how to effectively

map fires in Australia’s tropical savannas over long periods using remote sensing.

With such data sets, the path has been laid for us to analyse any correlation

between fire distribution and spread, with products derived from radar data, to-

gether with VIR and thermal imagery. Although Envisat is no longer operational,

its wealth of data remains for much potential future research, especially in the

analysis of the relationship of backscatter with environmental conditions. In light

of the importance of tropical savannas globally, and of fire patterns within those

savannas, it is surely an avenue of research worth exploring.
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GrassAscii.pm

A perl module building a class with the ability to read and write GRASS GIS
native ASCII raster images.

Listing 1: GrassAscii.pm

1 package GrassAscii ;
2 use strict ;
3 use warnings ;
4
5 sub new {
6 my $class = sh i f t ;
7 my $fullpath = sh i f t or die ”You must argue a f u l l path\n” ;
8 my $self = {
9 FULLPATH => $fullpath ,

10 NORTH => undef ,
11 SOUTH => undef ,
12 EAST => undef ,
13 WEST => undef ,
14 ROWS => undef ,
15 COLS => undef ,
16 NULL => undef ,
17 TYPE => ' f l o a t ' ,
18 MULTIPLIER => 1 ,
19 DECIMAL_PLACES => 2 ,
20 DATA => [ ]
21 } ;
22 bless ( $self , $class ) ;
23 return $self ;
24 }
25
26 sub write_ascii {
27 my $self = sh i f t ;
28 i f ( @_ ) { ( $self−>{TYPE } , $self−>{DECIMAL_PLACES }) = @_ }
29 my $dps = $self−>{DECIMAL_PLACES } ;
30 open my $output , ”>” . $self−>{FULLPATH} or die ”Could not e d i t / c r e a t e ” .←↩

$self−>{FULLPATH } . ”\n” ;
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31 foreach my $field qw ( NORTH SOUTH EAST WEST ROWS COLS NULL TYPE ←↩
MULTIPLIER ) {

32 i f (defined ( $self−>{$field }) ) {
33 print $output lc ( $field ) . ” :\ t ” . $self−>{$field } . ”\n” ;
34 }
35 }
36 foreach my $datarow ( @{$self−>{DATA }}) {
37 my @rowdata = map( sprintf ( ”%.$dps” . ” f ” , $_ ) , @$datarow ) ;
38 print $output join ( ”\ t ” , @rowdata ) . ”\n” ;
39 }
40 close $output ;
41 }
42
43 sub read_header {
44 my $self = sh i f t ;
45 open my $input , $self−>{FULLPATH} or die ”Could not open ” . $self−>{FULLPATH←↩

} . ”\n” ;
46 while (my $line = <$input>) {
47 i f ( $line =˜ / ˆ ( [ a−z ]+) : ( \ s * | \ t ) (\ w+)$ /) {
48 $self−>{uc ( $1 ) } = $3 ;
49 } else {
50 return 1 ;
51 }
52 }
53 0 ;
54 }
55
56 sub read_data {
57 my $self = sh i f t ;
58 open my $input , $self−>{FULLPATH } ;
59 my @data ;
60 while (my $row = <$input>) {
61 unless ( $row =˜ /ˆ [ a−z ] / ) {
62 my @rowdata = sp l i t (/\ t | \ s / , $row ) ;
63 push @data , \@rowdata ;
64 }
65 }
66 $self−>{DATA} = \@data ;
67 close $input ;
68 }
69
70 1 ;

ORTHO.pm

A perl module building a child class of GrassAscii, which reads raster value data

generated by the GM module and performs orthorectification.

Listing 2: ORTHO.pm

1 package ORTHO ;
2 use Math : : Trig ;
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3 use GrassAscii ;
4
5 @ISA = ( ” GrassAsc i i ” ) ;
6
7 use strict ;
8 use warnings ;
9

10
11 my $P = 500 ; #p i x e l s i z e
12
13 sub new {
14 my $class = sh i f t ;
15 my ( $root , $R ) = @_ or die ”You need to argue a root and a s a t e l l i t e rad iu s←↩

.\n” ;
16 my $self = $class−>GrassAscii : : new ( $root . ' .ORTHO ' ) ;
17 $self−>{ROOT} = $root ;
18 $self−>{R} = $R ;
19 $self−>{HEIGHT} = undef ;
20 $self−>{WIDTH} = undef ;
21 $self−>{MARGIN} = 2 ; #How much to trim the edges by
22 bless ( $self , $class ) ;
23 return $self ;
24 }
25
26 sub fix_header {
27 my $self = sh i f t ;
28 $self−>{NORTH} = sprintf ( ”%.0 f ” , $self−>{HEIGHT} − $self−>{MARGIN }) ;
29 $self−>{SOUTH} = $self−>{MARGIN } ;
30 $self−>{EAST} = sprintf ( ”%.0 f ” , $self−>{WIDTH} − $self−>{MARGIN }) ;
31 $self−>{WEST} = $self−>{MARGIN } ;
32 $self−>{ROWS} = sprintf ( ”%.0 f ” , $self−>{HEIGHT }) ;
33 $self−>{COLS} = sprintf ( ”%.0 f ” , $self−>{WIDTH }) ;
34 $self−>{NULL} = 0 ;
35 $self−>{TYPE} = ' i n t ' ;
36 $self−>{DECIMAL_PLACES} = 0 ;
37 }
38
39 sub get_r { #rad ius at geographic l a t t i t u d e
40 my $lat = sh i f t ;
41 my $flat = 1 / 298 .257223560 ; #f l a t t e n i n g
42 my $a = 6378137; # Equator ia l r ad iu s o f WGS84 e l l i p s o i d
43 my $theta = atan ( (1 − $flat ) **2 * tan ( deg2rad ( $lat ) ) ) ;
44 my $radius = $a * (1 − ( $flat * ( sin ( $theta ) ) **2) ) ;
45 return $radius ;
46 }
47
48 # Note check dimens ions ( ) must i n i t i a l i z e $WIDTH and $HEIGHT
49 sub check_dimensions {
50 my $self = sh i f t ;
51 my %colsrows = ( cols => undef , rows => undef ) ;
52 foreach my $thing ( ' c o l s ' , ' rows ' ) {
53 $colsrows{$thing} = get_dim ( $thing , $self−>{ROOT } . ' .DATA ' ) or die ”Data←↩

appears to have no dimensions \n” ;
54 foreach my $field ( 'DEM' , 'LAT ' , 'SRT ' ) {
55 my $dim = get_dim ( $thing , $self−>{ROOT } . ” . $ f i e l d ” ) ;
56 unless ( $dim == $colsrows{$thing }) { return 0 }
57 }
58 }
59 $self−>{WIDTH} = $colsrows{cols } ;
60 $self−>{HEIGHT} = $colsrows{rows } ;
61 return 1 ;
62 }
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63
64 sub get_dim {
65 my ( $thing , $fullpath ) = @_ ;
66 my $output = 0 ;
67 my $response = `grep $thing $fullpath ` ;
68 chomp $response ;
69 i f ( $response =˜ / : [ \ t\s ] ( \ d+)$ /) {
70 $output = 1 * $1 ;
71 }
72 return $output ;
73 }
74
75 sub orthorectify {
76 my $self = sh i f t ;
77 die ”The data f i l e s are not the same s i z e . Aborting\n” unless (←↩

check_dimensions ( $self ) ) ;
78 print ” O r t h o r e c t i f y i n g . . . \ n” ;
79 # F i r s t to get past the headers
80 open DEM , $self−>{ROOT } . ” .DEM” or die ”Couldn ' t open ” . $self−>{ROOT } . ” .DEM\←↩

n” ;
81 open DATA , $self−>{ROOT } . ” .DATA” or die ”Couldn ' t open ” . $self−>{ROOT } . ” .←↩

DATA\n” ;
82 open LAT , $self−>{ROOT } . ” .LAT” or die ”Couldn ' t open ” . $self−>{ROOT } . ” .LAT\←↩

n” ;
83 open SRT , $self−>{ROOT } . ” .SRT” or die ”Couldn ' t open ” . $self−>{ROOT } . ” .SRT\←↩

n” ;
84 open THETA , $self−>{ROOT } . ” .THETA” or die ”Couldn ' t open ” . $self−>{ROOT } . ” .←↩

THETA\n” ;
85
86 my %type = ( DEM => [ ] , DATA => [ ] , LAT => [ ] , SRT => [ ] , THETA => [ ] ) ;
87 my %handles = ( DEM => *DEM , DATA => *DATA , LAT => *LAT , SRT => *SRT , THETA ←↩

=> *THETA ) ;
88
89 foreach my $key (keys %handles ) {
90 my $line = 'x ' ;
91 while ( $line =˜ /ˆ [ a−z ] / ) {
92 local *FH = $handles{$key } ;
93 $line = <FH>;
94 }
95 my @row = sp l i t (/\ t | \ s / , $line ) ;
96 $type{$key} = \@row ;
97 }
98
99 foreach (my $row = 0 ; $row < $self−>{HEIGHT } ; $row++){

100
101 my $phi_max = 0 ;
102 my @newrasterrow = ( ) ;
103 my @contributions = ( ) ;
104 my @displacements = ( ) ;
105 my @shadows = ( ) ;
106
107 for (my $i = 0 ; $i < $self−>{WIDTH } ; $i++) {
108 push @newrasterrow , 0 ;
109 push @contributions , 0 ;
110 push @displacements , 0 ;
111 push @shadows , 0 ;
112 }
113 # F i r s t pass to e s t a b l i s h c o n t r i b u t i o n s ( s ee notes 2 Apr i l 2011)
114
115 for (my $col = 0 ; $col < $self−>{WIDTH } ; $col++) {
116
117 my $h = $type{DEM}−>[$col ] ;
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118
119 unless ( $h eq ' * ' ) { # because these r e p r e s e n t n u l l va lue s in DEM
120 my $radians = $type{THETA}−>[$col ] * 3.1415927 / 180 ;
121 my $s = 299792458 * $type{SRT}−>[$col ] * 10**(−9) / 2 ; # Slant ←↩

range d i s t ance in metres to E l l i p s o i d ! Corrected !
122 my $phi = asin ( $s * sin ( $radians ) / sqrt ( $s**2 + $h**2 − (2 * ←↩

$s * $h * cos ( $radians ) ) ) ) ; #to c a l c shadow see notes 7 ←↩
Apr i l 2011

123
124 i f ( $phi_max > $phi ) { #This must be shadow − update phi max , ←↩

shadow and l eave
125 $shadows [ $col ] = 1 ;
126 } else { # carry on with c o n t r i b u t i o n s
127 $phi_max = $phi ;
128
129 my $r = get_r ( $type{LAT}−>[$col ] ) ;
130
131 my $big_omega = acos ( ( ( $r + $h ) **2 + ( $self−>{R }) **2 − $s←↩

**2) / (2 * ( $r + $h ) * $self−>{R }) ) ;
132 my $small_omega = acos ( ( $r**2 + ( $self−>{R }) **2 − $s **2) /(2←↩

* $r * $self−>{R }) ) ;
133 my $delta = $r * ( $big_omega − $small_omega ) ;
134 my $displacement = $delta / $P ; # Number o f c o l s as decimal←↩

f r a c t i o n
135 $displacements [ $col ] = $displacement ; #Store f o r second ←↩

pass
136 my $int = int ( $displacement ) ;
137
138 i f ( ( $col − $int ) >= 0 && ( $col − $int ) < $self−>{WIDTH }) {
139 $contributions [ $col − $int ] += (1 − $displacement + ←↩

$int ) ;
140 }
141 i f ( ( $col − $int − 1) >= 0 && ( $col − $int − 1) < $self−>{←↩

WIDTH }) {
142 $contributions [ $col − $int − 1 ] += ( $displacement − ←↩

$int ) ;
143 }
144 }
145 }
146 }
147
148 # OK now f o r second pass to p lace va lue s
149
150 for (my $col = 0 ; $col < $self−>{WIDTH } ; $col++) {
151
152 my $h = $type{DEM}−>[$col ] ;
153 unless ( ( $h eq ' * ' ) | | ( $shadows [ $col ] == 1) ) { # because these ←↩

r e p r e s e n t n u l l va lue s in DEM or shadow , r e s p e c t i v e l y
154 my $displacement = $displacements [ $col ] ;
155 my $int = int ( $displacement ) ;
156 i f ( ( $col − $int ) >= 0 && ( $col − $int ) < $self−>{WIDTH} && (←↩

$col − $int − 1) >= 0 && ( $col − $int − 1) < $self−>{WIDTH←↩
}) {

157 i f ( $contributions [ $col − $int − 1 ] ) { #Just avo id ing ←↩
d i v i s i o n s by zero

158 $newrasterrow [ $col ] = ( $displacement − $int ) * $type{←↩
DATA}−>[$col − $int − 1 ] / $contributions [ $col − ←↩
$int − 1 ] ;

159 }
160 i f ( $contributions [ $col − $int ] ) { # again , avo id ing ←↩

d i v i s i o n s by zero
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161 $newrasterrow [ $col ] += (1 − $displacement + $int ) * ←↩
$type{DATA}−>[$col − $int ] / $contributions [ $col − ←↩
$int ] ;

162 }
163 }
164
165 }
166 }
167 # @chars = map( chr , @nums)
168 my @int_row = map( int , @newrasterrow ) ;
169 push @{$self−>{DATA }} , \@int_row ;
170 foreach my $key (keys %handles ) {
171 local *FH = $handles{$key } ;
172 my @thisrow = sp l i t (/\ t | \ s/,<FH>) ;
173 $type{$key} = \@thisrow ;
174 }
175 }
176 fix_header ( $self ) ;
177
178 close DEM ;
179 close DATA ;
180 close LAT ;
181 close SRT ;
182 }
183
184 sub trim_edges ( ) {
185 my $self = sh i f t ;
186 for (my $i = 0 ; $i < $self−>{MARGIN } ; $i++) {
187 pop( @{$self−>{DATA }}) ;
188 sh i f t ( @{$self−>{DATA }}) ;
189 foreach my $row ( @{$self−>{DATA }}) {
190 pop( @$row ) ;
191 sh i f t ( @$row ) ;
192 }
193 $self−>{WIDTH} −= 2 ;
194 $self−>{HEIGHT} −= 2 ;
195 }
196 }
197
198 1 ;

ALPHA.pm

A perl child class of GrassAscii, which calculates local incidence angles α from

nominal incidence angles θ.

Listing 3: ALPHA.pm

1 package ALPHA ;
2 use GrassAscii ;
3 use Math : : Trig ;
4
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5 @ISA = ( ” GrassAsc i i ” ) ;
6
7 use strict ;
8 use warnings ;
9

10 my $P = 500 ; # Pixe l spac ing
11
12 sub new {
13 my $class = sh i f t ;
14 my $root = sh i f t or die ”You must argue a f u l l p a t h root \n” ;
15 my $self = $class−>GrassAscii : : new ( $root . ' .ALPHA ' ) ;
16 $self−>{ROOT} = $root ;
17 bless ( $self , $class ) ;
18 return $self ;
19 }
20
21 sub create_alpha {
22 my $self = sh i f t ;
23 my %ascii ;
24
25 print ” Creat ing Alpha . . . \ n” ;
26
27 foreach my $type qw( DEM THETA ) {
28 $ascii{$type} = new GrassAscii ( $self−>{ROOT } . ” . $type ” ) ;
29 $ascii{$type}−>read_header ( ) ;
30 }
31
32 die ” Cols and Rows are not equal \n” unless ( check_dims(\%ascii ) ) ;
33 foreach my $type qw( DEM THETA ) {
34
35 $ascii{$type}−>read_data ( ) ;
36 }
37 my $dnull = ' * ' ;
38
39 my $tempfile = $self−>{ROOT } . ' .TEMP ' ;
40 open TEMPDATA , ”>$ t emp f i l e ” ;
41
42 for (my $rows = 1 ; $rows < ( $ascii{THETA}−>{ROWS} − 1) ; $rows++) {
43 my @output_row ;
44 for (my $cols = 1 ; $cols < ( $ascii{THETA}−>{COLS} − 1) ; $cols++) {
45 my ( $a , $b , $c , $d , $f , $g , $h , $i ) = (
46 $ascii{DEM}−>{DATA } [ $rows − 1 ] [ $cols + 1 ] ,
47 $ascii{DEM}−>{DATA } [ $rows ] [ $cols + 1 ] ,
48 $ascii{DEM}−>{DATA } [ $rows + 1 ] [ $cols + 1 ] ,
49 $ascii{DEM}−>{DATA } [ $rows − 1 ] [ $cols ] ,
50 $ascii{DEM}−>{DATA } [ $rows + 1 ] [ $cols ] ,
51 $ascii{DEM}−>{DATA } [ $rows − 1 ] [ $cols − 1 ] ,
52 $ascii{DEM}−>{DATA } [ $rows ] [ $cols − 1 ] ,
53 $ascii{DEM}−>{DATA } [ $rows + 1 ] [ $cols − 1 ]
54 ) ;
55 my $alpha = 0 ;
56 unless ( ( $a eq $dnull ) | | ( $b eq $dnull ) | | ( $c eq $dnull ) | | ( $d eq ←↩

$dnull )
57 | | ( $f eq $dnull ) | | ( $g eq $dnull ) | | ( $h eq $dnull ) | | ( $i eq $dnull ) ) {
58 my $theta = deg2rad ( $ascii{THETA}−>{DATA } [ $rows ] [ $cols ] ) ;
59 my $s = $i − $a + $c − $g + $f − $d ;
60 my $t = $a − $i − $g + $c + $b − $h ;
61 my $L = sqrt ( $s**2 + (36 * $P **2) + $t **2) ;
62 my $A = $s/$L ;
63 my $C = (6 * $P ) /$L ;
64 $alpha = 180 * acos ( ( $C * cos ( $theta ) ) − ( $A * sin ( $theta ) ) ) / ←↩

3 .1415927 ;
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65 }
66 push ( @output_row , ( $alpha ? $alpha : 0) ) ;
67 }
68 print TEMPDATA join ( ”\ t ” , @output_row ) . ”\n” ;
69 }
70 close TEMPDATA ;
71
72 $self−>{NORTH} = $ascii{THETA}−>{NORTH} − 1 ;
73 $self−>{SOUTH} = $ascii{THETA}−>{SOUTH} + 1 ;
74 $self−>{EAST} = $ascii{THETA}−>{EAST} − 1 ;
75 $self−>{WEST} = $ascii{THETA}−>{WEST} + 1 ;
76 $self−>{ROWS} = $ascii{THETA}−>{ROWS} − 2 ;
77 $self−>{COLS} = $ascii{THETA}−>{COLS} − 2 ;
78 $self−>{NULL} = 0 ;
79 $self−>{TYPE} = ' f l o a t ' ;
80 $self−>{MULTIPLIER} = 1 ;
81 %ascii = ( ) ;
82 feed_back_data_from_file ( $self ) ;
83 }
84
85 sub feed_back_data_from_file {
86 my $self = sh i f t ;
87 my $tempfile = $self−>{ROOT } . ' .TEMP ' ;
88 open INDATA , $tempfile ;
89 while (<INDATA>) {
90 my @cols = sp l i t (/\ t /) ;
91 push @{$self−>{DATA }} , \@cols ;
92 }
93 close INDATA ;
94 }
95
96 sub check_dims {
97 my $asciis = sh i f t ;
98 my $output = 0 ;
99 i f (my @keys = keys %$asciis ) {

100 $output = 1 ;
101 for (my $i = 1 ; $i < ( @keys ) ; $i++) {
102 foreach my $dim qw( ROWS COLS ) {
103 $output = 0 unless ( $asciis−>{$keys [ $i ]}{ $dim} == $asciis−>{←↩

$keys [ 0 ] } { $dim }) ;
104 }
105 }
106 }
107 return $output ;
108 }

GM.pm

A perl module that is responsible for reading a GM data file, extracting geometric

parameters, and interpolating tie point data to create raster surfaces for the

incidence angle at the WGS84 ellipsoid (θ), the slant range time (SRT), and

latitude (LAT), all of which are necessary for preprocessing calculations:
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Listing 4: GM.pm

1 package GM ;
2 use MY_CONFIG ;
3 use Math : : Trig ;
4 use strict ;
5 use warnings ;
6
7 my $config = new MY_CONFIG ( ' c o n f i g ' ) ;
8
9 my $PDS = $config−>{PDS } ;

10 my $GDALINFO = $config−>{GDALINFO } ;
11
12 sub new {
13 my $class = sh i f t ;
14 my $self = {} ;
15 $self−>{FULLPATH} = sh i f t ;
16 $self−>{WIDTH} = undef ;
17 $self−>{HEIGHT} = undef ;
18 $self−>{TIEPOINTS} = [ ] ;
19 $self−>{SAMPLE_NUMBERS} = [ ] ;
20 bless ( $self , $class ) ;
21 return $self ;
22 }
23
24 sub get_R {
25 my $self = sh i f t ;
26 my $fullpath = $self−>{FULLPATH } ;
27 my @response = `$PDS −ds 2 −field orbit_state_vectors $fullpath ` ;
28 chomp @response ;
29 my @keys = sp l i t (/\ t / , $response [ 3 ] ) ;
30 my @values = sp l i t (/\ t / , $response [ 4 ] ) ;
31 my %hash ;
32 for (my $i = 0 ; $i <= $#keys ; $i++) {
33 $hash{$keys [ $i ]} = $values [ $i ] ;
34 }
35 my $R = sqrt ( ( $hash{ ' o r b i t s t a t e v e c t o r s [ 2 ] . x pos 1 ' }) **2 + ( $hash{ '←↩

o r b i t s t a t e v e c t o r s [ 2 ] . y pos 1 ' }) **2 + ( $hash{ ' o r b i t s t a t e v e c t o r s [ 2 ] .←↩
z po s 1 ' }) **2) / 100 ; # as they are in cm.

36 return (1 * sprintf ( ”%.0 f ” , $R ) ) ;
37 }
38
39 sub interpolate {
40 my $self = sh i f t ;
41 my $root = $self−>{FULLPATH } ;
42 $root =˜ s /\ . N1 // ;
43 my @theta ; #Nominal Inc idence Angles
44 my @srt ; #Slant Range Times
45 my @lat ; # Lat i tudes
46 my %all = ( theta => \@theta , srt => \@srt , lat => \@lat ) ;
47 print ” I n t e r p o l a t i n g . . . \ n” ;
48 #Create empty r a s t e r a r rays
49 foreach my $key (keys %all ) {
50 for (my $i = 0 ; $i < $self−>{HEIGHT } ; $i++) {
51 my @temp ;
52 for (my $j = 0 ; $j < $self−>{WIDTH } ; $j++) {
53 push @temp , 0 ;
54 }
55 push @{$all{$key }} , \@temp ;
56 }
57 }
58 # I n e r p o l a t e a c r o s s rows
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59
60 foreach my $tp_row ( @{$self−>{TIEPOINTS }}) {
61 my $this_raster_row = $self−>{HEIGHT} − ( $tp_row−>[0]{ 'yx ' } [ 0 ] + 0 . 5 ) ;
62
63 for (my $tp_col = 0 ; $tp_col < 10 ; $tp_col++) {
64 my %last_sample_value ;
65 my %next_sample_value ;
66 my $last_sample_col = $self−>{SAMPLE_NUMBERS } [ $tp_col ] − 1 ;
67 my $next_sample_col = $self−>{SAMPLE_NUMBERS } [ $tp_col + 1 ] −1;
68
69 foreach my $field (keys %all ) {
70 $last_sample_value{$field} = $tp_row−>[$tp_col ]{ $field } ;
71 $next_sample_value{$field} = $tp_row−>[$tp_col + 1]{ $field } ;
72 }
73 for (my $raster_col = $self−>{SAMPLE_NUMBERS } [ $tp_col ] − 1 ; ←↩

$raster_col < $self−>{SAMPLE_NUMBERS } [ $tp_col + 1 ] −1; ←↩
$raster_col++) {

74 my %thisvalue ;
75
76 foreach my $fld (keys %all ) {
77 $thisvalue{$fld} = ( ( $next_sample_value{$fld} − ←↩

$last_sample_value{$fld })
78 * ( $raster_col − $last_sample_col ) / ( $next_sample_col − ←↩

$last_sample_col ) )
79 + $last_sample_value{$fld } ;
80 $all{$fld } [ $this_raster_row ] [ $raster_col ] = $thisvalue{$fld←↩

} ;
81 }
82
83 }
84 }
85 foreach my $fd (keys %all ) {
86 $all{$fd } [ $this_raster_row ]−>[$self−>{SAMPLE_NUMBERS } [ 1 0 ] − 1 ] = ←↩

$tp_row−>[10]{$fd } ;
87 }
88 }
89
90 # Now i n t e r p o l a t e down columns
91
92 for (my $rast_col = 0 ; $rast_col < $self−>{WIDTH } ; $rast_col++) {
93 for (my $tiepoint_row = 0 ; $tiepoint_row < scalar ( @{$self−>{TIEPOINTS←↩

}}) − 1 ; $tiepoint_row++) {
94 my $last_sample_raster_row = $self−>{HEIGHT} − ( $self−>{TIEPOINTS } [←↩

$tiepoint_row ] [ 0 ] { 'yx ' } [ 0 ] + 0 . 5 ) ;
95 my $next_sample_raster_row = $self−>{HEIGHT} − ( $self−>{TIEPOINTS } [←↩

$tiepoint_row + 1 ] [ 0 ] { 'yx ' } [ 0 ] + 0 . 5 ) ;
96
97 for (my $raster_row = $last_sample_raster_row ; $raster_row < ←↩

$next_sample_raster_row ; $raster_row++) {
98 my $proportion = ( $raster_row − $last_sample_raster_row ) / (←↩

$next_sample_raster_row − $last_sample_raster_row ) ;
99

100 foreach my $feld (keys %all ) {
101 my $this_value = $proportion

102 * ( $all{$feld}−>[$next_sample_raster_row ] [ $rast_col ] − $all←↩
{$feld}−>[$last_sample_raster_row ] [ $rast_col ] )

103 + $all{$feld}−>[$last_sample_raster_row ] [ $rast_col ] ;
104
105 $all{$feld}−>[$raster_row ] [ $rast_col ] = $this_value ;
106 }
107
108 }
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109 }
110 }
111 output_rasters(\%all , $root , $self ) ;
112 }
113
114 sub output_rasters {
115 my ( $all , $root , $self ) = @_ ;
116 foreach my $field (keys %$all ) {
117 output_raster ( $all−>{$field } , uc ( $field ) , $root , $self ) ;
118 }
119 }
120
121 sub output_raster {
122 my ( $data , $suffix , $root , $self ) = @_ ;
123 my $fullpath = ” $ root . $ s u f f i x ” ;
124 open my $output , ”>$ f u l l p a t h ” or die ”Couldn ' t c r e a t e / e d i t $ f u l l p a t h \n” ;
125 my $north = sprintf ( ”%.0 f ” , $self−>{HEIGHT }) ;
126 my $east = sprintf ( ”%.0 f ” , $self−>{WIDTH }) ;
127 print $output <<”EOF” ;
128 north : $north

129 south : 0
130 east : $east

131 west : 0
132 rows : $north

133 cols : $east

134 type : float

135 null : 0
136 EOF

137 foreach my $datarow ( @$data ) {
138 my @row = map { sprintf ( ”%.2 f ” , $_ ) } @$datarow ;
139 print $output join ( ”\ t ” , @row ) . ”\n” ;
140 }
141 close $output ;
142 }
143
144 sub create_points_file {
145 my $self = sh i f t ;
146 my ( $points_path , $reverse ) = @_ or die ” Points f i l e path not s p e c i f i e d . ←↩

Aborting .\n” ;
147 open POINTS , ”>$po int s path ” or die ”Cannot c r e a t e / e d i t POINTS f i l e ←↩

$po int s path \n” ;
148 print POINTS ”# Neareast \ tNearnorth \ tFareas t \ tFarnorth \ t Inc lude \n” ;
149 my $tiepoints = $self−>{TIEPOINTS } ;
150 for (my $i = 0 ; $i < ( @$tiepoints ) ; $i++) {
151 for (my $j = 0 ; $j < 11 ; $j++) {
152 my $x = $tiepoints−>[$i ] [ $j ]{ 'yx ' } [ 1 ] ;
153 my $y = $tiepoints−>[$i ] [ $j ]{ 'yx ' } [ 0 ] ;
154 my $long = $tiepoints−>[$i ] [ $j ]{ ' long ' } ;
155 my $lat = $tiepoints−>[$i ] [ $j ]{ ' l a t ' } ;
156 my $local = ”$x\ t$y ” ;
157 my $destination = ” $ long \ t $ l a t ” ;
158 my $output = ( $reverse ? ” $d e s t i n a t i o n \ t $ l o c a l \ t1 \n” : ” $ l o c a l \←↩

t$d e s t i n a t i o n \ t1 \n” ) ;
159 print POINTS $output ;
160 }
161 }
162 close POINTS ;
163 }
164
165 sub open {
166 my $self = sh i f t ;
167 ( $self−>{WIDTH } , $self−>{HEIGHT }) = @{get_dimensions ( $self−>{FULLPATH }) } ;
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168 ( $self−>{TIEPOINTS } , $self−>{SAMPLE_NUMBERS }) = @{get_tiepoints ( $self ) } ;
169 }
170
171 sub get_root {
172 my $fullpath = sh i f t ;
173 my $output = 0 ;
174 i f ( $fullpath =˜ /( ASA .+) \ . N1 /) {
175 $output = $1 ;
176 }
177 return $output ;
178 }
179
180 sub get_tiepoints {
181 my $self = sh i f t ;
182 my $fullpath = $self−>{FULLPATH } ;
183 my @datarows = `$PDS −ds 7 −field first_line_tie_points ,←↩

last_line_tie_points $fullpath ` ;
184 chomp @datarows ;
185 my $num_records = scalar ( @datarows ) − 4 ;
186 my $delta_y = $self−>{HEIGHT} / $num_records ;
187 my $Y = $self−>{HEIGHT} + $delta_y − 0 . 5 ;
188 my @keys = sp l i t (/\ t / , $datarows [ 3 ] ) ;
189 my @tiepoints ;
190 my @sample_numbers ;
191 for (my $datarow = 4 ; $datarow <= $#datarows ; $datarow++) {
192
193 my %hash ;
194 my @values = sp l i t (/\ t / , $datarows [ $datarow ] ) ;
195 for (my $i = 0 ; $i <= $#keys ; $i++) {
196 $hash{$keys [ $i ]} = $values [ $i ] ;
197 }
198 foreach my $prefix ( ( ' f i r s t ' , ' l a s t ' ) ) {
199 i f ( ( $prefix eq ' f i r s t ' ) | | ( $datarow == $#datarows ) ) {
200 my @tiepoint_row ;
201 $Y = ( $prefix eq ' l a s t ' ) ? ( $Y − ( $delta_y − 1) ) : ( $Y − ←↩

$delta_y ) ;
202 for (my $i = 0 ; $i < 11 ; $i++) {
203
204 my $theta = $hash{$prefix . ” l i n e t i e p o i n t s . ang l e s \ [ $ i \ ] ” } ;
205 my $x = $hash{$prefix . ” l i n e t i e p o i n t s . samp numbers \ [ $ i \ ] ”←↩

} − 0 . 5 ;
206 my $y = $Y ;
207 my $srt = $hash{$prefix . ” l i n e t i e p o i n t s . s l a n t r a n g e t i m e s←↩

\ [ $ i \ ] ” } ;
208 my $lat = $hash{$prefix . ” l i n e t i e p o i n t s . l a t s \ [ $ i \ ] ” } ;
209 my $long = $hash{$prefix . ” l i n e t i e p o i n t s . l ongs \ [ $ i \ ] ” } ;
210 my %hash_out = ( theta => $theta ,
211 yx => [ $y , $x ] ,
212 srt => $srt ,
213 lat => $lat ,
214 long => $long ) ;
215
216 push @tiepoint_row , \%hash_out ;
217 i f ( $prefix eq ' l a s t ' ) { push @sample_numbers , 1 * $hash{←↩

$prefix . ” l i n e t i e p o i n t s . samp numbers \ [ $ i \ ] ”} }
218 }
219 push @tiepoints , \@tiepoint_row ;
220 }
221 }
222
223
224 }
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225 return [\ @tiepoints , \@sample_numbers ] ;
226 }
227
228 sub get_dimensions {
229 my ( $fullpath ) = @_ ;
230 my ( $width , $height ) = (0 , 0) ;
231 my $response = `$GDALINFO $fullpath | grep 'Lower Right ' ` ;
232 i f ( $response =˜ /\(\ s * ( [\ d . ]+) ,\ s * ( [\ d . ]+) \) /) {
233 $height = $2 ;
234 $width = $1 ;
235 }
236 return [ $width , $height ] ;
237 }
238
239 1 ;

process gm.pl

The perl script which uses the methods in modules above to implement the pre-

processing of a batch of GM data files. The script runs within its own GRASS

GIS environment, creating a unique MAPSET which is destroyed once complete.

In this way the routine can be run multiple times simultaneously within one

GRASS instance, without falling foul of any locks.

Listing 5: process gm.pl

1 #! / usr / bin / p e r l
2 use lib ' /home/damien/Modules ' ;
3
4 use GM ;
5 use ORTHO ;
6 use ALPHA ;
7 use MY_CONFIG ;
8 use strict ;
9 use warnings ;

10
11 my $config = new MY_CONFIG ( ' c o n f i g ' ) ;
12 my $GISDBASE = $config−>{GISDBASE } ;
13 my $DEM_LOCATION = $config−>{DEM_LOCATION } ; # ' North Aus ' ;
14 my $DEM_NAME = $config−>{DEM_NAME } ;
15 my $LOCATION = $config−>{LOCATION } ;
16 my $time = time ( ) ;
17
18 # We ' l l j u s t search the cur rent d i r e c t o r y f o r GM N1 f i l e s
19 # Note : This must be done from with in a Grass s h e l l .
20
21 my ( $BATCH ) = $ARGV [ 0 ] or die ”You must argue a batch number\n” ;
22 my ( $search_dir ) = $ARGV [ 1 ] or die ”You must argue a search d i r e c t o r y ( f u l l ←↩

path ) \n” ;
23
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24 my @fullpaths = `/usr/bin/find $search_dir −type l −name 'ASA* .N1 ' ` ;
25 chomp @fullpaths ;
26
27 die ”No GM f i l e s found\n” unless ( scalar ( @fullpaths ) ) ;
28
29 # OK, what f o l l o w s i s the main procedure − a sequence o f commands , most o f ←↩

which are de f ined below in sub−procedures . I know , I know , i t ' s ugly , but ←↩
a l l o f the nece s sa ry ( and more b e a u t i f u l ) a lgor i thm s t r u c t u r e s have been ←↩
s e t up in the modules c a l l e d at the top . This i s j u s t the f i n a l ←↩
implementation .

30
31 foreach my $fullpath ( @fullpaths ) {
32 next unless check_latitude ( $fullpath ) ;
33 mapset ( $DEM_LOCATION , ”M$BATCH” ) ;
34 delete_old_location ( ) ;
35 recreate_dem_group ( ) ;
36 bring_in_raw ( $fullpath ) ;
37 target_dem ( ) ;
38 my $gm = new GM ( $fullpath ) ;
39 $gm−>open ( ) ;
40 $gm−>create_points_file ( ”$GISDBASE/L$BATCH/PERMANENT/group/temp/POINTS” ) ; #←↩

r e p l a c e dodgy imported one
41 $gm−>create_points_file ( ”$GISDBASE/$DEM LOCATION/M$BATCH/group/G$BATCH/←↩

POINTS” ,1) ;#reve r s ed to br ing in dem
42 rectify_dem ( ) ;
43 $gm−>interpolate ( ) ;
44 my $root = $fullpath ;
45 $root =˜ s /\ . N1 // ;
46 my $R = $gm−>get_R ( ) ;
47 $gm = 0 ; #Free memory?
48 mapset ( ”L$BATCH” , 'PERMANENT ' ) ;
49 ascify_data_and_dem ( $root ) ;
50 my $ortho = new ORTHO ( $root , $R ) ;
51 $ortho−>orthorectify ( ) ;
52 $ortho−>write_ascii ( ' i n t ' , 0 ) ;
53 $ortho = 0 ; #Free memory?
54 my $alpha = new ALPHA ( $root ) ;
55 $alpha−>create_alpha ( ) ;
56 $alpha−>write_ascii ( ' f l o a t ' , 2 ) ;
57 $alpha = 0 ; #Free memory?
58 import_asciis ( $root ) ;
59 create_output_group ( ) ;
60 set_target ( ) ;
61 copy_points_file ( ) ;
62 rectify_output_group ( ) ;
63 mapset ( $LOCATION , ”M$BATCH” ) ;
64 output_tif ( $root ) ;
65 clean_up ( $root ) ;
66 }
67
68 rid_gis_folders ( ) ;
69
70 print ”That took ” . ( time ( ) − $time ) . ” seconds \n” ;
71
72 sub check_latitude {
73 my $fullpath = sh i f t ;
74 my @lats ;
75 my @result = `gdalinfo $fullpath ` ;
76 foreach my $line ( @result ) {#( 5 9 5 . 5 , 4 8 0 . 5 ) −> (−70.374488 ,−10.937347 ,0)
77 i f ( $line =˜ /\ ( [\ d . , ]+\ ) \s\−>\s \(−?[\d . ]+ ,−?( [\ d . ]+) , .+/) {
78 push @lats , $1 ;
79 }
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80 }
81 # @ a r t i c l e s = s o r t {$b <=> $a} @ f i l e s ;
82 my @sorted = sort {$a <=> $b} @lats ;
83 return ( $sorted [ 0 ] < 60) ;
84 }
85
86 sub rid_gis_folders {
87 unlink ”$GISDBASE/L$BATCH” ;
88 unlink ”$GISDBASE/$LOCATION/M$BATCH” ;
89 unlink ”$GISDBASE/$DEM LOCATION/M$BATCH” ;
90 }
91
92 sub clean_up {
93 my $root = sh i f t ;
94 my @extensions = qw( ALPHA ORTHO THETA LAT SRT DATA DEM TEMP ) ;
95 my @files = map( ” $ root . $ ” , @extensions ) ;
96 unlink @files ;
97 }
98
99 sub output_tif {

100 my $root = sh i f t ;
101 my $command = <<”EOF” ;
102 g . region zoom=ORTHO . r
103 r . mapcalc 'ALPHA = round (100 * ALPHA. r ) '

104 r . mapcalc 'ORTHO = round (ORTHO. r ) '

105 g . remove group=output

106 i . group group=output input=ORTHO , ALPHA
107 r . out . gdal −c input=output format=GTiff type=UInt16 output=$root . tif
108 EOF

109 system $command ;
110 }
111
112 sub rectify_output_group {
113 system ” i . r e c t i f y −a group=output extens i on =. r order=3 ” ;
114 }
115
116 sub copy_points_file {
117 system ”/ bin /cp $GISDBASE/L$BATCH/PERMANENT/group/temp/POINTS $GISDBASE/←↩

L$BATCH/PERMANENT/group/ output /POINTS ” ;
118 }
119
120 sub create_output_group {
121 system ” i . group group=output input=ORTHO,ALPHA ” ;
122 }
123
124 sub import_asciis {
125 my $root = sh i f t ;
126 my $command = <<”EOF” ;
127 r . in . ascii input=$root . ORTHO output=ORTHO

128 r . in . ascii input=$root . ALPHA output=ALPHA

129 EOF

130 system $command ;
131 }
132
133 sub set_target {
134 system ” i . t a r g e t group=output l o c a t i o n=$LOCATION mapset=M$BATCH ” ;
135 }
136
137 sub ascify_data_and_dem {
138 my ( $root ) = @_ ;
139 system ” r . out . a s c i i − i input=$DEM NAME. r output=$ root .DEM n u l l=* ” ;
140 system ” r . out . a s c i i − i input=temp . 1 output=$ root .DATA n u l l=0 ” ;
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141 }
142
143 sub rectify_dem {
144 system ” i . r e c t i f y −c group=G$BATCH input=$DEM NAME extens i on =. r order=3 ” ;
145 }
146
147 sub bring_in_raw {
148 my ( $fullpath ) = @_ ;
149 system ” r . in . gdal input=$ f u l l p a t h output=temp l o c a t i o n=L$BATCH −−ove rwr i t e ”←↩

;
150 }
151
152 sub target_dem {
153 system ” i . t a r g e t group=G$BATCH l o c a t i o n=L$BATCH mapset=PERMANENT ” ;
154 }
155
156 sub recreate_dem_group {
157 my $result = `g . list group ` ;
158 system ”g . remove group=G$BATCH ” i f $result =˜ /G$BATCH / ;
159 system ” i . group group=G$BATCH input=$DEM NAME ” ;
160 }
161
162 sub delete_old_location {
163 system ”/ bin /rm −r $GISDBASE/L$BATCH ” i f −d ”$GISDBASE/L$BATCH” ;
164 }
165
166 sub mapset {
167 my ( $location , $mapset ) = @_ ;
168 my $gisenv = `g . gisenv ` ;
169 i f ( $gisenv =˜ /LOCATION_NAME= ' ( [ \w\d]+) ' ;\ nMAPSET= ' ( [ \w\d]+) ' ;\ n /) {
170 unless ( $1 eq $location && $2 eq $mapset ) {
171 system ”g . mapset −c l o c a t i o n=$ l o c a t i o n mapset=$mapset ” ;
172 system ”g . mapset −c l o c a t i o n=$ l o c a t i o n mapset=$mapset ” ;# ←↩

D e l i b e r a t e l y done twice
173 }
174 system ”g . r eg i on −d ” ;
175 } else {
176 die ”You need to be with in a Grass s h e l l \n” ;
177 }
178 }

pbs.pl

This perl script looks for all GM data files under the current directory and sep-

arates them into batches, creating a directory for each batch and symbolic links

within each to those folders. Each batch will then be processed concurrently.

Two batch scripts are then created by the main script for each batch - one be-

ing the instructions for Grass GIS, the other being the PBS batch script. The

latter is submitted to the HPC server. The start of each PBS script sets the

GRASS BATCH JOB variable to point to the individual Grass batch script, and
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starts a new instance of GRASS GIS, creating a unique temporary MAPSET

within which to work.

Listing 6: pbs.pl

1 #! / usr / bin / p e r l
2
3 use strict ;
4 use warnings ;
5
6 my @GMs = `find \`pwd\` −type f −name 'ASA GM* .N1 ' ` ;
7 chomp @GMs ;
8
9 my ( $prefix , $number_of_batches ) = @ARGV ;

10 my $lastbatch = ($#GMs > $number_of_batches ? $number_of_batches : $#GMs ) ;
11 my $files_per_folder = int (($#GMs + 1) / ( $lastbatch + 1) ) ;
12 my $index = 0 ;
13 my $localdir = `pwd ` ;
14 my @folders ;
15
16 for (my $batch = 0 ; $batch <= $lastbatch ; $batch++) {
17 mkdir ” $pre f i x$batch ” or die ”Couldn ' t c r e a t e f o l d e r $pre f i x$batch \n” ;
18 push @folders , $prefix$batch ;
19 for ( 1 . . $files_per_folder ) {
20 system ” ln −s $GMs[ $ index ] $pre f i x$batch /” ;
21 $index++;
22 }
23 }
24
25 # Now to get remainders , i f the re are any
26 for (my $i = $index ; $i <= $#GMs ; $i++) {
27 my $put_it_in = $#GMs − $i ;
28 system ” ln −s $GMs[ $ i ] $p r e f i x $p u t i t i n /” ;
29 }
30
31 foreach my $folder ( @folders ) {
32 open my $grassbatch , ”>g r a s s b a t c h$ f o l d e r ” or die ”Couldn ' t c r e a t e ←↩

g r a s s b a t c h$ f o l d e r \n” ;
33 print $grassbatch '#!/ bin /bash ' . ”\n” ;
34 print $grassbatch ” process gm . p l $ f o l d e r `pwd`/ $ f o l d e r \n” ;
35 close $grassbatch ;
36 chmod 0755 , ” g r a s s b a t c h$ f o l d e r ” ;
37 open my $pbsbatch , ”>pbsbatch$ f o lde r ” or die ”Couldn ' t c r e a t e ←↩

pbsbatch$ f o lde r \n” ;
38 print $pbsbatch << 'EOF ' ;
39 #! / bin /bash
40 #PBS −c s
41 #PBS −j oe
42 #PBS −m ae
43 #PBS −N Preprocess GM Files
44 #PBS −M damien . ogrady@my . j cu . edu . au
45 #PBS − l wa l l t ime =9999:00:00
46 #PBS − l pmem=8gb
47
48 echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
49 echo ” This job i s a l l o c a t e d 1 cpu on ”
50 cat $PBS_NODEFILE

51 echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
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52 echo ”PBS: Submitted to $PBS QUEUE@$PBS O HOST”
53 echo ”PBS: Working d i r e c t o r y i s $PBS O WORKDIR”
54 echo ”PBS: Job i d e n t i f i e r i s $PBS JOBID”
55 echo ”PBS: Job name i s $PBS JOBNAME”
56 echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
57
58 cd $PBS_O_WORKDIR

59 source /etc/profile . d/modules . sh
60 module load grass

61 EOF

62 print $pbsbatch ” export GRASS BATCH JOB=$ l o c a l d i r / g r a s s b a t c h$ f o l d e r \n” ;
63 print $pbsbatch ” gras s64 −c −t ex t /home/Damien/ Grassdata /World/ M$ folder \n” ;
64 close $pbsbatch ;
65 chmod 0755 , ” pbsbatch$ f o lde r ” ;
66 system ”qsub pbsbatch$ f o lde r ” ;
67 }

regression.pl

This perl script uses GDAL to carry out regression as described in section 3.4.1.

GRASS GIS is only used at the very end to create visual interpretations.

Listing 7: regression.pl

1 #! / usr / bin / p e r l
2 use strict ;
3 use warnings ;
4 use lib ' /home/damien/Modules ' ;
5 use GRASSSESSION ;
6 use Geo : : GDAL ;
7 use MY_CONFIG ;
8
9 my $SPECIFIC_DIRECTORY = undef ; # speaks f o r i t s e l f . Comes from command l i n e ←↩

args ! !NB! ! NOT fu l l pa th , j u s t a name
10 my $raw_files = get_arguments ( ) ;
11 my $config = new MY_CONFIG ( ' c o n f i g ' ) ;
12
13 my $RESOLUTION = $config−>{RESOLUTION } ; #Ful l w i l l be 0 .05
14 my $TARGET_DIRECTORY = $config−>{TARGET_DIRECTORY } ; # Root l o c a t i o n f o r ←↩

r e g r e s s i o n , world and timestamp maps
15 my $MASK_DIRECTORY = $config−>{MASK_DIRECTORY } ; # l o c a t i o n o f the MASK. t i f f i l e
16 my $GISDBASE = $config−>{GISDBASE } ;
17 my $LOCATION = $config−>{LOCATION } ;
18 my ( $N , $S , $E , $W ) = ( $config−>{N } , $config−>{S } , $config−>{E } , $config−>{W }) ; # ←↩

Def in ing the north , south , ea s t and west l i m i t s
19 my $WKT = $config−>{WKT } ;
20 $config = undef ;
21
22
23 ### This i s the main procedure ###
24
25 foreach my $fullpath ( @$raw_files ) {
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26 my $root = get_root ( $fullpath ) or die ”Something wrong with the f u l l path ←↩
$ f u l l p a t h \n” ;

27 i f ( $root ) {
28 my $dn_dataset = Geo : : GDAL : : Open ( $fullpath ) ;
29 i f ( within_bounds ( $dn_dataset ) ) {
30 # eva l {
31 my $clipped_dn_dataset = clip_dn ( $root , $dn_dataset ) ;#conta in s ←↩

dn and alpha
32 my $sigma_alpha_dataset = create_sigmaalpha ( $root , ←↩

$clipped_dn_dataset ) ;
33 update_regression ( $sigma_alpha_dataset , $clipped_dn_dataset ) ;
34
35 # } ;
36
37 # p r in t LOG ” Error f o r $ f u l l p a t h : $@” i f $@;
38 } else {
39 print ” F i l e with root $ root not with in bounds\n” ;
40 }
41
42 delete_temporary_files ( $root ) ;
43 }
44 }
45 grass_calc_and_output ( ) ;
46
47 ### End o f main procedure ###
48
49 sub grass_calc_and_output {
50 my $grass = new GRASSSESSION ( $GISDBASE ) ;
51 $grass−>setLocation ( $LOCATION ) ;
52 foreach my $prefix qw( N SumX SumX2 SumY SumY2 SumXY SumGamma ) {
53 $grass−>addCommand ( ” r . in . gdal input=$TARGET DIRECTORY/←↩

$SPECIFIC DIRECTORY/ $p r e f i x . t i f output=$p r e f i x −−ove rwr i t e ” ) ;
54 # $grass−>addCommand(”rm $TARGET DIRECTORY/$SPECIFIC DIRECTORY/ $p r e f i x .←↩

t i f ”) ;
55 }
56 my $command = <<”GCAO” ;
57 r . mapcalc 'B=eva l ( numerator = (N * SumXY) − (SumX * SumY) , denominator = (N←↩

* SumX2) − pow(SumX, 2) , numerator / denominator ) '

58 r . mapcalc 'A = (SumY − (B * SumX) ) /N '

59 r . mapcalc 'R2 = eva l ( numerator = (N * SumXY) − (SumX * SumY) , \\
60 denominator = s q r t ( (N * SumX2) − pow(SumX, 2) ) * s q r t ( (N * SumY2) − pow←↩

(SumY, 2) ) , R = numerator / denominator , pow(R, 2 ) ) '

61 r . mapcalc 'SD = s q r t ( (SumY2 / N) − pow(SumY / N, 2) ) '

62 r . colors . stddev SD

63 r . colors . stddev B

64 r . mapcalc 'MEANGAMMA = eva l (mg = SumGamma / N, \\
65 i f (mg > 255 , 255 , mg) ) '

66
67 echo '0% red
68 0 red
69 70 green
70 140 0 128 0
71 160 blue
72 255 0 0 128 ' | r . colors MEANGAMMA col=rules

73
74 r . out . png input=MEANGAMMA output=$TARGET_DIRECTORY/←↩

MEANGAMMA_$SPECIFIC_DIRECTORY . png
75 r . out . png input=SD output=$TARGET_DIRECTORY/SD_$SPECIFIC_DIRECTORY . png
76 GCAO

77 $grass−>addCommand ( $command ) ;
78 foreach my $suffix qw( B A R2 MEANGAMMA SD ) {
79 my $type = ( $suffix eq 'OUTPUT ' ? 'Byte ' : ' Float32 ' ) ;
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80 $grass−>addCommand ( ” r . out . gdal input=$ s u f f i x output=$TARGET DIRECTORY/←↩
$SPECIFIC DIRECTORY/ $ s u f f i x . t i f type=$type format=GTiff nodata=0” ) ;

81 }
82 $grass−>run ( ) ;
83 }
84
85 sub get_root {
86 my $fullpath = sh i f t ;
87 i f ( $fullpath =˜ /( ASA_GM .+) \ . tif /) {
88 return $1 ;
89 }
90 }
91
92 sub get_mask_data {
93 my ( $clipped_dn_dataset ) = @_ ;
94 my $mask_dataset = Geo : : GDAL : : Open ( ”$MASK DIRECTORY/MASK. t i f ” ) or die ”←↩

Couldn ' t open mask $MASK DIRECTORY/MASK. t i f \n” ;
95 my $mask_band = $mask_dataset−>GetRasterBand (1 ) ;
96 my ( $minx , $maxx , $miny , $maxy , $dx , $dy , $width , $height , $xoff , $yoff ) = ←↩

@{get_gridding_data ( $clipped_dn_dataset ) } ;
97 my $data = $mask_band−>ReadTile ( $xoff , $yoff , $width , $height ) ;
98 return $data ;
99 }

100
101 sub delete_temporary_files {
102 my ( $root ) = @_ ;
103 foreach ( 'ALPHA ' , 'SIGMAALPHA ' , 'DN ' , 'CLIP ' ) {
104 unlink ( ” $ $ roo t . t i f ” ) ;
105 }
106 }
107
108 sub clip_dn {
109 my ( $root , $dn_dataset ) = @_ ;
110 my ( $minx , $maxx , $miny , $maxy , $dx , $dy , $width , $height , undef , undef ) = ←↩

@{get_gridding_data ( $dn_dataset ) } ;
111 my $west = $minx < $W ? $W : $minx ;
112 my $east = $maxx > $E ? $E : $maxx ;
113 my $north = $maxy > $N ? $N : $maxy ;
114 my $south = $miny < $S ? $S : $miny ;
115
116 my $xoff = sprintf ( ”%.0 f ” , ( $west − $minx ) /$dx ) ;
117 my $yoff = sprintf ( ”%.0 f ” ,abs ( ( $north − $maxy ) /$dy ) ) ;
118 my $xsize = sprintf ( ”%.0 f ” , ( $east − $west ) /$dx ) ;
119 my $ysize = abs ( sprintf ( ”%.0 f ” , ( $north − $south ) /$dy ) ) ;
120
121 my $dn_band = $dn_dataset−>GetRasterBand (1 ) ;
122 my $alpha_band = $dn_dataset−>GetRasterBand (2 ) ;
123
124 my $dn_data = $dn_band−>ReadTile ( $xoff , $yoff , $xsize , $ysize ) ;
125 my $alpha_data = $alpha_band−>ReadTile ( $xoff , $yoff , $xsize , $ysize ) ;
126
127 my $dataset = Geo : : GDAL : : Driver ( ' GTiff ' )−>Create ( ”CLIP$root . t i f ” , $xsize , ←↩

$ysize , 2 , ' UInt16 ' ) ;
128 $dataset−>GeoTransform ( $west , $RESOLUTION , 0 , $north , 0 , −$RESOLUTION ) ;
129 $dataset−>SetProjection ( $WKT ) ;
130
131 my $dn_band_out = $dataset−>Band (1 ) ;
132 $dn_band_out−>NoDataValue (65535) ;
133 $dn_band_out−>WriteTile ( $dn_data ) ;
134
135 my $alpha_band_out = $dataset−>Band (2 ) ;
136 $alpha_band_out−>NoDataValue (65535) ;
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137 $alpha_band_out−>WriteTile ( $alpha_data ) ;
138
139 return $dataset ;
140 }
141
142 sub get_gridding_data {
143 my ( $dataset ) = @_ ;
144 my ( $minx , $dx , undef , $maxy , undef , $dy ) = $dataset−>GeoTransform ( ) ;
145 my ( $width , $height ) = $dataset−>Size ;
146 my ( $maxx , $miny ) = ( ( $minx + ( $dx * $width ) ) , ( $maxy − (abs ( $dy ) * $height←↩

) ) ) ;
147 my $xoff = sprintf ( ”%.0 f ” , ( $minx − $W ) /$dx ) ;
148 my $yoff = sprintf ( ”%.0 f ” , ( $maxy − $N ) /$dy ) ;
149
150 my $output = [ $minx , $maxx , $miny , $maxy , $dx , $dy , $width , $height , $xoff ,←↩

$yoff ] ;
151 return $output ;
152 }
153
154 sub within_bounds {
155 my ( $dn_dataset ) = @_ ;
156 my ( $minx , $maxx , $miny , $maxy ) = @{get_gridding_data ( $dn_dataset ) } ;
157 return ( $miny < $N ) && ( $maxy > $S ) && ( $minx < $E ) && ( $maxx > $W ) ;
158 }
159
160 sub update_regression { # In t h i s case us ing p s i − a power o f c o s i n e alpha . ←↩

See notes 1 Dec 09 .
161 my ( $sigma_alpha_dataset , $clipped_dn_dataset ) = @_ ;
162 # my $ r e g r e s s i o n d a t a s e t = g e t r e g r e s s i o n d a t a s e t ( ) ;
163 my ( $N_band , $SumY_band , $SumX_band , $SumXY_band , $SumX2_band , $SumY2_band ,←↩

$SumGamma_band ) = @{get_regression_bands ( ) } ;
164 my ( $minx , $maxx , $miny , $maxy , $dx , $dy , $width , $height , $xoff , $yoff ) = ←↩

@{get_gridding_data ( $sigma_alpha_dataset ) } ;
165
166 my $N_data = $N_band−>ReadTile ( $xoff , $yoff , $width , $height ) ;
167 my $SumY_data = $SumY_band−>ReadTile ( $xoff , $yoff , $width , $height ) ;
168 my $SumX_data = $SumX_band−>ReadTile ( $xoff , $yoff , $width , $height ) ;
169 my $SumXY_data = $SumXY_band−>ReadTile ( $xoff , $yoff , $width , $height ) ;
170 my $SumX2_data = $SumX2_band−>ReadTile ( $xoff , $yoff , $width , $height ) ;
171 my $SumY2_data = $SumY2_band−>ReadTile ( $xoff , $yoff , $width , $height ) ;
172 my $SumGamma_data = $SumGamma_band−>ReadTile ( $xoff , $yoff , $width , $height )←↩

;
173
174 my $Sigma_alpha_band = $sigma_alpha_dataset−>GetRasterBand (1 ) ;
175 my $Sigma_alpha_nodata = $Sigma_alpha_band−>GetNoDataValue ;
176 my $Sigma_alpha_data = $Sigma_alpha_band−>ReadTile ;
177
178 my $alpha_band = $clipped_dn_dataset−>GetRasterBand (2 ) ;
179 my $alpha_nodata = $alpha_band−>GetNoDataValue ;
180 my $alpha_data = $alpha_band−>ReadTile ;
181
182 print ”Updating r e g r e s s i o n . . . \ n” ;
183
184 for (my $Row=0; $Row<$height ; $Row++) {
185 for (my $Col=0; $Col<$width ; $Col++) {
186 i f ( $Sigma_alpha_data−>[$Row ] [ $Col ] && ( $Sigma_alpha_data−>[$Row ] [←↩

$Col ] != 65535)
187 && $alpha_data−>[$Row ] [ $Col ] && ( $alpha_data−>[$Row ] [ $Col ] != ←↩

65535) ) {
188 my $Y = $Sigma_alpha_data−>[$Row ] [ $Col ] ;
189 my $alpha = $alpha_data−>[$Row ] [ $Col ] / 100 ;
190 $alpha += 360 i f $alpha < 0 ;
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191 my $X = −100 * log10 ( cos (3 .1415927 * $alpha / 180) ) ;
192 my $gamma = $Y − $X ;
193 $N_data−>[$Row ] [ $Col ] += 1 ;
194 $SumY_data−>[$Row ] [ $Col ] += $Y ;
195 $SumX_data−>[$Row ] [ $Col ] += $X ;
196 $SumXY_data−>[$Row ] [ $Col ] += ( $X * $Y ) ;
197 $SumX2_data−>[$Row ] [ $Col ] += ( $X ** 2) ;
198 $SumY2_data−>[$Row ] [ $Col ] += ( $Y ** 2) ;
199 $SumGamma_data−>[$Row ] [ $Col ] += $gamma ;
200 }
201 }
202 }
203
204 $N_band−>WriteTile ( $N_data , $xoff , $yoff ) ;
205 $SumY_band−>WriteTile ( $SumY_data , $xoff , $yoff ) ;
206 $SumX_band−>WriteTile ( $SumX_data , $xoff , $yoff ) ;
207 $SumXY_band−>WriteTile ( $SumXY_data , $xoff , $yoff ) ;
208 $SumX2_band−>WriteTile ( $SumX2_data , $xoff , $yoff ) ;
209 $SumY2_band−>WriteTile ( $SumY2_data , $xoff , $yoff ) ;
210 $SumGamma_band−>WriteTile ( $SumGamma_data , $xoff , $yoff ) ;
211
212 }
213 # $N band , $SumY band , $SumX band , $SumXY band , $SumX2 band , $ps i band
214
215 # Byte/ Int16 /UInt16/UInt32/ Int32 / Float32 / Float64 /
216 # CInt16/CInt32/CFloat32/CFloat64}
217 sub get_regression_bands {
218 my $bands = [
219 [ 'N ' , ' UInt16 ' ] ,
220 [ 'SumY ' , ' UInt16 ' ] ,
221 [ 'SumX ' , ' Float32 ' ] ,
222 [ 'SumXY ' , ' Float32 ' ] ,
223 [ 'SumX2 ' , ' Float32 ' ] ,
224 [ 'SumY2 ' , ' Float32 ' ] ,
225 [ 'SumGamma ' , ' UInt16 ' ]
226 ] ;
227 my @output ;
228
229 foreach ( @$bands ) {
230 my ( $name , $datatype ) = @$_ ;
231 my $path = ”$TARGET DIRECTORY/$SPECIFIC DIRECTORY” ;
232 i f (−e ”$path/$name . t i f ” ) {
233 my $dataset = Geo : : GDAL : : Open ( ”$path/$name . t i f ” , 'Update ' ) ;
234 my $band = $dataset−>GetRasterBand (1 ) ;
235 push ( @output , $band ) ;
236 } else {
237 my $width = sprintf ( ”%.0 f ” , ( $E − $W ) / $RESOLUTION ) ;
238 my $height = sprintf ( ”%.0 f ” , ( $N − $S ) / $RESOLUTION ) ;
239 print ” Creat ing $path/$name . t i f . . . \ n” ;
240 # my $datase t ;
241 # eva l {
242 mkdir $path unless −d $path ;
243 my $dataset = Geo : : GDAL : : Driver ( ' GTiff ' )−>Create ( ”$path/$name . t i f ” ,←↩

$width , $height , 1 , $datatype ) ;
244 # } ;
245 # p r in t STDERR ” Error : $@” ;
246 $dataset−>GeoTransform ( $W , $RESOLUTION , 0 , $N , 0 , −$RESOLUTION ) ;
247 $dataset−>SetProjection ( $WKT ) ;
248 my $band = $dataset−>Band (1 ) ;
249 $band−>Fill (0 ) ;
250 $band−>NoDataValue (0 ) ;
251 push ( @output , $band ) ;
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252 }
253 }
254 return \@output ;
255 }
256
257 sub create_sigmaalpha {
258 my ( $root , $clipped_dn_dataset ) = @_ ;
259 my ( $width , $height ) = $clipped_dn_dataset−>Size ;
260 my ( $minx , $dx , undef , $maxy , undef , $dy ) = $clipped_dn_dataset−>←↩

GeoTransform ( ) ;
261 my $alpha_band = $clipped_dn_dataset−>GetRasterBand (2 ) ;
262 my $alphas = $alpha_band−>ReadTile ;
263 my $dn_band = $clipped_dn_dataset−>GetRasterBand (1 ) ;
264 my $dn_nodata = $dn_band−>GetNoDataValue ;
265 my $dns = $dn_band−>ReadTile ;
266 my $mask_data = get_mask_data ( $clipped_dn_dataset ) ;
267
268 my $name = ”SIGMAALPHA$root . t i f ” ; # name ( without ex tens i on ) f o r the ←↩

new r a s t e r
269 my $datatype = ' UInt16 ' ;# datatype f o r the va lue s in p i x e l s
270 my $nodata = 0 ; # nodata value
271 my @data = ( ) ; # p i x e l va lues , s to r ed in t h i s example in a hash
272
273 my $dataset = Geo : : GDAL : : Driver ( ' GTiff ' )−>Create ( $name , $width , $height , 1 ,←↩

$datatype ) ;
274 $dataset−>GeoTransform ( $minx , $dx , 0 , $maxy , 0 , $dy ) ;
275 $dataset−>SetProjection ( $WKT ) ;
276 my $band = $dataset−>Band (1 ) ;
277 $band−>NoDataValue ( $nodata ) ;
278
279 print ” Creat ing SigmaAlpha f o r $ root . . . \ n” ;
280
281 # die ”DN and ALPHA maps are d i f f e r e n t s i z e s \n” u n l e s s ( $a lpha dataset−>S i z e ←↩

== ( $width , $he ight ) ) ;
282 for (my $row=0; $row<$height ; $row++) {
283 my @rowvalue ;
284 for (my $col=0; $col<$width ; $col++) {
285 my $value = $nodata ;
286 i f ( ( $dns−>[$row ] [ $col ] != 65535)
287 && $dns−>[$row ] [ $col ]
288 && ( $alphas−>[$row ] [ $col ] != 65535)
289 && $alphas−>[$row ] [ $col ]
290 && $mask_data−>[$row ] [ $col ] ) {
291 my $alpha = $alphas−>[$row ] [ $col ] / 100 ;
292 $alpha += 360 i f $alpha < 0 ;
293 $value = sprintf ( ”%.0 f ” ,(−100 * log10 ( ( ( $dns−>[$row ] [ $col ] ** ←↩

2) /21900000) * sin ( (3 .1415927/180) * $alpha ) ) ) ) ;
294 i f ( $value < 0) {
295 $value = 0 ;
296 } e l s i f ( $value > 65534) {
297 $value = 65534;
298 }
299 }
300 push ( @rowvalue , $value ) ;
301 }
302 push ( @data ,\ @rowvalue ) ;
303 }
304
305 $band−>WriteTile (\ @data ) ;
306 return $dataset ;
307 }
308
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309 sub log10 {
310 my $n = sh i f t ;
311 return log ( $n ) / log (10) unless $n < 0 ;
312 0 ;
313 }
314
315 sub get_arguments {
316 die ”You must argue a d i r e c t o r y and some raw data f i l ename ( s ) \n” i f ( @ARGV )←↩

== 0 ;
317 $SPECIFIC_DIRECTORY = sh i f t @ARGV ;
318 my @output ;
319 foreach my $raw ( @ARGV ) {
320 die ” Sorry , but the argument ( s ) must conta in the FULL, not RELATIVE, ←↩

path\n” unless $raw =˜ /ˆ\// ;
321 push( @output , $raw ) ;
322 }
323 return \@output ;
324 }
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All GM data was acquired systematically via download from ESA’s Kiruna and

ESRIN ground stations, made available in a two-week moving window through

the Category 1 Fast Track Registration agreement, under the project number

C1P.5908 (ESA, 2007a).

All MODIS data was obtained from http://lpdaac.usgs.gov , maintained by

the NASA Land Processes Distributed Active Archive Center (LP DAAC) at the

USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls,

South Dakota. 2003. Data for the images were provided by NASA.

Chapter 3

Radar data

All GM data for the year 2009 between latitudes 10◦ S and 29◦ S in the following

orbit tracks: 9, 16, 23, 30, 38, 44, 52, 59, 66, 73, 87, 95, 102, 109, 116, 130, 138,

145, 152, 159, 173, 181, 188, 195, 202, 206, 209, 216, 224, 231, 238, 245, 252, 259,

267, 281, 288, 295, 302, 316, 324, 331, 338, 345, 359, 367, 374, 381, 388, 402, 410,

417, 424, 431, 445, 453, 460, 467, 474, 481, 488, 496.

Dominant vegetation species, vegetation growth form

Title: Vegetation - Post-European Settlement (1988)

Custodian: Geoscience Australia
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Metadata: http://www.ga.gov.au/meta/ANZCW0703005426.html

Geology

Title: Surface geology of Australia 1:1,000,000 scale, Queensland - 2nd edition

Authors: Whitaker, A.J., Champion, D.C., Sweet, I.P., Kilgour, P. and Con-

nolly, D.P.

Custodian: Geoscience Australia

Further information: http:/www.ga.gov.au

Soil type

Title: Digital Atlas of Australian Soils - Soil Landscapes Map

Custodian: Department of Agriculture Fisheries and Forestry: Australian Bu-

reau of Agricultural and Resource Economics and Sciences

Metadata: http://adl.brs.gov.au/anrdl/metadata files/pa daaslr9abd 00111a01.xml

Regolith

Title: Regolith landforms polygon dataset AGSOCAT (AGSO catalogue) Num-

ber : 21805

Custodian: Geoscience Australia

Metadata: http://www.agso.gov.au/databases/catalog/agsocat.html

MODIS

Satellite Year Day H V

Aqua 2011 130 30 12

Aqua 2011 130 31 10

Aqua 2011 130 31 11
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Chapter 5

Radar data

The following lists, each entry comprises 5 numbers representing the following:

1. Date of acquisition (yyyymmdd)

2. Time of acquisition (hhmmss)

3. Orbit cycle

4. Orbit track

5. Absolute orbit
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GM Data used in Chapter 5

20050125 001330 034 00102 15186 20060403 000450 046 00288 21384 20060406 001031 046 00331 21427

20070208 125110 055 00238 25843 20070212 000458 055 00288 25893 20070215 001038 055 00331 25936

20090131 000734 076 00059 36185 20090203 123426 076 00109 36235 20090206 124102 076 00152 36278

20090209 124523 076 00195 36321 20090213 140138 076 00253 36379 20090214 132804 076 00267 36393

20090215 125745 076 00281 36407 20090217 133457 076 00310 36436 20090218 004227 076 00317 36443

20090219 001026 076 00331 36457 20090219 123234 076 00338 36464 20090220 134155 076 00353 36479

20090221 004813 076 00360 36486 20090221 130757 076 00367 36493 20090222 001753 076 00374 36500

20090222 123813 076 00381 36507 20090222 141833 076 00382 36508 20090222 234610 076 00388 36514

20090223 012659 076 00389 36515 20090224 131443 076 00410 36536 20090225 002325 076 00417 36543

20090225 124234 076 00424 36550 20090227 131927 076 00453 36579 20090228 002814 076 00460 36586

20090228 124932 076 00467 36593 20090228 142952 076 00468 36594 20090228 235646 076 00474 36600

20090301 013916 076 00475 36601 20090301 135910 076 00482 36608 20090302 010606 076 00489 36615

20090302 132510 076 00496 36622 20090303 003354 077 00002 36629 20090303 125349 077 00009 36636

20090304 000157 077 00016 36643 20090305 133059 077 00038 36665 20090306 003934 077 00045 36672

20090307 122910 077 00066 36693 20090307 233835 077 00073 36700 20090308 133759 077 00081 36708

20090309 004520 077 00088 36715 20090309 130507 077 00095 36722 20090310 001316 077 00102 36729

20090310 123428 077 00109 36736 20090310 234342 077 00116 36743 20090311 134339 077 00124 36751

20090312 005106 077 00131 36758 20090312 131047 077 00138 36765 20090313 002039 077 00145 36772

20090313 124103 077 00152 36779 20090313 234849 077 00159 36786 20090314 134933 077 00167 36794

20090315 005744 077 00174 36801 20090315 131637 077 00181 36808 20090316 002611 077 00188 36815

20090316 124532 077 00195 36822 20090316 235430 077 00202 36829 20090317 013619 077 00203 36830

20090317 135550 077 00210 36837 20090318 010335 077 00217 36844 20090318 132216 077 00224 36851

20090319 003152 077 00231 36858 20090319 125058 077 00238 36865 20090320 000015 077 00245 36872

20090320 140137 077 00253 36880 20090322 003642 077 00274 36901 20090322 125637 077 00281 36908

20090323 000446 077 00288 36915 20090323 122630 077 00295 36922 20090324 011441 077 00303 36930

20090324 133455 077 00310 36937 20090325 004321 077 00317 36944 20090325 130759 077 00324 36951

20090326 001144 077 00331 36958 20090326 123232 077 00338 36965 20090326 141306 077 00339 36966

20090326 234112 077 00345 36972 20090327 012122 077 00346 36973 20090327 134048 077 00353 36980

20090329 001751 077 00374 37001 20090329 123812 077 00381 37008 20090330 012657 077 00389 37016

20090330 134627 077 00396 37023 20090331 005451 077 00403 37030 20090331 131343 077 00410 37037

20090401 002323 077 00417 37044 20090401 124232 077 00424 37051 20090401 142410 077 00425 37052

20090401 235133 077 00431 37058 20090402 013313 077 00432 37059 20090402 135254 077 00439 37066

20090403 005943 077 00446 37073 20090403 131925 077 00453 37080 20090404 142949 077 00468 37095

20090404 235643 077 00474 37101 20090405 013913 077 00475 37102 20090405 135841 077 00482 37109

20090406 010603 077 00489 37116 20090406 132506 077 00496 37123 20090407 125407 078 00009 37137

20090408 000154 078 00016 37144 20090408 140428 078 00024 37152 20090408 233257 078 00030 37158

20090409 011142 078 00031 37159 20090409 133056 078 00038 37166 20090410 003931 078 00045 37173

20090410 125925 078 00052 37180 20090411 141014 078 00067 37195 20090411 233832 078 00073 37201

20090412 133757 078 00081 37209 20090413 004517 078 00088 37216 20090413 130505 078 00095 37223

20090414 001313 078 00102 37230 20090414 123425 078 00109 37237 20090414 141546 078 00110 37238

20090414 234339 078 00116 37244 20090415 134336 078 00124 37252 20090416 005103 078 00131 37259

20090416 131044 078 00138 37266 20090417 002037 078 00145 37273 20090417 142120 078 00153 37281

20090417 234846 078 00159 37287 20090418 134932 078 00167 37295 20090420 002609 078 00188 37316

20090420 124522 078 00195 37323 20090420 142701 078 00196 37324 20090420 235409 078 00202 37330

20090421 013618 078 00203 37331 20090421 135549 078 00210 37338 20090422 010334 078 00217 37345

20090422 132216 078 00224 37352 20090423 003102 078 00231 37359 20090423 125132 078 00238 37366

20090423 235919 078 00245 37373 20090424 140137 078 00253 37381 20090425 010942 078 00260 37388

20090425 132803 078 00267 37395 20090426 125637 078 00281 37409 20090427 000446 078 00288 37416
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20090427 122630 078 00295 37423 20090427 140723 078 00296 37424 20090427 233547 078 00302 37430

20090428 011434 078 00303 37431 20090429 130217 078 00324 37452 20090430 001026 078 00331 37459

20090430 123233 078 00338 37466 20090501 012035 078 00346 37474 20090502 004813 078 00360 37488

20090502 130757 078 00367 37495 20090503 001753 078 00374 37502 20090503 123813 078 00381 37509

20090503 141833 078 00382 37510 20090504 012659 078 00389 37517 20090504 134628 078 00396 37524

20090505 005359 078 00403 37531 20090505 131345 078 00410 37538 20090506 002325 078 00417 37545

20090506 124234 078 00424 37552 20090506 142412 078 00425 37553 20090506 235136 078 00431 37559

20090507 013315 078 00432 37560 20090508 005945 078 00446 37574 20090509 002814 078 00460 37588

20090509 124932 078 00467 37595 20090509 142952 078 00468 37596 20090510 013916 078 00475 37603

20090510 135845 078 00482 37610 20090511 010606 078 00489 37617 20090511 132510 078 00496 37624

20090512 003354 079 00002 37631 20090512 125410 079 00009 37638 20090513 140432 079 00024 37653

20090513 233301 079 00030 37659 20090514 011146 079 00031 37660 20090515 003934 079 00045 37674

20090515 125928 079 00052 37681 20090516 000737 079 00059 37688 20090516 141017 079 00067 37696

20090517 011728 079 00074 37703 20090517 133800 079 00081 37710 20090518 004520 079 00088 37717

20090518 130507 079 00095 37724 20090519 001316 079 00102 37731 20090519 123428 079 00109 37738

20090519 141549 079 00110 37739 20090519 234342 079 00116 37745 20090520 012347 079 00117 37746

20090520 134339 079 00124 37753 20090521 005106 079 00131 37760 20090521 131047 079 00138 37767

20090522 002040 079 00145 37774 20090522 142123 079 00153 37782 20090523 013009 079 00160 37789

20090523 134934 079 00167 37796 20090524 005653 079 00174 37803 20090524 131638 079 00181 37810

20090525 002612 079 00188 37817 20090525 124524 079 00195 37824 20090525 142703 079 00196 37825

20090525 235412 079 00202 37831 20090526 013620 079 00203 37832 20090526 135552 079 00210 37839

20090527 010317 079 00217 37846 20090527 132218 079 00224 37853 20090528 003105 079 00231 37860

20090530 010857 079 00260 37889 20090530 132805 079 00267 37896 20090531 003644 079 00274 37903

20090531 125639 079 00281 37910 20090601 000448 079 00288 37917 20090601 122917 079 00295 37924

20090601 140726 079 00296 37925 20090601 233549 079 00302 37931 20090602 011437 079 00303 37932

20090602 133458 079 00310 37939 20090603 004228 079 00317 37946 20090603 130219 079 00324 37953

20090604 001028 079 00331 37960 20090604 123235 079 00338 37967 20090605 012037 079 00346 37975

20090605 134051 079 00353 37982 20090606 004815 079 00360 37989 20090606 130759 079 00367 37996

20090607 001755 079 00374 38003 20090607 123815 079 00381 38010 20090607 141835 079 00382 38011

20090607 234612 079 00388 38017 20090608 012701 079 00389 38018 20090612 005947 079 00446 38075

20090618 133100 080 00038 38168 20090619 003936 080 00045 38175 20090619 125930 080 00052 38182

20090620 141019 080 00067 38197 20090620 233837 080 00073 38203 20090621 011729 080 00074 38204

20090622 004522 080 00088 38218 20090622 130509 080 00095 38225 20090623 001318 080 00102 38232

20090623 123430 080 00109 38239 20090623 141551 080 00110 38240 20090623 234344 080 00116 38246

20090624 012349 080 00117 38247 20090624 134341 080 00124 38254 20090625 005108 080 00131 38261

20090625 131048 080 00138 38268 20090703 140140 080 00253 38383 20090704 010857 080 00260 38390

20090704 132805 080 00267 38397 20090705 003644 080 00274 38404 20090706 000448 080 00288 38418

20090706 122633 080 00295 38425 20090706 140725 080 00296 38426 20090706 233549 080 00302 38432

20090707 011436 080 00303 38433 20090707 133458 080 00310 38440 20090708 004228 080 00317 38447

20090708 130219 080 00324 38454 20090709 001027 080 00331 38461 20090710 134050 080 00353 38483

20090711 004814 080 00360 38490 20090711 130758 080 00367 38497 20090712 001754 080 00374 38504

20090712 123814 080 00381 38511 20090712 234611 080 00388 38518 20090713 012700 080 00389 38519

20090713 134630 080 00396 38526 20090714 005400 080 00403 38533 20090714 131346 080 00410 38540

20090715 002326 080 00417 38547 20090715 124235 080 00424 38554 20090715 142413 080 00425 38555

20090715 235137 080 00431 38561 20090716 135258 080 00439 38569 20090717 005947 080 00446 38576

20090717 131928 080 00453 38583 20090718 002815 080 00460 38590 20090718 124932 080 00467 38597

20090718 235646 080 00474 38604 20090719 013917 080 00475 38605 20090719 135845 080 00482 38612

20090720 010607 080 00489 38619 20090720 132511 080 00496 38626 20090721 125349 081 00009 38640
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20090722 000158 081 00016 38647 20090722 140433 081 00024 38655 20090723 011146 081 00031 38662

20090723 133059 081 00038 38669 20090724 125929 081 00052 38683 20090725 000737 081 00059 38690

20090725 122911 081 00066 38697 20090725 233835 081 00073 38704 20090726 011728 081 00074 38705

20090726 133800 081 00081 38712 20090727 004521 081 00088 38719 20090727 130508 081 00095 38726

20090728 001317 081 00102 38733 20090728 123428 081 00109 38740 20090728 141550 081 00110 38741

20090728 234343 081 00116 38747 20090729 012348 081 00117 38748 20090729 134340 081 00124 38755

20090730 131048 081 00138 38769 20090731 002040 081 00145 38776 20090731 124104 081 00152 38783

20090731 234850 081 00159 38790 20090801 013010 081 00160 38791 20090801 134934 081 00167 38798

20090802 005653 081 00174 38805 20090802 131638 081 00181 38812 20090803 002612 081 00188 38819

20090803 124524 081 00195 38826 20090803 142703 081 00196 38827 20090803 235412 081 00202 38833

20090804 013620 081 00203 38834 20090807 140139 081 00253 38884 20090808 010857 081 00260 38891

20090808 132805 081 00267 38898 20090809 003644 081 00274 38905 20090809 125639 081 00281 38912

20090810 000448 081 00288 38919 20090810 140725 081 00296 38927 20090810 233549 081 00302 38933

20090811 011436 081 00303 38934 20090811 133457 081 00310 38941 20090812 004227 081 00317 38948

20090812 130218 081 00324 38955 20090813 001027 081 00331 38962 20090813 123234 081 00338 38969

20090814 134050 081 00353 38984 20090815 004814 081 00360 38991 20090815 130758 081 00367 38998

20090816 001754 081 00374 39005 20090816 001754 081 00374 39005 20090816 123814 081 00381 39012

20090816 234611 081 00388 39019 20090817 012659 081 00389 39020 20090817 134629 081 00396 39027

20090818 005400 081 00403 39034 20090818 131345 081 00410 39041 20090819 002326 081 00417 39048

20090819 124234 081 00424 39055 20090819 142413 081 00425 39056 20090821 131928 081 00453 39084

20090822 002814 081 00460 39091 20090822 124931 081 00467 39098 20090822 142952 081 00468 39099

20090822 235645 081 00474 39105 20090823 013916 081 00475 39106 20090824 010606 081 00489 39120

20090824 010606 081 00489 39120 20090824 132510 081 00496 39127 20090825 003353 082 00002 39134

20090825 125410 082 00009 39141 20090826 000157 082 00016 39148 20090826 140432 082 00024 39156

20090827 011145 082 00031 39163 20090827 133058 082 00038 39170 20090828 003933 082 00045 39177

20090828 125928 082 00052 39184 20090829 000736 082 00059 39191 20090829 122910 082 00066 39198

20090829 141016 082 00067 39199 20090829 233834 082 00073 39205 20090830 011727 082 00074 39206

20090831 004519 082 00088 39220 20090831 130507 082 00095 39227 20090901 001315 082 00102 39234

20090901 123427 082 00109 39241 20090901 141548 082 00110 39242 20090902 012346 082 00117 39249

20090902 134338 082 00124 39256 20090903 005105 082 00131 39263 20090903 131046 082 00138 39270

20090904 002038 082 00145 39277 20090904 124102 082 00152 39284 20090904 142122 082 00153 39285

20090904 234848 082 00159 39291 20090905 013008 082 00160 39292 20090906 005651 082 00174 39306

20090906 131636 082 00181 39313 20090907 002610 082 00188 39320 20090907 124522 082 00195 39327

20090907 142701 082 00196 39328 20090908 013618 082 00203 39335 20090908 135549 082 00210 39342

20090909 010315 082 00217 39349 20090909 132215 082 00224 39356 20090910 003102 082 00231 39363

20090910 125131 082 00238 39370 20090910 143240 082 00239 39371 20090910 235918 082 00245 39377

20090912 010854 082 00260 39392 20090912 132802 082 00267 39399 20090913 003641 082 00274 39406

20090913 125636 082 00281 39413 20090914 000444 082 00288 39420 20090914 140722 082 00296 39428

20090915 011433 082 00303 39435 20090915 133454 082 00310 39442 20090916 004224 082 00317 39449

20090916 130215 082 00324 39456 20090917 001023 082 00331 39463 20090917 123230 082 00338 39470

20090917 141304 082 00339 39471 20090917 234110 082 00345 39477 20090918 012032 082 00346 39478

20090919 004810 082 00360 39492 20090919 130754 082 00367 39499 20090920 001750 082 00374 39506

20090920 123810 082 00381 39513 20090920 141830 082 00382 39514 20090921 012655 082 00389 39521

20090921 134625 082 00396 39528 20090922 005355 082 00403 39535 20090922 131341 082 00410 39542

20090923 002321 082 00417 39549 20090923 124230 082 00424 39556 20090923 142408 082 00425 39557

20090923 235132 082 00431 39563 20090924 013311 082 00432 39564 20090925 005941 082 00446 39578

20090925 131923 082 00453 39585 20090926 002809 082 00460 39592 20090926 124927 082 00467 39599

20090926 142947 082 00468 39600 20090927 013911 082 00475 39607 20090927 135839 082 00482 39614
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20090928 010601 082 00489 39621 20090928 132632 082 00496 39628 20090929 125405 083 00009 39642

20090930 000152 083 00016 39649 20090930 140426 083 00024 39657 20090930 233255 083 00030 39663

20091001 011140 083 00031 39664 20091002 003928 083 00045 39678 20091002 125923 083 00052 39685

20091003 000732 083 00059 39692 20091003 122905 083 00066 39699 20091003 141011 083 00067 39700

20091004 011722 083 00074 39707 20091004 133754 083 00081 39714 20091005 004515 083 00088 39721

20091005 130502 083 00095 39728 20091006 001311 083 00102 39735 20091006 123423 083 00109 39742

20091006 141544 083 00110 39743 20091006 234337 083 00116 39749 20091007 012342 083 00117 39750

20091008 005101 083 00131 39764 20091008 131042 083 00138 39771 20091009 002034 083 00145 39778

20091009 124058 083 00152 39785 20091009 142118 083 00153 39786 20091010 013004 083 00160 39793

20091012 142657 083 00196 39829 20091012 235406 083 00202 39835 20091013 013615 083 00203 39836

20091013 135546 083 00210 39843 20091014 010311 083 00217 39850 20091014 132212 083 00224 39857

20091015 003059 083 00231 39864 20091015 125128 083 00238 39871 20091015 235915 083 00245 39878

20091016 140133 083 00253 39886 20091017 010851 083 00260 39893 20091017 132759 083 00267 39900

20091018 125633 083 00281 39914 20091019 000442 083 00288 39921 20091019 122627 083 00295 39928

20091019 140719 083 00296 39929 20091019 233543 083 00302 39935 20091020 011431 083 00303 39936

20091020 133452 083 00310 39943 20091021 004222 083 00317 39950 20091021 130213 083 00324 39957

20091022 001022 083 00331 39964 20091022 141303 083 00339 39972 20091022 234108 083 00345 39978

20091023 012031 083 00346 39979 20091023 134045 083 00353 39986 20091024 130752 083 00367 40000

20091025 001749 083 00374 40007 20091025 123809 083 00381 40014 20091025 141829 083 00382 40015

20091025 234606 083 00388 40021 20091026 012654 083 00389 40022 20091026 134624 083 00396 40029

20091027 005355 083 00403 40036 20091027 131340 083 00410 40043 20091028 142408 083 00425 40058

20091028 235131 083 00431 40064 20091029 013311 083 00432 40065 20091031 124927 083 00467 40100

20091031 142947 083 00468 40101 20091031 235641 083 00474 40107 20091101 135840 083 00482 40115

20091102 010602 083 00489 40122 20091102 132505 083 00496 40129 20091103 003349 084 00002 40136

20091103 125344 084 00009 40143 20091104 000152 084 00016 40150 20091104 140427 084 00024 40158

20091104 233256 084 00030 40164 20091105 011141 084 00031 40165 20091106 003929 084 00045 40179

20091106 125923 084 00052 40186 20091107 000732 084 00059 40193 20091107 141012 084 00067 40201

20091108 011747 084 00074 40208 20091108 133755 084 00081 40215 20091109 004515 084 00088 40222

20091109 130502 084 00095 40229 20091110 001339 084 00102 40236 20091110 141544 084 00110 40244

20091110 234337 084 00116 40250 20091111 012342 084 00117 40251 20091111 134334 084 00124 40258

20091112 005101 084 00131 40265 20091112 131042 084 00138 40272 20091113 002034 084 00145 40279

20091113 142118 084 00153 40287 20091114 013004 084 00160 40294 20091114 134929 084 00167 40301

20091115 005647 084 00174 40308 20091115 131632 084 00181 40315 20091116 002606 084 00188 40322

20091116 124518 084 00195 40329 20091116 142657 084 00196 40330 20091116 235406 084 00202 40336

20091117 013614 084 00203 40337 20091117 055648 084 00206 40340 20091117 135545 084 00210 40344

20091118 010311 084 00217 40351 20091118 132212 084 00224 40358 20091119 143236 084 00239 40373

20091119 235914 084 00245 40379 20091120 140133 084 00253 40387 20091121 010850 084 00260 40394

20091121 132758 084 00267 40401 20091122 003637 084 00274 40408 20091122 125632 084 00281 40415

20091123 000441 084 00288 40422 20091123 122625 084 00295 40429 20091123 140718 084 00296 40430

20091123 233542 084 00302 40436 20091124 011429 084 00303 40437 20091124 133451 084 00310 40444

20091125 004221 084 00317 40451 20091125 004223 084 00317 40451 20091126 123227 084 00338 40472

20091126 141259 084 00339 40473 20091126 234109 084 00345 40479 20091126 234109 084 00345 40479

20091127 012031 084 00346 40480 20091127 012031 084 00346 40480 20091127 134040 084 00353 40487

20091128 004804 084 00360 40494 20091128 130752 084 00367 40501 20091129 001746 084 00374 40508

20091129 123804 084 00381 40515 20091129 141824 084 00382 40516 20091130 012652 084 00389 40523

20091130 134624 084 00396 40530 20091201 005350 084 00403 40537 20091202 002317 084 00417 40551

20091202 124228 084 00424 40558 20091202 142408 084 00425 40559 20091202 235128 084 00431 40565

20091203 013306 084 00432 40566 20091203 135250 084 00439 40573 20091204 005936 084 00446 40580
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20091204 131921 084 00453 40587 20091205 002808 084 00460 40594 20091205 124806 084 00467 40601

20091205 142947 084 00468 40602 20091206 135837 084 00482 40616 20091207 010600 084 00489 40623

20091208 125342 085 00009 40644 20091209 000148 085 00016 40651 20091209 140423 085 00024 40659

20091209 233254 085 00030 40665 20091210 011140 085 00031 40666 20091210 133052 085 00038 40673

20091211 003928 085 00045 40680 20091211 003928 085 00045 40680 20091211 125919 085 00052 40687

20091212 000728 085 00059 40694 20091212 123110 085 00066 40701 20091212 141007 085 00067 40702

20091213 011723 085 00074 40709 20091213 133749 085 00081 40716 20091214 004515 085 00088 40723

20091215 001308 085 00102 40737 20091215 123418 085 00109 40744 20091215 141539 085 00110 40745

20091215 234332 085 00116 40751 20091216 012341 085 00117 40752 20091216 134335 085 00124 40759

20091217 005057 085 00131 40766 20091217 131042 085 00138 40773 20091218 002032 085 00145 40780

20091218 124054 085 00152 40787 20091218 142113 085 00153 40788 20091219 013001 085 00160 40795

20091219 134929 085 00167 40802 20091220 005644 085 00174 40809 20091221 002604 085 00188 40823

20091221 124519 085 00195 40830 20091221 142659 085 00196 40831 20091221 235403 085 00202 40837

20091222 013611 085 00203 40838 20091222 135545 085 00210 40845 20091223 010312 085 00217 40852

20091223 132213 085 00224 40859 20091224 003100 085 00231 40866 20091224 125055 085 00238 40873

20091224 143238 085 00239 40874 20091225 140132 085 00253 40888 20091226 010853 085 00260 40895

20091227 003640 085 00274 40909 20091227 125633 085 00281 40916 20091228 000440 085 00288 40923

20091228 122628 085 00295 40930 20091228 140717 085 00296 40931 20091228 233544 085 00302 40937

20091229 011427 085 00303 40938 20091229 133449 085 00310 40945 20091230 004224 085 00317 40952

20091230 130214 085 00324 40959 20091231 001020 085 00331 40966 20091231 123228 085 00338 40973

20091231 141300 085 00339 40974 20100101 012032 085 00346 40981 20100102 004805 085 00360 40995

20100102 130754 085 00367 41002 20100103 001748 085 00374 41009 20100103 123806 085 00381 41016

20100103 141825 085 00382 41017 20100103 234604 085 00388 41023 20100104 012654 085 00389 41024

20100104 134626 085 00396 41031 20100105 005352 085 00403 41038 20100105 131341 085 00410 41045

20100106 002319 085 00417 41052 20100106 124230 085 00424 41059 20100106 142410 085 00425 41060

20100107 013308 085 00432 41067 20100108 005938 085 00446 41081 20100108 131924 085 00453 41088

20100109 002810 085 00460 41095 20100109 124809 085 00467 41102 20100109 142949 085 00468 41103

20100109 235639 085 00474 41109 20100110 135839 085 00482 41117 20100111 010603 085 00489 41124

20100111 132506 085 00496 41131 20100112 003350 086 00002 41138 20100112 125345 086 00009 41145

20100113 000151 086 00016 41152 20100113 140426 086 00024 41160 20100114 011144 086 00031 41167

20100115 003931 086 00045 41181 20100115 125921 086 00052 41188 20100116 000731 086 00059 41195

20100116 123113 086 00066 41202 20100116 141010 086 00067 41203 20100116 233831 086 00073 41209

20100117 011725 086 00074 41210 20100117 133751 086 00081 41217 20100118 004518 086 00088 41224

20100118 130504 086 00095 41231 20100119 001310 086 00102 41238 20100119 123419 086 00109 41245

20100119 141541 086 00110 41246 20100120 012343 086 00117 41253 20100121 005059 086 00131 41267

20100121 131043 086 00138 41274 20100122 002034 086 00145 41281 20100122 123942 086 00152 41288

20100122 142115 086 00153 41289 20100122 234843 086 00159 41295 20100123 013002 086 00160 41296

20100123 134930 086 00167 41303 20100124 005645 086 00174 41310 20100124 131634 086 00181 41317

20100125 002605 086 00188 41324 20100125 124801 086 00195 41331 20100125 142700 086 00196 41332

20100126 013612 086 00203 41339 20100127 010313 086 00217 41353 20100127 132213 086 00224 41360

20100128 003100 086 00231 41367 20100128 125056 086 00238 41374 20100128 143239 086 00239 41375

20100128 235913 086 00245 41381 20100129 140132 086 00253 41389 20100130 011024 086 00260 41396

20100130 132800 086 00267 41403 20100131 003640 086 00274 41410 20100131 125633 086 00281 41417

20100201 000440 086 00288 41424 20100201 122628 086 00295 41431 20100202 011427 086 00303 41439

20100202 133449 086 00310 41446 20100203 004224 086 00317 41453 20100203 130213 086 00324 41460

20100204 001020 086 00331 41467 20100204 123145 086 00338 41474 20100204 141259 086 00339 41475

20100204 234106 086 00345 41481 20100205 012031 086 00346 41482 20100205 134040 086 00353 41489

20100206 004805 086 00360 41496 20100206 130753 086 00367 41503 20100207 123804 086 00381 41517
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20100207 234603 086 00388 41524 20100208 134625 086 00396 41532 20100209 005351 086 00403 41539

20100209 131340 086 00410 41546 20100210 002318 086 00417 41553 20100210 124229 086 00424 41560

20100210 142409 086 00425 41561 20100210 235129 086 00431 41567 20100211 013307 086 00432 41568

20100211 135250 086 00439 41575 20100212 005617 086 00446 41582 20100212 131922 086 00453 41589

20100213 002521 086 00460 41596 20100213 002808 086 00460 41596 20100213 124805 086 00467 41603

20100213 235637 086 00474 41610 20100214 013203 086 00475 41611 20100214 122359 086 00481 41617

20100214 135837 086 00482 41618 20100215 010152 086 00489 41625 20100215 010601 086 00489 41625

20100215 132504 086 00496 41632 20100216 125341 087 00009 41646 20100216 235939 087 00016 41653

20100217 013445 087 00017 41654 20100217 122953 087 00023 41660 20100217 140424 087 00024 41661

20100217 233254 087 00030 41667 20100218 133052 087 00038 41675 20100219 003637 087 00045 41682

20100219 003929 087 00045 41682 20100220 000534 087 00059 41696 20100220 123110 087 00066 41703

20100220 123554 087 00066 41703 20100220 141007 087 00067 41704 20100220 141618 087 00067 41704

20100220 233829 087 00073 41710 20100221 011209 087 00074 41711 20100221 133749 087 00081 41718

20100222 004215 087 00088 41725 20100222 004515 087 00088 41725 20100222 130500 087 00095 41732

20100223 123418 087 00109 41746 20100223 142207 087 00110 41747 20100223 233918 087 00116 41753

20100223 234332 087 00116 41753 20100224 011706 087 00117 41754 20100224 134334 087 00124 41761

20100225 004751 087 00131 41768 20100225 131040 087 00138 41775 20100226 001655 087 00145 41782

20100226 002032 087 00145 41782 20100226 123941 087 00152 41789 20100226 142113 087 00153 41790

20100226 234458 087 00159 41796 20100227 012153 087 00160 41797 20100227 013001 087 00160 41797

20100227 134929 087 00167 41804 20100227 135622 087 00167 41804 20100228 005329 087 00174 41811

20100301 002233 087 00188 41825 20100301 002604 087 00188 41825 20100301 124517 087 00195 41832

20100301 235403 087 00202 41839 20100302 012912 087 00203 41840 20100302 122110 087 00209 41846

20100302 135544 087 00210 41847 20100303 005904 087 00217 41854 20100303 010312 087 00217 41854

20100303 132212 087 00224 41861 20100304 002811 087 00231 41868 20100304 003059 087 00231 41868

20100304 125053 087 00238 41875 20100304 143238 087 00239 41876 20100304 235644 087 00245 41882

20100305 013457 087 00246 41883 20100305 140132 087 00253 41890 20100306 010440 087 00260 41897

20100307 003349 087 00274 41911 20100307 003639 087 00274 41911 20100307 125632 087 00281 41918

20100307 130442 087 00281 41918 20100308 000238 087 00288 41925 20100308 013724 087 00289 41926

20100308 122628 087 00295 41932 20100308 123255 087 00295 41932 20100308 140717 087 00296 41933

20100308 141320 087 00296 41933 20100308 233543 087 00302 41939 20100309 010941 087 00303 41940

20100309 133449 087 00310 41947 20100310 003927 087 00317 41954 20100311 000826 087 00331 41968

20100311 123227 087 00338 41975 20100311 141259 087 00339 41976 20100311 141910 087 00339 41976

20100311 233629 087 00345 41982 20100311 234110 087 00345 41982 20100312 011441 087 00346 41983

20100312 134040 087 00353 41990 20100313 004459 087 00360 41997 20100313 004805 087 00360 41997

20100313 130850 087 00367 42004 20100314 001404 087 00374 42011 20100314 123806 087 00381 42018

20100314 141825 087 00382 42019 20100314 234603 087 00388 42025 20100315 011930 087 00389 42026

20100315 012653 087 00389 42026 20100315 135334 087 00396 42033 20100316 005041 087 00403 42040

20100316 131427 087 00410 42047 20100317 001945 087 00417 42054 20100317 002319 087 00417 42054

20100317 124231 087 00424 42061 20100317 142410 087 00425 42062 20100317 234750 087 00431 42068

20100318 012420 087 00432 42069 20100318 013308 087 00432 42069 20100318 135252 087 00439 42076

20100318 135913 087 00439 42076 20100319 005619 087 00446 42083 20100319 131923 087 00453 42090

20100320 002523 087 00460 42097 20100320 002810 087 00460 42097 20100320 142949 087 00468 42105

20100320 235350 087 00474 42111 20100320 235638 087 00474 42111 20100321 122401 087 00481 42118

20100321 135839 087 00482 42119 20100322 010154 087 00489 42126 20100322 010603 087 00489 42126

20100322 132506 087 00496 42133 20100323 125343 088 00009 42147 20100324 233257 088 00030 42168

20100325 010710 088 00031 42169 20100325 011203 088 00031 42169 20100325 133054 088 00038 42176

20100326 003644 088 00045 42183 20100326 003931 088 00045 42183 20100326 125921 088 00052 42190

20100327 141009 088 00067 42205 20100327 141620 088 00067 42205 20100327 233831 088 00073 42211
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20100328 011211 088 00074 42212 20100328 133751 088 00081 42219 20100329 004216 088 00088 42226

20100329 004609 088 00088 42226 20100329 130501 088 00095 42233 20100330 001115 088 00102 42240

20100330 123726 088 00109 42247 20100330 141541 088 00110 42248 20100330 142209 088 00110 42248

20100330 234333 088 00116 42254 20100331 011707 088 00117 42255 20100401 131041 088 00138 42276

20100402 001656 088 00145 42283 20100402 002033 088 00145 42283 20100402 124056 088 00152 42290

20100402 142114 088 00153 42291 20100402 234458 088 00159 42297 20100402 234842 088 00159 42297

20100403 012153 088 00160 42298 20100403 013005 088 00160 42298 20100403 134930 088 00167 42305

20100403 134930 088 00167 42305 20100403 135623 088 00167 42305 20100403 135623 088 00167 42305

20100404 005329 088 00174 42312 20100405 002604 088 00188 42326 20100405 124517 088 00195 42333

20100405 142659 088 00196 42334 20100405 235403 088 00202 42340 20100406 012656 088 00203 42341

20100406 013611 088 00203 42341 20100406 122110 088 00209 42347 20100406 135544 088 00210 42348

20100407 005904 088 00217 42355 20100407 010312 088 00217 42355 20100407 132212 088 00224 42362

20100408 002811 088 00231 42369 20100408 125052 088 00238 42376 20100408 143237 088 00239 42377

20100408 235644 088 00245 42383 20100409 013209 088 00246 42384 20100409 140131 088 00253 42391

20100410 010439 088 00260 42398 20100410 010852 088 00260 42398 20100410 132759 088 00267 42405

20100411 003348 088 00274 42412 20100411 003638 088 00274 42412 20100411 125631 088 00281 42419

20100411 130441 088 00281 42419 20100412 000237 088 00288 42426 20100412 123254 088 00295 42433

20100412 140716 088 00296 42434 20100412 141319 088 00296 42434 20100412 233542 088 00302 42440

20100413 010939 088 00303 42441 20100414 003926 088 00317 42455 20100414 004222 088 00317 42455

20100414 130210 088 00324 42462 20100415 000824 088 00331 42469 20100415 123226 088 00338 42476

20100415 141257 088 00339 42477 20100415 141908 088 00339 42477 20100415 233627 088 00345 42483

20100415 234108 088 00345 42483 20100416 134038 088 00353 42491 20100417 004457 088 00360 42498

20100417 004803 088 00360 42498 20100417 130749 088 00367 42505 20100418 001401 088 00374 42512

20100418 123803 088 00381 42519 20100418 234601 088 00388 42526 20100419 011928 088 00389 42527

20100419 012651 088 00389 42527 20100419 134623 088 00396 42534 20100419 135332 088 00396 42534

20100420 005038 088 00403 42541 20100420 131338 088 00410 42548 20100421 002316 088 00417 42555

20100421 124228 088 00424 42562 20100421 142407 088 00425 42563 20100421 234747 088 00431 42569

20100421 235127 088 00431 42569 20100422 012652 088 00432 42570 20100422 013309 088 00432 42570

20100422 135249 088 00439 42577 20100422 135249 088 00439 42577 20100422 135914 088 00439 42577

20100423 005616 088 00446 42584 20100423 131921 088 00453 42591 20100424 002520 088 00460 42598

20100424 124803 088 00467 42605 20100424 142946 088 00468 42606 20100424 235718 088 00474 42612

20100425 012931 088 00475 42613 20100425 122358 088 00481 42619 20100425 135836 088 00482 42620

20100426 010150 088 00489 42627 20100426 010600 088 00489 42627 20100426 132503 088 00496 42634

20100427 235938 089 00016 42655 20100428 013746 089 00017 42656 20100428 122952 089 00023 42662

20100428 140423 089 00024 42663 20100428 233253 089 00030 42669 20100429 133051 089 00038 42677

20100430 003636 089 00045 42684 20100430 003928 089 00045 42684 20100430 125918 089 00052 42691

20100501 000533 089 00059 42698 20100501 122859 089 00066 42705 20100501 123553 089 00066 42705

20100501 141006 089 00067 42706 20100501 233828 089 00073 42712 20100502 011208 089 00074 42713

20100502 133748 089 00081 42720 20100503 004214 089 00088 42727 20100503 004515 089 00088 42727

20100503 130459 089 00095 42734 20100504 001112 089 00102 42741 20100504 123417 089 00109 42748

20100504 141538 089 00110 42749 20100504 142207 089 00110 42749 20100504 233917 089 00116 42755

20100504 234331 089 00116 42755 20100505 011705 089 00117 42756 20100505 134334 089 00124 42763

20100506 004750 089 00131 42770 20100506 131039 089 00138 42777 20100507 001654 089 00145 42784

20100507 002031 089 00145 42784 20100507 142112 089 00153 42792 20100507 234840 089 00159 42798

20100508 012151 089 00160 42799 20100508 013004 089 00160 42799 20100508 134928 089 00167 42806

20100508 135622 089 00167 42806 20100509 005328 089 00174 42813 20100509 131631 089 00181 42820

20100510 002232 089 00188 42827 20100510 002603 089 00188 42827 20100510 124516 089 00195 42834

20100510 142819 089 00196 42835 20100510 235401 089 00202 42841 20100511 013609 089 00203 42842
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20100511 122109 089 00209 42848 20100512 005902 089 00217 42856 20100512 010307 089 00217 42856

20100512 132211 089 00224 42863 20100513 002810 089 00231 42870 20100513 003058 089 00231 42870

20100513 125051 089 00238 42877 20100513 143359 089 00239 42878 20100513 235640 089 00245 42884

20100514 013455 089 00246 42885 20100514 122648 089 00252 42891 20100514 140130 089 00253 42892

20100515 010851 089 00260 42899 20100515 132956 089 00267 42906 20100516 125630 089 00281 42920

20100517 000236 089 00288 42927 20100517 013722 089 00289 42928 20100517 122626 089 00295 42934

20100517 123253 089 00295 42934 20100517 140715 089 00296 42935 20100517 141318 089 00296 42935

20100517 233541 089 00302 42941 20100518 010939 089 00303 42942 20100518 133447 089 00310 42949

20100519 003925 089 00317 42956 20100519 004222 089 00317 42956 20100519 130210 089 00324 42963

20100520 123225 089 00338 42977 20100520 141908 089 00339 42978 20100520 233627 089 00345 42984

20100520 234107 089 00345 42984 20100521 011439 089 00346 42985 20100521 134038 089 00353 42992

20100522 004457 089 00360 42999 20100522 004803 089 00360 42999 20100522 130749 089 00367 43006

20100523 001401 089 00374 43013 20100523 123803 089 00381 43020 20100523 141823 089 00382 43021

20100523 234207 089 00388 43027 20100524 011928 089 00389 43028 20100524 012651 089 00389 43028

20100524 134623 089 00396 43035 20100525 005039 089 00403 43042 20100525 131338 089 00410 43049

20100526 001942 089 00417 43056 20100526 002316 089 00417 43056 20100526 142551 089 00425 43064

20100526 234747 089 00431 43070 20100526 235127 089 00431 43070 20100527 013309 089 00432 43071

20100527 135249 089 00439 43078 20100527 135910 089 00439 43078 20100528 005616 089 00446 43085

20100528 131921 089 00453 43092 20100529 002520 089 00460 43099 20100529 002807 089 00460 43099

20100529 124804 089 00467 43106 20100529 142946 089 00468 43107 20100529 235347 089 00474 43113

20100529 235636 089 00474 43113 20100530 013223 089 00475 43114 20100530 122358 089 00481 43120

20100531 010600 089 00489 43128 20100531 132705 089 00496 43135 20100601 003058 090 00002 43142

20100601 003347 090 00002 43142 20100601 125340 090 00009 43149 20100601 235939 090 00016 43156

20100602 013747 090 00017 43157 20100602 122953 090 00023 43163 20100602 140424 090 00024 43164

20100602 233254 090 00030 43170 20100603 010708 090 00031 43171 20100603 133052 090 00038 43178

20100604 003928 090 00045 43185 20100604 125918 090 00052 43192 20100605 000533 090 00059 43199

20100605 122900 090 00066 43206 20100605 141007 090 00067 43207 20100605 141618 090 00067 43207

20100605 233828 090 00073 43213 20100606 011209 090 00074 43214 20100606 133749 090 00081 43221

20100607 004214 090 00088 43228 20100607 004515 090 00088 43228 20100607 130555 090 00095 43235

20100608 001113 090 00102 43242 20100608 123417 090 00109 43249 20100608 141538 090 00110 43250

20100608 142205 090 00110 43250 20100608 234331 090 00116 43256 20100609 011705 090 00117 43257

20100610 004750 090 00131 43271 20100610 131039 090 00138 43278 20100611 001654 090 00145 43285

20100611 002031 090 00145 43285 20100611 123940 090 00152 43292 20100611 142112 090 00153 43293

20100611 234456 090 00159 43299 20100611 234840 090 00159 43299 20100612 013003 090 00160 43300

20100612 134928 090 00167 43307 20100612 135621 090 00167 43307 20100613 005327 090 00174 43314

20100613 131629 090 00181 43321 20100614 002231 090 00188 43328 20100614 002602 090 00188 43328

20100614 124515 090 00195 43335 20100614 235401 090 00202 43342 20100615 012931 090 00203 43343

20100615 013609 090 00203 43343 20100615 122108 090 00209 43349 20100615 135542 090 00210 43350

20100616 005902 090 00217 43357 20100616 010310 090 00217 43357 20100616 132415 090 00224 43364

20100617 002809 090 00231 43371 20100617 003057 090 00231 43371 20100617 125051 090 00238 43378

20100617 143236 090 00239 43379 20100617 235639 090 00245 43385 20100618 013515 090 00246 43386

20100618 122648 090 00252 43392 20100618 140130 090 00253 43393 20100619 010438 090 00260 43400

20100620 003347 090 00274 43414 20100620 003637 090 00274 43414 20100620 125630 090 00281 43421

20100620 130439 090 00281 43421 20100621 000235 090 00288 43428 20100621 013721 090 00289 43429

20100621 122625 090 00295 43435 20100621 140714 090 00296 43436 20100621 141318 090 00296 43436

20100621 233541 090 00302 43442 20100622 010938 090 00303 43443 20100622 133446 090 00310 43450

20100623 003924 090 00317 43457 20100623 130209 090 00324 43464 20100624 000823 090 00331 43471

20100624 123224 090 00338 43478 20100624 141256 090 00339 43479 20100624 141910 090 00339 43479
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20100624 233626 090 00345 43485 20100624 234107 090 00345 43485 20100625 011438 090 00346 43486

20100625 134037 090 00353 43493 20100626 004456 090 00360 43500 20100626 004802 090 00360 43500

20100626 130750 090 00367 43507 20100627 001401 090 00374 43514 20100627 123803 090 00381 43521

20100627 141822 090 00382 43522 20100627 142458 090 00382 43522 20100627 234600 090 00388 43528

20100628 011927 090 00389 43529 20100628 012650 090 00389 43529 20100628 134623 090 00396 43536

20100628 135331 090 00396 43536 20100629 005038 090 00403 43543 20100629 131338 090 00410 43550

20100630 001942 090 00417 43557 20100630 002316 090 00417 43557 20100630 124228 090 00424 43564

20100630 142553 090 00425 43565 20100630 234747 090 00431 43571 20100630 235127 090 00431 43571

20100701 012652 090 00432 43572 20100701 013305 090 00432 43572 20100701 135248 090 00439 43579

20100702 005615 090 00446 43586 20100702 131920 090 00453 43593 20100703 002520 090 00460 43600

20100703 002807 090 00460 43600 20100703 124803 090 00467 43607 20100703 142945 090 00468 43608

20100703 235346 090 00474 43614 20100703 235635 090 00474 43614 20100704 013222 090 00475 43615

20100704 122357 090 00481 43621 20100704 135835 090 00482 43622 20100705 010150 090 00489 43629

20100705 010559 090 00489 43629 20100705 132502 090 00496 43636 20100706 125342 091 00009 43650

20100706 235938 091 00016 43657 20100707 013746 091 00017 43658 20100707 122952 091 00023 43664

20100707 140423 091 00024 43665 20100707 233253 091 00030 43671 20100708 010708 091 00031 43672

20100709 003636 091 00045 43686 20100709 003928 091 00045 43686 20100709 125918 091 00052 43693

20100710 000533 091 00059 43700 20100710 122859 091 00066 43707 20100710 123553 091 00066 43707

20100710 141006 091 00067 43708 20100710 141617 091 00067 43708 20100710 233828 091 00073 43714

20100711 011208 091 00074 43715 20100711 133748 091 00081 43722 20100712 004259 091 00088 43729

20100712 004515 091 00088 43729 20100712 130459 091 00095 43736 20100713 001112 091 00102 43743

20100713 141538 091 00110 43751 20100713 142205 091 00110 43751 20100713 234331 091 00116 43757

20100714 011705 091 00117 43758 20100714 134334 091 00124 43765 20100715 004750 091 00131 43772

20100715 131039 091 00138 43779 20100716 001654 091 00145 43786 20100716 002031 091 00145 43786

20100716 124054 091 00152 43793 20100716 142112 091 00153 43794 20100717 012152 091 00160 43801

20100717 013004 091 00160 43801 20100717 134928 091 00167 43808 20100718 131632 091 00181 43822

20100719 002232 091 00188 43829 20100719 002603 091 00188 43829 20100719 124516 091 00195 43836

20100719 142657 091 00196 43837 20100719 235420 091 00202 43843 20100720 013609 091 00203 43844

20100720 122109 091 00209 43850 20100720 135543 091 00210 43851 20100721 005903 091 00217 43858

20100721 005903 091 00217 43858 20100721 010311 091 00217 43858 20100721 132416 091 00224 43865

20100722 002810 091 00231 43872 20100722 003058 091 00231 43872 20100722 125052 091 00238 43879

20100722 235834 091 00245 43886 20100723 013456 091 00246 43887 20100723 122649 091 00252 43893

20100723 140131 091 00253 43894 20100724 010439 091 00260 43901 20100724 010851 091 00260 43901

20100724 132758 091 00267 43908 20100725 003348 091 00274 43915 20100725 125631 091 00281 43922

20100725 130441 091 00281 43922 20100726 000237 091 00288 43929 20100726 013723 091 00289 43930

20100726 122627 091 00295 43936 20100726 123254 091 00295 43936 20100726 141319 091 00296 43937

20100726 233542 091 00302 43943 20100727 010939 091 00303 43944 20100727 133447 091 00310 43951

20100728 003926 091 00317 43958 20100728 004222 091 00317 43958 20100728 130210 091 00324 43965

20100729 000824 091 00331 43972 20100729 123226 091 00338 43979 20100729 141258 091 00339 43980

20100729 141912 091 00339 43980 20100729 234108 091 00345 43986 20100730 011439 091 00346 43987

20100730 134039 091 00353 43994 20100731 004458 091 00360 44001 20100731 004804 091 00360 44001

20100801 001402 091 00374 44015 20100801 123804 091 00381 44022 20100801 141824 091 00382 44023

20100801 142500 091 00382 44023 20100801 234208 091 00388 44029 20100801 234602 091 00388 44029

20100802 012652 091 00389 44030 20100802 134624 091 00396 44037 20100803 005040 091 00403 44044

20100803 131340 091 00410 44051 20100804 001944 091 00417 44058 20100804 002318 091 00417 44058

20100804 124230 091 00424 44065 20100804 142555 091 00425 44066 20100804 234749 091 00431 44072

20100804 235129 091 00431 44072 20100805 012654 091 00432 44073 20100805 135912 091 00439 44080

20100806 005618 091 00446 44087 20100806 131922 091 00453 44094 20100807 002522 091 00460 44101
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20100807 002809 091 00460 44101 20100807 124805 091 00467 44108 20100807 142948 091 00468 44109

20100807 235349 091 00474 44115 20100807 235637 091 00474 44115 20100808 013224 091 00475 44116

20100808 122400 091 00481 44122 20100808 135838 091 00482 44123 20100809 010602 091 00489 44130

20100809 132505 091 00496 44137 20100810 003349 092 00002 44144 20100810 235941 092 00016 44158

20100811 013749 092 00017 44159 20100811 122954 092 00023 44165 20100811 140425 092 00024 44166

20100811 233256 092 00030 44172 20100812 010710 092 00031 44173 20100812 133053 092 00038 44180

20100813 003638 092 00045 44187 20100813 003930 092 00045 44187 20100813 125920 092 00052 44194

20100814 122901 092 00066 44208 20100814 123555 092 00066 44208 20100814 141008 092 00067 44209

20100814 233830 092 00073 44215 20100815 011210 092 00074 44216 20100815 133750 092 00081 44223

20100816 004216 092 00088 44230 20100816 004516 092 00088 44230 20100816 130501 092 00095 44237

20100817 001114 092 00102 44244 20100817 123418 092 00109 44251 20100817 141540 092 00110 44252

20100817 142206 092 00110 44252 20100817 234333 092 00116 44258 20100818 011706 092 00117 44259

20100818 134335 092 00124 44266 20100819 131040 092 00138 44280 20100820 001655 092 00145 44287

20100820 002032 092 00145 44287 20100820 142113 092 00153 44295 20100820 234458 092 00159 44301

20100820 234842 092 00159 44301 20100821 012153 092 00160 44302 20100821 013005 092 00160 44302

20100821 134929 092 00167 44309 20100821 135625 092 00167 44309 20100822 005329 092 00174 44316

20100822 131632 092 00181 44323 20100823 002604 092 00188 44330 20100823 124517 092 00195 44337

20100823 142658 092 00196 44338 20100823 235402 092 00202 44344 20100824 012932 092 00203 44345

20100824 013610 092 00203 44345 20100824 122110 092 00209 44351 20100825 005903 092 00217 44359

20100825 010311 092 00217 44359 20100825 132212 092 00224 44366 20100826 002811 092 00231 44373

20100826 125052 092 00238 44380 20100826 143237 092 00239 44381 20100826 235644 092 00245 44387

20100827 013517 092 00246 44388 20100827 122649 092 00252 44394 20100827 140131 092 00253 44395

20100828 010439 092 00260 44402 20100828 010852 092 00260 44402 20100828 132759 092 00267 44409

20100829 003348 092 00274 44416 20100829 003639 092 00274 44416 20100829 125631 092 00281 44423

20100830 000237 092 00288 44430 20100830 122627 092 00295 44437 20100830 123254 092 00295 44437

20100830 140716 092 00296 44438 20100830 141319 092 00296 44438 20100830 233542 092 00302 44444

20100831 010939 092 00303 44445 20100831 133447 092 00310 44452 20100901 003926 092 00317 44459

20100901 130210 092 00324 44466 20100902 000824 092 00331 44473 20100902 123226 092 00338 44480

20100902 141912 092 00339 44481 20100902 234108 092 00345 44487 20100903 011439 092 00346 44488

20100903 011439 092 00346 44488 20100903 134039 092 00353 44495 20100904 004803 092 00360 44502

20100904 130750 092 00367 44509 20100905 001402 092 00374 44516 20100905 123804 092 00381 44523

20100905 141823 092 00382 44524 20100905 142459 092 00382 44524 20100905 234207 092 00388 44530

20100905 234602 092 00388 44530 20100906 011929 092 00389 44531 20100906 012651 092 00389 44531

20100906 134624 092 00396 44538 20100907 005039 092 00403 44545 20100908 002317 092 00417 44559

20100908 124229 092 00424 44566 20100908 142408 092 00425 44567 20100908 234748 092 00431 44573

20100908 235128 092 00431 44573 20100909 012653 092 00432 44574 20100909 013310 092 00432 44574

20100909 135250 092 00439 44581 20100909 135250 092 00439 44581 20100909 135914 092 00439 44581

20100909 135914 092 00439 44581 20100910 005617 092 00446 44588 20100910 131921 092 00453 44595

20100911 002521 092 00460 44602 20100911 124804 092 00467 44609 20100911 142946 092 00468 44610

20100911 235347 092 00474 44616 20100911 235636 092 00474 44616 20100912 013223 092 00475 44617

20100912 122358 092 00481 44623 20100912 135836 092 00482 44624 20100913 010151 092 00489 44631

20100913 010151 092 00489 44631 20100913 010151 092 00489 44631 20100913 010600 092 00489 44631

20100913 132503 092 00496 44638 20100914 003058 093 00002 44645 20100914 003347 093 00002 44645

20100914 125936 093 00009 44652 20100914 235939 093 00016 44659 20100915 013747 093 00017 44660

20100915 122952 093 00023 44666 20100915 140423 093 00024 44667 20100915 233254 093 00030 44673

20100916 010708 093 00031 44674 20100916 133051 093 00038 44681 20100917 003635 093 00045 44688

20100917 125917 093 00052 44695 20100918 000532 093 00059 44702 20100918 122859 093 00066 44709

20100918 123552 093 00066 44709 20100918 141006 093 00067 44710 20100918 141617 093 00067 44710

Continued on next page
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. Appendix B - Data

GM Data used in Chapter 5

20100918 233828 093 00073 44716 20100918 233828 093 00073 44716 20100919 011208 093 00074 44717

20100919 011208 093 00074 44717 20100919 133748 093 00081 44724 20100920 004213 093 00088 44731

20100920 004514 093 00088 44731 20100920 130458 093 00095 44738 20100921 123416 093 00109 44752

20100921 141537 093 00110 44753 20100921 142204 093 00110 44753 20100921 233916 093 00116 44759

20100921 234330 093 00116 44759 20100922 011703 093 00117 44760 20100922 134332 093 00124 44767

20100923 004748 093 00131 44774 20100923 131512 093 00138 44781 20100923 131512 093 00138 44781

20100924 001652 093 00145 44788 20100924 002029 093 00145 44788 20100924 124052 093 00152 44795

20100924 142110 093 00153 44796 20100924 234454 093 00159 44802 20100925 134926 093 00167 44810

20100925 135623 093 00167 44810 20100926 005325 093 00174 44817 20100926 131629 093 00181 44824

20100927 002229 093 00188 44831 20100927 002600 093 00188 44831 20100927 124513 093 00195 44838

20100927 142655 093 00196 44839 20100927 235359 093 00202 44845 20100928 012928 093 00203 44846

20100928 013607 093 00203 44846 20100928 122106 093 00209 44852 20100928 122106 093 00209 44852

20100928 135540 093 00210 44853 20100929 005900 093 00217 44860 20100929 010308 093 00217 44860

20100929 010308 093 00217 44860 20100930 002807 093 00231 44874 20100930 003055 093 00231 44874

20100930 125048 093 00238 44881 20100930 143424 093 00239 44882 20100930 235640 093 00245 44888

20101001 013205 093 00246 44889 20101001 122645 093 00252 44895 20101001 140127 093 00253 44896

20101002 010435 093 00260 44903 20101002 132754 093 00267 44910 20101003 003344 093 00274 44917

20101003 003634 093 00274 44917 20101003 125627 093 00281 44924 20101003 130436 093 00281 44924

20101004 000233 093 00288 44931 20101004 013719 093 00289 44932 20101004 122622 093 00295 44938

20101004 123249 093 00295 44938 20101004 140711 093 00296 44939 20101004 141315 093 00296 44939

20101004 233538 093 00302 44945 20101005 010935 093 00303 44946 20101005 133443 093 00310 44953

20101006 003921 093 00317 44960 20101006 004218 093 00317 44960 20101006 130206 093 00324 44967

20101007 000820 093 00331 44974 20101007 123139 093 00338 44981 20101007 141253 093 00339 44982

20101007 141907 093 00339 44982 20101007 233623 093 00345 44988 20101007 234103 093 00345 44988

20101008 011434 093 00346 44989 20101008 134034 093 00353 44996 20101009 004453 093 00360 45003

20101009 004758 093 00360 45003 20101009 130744 093 00367 45010 20050122 000751 034 00059 15143
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Töyrä, J. & Pietroniro, A. (2005). Towards operational monitoring of a northern wetland
using geomatics-based techniques. Remote Sensing of Environment , 97, 174–191. 23, 26, 27,
28, 29, 35, 37, 46, 48, 157, 159
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