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RESUMO

A confecção de um sistema mecânico está sempre sujeita às im-
perfeições e incertezas oriundas do seu processo de fabricação que podem
eventualmente estabelecer diferenças significativas entre o desempenho dese-
jado inicialmente em projeto e aquele efetivamente apresentado pelo sistema
real. Como conseqüência deste fato, uma variação aleatória das respostas
dinâmicas é certamente esperada ao longo de um ensemble composto de sis-
temas similares, dificultando de forma considerável as análises de engenharia
nas regiões de médias e altas frequências. Assim, com o objetivo de garantir
que os requisitos de projeto e certificação sejam devidamente cumpridos, um
engenheiro projetista deve considerar os principais efeitos decorrentes destas
incertezas na elaboração dos seus modelos matemáticos. Neste sentido,
intensos esforços têm sido realizados pela comunidade acadêmica para o
desenvolvimento de metodologias eficazes e otimizadas para a descrição
estatística das respostas oriundas de sistemas randômicos (i.e. sistemas com
propriedades não-determinísticas). Atualmente, a Análise Estatística de
Energia (SEA) é uma das principais metodologias para análise vibroacústica
nas regiões de médias e altas frequências, visto que seus resultados predizem
o comportamento médio esperado de um ensemble composto de sistemas
similares, como por exemplo: carros que saem de uma linha de montagem
ou aviões produzidos em série. Recentemente, as formulações analíticas
de SEA foram estendidas para predizer a variância da resposta energética.
Nestas formulações, as estatísticas dos parâmetros modais (frequências
naturais e formas modais) foram descritas pelas estatísticas dos auto-valores
e auto-vetores de uma matriz do tipo GOE (Gaussian Orthogonal Ensemble)
oriunda da Teoria da Matriz Randômica. Diversos trabalhos experimentais
e numéricos têm confirmado um estabelecimento satisfatório da estatística
GOE para as frequências naturais de sistemas suficientemente randômicos.
Entretanto, alguns desvios significativos em relação ao modelo GOE têm sido
identificados para as formas modais correspondentes afetando sensivelmente
o desempenho das predições da variância de SEA. Neste trabalho de douto-
rado, as estatísticas dos parâmetros modais de sistemas randômicos foram
sistematicamente investigadas com o auxílio dos resultados dos observadores
estatísticos oriundos da Teoria da Matriz Randômica. Duas classes de pro-
blemas foram analisadas: ondas longitudinais em barras e ondas de flexão em
placas. Para as estatísticas de cada um dos parâmetros modais, os níveis de
concordância com o modelo GOE (ou de Poisson) foram prontamente avalia-
dos. Além disso, os valores da média e da variância relativa da densidade de



energia cinética foram calculados e comparados com as predições analíticas
de SEA baseadas nos modelos GOE e de Poisson. Os possíveis impactos, ou
degradações, no desempenho das predições da variância de SEA baseadas
no modelo GOE foram investigados para os casos em que as estatísticas dos
parâmetros modais não concordam plenamente com a estatística descrita pelo
modelo GOE. Dentre as principais contribuições deste trabalho de doutorado
destacam-se o estabelecimento de métricas eficientes para a verificação do
nível de concordância de cada um dos parâmetros modais com as estatísticas
descritas pelos modelos GOE e de Poisson, bem como a obtenção de uma
melhor compreensão das relações existentes entre as estatísticas do modelo
GOE (ou de Poisson) e as estatísticas esperadas para os parâmetros modais
de sistemas vibroacústicos de engenharia.

Palavras Chaves: Incertezas, Análise Estatística Energética (SEA), Pa-
râmetros Modais, Teoria da Matriz Randômica, Estatística GOE.



ABSTRACT

A component of a mechanical system is always affected by the im-
perfections and uncertainties arising from the manufacturing and assembly
processes, which can lead to the establishment of substantial differences
between the vibroacoustical performance presented by the real engineering
system and that initially targeted in the first design stage. As a direct conse-
quence of this, a random variation in the dynamic responses occurs across the
ensemble, making it difficult to carry out vibroacoustical analysis in the mid
and high-frequency ranges. In order to guarantee compliance with the design
and certification requirements, a design engineer must take into account
the effects of uncertainty in the derivation of the mathematical models. In
this regard, several efforts have been made by the academic community to
develop optimized methods to accurately predict the statistical moments of
dynamic responses of random systems (i.e., systems with non-deterministic
properties). Statistical Energy Analysis (SEA) is one of main methodologies
employed for vibroacoustical analysis in the mid and high-frequency ranges,
since its results predict the average response of an ensemble composed of
similar systems, such as cars from an assembly line or aircraft manufactured
in series. Recently, the SEA predictions were extended to evaluate the rela-
tive variance of energy responses. In these new formulations, the statistics of
the modal parameters (natural frequencies and mode shapes) were described
through the statistics of the eigenvalues and eigenvectors of a special class of
matrices known as the Gaussian Orthogonal Ensemble (GOE) of the Random
Matrix Theory (RMT). Several experimental and numerical studies have
confirmed the satisfactory establishment of GOE statistics for the natural
frequencies of sufficiently random systems. However, some deviations in
relation to the GOE model have been identified for the corresponding mode
shapes, affecting substantially the performance of SEA variance predictions.
In this doctoral study, the statistics of the modal parameters of random
systems were systematically investigated through the statistical results of
particular metric functions from the Random Matrix Theory (RMT) called
statistical observables. Two classes of structural systems were investigated:
longitudinal rods and flexural plates. The level of agreement with the GOE
(or Poisson) model was evaluated for each one of the modal parameter
statistics. Additionally, the mean and relative variance of the kinetic energy
density results were calculated and compared with the analytical SEA pre-
dictions based on the GOE and Poisson models. The possible impacts on
the performance of the SEA variance prediction based on the GOE model



were highlighted for the cases in which the modal parameter statistics do not
conform perfectly with the statistics described by the GOE model. The main
contributions of the study reported herein are the investigation of the efficient
metric function for each one of the modal parameters to verify the agreement
between the modal parameter statistics and those described by the GOE
and Poisson models. Furthermore, an improved understanding was obtained
regarding the relationship between the GOE (or Poisson) statistics and those
expected for the modal parameters of random vibroacoustical systems.

Keywords: Uncertainties, Statistical Energy Analysis (SEA), Modal Pa-
rameters, Random Matrix Theory, GOE statistics.
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1 INTRODUCTION

1.1 Overview

The vibroacoustical response of a complex built-up system is stron-
gly dependent upon the frequency of excitation. The excitation sources are
usually classified according to three major ranges: low-frequency, medium-
frequency or high-frequency. At low-frequency range only the first modes
of a vibroacoustic system are excited, and the dynamical response can nor-
mally be predicted with good accuracy using a well-established deterministic
method of analysis (1), for example, the Finite Element Method (FEM), Zi-
enkiewicz (2).

In medium to high-frequency ranges, many hundreds of modes can be
excited and it becomes extremely difficult to predict the precise dynamical
response of the system (3). Indeed, beyond the first modes, a large variabi-
lity of the energy response is expected, meaning that a detailed and accurate
deterministic model of a system with nominal parameters would provide inac-
curate results (4, 5, 1).

High-frequency excitations lead to the establishment of wavelengths
much smaller than the system dimensions (1). As a direct consequence, these
higher-order modes become very sensitive to small variations introduced du-
ring the manufacturing process1, leading to a significant random spread in the
energy responses across an ensemble of nominally identical systems2 (7, 3, 1).

A typical example of the practical investigation of the dynamical res-
ponse variability in ensembles composed of nominally identical structures
from a production line is the research carried out in the automotive indus-
try field. Kompella and Bernhard (8, 9), through an extensive experimental
analysis, showed the relevance of response variability in an ensemble compo-
sed of 99 nominally identical vehicles. The Frequency Response Functions
(FRFs) for both transmission paths, structure-borne and air-borne, were eva-
luated for a high number of similar vehicles. In their work, only the uncer-
tainties originating from the assembly processes were considered. Although
the vehicles were considered nominally identical, their FRF measurements

1In most engineering structures, the variation of the mechanical component parameters may
occur over the ensemble, in space or over time (1). It is important to emphasize that the physical
parameters from an individual mechanical component may also be gradually modified with time
due to wear, environmental and working conditions (6).

2The nominal ensemble is defined, hereafter, as an ensemble composed of similar vibroa-
coustic systems with uncertain or non-deterministic parameters which are commonly considered
nominally identical in a production line.
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showed a range of response variability up to 10 dB for a fixed frequency
range. In Figures 1 (a) and (b), two examples of FRF measurements are
shown in detail.

(a)
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(b)

Figure 1: Magnitudes of FRFs from 99 nominally identical vehicles, Kom-
pella and Bernhard (9).

As shown in Figures 1 (a) and (b), the largest response variability oc-
curs mainly toward the high-frequency range. In this frequency range, the
wavelength reduces and it is expected that the dynamical response becomes
very sensitive to the presence of structural uncertainty3 (4, 5, 1).

Another practical example of the uncertainty effects on the energy res-
ponses from an ensemble composed of nominally identical structures was
shown by Frank Fahy (7). In his work, the responses from 41 aluminum cans
acoustically excited were measured, Figure 2.

3Structural uncertainty, or randomness, is defined as mass, stiffness, or damping perturbati-
ons able to cause a variation in the dynamical response of the system, even when the system is
subjected to purely deterministic excitation, Brown (1).
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3

Realistic randomness…

41 nominally identical beer cans 
subjected to acoustic excitation

[Fahy, Foundations of Engineering Acoustics, 
Academic Press, 2001, p275]

98 successive cars from a 
production line: structure-borne 
response

[Kompella & Bernhard, Measurement of the 
statistical variation of structural-acoustic 
characteristics of automotive vehicles, In Proc. 
SAE Noise and Vibration Conf., Warrendale, 
USA: Soc. Auto. Eng., 1993]

Figure 2: Magnitudes of responses from 41 nominally identical beer cans
acoustically excited, Fahy (7).

As shown in Figure 2, the large variability in the can responses is stric-
tly associated with the high intensity of uncertainty effects on the frequency
range investigated (7). Additionally, these results emphasize the evident ne-
cessity for further detailed investigations on how to include the contributions
from the uncertainty effects in the analytical and numerical methods for the
prediction of the energy response statistics (4, 5, 6, 10).

In order to investigate systematically the main effects of structural
uncertainties on the energy response statistics, several research studies have
adopted the use of numerical and experimental approaches in which the en-
sembles of simple random structures are artificially generated (11, 12, 13, 14,
15). Such artificial ensembles are traditionally composed of perturbed sys-
tems with simple geometries such as beams, plates, and cylinders; Langley et
al (4, 16, 3, 17, 18), Brown (1) and Cordioli et al. (19, 20). Additionally it is
important to note that this investigative approach is a very convenient mean to
reproduce and also to assess the main effects of several sources and different
levels of structural uncertainty on the modal parameter statistics as well as on
the statistical moments of the energy responses (10).

Johnson (21), using a simple beam structure, investigated experimen-
tally the effects of the structural uncertainties on the dynamical responses.
In his work a beam ensemble was artificially generated using twelve small
point masses attached randomly onto the surface of a nominal beam along the
length direction. The point masses were adopted in order to represent mass
distribution uncertainties along beam structures. For each beam member of
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the artificial ensemble, the point mass locations were randomly modified to
produce an ensemble composed of 20 random beam structures. The transfer
mobility functions were measured between two fixed points for each one of
the random beam members. The FRF measurements form an ensemble of
results, Figure 3.
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Figure 11.6 Experimental results for a mass-loaded beam. The upper plot shows the
transfer function for different locations of the masses. The lower plot shows
the statistical overlap factor (solid line) and the modal overlap factor (dotted
line).

response statistics across the ensemble at a fixed frequency are the same as
those along the frequency axis for a fixed structure. This issue is discussed
in more detail in Section 11.4.8.

11.4.5 Wave motion and wave-mode duality

It was shown in Sections 11.4.2 and 11.4.3 that it is not practical to develop
a detailed deterministic vibration model based on either the global modes
of the whole system or the local modes of the constituent subsystems.
However, it was shown in Section 11.4.4 that it is possible to derive a
number of important average quantities relating to the subsystem modes.
From a modal point of view, the motion of a subsystem can be viewed
as a superposition of local modes, each vibrating at some particular phase
and amplitude in response to the applied forces; the number of modes
responding in a given frequency band can be estimated from the modal

Figure 3: Experimental cross-mobility results from an artificial ensemble of
beams with randomly attached point masses, Johnson (21).

As shown in Figure 3, the FRF results from the random beams suggest
that the beam responses are almost insensitive to the presence of point masses
in the low-frequency range, since the natural frequency locations are almost-
deterministic across the ensemble. However, for the high-frequency range,
the beam responses become very sensitive to the presence of the point masses
and the natural frequency locations are very random in the frequency domain
as well as across the ensemble.

Although the experimental results reviewed previously are associated
with a particular group of random systems, an evident conclusion arises: the
dynamical response of a real engineering system is very sensitive to the pre-
sence of uncertainties in the mechanical properties and its sensitivity to un-
certainty effects is amplified as the excitation frequency increases, Langley et
al. (4). In this regard, the accurate prediction of the statistical characteristics
of the dynamical response expected across the ensemble is essential to meet
the design and product certification requirements.

In what follows, the physics of uncertainties associated with random
systems are discussed and their main effects on the energy response statis-
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tics are highlighted. In the following sections, the performances of various
prediction methods of the dynamical response applicable to the analysis of
built-up systems are considered and briefly commented on. Special attention
is given to Statistical Energy Analysis (SEA) which is an appropriate method
for the energy diffusion analysis of uncertain or random systems in mid- to
high-frequency ranges. The problem of predicting the SEA variance of the
energy responses is discussed and the main conclusions and contributions
from the current SEA variance literature are reviewed and summarized.

Next, a brief overview of the statistical models from the Random Ma-
trix Theory (RMT) and their application to elastodynamic structures is pro-
vided. The main aspects associated with the statistics of each of the modal
parameters (natural frequencies and corresponding mode shapes) and the ap-
plication of RMT models are discussed with reference to recent results from
the SEA variance and quantum physics fields published in the literature. The
review is then summarized and some conclusions are initially drawn regar-
ding the universal establishment of GOE statistics4 for the natural frequen-
cies and the corresponding mode shapes of real engineering systems with
uncertain or non-deterministic parameters (10). Finally, the examples of the
open problems identified from the current review are highlighted, and based
on the gaps identified, the scope and aims of the current work are presented
(10).

1.2 The Physics of High-Frequency Range

In a typical automotive or aerospace application, the equations of dy-
namic equilibrium can be easily generated using a commercial Finite Element
software program and several degrees of freedom are necessary (4). The dy-
namic equilibrium equations are given by (22):

MẌ +CẊ +KX = F, (1.1)

where M, C and K are the mass, damping and stiffness matrices, respectively,
and X and F are the response and external force vectors, respectively.

In the engineering context, the main goal of a dynamical analysis is
to evaluate the system performance and contribute to the design process as
well as the product certification (4). For a complete dynamical analysis, it is
necessary to solve a system of linear equations described by Equation (1.1)
for several loading cases as well as for several design proposals (4). In this

4The statistical characteristics of GOE model will be presented and discussed in next chapter.
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methodology, a large number of degrees of freedom is usually applied and
the computational processing cost becomes high and prohibitive in several
engineering applications (5, 6, 4, 1, 20).

As discussed by Langley et al. (4), a complete and efficient compu-
tational model must offer the design engineer not only information regarding
the dynamical response from the perfect nominal system, but also a good es-
timate of the expected response variability. However, in the development of
such models the following difficulties are encountered (5, 4): (i) input-data
regarding uncertainty statistics: information on the system properties is ex-
tremely limited; and (ii) computational cost: even provided with a complete
probabilistic description of the system parameter uncertainties, the analytical
and computational task of converting this data into a response description, th-
rough motion equations, is immense and prohibitive for almost all ensembles
of engineering systems.

In order to solve this engineering problem, a good understanding of
the physical phenomena associated with the energy response statistics from
uncertain systems is essential to provide effective methodologies to predict
the statistical moments of the ensemble responses. According to Langley (4)
and Mace (6) as the excitation frequency, or the uncertainty level (or random-
ness amount) increases, it is expected that the ensemble response statistics
will become independent of the detailed nature of the uncertainties, provided
that the systems are random enough across the ensemble. Indeed, under this
particular condition, the analytical problem becomes easier due to the esta-
blishment of a physical phenomenon called Universality (23, 4). The main
statistical aspects of the Universality concept applied to dynamical random
systems were demonstrated through a numerical example performed by Lan-
gley et al (4) and the main conclusions will be described below.

In order to evaluate the sensitivity of response statistics to different
sources and levels of uncertainties, three distinct plate ensembles were nu-
merically generated. The uncertainty sources for each plate ensemble were:
9 random edge springs, 10 random located point masses (corresponding to
20% plate mass absent of uncertainties), and 5 randomly located point mas-
ses (corresponding to 5% plate mass absent of uncertainties). The ensembles
were composed of 200 random plate members. For each plate ensemble,
a point force was applied to each plate member and their energy responses
were evaluated. The randomization approaches, the individual and ensemble
mean energy responses are shown in Figure 4.
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5

Energy of random structuresEnergy of random structures

random edge springs random masses random masses

Figure 4: The energy responses from the random plates for three distinct
ensemble approaches, Langley et al (4).

As shown in Figure 4, the ensemble mean values for the energy res-
ponses show distinct curve patterns for each of the randomization approaches
in the low-frequency range. For the high-frequency range, the curve patterns
of the ensemble mean values are surprisingly similar and seem to be inde-
pendent of the randomization approaches adopted. In order to understand in
detail the application of the Universality concept, the energy response varian-
ces were also evaluated for all random plate ensembles, Figure 5.
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Figure 5: The energy response variances from three distinct ensemble appro-
aches, Langley et al (4).

According to Figure 5, the energy response variances from the random
plate ensembles are clearly dependent on the uncertainty source characteris-
tics in the low-frequency range. However, when the excitation frequency
increases, the energy response variance results for three distinct random plate
ensembles become very similar and only small differences were observed
between them.

In summary, these numerical results suggest that, for sufficiently ran-
dom engineering systems, the ensemble mean and variance curve patterns
may be independent of the detailed nature of the system randomness at high
frequencies (4). Thus, it might be anticipated that the energy response statis-
tics at high frequencies will be exclusively dependent on the natural frequency
and mode shape statistics (4). Indeed, this physical behavior provides a fun-
damental hypothesis for the evaluation of the prediction methods based on
the application of the Universality concept from the Random Matrix Theory
(RMT), Mehta (24) and Langley (23).
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1.3 Methods of Response Prediction of Complex Vibroacoustical Sys-
tems with Uncertain Parameters

Most built-up engineering systems have components with complex ge-
ometries and are composed of a large range of materials and distinct structu-
ral connections (5). In principle, the construction of a detailed deterministic
model of such systems, such as the well-established FEM models, would be
feasible and its application would provide the linear response to applied for-
ces/displacements at any frequency and at any point, Fahy and Langley (5).

In the context of the Finite Element Method (FEM) (2), the vibroa-
coustical system is split up into a mesh of discrete finite elements, and the
elastic and kinetic energies of these elements are described in terms of dis-
placements and their time derivatives (1). Although, the application of FEM
models is a well-established approach in the engineering field, due to its high
performance in terms of accurately modeling a wide range of complex sys-
tems, the FEM model is traditionally limited to the low and mid-frequency
range engineering applications. Indeed, there are two major factors that hin-
der the direct use of the deterministic approaches, such as the FEM, BEM, or
Rayleigh-Ritz method, in high-frequency range applications (5).

The first factor is associated with the fact that the size of the finite
elements used to represent any component must be considerably smaller than
the minimum wavelength in that component at any frequency5 (1, 5). That
is, the mesh size needs to become increasingly smaller at higher frequencies
in order to describe accurately the variation in the modal displacement (5).
As demonstrated in several structural applications, the number of elements,
or the model size, increases exponentially with an increase in the excitation
frequency and with the geometric and material complexities of a model (5).

The second factor is more evident and is associated with irreducible
uncertainties related to the high-order modes (5). Although it is, in principle,
possible for current computers to extend deterministic modeling to the high-
frequency range, this approach suffers from the unavoidable impossibility of
possessing complete and exact knowledge of the mechanical and material
properties of any real systems (4, 6, 5).

According to Mace et al (6, 25), the response variation due to the un-
certainty effects is usually described using two major approaches. The first
approach comprises the possibilistic methods in which the physical properties
of a system are assumed to lie within certain ranges and no attempt is made to

5According to F. Fahy (5), the usual recommendation is at least 6 nodes per half wavelength
of deformation.
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describe any probabilistic distributions within these ranges et al (6, 25). In-
deed, the main objective is to provide the expected boundaries of the response
given a certain set of input values (1, 25). However, setting the limits for the
ranges is also very problematical (6). The application of internal or fuzzy
analyses to FE models are examples of possibilistic approaches (25). An ex-
cellent overview of the publications available on the possibilistic approach
has been presented by Elishakoff (26).

On the other hand, the second approach is associated with probabilis-
tic methods in which the physical properties of a system are assumed to have
statistical distributions and the main aim is to predict the response statistics
(6). However, quantifying the statistics of the physical properties is very pro-
blematical, especially in an industrial field (6). In practice, the engineer is
likely to make estimates of input parameter uncertainties based on prior ex-
perience and perhaps based on a very limited number of measurements (6).
The stochastic FE method (SFEM), perturbation methods and procedures ba-
sed on Monte Carlo simulation are examples of probabilistic approaches (25).

Considering the dynamical behavior of a complex vibroacoustic sys-
tem in the high-frequency range, the effects resulting from the uncertainties
are substantial and thus their natural frequencies and corresponding mode
shapes should be considered random variables (1, 27). The high-frequency
dynamical behaviors of random vibroacoustical systems are usually investi-
gated through an energy flow approach, which considers statistical concepts
in order to take into account the uncertainty effects on the energy responses
(28). The most traditional energy flow method is known as Statistical Energy
Analysis (SEA), in which the results predict the expected mean value of the
energy responses from an ensemble composed of similar systems with uncer-
tain or non-deterministic parameters, Lyon and Dejong (29). One of the main
limitations to this approach is the impossibility to extend SEA results with
accuracy to higher statistical moments of the energy responses (30, 1, 7).

Recently, a nonparametric approach (31, 6) has been presented which
considers the uncertainty effect directly in the eigensolutions of the system
in order to predict the energy response statistics of non-deterministic systems
in the high-frequency range, Langley and Brown (18, 3). As stated previ-
ously, the uncertainties of the physical parameters of the system will lead to
the establishment of uncertainty in the natural frequencies and corresponding
mode shapes (1, 27). In most practical engineering structures is expected that
the level of uncertainty is sufficiently large so that the detailed statistics of
the physical parameters of the system do not need to be considered to predict
high-frequency energy response statistics, Langley et al (4, 23). For these
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random systems, the natural frequencies can therefore be considered as ran-
dom variables on the frequency axis so that the well-established statistical
models can be adopted to model the modal parameter statistics (1, 4, 23, 27).
In this regard, the analytical formulations can be conveniently determined to
predict the expected ensemble response variance associated with SEA results
in the mid and high-frequency ranges, regardless of the detailed nature of
the uncertainties of the physical parameters of the system (1, 4, 23, 27). In
next section, the main concepts and basic hypothesis of the SEA method are
briefly reviewed.

1.4 Statistical Energy Analysis

1.4.1 SEA Overview

Several academic texts can be recommended for an introduction to the
basic concepts of Statistical Energy Analysis (SEA), for example: Lyon and
Dejong (29), Fahy (32), Woodhouse (33) and Gerges (34). In this methodo-
logy, an energy diffusion analysis associated with low computational effort
may be performed for several classes of complex built-up systems, applying
only previously known global design characteristics (34, 28).

The main differences between deterministic and energy flow methods
(or statistical methods) in terms of their conceptualizations and application
fields are broadly shown in Figure 6, Gomes (28). In deterministic methods,
such as Finite and Boundary Element Methods, the system of interest is divi-
ded into the finite or semi-infinite elements. The deterministic input parame-
ters are discrete forces and displacements and their output results are sound
pressures and local displacements of specific points of the system (the nodes),
Figure 6 (a).

In contrast, in the statistical methods, such as SEA, the system is split
up into subsystems and the input parameters are described by time-averaged
steady-state input powers and their results are the expected energy mean va-
lue across the ensemble, Lyon and Dejong (29). The SEA results take into
account the spatial characteristics of high-order modes which are very sen-
sitive to parametric variations from the manufacturing process and assembly
conditions, Figure 6(b).

It is important to emphasize that the deterministic and statistical pre-
diction methods are complementary analysis tools in which FEM and BEM
are the most appropriate methods for dynamical analysis in the low-frequency
range and SEA is a methodology most convenient for energy diffusion analy-
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sis in the mid and high-frequency ranges, Gomes (28).

INPUT DATA:
Forces

OUTPUT DATA:
Local Displacements 

and Pressures

INPUT DATA:
Input Powers

OUTPUT DATA:
Energy Levels

frequency

Figure 6: Examples of numerical simulations in the automobile field: compa-
rison between deterministic and statistical approaches. Sub-figure (a): FEM
and BEM variables. Sub-figure (b): SEA variables, Gomes (28).

1.4.2 SEA Equations

In the SEA context, the analyzed system is divided into basic units
which are called subsystems. According to Lyon and Dejong (29), the subsys-
tems may correspond to different regions of the structure, or different mode
(or wave) types within a single region, for example: longitudinal vibration
beam modes, acoustical cavity modes, bending (or flexural) plate modes,
among others. In SEA modeling, each subsystem represents a local mecha-
nism of energy storage or the expected mean modal energy from a wave type
associated with a particular component of a complex built-up system (34, 28).

The basic SEA equations have been presented by several researches
using distinct approaches, (35) (29). Traditionally, the SEA equations are
given as following:

Wi = ωηiEi +∑
j 6=i

ωηi jNi

[
Ei

Ni
− E j

N j

]
i = 1, 2, 3, ..., k; (1.2)

where k is the number of subsystems, Wi is the external input power of the ith

subsystem, Ei is the total energy of the ith subsystem, ηi is the damping loss
factor of the ith subsystem, ηi j is the coupling loss factor between the ith and
jth subsystems, Ni is the number of resonant modes in the analyzed frequency
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band of the ith subsystem. All terms from Equation (1.2) are averaged over
time, over the ensemble of the system considered, and spatially, over the rele-
vant subsystems, over the frequency band of interest, wherever these distinct
types of averaging processes are appropriate, (1).

The first term on the right side of Equation (1.2) represents the inter-
nal power dissipated by mechanical loss in a particular subsystem and the
second term represents the power transmitted to other subsystems. The key
to the SEA method is the hypothesis of local dynamical behavior. In other
words, the power flow between two subsystems is proportional to the diffe-
rence between their modal energies, regardless of the energy distributions in
other subsystems. The expression of the transmitted power flow is given as
follows:

Wi j = ωηi jNi

[
Ei

Ni
− E j

N j

]
, (1.3)

where Wi j is transmitted power flow between subsystem i and subsystem j.

1.4.3 Basic Assumptions of SEA

In the derivation of the SEA equations certain simplified assumptions
are made, which may limit the application of the SEA model. The basic
assumptions of the SEA theory are the following (29, 28):

• The subsystems are weakly coupled and the coupling between the
subsystems is linear and conservative (non-dissipative).

• Each mode is considered to store energy and the modal energy equipar-
tition is considered valid for a set of resonant modes contained within
a particular frequency range.

• For all subsystems, the absence of coupling or interation between mo-
des inside or outside the frequency range of interest is considered (i.e.,
modal incoherence). A practical analogy may be established with pi-
ano keys. That is, each key is understood to be a resonant mode and its
behavior is independent of the others (28).

• For practical convenience, the damping loss factor is assumed to be
constant for all modes belonging to the frequency band of interest (re-
sonant modes) for each subsystem. This practical hypothesis is very
convenient and simplifies the energy diffusion analysis.
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• Each mode corresponding to a natural frequency ( fi) is considered to
be a random variable and has uniform probability to lie inside ith fre-
quency band. This hypothesis is directly associated with the fact that
subsystems considered nominally identical have randomly distributed
parameters, mainly in the high-frequency range.

• The dissipated power flow is mainly provided by resonant modes as-
sociated with the frequency band of interest. The external loadings
are adequately considered random forces with uncorrelated phases or
broad-band pressure fields.

• The reciprocity relationship among subsystems is considered valid.

1.4.4 SEA Parameters

In this section, the main SEA parameters are briefly reviewed. The
best-known procedures for the determination of SEA parameters are also pre-
sented and discussed (28). Further information on the analytical evaluation
and experimental obtaining of SEA parameters are available in: Lyon and
Dejong (29); Brown (1) and Cordioli (20).

Subsystem Energy

The subsystem energy is defined in terms of the spatial squared velo-
city or pressure integrated in the frequency band, Lyon and Dejong (29). For
structural subsystems, the total subsystem energy is given by (29):

E = M
〈

v2
〉
, (1.4)

where M is the mass subsystem and v is the structural velocity.
For acoustical subsystems, the total subsystem energy is given by (29):

E =
Va

ρ0c2
0

〈
p2
〉
, (1.5)

where Va is the volume of the acoustical subsystem,
〈

p2
〉

is the time-space
average of squared pressure, ρ0 is the volumetric density of fluid, and c0 is
the sound velocity in a fluid.
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Damping Loss Factor

The input power to a subsystem is dissipated through several loss me-
chanisms: acoustical radiation, structural damping, weld or screw junctions,
etc. Generally, analytical expressions are not available to determine the dam-
ping loss factor from the structural components and acoustical cavities.

The Damping Loss Factor (DLF), η , can be evaluated through ex-
perimental techniques: half-power band, structural decay (or acoustical re-
verberation time) (T60) or Power Inject Method (PIM), Fahy et al (36) and De
Langhe (37). The damping loss factor amplitude can be easily related to other
well-known parameters: critical damping ratio (ζ ), reverberation time (T60)
and averaged absorption coefficient (α) (29, 30, 5).

Modal Density

The modal density, n( f ), is defined as the number of resonant modes
that lie within the frequency band limits divided by frequency band width,
Lyon and Dejong (29).

For subsystems with simple geometries, for example: beams, plates
and rectangular acoustic cavities, the analytical formulations are available,
Lyon and Dejong (29), Cremer et al (38), and Gomes (28). However, for
systems with complex geometries, the modal density can be adequately esti-
mated through experimental or numerical techniques. For structural compo-
nents, the Point Mobility Method is traditionally applied; Clarkson (39, 40),
Brown and Norton (41), and Ranky and Clarkson (42).

Modal Overlap Factor

The modal overlap factor, m, is defined as the ratio between the half-
power band width, f η , and the mean natural frequency spacing, δ f , that is
(29):

m =
〈 f η〉
〈δ f 〉 , (1.6)

where angular brackets 〈 〉 represent the average value for the frequency band.
In Figure 7, a graphical representation illustrates the modal overlap definition,
Gomes (28).
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frequency

Figure 7: Parameters used in the modal overlap factor definition: half-power
band and mean natural frequency spacing, both frequency band average va-
lues, Gomes (28).

The mean natural frequency spacing is directly related to the modal
density parameter by the following relationship (29):

〈δ f 〉= 1
n( f )

. (1.7)

Substituting Equation (1.7) into Equation (1.6), the modal overlap fac-
tor is given by:

m( f ) = f ηn( f ) , (1.8)

or it can also be expressed in terms of angular frequency, ω , by:

m(ω) = ωηn(ω) . (1.9)

According to Rodrigues (43), it is expected that the modal superposi-
tion occurs under the following conditions:

m > 1⇒ f η >
1

n( f )
⇒ f η > δ f ⇒ f ηn( f )> 1. (1.10)

In the SEA context, the modal overlap factor is a relevant parameter in
the description of the expected response variability from an ensemble com-
posed of similar systems as well as in the analysis of the validity of SEA
assumptions, Lyon and Dejong (29) and Gomes (28).
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Coupling Loss Factor

The Coupling Loss Factor (CLF) is an exclusive SEA parameter. Ge-
nerally, the calculation of the CLF parameter can be associated with other
relevant physical parameters (29, 28). In the case of vibroacoustical structu-
res, the CLF associated with flexural panel - acoustic cavity junctions is di-
rectly associated with frequency band-averaged acoustic radiation efficiency,
Gomes (28).

For structural junctions, there are difficulties associated with the evalu-
ation of CLF parameters. Indeed, the coupling between two structural subsys-
tems is dependent on several parameters, such as the spatial extension of the
structural components, the geometry and the nature of the junctions (28). Tra-
ditionally, the evaluation of CLF associated with structural junctions is based
on the coefficient of transmitted energy, Cremer and Heckel (38). Several
studies have been performed in order to evaluate analytically the CLFs for
particular structural junctions, for example: Langley and Heron (44), Craik
and Smith (45), and Bosmans and Vermeir (46), Meeds and Vermeir (47) and
others.

1.5 SEA Variance

Over several years, a great amount of effort has been dedicated to ex-
tending the SEA model capacity to predict the higher statistical moments of
energy responses from an ensemble composed of similar systems with non-
deterministic parameters (48, 49, 50, 18, 30, 51, 5). Broadly, these research
works on SEA variance may be divided into two major approaches, Brown (1)
and Cordioli (20). The first approach comprises the numerical investigation
activities, where probabilistic models are adopted for the physical parameters
of the system, whereby the energy response from each member of the ensem-
ble is calculated and then the response statistics are subsequently evaluated
across the ensemble (1, 20). On the other hand, the second approach is based
on the random point processes, where probabilistic models are adopted for
the dynamical properties of the ensemble, that is, statistical models are assu-
med for natural frequency and mode shape statistics (1, 20). In what follows,
some literature examples and basic concepts from each one of these SEA va-
riance approaches are briefly presented and discussed. Excellent overviews of
the available publications on the existing approaches to the dynamic analysis
of uncertain structures have been presented by Brown (1) and Cordioli (20).

In the SEA context, several studies with dynamical systems with non-
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deterministic parameters and properties have been adopting the numerical
approach in order to investigate the relationship between the modal overlap
factor value and the energy response statistics across the ensemble (11, 12,
14).

Fahy and Mohammed (13) investigated numerically several structural
systems comprised of coupled beams and plates. In order to generate the
ensembles of the systems, the Monte Carlo Method was used. The effects of
small perturbations in the subsystem geometries on the determination of the
coupling loss factors as well as on the frequency-averaged transmitted power
flows were investigated. The results suggested that the transmitted power flow
and coupling loss factor variance values are strictly dependent on the modal
overlap factor values and decreased with an increase in the latter.

Manohar and Keane (15) investigated the performance of SEA predic-
tions for a system of two multimodal, random, one-dimensional subsystems
coupled through a spring and subjected to single frequency forcing. The va-
riability of the dissipated power spectrum was investigated numerically th-
rough the Monte Carlo Method. The energy flow calculations were based
on an exact formulation which uses the Green functions from the uncoupled
subsystems, which are expressed as summations over the uncoupled modes.
The effects on the energy response resulting from different damping models,
loading natures and probabilistic models for the structural parameters statis-
tics were investigated in detail. The results suggested that the damping model
of a structure may be related to the statistical convergence of the frequency
mean value, and the convergence speed is directly associated with the modal
overlap factor value. The analysis of the Probability Density Function (PDF)
of the natural frequencies shows that there is a high superposition of PFDs
as the excitation frequency or system randomness level increases. Thus, an
increase in the PDF superpositions may be associated with an increase in reso-
nant modes that contribute to the response and the establishment of a smooth
response along the excitation frequency range. In this regard, a new parame-
ter was proposed in order to quantify the randomness level of the system and
the minimum cut-off frequency beyond which the response statistics are no
longer dominated by individual modes. This new parameter was denominated
the statistical overlap factor, for the ith natural frequency, and its definition
is given by:

si =
2σωi

µi
(1.11)

where σωi is the standard deviation associated with the ith natural frequency
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and µi is the ensemble mean spacing between the ith and (i+1)th natural fre-
quencies. Manohar and Keane also showed that the statistical overlap factor
may be related to a cut-off frequency beyond which the oscillations on statis-
tical moments of the energy responses becomes smoothed.

In the second approach, random point process, probabilistic models
are adopted in order to describe the statistics of the system modal parame-
ters, that is, statistical hypothesis are considered for natural frequencies and
their corresponding mode shapes (1, 20). Historically, the initial studies on
the response statistics from a single subsystem were associated with acoustic
rooms6, (52, 53, 54).

One of pioneering work was carried out by Lyon (48), where the na-
tural frequencies of a single system were described by the Poisson Point Pro-
cess (55) and analytical predictions were proposed for the energy response
variance from single geometry systems, such as a rectangular plate and box-
shaped acoustical cavity. Additionally, the mode shapes were considered as
a product of the sinusoidal functions. For the case of a subsystem subjected
to point-loading, the results demonstrated that the statistical characteristics
of mode shapes exert a substantial influence on the energy response vari-
ance prediction through a parameter called Spatial Factor of Mode Shapes7

(K). Additionally, the effect of application of the non-Poisson distribution
for natural frequency spacings was evaluated using an empirical distribution
formula. Lyon shows that when the empirical distribution formula is consi-
dered, the energy response variance is reduced in comparison to that which
is based on the Poisson distribution. However, an analytical prediction using
the empirical distribution formula was not proposed at that time.

Davy (53, 54) extended Lyon’s formulations (48), the analytical pre-
dictions based on Poisson and non-Poisson models were derived for several
source and receiver points. Considering the ensemble-frequency ergodicity
considered valid for the averaging process, the spectral statistics of the expe-
rimental measurements were compared with the analytical predictions. The
analytical predictions based on the non-Poisson empirical distribution provi-
ded a better performance than the previous formulation based on the Poisson
model. An experimental investigation of the spatial factor of mode shapes
was carried out in detail. The results showed that the hypothesis of sinusoi-
dal mode shapes provided an overestimated prediction in comparison with
the experimental measurements. In this regard, it was suggested that the ac-

6For acoustic room systems, there are several acoustic modes in the audible frequency range
and thus the use of determinist models becomes prohibitive in several applications (1).

7This SEA parameter will be introduced and discussed in the following chapters (48, 18, 35).
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curate determination of this factor is essential to obtaining good analytical
predictions for cases of single point excitation.

In general, the natural frequency statistics adopted by Lyon (48) and
Davy (53) are considered invalid for most of engineering systems (35, 4, 23).
Several studies, mainly in the physics field, have established that natural fre-
quency statistics from the random dynamical systems may be correctly descri-
bed by eigenvalue statistics from the Gaussian Orthogonal Ensemble (GOE)
of Random Matrix Theory (RMT)8, (24). However, the GOE statistics are
not expected for systems with several symmetries, such as a simply suppor-
ted perfect rectangular plate or a box-shaped acoustic space (35, 23). For
this class of systems, the Poisson statistical hypothesis initially proposed by
Lyon (48) and also supported by Davy (53) is correct, but the presence of
small perturbations in the system parameters may lead to changes in the sys-
tem symmetries and the establishment of GOE statistics is expected for the
high-frequency range.

Langley and Brown (18) considered the GOE model for modal para-
meter statistics and proposed analytical formulations for the energy response
variance from an ensemble composed of similar subsystems. In their work,
the original and complete formulation of the two-level cluster function9 was
used for modeling the local correlations of the natural frequencies. Numeri-
cal simulations and experimental measurements with flexural plates perturbed
with small point masses were performed for single point and rain-on-the-roof
excitations. For rain-on-the-roof excitation, the analytical prediction confor-
med very well with the energy results. On the other hand, for the point-
loading case, the GOE prediction over-predicted the energy variance results.
The analytical formulation was fitted with numerical results, considering the
mode shape statistics factor as an independent variable. The best-fitted value
of K was lower than the GOE value proposed by RMT, that is, K < 3.

According to Lobkis et al (50), this finding may be associated with the
presence of complex mode shapes. However, the proportional damping ap-
proach was adopted in Langley’s formulation which provides fully real mode
shape components, thus discarding Lobkis’ hypothesis (18). Langley and
Brown (18) conclude that further investigations are necessary to evaluate the
most adequate value for the mode shape spatial factor.

Although the studies described above are limited to the evaluation of
energy response variance from a single subsystem, several attempts have been

8The RMT literature related to GOE eigenvalue and eigenvector statistics is very well-
established in the physics and mathematics fields (24, 56, 57, 58).

9The definition of two-level cluster function will be introduced in next chapter.
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made to extend the SEA variance prediction to complex engineering systems
composed of several connected or coupled subsystems, (16, 35, 4), as well
as to FEM-SEA hybrid systems, (59, 60). Further details concerning SEA
variance theory are presented in Chapter 4.

1.6 Universal Statistics

1.6.1 Random Matrix Theory

As mentioned in the previous section, the spacing distribution of ei-
genvalues (or natural frequencies) and their spectral correlations are essential
key points during the development of analytical methods aimed at predicting
the variance in the energy response of vibroacoustical systems (1, 51). In this
section, the main concepts of the Random Matrix Theory (RMT) are briefly
reviewed with the focus being on its application to random vibroacoustical
systems. The RMT analytical results for the eigenvalue statistics are usually
adopted in derivations of analytical formulations to predict the variance of the
energy responses, (18, 48).

Random Matrix Theory (RMT) arose in the early 1960’s and its main
goal was to give mathematical support to the statistical analysis of spectra of
the energy levels10 of complex nuclei, Wigner (61) (62). In nuclear systems,
the energy levels are evaluated through a finite Hermitian matrix operator
call a Hamiltonian (H), Guhr et al. (57, 63). In general, the eigenproblem
associated with a Hamiltonian matrix H is described as in (23):

Hui = λiui, H =UΛUT ,UUT = I, (1.12)

where λi and ui are the itheigenvalue and eigenvector of the Hamiltonian H,
respectively. The matrix U has eigenvectors in its columns and the matrix Λ

is diagonal and contains the eigenvalues in diagonal elements.
In a series of studies, Wigner (61, 62) showed that the statistical pro-

perties of energy levels from nuclear systems with complex nuclei can be
adequately represented by the statistics of eigenvalues from random matrices
with large dimensions.

Recently, several studies have obtained promising results for the ap-
plication of RMT concepts in the analysis of natural frequency statistics from
systems with several physical natures (64, 65, 66, 20) . Indeed, a surprising
conclusion arises from the numerical and experimental analysis of random

10In nuclear systems, a graph of the resonance levels shows several peaks which corresponding
to energy levels, Mehta (24).
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systems: in most of them the natural frequency statistics are described by
statistics from the Gaussian Orthogonal Ensemble (GOE) of Random Matrix
Theory (RMT) (23, 6, 20).

One of the pioneering studies on the application of RMT concepts in
vibroacoustical systems was carried out by Weaver (64). In his work, the
natural frequencies of aluminum blocks were measured and their statistics
shown excellent agreement with analytical RMT predictions. Additionally,
Langley and collaborators (4, 17, 51, 16, 18, 3, 35, 23) and Cordioli (20)
have shown that the RMT models can also be applied to describe the natural
frequency statistics of random dynamical systems.

It is also important to emphasize that there is, as yet, no explicit proof
as to why the RMT concepts are so widely applicable to random systems from
many different areas (67, 23). The matrices arising from the mathematical
modeling of any physical system differ considerably from the RMT random
matrices (23). Some authors postulate that this good agreement is supported
by the establishment of the Universality concept (4, 6, 23). Therefore, the
conditions necessary for the universal establishment of GOE statistics for
each modal parameter have been investigated by several researchers; Bohigas
et al (67), Langley (23), Cordioli (20) and others.

In the RMT context, analytical expressions are proposed to describe
eigenvalue statistics from the universal classes of large random matrices
which are called as Gaussian Ensembles, Andersen (68). According to Bohi-
gas et al (67), the eigenvalue statistics from a Hamiltonian matrix associated
with a random chaotic system11 are expected to correspond to those of the
eigenvalues from the GOE12 matrices.

In GOE statistics, the universal statistics of the eigenvalues from the
large symmetric random matrices present spectral rigidity and level repulsion
characteristics and thus their spectral statistics obey the Wigner surmise which
states that the PDF of adjacent eigenvalue spacings is described by a Rayleigh
PDF, Weaver (64, 1). The level repulsion characteristic is associated with the
establishment of a low probability of small spacings between the adjacent
levels (or natural frequencies) and the spectral rigidity is associated with the
establishment of a perfect uniform spacing distribution between the adjacent
natural frequencies along the spectrum, that is, there are no small or large

11In the classic context, chaotic systems are systems whose ray trajectories are unstable with
respect to the initial conditions, that is, the distance between two particles inside a billiard scatters
in an exponential way over time, covering the entire surface of the system due to scattering at the
boundaries, Bohigas et al (67).

12The statistical characteristics of a GOE model associated with natural frequency and the
corresponding mode shape statistics are presented in detail in Chapter 2.
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level spacings (64, 1).
Considering the complete establishment of universal statistics, the

GOE eigenvectors are expected to be statistically independent, and thus their
distribution of eigenvector (or eigenfunction) components is assumed to be
Gaussian, (69, 70, 71). Additionally, the components of GOE eigenvectors
(or mode shapes) present normal distribution and therefore the mode shape
statistics factor value (K) is expected to be equal to 3 for perfect GOE mode
shapes, KGOE = 3 (1, 18).

Traditionally, the hypothesis of the universal establishment of GOE
statistics has been extended to the corresponding mode shapes in the deriva-
tion of analytical methods to predict the response variance of random vibro-
acoustical systems, Langley et al (16, 3, 18, 4). However, relevant numerical
and experimental results have suggested non-trivial deviations of mode shape
statistics from the GOE eigenvector statistics (35, 49, 3, 17, 18, 4).

Recently, considerable effort has been directed toward the Quantum
Physics field in order to quantify and classify the deviations of the mode
shape statistics from the GOE eigenvector statistics, Kudrolli and Pradhan
(71, 72, 73, 74). On the other hand, a reduced number of similar studies
has been performed for random vibroacoustical systems (10). In this regard,
further investigations are necessary to characterize the non-universal statistics
of mode shapes of random engineering systems, Gomes (10).

1.6.2 Establishment of GOE Statistics

Considering the ensemble response variability in the SEA variance
context, an excellent performance of the revised SEA relative variance predic-
tions13 is confirmed provided that the system modal parameters are conside-
red to be sufficiently random across the ensemble, Langley et al. (18, 3, 17, 4).
Under this particular condition, it is expected that the modal parameter sta-
tistics across the ensemble have universal characteristics and are adequately
described by the statistics from a Gaussian Orthogonal Ensemble (GOE) of
Random Matrix Theory (RMT), (23, 4, 6, 1).

Although the hypothesis that modal parameter statistics of random en-
gineering structures have GOE statistics across the ensemble is commonly
adopted in the SEA variance context (18, 49, 75, 50), several numerical and
experimental results from the artificially generated random systems investiga-

13The revised SEA relative variance predictions are based on the hypothesis that complete
establishment of GOE statistics occurs for both system modal parameters, natural frequencies
and corresponding mode shapes, Langley and Brown (18, 3).
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ted recently in the SEA literature show strong evidence that while the natural
frequency statistics are accurately described by the GOE model, the corres-
ponding mode shape statistics do not completely conform to the GOE model
and present almost-Gaussian characteristics (35, 49, 3, 17, 16, 18, 4, 10).
Thus, a partial establishment of the GOE model occurs for the mode shape
statistics and the revised SEA relative variance predictions based on complete
GOE statistics over predict the ensemble relative variance results for such ar-
tificial random systems (18, 1, 35, 76, 10).

In Figure 8, examples of the performance of the revised SEA rela-
tive variance prediction are shown for random systems subjected to a single
point-loading14. These examples clearly indicate that the revised SEA re-
lative variance prediction based on the complete GOE statistics model over
predicts the ensemble relative variance results (18, 3). However, an excellent
performance of the revised SEA normalized variance prediction is obtained
when the mode shape statistics factor values are adequately adjusted. Indeed,
the adjusted value of the mode shape statistics factor provides an excellent
agreement between the numerical (or experimental) results and revised SEA
variance predictions, (18, 3).

In Table 1, examples of adjusted mode shape statistics factor values
are shown for the random artificial systems investigated previously in the cur-
rent SEA variance literature (35, 49, 3, 18, 17, 16, 18, 20, 4). The adjusted
mode shape statistics factor values were obtained through the fitting processes
between the numerical (or measured) relative variance results and best fitted
revised SEA variance predictions based on the GOE model.

14In cases of a single point-loading, the contributions of the mode shape statistics to the energy
response statistics are more substantial than in the case of other types of excitation, (18, 48).
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4.5. Energy statistics

Although only the mean and the variance of the energy were considered analytically in Sections
2.3 and 2.4, the simulations can be used to investigate the energy probability density function.
Results are shown for rain-on-the-roof forcing in Fig. 16 and for point forcing in Fig. 17. In each
case the probability density function is plotted for three values of the modal overlap factor,
corresponding to three different excitation frequencies. It can be seen that the rain-on-the-roof
case is well approximated by a Gaussian distribution, while the point forcing case has more the
form of a Lognormal distribution. It is not possible to give a detailed analysis of these results, but
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The energy response of the plate for three of the mass configurations is shown in Fig. 19,
together with measured ensemble average for all 32 configurations. Superimposed on the curves is
the analytical result for the mean (effectively the standard SEA result), which is in good agreement
with the measurements. Note that the limited size of the ensemble produces an oscillatory mean
value rather than a smooth curve. Also shown in Fig. 19 are 99.5% confidence upper bounds
based on Gaussian and Lognormal statistics—clearly the Lognormal result looks more
convincing, in agreement with the results reported in Section 4.5. The measured relative standard
deviation is shown in Fig. 20, both as a raw result and in band averaged form. Two theoretical
predictions are shown, corresponding to Eq. (40) with a ¼ K and K ¼ 2:5 and 3. Clearly, the
result for K ¼ 2:5 is in very good agreement with the experiments, confirming the finding from the
numerical simulations that the value of K is less than the theoretical Gaussian value of 3.

6. Conclusions

Three expressions have been derived for the relative variance of the energy of a system subjected
to harmonic excitation. These expressions are associated with three different models of the
statistics of the system natural frequencies, and are: (i) Eq. (12) for Poisson natural frequency
spacings, (ii) Eq. (29) for statistically independent Rayleigh natural frequency spacings, and (iii)
Eq. (40) for GOE natural frequency statistics. In each equation a ¼ 1 for rain-on-the-roof
excitation, and a ¼ K (where K depends upon the mode shape statistics) for single point
excitation. Eq. (40) provides the first non-zero estimate of the variance for the case of GOE
statistics with rain-on-the-roof excitation, as defined in Section 2.5.
It has been found from simulations that the natural frequencies of a mass loaded plate follow

closely the GOE statistical model, and hence the GOE based variance prediction provides the
closest agreement with simulation results. The assumption of statistically independent Rayleigh
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Figure 8: Examples of performance of the revised SEA relative variance pre-
dictions for the case of a single punctual excitation. Upper Plot: The rela-
tive standard deviation of energy density compared to analytical predictions:
numerical results (gray solid line); GOE theoretical prediction with K = 3
(gray dashed-dotted line); modified GOE prediction with K = 2.74 (black
solid line). Lower Plot: Relative standard deviation of energy density for
32 member ensemble: experimental results (gray solid line); band average
of experimental results (black solid line); GOE theoretical prediction with
K = 3 (black dotted line); and GOE theoretical prediction with K = 2.5 (black
dashed line), Langley and Brown (18).
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Table 1: The adjusted mode shape statistics factor (K) from SEA variance
studies performed with artificial random systems reported in the recent SEA
variance literature. The values were obtained through the fitting processes
between the numerical (or measured) relative variance results and best fitted
revised SEA relative variance predictions based on the GOE model.

System/Approach System Des-
cription

Literature Re-
ference

Modified
K

Single/Numerical Mass-loaded
plates

Langley and
Cotoni (35)

2.87

Single/Numerical Reverberation
room

Weaver (49) 2.60

Single/Numerical Mass-loaded
plates

Langley and
Brown (3)

2.75

Single/Numerical Mass-loaded
plates

Langley and
Brown (18)

2.74

Single/Numerical Mass-loaded
plates

Cordioli (20) 2.50

Built-up/Numerical Line-connected
plates

Cotoni and
Langley (17)

2.70

Built-up/Numerical Point-
connected
plates

Langley and
Cotoni (16)

2.75

Single/Experimental Mass-loaded
plates

Langley and
Brown (18)

2.50

Built-up/Experimental Cylinder-plate
structures

Cotoni and
Langley (17)

2.70

Built-up/Experimental Cylinder-plate
structures

Langley and
Shorter (4)

2.75

As shown in Table 1, the adjusted (or modified) mode shape statistics
factor values obtained through a fitting process are obviously smaller than
the expected GOE value, that is, K < 3 for all random systems investigated.
Additionally, the adjusted mode shape statistics factor values are very distinct
for each random system investigated and also strongly suggest the incomplete
establishment of GOE statistics for the mode shapes (76, 10).

It is also important to emphasize that for the artificial random systems
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investigated in Table 1, although their mode shape statistics do not perfectly
conform to GOE model, the revised SEA relative variance predictions using
the best fitted mode shape statistics factor conform very well with the nu-
merical (or experimental) relative variance results. Indeed, the uncertainty
levels associated with these artificial random systems seem to be only able to
provide the universal establishment of the GOE characteristics for the natural
frequency statistics, while for the corresponding mode shapes some residual
non-universal characteristics are clearly observed due to the contributions as-
sociated with system-dependent effects (76, 10).

In the elastodynamics field, Schaadt (70) carried out an experimental
investigation of flexural wave physics from a disordered system in order to
assess the universal establishment of GOE statistics for modal parameters as
the frequency increases. In his work, the spectral fluctuation statistics (i.e.,
natural frequency statistics) were assessed for a thin disordered fused quartz
plate in Bunimovich shape. In order to introduce a certain degree of disorder
(uncertainties) in the analyzed system, small holes were drilled on the surface
of the plate. The spectral statistics of natural frequencies were determined in
five different frequency ranges in order to assess the distinct strengths of the
effects of disorder on the natural frequency statistics. The natural frequency
statistics results suggested a gradual transition pattern from almost Poisson
statistics to GOE statistics as the frequency increases15.

As known in RMT context, GOE model can be established for eigen-
value statistics through the introduction of the off-diagonal coupling elements
in the Hamiltonian matrix structure (63, 77). The presence of the off-diagonal
elements couples the unperturbed eigenvalues and provides the establishment
of universal level repulsion and spectral rigidity characteristics on the eigen-
value spectrum (77, 78).

Schaadt (70) also investigated experimentally the effect of the intro-
duction of a certain amount of disorder (uncertainties) on the mode shape
statistics. However, due to experimental difficulties, it was not possible to
measure the corresponding mode shapes for the same Bunimovich plate in
which the natural frequency statistics was previously evaluated (70). In this
second stage of his analysis, a reduced model of the aluminum Bunimovich
plate was used to understand the physical phenomena resulting from the pre-

15Similar results were also presented in Cordioli’s work (20). Using metric functions of RMT,
the natural frequency statistics of flexural plates with structural uncertainties were investigated in
detail. The good agreement with GOE predictions for short and long-range fluctuation statistics
was obtained as the frequency increases and suggested the occurrence of Univervality phenome-
non toward the high-frequency range.
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sence of disorder in the mode shape statistics. Its important to note that no
attention was given to compare the convergence speed characteristics for the
universal establishment of GOE statistics for each of the modal parameters,
(10). In Figure 9, the spatial characteristics of the disordered mode shapes
investigated are presented for distinct natural frequencies.

f = 10 kHz f = 20 kHz

f = 55 kHz

f = 135 kHz f = 370 kHz
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Figure 9: Measured mode shape patterns from a disordered plate with Buni-
movich shape, Schaadt (70).

As discussed by Schaadt, the experimental results shown in Figure 9
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suggest that the mode shapes are not obviously localized for all frequencies
investigated (70). Indeed, the low-frequency wavelengths are not affected
by the holes and the mode shape symmetry is not broken. As the frequency
increases, the disorder effects of the holes become more and more relevant.
The nodal line and symmetry characteristics evidence clearly a gradual fre-
quency statistical transition toward almost-GOE statistics (70). Considering
the mode shape associated with the natural frequency of 135 kHz, the spa-
tial mode shape characteristics shows that the symmetry around the vertical
axis is certainty broken, but the symmetry around the horizontal axis seems
almost unbroken. For the highest frequency analyzed (375 kHz) the spatial
mode shape characteristics showed that both symmetry axes were completely
broken and the GOE characteristics were adequately established.

Unfortunately, no conclusions regarding the convergence speed cha-
racteristics of the modal parameter statistics to the universal establishment of
GOE statistics can be drawn from the experimental results obtained by Scha-
adt (70), because the natural frequency and mode shape statistics were obtai-
ned from distinct disordered systems (10). Nevertheless, it can be verified that
the presence of uncertainties (or disorder) provides a gradual and continuous
frequency transition of the mode shapes from almost-deterministic statistics
to GOE statistics as the excitation frequency increases and wavelength redu-
ces16, Gomes (10). According to Schaadt (70), his analysis was incomplete
and further investigations are needed in order to obtain clear information on
the convergence speed characteristics of the modal parameter statistics to the
universal establishment of the GOE statistics in disordered systems.

Additionally, a series of numerical experiments with Band Random
Matrices (BRM) have been carried out to investigate the convergence speed
characteristics for the establishment of GOE statistics for each of the modal
parameters, Casati et al (77, 78, 79). The BRM are traditionally applied to
model the Hamiltonian of perturbed integrable or regular systems of solid
state physics (78). This type of random matrix is able to model the transition
from Poisson statistics to GOE statistics (77). Casati et al (78, 79) showed,
through a set of numerical studies using the band random matrices, that the
scaling (transition) characteristics are dependent only on the scaling parame-
ter17 which is defined as xs = b2

w/N, where bw is the band half-width and N

16Although the modal parameter statistics were only evaluated as a function of excitation
frequency, similar results are also expected when the modal parameter statistics are evaluated in
function of uncertain level under a fixed excitation frequency range, Gomes (10).

17The scaling parameter describes the statistics of modal parameters in the regime of full
classical chaos. The term b2

w is proportional to the localization length associated with the rate of
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is the random matrix size.
In the RMT context, the scaling parameter can be seen as a parameter

used to quantify the level of coupling between the unperturbed eigenvalues,
since this parameter is directly related to the number of non-zero off-diagonal
elements of the Hamiltonian (79). Indeed, an eigenvalue convergence to GOE
statistics is expected to occur with an increase in non-zero elements, that is,
when the off-diagonal coupling elements are introduced in a symmetric Ha-
miltonian matrix (78).

Casati et al (78, 79) in their numerical analysis adopted a BRM en-
semble which is defined as the set of real symmetric diagonal matrices with
half bandwidth bw. The matrix elements were chosen as independent random
variables with Gaussian distributions. Diagonal elements have the double va-
riance of off-diagonal ones, similarly to traditional GOE matrices. Thus, the
band matrix structure allowed the intermediate and extreme modal parameter
statistics to be reproduced (i.e., Poisson and GOE matrices). For the case of
the diagonal matrices (bw = 1), the eigenvalues are expected to be uncorre-
lated and the PDF of the adjacent eigenvalue spacings, P(s), conformed very
well with Poisson statistics. In the opposite case, for fully random matri-
ces (bw = N), the P(s) results conform well with GOE statistics which are
described by the well-known Wigner surmise (i.e., Rayleigh distribution).

The relationship between spectral eigenvalue statistics and the scaling
parameter (xs) was investigated using a phenomenological formula for PDF of
adjacent eigenvalue spacings which is associated with the level repulsion pa-
rameter (βr), Casati et al (78). This formula also allows the correct characte-
rization of the intermediate eigenvalue statistics during a Poisson-GOE cros-
sover transition as well as the best known eigenvalue statistics. For βr = 0,
they reduce to Poisson statistics and for βr = 1, 2, 4 to Gaussian Orthogonal,
Unitary and Symplectic Ensembles (GOE, GUE and GSE), respectively. The
numerical experiments were performed using several ensembles of the band
random matrices composed of different matrix dimensions and bandwidths.
The level repulsion parameter (βr) was fitted for each corresponding scaling
parameter (xs) in order to describe in detail the eigenvalue statistics during
a Poisson-GOE crossover transition. The main eigenvalue statistics results
related to the scaling parameter dependence are shown in Figure 10.

exponential decay of the eigenvectors at the limit of infinite size (N→∞). Further information on
the physical meaning of scaling parameter and its application to statistical analysis of quantum
systems are available in Casati and Molinari (78, 79).
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(a)

(b)

Figure 10: Plot(a): The PDF of adjacent eigenvalue spacings. Plot (b): the
level repulsion parameter βr for intermediate eigenvalue statistics P(s) plotted
against the scaling parameter, xs = b2

w/N. For the matrix dimensions: N =
400(+), N = 800(∆), and N = 1600(♦). Each βr value was obtained by a
fitting process from the numerical data for eigenvalue spacing distribution,
Casati et al (78).
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According to Figure 10, the results suggested that as the matrix
bandwidth (or scaling parameter) increases, the eigenvalue statistics tend to
conform to the GOE model (78). Surprisingly, one can note that the GOE
model is established for eigenvalue statistics even for non complete fully
random matrices (78). That is, it is not necessary to have a complete insertion
of the off-diagonal coupling elements in the Hamiltonian for the eigenvalue
statistics to satisfactorily obey the GOE model.

In a complementary study, Casati et al (79) also investigated the sta-
tistics of corresponding eigenvectors in the Poisson-GOE statistics transition
and their relationship with the scaling parameter (xs). Based on the defini-
tion of the entropy localization length18 of normalized squared eigenvectors
of the BRM matrices (78), a measure parameter called the scaled localization
length19(βs) was proposed, in order to quantified the deviations from GOE
eigenvector statistics20. In cases of extreme statistics, the scaled localization
length is unitary for GOE statistics and null for perfectly diagonal matrices
with a large N-limit (79).

Similarly to Casati et al (78), the scaled localization length was evalu-
ated for normalized squared eigenvectors of the band random matrices with
several sizes and bandwidths in order to characterize the eigenvector statistics
during Poisson-GOE crossover transition and investigate their relationship
with the scaling parameter (xs). The main eigenvector statistics results for
the Poisson-GOE statistics transition are shown in Figure 11 for several band
random matrix dimensions.

18The entropy localization length is a measure parameter based on the difference between
the effective number of nonzero components of a given eigenvector and its corresponding GOE
eigenvector, Casati and Molinari (78). Further information on the calculation and practical ap-
plication of entropy localization length for wavefunctions of quantum systems are available in:
Casati and Molinari (78), and Mirlin and Fyodorov (77).

19The scaled localization length is defined as the average of the entropy localization lengths
of the eigenvectors divided by the random matrix size, Casati and Molinari (78).

20 In current investigation, the level repulsion and scaled localization length parameters pro-
posed by Casati and Molinari (78, 79) are not used to verify the agreement with the GOE model
statistics. In principle, there is no apparent limitations for the application of these parameters
to statistical analysis of natural frequencies and corresponding mode shapes of real engineering
systems. Therefore, systematical investigations on the performance of application of these para-
meters to verify the establishment of GOE statistics are needed for random systems with several
natures.
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(a)

(b)

Figure 11: Scaled localization length (βs) versus scaling parameter (xs) for random
matrix dimensions: N = 200(•), N = 400(4), N = 600(◦), and N = 800(�). The
dashed line relates to the fitting of numerical data and follows the standard formula-
tion: βs = γsxs/(1+ γsxs), where γs is a real constant. Plot (a): the numerical data
show a notable trasition (scaling) pattern with the scaling parameter. Plot (b): com-
plete range of scaling parameters in log-log plot, where y = βs/(1−βs), Casati el al
(79).
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As shown in the eigenvector statistics results, as the matrix bandwidth
increases there is an asymptotic tendency toward GOE statistics, (79). Si-
milarly to the eigenvalue scaling behavior, the scaling parameter values can
easily be associated with the level of establishment of the chaotic (or univer-
sal) statistics of the eigenvectors of the band random matrices.

Additionally, important conclusions can be directly drawn when the
scaling parameter results for the modal parameters are compared. For ei-
genvalue statistics, it is considered that GOE statistics are satisfactorily esta-
blished when the level repulsion parameter (βr) is approximately unitary, that
is, it corresponds to the scaling parameter value of xs = 4, Figure 10. On the
other hand, for the corresponding eigenvector statistics results, it is also ex-
pected that GOE statistics will occur when the scaled localization length (βs)
is approximately unitary. According to the eigenvector statistics results in
Figure 11, the pattern of the asymptotical results suggests that this universal
cut-off limit will be reached for large values of the scaling parameter, xs > 8.

Thus, these BRM numerical results provide convincing evidence that
the dependencies of the scaling parameter (uncertainty level) are distinct for
eigenvalue and the corresponding eigenvector statistics. In other words, the
convergence speed characteristics for the universal establishment of GOE sta-
tistics show different patterns for each modal parameter (10). Indeed the re-
quirements to establish GOE statistics for eigenvectors seem to be more strin-
gent and a higher level of coupling between Hamiltonian matrix elements is
necessary for eigenvectors, in comparison to the corresponding eigenvalues,
that is, the universal cut-off limit for the establishment of GOE statistics can
be reached more easily for eigenvalues than the corresponding eigenvectors
(10).

Considering the extension of the previous BRM numerical results to
the modal parameter statistics of random engineering systems with uncertain
or non-deterministic parameters, the scaling parameter value can be directly
associated with the uncertainty level of a given real engineering system. It
seems reasonable to assume that the conclusions obtained previously regar-
ding the convergence speed characteristics of BRM modal parameter statis-
tics could be extended to modal parameter statistics from real engineering
systems. That is, the amount of randomness necessary to establish GOE sta-
tistics for mode shapes is greater than that necessary for the corresponding
natural frequencies and, thus, for real random engineering systems it is ex-
pected that the universal establishment of GOE statistics is easier for natural
frequencies than for the corresponding mode shapes (10).

However, it is important to emphasize that there is no explicit evidence
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that the Hamiltonians of random engineering systems with non-deterministic
parameters are adequately described by the BRM when randomness effects
are introduced into the Hamiltonian matrices from the nominal engineering
systems. For the quantum systems, an excellent performance of the BRM sta-
tistics is expected to describe the modal parameter statistics in the Poisson-
GOE transition range, (79, 77). Therefore, further investigations are required
to verify the BRM performance in order to describe the modal parameter sta-
tistics of real random engineering systems with uncertain or non-deterministic
parameters, Gomes (10).

Cordioli in (20) investigated the conformity level between the modal
parameter statistics of engineering systems and the universal statistics des-
cribed by GOE model. Considering several ensembles of random flexural
plates with distinct levels and natures of structural uncertainty, the agree-
ment between the natural frequency statistics and GOE model statistics were
systematically evaluated through the results of RMT metric functions. The
statistical overlap factor and mode shape statistics factors were also evaluated
for natural frequencies and mode shapes, respectively. Additionally two new
parameters based on mode shapes, Parameters P and Q, were proposed to
analyze the agreement with GOE eigenvector statistics. The results provided
an improved understanding of main aspects associated with the establishment
of universal GOE statistics for real engineering systems. More information
on these new SEA parameters is available in (20).

1.7 Summary and Discussion

This chapter presented a brief review of the energy response statistics
across a nominal ensemble which is composed of similar engineering systems
with uncertain or non-deterministic parameters and properties. As is already
known, the effects of the presence of uncertainties become more relevant as
the excitation frequency increases (5). In the low-frequency range, the long
wavelengths are not substantially affected by uncertainty effects (1). Thus a
well-established deterministic model of an engineering structure which con-
siders the nominal physical parameters is able to provide a satisfactory pre-
diction of the dynamical response (6).

In the mid to high-frequency ranges, the statistics of the modal pa-
rameters are highly complex and the evaluation of the dynamical response
statistics using analytical formulations or numerical deterministic methods
becomes a vigorous task due to two major factors (5). The first is associated
with the fact that the application of the Monte Carlo method for an ensemble
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of complex structures, through the FEM models, may become an extremely
hard task and requires a high computational cost, since short wavelengths and
data on several input parameters are involved in this process (5). The second
factor is associated with the total or partial absence of statistical data from the
system parameters or properties of real engineering systems (4). Even though
these statistics of the system parameters are in principle available, the predic-
tion of the response variance across the ensemble, based on a probabilistic
method, is considered a prohibitive task for most engineering companies (5).

Considering that the real engineering systems have several uncertain
physical properties, the Statistical Energy Analysis (SEA) is an appropriate
analytical method to predict the ensemble average response for complex sys-
tems, mainly in the mid to high-frequency ranges (29). The SEA formula-
tions take into account the high-frequency uncertainty effects on the energy
response and thus their results provide the expected mean value of the energy
responses from an ensemble composed of similar systems (29, 32, 33, 34).

Although the SEA performance is satisfactory in several real enginee-
ring applications to predict the ensemble average results, two key parameters
have a significant influence on the response variability across the ensemble
(1). The first parameter is the modal overlap factor. Several studies have
shown that with an increase in this factor, multi-modal characteristics are es-
tablished and the dynamic response becomes smooth making it difficult to
identify the contributions of the individual modes (11, 12, 13, 14). The se-
cond parameter is the statistical overlap factor which defines how much the
position of any natural frequency tends to change across the ensemble of sys-
tems (15, 1, 4, 80).

In the past, the earliest analytical investigations to predict the mean
and variance of the energy responses were developed in the room acoustics
context, (52, 48). In these pioneering works, the Poisson Point Process ap-
proach (55) were considered. The Poisson model was initially adopted for the
natural frequency statistics due to analytical convenience (48). Additionally,
the mode shapes were assumed to be a product of sinusoidal functions. Later,
the analytical predictions were conveniently extended in order to allow mul-
tiple source and microphone points as well as the adoption of alternative and
empirical non-Poisson statistical models for the natural frequencies, (52, 48).
Satisfactory agreement was obtained for the analytical formulation based on
the Poisson model, but surprisingly improved agreement with experimental
results was established when an empirical non-Poisson model from quantum
physics was applied (53, 54, 49). Indeed, these improved analytical results
demonstrated the establishment of two main spectral characteristics associ-
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ated with real engineering systems: the level repulsion and spectral rigidity
(49, 75, 50, 18).

Some years ago, relevant experimental and numerical results from the
elastodynamics field suggested that the natural frequency statistics can be
adequately described by the eigenvalue statistics from the Gaussian Orthogo-
nal Ensemble (GOE) of Random Matrix Theory (RMT) (64, 67).

The establishment of GOE statistics has also been extended to random
systems of many different areas of physics, including acoustical and structural
dynamics (23, 4, 50). For the modal parameters from these systems, a statis-
tical transition from deterministic statistics to GOE statistics is expected with
an increase in the frequency or a increase in the degree of asymmetry or di-
sorder of system (6). A typical example of this gradual statistical transition to
GOE was clearly demonstrated in (70) by Schaadt’s mode shape results in the
elastodynamic field, Figure 9. It is also important to note that the GOE ma-
trices are clearly differ from the large matrices of the mathematical models
associated with the these random systems (23, 4). Indeed, the main reason
why the GOE statistics are so widely applicable to a large number of systems
with distinct natures is not totally explicit (23).

Although, much effort has been made to provide the required con-
ditions for the establishment of GOE statistics in random systems (23), the
explicit reasons for the establishment of distinct universal limits for each of
the modal parameters are not totally clear for random engineering systems
(4, 23, 20). In particular, a large number of investigations have been perfor-
med on the statistics of natural frequencies from random systems, (67, 23).
However, a reduced number of studies has been performed to investigate the
conditions necessary for the establishment of the GOE statistics for corres-
ponding mode shapes, (81, 20). Further investigations in this direction are
certainly necessary, Gomes (10).

Several results in the SEA variance field reported in the literature have
suggested the existence of a well-established cut-off frequency (or cut-off
randomness amount) at which an increase of the excitation frequency (or ran-
domness amount in the system physical properties) does not affect substan-
tially the modal parameter statistics (27, 4, 15). Thus, the precise sources of
uncertainty in the physical properties of a system seem to be less important
and it becomes more adequate to describe the uncertainty effects directly in
terms of uncertainties in the dynamical properties of the system, that is, in
terms of statistical models for system modal parameters (6, 27, 4). Above
this cut-off limit, the modal parameter statistics seem to have a high degree
of universal statistics and are adequately described by the GOE model (27).
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Thus the precise description of uncertainty sources as well as the statistics of
uncertainties in the physical properties of a system become unnecessary to
model accurately the modal parameter statistics (1, 18, 4).

In the SEA variance context, this cut-off limit, also called the universal
limit21, represents a saturation point at which an increase in the uncertainty
level of the system physical properties (or an increase in the excitation fre-
quency) does not cause significant changes in the dynamical properties of
the system. Therefore, the accurate identification of the universal limit for
the establishment of GOE statistics for the modal parameters makes the pro-
blem more appropriate from the analytical point of view (10). Indeed, under
this condition, simple statistical expressions based on the GOE model can be
adopted for the mode shape and natural frequency statistics. Thus, it is possi-
ble to develop analytical formulations to predict the mean and corresponding
relative variance of the energy responses across a nominal ensemble (1, 82).

Langley and Brown (18, 3) considered that the real engineering sys-
tems are sufficiently random to ensure that both modal parameter statistics
in the high-frequency range are described by the GOE model in an accurate
way. Indeed, the adoption of the GOE model for modal parameters repro-
duces adequately some relevant dynamical characteristics expected for most
real engineering systems with uncertain or non-deterministic properties, for
example the level repulsion and spectral rigidity phenomena associated with
the natural frequencies (64, 51, 23).

Currently, the best performance of SEA variance predictions based on
the GOE model is observed for the response variance of sufficiently random
engineering systems subjected to spatially distributed loadings, for exam-
ple rain-on-the-roof loading (18, 16, 17). There are two main reasons for
the good performance of SEA variance predictions associated with spatially-
distributed loadings. The first is related to the fact that the contribution of
the mode shape statistics to the energy response statistics is not substantial
for most systems excited by spatially-distributed loading22. The second re-
ason is associated with the fact that most real practical engineering systems
are considered sufficiently random to ensure that their high-frequency natural
frequencies are adequately described by the GOE model (6, 4, 23). There-
fore, the major contributions to the energy response statistics from a random
system subjected to spatially-distributed excitation are expected to be from
the natural frequency statistics (1, 48), which, in turn, are expected to present

21According to AutoSEA Variance Manual (27), this limit is also known as the acoustic limit.
22The same conclusion can be extended to the spatially-averaged response statistics, Brown

(1).
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GOE characteristics for sufficiently random systems, thus providing a good
agreement between the experimental (or numerical) results and GOE variance
predictions.

In cases where random engineering systems are subjected to a sin-
gle point-loading, the energy response statistics are highly sensitive to mode
shape statistics (1, 48), that is, small changes in the statistical characteristics
of the mode shapes may have a substantial effects on the response variabi-
lity (10). As discussed, an incomplete establishment of GOE statistics seems
to be expected for real random engineering systems in the high-frequency
range, at least for artificially generated systems usually considered suffici-
ently random in SEA variance analysis (10). Indeed, it is expected that the
natural frequency spacings obey adequately the Rayleigh PDF and the cor-
responding mode shapes are near-Gaussian, not complying perfectly with
the universal eigenvector statistics proposed by the GOE model which pre-
dicts perfect Gaussian mode shapes (18, 10). In Table 1.1, these mode shape
discrepancies expressed by the mode shape statistics factor values seem to ex-
plain the reduced performance of the revised SEA variance theory for cases
of single point-loaded systems as well as why the improved performance is
obtained when the mode shape statistics factor value is adequately modified
(18, 16, 17).

Extending the main conclusions from the previous BRM results to ran-
dom engineering systems, it seems that the level of uncertainty necessary to
establishment of universal statistics, which is described by GOE model, may
be very distinct for the natural frequencies and the corresponding mode sha-
pes (20). As demonstrated previously by the BRM numerical results in Fi-
gures 10 and 11, the necessary conditions associated with eigenvectors for
the establishment of GOE statistics seem to be more stringent and require a
higher level of uncertainty than the corresponding conditions associated with
eigenvalues.

Considering the most practical random engineering systems, the level
of uncertainty in their physical parameters seems to be sufficient to ensure that
the universal limit associated with natural frequencies (δ GOE

NF ) is reached, and
thus their natural frequency statistics are correctly described by the GOE mo-
del in the high-frequency range (10). However, it is important to emphasize
that the same conclusion cannot necessarily be extended to the corresponding
mode shapes. It has been shown that the effects of such uncertainties on the
mode shapes are not sufficient to ensure that the universal limit associated
with mode shapes (δ GOE

MS ) is reached, at least for high-frequency modes (10).
Based on the results from the SEA variance and BRM literature previ-
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ously shown in the Section 1.6.2, an initial sketch is proposed in Figure 12 for
the statistical patterns expected for each one of the modal parameter statistics
when structural uncertainties are introduced in a typical engineering system
with perfect nominal characteristics; Gomes (10), Langley and Cordioli (76).
In the current proposal, the expected effects of the increase in the amount of
randomness, or uncertainty level, on each one of the modal parameter statis-
tics across the ensemble are illustrated for a fixed frequency range23.

δNF δMS Amount of 
uncertainties (δ)

Theory 
of SEA 

Variance 

fn
are GOE

φn
are GOE

GOE

Almost 
deterministic

?

GOEGOE

Figure 12: Schematic representation of the typically expected pattern of the
modal parameter statistics for an ensemble composed of similar systems with
uncertain or non-deterministic parameters. The effects of an increase in the
amount of randomness on the statistical characteristics of each one of the
modal parameters are illustrated for a fixed frequency range, Gomes (10).

As shown in Figure 12, it is expected that the increase in the level
of uncertainty in the physical parameters of engineering systems provides
a gradual statistics transition for both modal parameters from an almost-
deterministic statistics (i.e., almost complete absence of uncertainties) to a
universal statistics which is described by the GOE model (4, 23, 6, 10). As
previously discussed, the speeds of convergence to GOE statistics may be
substantially different for each modal parameter and thus distinct universal li-
mits occur for natural frequencies and their corresponding mode shapes (10).

23Similar statistical behavior is expected under partner conditions as the uncertainty level of
system ensemble is considered fixed and the excitation frequency increases, Langley et al (4) and
Gomes (10).
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For the natural frequencies, it is expected that the presence of a small
amount of disorder in the system may provide a fast convergence toward
the universal establishment of GOE statistics, and therefore universal limited
δ GOE

NF is expected to be more easily reached for most real engineering systems
(20). On the other hand, an asymptotic slow speed convergence for GOE sta-
tistics is expected for the corresponding mode shape (eigenvector) statistics,
since in order to reach the limit of universal statistics δ GOE

MS , the mode shape
statistics seems to require a larger disorder in the system parameters than the
corresponding natural frequency statistics (10). Thus, in principle the δ GOE

MS
is expected to be larger than δ GOE

NF and may be not readily reached in the case
of practical engineering systems, Gomes and Langley (10, 76). Indeed, it is
expected that the conditions necessary to comply with GOE statistics for na-
tural frequencies are less stringent than for their corresponding mode shapes
(10).

In summary, Figure 12 suggests that the statistical characteristics of
modal parameters from a random engineering system are divided into three
major groups (10). In the first region, below the δ GOE

NF and δ GOE
MS universal

limits, the amount of randomness in the physical parameters of the system
is relatively low and thus only incipient uncertainty effects are observed on
the statistics of the natural frequencies and corresponding mode shapes (6).
Indeed, the level of disorder provided by such structural uncertainties is not
able to ensure the establishment of GOE statistics for both modal parameters
(10). As shown in Figure 12, the universal limits associated with the natural
frequencies (δ GOE

NF ) and mode shapes (δ GOE
MS ) are not reached and the statis-

tical characteristics of the modal parameters are completely non-universal,
having system-dependent characteristics (10). That is, their modal parameter
statistics are strongly dependent on the statistical characteristics of the un-
certainties of the physical parameters of the system (27). Indeed, transitory
statistics with intermediate characteristics between the almost-deterministic
and GOE models is established for both modal parameters in this first region
(10).

At the other extremity, in the last region, the amount of randomness is
sufficiently large to ensure that both universal limits are adequately reached
and the universal statistics are established for modal parameters and thus the
GOE model is perfectly applicable to describe the ensemble statistics of the
natural frequencies and corresponding mode shapes (1, 23). For this region,
universal statistics are completely established across the ensemble so that
both modal parameters are practically independent of precise sources of un-
certainties in the physical properties of a subsystem (27, 4, 23). The natural
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frequencies are expected to obey the Wigner surmise which states that the
adjacent natural frequency spacings are Rayleigh distributed and there is the
establishment of level repulsion and spectral rigidity phenomena in the na-
tural frequency correlations (64, 1). Additionally, the corresponding mode
shapes are expected to be statistically independent and their component am-
plitudes uncorrelated and Gaussian distributed, so that the value of the mode
shape statistics factor is K = 3 (27, 4, 1).

In the second region, intermediate range, an incomplete establishment
of universal statistics occurs where only the universal limit associated with
one of modal parameters is reached (10). According to Figure 12, the lite-
rature results discussed above suggest that, in principle, the universal limit
of natural frequencies δ GOE

NF is effectively reached while the universal limit
of corresponding mode shapes δ GOE

MS is not (10). In this regard, the statis-
tics of natural frequencies are adequately described by the GOE model and
present universal characteristics, that is, the natural frequency statistics are
expected to be independent of the precise sources of the structural uncertain-
ties of the system physical parameters (6, 4, 23). On the other hand, the mode
shape universal limit (δ GOE

MS ) is not effectively reached and it is expected that
the corresponding mode shapes will still present some residual non-universal
characteristics, where the system-dependent effects may be relevant to the sta-
tistics of the mode shapes (10). Indeed, a mode shape component distribution
with near-Gaussian characteristics is expected for this intermediate region
and the mode shape statistics factor values are lower than the expected Gaus-
sian value, that is, K < KGOE = 3 (18, 16, 17).

Considering the SEA variance context, the revised analytical formula-
tion of the relative variance derived by Langley and Brown (18, 1) assumes
that both modal parameter statistics comply with the GOE model. This condi-
tion is associated with a complete establishment of universal statistics simul-
taneously for both modal parameters. According to Figure 12, the condition
of the complete establishment of universal statistics is expected, in principle,
to be ensured only beyond the mode shape universal limit (δ GOE

MS ) where the
natural frequency as well as the mode shape statistics are perfectly described
by the GOE model (10). Indeed, the best performance of the revised SEA
variance formulations based on the complete GOE model is expected for ran-
dom engineering systems in which the modal parameter statistics are similar
to those associated with the third region of Figure 12 (10).

Based on the above discussion of the results available in the literature
for energy response variance, the discrepancies observed between the experi-
mental measurements (or numerical) results and analytical variance predicti-
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ons based on the GOE model seem to be explained by the existence of deviati-
ons of the mode shape statistics in relation to universal statistics (10). Indeed,
the characteristics of the modal parameter statistics from the random systems
investigated in the SEA variance literature seem to correspond to the modal
parameter statistics associated with the second region of Figure 12 (10). As
shown in Table 1.1, an incomplete establishment of universal statistics for
modal parameters is certainly expected for most random engineering systems
in which the level of uncertainty of the system parameters is not large enough
to guarantee the establishment of GOE statistics for mode shapes although
these are adequately established for natural frequencies across the ensemble
(10). Therefore, systematic investigations are also required to provide a bet-
ter understanding of the effects of non-universal mode shape statistics on the
energy response statistics of real engineering systems subjected to different
natures of excitation, so that it will be possible to estimate with good accuracy
the errors associated with the application of the revised SEA variance pre-
diction based on the complete GOE model to real engineering vibroacoustic
systems in which an incomplete establishment of GOE statistics is expected
for the mode shapes, Gomes (10, 83, 84).

1.8 Scope, Aims and Outline of the Thesis

The main goal of current work is to provide a better understanding on
the performance of SEA method to predict the energy response statistics of
random engineering structures in the mid and high-frequency ranges. Several
investigations on the application of SEA models have been carried out at La-
boratory of Vibration and Acoustics (LVA) from Federal University of Santa
Catarina (UFSC) with aeronautical structures: Rodrigues (43), Gomes (28),
Gomes et al. (85), Cordioli and Gerges (86); and with automotive structures:
Calçada (87) e Gomes et al. (88). Recently, research activities have been car-
ried out on the use of SEA models to predict the higher statistical moments of
energy responses. In overall, the basic assumptions and performance of The-
ory of SEA Variance have been discussed: Corlioli and Gerges (19), Cordioli
(20) and Gomes (10).

In this regard, the problem of interest investigated in this thesis is asso-
ciated with the characterization of deviations of the modal parameter statistics
in relation to universal statistics described by a Gaussian Orthogonal Ensem-
ble (GOE) from Random Matrix Theory (RMT) (10). This study also aims to
investigate the main effects of the non-universal characteristics of the modal
parameters on the energy response statistics and their possible impacts on the
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performance of SEA variance theory which considers a complete establish-
ment of GOE statistics for both modal parameters (10).

1.8.1 Open Problems and Motivations

From the previous discussions based on the existing literature results,
it is clear that in spite of extensive research efforts, many issues regarding
the extension of the validity of the Universality concept for random vibroa-
coustic systems with uncertain or non-deterministic parameters as well as the
complete establishment of GOE model for their modal parameters are not still
sufficiently clear to academic community (10). The following questions are
examples of the main open problems which are of interest in this study and
they can be broadly divided as follows (10):

1. Investigation of statistical characteristics of modal parameters in the
high-frequency range

• In real engineering structures, what type of statistics are most proba-
ble for each of the modal parameters in the high-frequency range? Is
the universal establishment of GOE statistics expected for the mode
shapes? How much randomness is needed to ensure it?

• If the mode shapes are not perfectly GOE in the high-frequency range,
which are the most effective metric functions to verify the agreement le-
vel (or possible deviations) between the real engineering system mode
shape statistics and GOE eigenvector statistics?

2. Statistical transition process of the universal establishment of GOE
statistics for each modal parameter

• Is the initial proposal for the expected transition pattern of modal para-
meter statistics, shown in Figure 12, valid for all random engineering
systems, or is its validity limited to only a particular group of random
engineering systems?

• Are the characteristics of the convergence of mode shape statistics
toward GOE model dependent on the system characteristics or dimensi-
onality? If the answer is positive, what would be the expected statistical
transition pattern for each modal parameter?
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• Is there a well-defined sequence between the modal parameters for the
universal establishment of GOE statistics? In other words, is it always
expected that the mode shapes will require a higher level of disorder
than the corresponding natural frequency to comply with the universal
statistics described by the GOE model?

3. Impacts on performance of SEA variance prediction due to the
incomplete establishment of GOE statistics

• For the cases of an incomplete establishment of GOE statistics, what
are main impacts on the performance of the revised SEA variance pre-
dictions if the mode shapes are not considered perfectly GOE? How
can we modify the SEA variance theory to allow for this?

• Is the SEA variance prediction based on complete GOE statistics con-
servative for all real engineering structures? What are the possible sta-
tistical parameters based on mode shape statistics which can readily
provide this information?

1.8.2 Aims and Scope of this Thesis

In view of the above open problems, the main aims of this thesis are
presented below. The three main objectives are the following:

• To gain a better understanding of the relationship between the modal
parameter statistics of the GOE ensemble and those expected for real
structure ensemble, as well as of how the deviations might be readily
verified. Special attention is given to the accurate description of the sta-
tistical characteristics of each of modal parameters during the transitory
process for the universal establishment of GOE statistics, for example,
speed convergence and its dependence on the amount of randomness or
the excitation frequency to comply with GOE statistics.

• To carry out a global analysis of the main physical phenomena associa-
ted with the non-universal characteristics of the mode shapes expected
in random engineering systems with uncertain or non-deterministic pa-
rameters in the high-frequency range. That is, the derivation of an effi-
cient methodology to indentify and quantify the discrepancies between
the mode shapes of real engineering systems and GOE eigenvectors.
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• A systematic investigation of the effects of the incomplete establish-
ment of GOE modal parameter statistics on the energy response statis-
tics as well as their consequences in terms of the expected performance
of the revised SEA variance prediction.

1.8.3 Outline of the Thesis

Motivated by the existing open problems highighted in previous sec-
tions, a systematic study on the statistical characteristics of the modal para-
meters and energy responses of vibroacoustic systems with uncertain or non-
deterministic parameters and properties will be carried out. In order to deal
with this task, this document is subdivided into the following chapters:

In Chapter 2 a brief literature review is presented on the main aspects
associated with the statistical analysis of modal parameters of engineering
systems. Initially, the main concepts of Random Matrix Theory (RMT) ap-
plied to the statistical analysis of the natural frequencies from vibroacoustical
systems are briefly reviewed. In complementary manner, the statistical pro-
perties of the corresponding mode shapes are also introduced for GOE and si-
nusoidal eigenvectors. The main limitations to the direct use of RMT tools in
the statistical analysis of vibroacoustic systems are identified and their non-
universal physical phenomena (such as finite wavelength effects, periodical
orbits, and structural Localization) are also discussed in detail. Considering
SEA model applications, the analytical predictions based on the Poisson and
GOE models are presented for the energy density variance of a single random
dynamical system.

In Chapter 3, a complete statistical analysis is performed with the ran-
dom one-dimensional structures and the effect of distinct uncertainty sources
on the modal parameter statistics are investigated in detail through the me-
tric functions from the RMT. Random longitudinal rods were generated using
the Finite Element Method (FEM) and the distinct structural irregularities, or
uncertainties, were introduced to a nominal rod structure and different appro-
aches to the uncertainty distribution (randomization approaches) were also
considered.

During the numerical analysis, the spectral and ensemble averaging
processes were performed for random rod structure responses. In addition,
the main effects of the spatial correlation on the rod geometry and of the
structural localization phenomenon on the modal parameter statistics were
also assessed through RMT tools. The relevant findings were then obtained
regarding the universal establishment of GOE statistics for each of the modal



106 1 Introduction

parameters as well as for the statistical moments of the kinetic energy density
results from the random longitudinal rod structures.

In Chapter 4, a statistical analysis is systematically performed with the
random two-dimensional structures. Flexural plates with several geometries
(square, rectangular, rectangular with arc at one corner, circle, polygon, 1/4
Sinai stadium) are numerically generated by FEM models. Considering the
spectral and spatial averaging approaches, the effects of distinct levels of the
system symmetry are assessed and the resulting modal parameter statistics are
compared with analytical predictions based on the Poisson and GOE models.
Special attention is focused on the main physical phenomena expected for
the mode shapes of real engineering systems (i.e., the establishment of stable
periodic orbits, the structural localization and others).

In a similar manner to random rod analysis, two distinct ensembles of
random flexural plates are also investigated considering the spectral and en-
semble averaging processes. The statistics of the point-loading and spatially-
averaged kinetic energy density results in terms of the narrow and broad fre-
quency band domains are compared with SEA analytical formulations based
on the Poisson and GOE models. Therefore, the performance of the analy-
tical prediction is discussed in terms of the corresponding modal parameter
statistics and then conclusions are drawn regarding the application of the uni-
versality concept to real engineering systems in the mid and high-frequency
ranges.

Finally, Chapter 5 presents the main original conclusions emerging
from the present work and gives some directions and suggestions for future
research studies.
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2 LITERATURE REVIEW

2.1 Introduction

In this chapter the basic theoretical concepts on the modal parameter
statistics are briefly reviewed. The main aspects on the statistical analysis
of natural frequencies and corresponding mode shapes are introduced and
discussed in detail1.

Initially, the main tools of Random Matrix Theory (RMT) applied to
the statistical analysis of the natural frequency statistics from vibroacoustical
systems are presented. The limitations to the direct use of RMT tools in the
statistical analysis of vibroacoustic systems are also highlighted and discus-
sed using illustrative literature examples and results from numerical studies
using finite GOE matrices.

The statistical properties of the corresponding mode shapes are intro-
duced in Section 2.3. The main metric functions adopted to characterize the
statistics of the mode shapes of random systems are defined and the analytical
predictions are presented for GOE and sinusoidal eigenvectors. The two clas-
ses of mode shape statistics deviations from the universal GOE eigenvector
statistics are identified and illustrated through results for microwave cavity
systems reported in the literature.

Finally, the analytical predictions, based on the Poisson and GOE mo-
dels, are presented for the energy density variance. Based on the results repor-
ted in the SEA variance literature, a detailed discussion is presented regarding
the effects of the mode shape statistics factor on the performance of relative
SEA variance predictions.

2.2 Random Matrix Theory

In this section the main RMT concepts are briefly reviewed. Initially,
the historical context and the first applications in the Quantum Physics field
are presented. The best known Gaussian ensembles from RMT are classi-
fied and their statistical characteristics are described. The RMT statistical
observables applied to evaluate the spectral statistics of eigenvalues of large
random matrices are introduced. Typical examples of the application of sta-

1Further information is available in Cordioli (20) and Brown (1).
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tistical observables in the description of spectral characteristics of chaotic and
integrable (or regular) systems are shown.

The principal analogies between quantum and vibroacoustic systems
are emphasized and the limitations to the use of RMT tools in the analysis
of spectral natural frequency statistics are also presented and illustrated. The
link between the theory of variance of Statistical Energy Analysis (SEA) and
RMT statistics models is highlighted. Finally, the application of RMT con-
cepts to describe the response statistics of dynamical systems is discussed in
detail.

2.2.1 Historical Context

The Random Matrix Theory (RMT) appeared in the early 1960s and
its main goal was to give mathematical support to the statistical analysis of
the spectra of the energy levels of complex nuclei, (62). For atoms with light
nuclei, there are few energy levels on the spectrum and it is possible to carry
out a complete description of the energy level behavior using both experi-
mental and analytical approaches. On the other hand, for atoms with heavy
nuclei, the energy level density is extremely high and the identification of in-
dividual energy levels may become prohibitive. In the latter cases, a statistical
description of the spectral proprieties is strongly recommended, Mehta (24).

In Figure 13, examples of energy level spectra are shown for two ty-
pical nuclear systems. The peak curves correspond to energy levels. A large
number of peaks is expected mainly for the high energy range since the spec-
tra relate to nuclear systems with heavy nuclei, Mehta (24).

In quantum nuclear systems, the energy levels are evaluated through a
Hermitian matrix operator known as Hamiltonian. For continuous systems,
the Hamiltonian is described by an infinite number of eigenvalues2, Almeida
(58). For practical applications, a truncation process is necessary and a large
limited number of eigenvalues is considered in the statistical analysis. In this
context, based on the statistical properties of the Hamiltonian matrix and con-
sidering some hypothesis concerning its structure (i.e., presence of symme-
tries), the main aim of RMT is to describe the global statistical characteristics
of the eigenvalues and eigenvectors of Hamiltonian matrices.

The main conclusions of Wigner’s studies showed that the statistical
spectral properties of nuclear systems with complex nuclei can be adequately

2In the vibroacoustic context, the Hamiltonian matrix H of a dynamic system can be evaluated
through the combination of the mass and stiffness matrices, H = M−1K. For continuous vibro-
acoustic systems, their Hamiltonians are described by an infinite number of degrees of freedom,
Meirovitch (89).
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described by the eigenvalue statistics of random matrices with large dimen-
sions, (61, 62). However, the eigenvalue statistics of large random matrices
can not be used to predict in detail an energy level sequence of a nuclear sys-
tem, but the RMT statistical models are only able to describe correctly the
global statistics and the level of irregularity expected from the nuclear system
spectra.

Figure 13: Examples of energy level spectra of nuclear systems, Mehta (24).

Recently, several studies have showed a series of promising results for
the use of RMT tools in the analysis of the eigenvalue statistics of physical
systems with several natures. These results suggest that the application of
RMT concepts are not limited to nuclear systems. One of the pioneering
works in this regard was carried out by Weaver (64). In his work, the natural
frequencies of aluminum blocks were measured and their spectral statistics
showed an excellent agreement with analytical RMT predictions. Some years
later, Langley and other researchers (4, 17, 51, 18, 3, 35, 23) showed that the
RMT models could be applied to describe the natural frequency statistics of
random dynamical systems. In particular, a good and promising agreement
was found for large symmetric random matrices in vibroacoustic applications,
(16, 18, 4, 35, 23).

It is also important to emphasize that there is, as yet, no explicit ex-
planation as to why the RMT concepts are so widely applicable to several
systems with different natures. The matrices arising from the mathematical
model of any physical system are considerably different than the random ma-
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trices of RMT. Some studies propose that this good agreement is based on
the validity of the Universality concept. Therefore, the conditions required
for the occurrence of universal statistics have been strongly investigated by
several researchers, Bohigas et al (67), Langley (23) and others. The mathe-
matical details concerning RMT concepts and the derivation of their results
are beyond the scope of the current work and will not be discussed in detail
below. Further information is available in: Mehta (24), Brody (56), Almeida
(58), and Guhr et al (57, 63).

2.2.2 Gaussian Ensembles of Random Matrices

In this section, the three best known Gaussian ensembles from Ran-
dom Matrix Theory (RMT) are introduced, they are: the Gaussian Orthogo-
nal Ensemble (GOE), the Gaussian Unitary Ensemble (GUE) and the Gaus-
sian Symplectic Ensemble (GSE), Mehta (24).

According to Langley et al. (4, 23), the Gaussian Orthogonal Ensem-
ble (GOE) is the Gaussian ensemble most commonly adopted in general ap-
plications, since its most attractive characteristic is the invariance of the ma-
trix probability distribution function under orthogonal transformations (i.e.,
change of basis). The corresponding results can be extended to Hermitian
matrices in which the Gaussian Unitary Ensemble (GUE) pdf is statistically
invariant under unitary transformations. Similarly, the Gaussian Symplectic
Ensemble (GSE) is composed of quaternion-real self-dual matrices, and its
pdf function is invariant under symplectic transformation.

In order to classify the Gaussian ensembles, the Hamiltonian matrix
structure is considered as the main factor in the classification process, Ander-
sen (68). Traditionally, Dyson’s Index (β ) is adopted for the identification of
each Gaussian ensemble, Guhr (57, 63). In Table 2, the main characteristics
of Gaussian ensembles are described, Andersen (68).

The Gaussian Orthogonal Ensemble (GOE) is composed of real sym-
metric random matrices and its main characteristics are the following (23):

• the entries have zero mean and are uncorrelated Gaussian random vari-
ables,

• the diagonal elements have twice the variance of the off-diagonal ele-
ments, and

• the Hamiltonian is invariant under orthogonal transformation H →
W T H W , where W is an orthogonal matrix, (90).
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Table 2: Main characteristics of Gaussian ensembles: nomenclature, abbrevi-
ation, random matrix structure and Dyson’s index (β ), Andersen (68).

Nomenclature Abbreviation Random Matrix
Structure

Dyson’s
Index (β )

Gaussian Ortho-
gonal Ensemble

GOE Real Symmetric β = 1

Gaussian Unitary
Ensemble

GUE Hermitian β = 2

Gaussian Sym-
plectic Ensemble

GSE Quaternion-real
self-dual

β = 4

Although the structure of a GOE matrix is completely distinct from
those of the matrices of the mathematical models of engineering systems, the
statistics of the eigenvalues are surprisingly similar to the natural frequency
statistics of the matrices associated with the mathematical model of random
dynamical systems, Langley (23).

The Gaussian Unitary Ensemble (GUE) has an eigenvalue spectrum
described by the Hermitian matrix (68). According to Weaver (64), the GUE
statistics are not expected to apply to vibroacoustic systems, except for the
cases in which there is a gyroscopic force in one of system components, for
example: a Coriolis force which is dependent on the component velocity,
Santos (91).

In this context, a general statement of the Universality principle would
be to claim for large matrices that, apart from well defined exceptions, all
symmetric random matrices should have local GOE eigenvalue statistics, all
Hermitian random matrices should have local GUE eigenvalue statistics, and
all quaternion-real self-dual matrices should have local GSE eigenvalue sta-
tistics, (4, 23). Further detailed descriptions of GUE and GSE statistics are
available in the physics literature, (24, 56, 58, 68).

2.2.3 Unfolding Process

In the RMT context, before starting a statistical analysis of any spec-
trum of a certain physical system, it is necessary to carry out a normalization
process in order to extract from the spectrum the particular characteristics
which are dependent on the nature of the system under analysis, i.e., the se-
cularities, (64, 90). This normalization process is traditionally known as the
unfolding process and its resultant spectrum as the unfolded spectrum. The
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main advantage provided by the unfolding process is that the unfolded spec-
tral statistics of systems with different natures can be directly compared to
each other and also to RMT analytical predictions.

By definition, the eigenvalues of RMT matrices show a unitary mean
spacing between two successive eigenvalues, (23, 24, 56). Thus, an effici-
ent unfolding process has to provide appropriate conditions, so that a direct
and systematic comparison can be made between the spectral statistics of the
system analyzed and the analytical RMT predictions, Brody et al (56).

In the Quantum Physics context, the staircase function is defined as a
step function which counts the number of energy levels present below a par-
ticular energy level, ei, Bertelsen (90). Similarly for vibroacoustic systems,
the staircase function describes the number of natural or resonant frequencies
below a particular frequency, fi , Weaver (64). The staircase function can be
decomposed into two major components and is given by (69, 90):

N ( f ) = Nav( f )+N f luc( f ), (2.1)

where Nav( f ) and N f luc( f ) are the average and oscillatory components of the
staircase function, respectively.

The average (or monotonic) component of the staircase function, also
called the smooth component, expresses the expected average number of na-
tural frequencies of a particular system and is associated with the global beha-
vior of the staircase function, Stöckmann and Stein (92). On the other hand,
the oscillatory component of the staircase function is associated with the stair-
case function fluctuations and describes the level of interaction among the
natural frequencies. According to Bertelsen (90), the average component of a
staircase function has system-dependent characteristics and its behavior dif-
fers for physical systems of different natures. In contrast, the oscillatory com-
ponent of the staircase function shows a universal behavior regardless of the
particular physical properties of the system. In this regard, the unfolding pro-
cess tends to emphasize the universal statistics of the oscillatory component
of the staircase function and provides ideal conditions for direct and normali-
zed analysis of the spectral fluctuations and their respective natural frequency
interactions.

The evaluation of the average staircase function component can be car-
ried out using analytical functions, for example: Weyl’s formula, Stöckmann
(92) and Brown (1). Hereafter in this document, the unfolding process which
employs analytical asymptotic functions will be referred to as the standard
unfolding process.

For thin plates, the analytical asymptotic functions for average stair-
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case function are dependent only on the geometrical dimensions and material
properties, Lyon and Dejong (29) and Bertelsen (90). In Figure 14, examples
of the smooth component evaluations of the staircase functions are shown for
two aluminum plates: Square and 1/4 Sinai stadium geometries, Gomes and
Gerges (93).

11

(a1) square plate

12

(a2) zoom plot
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14

(b1) sinai plate

17

(b2) zoom plot

Figure 14: Examples of staircase function for two aluminum plates. Plot (a):
Square geometry. Plot (b): Sinai stadium geometry. The step function is
associated with numerical results and the dashed line represents the analyti-
cal prediction of Weyl’s formula. The zoom plots emphasize the differences
between Square and Sinai stadium results, Gomes and Gerges (93).

In the zoom plots, relevant differences can be noted between the fluc-
tuation characteristics of the plates. In general, the fluctuation magnitudes of



2.2 Random Matrix Theory 115

the Square plate are expected to be larger than those of the Sinai stadium plate
due to the establishment of the periodic orbits, Gomes and Gerges (93).

In order to evaluate the universal fluctuations of a particular spectrum,
the unfolding process must be carried out. According to Weaver (64), once
there is a satisfactory estimate for the average component of staircase func-
tion, Nav( f ), the data of the original spectrum can be normalized by the fol-
lowing transformation:

zi = Nav ( fi) , (2.2)

where zi, is the ith unfolded (or normalized) natural frequency which cor-
responds to the ith natural frequency, fi. The unfolded frequencies have an
unitary mean spacing and their statistics can be directly compared to analyti-
cal RMT predictions, Weaver (64). According to Bertelsen (66), the unfolded
staircase function has the same fluctuations as the original staircase function,
Ñ f lu(z) = N f luc( f ), but its smooth component is given by Ñav(z) = z. Then,
the unfolded staircase function is given by (69, 90):

Ñ (z) = Nav
(
N−1

av (z)
)
+N f luc

(
N−1

av (z)
)
= z+N f luc ( f (z)) . (2.3)

It is very important to emphasize that the unfolded spectra from diffe-
rent systems can be directly compared to each other since the normalization
process (or unfolding process) provides an unitary mean spacing (64, 90).
As discussed by Bertelsen (90), it is no trivial task to evaluate correctly the
smooth (or average) component of a staircase function, mainly for complex
geometries where the asymptotic analytical formulations are not available.
The main difficulty is to correctly ascertain how close the smooth compo-
nent should be near to the original staircase function. If the smooth com-
ponent is too close to the original staircase function, the universal properties
of the fluctuations can be erroneously removed. On the other hand, if the
smooth component is too far from the original staircase function, the system-
dependent effects are not removed and the resultant oscillatory component of
the staircase function will be present in the non-universal spectral fluctuati-
ons. According to Bertelsen (90), good performance of unfolding process can
be observed by the following condition:

Ñ (z)− z. 1. (2.4)

Additionally, it is also expected that the fluctuations follow a Gaussian
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distribution, Fujisaka and Tohyama (94). In Figure 15, the condition propo-
sed by the Equation (2.4) can be verified for both plates, Square and Sinai
geometry. The high amplitudes of unfolded staircase fluctuations are mainly
observed for Square plates, and for Sinai plates these are reduced.

13

(a)

16

(b)

Figure 15: The oscillatory components of unfolded staircase functions of pla-
tes, Gomes and Gerges (93). Plot (a): Square geometry. Plot (b): Sinai
geometry.
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Some researchers uphold that the reasons for the discrepancies are the
presence of the periodic orbits: Bertelsen (90), Schaadt (69), Deland et al
(95), Gräf et al (96) and Wright & Ham (97). They have been shown that
the effects resulting from the presence of periodic orbits modify strongly the
spectral statistics. Therefore, further investigations are also necessary in or-
der to evaluate the effects of the periodic orbits on the eigenvalue statistical
observable results for random dynamical systems, (98, 99, 100).

2.2.4 Eigenvalue Statistics

In this section, the best known statistical observables associated with
eigenvalues from Gaussian ensembles are introduced. In the RMT context,
the statistical observables are defined as particular functions (metrics) which
are able to describe the statistical characteristics of a spectrum, Guhr et al (57,
63) and Brody et al (56). Asymptotic analytical formulations are available for
the spectral eigenvalue statistics of random matrices with well-established
statistical characteristics, such as Poisson and Gaussian Ensemble statistics.

The analytical formulations for eigenvalue statistical observables will
be introduced for short and long-range spectral fluctuations. These are based
on eigenvalues normalized by the unfolding process, that is, the mean spa-
cing of adjacent eigenvalues must be unitary and frequency-constant, Mehta
(24). It is important to emphasize that under these conditions, it is possible
to compare spectral natural frequency statistics from systems with different
natures as well as with different modal densities, Gomes et al (101, 93) and
Bertelsen et al (90, 66).

PDF of Adjacent Eigenvalue Spacings

One of the best known statistical observables is the Probability Density
Function of adjacent eigenvalue spacings, P(s). This function is traditionally
used to evaluate the local characteristics of a spectrum (i.e., the short-range
fluctuation statistics). In the Quantum Physics field, this statistical observable
is also known as the Nearest Neighbor Spacing Distribution (NNSD), Mehta
(24), Brody et al (56), and Bertelsen (90). Further details on the statistical
properties of PDF are described in Soong (102) and Montgomery & Runger
(103).

In the Quantum Physics context, there are two best known classes of
statistical behaviors: integrable (or regular) and chaotic. The first class is as-
sociated with the group of systems in which the eigenproblems can be solved
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analytically. These systems are usually denominated regular or integrable
systems, Schaadt (69).

In the vibroacoustic field, the regular systems are generally associated
with systems with simple geometry characteristics. A simply supported rec-
tangular plate or a box-shaped acoustic space represent typical examples of
regular systems, Lyon (48) and Langley and Cotoni (35). The spectral natu-
ral frequency statistics of the integrable systems conforms very well with the
Poisson distribution model (also called the random number statistics, Soong
(102)). The PDF of adjacent eigenvalue spacings for the Poisson distribution
model, P (Poisson)(s), is given by:

P(Poisson)(s) = e−s, (2.5)

where si = zi+1− zi is the distance between adjacent unfolded natural fre-
quencies. According to Equation (2.5), the spacing distribution of the Poisson
model statistics is described by an Exponential PDF.

On the other hand, there is a second best known class of systems which
is denominated chaotic systems. In the classical context, the chaotic systems
are systems whose trajectories are unstable with respect to the initial conditi-
ons, that is, the distance between two particles inside of a billiard3 scatter in
an exponential way over time, Bohigas et al (67). In the vibroacoustic con-
text, the chaotic systems are commonly associated with systems in which the
acoustic waveguides propagate in a very disordered way within the system.
For a spectrum of a chaotic system, the unfolded natural frequency statistics
can be adequately described by eigenvalue statistics from a GOE matrix. Ac-
cording to Brody et al (56), the spacing PDF for chaotic systems is given
by:

P(GOE) (s) =
π

2
s exp

(
−π

4
s2
)
. (2.6)

According to Equation (2.6), the spacing distribution of the GOE sta-
tistics is described by a Rayleigh PDF, Montgomery and Runger (103). This
distribution is also known as the Wigner surmise in the Quantum Physics fi-
eld, since Wigner proposed it in 1957, Bohigas et al (67). In Figure 16, the
PDFs of adjacent eigenvalue spacings for Poisson (Exponential) and Wigner
(Rayleigh) model statistics are shown.

3A classical billiard consists of a point particle which moves freely in a compact domain of
d - dimensional space and reflects elastically in the boundary of this domain, Guhr et al (57, 63).
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Figure 16: The PDFs of adjacent eigenvalue spacings for Poisson (Exponen-
tial) and Wigner (Rayleigh) model statistics

As shown in Figure 16, the most relevant difference between the Pois-
son and Rayleigh PDFs is noted for a small eigenvalue spacing range. For
the Poisson PDF, there is a large probability for the occurrence of small ei-
genvalue spacings, that is, a strong tendency toward eigenvalue clustering is
observed. On the other hand, for the Rayleigh PDF there is a small probability
for the occurrence of small eigenvalue spacings. This veering phenomenon
is traditionally known as level repulsion in the Quantum Physics field; Mehta
(24), Brody et al (56), Guhr et al (57, 63), and Stöckmann (104). The level
repulsion phenomenon is characterized by a strong tendency for the eigenva-
lues to repel each other, avoiding clustering. Therefore, a low probability is
expected for the occurrence of small eigenvalue spacings. It is very impor-
tant to emphasize that the Rayleigh distribution is also characterized by a low
probability for the occurrence of large eigenvalue spacings. These properties
of the Rayleigh PDF are associated with high spectral rigidity characteristics
of the eigenvalues of the GOE matrices, Bohigas et al (67).
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Correlation Functions

The PDF of adjacent natural frequency spacings is one of the most
important statistical observables in RMT, but great practical interest is tra-
ditionally directed toward correlation functions associated with two eigen-
value interactions which is also known as the two-level correlation function,
R2 (λ1,λ2), Mehta (24), Brody et al (56), Guhr et al (57, 63) Langley (23),
and Cordioli (20). According to Cordioli (20), this function may be interpre-
ted as the probability of at least two eigenvalues have been found in small
distinct regions dλ around λ1 and λ2 respectively, independent of the pre-
sence of other eigenvalues outside these regions. The two-level correlation
function is given by (20):

R2 (λ1,λ2) = R2 (λ1−λ2) = R2 (∆λ ) = 1−Y2 (∆λ ) , (2.7)

where Y2 (∆λ ) is the two-level cluster function, Stöckmann (104). It can be
noted that the two - level correlation function is dependent only on the ei-
genvalue difference, that is, it is a translation invariant through the spectrum,
Cordioli (20) and Guhr et al (57, 63).

For the Poisson case, correlations between eigenvalues are absent.
This reflects the fact that the k−level correlation function involves only one-
level correlation functions and is given by (57, 63):

Rk (λ1, λ2, . . . ,λk) =
N!

(N− k)!

k

∏
1

R1 (λk) = 1. (2.8)

In Equation (2.8), the correlation functions are unitary for all eigenva-
lues in the Poisson case. Thus, the two-level cluster function, Y2(∆λ ), accep-
tably measures the deviation from the uncorrelated Poisson case, Guhr et al
(57, 63). An analytical evaluation of the two-level cluster for the GOE case
was proposed by Stöckmann (104) and it is given by:

Y2 (∆λ )=

[
sin(π∆λ )

π∆λ

]2

+
[

π

2
sgn(∆λ )−Si(∆λ )

][cos(π∆λ )

π∆λ
− sin(π∆λ )

(π∆λ )2

]
,

(2.9)
where the sgn(4λ ) function is given by:

sgn(∆λ ) =





1 if ∆λ > 0
0 if ∆λ = 0
−1 if ∆λ < 0

, (2.10)
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and the Si(x) function is given by:

Si(x) =
x∫

0

sin(t)
t

dt. (2.11)

It is important to emphasize that the two-level cluster function is used
in the analytical prediction of the revised SEA variance, Brown and Langley
(18, 1, 3).

According to Guhr et al (57, 63), the eigenvalue spacing PDF for GOE
model can be approximated by the two - level correlation function for small
spectral distances:

R(GOE)
2 (∆λ )≈ PGOE (∆λ ) . (2.12)

On other hand, for a large range of the eigenvalue spacings, the two-
level correlation function, R(GOE)

2 (∆λ ), saturates to unitary amplitude and
Rayleigh PDF, PGOE (∆λ ), tends asymptotically to zero. According to Guhr
et al (57, 63), the two-level correlation function may be interpreted as a joint
probability density function with the additional requirement that the two le-
vels considered are adjacent, i.e., there are no levels between them. Thus,
although the adjacent eigenvalue spacing distribution mathematically invol-
ves all level correlations, it gives, in practice, meaningful information only
regarding the two-level correlation.
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Figure 17: The GOE two-level correlation function and Rayleigh PDF for
adjacent unfolded eigenvalues, Guhr et al (57, 63).

In order to evaluate the global statistics of a spectrum, the statistical
observables for long-range fluctuations are recommended, Brody et al (56).
In what follows, the best known statistical observables employed for the eva-
luation of long-range fluctuation characteristics will be defined.

Number Variance

By definition, the expected average number of eigenvalues in an in-
terval of length L in an unfolded spectrum is L, Weaver (64) and Guhr et al
(57, 63). According to Weaver (64), the number variance, Σ2 (L), refers to
the expected mean-square fluctuation of the eigenvalues lying in a range of L
mean spacings. In the RMT context, the number variance is defined by (68):

Σ
2 (L)≡

〈
Ñ2 (L,Z0)

〉
Z0
−
〈

Ñ (L,Z0)
〉2

Z0
, (2.13)

where Ñ (L,Z0) is the number of eigenvalues that lie within the interval
[Z0,Z0 +L] and the angular brackets describe the averaging process over all
possible starting points Z0.

According to Andersen (68), the number variance is a measure of the
long-range fluctuation statistics and it can be related to the two-level cluster
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function, Y2(r), by the relation:

Σ
2 (L) = L−2

L∫

0

(L− r)Y2 (r)dr. (2.14)

For large spectral lengths, L& 2, Andersen (68) shows that the number
variance associated with GOE statistics is analytically given by:

Σ
2 (L) =

2
π2

[
ln(L)+ ln(2π)+ γ +1− π

8

]
, (2.15)

where γ = 0.5772 is the Euler constant.
For Poisson statistics, the two-level cluster function is null due to the

absence of eigenvalue correlations, Guhr et al (57, 63). Then, the number
variance for Poisson statistics is given by (68):

Σ
2 (L) = L. (2.16)

In Figure 18, examples of number variance functions are shown for
GOE and Poisson eigenvalue statistics.

Figure 18: Number variance: GOE and Poisson eigenvalue statistics, Gomes
and Gerges (101).

A periodicly spaced array of eigenvalues would have the number va-
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riance Σ2 (L) = 0 for all integer L, Weaver (64). Thus, the establishment of
small number variance values means that there is a small deviation from pe-
riodicity, that is, the spectrum has high spectral rigidity characteristics.

∆3 - statistics

The spectral rigidity or ∆3- statistics is one of most popular measu-
res of spectral rigidity characteristics and long-range fluctuation in the RMT
context, Mehta (24) and Guhr et al. (57, 63). Here, ∆3 - statistics is defined
as the least-square deviation of the unfolded staircase function from its best
fitted straight line and is given by (90, 64):

∆3 (Z0,L) =
1
L

minA,B

L∫

0

[
Ñ (z)−Az−B

]2
dz, (2.17)

where A and B are the particular line coefficients associated with the best
straight line fit for each interval [Z0,Z0 +L].

Figure 19: Example of the evaluation process of ∆3- statistics, Gomes and
Gerges (93).

According to Bertelsen (90), the mean value can be evaluated over
possible points Z0 by considering many non overlapping intervals of length
L, and computing the ∆3 (Z0,L) for each interval. Therefore, the ∆3 (L) is now
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defined as this averaged value over all possible starting points and is given by
(90):

∆3 (L) =
1
L

minA,B

〈 L∫

0

[
Ñ (z)−Az−B

]2
dz

〉

Z0

, (2.18)

where the angular brackets indicate an averaging process over starting points
Z0.

The ensemble-averaged ∆3- statistics can be related to the two-level
cluster function using the following expression (68):

∆3 (L) =
L
15
− 1

15L4

L∫

0

(L− x)3 (2L2−9Lx−3x2)Y2 (x)dx. (2.19)

For L& 10, it is expected that the GOE eigenvalues show a logarithmic
behavior, Weaver (64). According to Andersen (68), an asymptotic prediction
for large spectral distances (or long-range fluctuations) is given by:

∆3 (L) =
1

π2

[
ln(L)+ ln(2π)+ γ− 5

4
− π2

8

]
, (2.20)

where γ ≈ 0.5772 is the constant of Euler.
For a sequence of uncorrelated eigenvalues as in Poisson statistics, the

two-level cluster function is null for all eigenvalue spacings and the resultant
∆3 - statistics can be express by (68):

∆3 (L) =
L
15

. (2.21)

In Figure 20, examples of ∆3-statistics results are shown for GOE and
Poisson eigenvalues. The logarithmic and linear behaviors can be easily noted
throughout the spectra, respectively.
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Figure 20: ∆3 - statistics: GOE and Poisson eigenvalue spectra, Gomes and
Gerges (101).

Although not discussed here in detail, the presence of system sym-
metries is a relevant factor in the resultant dynamical behavior of a system,
Cordioli (20). The breaking of the system symmetries leads to very strong
effects on the spectrum and an analysis of these effects aids the physical un-
derstanding of existent interactions among the natural frequencies.

As discussed in Physiscs literature (64, 90, 69), the spectrum of a sys-
tem can be understood as superposition of independent spectra. Indeed, it
is believed that the number of independent spectra needed to describe the
spectral natural frequency statistics of a given system is associated with the
number of symmetries in this system (90, 69) or is associated with the number
of uncoupled substructures of systems which do not interact with the others
(64).

According to Weaver (64), the superposition of independent spectra
leads to a decrease in the spectral rigidity characteristics, that is, an increase in
the ∆3- statistics values. In Appendix A the analytical predictions are shown
for the eigenvalue statistical observables of a spectrum composed of several
independent GOE eigenvalue sequences.
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2.2.5 Universality

The Universality concept was initially associated with Bohigas’ work
which investigated experimentally a microwave cavity with Sinai geometry,
Bohigas et al (67). In his work, the results suggested that the statistics of
spectral fluctuations from the chaotic systems can be correctly described by
the statistics of the eigenvalues of the Gaussian Orthogonal Ensemble (GOE).
Since that time, Random Matrix Theory (RMT) has been become a powerful
tool for the statistical analysis of the spectral properties of chaotic systems.
A relevant characteristic of chaotic systems is that their eigenvalue statistics
show universal statistics provided that the spectrum of the original system is
correctly unfolded. In other words, the resultant spectrum from the unfolding
process must have a unitary mean spacing, Mehta (24).

In the RMT context, the Bohigas-Giannoni-Schmit (BGS) conjecture
states that: Spectra of systems whose classical analogues are fully chaotic
show correlation properties as modeled by the Gaussian ensembles, Bohigas
et al (67). On the other hand, the Berry-Tabor (BT) conjecture is comple-
mentary and states: Spectra of systems whose classical analogues are fully
regular show correlation properties which are often those of the Poisson type,
Guhr et al (57, 63). Several research works A general statement of the princi-
ple of Universality would be to claim that, for large matrices, apart from well
defined exceptions, all symmetric random matrices should have local GOE
eigenvalue statistics, all Hermitian random matrices should have local GUE
eigenvalue statistics, and all quaternion-real self-dual matrices should have
local GSE eigenvalue statistics, Langley (23).

Although the RMT was initially developed to describe the nuclear
spectra statistics, it is expected that the RMT concepts are global and applica-
ble to systems of several natures: quantum billiard systems (92), microwave
cavities (105), metal blocks (64), membranes (106), elastic plates (66), finan-
cial correlations (107), and others. For all of these above-mentioned fields,
excellent agreements are observed between the RMT analytical predictions
and eigenvalue statistics. However, it is also very important to emphasize
that there is a relevant limitation to extending the use of RMT concepts to
systems of several natures. Pandey (108) showed analytically that the Uni-
versality concept is restricted only in a local sense, that is, it is valid only for
a set of adjacent eigenvalues with almost constant mean spacing. For a set of
eigenvalues where the spacings are larger than the mean spacing, the fluctu-
ations are not universal and are dependent on the particular system analyzed
(system-dependent effects). In these cases, the spectral statistics may not be
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correctly described by RMT analytical predictions, Langley (23).
Several results from studies on uncertain or non-deterministic vibro-

acoustic systems have suggested that the statistics of the natural frequencies
may be adequately described by the GOE model provided that there is a suf-
ficiently large amount of randomness in the system parameters, Langley et
al (23, 4, 18). Recently, analytical and numerical investigations have been
carrying out in order to highlight the conditions required for the occurrence
of Universality for the modal parameter statistics of vibroacoustic systems:
Langley (23), Cordioli (20), etc.

2.2.6 Analogies: Quantum and Vibroacoustic Systems

In principle, it is believed that all RMT concepts from the Quantum
Chaos field can be adequately applied to classical wave vibroacoustic sys-
tems, since the RMT assumptions are very general and do not include any
quantum mechanical arguments, Schaadt (69).

In recent decades, several researchers have carried out experimental
activities with systems of distinct natures and their spectral natural frequency
statistics have been successfully comparing to RMT predictions(105, 64, 66).
However, it is important to emphasize that there is no analytical proof to en-
sure that the random dynamical systems are completely described by RMT,
(64) (66) (109). In general, it is recommended that all system-dependent ef-
fects be removed from the original spectrum in order to compare the spectral
statistics of the random engineering systems with the universal RMT statis-
tics. Inspired by the success of experimental studies, complementary theore-
tical work was performed to describe the main analogies between the quan-
tum mechanical and vibroacoustic systems. Several evidences confirm this
attractive possibility, (92, 105, 106). On the other hand, there are some par-
ticular characteristics which can become very complex the direct use of this
quantum-vibroacoustic analogy, (64) (69) (110)(70)(95). In the present study,
these details will be presented and discussed for random dynamical systems
in the context of SEA variance theory. In order to highlight the analogies
between the quantum and vibroacoustic phenomena, the well-established si-
milarities are shown in Table 3.
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Table 3: Analogies between the Quantum and Vibroacoustic systems, Bertel-
sen (90) and Schaadt (70).

Quantum system Vibroacoustic system
Quantum mechanics Theory of elasticity
Schrödinger equation Acoustic wave equation

Energy levels Natural frequencies
Eigenfunctions Mode shapes or Standing waves

Semi-classical limit Acoustic ray theory
Ray splitting Modal conversion

One of pioneering application of RMT models to systems with natures
distinct to those of nuclear and quantum systems was carried out by Weaver
(64). In his work, the aluminum rectangular blocks were perturbed by drills
(slits) on their faces in different ways in order to break the system symmetries.
The natural frequencies from each one of the blocks with different degrees of
symmetry were measured and their corresponding unfolded spectra were also
evaluated. The eigenvalue statistical observable results were determined and
compared with analytical predictions from GOE and 2 GOE spectra. The re-
sults showed that the natural frequency statistics of the most perturbed block,
which has all symmetries broken, presents a universal behavior adequately
described by the GOE model. For less perturbed block, one reflection sym-
metry was retained and their spectral natural frequency statistics were in good
agreement with the 2 GOE model predictions.

Bertelsen et al (90, 66) investigated experimentally the spectral natural
frequency statistics of free plates with a shape of the quarter Sinai Stadium
billiard (chaotic billiard shape). For the plates investigated, two type waves
were considered: transverse (symmetric and antisymmetric) and in-plane wa-
ves. The statistical observable results displayed 2 GOE statistics (i.e., one
GOE spectrum for each type of wave), since for the experimental range of
natural frequencies investigated, both waves types contribute to the same ex-
tent. In order to confirm this conclusion, two cuts were made in one plate face
to break the symmetry in the up-down or thickness direction, where flexural
and in-plane modes are strongly coupled. The resultant statistical observable
results displayed GOE statistics due to the occurrence of coupling between
the two wave types.

Fujisaka and Tohyama (94) investigated numerically acoustic fields
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surrounded by 2D-semi-stadium-type boundaries, as examples of boundaries
where chaotic properties are hidden, in order to understand the spectral cha-
racteristics of complex sound fields and to gain new insight into sound field
design. Several geometries were parametrically investigated, from regular
to completely chaotic. Through the statistical observable results, the natural
frequency statistics, including the mode shapes, were described. The statisti-
cal characteristics from the modal parameters in the Poisson-GOE crossover
region were demonstrated, and an excellent agreement was observed for the
extreme limit statistical cases.

Weaver, Stöckmann and Kuhl published an excellent review paper
(111), describing the technical and analytical details regarding the transport
properties of classical waves through chaotic systems with special emphasis
on microwaves and sound waves.

Based on the successful results obtained from the initial parametric
study performed by Bertelsen (90) with a 1/4 Sinai stadium plate, Schaadt
(110, 70) investigated the parametric variation of the natural frequencies when
a chaotic plate is subjected to a perturbation via an external parameter. In his
study, the size of the plate was adopted as the external parameter. The nor-
malized correlation metrics associated with the first and second derivatives as
a function of the external parameter were evaluated and the dynamics of the
natural frequencies from a chaotic plate was accurately characterized. The ex-
perimental results were compared to RMT numerical results for large random
matrices presented in the physics literature, Li and Robnik (112). An excel-
lent agreement was observed for both derivative metrics, suggesting that the
RMT correlation results can be extended to wave systems other than quantum
systems.

As observed here, excellent results can be obtained with the applica-
tion of the quantum-vibroacoustic analogy to practical engineering situations
where the natural frequency statistics of sufficiently random engineering sys-
tems may be adequately described by the GOE model of RMT. However,
most random vibroacoustic systems do not have the conditions necessary for
a direct comparison between the quantum mechanics and vibroacoustics re-
sults, Bertelsen (90). A good example of a direct application of the quantum-
vibroacoustic analogy may be expected in the Geometric Acoustic Ray field
where the acoustic wavelengths tend to reach the semi-classical limit, Deland
et al (95) and Schaadt (70).

In what follows, the main effects provided by some system-dependent
phenomena, such as finite wavelengths (113) and periodic orbits (95) and
others (69, 70), are discussed with regard to the establishment of the semi-
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classical limit in vibroacoustic systems.

2.2.7 Finite Wavelength Effects

Within the analogy with RMT applied to dynamics, GOE statistics are
expected when the classical limit (here geometrical acoustics limit) exhibits
chaotic4behavior, (113). The geometrical acoustics limit corresponds to the
deterministic motion of a point-like particle propagating in straight lines in-
side the system and being specular reflecting at the system boundaries, Bohi-
gas et al (113). In other words, the geometrical acoustics limit corresponds to
the lower cut-off frequency in which the geometrical ray approach is valid.

Considering again Weaver’s results (64), slits on the faces of rectangu-
lar aluminum blocks were made to break the system symmetry. A good agre-
ement was observed between the spectral statistics of the natural frequencies
and GOE model predictions, although the classical geometrical ray acoustics
trajectories are not chaotic. According to Bohigas et al (113), the pertur-
bed block systems used by Weaver belong to the class of pseudointegrable
systems that are both regular (integrable) but non-separable in orthogonal va-
riables.

As discussed by Bohigas et al (113), a possible explanation for the
good agreement of Weaver’s results arises from the comparative analysis of
the scale magnitude of the acoustic wavelength and the characteristic size
of the system. For the frequency range considered, the corresponding wa-
velengths are typically of the order of centimeters and are much larger than
typical dimensions of slits cut in the block faces for which the scale is of
the order of millimeters. As a consequence, the typical acoustic wave inside
the block can not distinguish a thin straight split from a wider split with a
spherical tip. Although the spherical tip has a diameter of the order of the
wavelength, it acts as a strong focusing element and ensures the existence of
deterministic chaos. That is, this geometrical perturbation at the boundaries
of the order of the wavelength results in focusing or defocusing effects which
also lead to a very rapid divergence of trajectories initially separated by a
distance of the order of the wavelength.

In summary, based on the above discussion, the following behavior
is expected for a random engineering system along the frequency domain.
For the natural frequencies where the wavelengths approximately match the

4In the classic context, chaotic systems are systems whose ray trajectories are unstable with
respect to the initial conditions, that is, the distance between two particles inside a billiard scatters
in an exponential way over time, covering the entire surface of the system due to scattering at the
boundaries, Bohigas et al (67).
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dimensions of the focusing or defocusing boundaries present in the system,
the classical motion may be expected to have a chaotic behavior described by
the GOE statistics model.

According to Bohigas et al (113), for the much higher frequencies,
other physical parameters beyond boundary perturbation, such as surface
roughness and material heterogeneity, can no longer be neglected and the
corresponding wavelength becomes similar in size to the scale of the mate-
rial imperfections, a regular motion in the geometrical acoustic limit must be
recovered and the spectral natural frequency statistics become Poissonian.

In the low-frequency range, where the wavelengths are longer than
the focusing or defocusing boundary spans, the acoustic waves can not re-
solve the geometrical perturbations and thus it may be that the low natural
frequencies are not strongly coupled each other, leading to non-universal ef-
fects on the modal parameter statistics, Schaadt (69). In the Quantum Physics
literature (69, 113), these classes of nonuniversal behaviors are traditionally
denominated finite wavelength effects. Therefore, an efficient quantification
of these effects on the modal parameter statistics is essential in order to ex-
tend the analogy of random matrix theory to engineering applications in the
vibroacoustics field, Gomes (10).

In Appendix B, the finite wavelength effects are numerically investi-
gated using GOE random matrices with several dimensions. The main effects
are investigated on the ∆3 - statistics results. Additionally, the expected fluc-
tuations along the spectral domain and across the ensemble are determined
and compared to analytical predictions available in RMT literature, Bohigas
et al. (114). The numerical analysis shown that large fluctuations in the ∆3 -
statistics results across the ensemble are expected for random matrices with
small dimensions.

2.2.8 Effects of Periodic Orbits

Considering the context of Ray Acoustics, periodic orbits are defined
as ray paths in an acoustic system that return to their starting position with
the same direction of motion. The establishment of periodic orbit effects can
lead to significant changes in the spectral statistics of natural frequencies as
well as in the statistical characteristics of the corresponding mode shapes.

According to C. Ham (115), the periodic orbits are classified into three
major classes: stable, unstable or marginally stable. A periodic orbit is stable
if each ray on it belongs to some interval such that every orbit starting from
an arbitrary point in the interval converges to the periodic orbit. A periodic
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orbit is unstable if each ray on it belongs to some interval such that every
orbit starting from an arbitrary point in the interval diverges from the periodic
orbit. A periodic orbit is marginally stable if each ray on it belongs to some
interval such that every orbit starting from an arbitrary point in the interval
neither converges to or diverges from the periodic orbit.

In the quantum chaology5 field, periodic orbits have been used as a
semiclassical tool in the statistical analysis of billiard systems, (92, 96, 95,
97, 115). Stable periodic orbits can be identified through the application of
Fourier transform on the unfolded staircase function fluctuations considering
the wavenumber as an independent variable, Delande et al (95). In Figure 21,
an example of the results from the Fourier transform of the staircase function
fluctuations of a rectangular Sinai microwave cavity is presented. The peaks
of the Fast Fourier Transform correspond to the lengths of the most relevant
periodic orbits, Stöckmann and Stein (92).

Figure 21: Example of Fourier transform of staircase function fluctuations
of a rectangular Sinai (a = 56cm, b = 20cm and r = 7cm). Inset Figure:
identification of main periodic orbits, Stöckmann and Stein (92).

In the inset of the Figure 21, a typical example of the identification
of periodic orbits through the Fourier transform of staircase function fluc-
tuations is presented. The numbered peaks in the Fourier transform results
are associated with periodic orbits. In particular, large contributions to spec-
tral statistics are expected for bouncing ball orbits (orbit number 1 in inset).

5Quantum chaology is the study of how chaos in classical mechanics arises at the limit of
quantum mechanics, Stöckmann (104).
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The bouncing ball orbits are a special class of periodic orbits which propa-
gate perpendicularly to two parallel system boundaries. As observed, the
establishment of stable periodical orbits seems to be directly associated with
the presence of system symmetries as well as the regularity of system geo-
metry. Indeed, further systematical investigations are certainly necessary to
highlight the exact relationship between the geometrical characteristics of a
vibroacoustical system and the periodical orbit effects on the modal parame-
ter statistics.

The main effects of the periodic orbits are directly observed in the os-
cillatory component of the natural frequency staircase function. In general,
the fluctuations are large, corresponding to the deviation of several natural
frequency spacing units from the average or smooth component of the stair-
case function, which is usually evaluated by polynomial functions or the Weyl
formula. An illustrative example of fluctuations from the aluminum block,
which are affected by the bouncing ball periodic orbit effects, is presented in
Figure 22 (a), Schaadt (69).

Figure ���� Upper left� Staircase for the frequency interval ��������kHz and polynomial �t� Upper
right� Zoom of staircase� Middle left� Fluctuations �di�erence between staircase and �t	� Middle right�
Power spectrum from FFT of the 
uctuations� Lower left� Remaining 
uctuations after removing inverse
FFT using a cut�o� of ����s� Lower right� Same as lower left� using a cut�o� of ����s�

��

(a)
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Figure ���� Upper left� Staircase for the frequency interval ��������kHz and polynomial �t� Upper
right� Zoom of staircase� Middle left� Fluctuations �di�erence between staircase and �t	� Middle right�
Power spectrum from FFT of the 
uctuations� Lower left� Remaining 
uctuations after removing inverse
FFT using a cut�o� of ����s� Lower right� Same as lower left� using a cut�o� of ����s�

��

(b)

Figure ���� Upper left� Staircase for the frequency interval ��������kHz and polynomial �t� Upper
right� Zoom of staircase� Middle left� Fluctuations �di�erence between staircase and �t	� Middle right�
Power spectrum from FFT of the 
uctuations� Lower left� Remaining 
uctuations after removing inverse
FFT using a cut�o� of ����s� Lower right� Same as lower left� using a cut�o� of ����s�

��

(c)

Figure 22: Periodic orbit effects on the spectral natural frequency statistics.
Plot(a): fluctuations or oscillatory component of staircase function. Plot(b):
Power spectrum from the FFT of the staircase function fluctuations. Plot(c):
resultant fluctuations from Fourier unfolding process, Schaadt (69).
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The identification of the periodic orbits and respective lengths is not a
trivial task in the case of vibroacoustic systems. However, on performing the
Fast Fourier Transform (FFT) of the fluctuations, their peaks on the power
spectrum (with time or length on the x-axis) identify the dominant frequen-
cies of the fluctuations, Schaadt (69) and Delande et al (95). Indeed, the peak
locations on the power spectrum may be directly associated with stable peri-
odic orbits which contribute significantly to the large scale oscillatory pattern
of the staircase fluctuations, Figure 22 (b).

In order to quantify the periodic orbit contributions to the average or
smooth staircase function component of stable periodic orbits and remove
them from the staircase function, the Inverse Fourier Transform (IFT) is per-
formed, including only those Fourier components that lie below some cut-off
time, tc. That is, all Fourier components above the cut-off time tc are discard
(set to zero), and one keeps only the Fourier components which are lower
than tc. In this new unfolding process, here referred to as the Fourier unfol-
ding process, the effective average staircase function component is evaluated
as the sum of the polynomial component and the inverse Fourier transform
contributions. Note that the total procedure is similar to a low-pass filter ap-
plied to the staircase function fluctuations. In Figure 22 (c), the resultant
fluctuations obtained from the Fourier unfolding process are presented for a
certain cut-off frequency.

The choice of cut-off time is essential to obtaining a good performance
of the Fourier unfolding process. According to Schaadt (69, 70), a short cut-
off time will not take into account all of the significant contributions from
the periodic orbits, and the resultant fluctuations will present nonuniversal
characteristics. On the other hand, for an excessively long cut-off time, the
universal characteristics are erroneously removed and a saturation point is
expected beyond some spectral eigenvalue distance. Thus, the adopted value
for the cut-off time must be selected so as to avoid the effects described above
and simultaneously provide a resultant unfolded spectrum in which all of the
universal characteristics are not affected by the unfolding process, (90, 69,
70).

Considering the results for the natural frequency statistical observa-
bles, the contributions of the periodic orbit effects on these results are ex-
pected to be gradually more pronounced only for large spectral distances. In
Figure 23, illustrative examples of ∆3-statistics results affected by the effects
of the bouncing ball periodic orbits are presented. The ∆3- statistics results
based on the standard unfolded spectra are compared to results based on the
Fourier unfolded spectrum in which the effects of periodic orbits are removed.
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Figure 23: Examples of the effects of periodic orbits on the ∆3 - statistics
results. Upper Plot: Sinai block, Schaadt (69). Lower Plot: Microwave cavity
resonator, Gräf et al (96).

As shown in Figure 23, the effects of the periodic orbits lead to a
slightly higher increase in the ∆3 - statistics than expected. Using the Fourier
unfolding process appropriately, all such effects were totally removed and a
good agreement with GOE statistics was observed, Figure 23 (a). However,
when the time cut-off is too long the universal characteristics are removed in
the resultant Fourier unfolded spectrum and the corresponding ∆3 - statistics
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curve saturates beyond a certain spectral distance, Figure 23 (b). Thus, it can
be noted that the periodic orbit effects can not be removed without saturating
the ∆3 - statistics curve, Bertelsen (90).

An alternative approach to understanding natural frequency statistics
was introduced by the Gutzwiller trace formula, (104, 116). In this semi-
classical approximation, the oscillatory staircase function component can be
described as a sum of all classical periodic orbits, (92, 96). Although the
semiclassical approach is very attractive in the periodic orbit application fi-
eld, its application to vibroacoustic systems is very limited for the following
reasons: (i) a large number of periodic orbits is required to provide a good ap-
proximation of the staircase function, (ii) the accuracy of the results increases
exponentially with the number of periodic orbits, and (iii) the characteriza-
tion of the classical periodic orbits is very complex or at least prohibitive.
Recently, the main limitations and performances of the extension of the semi-
classical tools to vibroacoustic systems applications have been investigated in
detail and their results support the interdisciplinary research field known as
Semiclassical Acoustics, Wright and Howls (117).

2.3 Mode Shape Statistics

In this section the statistical properties of eigenvectors of large ran-
dom matrices are presented and discussed in detail. The main eigenvector
statistical observables are introduced along with the analytical predictions for
GOE and sinusoidal eigenvectors. A complete statistical characterization is
performed for mode shapes from chaotic and regular systems. Additionally,
the main classes of mode shape statistics deviations from the GOE eigen-
vector statistics are identified and their effects on the mode shape statistical
observables results are discussed and illustrated through results reported in
the literature for microwave cavity systems.

Lastly, the effects of Localization phenomenon are discussed for quan-
tum billiard and vibroacoustic systems. The performance of the applications
of non-linear sigma models from the Supersymmetry theory to describe the
characteristics of the mode shape statistics deviations from the GOE eigen-
vector statistics is discussed for weak and strong localization regimes.
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2.3.1 Eigenvector Applications

In a vibroacoustic system, a vibration or acoustic mode is characteri-
zed by a natural (or modal) frequency and a mode shape (spatial interference
pattern - standing wave), Ewins (118). The natural frequencies and mode sha-
pes are characteristic of a particular structure and its boundary conditions, but
are independent of the form of excitation, Fahy (5). If the system is placed
exactly in one of its mode shape configurations and left to vibrate freely, it will
present a harmonic motion and its vibrating frequency will be associated with
a particular natural frequency corresponding to that mode shape. However,
in practical situations, when a system vibrates freely or in a forced manner,
assuming linear behavior, its total displacement will be a superposition of the
mode shapes of the individual modes.

In engineering structures, an eigenproblem equation can be conveni-
ently written and the undamped modal parameters, natural frequencies and
corresponding mode shapes, can be easily determined. The natural angular
frequencies ω j and mode shapes φ j of the system satisfy the following equa-
tion:

−ω
2
j Mφi = φ jK, (2.22)

where M and K are the mass and stiffness matrices of system, respectively.
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 Com os avanços da capacidade de processamento e armazenamento, métodos 

computacionais vêm sendo cada vez mais utilizados para análise de estruturas de engenharia. 

Dentre deste, o Método de Elementos Finitos (FEM) se destaca pela sua versatilidade e bons 

desempenhos apresentados, [133]. Mesmo para estruturas relativamente complexas, as 

matrizes de massa e rigidez podem ser geradas e a auto-equação é montada. Os autovalores 

resultantes são relacionados às freqüências naturais não amortecidas e os autovetores são as 

correspondentes formas modais da estrutura. Na Figura 4.3, são apresentados os resultados de 

uma análise modal numérica com auxílio de FEM para uma placa corta-fogo de um veículo.  

(a)                                                                          (b) 

(c)                                                                        (d) 

Figura 4.3: Representação de uma análise modal numérica de uma placa corta-fogo automotiva realizada com 

auxílio do método de Elementos Finitos. Parte (a): Malha estrutural de FEM. Partes (b) (c) e (d): Formas 

modais associadas às freqüências naturais: 61,215 Hz, 101,088 Hz e 114,507 Hz, respectivamente. 

De forma complementar, existem métodos experimentais que possibilitam a avaliação 

das formas modais de estruturas. A análise modal experimental permite identificar a partir das 

respostas da estrutura os parâmetros modais (freqüências naturais, formas modais e 

coeficiente de amortecimento) presentes numa certa faixa de freqüência, [132]. 
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Figure 24: Numerical modal analysis of an automotive dash panel using FEM
models. Plot (a): structural FEM mesh model. Plots (b) - (d): Mode shapes
corresponding to the following natural frequencies: 61.215 Hz, 101.088 Hz,
and 114.507 Hz, respectively, Gomes (10).

Nowadays, the high processing capacity and storage characteristics of
computers allow numerical methods to be employed in the dynamical analysis
of engineering structures. One of these methods, the Finite Element Method
(FEM) presents excellent versatility and performance for almost all practical
applications, Zienkiewicz (2). In the case of relatively complex engineering
structures, the mass and stiffness matrices can be satisfactorily evaluated th-
rough numerical methods, and the characteristic equation can be adequately
established. In Figure 24, some mode shapes of a typical vehicle dash pa-
nel obtained in numerical modal analysis using FEM models are presented,
Gomes (10).

In a complementary way to numerical models, there are well esta-
blished experimental methods which allow the evaluation of mode shapes
from a given vibroacoustic system. Modal analysis, or more accurately expe-
rimental modal analysis, is the field of measuring and analyzing the dynamic
response of structures and or fluids when excited by an external input, Ewins
(118). The modal testing and analysis methods seek to determine the mo-
dal parameters, such as natural frequencies, damping ratios and mode shapes,
from the measured transfer functions, and then fit a damping matrix to these
data. However, the experimental methods for the evaluation of modal para-
meters are traditionally restricted to low order modes.

In the Quantum Physics field, the Hamiltonian operator from the nu-
clear systems is modeled through large random matrices, Mehta (24). Addi-
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tionally to the spectral statistics of energy levels (xn) which are traditionally
evaluated through the eigenvalue statistics from a large random matrix H, the
statistics of the wave functions (un) can also be investigated considering the
corresponding eigenvectors, Guhr et al (57, 63). The typical eigenproblem
associated with a nuclear system is given by:

Hun = xnun , n = 1, 2, . . . ,N. (2.23)

where N is the size of Hamiltonian matrix H.
While the characteristics of the spectral statistics of the energy levels

are well known for nuclear systems, only a small number of experimental
investigations have been carried out regarding the statistical characteristics
and properties of the corresponding wave functions. The main reason for this
apparently low interest is associated with the lack of accessibility to wave
functions in nuclear systems. In atoms and complex nuclei systems, the wave
function characteristics are expressed through the indirect parameters as tran-
sition amplitudes and widths which also provide information on the matrix
elements of a transition operator, Guhr et al (57, 63) and Brody et al (56).
In order to overcome these experimental difficulties, the quantum billiard
systems6 with classically chaotic geometries have been used as convenient
experimental models to represent chaotic nuclear systems, since their natural
frequencies and corresponding mode shapes can be easily measured and their
modal parameter statistics adequately compare to analytical predictions from
the RMT.

The main experimental method used to evaluate the wave functions
from the quantum billiard systems is the technique of Microwave Cavity Per-
turbation, developed by Kudrolli and Sridhar (105). In this experimental
technique, a small metal bead (perturber) is introduced into the microwave
cavity at coordinate (x,y). If the bead is sufficiently small compared to the
wavelength, the resultant shift in the natural frequencies, ∆ fn, due to the per-
turbation, is proportional to the square of the Electric field (hence, the wave
function), at the location of the bead (x,y). By moving the bead with a mag-
net, the wave function can be mapped out. In overall, one of the main advan-
tages of this method is the direct visualization of the eigenfunctions without
inserting a probe into the cavity. The literature results form the quantum phy-
sics field has been shown excellent performance of this experimental method
for a variety of microwave cavity geometries, including integrable, pseudo-

6A billiard is defined as a dynamical system in which a particle alternates between motion in
a straight line and specular reflections from a boundary.
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integrable, isospectral and chaotic, (72, 71, 105, 119, 120, 121).
Recently, the mode shape statistics have currently become a signifi-

cant area of interest in the quantum physics field. The main topics of research
associated with the wave function statistics of billiard systems in the quantum
physics field are: physical interpretation of wave functions in terms of classi-
cal trajectories, including the scar phenomena predicted by Heller (122); tran-
sition of wave function statistics over a localization-delocalization regime in
disordered systems (100, 74, 123, 73, 71), and other subjects (97, 115, 117).

It is also important to emphasize the increasing and substantial advan-
ces in the semi-classical acoustics research area in relation to modal parame-
ter statistics, Wright and Howls (117). Semi-classical acoustics is a multi-
disciplinary research field which uses tools from the semi-classical theory of
Quantum Physics such as periodic orbit theory (SPOT, WBKJ and EBK ap-
proximations) (97, 115) and the Weyl series (124) to address engineering pro-
blems in the vibroacoustics field. The mathematical details regarding the ana-
logy between the Schrodinger and Helmohtz equations are beyond the scope
of this current work and further information is available in (71, 105, 119, 120).

2.3.2 Eigenvector Statistical Observables

In this section, the statistical observables associated with the eigen-
vectors of large random matrices are defined and their performance in cha-
racterizing the eigenvector statistics are briefly discussed. The characteristics
of the mode shape statistics of classically chaotic and integrable (or regular)
systems are introduced and demonstrated through typical examples of eigen-
vector statistical observables results.

Porter-Thomas Distribution

The Porter-Thomas distribution, PPT (|ψ|2), is the most traditional ei-
genvector statistical observable used to characterize the GOE eigenvector sta-
tistics in the RMT field. This metric function is defined as the probability
density function of squared mode shape amplitudes7 (normalized to have unit
mean). For a system respecting time reversal invariance, Haake (116) de-
monstrated that for classically chaotic systems the Porter-Thomas distribu-

7In the Quantum Billiard context, the probability density function of squared mode shape
amplitudes is also known as the density distribution, Sridhar (120).
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tion8 is a universal GOE eigenvector feature and is given by:

PGOE
PT

(
|ψ|2

)
=

1√
2π|ψ|2

exp
(
−|ψ|

2

2

)
, (2.24)

where |ψ|2 is the normalized squared mode shape amplitude9, which is defi-
ned as:

|ψ|2 = φ 2

〈φ 2〉 , (2.25)

where φ is the mass-normalized mode shape amplitude and angular bracket
〈 〉 denotes the mean value from an averaging process over the eigenvector
component domain (i.e. over the spatial domain of the system).

The Porter-Thomas analytical prediction proposed for GOE eigenvec-
tors has been confirmed in several experimental studies on two dimensio-
nal chaotic microwave cavities (71, 74) and elastodynamical system plates
(69, 93) as well as in numerical studies with large random matrices (79, 101).

A typical example of an experimental investigation on the distribu-
tion of normalized squared mode shape amplitudes of chaotic systems can
be observed in Kudrolli et al (71). In their work, the normalized squared
mode shape amplitudes, |ψ|2, from two microwave cavities with Sinai Sta-
dium and Billiard geometries were measured using the cavity perturbation
technique, which considers that the Schrodinger and Helmholtz equations
coincide. The distributions of normalized squared mode shape amplitudes of
such microwave cavities were compared with the Porter-Thomas distribution
predictions for GOE eigenvector statistics, Figure 25.

8Traditionally, this function is evaluated considering the spatial domain of system (i.e., spatial
averaging approach). Illustrative examples of its application for billiard systems are available in
quantum physics literature, (71, 74, 69).

9For this normalization process, the scalar parameter |ψ|2 can be understood as simplified
notation of the i-th squared mode shape component of a mode shape normalized to have a unit
mean, (71, 69).
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ent energies that were observed, in that there are no visible
scars that can be evidently associated with a PO. Indeed,
scarred states are few and the 7.370 GHz state shown in
Fig. 1 (top right) is a rare coincidence with a whispering
gallery PO.

Localization effects were observed by fabricating bil-
liards in which tiles were placed to act as hard scatterers.
These geometries are obtained by placing 1 cm square or
circular tiles in a 44 3 21.8 cm2 rectangle at random lo-
cations (Fig. 1). (The locations were generated using a
random number geometry and the tiles were placed manu-
ally.) Earlier experiments [13] on the eigenvalue spec-
trum of similar disordered geometries had shown that
these experiments exemplify textbook two-dimensional
electron systems without interactions to a remarkable de-
gree. To our knowledge, these geometries are difficult
to study using numerical computation, and hence the mi-
crowave experiments at present afford the only reliable
means to study this type of disordered systems. More
than one realization of the disordered geometry was ex-
perimentally studied, labeled D1 through D5 depending
on the density of scatterers (Table I).

Sample eigenfunctions of D3 are shown in Fig. 1. Here
again we have obtained nearly 100 wave functions. It
is evident that in these billiards any association with
classical structures such as periodic orbits is difficult to
see; although, of course, these billiards are also chaotic,
and such association must exist in principle. Instead
the most striking effect visible is localization, which is
strongest in the 3.372 GHz state, but is also present
in a weaker form in the 6.651 GHz state. The degree
of localization can be varied by either changing the
frequency window for a given geometry or changing the
density of tiles. Hence the mean free path l and also the

FIG. 2. Density distribution P�jCj2� for the Sinai Stadium
and the Sinai billiard compared with the Porter-Thomas form
from RMT. While the Sinai Stadium is in excellent agreement,
the Sinai Billiard data show slight deviations due to states
influenced by bouncing-ball orbits.

an integrable system, the probability distribution is often
truncated, e.g., for a rectangle at jCj2 � 4, and is not
universal. In contrast, the chaotic wave functions show
a finite although exponentially vanishing probability of
finding large intensities, in exact agreement with the
P-T distribution, thus confirming their universal nature.
Numerical simulation of random superpositions of plane
waves was also done following Ref. [15] and also shows
very good agreement with P-T [16].

The density correlation P2�r� was also determined
from the wave functions, and is shown in Fig. 3. The
angular brackets denote averaging over space �q, over
angles between �q and �r , and finally over several states.
An important aspect of the present work is that our

Figure 25: Examples of Porter-Thomas distribution: GOE prediction, Sinai
Billiard, and Sinai Stadium measured results, Kudrolli et al. (71).

As shown in Figure 25, the GOE prediction for Porter-Thomas distri-
bution shows that universal mode shapes present a finite, although exponen-
tially vanishing, probability of finding large mode shape amplitudes. A good
agreement is observed for the Sinai Stadium, while the Sinai Billiard results
display slight deviations in the large mode shape amplitude range10 due to
the establishment of non-universal statistics associated with bouncing-ball
orbits11 (125, 72).

For integrable systems, the distribution of normalized squared mode
shape amplitudes is often truncated at some finite value of |ψ|2 and is not
universal, Haake (116). In the case of a rectangular geometry, it is expected
that a truncation point occurs approximately at |ψ|2 = 4, Schaadt (69). In
Figure 26, the flexural mode shapes of the rectangular quartz plate and their
respective Porter-Thomas distribution results are presented, Schaadt (69).

For pseudo-integrable systems, their mode shapes have, simultane-
ously, the statistical characteristics of regular and chaotic systems. Overall,
the non-universal mode shape characteristics are mainly established in the
range of large mode shape amplitudes, where the Porter-Thomas distribution
amplitudes of the large mode shape amplitude range are usually less than

10The main difference between these Sinai geometries is the existence of parallel sides for the
Sinai billiard one which provide the establishment of stable periodical orbits of type bouncing
ball, more details will be presented and discussed along the text.

11Further details regarding the effects of bouncing ball orbits on the mode shape statistics are
presented in the section 2.2.8.
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or greater than the universal expected amplitudes described by the GOE PT-
distribution, (123, 74, 125, 72).

(a) (b)

Figure 26: Examples of regular or integrable mode shapes and their PT- dis-
tributions from a rectangular plate of quartz, Schaadt (69). In these plots,
the smooth and well-behaved function is the analytical formulation of PT-
distribution for perfect GOE eigenvectors, Equation (2.24), and the results
with step function-like format expresses the experimental measurements. Plot
(a): Natural frequency of 419.6 kHz. Plot (b): Natural frequency of 437.7
kHz.

Spatial Distribution of the Mode Shape Components

Considering the spatial mode shape characteristics, the chaotic or
GOE mode shapes are traditionally identified by the presence of disordered
nodal line curves which have the orientations quite random inside the body,
(126, 73, 127). In Figure 27, some examples of chaotic or GOE mode shapes
are presented.
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For classically chaotic systems as well as large symmetric random ma-
trices, such as perfect GOE matrices, the mode shapes (or eigenvectors) are
expected to be Gaussian distributed, that is, a normal distribution for their
eigenvector (mode shape) components is established over the mode shape (or
eigenvector) component domain, (71, 90, 69, 128). Indeed, a Gaussian mode
shape component can be understood as being a random superposition of real
plane waves reflected from the boundaries (or discontinuities) of the system,
Lobiks et al (50). If the system boundaries or irregularities are sufficiently to
scatter the waveguides in several directions, the central limit theorem will be
applicable. This theorem states that the sum of a large number of random va-
riables tends asymptotically to present Gaussian distribution characteristics,
provided that the random variables are independent or identically distributed,
Conover (129).

(a)
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level inverse participation ratio (I2) fluctuations are observed for the disordered billiards, whose distribu-
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quantitatively consistent with calculations based upon nonlinear sigma models.

PACS numbers: 73.23.–b, 05.45.Mt, 73.20.Dx, 73.20.Fz

The universal properties of quantum chaotic systems
have been extensively studied in terms of their eigenvalue
and eigenfunction statistics [1]. In random matrix theory
(RMT), the Gaussian distribution of eigenfunction ampli-
tudes c��r� leads to the universal Porter-Thomas (PT) dis-
tribution for the densities jcj2, which has been observed in
microwave cavities [2] as well as other systems. However,
nonuniversality has important manifestations, for instance,
due to periodic orbits which lead to scars in eigenfunctions,
and localization arising from quantum interference in dif-
fusion. While there have been many theoretical treatments,
from semiclassical periodic orbit theories [1] to nonlinear
sigma models [3], there have been few experimental stud-
ies of eigenfunctions because of their lack of accessibility.

In this paper, we present several striking manifesta-
tions of localization in experimental eigenfunctions of dis-
ordered microwave billiard cavities. Localization due to
boundary or impurity scattering results in correlations that
affect statistics and spatial correlations of the eigenfunc-
tions in several measures, leading to deviations from their
universal values for quantum chaotic systems. The mo-
ments of the density distribution, In �

R jC�r̄�j2n d3r, in
particular, the inverse participation ratio I2 (IPR), and their
distributions PIn �In�, are important measures of the prop-
erties of the chaotic and disordered eigenfunctions. In
chaotic billiards, I2 has a mean value �I2� close to that
of the universal two-dimensional 2D limiting value of 3.0,
with small level-to-level fluctuations dI2 ø �I2�, resulting
in a nearly symmetric distribution about �I2�. In disordered
billiards not only is the mean value �I2� ¿ 3.0, but the
fluctuations are also much greater dI2 � �I2�. The IPR
distribution for the disordered billiards is strongly asym-
metric about �I2�, and is quantitatively consistent with the
calculations based upon the nonlinear sigma models of
supersymmetry, parametrized by a conductivity g [4,5].
Spatial correlations are studied in terms of the density
autocorrelation �jC�r�j2jC�r 0�j2� and are shown to die out
more rapidly in the disordered billiards compared with
the chaotic geometries with a characteristic decay length
given by the mean free path l. Here again the data are in

quantitative agreement with the sigma model calculations.
Our results represent the first quantitative comparison of
experiments and theory.

The experiments were carried out using thin (height d ,
6 mm) cavities, whose cross sections can be shaped in es-
sentially arbitrary geometries. For these two-dimensional
cavities, the operational wave equation is �=2 1 k2�C �
0, with Dirichlet boundary conditions c � 0 at metallic
boundaries; c � Ez is the microwave electric field. Simi-
lar microwave experiments, which exploit this quantum
mechanical—electromagnetic (QM-EM) mapping, have
been used to study quantum chaos in closed [6,7] and open
systems [8]. Eigenfunctions jc�r�j2 were directly mea-
sured using a cavity perturbation technique [6]. Localiza-
tion effects were observed by fabricating billiards in which
1 cm circular tiles were placed in a 44 cm 3 21.8 cm rect-
angle at random locations (Fig. 1) to act as hard scatterers.
(The locations were generated using a random number gen-
erator and the tiles placed manually.) Several realizations

FIG. 1. (a),(b) Experimental eigenfunctions of a disordered
billiard with n � 36 scatterers (noted by the black dots) (a) a
strongly localized state, f � 3.04 GHz, I2 � 13.42 and (b) a
delocalized state f � 7.33 GHz, I2 � 4.06. Eigenfunctions of
(c) Sinai-stadium billiard I2 � 3.01; (d) an integrable rectangle
(I2 � 2.25 for all states).
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Regular billiard

Chaotic billiard

Figure 4: The eigenstates of the integrable circular billiard and the chaotic cardioid
billiard reflect the structure of the corresponding classical dynamics.

For integrable systems the motion is restricted to invariant tori while for ergodic systems the
whole energy surface is filled in a uniform way. For the case of ergodic systems this statement is
actually proven by the quantum ergodicity theorem (see [13] for an introduction and references),
which states that almost all eigenfunctions become equidistributed in the semiclassical limit, e.g.
restricted to position space we have

lim
j→∞

∫

D

|ψnj
(q)|2 d2q =

vol(D)

vol(Ω)
(9)

for a subsequence {ψnj
} ⊂ {ψn} of density one. So for almost all eigenfunctions the probability

of finding a particle in a certain region D of the position space Ω in the semiclassical limit is just
the same as for the classical system.

Fig. 4 illustrates this for the case of the integrable circle billiard and the chaotic cardioid
billiard. One clearly sees that in the former case the probability is restricted to subregions of the
billiard, while for the ergodic case the probability density is uniformly distributed over the full
billiard region (apart from the inevitable fluctuations).

For systems with a mixed phase space the dynamics is more complicated, because both regular
motion and chaotic motion coexist, see Fig. 2. This is also reflected in the structure of the quantum
eigenstates, which are either located in the regular islands, or extend over the chaotic region, see
fig. 5

To conclude let us mention that in addition to the fundamental questions on the quantum
behaviour of systems with classically chaotic dynamics, such systems are also investigated experi-
mentally like for example microwave cavities, optical cavities (microlasers) and mesoscopic devices
(quantum dots).

From the numerical side, our experiences with using Python for research purposes is extremely
positive. When thinking of scientific computing typically Fortran or C/C++ come to ones mind
first for maximum performance. However many tasks involve fairly small amounts of time-critical
code, so that both development time and programm lengths are substantially reduced. On the

5

(c)

Figure 27: Typical examples of GOE mode shapes of chaotic billiards. Plot
(a): Sinai stadium geometry, McDonald and Kaufman (126). Plot (b): 1/4 Si-
nai geometry, Pradhan and Sridhar (73). Plot (c): cardioid geometry, Backer
(127).

Waterhouse (130) proposed analytical expressions for the spatial PDF
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(with the sample space taken to be the area of the system) of sinusoidal mode
shapes for one, two, and three-dimensional systems, and these expressions
are given by, respectively:

P1D(φ) =
2
π

(
1−φ

2)− 1
2 , if −1≤ φ ≤ 1, (2.26)

P2D(φ) =
4

π2 K1
el
(
1−φ

2) , if −1≤ φ ≤ 1, (2.27)

P3D(φ) =
8

π3

∫ 1

φ

K1
el

(
1−φ 2

)

(u2−φ 2)
du, if −1≤ φ ≤ 1, (2.28)

where K1
el(x) is the complete elliptic integral of the first kind of x and:

P1D(φ) = P2D(φ) = P3D(φ) = 0, i f |φ |> 1. (2.29)

Lilliefors Test

In order to evaluate the agreement between the Gaussian PDF12 and
the PDF of mode shape components from a random system, the Lilliefors
normality test can be considered adequate13, Conover (129). The Lilliefors
test is an adaptation of the Kolmogorof-Smirnoff Test, which is applied to ve-
rify the establishment of normal statistics for a set of data.14 In the Lilliefors
normality test, the test statistics (SLT ) are defined as:

SLT = sup
x
|Φ(x)−FZ(x)|, (2.30)

where Φ(x) is the standard Gaussian cumulative distribution function and the
sup(x) function refers to the maximum value of the difference over the range

12According to RMT, Gaussian or normal distribution is expected for eigenvector components
of classically chaotic systems, Mehta (24).

13In probability theory and the statistics field, the skewness coefficient is a measure of the
asymmetry of the probability distribution of a random variable. For normal distribution (or any
perfectly symmetric distribution), the skewness coefficient is zero, (131, 132, 103). In the present
study, some analysis carried out with mode shape components used this metric function as an
auxiliary or complementary result to investigate indirectly the degree of the establishment of
GOE (or Gaussian) statistics for the mode shapes of random engineering systems.

14A detailed description of the most well known normality tests is available in Conover (129)
and Montgomery & Runger (103).
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of x considered, and FZ(x) is the empirical cumulative distribution function
of the normalized sample values which is defined as:

Zi =
Xi−µX

σX
, (2.31)

where µX and σX are the mean and standard deviation values from the empi-
rical data.

The Lilliefors test is implemented in the standard libraries of several
mathematical software programs, for instance: Statistics and Matlab (133,
131, 132). The Lilliefors test results are based on the corresponding level of
significance for a particular value of a certain statistic. In the Matlab software,
the Lilliefors test results are presented in terms of two distinct values. If
the Lilliefors test result is unity, the hypothesis that variable Xi has a normal
distribution can be rejected. On the other hand, if the Lilliefors test result is
null (zero), the hypothesis of the normal distribution cannot be rejected.

Kurtosis Metrics

The kurtosis is a statistical observable which measures how outlier-
prone a distribution is, that is, it quantifies the degree to which a uni-modal
distribution is peaked, Montgomery and Runger (103). In the mode shape
context, the definition of kurtosis is given by:

K =
E
[
φ 4
]

E [φ 2]2
, (2.32)

where E [ ] usually denotes the expected value from the averaging process
over the mode shape component domain.

Regardless of the averaging process approach adopted, the kurtosis
can be adequately defined as the ratio of the fourth central moment divided
by the square of the second central moment. If the distribution is normal,
then the kurtosis value is exactly equal to 3. A kurtosis value greater than
3 indicates the presence of several values in the neighborhood of the mean
value, that is the distribution is more peaked than the normal distribution. If
the kurtosis value is less than 3, the distribution curve is flatter than the normal
distribution.
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Figure 28: Definitions of kurtosis averaging approaches. Plot (a): Ensemble
mode shapes. Plots (b - d): Graphical representations of the spatial, spectral,
and ensemble kurtosis averaging approaches, respectively, Gomes and Gerges
(101).

Although the kurtosis evaluation for mode shapes traditionally consi-
ders the expected values from an averaging process over the spatial domain
(i.e., over the mode shape component domain), other alternative kurtosis ave-
raging approaches can be considered and their statistical results provide rele-
vant information about the mode shape statistics, Gomes and Gerges (101).

In the present study, three distinct mode shape averaging approaches
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were considered for the kurtosis evaluation from the mode shapes: spatial,
spectral, and ensemble averaging approaches. In Figure 28, the kurtosis ave-
raging approaches are illustrated.

Mode Shape Statistics Factor

The parameter known as the Mode Shape Statistics Factor (K) was
initially proposed by Lyon (48) in order to represent the spectral statistics
of mode shapes in the Theory of SEA variance, (48, 53, 54, 49, 50). The
definition of the Mode Shape Statistics Factor (K) is given by:

K =
E
[
φ 4
(
x f
)]

E
[
φ 2
(
x f
)]2 , (2.33)

where x f is the excitation force point.
In order to simplify the evaluation of the mode shape statistics fac-

tor, Lyon (48) considered, for convenience, the mode shapes as sinusoidal
functions and the term E [ ] denoted the expected values from the spatial
averaging process. It is important to emphasize that, for mass normalized
mode shapes with zero mean amplitudes, Lyon’s mode shape statistics fac-
tor definition becomes identical to the spatial kurtosis, Equation (2.32). For
mode shapes described by sinusoidal functions, the spatial kurtosis values
are Ksin = 1.5, 2.25and3.375, for one, two, and three-dimensional systems,
respectively.

Considering the context of the energy response variance across the en-
semble, Langley and Brown (18) adopted the ensemble averaging approach
in the evaluation of the mode shape statistics factor. Thus, for mass normali-
zed mode shapes with zero mean amplitudes, Langley’s mode shape statistics
factor definition becomes identical to the ensemble kurtosis definition for any
given mode shape component (i.e., at a fixed excitation point) across the en-
semble. In SEA variance predictions, Langley and Brown (18) considered
the GOE model for both modal parameter statistics, and thus the ensemble
mode shape statistics at the excitation point was assumed to be Gaussian and
an ensemble kurtosis value of 3 was adopted, regardless of the system dimen-
sionality.

Inverse Participation Ratio

In the disordered Quantum Billiard context, the Inverse Participation
Ratio - IPR (I2) is an eigenvector statistical observable which measures the
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disorder strength from the mode shapes, Pradhan and Sridhar (123). Accor-
ding to Pradhan and Sridhar (73), the kth statistical moment of nth normalized
squared mode shape amplitudes (Ik) is given by:

Ik(n) =
∫

Ω

|ψn (
−→r ) |2kdΩ, (2.34)

where Ω is the spatial domain of system and |ψn (
−→r ) |2 is the nth normalized

squared mode shape amplitude at spatial position −→r , which is normalized to
have unit mean:

I1(n) =
∫

Ω

|ψn (
−→r ) |2dΩ = 1. (2.35)

The definition of the Inversion Participation Ratio arises from the se-
cond statistical moment of normalized squared mode shape amplitudes (nor-
malized to have unit mean) as follows:

I2(n) =
∫

Ω

|ψn (
−→r ) |4dΩ = E

[
|ψ2

n (
−→r ) |2

]
, (2.36)

where E [ ] denotes the value expected from the averaging process over the
spatial system domain.

According to Equation (2.36), the Inversion Participation Ratio defi-
nition can be considered identical to Lyon’s Mode Shape Statistics Factor or
the spatial kurtosis when they are evaluated considering normalized squared
mode shapes instead of mass normalized mode shapes. Burhhardt and Wea-
ver (75) called this factor the Modal Participation Ratio.

The second statistical moments (I2) and their probabilistic distribution
PI2(I2) are very important measures of the statistical properties of the cha-
otic and disordered eigenfunctions, (73, 74). For finite chaotic systems, it
is expected that the spectral mean value of I2, 〈I2〉, is close to that of the
universal GOE limiting value of 〈I2〉 = 3.0, with small mode-to-mode fluc-
tuations δ I2� 〈I2〉, resulting in a nearly symmetric distribution around 〈I2〉.
On the other hand, the statistical moments Ik of squared normalized mode
shape amplitudes from an infinite classically chaotic system are expected to
have fixed values with no mode-to-mode fluctuations, with I2 = 3.0, i. e.,
PI2(I2) = δ (I2−3.0).

Similarly to the spatial kurtosis values, the inverse participation va-
lues of I2 = 1.5, 2.25, and 3.375 are expected for all mode shapes from the
one, two and three-dimensional regular or integrable systems, respectively, in
which their mode shapes are described as product of sinusoidal functions.
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Spatial Correlation of Mode Shape Components

Another eigenvector statistical observable is the spatial correlation
function of the mode shape components which describes the spatial corre-
lation of mode shape amplitudes, (71, 73). In the present study, two types
of spatial correlations are investigated: the linear and squared mode shape
spatial correlation functions, P1(kr) and P2(kr), respectively.

In the Quantum Billiard field, the linear and squared spatial mode
shape correlation functions of the n-th mode shape, P1(knr) and P2(knr) res-
pectively, are defined as:

P1(knr) =
〈
|ψn(
−−→
knr0)| |ψn(

−−→
knr0 +

−→
knr)|

〉
, (2.37)

and:

P2(knr) =
〈
|ψn(
−−→
knr0)|2 |ψn(

−−→
knr0 +

−→
knr)|2

〉
, (2.38)

where ψn is the nth normalized mode shape amplitude (normalized to have
unit mean), kn is the wave number of n-th mode, r is the magnitude of the
distance between −→r and −→r0 points, and the angular brackets 〈 〉 denote the
averaging process over

−−→
knr0, and angles between

−−→
knr0, and

−→
knr. Traditionally,

an averaging process over many mode shapes (wave functions) is adopted in
order to obtain more robust and representative results, and thus the angular
brackets also include the averaging process over different mode shapes.

Since the mode shapes are traditionally scaled to unit-generalized
mass in the vibroacoustics field, the definition of the frequency-averaged li-
near mode shape correlation function can be conveniently re-written as:

P1(kr) = M E [φn(x0)φn(x)] , (2.39)

where φn is the n-th mass-normalized mode shape, M is system mass and E [ ]
denotes the expected frequency-averaged value of the product of the mode
shape amplitudes at the x0 and x positions.

Considering that the mode shapes form a homogeneous random field,
the linear mode shape correlation function is identical to the acoustic field
correlation function (R f ):

P1(kr) = M E [φn(x0)φn(x)] = R f (x−x0). (2.40)
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For the ideal diffuse acoustic field, Cremer and Heckel (38) defined
analytical expressions of diffuse field correlation functions for two and three-
dimensional systems as:

R f (x−x0) =

{
J0(kr), 2D-systems,

sin(kr)/(kr), 3D-systems, (2.41)

where J0 denotes the zeroth order Bessel function.
Langley and Cotoni (35) showed that the diffuse field correlation func-

tions can be directly extended to classically chaotic dynamical systems in
which the mode shape statistics conform to the GOE model. Prigodin (134)
also showed that the same correlation function expressions can also be obtai-
ned through the Friedel functions in the ballistic regime for wave functions
from the 2D- and 3D-quantum chaotic disordered systems.

Similarly to the linear correlation function of the mode shape compo-
nents, the definition of the squared correlation function of the mode shape
components can be re-written in terms of the mass-normalized mode shapes:

P2(kr) = M2E
[
φ

2
n (x0)φ

2
n (x)

]
. (2.42)

Considering the statistical characteristics of covariance function, the
P2 definition is conveniently expressed as an expansion of φn terms, (35):

P2(kr) = M2E
[
φ

2
n (x0)

]
E
[
φ

2
n (x)

]
+2M2 E [φn(x0)φn(x)]

2 . (2.43)

Considering that the linear correlation function of the mode shape
components is adequately described by a diffused field correlation function
and the fact that the mode shapes are scaled to unit generalized mass so that
E
[
φ 2

n (x0)
]
= 1/M, the frequency-averaged squared correlation function of

the mode shape components for GOE mode shapes is given by:

PGOE
2 (kr) = 1+ cGOEJ2

0 (kr), (2.44)

where cGOE = 2 for chaotic systems.
A similar expression to Equation (2.44) was also obtained by Prigodin

et al (135, 134) through the use of disordered system models at the ballistic
or extreme diffusive limit. An excellent agreement with this analytical pre-
diction has recently been confirmed with mode shape correlation results from
the chaotic systems such as the Sinai stadium and other classically chaotic
geometries, (71, 135, 134, 136).
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According to Equation (2.44), P2(kr)→ 1 for large distances since
J2

0 (kr)→ 0 for r→ ∞. Therefore, it is expected that the squared mode shape
amplitudes are uncorrelated for sufficiently large distances. The coefficient
cGOE , in front of the Bessel function term, corresponds to P2(0)−1 and is in
agreement with the Porter-Thomas distribution for GOE mode shapes, Equa-
tion (2.24), and thus:

P2(0) =
〈
|ψn(
−−→
knr0)|2 |ψn(

−−→
knr0)|2

〉
=
〈
|ψn(
−−→
knr0)|4

〉
=
∫

∞

0
z2PGOE

PT (z)dz = 3,

(2.45)
where z = |ψn(

−−→
knr0)|2.

2.3.3 Mode Shape SEA Parameters

In the SEA variance context, the mode shape statistics provides a sig-
nificant contribution to the energy response from an ensemble composed of
similar random engineering structures with uncertain or non-deterministic pa-
rameters. Therefore, major effects of the mode shape statistics on the statisti-
cal moments of energy responses are expected for cases of structures subjec-
ted to single point-loadings rather than the spatially-distributed excitations,
Brown (1).

The definitions of mode shape SEA parameters are described in detail
below. These mode shape parameters are metric functions which quantify the
level of randomness of random systems through the measurement of mode
shape dispersion characteristics across the ensemble.

Additionally, it is generally considered that, in principle, the results
from these mode shape SEA parameters also allow the correct identification
of the level of uncertainty necessary to guarantee that the universal statistics
threshold limit is reached and a GOE model can be completely established
for both modal parameter statistics.

In the Quantum Physics field, good results have been obtained in the
quantifying of universal statistics based on the eigenvector statistics. Karol
Zyczkowski (81) showed through a single parameter, called M(r), which is
based on the minimal number of relevant eigenstates, that the level of uni-
versal statistics associated with a certain system can be correctly identified
through the number of eigenbases present on their eigenvectors. For a classi-
cally chaotic system, a large number of eigenbases is expected since the disor-
der effects are strongly established across the eigenvector domain. However,
only a small number of eigenbases is required to describe the eigenvectors
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of integrable or regular systems. Additionally, the proposed parameter ba-
sed on the minimal number of relevant eigenstates also allows three known
universality symmetry classes to be distinguished, GOE, GUE and GSE.

Based on a similar concept to Zyczkowski’s, Cordioli (20) employed
the Singular Value Decomposition (SVD) techniques and proposed SEA pa-
rameters based on the mode shape statistics in order to verify the applicability
of GOE statistics to the modal parameters from an ensemble composed of si-
milar random structures. The definitions of these parameters are reviewed
below. Further information concerning the performance of these mode shape
SEA parameters will not be discussed here in detail, but is available in Cor-
dioli (20).

Let us consider that N mode shapes are presented in terms of incre-
asing natural frequencies for each ensemble member and the size of the en-
semble is Ne members. For the kth mode shapes across the ensemble, the
mode shape matrix Dk is defined as:

Dk =
[

u1
k u2

k . . . uNe
k

]
, (2.46)

where ui
k is the kth mode shape from the ith ensemble member.

According to Singular Value Decomposition (SVD)(137), the mode
shape matrix Dk can be decomposed as:

Dk = WkSkVk, (2.47)

where the Wk and Vk are matrices which contain a set of the orthonormal
output and input (or analysing) basis vectors displayed in their columns, res-
pectively, and Sk is the diagonal matrix which presents the corresponding
singular values.

In order to determine the minimum number of relevant singular values
(or eigenstates) of the mode shape matrix, a particular threshold limit (T L)
is adopted for convenience, considering that all important basis vectors are
included. Therefore, the first mode shape SEA parameter, Parameter P(k),
which quantifies the number of important basis vector, is defined as:

P(k)

∑
i=1

(
Sk

i

)2
= T L

N

∑
i=1

(
Sk

i

)2
, (2.48)

where Si is the i-th singular value for kth mode shapes, which is assumed to
be labeled in order of decreasing magnitude. Traditionally, the threshold limit
value (T L) adopted is T L = 0.90 or 0.99, (81, 20).
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Before introducing the second mode shape SEA parameter, Parameter
Q(k), the concept of the eigenvector mixing phenomenon is illustrated th-
rough the results from a parametric study with an externally perturbed quan-
tum chaotic billiard system performed by Schaadt et al (69, 110, 70). In
parametric studies of billiard systems in the Quantum Physics field, the repre-
sentation of effects of an increase in the level of disorder (external parameter)
on the modal parameters is performed through the curves of unfolded energy
levels (eigenvalues) as a function of the disorder level (external parameter
magnitude). Thus, a set of curves of unfolded natural frequencies are simul-
taneously represented for each mode order, which present a pattern similar to
spaghetti in appearance, Figure 29 (a).

(a)
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Here we assume that V is independent of X �this was true in the experiment� as mentioned
later in this chapter�� Using the rescaled parameter x� the statistics of the remaining level
motion is conjectured to be universal ���� 	�� ��� �see section ��� and ����� The universal
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Figure 29: Representation of the effects of an increase in the amount of un-
certainty associated with the unfolded natural frequency of a random system.
Plot (a): Example of spaghetti unfolded frequency curves, Schaadt (70). Plot
(b): Modal parameter characteristics of the avoided crossing region (mixing
of mode shapes), Schaadt (69).

Due to the level repulsion effects expected for classically chaotic sys-
tems, no natural frequency curves can cross each other. As shown in Figure
29 (b), the natural frequencies close to the crossing region have avoided cros-
sing characteristics, that is, the natural frequencies repel each other due to the
level repulsion effects and move apart again. Although the natural frequen-
cies do not cross the corresponding mode shapes do cross. Now consider that
the mode shape of the n-th natural frequency before the avoided crossing re-
gion is the same as the mode shape of the (n+ 1)-th natural frequency after
the avoided crossing region. This phenomenon of a change in the mode shape
position in the natural frequency domain is known as the mixing of eigenvec-
tors.

It is also important to emphasize that for structures in which several
classes of modes exist, only mode shapes of the same mode class will show
avoided crossing characteristics, while two mode shapes from distinct mode
classes will cross each other without any iteration.

Considering the avoided crossing phenomena, Cordioli (20) proposed
a second mode shape SEA parameter, Parameter Q(k), which is related to
the mixing of eigenvectors. For the kth mode shapes across the ensemble,
the level of eigenvector mixing is evaluated through the auxiliary matrix (Rk)
which is defined as the projection of each uk on the SVD basis vectors of the
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Dk, that is:

Rk = (Wk)
T Dk =

[
rk

1 rk
2 · · · rk

Ne

]
, (2.49)

where the matrix dimensions are: dim(Rk) = (N, Ne), dim(Wk) = (N, N) and
dim(Dk) = (N, Ne), respectively.

Therefore, each vector rk
i has a unitary module and contains the inter-

nal product of the kth mode shape of the ith ensemble member with the basis
vector from Wk. For cases where a particular rk

i component is large, a high
alignment is expected with a specific basis vector. On the other hand, if se-
veral rk

i amplitudes are significant, the rk
i vector is composed of several basis

vectors. Similarly to the determination of the Parameter P(k), the number of
relevant basis vectors, Qk(i) of each rk

i vector is given by:

Qk(i)

∑
z=1

(
rk

i,z

)2
= T L, (2.50)

where the components of the rk
i vector are labeled in order of decreasing

magnitude.
The Parameter Q(k) associated with the k-th mode shapes across the

ensemble is defined as the ensemble mean of the Qk(i) parameters and is
given by:

Q(k) =
1

Ne

Ne

∑
i=1

Qk(i). (2.51)

In order to verify the number of symmetries of system, a third mode
shape SEA parameter, Parameter Z, was also proposed by Cordioli (20). Ba-
sed on the Parameters P(k) and Q(k) results, the Parameter Z(k) associated
with the k-th mode shapes across the ensemble is given by:

Z(k) =
P(k)
Q(k)

. (2.52)

For systems with several symmetries as those have Poisson statistics,
large values are expected for Parameter Z results. Further information con-
cerning the application and performance of the Parameter Z is available in
Cordioli (20).
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2.3.4 Nonuniversal Eigenvector Statistics

As discussed in the previous section, some relevant mode shape statis-
tics deviations in relation to the expected GOE eigenvector statistics are ob-
served for most random engineering systems, Gomes (10). The main physical
phenomena associated with the establishment of nonuniversal mode shape
statistics can be classified into two major deviation classes. In first mode
shape deviation class, the phenomena are related to the effects of the presence
of stable periodic orbits which are strongly associated with the geometrical
characteristics of the system, (92, 96, 95, 97, 115). The second mode shape
deviation class is associated with the structural localization effects of the
presence of impurities and structural irregularities along the spatial domain
of system, (136, 138, 71, 139, 140)

In the following subsections, the effects of periodic orbits and structu-
ral localization phenomena on the mode shape statistics are discussed in detail
and illustrated in terms of the eigenvector statistical observables results.

Effects of Periodic Orbits on the Mode Shapes

In the quantum chaology15 field, periodic orbits have been used as a
semiclassical tool in the spectral analysis of the energy levels from billiard
systems, (92, 96, 95, 97, 115). From the mode shape statistics point of view,
periodic orbits provide an efficient means to clarify the connections between
the mode shape characteristics and the system geometry characteristics since
every mode shape is considered to be composed of resonance functions which
are constructed on periodic orbits at the semiclassical limit, (97, 115).

Considering the effects of periodic orbits on the mode shape statistics,
the presence of stable periodic orbits leads to the establishment of the scars
phenomenon of the mode shapes, (141, 119). According to Kudrolli and
Sridhar (105), the scars are defined as mode shape regions of enhanced inten-
sity along the periodic orbits. Some scarred mode shapes of billiard systems
investigated in the recent literature are presented below and examples are dis-
cussed in order to illustrate how the effects of periodic orbits may become
significant in terms of the mode shape statistics characteristics. In Figure 30,
an example of the bouncing ball16 state and its respective Porter Thomas dis-
tribution results are presented, Kudrolli and Sridhar (72). The main stable

15Quantum chaology comprises the study of how chaos in classical mechanics arises it the
limit of quantum mechanics, Stockmann (104).

16The bouncing ball orbits are a special class of periodic orbits which propagate perpendicu-
larly to two parallel system boundaries.
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periodic orbits of a quarter Sinai rectangular billiard are shown in Figure 30
(a).

boucing_mode_shapes_01

(a)

(b) (c)

Figure 30: Example of a typical bouncing ball state of a quarter Sinai rectan-
gular billiard. Plot (a): Main periodic orbits. Plot (b): squared mode shape
amplitudes. Plot (c): Porter-Thomas distribution results, Kudrolli and Sridhar
(72).

As shown in Figures 30 (b) and (c), the establishment of bouncing
ball periodic orbits provides significant changes mainly in the range of mode
shape components with large amplitudes. Indeed, the quarter Sinai rectan-
gular billiard presents some geometrical characteristics similar to classical
regular systems, where the periodic orbits with bouncing ball characteristics
are established and their effects reduce the probability of the occurrence mode
shape components with large amplitudes.

In Figure 31, other examples are presented from an experimental in-
vestigation with disordered Sinai billiard micro-cavities, Sridhar et al (119,
122).
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(a) (b)

(c)

Figure 31: Examples of mode shapes associated with periodical orbits,
Sridhar and Heller (119).

As shown in Figures 31 (a) and (b), the periodical orbits are the half
diagonal lines and main diagonal lines, respectively. While the qualitative as-
sociation with the periodical orbits is easily determined, the evaluation of the
corresponding natural frequency through simple geometric rules is someti-
mes a very complex task, Sridhar (119). In Figure 31 (c), the enhanced mode
shape amplitudes are established predominantly along the diagonal direction,
while the corresponding periodic orbits are not perfectly isolated.

For a regular or integrable system like a rectangular billiard, the sta-
ble periodic orbits provide an asymptotic tendency to establishment of good
quantum numbers, that is, the establishment of well-defined modal indexes
associated with each mode shape, (119). For vibroacoustical systems, the
good quantum numbers correspond to the wavenumbers which allow adequa-
tely to describe the spatial configuration of a mode shape and evaluate its
corresponding natural frequency.

On the other hand, for systems with classically chaotic or sufficiently
disordered geometries, an exact identification of quantum numbers becomes
very complex, (119). In these cases, the complexity arises because in cha-
otic geometries, natural frequency is the only well-defined parameter, while
other quantum numbers, like kx and ky wavenumbers for regular geometry,
are absent.
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Disorder and Anderson Localization Effects

The second class of the nonuniversal deviations of the mode shape
statistics is related to the establishment of localization phenomena17. The lo-
calization phenomenon was initially predicted by the American physicist P.
W. Anderson, also known as Anderson localization, Anderson (142). In ge-
neral, the localization concept is associated with the absence of the diffusion
of waves in a random medium and can be extended to a general wave pheno-
menon that applies to the transport of electromagnetic waves, acoustic waves,
quantum waves and spin waves, etc.

The several experimental observations of the localization phenomena
have been made in disordered billiard systems in the quantum physics field.
For disordered systems such as microcavities perturbed with small metallic
scatters (tiles), there are three characteristic lengths which may affect the sta-
tistical behavior of the mode shapes, or wavefunctions. They are the system
size or span length (Ru), the mean free path18 (l), and the wavelength of the
resonance frequency (λu).

The most relevant physical phenomenon associated with disordered
quantum billiard systems is Anderson Localization or simply Localization
which is established under conditions where the wavelength is similar to mean
free path, λu ∼ l, Sridhar (120). Examples of the experimental localized wa-
vefunctions are shown in Figure 32.

17The occurrence of this physical phenomena can be attributed to the existence of a the large
degree of randomness of the impurities or defects inside the system domain, (71, 120).

18The mean free path of a particle is the average distance covered by a particle between sub-
sequent impacts.
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(a) (b)

Figure 32: Examples of the wavefunctions of disordered billiard systems de-
monstrating the establishment of Anderson Localization. Plot (a): weak lo-
calization regime. Plot (b): strong localization regime, Pradhan and Sridhar
(73, 74).

As shown in Figure 32, the localization effects on mode shape ampli-
tudes are significant and provide the confinement of large mode shape ampli-
tudes in certain spatial mode shape regions. Furthermore, the degree of lo-
calization varies, either changing the frequency range or changing the mean
free path through an increase or decrease in the uncertainty level of system
(tiles, irregularities, or discontinuities). In general, two major regimes of lo-
calization are established: weak and strong localizations, Figures 32 (a) and
(b), respectively.

For localized wavefunctions (or mode shapes), the probability density
function of squared normalized mode shape amplitudes, PPT (|ψ|2), devia-
tes significantly from the universal GOE PT-distribution, PGOE

PT (|ψ|2), Equa-
tion (2.24). The localization effects lead to the probability density function
of squared normalized mode shape amplitudes, PPT (|ψ|2), being much lar-
ger than the prediction of the universal GOE PT-distribution, PGOE

PT (|ψ|2) for
range of large |ψ|2 magnitudes, Pradhan and Sridhar (123). Additionally, a
slight reduction in the universal GOE PT-distribution, PGOE

PT (|ψ|2), is also ex-
pected for the region of small normalized squared mode shape amplitudes for
strong localization regime19.

According to Sridhar (120), the degree of localization of wavefunc-

19Examples of PT-distribution results for weak and strong localization regimes are presented
in Figure 34.
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tions (or mode shapes) can be correctly expressed by the higher statistical
moments of the normalized squared mode shape amplitudes as the Inverse
Participation Ratio, I2, that is P2(0). For disordered wavefunctions (or mode
shapes) subjected to the establishment of localization phenomenon, values of
I2 > 3 are expected. For a weak or incipient localization regime, the mode
shapes are almost delocalized and most values of I2 are expected to be sligh-
tly greater that the universal value IGOE

2 = 3 as I2 ∼ 4, as well as present a
small level-to-level variation. However, for a strong localization regime, the
values of I2 are expected to be very large in comparison to the universal value
as I2 ∼ 20 for extremely localized mode shape.

Besides the individual values of I2 for each mode shape, important
conclusions concerning the spectral characteristics of mode shape statistics
can be obtained when the Probability Density Function of I2 is also evaluated
for disordered systems.

For chaotic geometries, such as the 1/4 Sinai stadium, the mode shapes
are delocalized and the PI2(I2) is expected to be nearly symmetric around to
spectral mean value of I2 which is identical to the expected universal value of
IGOE
2 = 3. Due to finite dimensions, the boundary scattering phenomenon on

the system length scale, leads to the incipient establishment of nonuniversal
correlations, which is not consistent with the RMT hypothesis of Gaussian
fluctuations of eigenfunction amplitude, and provides fluctuations in the dis-
tribution of PI2(I2), although of narrow distribution width, Pradhan

For disordered structures, the mode shapes tend to be spatially locali-
zed for some frequencies. As discussed above, the degree of localization of
a certain mode shape can be associated with the I2 value, and thus a strong
localization leads to large values of I2, which may be as high as I2 ∼ 20. In
general, the PI2(I2) is asymmetric and the spectral mean value, 〈I2〉, is higher
than the expected universal GOE value IGOE

2 = 3 20.
Since the establishment of the localization phenomenon provides the

absence of wave diffusion, the significant localization effects on the energy
spatial distribution as well as on the spatial correlation of mode shapes are
expected for localized mode shapes. In Figure 33, examples of the evaluation
of squared spatial correlation functions of the mode shape components are
presented for weak and strong localization regimes, Kudrolli et al (71).

20Practical examples of the PDF of I2 are depicted for disordered systems under ballistic (i.e.,
chaotic) and strong localization regimes Figure 35, respectively.
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Figure 33: Examples of squared spatial correlation functions of the mode
shape components for weak and strong localization regimes, Kudrolli et al
(71).

As observed in Figure 33 the squared spatial mode shape correlation
function results do not obey the universal GOE expression proposed by Equa-
tion (2.44). The amplitudes of spatial mode shape correlation function results
are larger than those of the universal GOE prediction, mainly for a small kr
region. This pattern shows clearly that the localization effects cause an incre-
ase in the spatial correlation between the mode shape components mainly for
small distances. Additionally, the amplitudes of the spatial correlation functi-
ons of localized mode shapes die out faster with an increase in the magnitude
of kr and tend to be uncorrelated for large distances.

Theory of Supersymmetry: Nonlinear Sigma Model

The Theory of Supersymmetry is an alternative approach which ena-
bles us to describe of spectral correlations of disordered systems, such as the
natural frequency spacing statistics, the linear and squared mode shape am-
plitude distributions and the spatial correlation of squared mode shape ampli-
tudes, Efetov (136, 138).

From the perspective of transport in disordered systems, the chaotic
systems correspond to disordered systems with a ballistic or diffusive limit
where the mean free path and conductance21 are infinite, (138, 123, 73). Due

21Details regarding the conductance parameter are provided later in this section.
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to the establishment of incipient localization effects, the universal properties
are no longer ensured and the modal parameter statistics deviates substantially
from the RMT predictions. Thus, a perturbative treatment has been achieved
using nonlinear sigma models from the supersymmetry theory, (138). Ori-
ginally, the development of these models was motivated by the problem of
electrons in a disordered metal.

In general, the nonlinear sigma model has proven to be a very powerful
tool for the characterization of the statistical properties of energy levels (natu-
ral frequencies) and eigenfunctions (mode shapes) in disordered and chaotic
systems, (71, 73, 123). The main advantage of nonlinear sigma models is
associated with the ballistic regime, kl > 1, where the expressions proposed
by nonlinear sigma models reduce to RMT predictions for both modal para-
meters.

As the disorder level increases the finite mean free path and conduc-
tance are established and the modal parameter statistics are no longer uni-
versal and can be not described by the RMT predictions. Through 1D sigma
models, a perturbative correction is taken into account due to the finite con-
ductance g and a finite disorder strength parameter 2kl. Further details regar-
ding the theory of supersymmetry are beyond the scope of this work and are
available in the related literature, (138, 143, 104).

The main expressions of eigenvector statistical observables based on
the nonlinear sigma model of supersymmetry theory are presented below and
examples of their applications are demonstrated through illustrative results
from the quantum physics literature.

Mirlin and Fyodorov (77) investigated analytically and numerically
the higher moments of the normalized squared mode shape amplitudes of
large random matrices with a band structure. They were able to describe
the localization correlation of weak localized mode shapes of a quasi-one
dimensional wire, using the 1D nonlinear sigma model of supersymmetry.
For incipient localization, Mirlin and Fyodorov show that the distribution of
normalized squared mode shape amplitudes can be expressed as a correction
function for the universal GOE PT-distribution and is given by:

PWL
PT (|ψ|2) = fMF

(
|ψ|2

)
PGOE

PT (|ψ|2), (2.53)

where fMF is the Mirlin - Fyodorov correction function for weak localization
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is given by:

fMF(|ψ|2)∼= 1+dL

[
1
4
− |ψ|

2

2
+

(
|ψ|2

)2

12

]
, (2.54)

where dL is the fitted disorder localization parameter.
For a strong localization regime, large deviations are expected for the

PPT (|ψ|2) results, which can not be described by the localization correcti-
ons proposed for PWL

PT (|ψ|2), as in Equation (2.54). Mirlin and Fyodorov
proposed the following PT-distribution expression for the strong localization
regime:

PSL
PT
(
|ψ|2

)
=

8
d2

L

√
dL

2(|ψ|2)K1


2

√
2(|ψ|2)

dL


 , (2.55)

where K1(x) is the MacDonald Function, or modified Bessel function of the
second kind of first order, (144). In the Mathematics field, the modified Bessel
functions of the second kind are sometimes also called the Basset functions,
modified Bessel functions of the third kind, or MacDonald functions. The
definition of the modified Bessel function of the second kind of nth order is
given by:

Kn(x) =
1
2

πin+1H(1)
n (ix), (2.56)

where H(1)
n (x) is the Hankel function of the first kind of x, (131, 132). In

Figure 34, examples of the good performance of PT- distribution expressions
for localization in weak and strong regimes are presented, Kudrolli et al (71).
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Figure 34: Porter - Thomas results for weakly and strongly localized mode
shapes: experimental and analytical patterns based on nonlinear sigma model
of supersymmetry, Kudrolli et al (71).

Analytical developments regarding the distribution of Inverse Partici-
pation Ratio values have been performed by Prigodin and Altschuler (145).
Based on nonlinear sigma models from the mesocopic systems, they showed
that the PDF of I2 values, PI2(I2), follows an exponential decay law and, for
I2 < 〈I2〉, is given by:

PI2(I2) =C1
g
2

exp
[
−g

6
(I2−〈I2〉)−

π

2
e−

g
3 (I2−〈I2〉)

]
, (2.57)

while, for I2� 〈I2〉, the PI2(I2) is given by:

PI2(I2) =C2

√
g
I2

exp
[
−π

6
gI2

]
, (2.58)

where C1 and C2 are the normalization constants. For a mesoscopic system,
the spectral distribution of I2, PI2(I2), is dependent on the dimensionless con-
ductivity g of a system which is defined as:

g =
ln
(Ru

l

)

〈w〉 ,w =
(I2−3)

6
, (2.59)

where Ru is the system size, l is the mean free path and 〈· · · 〉 denotes the
expected averaged value for a fixed disorder strength, 2kl.
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In Figure 35, examples of the good performance of fitted forms of PDF
of values I2, PI2(I2), proposed by nonlinear sigma model of supersymmetry
theory are presented for chaotic and disordered systems, Pradhan and Sridhar
(73).
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of the disordered geometry were experimentally studied,
by varying the density of scatterers from 12 to 71, thus
varying mean free path l � 8.9 to 3.6 cm. Earlier experi-
ments [2] had shown that these disordered geometries are
an excellent experimental realization of the classic problem
of an electron in a 2D disordered potential. Subsequent to
this work, there have been important theoretical develop-
ments [4,5,9], some motivated by our earlier experiments.

The experimental eigenfunctions directly demonstrate
the trend toward decreasing localization from disordered to
chaotic to integrable as seen in Fig. 1, which shows rep-
resentative experimental eigenfunctions, along with their
corresponding IPR I2, for several billiards. The strongly
localized state Fig. 1(a) at f � 3.04 GHz of the disordered
billiard with N � 36 scatterers has very large I2 � 13.42.
Note that this is a direct observation of localization of EM
waves which also maps to QM (matter) waves. In con-
trast the more delocalized state at higher frequency f �
7.33 GHz [Fig. 1(b)] explores almost all the available co-
ordinate space similar to chaotic cavities and has a smaller
I2 � 4.06. For the chaotic Sinai stadium, typical values
of the IPR are around 3.0 [I2 � 3.01 for this eigenfunc-
tion Fig. 1(c)] while for the integrable rectangle billiard
Fig. 1(d) IPR I2 � 2.25 for all eigenfunctions. Figure 1
demonstrates a key advantage of our experiments, which is
that by varying l and wave vector k we are able to access a
wide range of the disorder strength kl, from strongly local-
ized states for kl , 1 to delocalized states with kl ¿ 1.

Eigenfunctions such as in Fig. 1 were then analyzed
in terms of I2 and PI2 �I2�. In the following, for conve-
nience, we use the notation I2 �

R jC�r�j4 dy �
R

u2 dy,
w � �I2 2 3��6, u � jC�r�j2, and I1 �

R jC�r�j2 dy �
1, and the integral is over the volume y (area in 2D).
Nearly 400 eigenfunctions were analyzed each containing
more than 3200 eigenfunction values.

Figure 2 shows level-to-level variations I2�E� for the
Sinai stadium. Here I2 is mainly clustered around a mean
value of �I2 � � 3.0, with relatively small level-to-level
fluctuations. The IPR distribution PI2 �I2� of the chaotic
Sinai-stadium billiard is shown in Fig. 3 (top panel).
PI2�I2� is seen to be a nearly symmetric distribution with
a small width I2 2 �I2 � ø �I2 �.

Reference [2] demonstrated that the Sinai-stadium
billiard data obey the universal PT distribution Pu�u� �
�2pu�21�2 exp�2u�2�, with u � jCj2 to a remarkable
degree, while deviations from PT were demonstrated
due to localization in the disordered billiards. The IPR
for PT distribution can be immediately obtained I2 �R`

0 u2Pu�u� du � 3.0, which is a universal value. Note
that there are no fluctuations expected about this universal
value in RMT, i.e., PI2�I2� is a d function at I2 � 3 [10].
Clearly boundary scattering on the system length scale
R leads to nonuniversal correlations (e.g., from periodic
orbits leading to scars in the wave functions). This breaks
the assumption in RMT of Gaussian fluctuations of the
eigenfunction amplitude, and in turn leads to fluctuations

FIG. 2. Large level-to-level fluctuations are observed in the
IPR I2�E� vs E of the disordered billiard �l � 5.1 cm�. Also
note the gradual trend towards a universal limiting value of 3.0
indicated by the solid line which represents a model described in
the text. The fluctuations of the Sinai stadium are much smaller
and are clustered around �I2� � 3.0.

in the distribution PI2 �I2� (although of narrow width)
observed in Fig. 3 (top panel).

Even more strikingly, the IPRs of the disordered bil-
liards shown in Fig. 2 display a remarkably large spec-
trum of level-to-level fluctuations (Fig. 2). For small f,
when l . l, strong localization leads to large values of
I2 in the disordered cavity, which can be as high as �20.
It is worth noting that the density distributions Pu�u� of
the eigenfunctions deviate strongly from the PT distribu-
tion and are consistent with the large IPR values. In this
paper we have focused on the billiards with l � 8.9 and
l � 5.1 cm.

As f is increased (or l is decreased), the IPR progres-
sively decreases, approaching the universal limiting value
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3 6 9 12 15 18
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IPR  I
2
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Disordered  billiards 
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P
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2)
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FIG. 3. IPR distributions PI2 �I2� of the disordered billiards
with l � 8.9 cm (middle panel) and l � 5.1 cm (bottom panel)
are strongly asymmetric and non-Gaussian. The distribution for
the chaotic Sinai-stadium billiard (top panel) is nearly symmet-
ric about the mean value 3.0. The lines represent calculations
based on the nonlinear sigma model.

2361

Figure 35: Examples of the nonlinear sigma model forms for chaotic and
disordered systems. In the top panel: chaotic Sinai-stadium billiard. In the
middle and bottom panels: disordered billiards under weak and strong locali-
zation regimes, respectively. The solid lines represent the calculations based
on the nonlinear sigma model, Pradhan and Sridhar (73).

Pradhan and Sridhar (74) have extended the calculation of the spa-
tial squared mode shape correlation functions of chaotic to localized mode
shapes. The spatial squared mode shape correlation function for a moderate
disorder regime is given by:

P2(knr) =
〈
|ψn(
−−→
knr0)|2 |ψn(

−−→
knr0 +

−→
knr)|2

〉
= 1+(I2−1)KL (k |r|) , (2.60)

where the function KL(x) is defined as:

KL (x) =
∣∣∣∣

1
π

∫ +∞

−∞

1
1+ y2 J0

[
kx(1+

1
2kl

y)
]

dy
∣∣∣∣
2

. (2.61)

Since the evaluation of the function K(x) is a very complex task, the
Equation (2.60) can be approximately expressed in a region r . l by a decay-
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length scale of scattering mean path length l as follows:

P2(knr) =
〈
|ψn(
−−→
knr0)|2 |ψn(

−−→
knr0 +

−→
knr)|2

〉
= 1+(I2−1)J2

0 (k |r|)e−kr/kl .

(2.62)
As observed in the Equation (2.62), the decay length of the spatial

squared mode shape correlation function is a classical mean free path l. In Fi-
gure 36, examples of both analytical evaluations of the spatial squared mode
shape correlation function, Equations (2.60) and (2.62), are presented for cha-
otic and moderate localized regimes for fixed disorder strength 2kl, Pradhan
and Sridhar (74).

Additionally, for large disordered strength 2kl, corresponding to a bal-
listic or chaotic regime, the above expressions, Equations (2.60) and (2.62),
will converge to the expression of a classically chaotic system, Equation
(2.44).
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FIG. 5. Density autocorrelation �C2�r�C2�r 0� � of eigenfunc-
tions of the Sinai stadium and disordered billiards with fixed dis-
ordered strength 2kl. Experiment (dotted lines), Eq. (3) (dashed
lines), and Eq. (4) with 2kl � 7, 12, and 37 (solid lines).

kjr 2 r 0j. The experimental data show good agreement
with the numerical and analytical calculations for moder-
ate disorder, as shown in Fig. 5 for values 2kl � 12 and
7. These values are in excellent agreement with the corre-
sponding mean free paths (l � 3.6, 5.1, 5.9, and 8.9 cm)
obtained by directly considering the number of scatterers
N , so that l �

p
ab�N , and a and b are the sides of the en-

closing rectangle. Thus our analysis directly demonstrates
localization and yields a quantitative measure in terms of
the correlation decay length.

Returning to the level-to-level I2 data in Fig. 2 we note
that they can be viewed as tuning the degree of localiza-
tion by varying energy E. Representing the IPR as I2�E� �
I2,sm�E� 1 dI2�E�, i.e., a smooth part I2,sm�E� plus fluc-
tuations dI2�E�, we discuss the trends in I2�E�. Cal-
culations in Ref. [15] based on the infinite dimensional
tight binding model show that I2�E� diverges exponen-
tially near the critical point Ec: I2�E� � I2�E � `� 3

exp�A�jE 2 Ecjm�, with m �
1
2 , due to very strong cor-

relations of the wave function near Ec. I2�E � `� will
be obviously the asymptotic universal value 3 as predicted
by RMT in 2D. Our experimental IPR data are as large
as IPR � 20 (strongly localized), decaying to �4 (weakly
localized) at high frequencies up to 10 GHz. In the present
case, the smallest scale of the system �5 cm sets a natu-
ral lower cutoff frequency fc � c�2l � 3 GHz, so that
there are no eigenstates for E , Ec � f2

c . For E ¿ Ec

expanding the above equation in first order, we obtain
I2,sm�E� � 3 1 B�jE 2 Ecjm. In Fig. 2 we have plotted
this expression with m � 0.5 and B � 9.0 (obtained by
a best fit) and compared with the experimental data. The
above expression captures the trend of the data. While

an exact comparison with any expression is difficult since
the fluctuations dI2�E� . I2,sm�E�, the analysis illustrates
that we are observing a frequency driven path from strong
to weak localization in a disordered medium in terms of
the IPR.

We have shown that the IPR is an extremely valuable
parameter to study real-space localization in quantum
eigenfunctions. We have demonstrated for the first time a
quantitative analysis of features well beyond universality
due to localization in experimental eigenfunctions. The
observed IPR distribution is strongly non-Gaussian due
to the correlations induced by scattering. The nonlinear
sigma model is in quantitative agreement with the ex-
perimental data for moderate localization. Our work thus
provides experimental support for the approach based
upon quantum diffusion in the localization regime.
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Mode Shape Component Correlations and Finite Size Effects

Although the use of random matrices with finite dimensions is rele-
vant in certain applications of RMT models, only a few studies have been
performed to evaluate and quantify the effects of the truncation process on
the results for the statistical observables of the modal parameters.

Izrailev (128) investigated the statistical properties of the eigenfunc-
tions in a quantum model with a finite number of states. In his work, the
effects of the truncation process on the eigenfunction statistical characteris-
tics were numerically investigated considering the kicked rotor Hamiltonians
with a distinct number of states (that is, a distinct number of the mode shape
components). The eigenfunction component distribution results suggested
that the best agreement with the GOE analytical prediction is observed when
a large number of states (i.e., large number of the eigenvector components)
was considered.

One of the pioneering analytical studies regarding the correlations
between the Hamiltonian elements was carried out by Ullah and Porter (146).
They showed analytically that there are no correlations between the diago-
nal and off-diagonal matrix elements and between the off-diagonal matrix
elements, while the diagonal elements are correlated for some (invariant) ei-
genvalue distribution. In this study, no reference was made to the possible
relationship between the performance of the truncation process and the ef-
fects of the correlation of the Hamiltonian elements on the modal parameter
statistics.

Brody et al (56) investigated the level of correlation between the ei-
genvector components. In their study, they showed analytically for a GOE
matrix that the distinct components of the same eigenvector, as well as the
same component from distinct eigenvectors are not completely uncorrelated
for finite eigenvector dimensions. However, they could only affirm that the
eigenvector component distribution becomes asymptotically Gaussian with
an increase in the eigenvector size. Additionally, Brody et al (56) also sug-
gested that the correlation of the eigenvector components of sufficiently large
eigenvectors would be likely considered weak and they could be neglected for
convenience. However, it was noted that for other cases where the contributi-
ons of the component correlations on the eigenvector statistics are substantial
they should certainly be considered.

Considering the orthogonally invariant statistics, Brody et al (56) pro-
posed analytical expressions for the statistical moments of a de-dimensional
eigenvector, Langley and Cotoni (35). The odd statistical moments are iden-
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tically null and the even statistical moments of an entry of the eigenvector
components are given by:

E
[
φ

2v
n (z)

]
=

(2v−1)!!(de−2)!!
(de +2v−2)!!

, (2.63)

where x!! means the Double Factorial22 of variable x. According to Weisstein
(147), the definition of the Double Factorial (x!!) is given by:

x!!≡





n.(n−2) . . .5.3.1 n > 0odd
n.(n−2) . . .6.4.2 n > 0even

1 n =−1,0
. (2.64)

Cordioli in (20) investigated the effects of spectral correlations
between the mode shape components on the performance of SEA variance
predictions based on GOE model. In his analysis, the point-loading variance
results were numerically evaluated considering the excitation point location
as a random variable across the ensemble. An improved agreement was
obtained between numerical results and GOE prediction with K = 3. The
direct comparison with variance results evaluated under fixed excitation
point location suggested that the spectral correlations between the mode
shape components are substantially reduced when the averaging process was
carried for different components of different mode shapes. It was also argued
that the spectral correlations between mode shape components play role in
the kinetic energy statistics and may be the main reason for the deviations
between the numerical (or measured) results and GOE prediction with K = 3
extensively reported in SEA literature.

A numerical investigation of the effects of finite dimensions on the
evaluation of kurtosis metrics is presented in Appendix C. The kurtosis va-
lues were evaluated for several sets of perfect GOE matrices with distinct
finite dimensions. The spatial and spectral averaging approaches were con-
sidered. The mean and variance values of kurtosis results were calculated
and compared with available analytical predictions. In overall, the kurtosis
results demonstrate indirectly that the mode shape statistical observables eva-
luated under spectral averaging approach may be more susceptible to finite
dimension effects. In order to minimize possible finite dimension effects, it
was recommended that the maximum number of available modes should be
used during the evaluation of the results for the spectral mode shape statistical

22The Double Factorial is also known as Factorial 2. More information regarding the defini-
tion and properties of double factorial are available in Weisstein (147).
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observable results.

2.3.5 Structural Localization Phenomenon in Vibroacoustic Systems

Although the localization phenomenon is well established in solid
physics, mainly in disordered quantum systems, the corresponding localiza-
tion effects in structural dynamics are less understood and explored. Indeed,
one of the reasons for this is that in engineering system must always deal
with finite structures, and considering the limit as the structure becomes infi-
nite - as is typically applied in localization proofs in solid state physics - is of
limited practical relevance.

The pioneering studies in the structural dynamics field considered sim-
ple systems such as coupled pendulums and string, and they were only a con-
cept proof, not addressing the possibility of localization effects in practical
structures, (140, 139, 148). In typical periodic engineering structures, such
as turbine and compressor rotors of airplanes where the mounted blades are
nominally equidistant to each other, any imperfection or disorder may break
the blade-to-blade periodicity and induce the establishment of structural lo-
calization. Thus, in-depth knowledge of the localization effects is essential
to estimating the dynamical stresses and fatigue life as well as the expected
range of dynamical response, Bendiksen (149).

In order to introduce the physical concept of the structural localization
phenomenon, a simple system composed of a row of N identical pendulums
is considered, Figure 37. In this system, each pendulum is weakly coupled
to its two neighbors with all couplings being identical, so that the pendulum
system can be considered to have one-dimensional periodic characteristics,
Hodges and Woodhouse (150).

Figure 37: Pendulum system: a chain of pendulums coupled by springs, Hod-
ges and Woodhouse (150).
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When the pendulum system is excited at one of the ends and its vibra-
tions can propagated unattenuated along the chain structure, this excitation
frequency is within the pass bands. For excitation frequencies outside this
range, that is, within the stop bands, the vibrations can not propagate along
the chain at all and an exponential decaying near-field around the driving
point is observed.

In order to understand the effects of pass and stop-bands on the mode
shapes of the pendulum chain, let’s consider the ideal case where the cou-
pling strength between the pendulums is null. In this case, the mode shapes
of the N independent pendulums would consist simply of each pendulum se-
parately, vibrating at its natural frequency. Since the pendulums are identical,
their frequencies are all the same and the N-fold natural frequency degene-
racy is established. However, if there is a small degree of coupling between
the pendulums, the natural frequency degeneracy will be no longer valid and
a frequency cluster will be established close to the natural frequency of an
uncoupled pendulum. The frequency region corresponding to this frequency
cluster is defined as the passband region.

It is also important to emphasize that the mode shapes associated with
the passband frequencies are extended throughout the whole structure and
have amplitudes which vary sinusoidally with distance along the chain, (150).
On the other hand, if there is some disorder (or randomness) in the pendulum
system, and thus the pendulums have slightly distinct natural frequencies, the
pendulum system mode shapes can be very distinct to those expected for a
pendulum system absent of disorder.

Therefore, it is clearly intuitive that when at least one of pendulum na-
tural frequencies is sufficiently different, the pendulum system mode shapes
will be localized around individual pendulums. Considering that the indivi-
dual pendulum frequencies are not degenerate, the coupling between pendu-
lums is no longer strong enough to produce extended mode shapes in which
all pendulums contribute more or less equivalent amplitudes. In this regard,
it is important to point out that the establishment of structural localization is
substantially dependent on the trade-off relationship between the disorder le-
vel and coupling strength, that is, the magnitude of the disorder to coupling
ratio.

In the strong localization regime, where a large disorder to coupling
ratio is established, large structural localization effects are expected for highly
disordered periodical systems with weak couplings between their periodical
substructures. On the other hand, for the weak localization regime, the disor-
der to coupling ratio is not so large and only incipient localizations effects are
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observed. Indeed, the weak localization effects are very similar to the dyna-
mical behavior of the wave interference between multiple-scattering paths.

Although the pendulum system described above is really a very sim-
ple system, their qualitative conclusions regarding the structural localization
phenomenon characteristics can be adequately extended to almost periodic or
random engineering structures.

In real engineering structures, the structural localization phenomenon
can be understood as the vibration confinement due to the presence of irregu-
larity over the spatial domain of a structure. For localized systems, the energy
is confined spatially to a particular structural region close a driving point and
at particular frequencies, Pierre (148). For practical purposes, the localization
effects can be considered to be similar to damping effects, since they lead to
spatial decay of the vibration amplitude along the structure, even though for
localized vibrations the energy is confined to near the source of excitation,
while for damping it is dissipated as it propagates, Pierre (148). Additionally,
in general, it is known that the dynamic response of a typical disordered struc-
ture would decay exponentially moving away from the driving point, where
the decay constant is referred to as the the localization factor, Pierre (148).

With respect to the statistical moments of energy responses across an
ensemble of engineering structures, the establishment of localization pheno-
mena in some of the ensemble members may strongly affect the statistical
moments of the energy response as well as the significance of the expected
energy response in terms of a typical individual member of the ensemble. The
structural localization effects may lead to energy response distributions with
long tail characteristics where the mean and probabilistic mode values of the
response distribution across the ensemble are substantially distinct, as shown
in Figure 38.
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Figure 38: Pictorial example of a long tail response distribution expected for
an ensemble of localized structures: the linear or arithmetic mean (the center
of mass) and the typical value (probabilistic mode or peak) of the distribution
are very distinct, adaptation of Hodges and Woodhouse (140).

Considering the variability of the dynamical responses of an ensemble
composed of engineering structures with non-deterministic parameters, the
arithmetic mean or linear average is usually applied over the configurations
in the ensemble and satisfactory results are obtained. However, under certain
circumstances, such as that presented in Figure 38, the geometric mean or
logarithmic average value over the ensemble can be adequately applied to es-
timate the typically expected value for the responses across the ensemble (that
is, the probabilistic mode or peak value of distribution). Indeed, the geome-
tric averaging process is less sensitive to anomalous or sporadic contributions
that occur in the energy response distributions with long tail characteristics,
Hodges and Woodhouse (140).

In the SEA context, perfect energy diffusion is considered in the deri-
vation of the analytical predictions through the establishment of a reverberant
field in subsystems, Lyon and Dejong (29). For systems composed of rever-
berant and weak-coupled subsystems, a satisfactory agreement is expected
between the SEA predictions and the ensemble mean value, regardless of the
averaging process adopted, Fahy (30).

On the other hand, the establishment of structural localization phe-
nomenon across the ensemble inhibits a good agreement between the SEA
predictions and the typically expected value across the ensemble. Indeed, in



2.4 Theory of SEA Variance 177

this situation, perfect energy diffusion and modal equipartition conditions do
not occur over the system spatial domain and the linear average is no longer
representative for the evaluation of the typically expected response across the
ensemble members.

Detailed reviews of the implications of the structural localization ef-
fects on the performances of SEA and other diffusive transport theories are
presented in Hodges and Woodhouse (151) and Fahy (30).

2.4 Theory of SEA Variance

In the high-frequency range, a large variability in the energy responses
across the ensemble is expected due to small variations introduced during the
manufacturing and assembly processes, and thus successive nominal systems
from a production line may present a significant random spread in their dy-
namical performances. In order to determine if the statistics of the dynamical
responses over an ensemble composed of random similar products meet the
design and certification requirements, extensive effort has been directed by
the vibroacoustic community toward developing robust and widely applica-
ble analytical methods.

In this section, the analytical predictions of the energy density vari-
ance are presented for a single random dynamic system subjected to a ge-
neric nature of excitation. The Poisson and GOE models are considered for
the statistics of the natural frequencies23. The narrow and broad frequency
band analytical formulations for the relative variance are obtained for each
statistical model. Based on the current results reported in the SEA variance
literature, a detailed discussion is presented regarding the effect of the mode
shape statistics factor (K) on the performance of relative variance predictions.

2.4.1 Energy Response Statistics

The response of a linear dynamical system can be correctly described
using the method of modal superposition, Meirovitch (22). The complex mo-
bility function between a sinusoidal force at frequency ω and drive point x0
and the velocity of the response point at x is given by:

23Although it is not discussed here in details, the SEA variance literature has been shown
that distinct statistics can be established for the modal parameter statistics, these being directly
associated with degree of uncertainty and the characteristics of the geometrical irregularities
present in the random system, (48, 54, 1, 18, 3).
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Y (x, x0,ω) = ∑
n

iωφn (x)φn (x0)

ω2
n −ω2 + iηω2

n
, (2.65)

where φn is the nth mode shape, ωn is nth natural frequency and η is the dam-
ping loss factor. For cases of engineering systems in which the performances
of the damping effects are spatially distributed, for convenience, the damping
loss factor can be adopted as the frequency-constant parameter, Gomes (28).

The time-space averaged kinetic energy density T of a system subjec-
ted to sinusoidal single excitation at frequency ω , location x0 and magnitude
F , is given by:

T (ω,x0) =
F2

4Ru

∫

Ru

ρd |Y (ω, x0, x)|2 dx, (2.66)

where Ru is the system or unit span. The energy density given by Equation
(2.66) is the average over the main spatial dimensionality associated with the
system of interesting for a single excitation point at x0.

Therefore, using the orthogonal relationship, the simplified expression
for kinetic energy density is given by,(22):

T (ω) =
ω2

4Ru
∑
n

cn

(ω2
n −ω2)2 +(ηω2

n )
2 . (2.67)

This equation might represent, for example, the spatially-averaged ki-
netic energy density of a system when excited by a point-loading. In this
excitation case cn is equal to the square of the nth mode shape at the drive
point x0 multiplied by the square of the force amplitude:

cn = F2
φ

2
n (x0) . (2.68)

In the derivation of SEA analytical formulations, the rain-on-the-roof
excitation is defined as a spatially distributed loading where the point for-
ces are considered statistically independent and delta-correlated in the space
domain.

On the other hand, several numerical investigations on SEA vari-
ance have considered an averaging process over the force positions, that is,
spatially-averaged excitation. Therefore, it is important to emphasize that
both excitations remove the effects of the mode shape statistics on the res-
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ponse variance results, since the set of cn values is averaged out, Brown (1).
The spatially-averaged response to a single point force for a homoge-

neous system is given by:

T (ω) =
F2ω2

4ρdR2
u
∑
n

1

4ω2 (ωn−ω)2 +(ηωωn)
2 , (2.69)

where the over bar notation denotes the averaging process over all possible
excitation points. It is also important to note that the following approximation
was assumed given that each mode bandwidth is small in comparison to the
natural frequency24:

(
ω

2
n −ω

2)2
+(ηωωn)

2 = 4ω
2 (ωn−ω)2 +

(
ηω

2)2
. (2.70)

2.4.2 Random Point Process

As stated previously, the statistics of the kinetic energy density re-
sults can be adequately evaluated through the random point process approach,
(82, 55). Assuming a unitary punctual force, Equation (2.67) is conveniently
rewritten and is given by:

T (ω) = ∑ang(ωn−ω) , (2.71)

where an is given by:

an =
φ 2

n (x0)

4Ru
, (2.72)

and the function g(θ) is given by:

g(ωn−ω) =
ω2

4ω2 (ωn−ω)2 +(ηω2)2 . (2.73)

In the next sections, the analytical predictions based on Poisson and
GOE modes are presented for the relative variance of the kinetic energy den-

24Although it will not be demonstrated here, Equation (2.70) also provides a good performance
for almost homogeneous systems, such as mass-loaded structures, Langley and Brown (16, 3, 18,
4).
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sity results. Further details are available in Langley and Brown (18, 3, 1) and
Cordioli (20).

Poisson Statistics

The pioneering studies on the energy response variability were perfor-
med in the room acoustics field. These adopted the Poisson model to describe
the resonant or natural frequency statistics due to its analytical convenience,
Lyon (48). That is, the natural frequencies were considered to form a Poisson
Point Process (55, 51) on the frequency axis, where the natural frequencies
are uncorrelated and their adjacent spacings have an exponential distribution.
For the natural frequency statistics which obeys the Poisson model, the rela-
tive variance of the kinetic energy density results (r2

T ) is given by:

r2
T =

σ2
T

(µT )
2 =

α

πm
, (2.74)

where m is the modal overlap factor and the parameter α is the spatial factor
which is given by:

α =
E
[
a2

n
]

E [an]
2 . (2.75)

The term α describes the influence that spatial matching between the
excitation field and the mode shapes of the subsystem has on the relative
variance, (18, 27).

For the case of systems subjected to a single point loading, the spatial
factor (α) is identical to mode shape statistics factor (K) proposed initially
by Lyon (48), which is a function dependent exclusively on the mode shape
characteristics:

α = K =
E
[
φ 4

n
]

E [φ 2
n ]

2 . (2.76)

For a rain-on-the-roof excitation in which the response is averaged
over the loading statistics prior to considering the statistics over the system
ensemble, the value of α = 1 is expected. According to Langley and Brown
(3), the value of α = 1 also occurs for the cases where the response to a single
point force is averaged over all possible locations of the point-loading, prior
to considering the ensemble statistics.
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GOE Statistics

Langley and Brown (18) considered that the natural frequencies are
substantially correlated and their local iteration across the ensemble is descri-
bed accurately by the eigenvalue statistics from the large random symmetric
matrices of GOE type from RMT. In order to model the correlation of two ad-
jacent natural frequencies the two-level cluster function (Y2) was considered
in the derivation of analytical formulation. Therefore, the modal parameter
statistics which obeys the GOE model, the relative variance of the kinetic
energy density results (r2

T ) is given by:

r2
T =

σ2
T

(µT )
2 =

1
πn

∫
∞

0

[
α−b

(
θ

2πn

)]
exp(−ηωθ)dθ , (2.77)

where b(θ) is the Fourier transform of the two-level cluster function. This
function was described by Mehta (24), being given by:

b(θ)=
∫

∞

−∞

Y2(r)exp(−2πirθ)dr =

{
1−2 |θ |+ |θ | ln(1+2|θ |),
−1+ |θ | ln

(
2|θ |+1
2|θ |−1

) |θ | ≤ 1
|θ | ≥ 1 ,

(2.78)

Brown (1) evaluated the integral of Equation (2.77), so that:

r2
T =

1
πm

{
α−1+

1
2πm

[1− exp(−2πm)]+E1(πm)

[
cosh(πm)− 1

πm
sinh(πm)

]}
.

(2.79)

Here, E1(x) is the exponential integral and is given by:

E1(x) =
∫

∞

x

exp(−t)
t

dt. (2.80)

Using an expansion of the exponential integral valid for large argu-
ments, it is possible to demonstrated that Equation (2.79) can be correctly
simplified to provide:
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r2
T ≈

(α−1)
πm

+
1

(πm)2 . (2.81)

According to Brown (1), the accuracy of Equation (2.81) is guaranteed
only for m > 0.6. In the case of single point excitation when (α = K), it can
be observed that the first term of equation (2.81) agrees with Weaver’s result
(49), and thus the relative variance is predominantly proportional to 1/(πm).
However, in the case of spatially-averaged excitation, with α = 1, the energy
variance is proportional to 1/(πm)2. The term proportional to 1/(πm)2 does
not appear in the previous expression given by Weaver (49), demonstrating
the high accuracy of the expression given by Equation (2.81).

2.4.3 Band-Averaged Energy Response Statistics

In several engineering applications, the external excitation does
not perform at a single frequency ω but rather over a broad fre-
quency band. If the kinetic energy is averaged over the frequency band
Rω = [ω0−∆ω/2, ω0 +∆ω/2], it is given by:

T∆ (ω,∆ω) =
1

∆ω

∫

Rω

T (ω)dω, (2.82)

where ∆ω is the averaging bandwidth.
Neglecting the small contributions from the modes outside the fre-

quency band of interest (non-resonant modes), Equation (2.82) can be ade-
quately simplified as, (48):

T∆ (ω,∆ω)≈ 1
ρd

n=N2

∑
n=N1

an

∆ω

π

2ηω0
, (2.83)

where N1 is the sequence number of the lowest natural frequency in the fre-
quency band and N2 the sequence number of the highest natural frequency in
the band.

The analytical expressions of the relative variance of frequency band-
averaged kinetic energy density responses are presented below considering
modal parameter statistics based on the Poisson and GOE models, respecti-
vely. Further details concerning the analytical derivation of the frequency-
band averaged relative variance formulations are available in the SEA vari-
ance literature: (1, 53, 54, 3, 48).
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Poisson Statistics

Davy (53) extended the Lyon’s work and proposed analytical expres-
sions for the case of multiple source and receiver positions in the room acous-
tics field. The Poisson model was adopted to describe the natural frequency
statistics and the mode shapes were assumed to be the product of sinusoidal
functions. The proposed analytical expression for the relative variance of the
frequency-band averaged kinetic energy density results is given by:

r2
T =

{
1

NLNR

m
∆ω

+
1

n(ω)∆ω

[
K
NL

+1− 1
NL

][
K
NR

+1− 1
NR

]}
F (B) ,

(2.84)
where NL is the number of source points (or excitation points), NR is the

number of receiver points (or response points) and the bandwidth parameter
B is defined as:

B =
∆ω

ωη
. (2.85)

In the case of a system subjected to a single point excitation, that is,
NL = 1 and NR = ∞, the relative variance is given by:

r2
T =

K
n(ω)∆ω

F (B) , (2.86)

where the function F(B) is defined as:

F (B) =
(

2
π

)
arctan(B)− 1

πη
ln
(
1+B2) . (2.87)

In the case of a system subjected to a spatially-averaged excitation,
that is, NL = ∞ and NR = ∞, the relative variance is given by:

r2
T =

1
n(ω)∆ω

F (B) . (2.88)

GOE Statistics

Langley and Brown (3) extended the relative variance analytical for-
mulation based on the GOE model for a narrow frequency domain, Equation
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(2.81), to the case of a frequency-band averaged response. The relative va-
riance of the frequency-band averaged kinetic energy density results is given
by:

r2
T (ω,∆ω) =

(α−1)
πm

(
1

B2

){
2B
[

π

2
− arctan

(
1
B

)]
− ln

(
1+B2)

}
+

+
1

(πm)2

(
1

B2

)
ln
(
1+B2) . (2.89)

According to Brown (1), the accuracy of Equation (2.89) with the ad-
justed spatial parameter25 (for instance α ≈ 2.7) is guaranteed within the
range of m > 0.4 for a single point excitation. For a spatially distributed
excitation where α ≈ 1, such as a rain-on-the-roof loading, Equation (2.89)
is expected to have good accuracy for m > 1, Langley et al (18, 3, 16, 4).

2.4.4 Comments on Spatial Factor Characteristics

Regardless of the nature of the excitation, the kinetic energy density
response of a particular subsystem can be written as (18, 3):

T (ω) =
ω2

2 ∑
n

∫
ω+∆/2

ω+−∆/2

Jn

(ω2
n −ω2)2 +(ηωωn)

2 dω (2.90)

where the summation is taken over the local modes of the subsystem, and
Jn is the modulus squared generalized force associated with the nth mass-
normalized mode shape. Thus, the spatial factor α , defined previously in
Equation (2.75), can be rewritten as:

α =
E
[
J2

n
]

E [Jn]
2 . (2.91)

In cases where the power arises from a spatially-distributed force ap-
plied over the spatial domain Ω of the subsystem, the squared generalized
force Jn is written as (27):

Jn =
∫

Ω

∫

Ω

φn (x)Rs
(
x,x′

)
φn
(
x′
)

dxdx′, (2.92)

25Note that Gaussian mode shapes or perfect GOE eigenvector would yield α = 3, Mehta (24).
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where φn is the nth mode shape of the subsystem and Rs represents the
narrow-band spatial correlation function of the excitation. As observed in
Equation (2.92), the value of the spatial factor α is dependent on the spatial
characteristics of the excitation field and the statistics of the subsystem mode
shapes. Physically, this term indicates the sensitivity of the joint acceptance
function26 between the excitation and modes of the subsystem to changes in
the mode shapes of the subsystem.

As discussed by Langley and Brown (1, 18, 3), the value of parameter
α varies typically between 1 and 3 depending on the spatial characteristics
of the excitation field and the main dimensionality of the subsystem of inte-
rest. The minimum value of the statistical factor is equal to unity and this is
expected when the joint acceptance function is independent of changes in the
mode shapes of the subsystem. For the particular case of spatially incohe-
rent rain-on-the-roof excitation the term is unity and thus the input power to a
subsystem is not sensitive to the mode shape statistics of the subsystem. For
example, an upper value of approximately 3 will occur for a three dimensional
cavity with Gaussian mode shapes excited by a single point excitation.

2.4.5 Non-universal Mode Shape Statistics Deviations

For the case of single point excitation, the spatial factor (α) is identical
to the mode shape statistics factor (K) and the input power to a subsystem
is highly sensitive to the mode shape statistics of the subsystem. In 1969,
Lyon (48) defined the mode shape statistics factor using a spatial averaging
approach. Considering, for convenience, the mode shapes as a product of
the sinusoidal functions, mode shape statistics factor values of K = 1.5, K =
2.25, and K = 3.375 were obtained for uni, bi, and tri-dimensional systems,
respectively.

The hypothesis of sinusoidal mode shapes has commonly been adop-
ted for SEA variance predictions based on the Poisson natural frequency sta-
tistics, Lyon (48) and Davy (53, 54). However, it is important to emphasize
that the mode shapes associated with Poisson natural frequency statistics are
not necessarily sinusoidal and the sinusoidal mode shape hypothesis is very
limited, being only valid for certain cases, such as simple geometry systems,

26The joint acceptance function is a measure of the strength of coupling between two wave
fields where they are joined along a line or over an area, taking into account the relative amounts
of phase reinforcement and cancellation over the space of the junction, Mead and Richards (152).
In other words, the joint acceptance is a type of correlation-coupling function which describes
how well the vibration modes harmonize with the spatial characteristics of the external excitation
field, Gomes (28).
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for example: a simply supported rectangular plate or a box-shaped acoustic
space27, Langley and Cotoni (35).

Recently Langley and Brown (18) defined the mode shape statistics
factor using the ensemble averaging approach and assumed that the mode
shape components of random engineering system are statistically independent
and have a Gaussian distribution across the ensemble as described by the
GOE model. For perfect Gaussian mode shapes, a value of K = 3 is obtained,
regardless of the system dimensionality, (35).

In the SEA variance literature, an excellent agreement was reached
between the predicted single-loading relative variance values and the nume-
rical (or experimental) results when a value of K lower than 3 was adopted.
Indeed, it is usually argued that the good agreement with the SEA variance
theory for K < 3 is due to the distribution of the mode shape components not
being perfectly Gaussian as predicted by the GOE model of the RMT.

The main factors and influences associated with these mode shape sta-
tistics factor discrepancies between the mode shape statistics of random en-
gineering systems and the GOE eigenvector statistics have been the subject
of several academic research studies. In the RMT field, Brody et al (56)
suggested that the GOE mode shapes become asymptotic Gaussian with an
increase in the eigenvector dimension and thus a value of K = 3 is only ex-
pected in the case of very large random matrices. In the elastodynamics field,
the numerical and experimental results obtained in Lobkis’ studies showed
that the natural frequency statistics conform very well with the GOE model,
although some deviations have been identified for the corresponding mode
shapes, (50). Lobkis et al suggested that these mode shape statistics discre-
pancies and low values of K may be associated with the presence of complex
modes. Subsequently, Langley and Brown (18, 3, 1) investigated the mode
shape statistics of mass-loaded plate systems. The typical values of K found
were significantly lower than the Gaussian value of K = 3. Since the mode
shape components were considered to be fully real numbers, the postulation,
proposed previously by Lobkis et al (50), that the mode shape statistics factor
will be lowered if the mode shapes are complex, was definitively discarded.

Additionally, Brown in (1) suggested that the establishment of correla-
tions between the same component of different mode shapes may be respon-
sible for the discrepancies observed between the numerical (or experimental)

27In the present study, the SEA variance predictions based on Poisson model for natural fre-
quency statistics consider that the corresponding mode shapes have sinusoidal statistics, while
those based on GOE model for natural frequency statistics consider that the corresponding mode
shape have Gaussian statistics.
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results and the theoretical variance prediction based on the GOE model, since
the theory assumes statistical independence of the mode shape components
and does not allow for correlations between different mode shapes. In par-
ticularly, in the case of mass-loaded plates, the point masses attached to the
plate surface could make the plate effectively clamped at those point mass
locations and lead to the introduction of significant correlations between dif-
ferent mode shapes at the force position. Indeed, if large amounts of point
masses were placed randomly on the plate, the variance of the energy res-
ponse for a point excitation could under predict the analytical expression due
to this clamping effect.

Recently, Langley and Cotoni (35) investigated numerically the statis-
tical moments of the mode shape amplitudes across an ensemble composed of
very perturbed mass-load plates. The statistical moments of the mode shape
amplitudes across an ensemble were also compared with analytical predicti-
ons based on Gaussian and sinusoidal mode shapes. A value of K = 2.87 was
observed for the mode shape statistics factor associated with the excitation
point across the ensemble. The results suggested that the distribution of the
mode shape components is expected to be almost Gaussian when an ensem-
ble mode shape averaging approach is considered. Considering that the mode
shapes are almost Gaussian, the current value of the mode shape statistics fac-
tor from the numerical analysis of the statistical moments of the mode shape
components was employed in point-loading relative variance formulations.
The adjusted theoretical variance prediction was compared with numerical re-
sults from an ensemble composed of 200 mass-loaded plate members. Again,
the adjusted theoretical variance prediction, surprisingly, over predicted the
numerical results. Additional numerical simulations were performed using
10,000 realizations for four discrete frequencies and the numerical varian-
ces were in closer agreement with variance prediction based on GOE model.
These results indicate that the performance of theoretical variance prediction
is dependent on the size of the ensemble adopted, that is, the ensemble must
include a sufficient number of members to yield realistic results for the energy
response statistics.

Based on the above discussion, several possible reasons for the esta-
blishment of non-Gaussian statistics for the mode shapes of sufficiently ran-
dom systems were identified and further investigations are certainly required
to determine the precise contributions from each mode shape deviation class
to the energy variance results, Gomes (10).
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2.5 Summary and Discussions

In this chapter a brief literature review were carried on the main as-
pects associated with the statistical analysis of natural frequencies and cor-
responding mode shapes of vibroacoustic systems.

Initially, the main concepts of Random Matrix Theory (RMT) applied
to statistical analysis for the natural frequencies of random systems were revi-
ewed. Particular attention was given to descriptions of the statistical charac-
teristics of a particular ensemble composed of large random symmetric ma-
trices known as the Gaussian Orthogonal Ensemble (GOE). As shown in the
literature, the eigenvalue statistics of GOE matrices are expected to be surpri-
singly very similar to the natural frequency statistics of sufficiently random
vibroacoustic systems. The definitions of particular metric functions called
statistical observables were introduced for short and long fluctuation ranges.
These functions shown to be able to describe correctly the typically physical
phenomena expected for the natural frequency spectrum of real engineering
systems, such as level repulsion and spectral rigidity.

Although the excellent results have been founded for the use of RMT
concepts in the statistical analysis of random vibroacoustic systems, some li-
mitations to the direct use of RMT concepts have been identified in studies
carried out with elastodynamical systems. Two classes of non-universal na-
tural frequency statistics deviations were identified: the effects of the finite
wavelengths and the establishment of stable periodic orbits. The main effects
on natural frequency statistics due to the establishment of non-universal ef-
fects were also discussed in terms of the statistical observable results for short
and long fluctuation ranges.

Considering the corresponding mode shapes, a complete characteri-
zation of the universal GOE statistics of mode shapes was performed using
the results for the eigenvector statistical observables. Besides the proposed
analytical predictions presented extensively in RMT literature, the definitions
of the kurtosis metrics and Lilliefors normality test were introduced and their
applications were discussed for statistical mode shape analysis of the vibroa-
coustic systems. The possible kurtosis averaging approaches to evaluation of
the Mode Shape Statistics Factor were reviewed in the SEA context.

Although the universal characteristics of mode shapes are extremely
convenient from an analytical point of view, some non-universal characteris-
tics are observed in the mode shape statistics of random engineering systems.
Therefore, the main possible deviations from universal mode shape statistics
were identified and discussed in the context of vibroacoustic systems. Two
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classes of non-universal mode shape deviations were considered: the esta-
blishment of periodical orbits and the effects of structural localization.

In last section the main aspects associated with SEA variance theory
were discussed. The analytical predictions based on Poisson and GOE mo-
dels for the relative variance of the energy responses across the ensemble
were presented for single subsystem subjected to point-loading and spatially-
averaged excitations. The main details associated with the evaluation of the
spatial factor parameter and its relationship with the joint acceptance func-
tion, which quantifies the degree of harmonization between the mode shapes
and the spatial characteristics of the excitation field, were highlighted. For
the case of single point-loading, the possible reasons for the establishment of
the non-universal characteristics of the mode shapes of random engineering
systems were highlighted and discussed in detail.

In the next chapters, the systematic numerical analysis of random sys-
tems will be carried in order to understand the main practical aspects asso-
ciated with the establishment of universal statistics as well as the resultant
performance of the relative variance predictions based on the complete GOE
model. The main statistical observables reviewed in this chapter will be em-
ployed to verify the agreement of each modal parameter statistics with the
universal statistics described by the GOE model. Additionally, the typical
non-universal characteristics of modal parameters expected from the real ran-
dom engineering systems will be identified and classified. The main impacts
of the non-universal contributions on the performance of the SEA variance
prediction based on a complete GOE model will be investigated in detail.
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3 NUMERICAL ANALYSIS OF RANDOM LONGITUDINAL RODS

3.1 Overview

Although the application of Random Matrix Theory concepts to the
statistical analysis of engineering systems has been the subject of many pu-
blications in recent years, some important questions still remain unclear. The
issue regarding the complete establishment of universal GOE statistics for
modal parameters1 of real engineering systems as well as the validity of er-
godicity concept2 are aspects of recent interest and further investigations are
required, Gomes (10).

In this chapter, a complete statistical analysis is performed with ran-
dom one-dimensional structures3. The effects of distinct uncertainty sources
on the modal parameter statistics are investigated through the statistical ob-
servables of Random Matrix Theory (RMT). In this study, the random lon-
gitudinal rods were generated using Finite Element Method (FEM). The dis-
tinct structural irregularities, or uncertainties, were introduced on a nominal
rod structure and different approaches to the uncertainty distribution (rando-
mization approaches) were also considered. In the numerical analysis, the
spectral and ensemble averaging processes were performed for random rod
energy responses. In addition, the main effects of the spatial correlation from
the rod geometry and of the structural localization phenomenon on the modal
parameter statistics were also investigated using the RMT statistical observa-
bles.

Finally, important contributions were obtained regarding the establish-
ment of universal statistics for each one of the modal parameters as well as
for the statistical moments of the kinetic energy density results of random
longitudinal rod structures.

1In the Dynamics field, the system modal parameters comprise the natural frequencies and
the mode shapes (or eigenvalues and eigenvectors, respectively), Meirovitch (22, 89).

2The validity of ergodicity concept ensures that there is an equivalence between the theore-
tically calculated ensemble average and the physically more relevant spectral average, Pandey
(108).

3The work presented in this chapter was carried out under the supervision of and with the
collaboration of professors Brian R. Mace and Neil S. Ferguson from the Dynamics Group,
Institute of Sound and Vibration Research (ISVR) at the University of Southampton; Gomes and
Gerges (153); Gomes and Mace (83); Gomes, Mace and Ferguson (154).
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3.2 Longitudinal Rod Characteristics

In order to investigate the universal establishment of GOE statistics
for the modal parameters of random one-dimensional structures, the nume-
rical analysis was performed using longitudinal rods with uncertain or non-
deterninistic parameters and properties. The main reasons for adopting this
class of nominal structure are:

• frequency-constant modal density: the natural frequency spectrum of a
nominal longitudinal rod shows frequency-constant natural frequency
spacings, as well as stationary statistical properties along the frequency
domain, Timoshenko and Young (155). These characteristics are very
convenient for performing direct comparisons between numerical re-
sults and RMT analytical predictions, since the latter are based on the
unitary and frequency-constant eigenvalue spacing mean, Mehta (24).

• sinusoidal mode shapes: the longitudinal mode shapes of the nominal
rod structure are perfectly sinusoidal. Considering sinusoidal eigen-
vector statistics, the available analytical predictions provide a complete
description of the mode shape statistics, Waterhouse (130). In this re-
gard, the sinusoidal analytical predictions are efficient tools to charac-
terize the main effects of the introduction of the uncertainties on the
nominal mode shape statistics.

• low computational cost: since the system analyzed is one-dimensional,
low computational processing skills are required and thus several clas-
ses of uncertainty sources can be easily investigated with low compu-
tational cost.

3.3 Finite Element Model: Longitudinal Rod

In this study, the random rod structures investigated were generated
using the Finite Element Method (FEM), Zienkiewicz (2). The FEM model
characteristics and validation process are described in detail below.

3.3.1 FEM Model Development

For the development of numerical models of random longitudinal rod
structures, the FEM commercial software ANSYS was used, (156, 157). In
the current work, the investigated system comprises a longitudinal cylindrical
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rod with uncertain or non-deterministic parameters. The random rod parame-
ters may vary across the ensemble or spatially along its length. In addition,
some random rods investigated also considered small point masses attached to
the rod surface in the randomization process, in order to simulate the possible
irregularities of mass distribution along the rod length, (18) (35).

In order to obtain a good description of the dynamical behavior from
a rod structure subjected to a longitudinal loading, the finite element BEAM3
was adopted, (156). This finite element is a uniaxial element with tension,
compression, and bending capabilities. The element has three degrees of fre-
edom at each node: translations in the nodal x and y directions and rotation
about the nodal z - axis.

For the FEM representation of structural point masses, the finite ele-
ment MASS21 was adopted. This element is a point element having up to
six degrees of freedom: translations in the nodal x, y, and z directions and
rotations about the nodal x, y, and z - axes. In Figure 39, a typical example
of a random rod structure investigated in this study is shown. In this FEM
model, 20 small point masses (corresponding to 20% rod mass absent of un-
certainties) are randomly attached onto the rod surface along its length.

Figure 39: An example of the FEM model of a typical random rod investiga-
ted in this study.
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3.3.2 FEM Model Validation

In order to validate the numerical FEM model performance, a direct
comparison was made between the modal parameters obtained from the FEM
model and those evaluated from the analytical predictions for a longitudinal
rod with a circular cross-sectional area; Thomson (158), and Timoshenko &
Young (155). The FEM model was built considering a nominal rod, the para-
meters of which are absent of uncertainties. In Tables 4 and 5, the geometric
dimensions and material properties of the nominal rod are described, respec-
tively.

Table 4: Nominal longitudinal rod: geometric dimensions.

Geometric parameter Value
Longitudinal length (Lr) 5 m

Cross-section diameter (dr) 1 cm

Table 5: Nominal longitudinal rod: material properties - standard carbon
steel.

Material property parameters Value
Young’s modulus (Eym) 210 G Pa

Poisson ratio (ν) 0.3
Density (ρ) 7860 kg/m3

During the FEM model development, the common rule of 12 finite ele-
ments for the smallest longitudinal wavelength was considered, Zienkiewicz
(2). Additionally, it is important to emphasize that the validity conditions
of the analytical models were also respected for the highest frequency of in-
terest. That is, the smallest longitudinal wavelength is larger than the rod
cross-sectional dimension, Timoshenko and Young (155).

The free-free boundary condition was considered. The frequency
range considered was from 0 to 50 kHz and the first 100 longitudinal mo-
des were evaluated for both model approaches. In Figure 40, the FEM model
performance is shown in terms of natural frequencies.
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Figure 40: Natural frequency performance: FEM model results and analytical
predictions.

According to Figure 40, the natural frequency results suggest only
small discrepancies for the high order mode range. In general, the natural
frequency results obtained from the FEM model conform very well with the
analytical predictions. In Figure 41, some longitudinal mode shapes obtained
from the FEM model are compared to those corresponding to the analytical
formulation. The mode shapes are normalized to have unit maximum ampli-
tude.
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Figure 41: Mode shape performance: FEM model results and analytical pre-
dictions. Plots: (a) Mode 05, (b) Mode 25, (c) Mode 36, and (d) Mode 80
(higher order mode - zoom plot).

Similarly to the natural frequency results, the excellent performance
of the FEM model was also confirmed for the corresponding mode shapes.
Indeed, the FEM mode shapes conformed very well with the sinusoidal pre-
dictions.

In summary, based on Figures 40 and 41, in relation to the modal
parameter performance results, it appears that the numerical FEM models are
able to represent adequately the modal parameter statistics for the class of rod
structure investigated herein.

As described, several FEM models were developed in order to investi-
gate the main effects of the uncertainties on the modal parameter statistics as
well as on the statistical moments of the kinetic energy density results obtai-
ned from the distinct natures of external loadings.

3.4 Spectral Averaging Approach

In this section, the main effects of different uncertainty sources are
evaluated through the use of the statistical observables of the Random Matrix
Theory (RMT). The spectral statistics of the modal parameters, natural fre-
quencies and corresponding mode shapes, are evaluated and compared with
analytical predictions obtained using the best known statistical models: Pois-
son statistics4 and the statistics of the Gaussian Orthogonal Ensemble (GOE)

4Poisson statistics is also known as random number statistics, Montgomery and Runger
(103).
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of RMT, Mehta (24).
In the following sections, the spectral averaging approach is initially

adopted in the first stage of this study, and statistical analysis of the kine-
tic energy density results was performed in the 1/3-octave frequency band
domain for each random rod structure investigated. Additionally, the relati-
onship between the statistical moments of the kinetic energy density results
and the modal parameter statistics are highlighted and discussed.

In the next subsections, the two main classes of random rod structures
investigated hereafter are described in terms of their uncertainty levels and
sources. The numerical results of the spectral analysis are presented and dis-
cussed in terms of the modal parameter statistics as well as in terms of the
statistical moments of the kinetic energy density results as the random rods
are excited by a single point-loading or spatially-averaged excitation.

3.4.1 Breaking the Geometrical Regularity

The first rod class investigated considers the cross-sectional area of the
circular rod as a random variable along the rod length. The other rod para-
meters: length and material properties, are adopted to be identical to nominal
rod parameters, that is, absent of uncertainties. In this context, it appears that
a breaking of the geometry regularity is obtained as the cross-sectional area
varies sufficiently along the rod length.

In order to evaluate the sensitivity of the statistical moments of the
energy responses to different randomization approaches, distinct probabilistic
distributions are considered for the rod cross-sectional area values (uniform
and normal distributions). Additionally, different randomness (or uncertainty)
levels5 are also considered for each randomization approach. Therefore, seve-
ral FEM models were built with several randomness levels and distinct source
probabilistic distributions. In Table 6, the main characteristics adopted in the
development of the random longitudinal rods investigated hereafter are des-
cribed in detail.

5The randomness levels of the rod cross-sectional area were defined in relation to the nominal
cross-sectional area.
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Table 6: Random rod descriptions - spectral averaging approach: nomencla-
ture, random variable, statistical distribution, and randomness level.

Nomenclature Random variable Statistical
distribution

Randomness
level (%)

Nominal Cross-sectional area Dirac delta Null
Gaussian (10 %) Cross-sectional area Gaussian 10
Gaussian (20 %) Cross-sectional area Gaussian 20
Gaussian (30 %) Cross-sectional area Gaussian 30
Uniform (10 %) Cross-sectional area Uniform 10
Uniform (20 %) Cross-sectional area Uniform 20

3.4.2 Random Point Masses

In order to evaluate the effects of mass distribution irregularities on the
modal parameters and the kinetic energy response statistics, a second class
of random rod structures was also investigated. These random rods were
generated through the attachment of 20 small point masses on the nominal
rod surface.

A uniform spatial distribution is adopted for point mass locations and
mass perturbation levels of 10% and 20% are considered in relation to the
bare nominal rod mass. In this second class of the rod structures, the rod
parameters and properties are considered identical to those of the nominal
rod, that is, with the absence of uncertainties. In Table 7, the descriptions of
the random mass-loaded rods are shown in detail.

Table 7: Descriptions of the random mass-loaded rods - spectral averaging
approach: nomenclature, random variable, statistical distribution, and ran-
domness level.

Nomenclature Random va-
riable

Statistical
distribution

Randomness level (%)

Mass (10%) Point mass
location

Spatially
uniform

10 % of bare rod mass

Mass (20%) Point mass
location

Spatially
uniform

20 % of bare rod mass
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It is import to emphasize that bi-dimensional random mass-loaded
structures similar to ones presented in Table 7 have been commonly adop-
ted in numerical and experimental validations of revised SEA variance pre-
dictions which consider in their derivation the GOE model for both modal
parameter statistics, Langley et al (16, 3, 18, 4, 35, 17) and Cordioli et al.
(19) and Cordioli (20).

In the present work, particular interest is focused on one-dimensional
random mass-loaded structures since, for this particular group of structures,
the establishment of the structural localization phenomenon is expected. As
shown by Hodges et al (140, 139, 151, 159), the structural localization ef-
fects may modify significantly the probabilistic distribution characteristics of
kinetic energy responses of engineering structures, because their effects are
directly associated with the occurrence of energy confinement to certain spa-
tial regions of the structure. In this regard, numerical investigations were
performed in this study in order to establish a consistent relationship between
structural localization effects and the SEA prediction performance.

3.4.3 Spectral Natural Frequency Statistics

In the following sections, the statistical characterizations of the natu-
ral frequencies of random longitudinal rod structures, described in previous
subsections, are performed using the RMT eigenvalue statistical observable
results.

Probability Density Function of Adjacent Natural Frequency Spacings

The first eigenvalue statistical observable evaluated is the Probability
Density Function (PDF) of adjacent natural frequency spacings, which des-
cribes the short-range fluctuation statistics. In Figure 42, the numerical PDF
results for random rods described previously are shown6. The analytical pre-
dictions: Gaussian (Normal), Poisson (Exponential), and GOE (Rayleigh) are
also plotted. It is important to emphasize that all numerical spacing PDF re-
sults were evaluated from the unfolded spectra where the mean value of the
natural frequency spacings is frequency-constant and unitary.

6The modal parameter statistics of the Uniform (10%) and Mass (10%) rod structures are
evaluated indirectly through the Hamiltonian matrix structural analysis performed in the section
3.4.5.
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(a)

(b)
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(c)

(d)
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(e)

(f)

Figure 42: The unfolded natural frequency spacing PDF results and analyti-
cal predictions: Gaussian (Normal), Poisson (Exponential), and GOE (Ray-
leigh) (spectral averaging approach). Plots: (a) Nominal, (b) Uniform (20%),
(c) Mass (20%), (d) Gaussian (10%), (e) Gaussian (20%), and (f) Gaussian
(30%).
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As shown in Figure 42 (a), the spacing PDF result for the nominal
rod has a curve pattern similar to Delta Dirac (pulse) function. Indeed, as
expected for the nominal rod structure, the natural frequency spacings are
practically frequency-constant, Timoshenko and Young (155).

As shown in Figures 42 (b) - (f), the numerical PDF results suggest
the establishment of the high spectral rigidity characteristics in the natural
frequency spectra for all random rods investigated. That is, a large probability
associated with the occurrence of unitary natural frequency spacings is clearly
observed, regardless of the uncertainty sources and levels.

As the randomness level increases, the spectral spacing statistics of
the nominal unfolded natural frequencies, which is similar to Dirac Delta
distribution, are significantly perturbed and disordered statistics are clearly
established for the random rods with a high level of randomness. As obser-
ved in Figure 42, the intermediate distribution similar to those of the Normal
and Rayleigh cases (Gaussian and GOE statistics, respectively) are expected
during the statistical transition process from nominal to disordered statistics.
A good example of this statistical transition process is observed in the random
Gaussian rods as the randomness level increases in a gradual manner.

Natural Frequency Correlation Coefficient

In order to assess the spectral correlations between the natural frequen-
cies, the eigenvalue correlation coefficient7 was evaluated for each one of the
random rods investigated, Brody et al (56).

The definition of the natural frequency correlation coefficient is given
by:

C2 (Λ) =
E [(zi− z)(zi+Λ− z)]

E
[
(zi− z)2

] , (3.1)

where zi is the ith unfolded spacing, z is the spectral spacing mean value,
and Λ is the number of spacings between values. For GOE eigenvalues, this
correlation coefficient has been evaluated to be C2 (Λ) = −0.271 for Λ = 1,
Brody et al (56).

According to Langley and Brown (1, 18), the natural frequency cor-
relation has significant influence on the energy response variance in the SEA
context. The natural frequency correlation reduces the response variance,

7The eigenvalue correlation coefficient is also known as the correlation function of the natural
frequency spacings, Brody et al (56).
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since larger fluctuations in the kinetic energy density results arise when there
is a succession of small or large natural frequency spacings. Additionally, it is
also expected that natural frequency correlation effects become more relevant
as the modal overlap increases.

The natural frequency correlation coefficient results are shown in Fi-
gure 43. The correlation coefficient results computed for the eigenvalues of
large random matrices with GOE and Poisson statistics are also plotted, Go-
mes and Gerges (101).

In Figure 43 (a), the nominal rod results suggest a high correlation le-
vel between the natural frequencies even for large spectral natural frequency
distances. On the other hand, the eigenvalues from the large GOE and Poisson
random matrices shown almost-null correlation coefficient values for most of
spacing numbers (Λ), suggesting the establishment of spectral rigidity cha-
racteristics lower than those displayed by the natural frequencies of nominal
rod8.

As shown in Figures 43 (b) - (f), the presence of uncertainties leads to
a significant reduction in the spectral natural frequency correlation for all ran-
dom rods investigated. Indeed, it is also relevant to observe that all random
rod results showed negative values for unitary spacing (Λ = 1), suggesting
the establishment of the level repulsion phenomenon for natural frequencies.
On the other hand, the presence of small discrete peaks is observed for large
spectral distances, showing some residual high spectral rigidity characteris-
tics which are associated with the expected spectral characteristics of the no-
minal rod.

8More details on the physical interpretation of the correlation coefficient results for random
dynamical systems are available on Langley and Brown (18) and Brown (1).
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(a)

(b)
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(e)

(f)

Figure 43: Correlation coefficient of the natural frequency spacings: the ran-
dom rod results are compared to the eigenvalue correlation function results of
the dim (500*500) GOE and Poisson matrices (spectral averaging approach).
Plots: (a) Nominal, (b) Uniform (20%), (c) Mass (20%), (d) Gaussian (10%),
(e) Gaussian (20%), and (f) Gaussian (30%).
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Number Variance and ∆3-statistics

The measure functions of the long-range fluctuation statistics used tra-
ditionally in the random matrix literature are the number variance and the
∆3-statistics, Mehta (24). In Figure 44, the number variance results for the
nominal and random longitudinal rods are compared to the GOE and Poisson
model predictions.

For the nominal rod, it is expected that number variance values are
null for integer spectral natural frequency spacings, Weaver (64). As shown in
Figure 44 (a), the number variance results comply with this hypothesis mainly
in the small spacing range, but some small discrepancies are clearly observed
in the large spacing range. In fact, it appears that these small disagreements
are due to slightly reduced FEM model performance associated with the high-
frequency range.

(a)
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(b)

(c)
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(d)

(e)
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(f)

Figure 44: The number variance results for the nominal and random rods, and
GOE and Poisson analytical predictions (spectral averaging approach). Plots:
(a) Nominal, (b) Uniform (20%), (c) Mass (20%), (d) Gaussian (10%), (e)
Gaussian (20%), and (f) Gaussian (30%).

On the other hand, for random rod structures, Figures 44 (b) - (f), the
uncertainty effects reduce the spectral rigidity characteristics and lead to an
increase in the number variance values. The number variance results suggest
different levels of spectral rigidity characteristics for each one of the randomi-
zation approaches investigated. In general, as the uncertainty level increases,
there is a strong tendency for the establishment of statistics described by the
GOE model. This tendency is observed in the number variance results for the
Mass (20%) and Gaussian (30%) random rod structures, Figures 44 (c) and
(f), respectively. Although the uncertainty sources of these rod structures are
completely distinct, their spectral natural frequency statistics are very similar
and show approximately GOE natural frequency statistics. In Figure 45, the
∆3-statistics results for the nominal and random rods are displayed.
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(a)

(b)
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(c)

(d)
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(e)

(f)

Figure 45: The ∆3-statistics results for the nominal and random rods and
analytical predictions of the GOE and Poisson models (spectral averaging ap-
proach). Plots: (a) Nominal, (b) Uniform (20%), (c) Mass (20%), (d) Gaus-
sian (10%), (e) Gaussian (20%), and (f) Gaussian (30%).



216 3 Numerical Analysis of Random Longitudinal Rods

According to Figures 45 (a) - (b) and (d), the ∆3-statistics results
for the nominal and random rod structures with a low level of randomness
showed an almost constant value throughout the natural frequency spacing
domain. Indeed, this global pattern for the ∆3 - statistics results occurs due
to significant spectral rigidity characteristics associated with this particular
group of structures. For Uniform (20%) and Gaussian (10%) random rods,
the ∆3 - statistics results suggest a small and uniform reduction in the spec-
tral rigidity characteristics throughout the natural frequency spacing domain,
that is, uniform and slightly increasing of ∆3 - statistics values. Therefore,
it appears that the increase in the randomness level leads to a transition from
high spectral rigidity statistics to GOE statistics in Figures 45 (d) - (f). The
results for the Gaussian rod structures suggest that the reduction in the spec-
tral rigidity characteristics begins at large spectral natural frequency distances
(long-range fluctuation) and continues until small spectral natural frequency
distances (short-range fluctuation). Similarly to the number variance results,
the ∆3- statistics results for the Mass (20%) and Gaussian (30%) random rods
also show a certain level of universal characteristics and conform well with
the GOE analytical predictions, Figures 45 (c) and (f), respectively.

Although the ∆3 - statistics function is successfully applied to the spec-
tral analysis of random systems with distinct natures, some relevant issues
must be highlighted regarding the performance of its use to characterize the
spectral natural frequency statistics.

Considering the natural frequency statistics results for the Gaussian
(30%) and Mass (20%) random rods, an excellent agreement with the analy-
tical prediction based on the GOE model is observed for ∆3 - statistics as
well as the number variance results. However, the corresponding natural fre-
quency statistics results for the statistical observables for short-range fluctu-
ation, the spacing PDF and natural frequency correlation coefficient, shown
high spectral rigidity characteristics for the small natural frequency spacing
range, Figures 42 and 43, respectively. In other words, the short-range fluctu-
ation statistics results for both random rods showed a high probability for the
natural frequency spacings to be close to unitary magnitude (expected mean
value of the nominal unfolded natural frequency spacings). Thus, it appears
that the spectral natural frequency statistics for these random rods do not con-
form completely with the universal statistics described by the GOE model
and that they have system-dependent characteristics.

It is important to emphasize that the long-range fluctuation statistical
observables, the ∆3 - statistics and number variance Σ2, provide the averaged
results in the natural frequency domain and they can opportunely mask natu-
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ral frequency statistics characteristics associated with a particular range of the
natural frequency domain. In conclusion, from the previous discussion arises
a relevant observation: the natural frequency statistics from any random sys-
tem is only correctly characterized when all results from several eigenvalue
statistical observables are analyzed together and compared to each other, re-
gardless of their individual performance in the characterization of the spectral
natural frequency statistics.

3.4.4 Spatial and Spectral Mode Shape Statistics

In addition to the natural frequency analysis, a statistical investigation
of the corresponding mode shapes of the nominal and random rod structures
was also carried out. The best known eigenvector statistical observables of
RMT were evaluated and their results were compared with analytical predic-
tions, GOE (Gaussian) and sinusoidal mode shape statistics.

Spatial Kurtosis

In the current analysis, the kurtosis9 is defined as the ratio of the fourth
statistical moment of the eigenvector components to the square of second one,
Montgomery and Runger (103). According to Gomes and Gerges (101, 93),
Lyon’s mode shape statistic factor can be also understood as spatial kurto-
sis, since a spatial averaging approach is adopted in the evaluation of eigen-
vector component statistical moments. In other words, the evaluation of the
eigenvector component statistical moments for each eigenvector mode order
is performed along the eigenvector components (i.e., spatial domain of sys-
tem). Therefore, in order to emphasize the averaging approach adopted in the
kurtosis parameter evaluation, the nomenclature of spatial kurtosis will be in-
tentionally adopted herein for Lyon’s Mode Shape Statistics Factor. In Figure
46, the spatial kurtosis results are shown for each rod structure investigated.

9The kurtosis is a metric parameter reflecting whether the data are peaked or flat relative to
a normal distribution. That is, data sets with high kurtosis tend to have a distinct peak near the
mean, decline rather rapidly, and have heavy tails. Data sets with low kurtosis tend to have a flat
top near the mean rather than a sharp peak. A uniform distribution would be considered as the
extreme case, Montgomery and Runger (103).
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(e)

(f)

Figure 46: Lyon’s Mode Shape Statistics Factor or spatial kurtosis results for
the nominal and random rods (spatial averaging approach). Plots: (a) Nomi-
nal, (b) Uniform (20%), (c) Mass (20%), (d) Gaussian (10%), (e) Gaussian
(20%), and (f) Gaussian (30%).

According to Figure 46 (a), the nominal rod spatial kurtosis results
suggest that the mode shapes are perfectly sinusoidal. For spatial kurtosis
results for the random rods, Figures 46 (b) - (f), distinct intensities of the
randomness effects in the mode order domain are clearly observed for each
of random rods investigated.

For almost all of the random rods, small deviations in comparison to
the nominal mode shape statistics occurs for the low-frequency range (or low
mode order range). As expected, the large randomness effects are observed
in the mid and high-frequency ranges for all random rods investigated.

Overall, the random rod spatial kurtosis results suggest that as the
mode order (or excitation frequency) increases, a mode shape statistics tran-
sition occurs from almost sinusoidal statistics to disordered statistics. For di-
sordered mode shape statistics, the spectral mean values of the spatial kurtosis
results for the random rods are larger than the sinusoidal and GOE predicted
values.

As observed in Figure 46, the spatial kurtosis results for the random
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rods show a high level of dispersion around the global spectral tendency, and
the degree of spatial kurtosis variability becomes more intense as the excita-
tion frequency (mode order) or the randomness level increases.

In the current analysis, the spatial kurtosis results for the Gaussian
random rods show a typical example of the effects of the different randomness
levels on the mode shape statistics. Considering a fixed frequency range, for
example, around the 70th mode order vicinities, the spatial kurtosis results
for the Gaussian (10%) random rod show a smooth curve with values close
to K ' 2.00. For the Gaussian (20%) random rod, the spatial kurtosis results
vary moderately between 3 . K . 5. On the other hand, for the Gaussian
(30%) random rod, the spatial kurtosis results vary considerately between 5.
K . 10. Indeed, for the Gaussian rod structures, as the level of randomness
increases for a fixed frequency range, a simultaneous increase in the spatial
kurtosis values and in their spectral variability is expected due to the gradual
establishment of the structural localization effects on the mode shapes.

Besides investigating the kurtosis magnitudes, it is also relevant to
analyze the spatial kurtosis distribution in the mode order domain, Gomes
and Gerges (101). According to Pradhan and Sridhar (73, 123, 74), a perfect
Dirac delta function for the spatial kurtosis distribution centered at KGOE = 3
is no longer expected for a classically chaotic engineering system due to the
finite system dimension effects. In Figure 47, the spatial kurtosis PDF results
are presented for each of the Gaussian random rods. Additionally, the non-
linear sigma model expressions from the supersymmetry theory for the expo-
nential decay law of spatial kurtosis (or Inverse Participation Ratio) values,
Equation (2.59), are also plotted (linear and logarithmic plots, respectively).
The dimensionless conductivity (g) and the normalization constant (C2) va-
lues from the fitting processes are: g = 10 and C2 = 8.104 for Gaussian (10%)
rod, g = 0.8 and C2 = 60 for Gaussian (20%) rod and, g = 0.28 and C2 = 75
for Gaussian (30%) rod.
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(c1)

(c2)

Figure 47: PDFs of spatial kurtosis from the Gaussian random rods (spatial
averaging approach). Plots: (a) Gaussian (10%), (b) Gaussian (20%), and (c)
Gaussian (30%).

As shown in Figure 47, for all Gaussian random rods, the spatial kur-
tosis PDF results suggest a large PDF kurtosis amplitude for kurtosis values
close to the nominal value. In fact, the patterns of these PDF results may be
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directly associated with the poor performance of the randomization proces-
ses in the low-frequency range (or low mode order range). Considering the
results for the Gaussian random rods, it can be noted that the increase in the
randomness level leads to an increase in the PDF kurtosis amplitudes asso-
ciated with large spatial kurtosis values. In fact, none of the spatial kurtosis
PDF results show a tendency toward a Gaussian distribution and their spectral
mean or probabilistic mode values are very distinct from the kurtosis value
expected for the GOE model. Similarly to the main conclusions drawn from
the previous analysis of the spatial kurtosis values, the patterns of the spatial
kurtosis PDF results also confirm that the performance of the randomization
process is not homogeneous over the frequency domain for all Gaussian ran-
dom rods.

In the Statistics field, a distribution with large kurtosis values is called
leptokurtic, or leptokurtotic. In terms of distribution shape, a leptokurtic dis-
tribution has a more acute peak around the mean value10. For the mode shapes
with large spatial kurtosis values it is expected that most of their mode shape
components have amplitudes close to the probabilistic mode value and only a
small number of mode shape components have large amplitudes beyond the
probabilistic mode value. Therefore, these distribution characteristics suggest
the existence of large localized mode shape component amplitudes confined
to a particular (or spatially limited) region of Gaussian random rods. It is also
important to note that these effects are very similar to those of the structural
localization phenomenon, Hodges et al (139).

Considering again the spatial kurtosis results for the Mass (20%) ran-
dom rod, Figure 46 (c), a similar conclusion regarding the effects of an incre-
ase in uncertainty level on the mode shape statistics can be also extended to
the effects of an increase in excitation frequency on the mode shape statistics
of a structure with a fixed randomness level. Indeed, the Mass (20%) spatial
kurtosis results suggest that the effects of randomness on the low-frequency
range are almost negligible and the spatial kurtosis values are very similar
to the kurtosis value predicted for sinusoidal mode shapes (i.e., nominal kur-
tosis value). As the excitation frequency (or the mode order) increases, the
pattern of spatial kurtosis curve becomes gradually discontinuous (looks like
a zigzag) and dispersed.

As shown in the previous spatial kurtosis analysis for all random rods,
there is an evident tendency toward the establishment of large kurtosis va-
lues in the mid and high mode order ranges. For almost-periodic structures,
large values for the spatial kurtosis can be easily associated with the struc-

10 For most practical distributions, the mean value is equal to the probabilistic mode value.
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tural localization phenomenon, Hodges et al (139, 151). A similar tendency
has been established for disordered billiard systems in the Quantum Physics
field, (71, 100, 120). In such studies, the localized wave function amplitudes
occur in a certain region of the microwave cavity due to energy confinement
provided by small tiles (disorder or irregularity).

Considering the Mass and Gaussian random rods, they may be con-
sidered possible candidates for the establishment of structural localization
effects, (140, 139, 159). In Figures 46 (c) and (f), the results for the Mass
(20%) and Gaussian (30%) random rods showed the large spatial kurtosis va-
lues as well as a high dispersion around the spectral mean value mainly in
the high mode order range. Although, this global pattern of results is very
similar to those observed for the disordered billiard systems, it is important to
emphasize that there is no evident reasons to affirm that the predictions from
the supersymmetry models valid for quantum nuclear or billiard systems can
be directly extended to the random dynamical structures.

Considering the spatial kurtosis PDF results for the Gaussian (20%
and 30%) rods, the Figures 47 (b) and (c), a satisfactory performance of
the non-linear sigma model expression is observed mainly in the kurtosis
range associated with weak and moderate localization characteristics, that
is 3.5 . K . 9. At the tail of the kurtosis distribution, a dispersion of kurto-
sis PDF around the fitted non-linear sigma model expression is clearly noted.
Indeed, it is also important to emphasize that the spatial kurtosis values asso-
ciated with the tail kurtosis distribution have strong and extremely strong lo-
calization characteristics, being strictly sensitive to system-dependent effects.
For the Gaussian (10%) rod, as discussed previously, the localization cha-
racteristics are only established for a small number of mode shapes and thus
it is expected that the non-linear sigma model expression is no longer valid.
However, the non-linear sigma model expression was fitted to the numerical
kurtosis results, Figure 47 (a). The fitted non-linear sigma model expression
showed good versatility and performance in describing the exponential decay
law as the spatial kurtosis value increases.

Although the Universality concept states that the modal parameter
statistics (inclusive mode shape statistics) tends asymptotically to be inde-
pendent of uncertainty sources and converge to the GOE model, the current
spatial kurtosis results did not confirm this universal tendency for the fre-
quency range investigated. For all random rods investigated, their spatial
kurtosis results showed distinct high-frequency asymptotic tendencies and
their asymptotic values did not conform well to the GOE predicted value.
Indeed, the relevant non-universal mode shape characteristics were identified
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for all of the random rods investigated, since their mode shape statistics seem
to have structural localization characteristics, showing system-dependent ef-
fects, Bertelsen et al (90, 66).

Spatial Lilliefors Test

In order to evaluate the agreement between the mode shape statistics of
the random rods and GOE statistics, the Lilliefors Test was also adopted, since
the Gaussian distribution is expected for the GOE eigenvector components,
Mehta (24). The Lilliefors Test is able to identify the particular frequency
range (or mode order range) in which the mode shape statistics are almost-
Gaussian (GOE), Montgomery and Runger (103). In Figure 48, the spatial
Lilliefors Test results are shown for all rods investigated.

According to Figure 48, the spatial Lilliefors Test results from all ran-
dom rods show that the Gaussian distribution hypothesis is rejected for the
mode shape components in the low mode order range. For this range, the
mode shapes are weakly affected by randomness effects and their component
distributions are similar to those expected for the sinusoidal mode shapes.

However, as the excitation frequency or randomness level increases,
a statistical transition occurs initially from almost-nominal to GOE statis-
tics. Thus, the establishment of almost-Gaussian mode shapes (or GOE mode
shape statistics) occurs in a particular limited frequency region (or mode or-
der) for each of the random rod structures investigated.
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Figure 48: The spatial Lilliefors Test results for the nominal and random
rods (spatial averaging approach). Plots: (a) Nominal, (b) Uniform (20%),
(c) Mass (20%), (d) Gaussian (10%), (e) Gaussian (20%), and (f) Gaussian
(30%).

For the high mode order range, beyond the Gaussian mode shape re-
gion, the spatial Lilliefors Test results showed that the spatial distribution of
the mode shape components is no longer Gaussian and the Gaussian distribu-
tion hypothesis is again rejected for the mode shape components. Based on
the previous and current eigenvector statistical observable results, it appears
that these mode shapes might establish the structural localization phenome-
non in the high mode order range. Indeed, this fact once again upholds the
evidence that the mode shape statistics have non-universal characteristics in
the high-frequency range for random rod structures.

Overall, the spatial Lilliefors Test results in the mode order domain
suggest three well defined patterns for the spatial mode shape statistics:
almost-nominal statistics, almost-GOE statistics, and structural localized
statistics, respectively.

Porter-Thomas Distribution

In the RMT context, the one of the best known eigenvector statis-
tical observables is the Porter-Thomas distribution, also known as the PT-
distribution, kudrolli et al. (71). This metrics is based on the distribution of
normalized squared mode shape amplitudes (to have unit mean value), and
its application is commonly used to verify the agreement between the ran-
dom system eigenvector statistics and the GOE eigenvector statistics, Brody
et al (56). In addition, the PT-distribution results also allow the identification
of the deviation classes of a particular mode shape statistics in comparison
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to the expected universal GOE mode shape statistics. In other words, it is
possible to identify correctly the sources (or their class) of eigenvector de-
viation which lead to non-universal behavior in the mode shape statistics,
(119, 72, 160, 74). In the RMT context, the main physical phenomena as-
sociated with non-universal mode shape statistics can be classified into two
major classes: periodical orbits (presence of geometrical symmetries) and
structural localization (spatial confinement of energy). In Figure 49, the PT-
distribution results are shown for the nominal and random longitudinal rods
investigated.

For the nominal rod, the mode shapes are perfect sinusoidal functions
and the PT-distribution results are very similar for all mode shapes in the fre-
quency range investigated, Figure 49 (a). In addition, it can be noted that,
for all nominal mode shapes, the normalized squared amplitudes are less than
2 and the PT-distributions have a well defined pattern. Indeed, for the no-
minal longitudinal rod, the mode shapes are written as φ (x) = Axsin(x) and
thus

〈
φ 2
〉
= Ax

2 and max
(
φ 2
)
= A2

x . For the normalized squared mode shape

amplitude zA = A2
x
〈A2

x〉 , and max(zA) = 2 as observed in Figure 49(a).

(a)
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(b)

(c)
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(d)

(e)
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(f)

Figure 49: PT-distribution results for the nominal and random rods and GOE
predictions (Gaussian mode shapes) (spatial averaging approach). Plots: (a)
Nominal, (b) Uniform (20%), (c) Mass (20%), (d) Gaussian (10%), (e) Gaus-
sian (20%), and (f) Gaussian (30%).

For all random rods investigated, the PT-distribution results suggest a
partial elevation of tail distribution for some higher mode orders. This cha-
racteristic traditionally occurs due to the establishment of a certain degree of
structural localization of the mode shapes, (71, 73).

For the low order mode shapes, the randomness effects are almost ne-
gligible and it is expected that their PT-distribution results are very similar to
the nominal results. In contrast, as the frequency increases the structural irre-
gularities lead to the establishment of structural localization associated with
the high probability of large normalized mode shape amplitudes. As shown
in Figures 49 (b) - (c), the PT-distribution results allow the identification of
the different levels of non-universal characteristics as well as the effects of
the different randomization processes (or distinct randomness sources) on the
mode shape statistics.

Nevertheless, it is also important to emphasize that the large norma-
lized squared mode shape amplitudes are very sensitive to system-dependent
effects and thus they become a key point in the checking process of the uni-
versal establishment of GOE mode shape statistics. In Figures 49 (d) - (f),
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the PT-distribution results suggest that the increase in randomness level rein-
forces the structural localization effects since the tail distribution becomes
thicker and the occurrence of large normalized mode shape amplitudes is ex-
pected.

Spatial PDF of Mode Shape Components

In this study, a detailed analysis was performed with some particu-
lar mode shapes from each random rod structure in order to investigate the
establishment of the universal GOE statistics and structural localization cha-
racteristics (non-universal effects). Due to the large amount of data obtained
in this analysis and the high similarity of some results obtained, only the most
relevant results will be shown below. Based on complete set of results, it ap-
pears that the mode shape statistical results for the Gaussian (30%) random
rod are very representative and demonstrate the most relevant physical phe-
nomena of all of the random rods investigated, Gomes (84).

The statistical characteristics of the three major classes of mode shape
statistics will be presented in detail below. These main mode shape statisti-
cal classes are: almost-nominal (sinusoidal), almost-GOE (or Gaussian), and
structural localized statistics.

In Table 8, the statistical characteristics of the Gaussian (30%) mode
shapes investigated in this section are presented in detail. These pre-selected
mode shapes are representative samples of each mode shape statistics class.
Additionally, some mode shapes are also considered in order to investigate
the statistical transition characteristics between the well-defined mode shape
statistics classes.

In Figure 50, the spatial representation of mode shape amplitudes, the
PDF of mode shape components, and the PT-distribution results are presen-
ted for some pre-selected mode shapes of the Gaussian (30%) random rod.
The analytical predictions for sinusoidal and Gaussian mode shape statistics
are also compared to numerical results. Additionally, the performance of the
PT-distribution based on the non-linear sigma model expressions of the su-
persymmetry, Equations (2.53) and (2.55), are verified for the mode shapes
with weak and strong localization characteristics.
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Table 8: Mode shapes investigated: subfigure, mode order, spatial kurtosis,
and mode shape statistics.

Sub-figure Mode
order

Spatial
kurtosis
(K)

Mode shape statistics

Figure 50 (a) 05 1.498 almost-nominal
Figure 50 (b) 20 2.182 nominal - Gaussian

transition
Figure 50 (c) 26 2.773 almost-Gaussian
Figure 50 (d) 35 2.786 almost-Gaussian
Figure 50 (e) 39 3.759 Gaussian - localized

transition
Figure 50 (f) 72 13.024 structural localized
Figure 50 (g) 93 24.492 structural localized

(a1) Mode 05: almost-nominal
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(a2) Mode 05: almost-nominal

(a3) Mode 05: almost-nominal
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(b1) Mode 20: nominal to Gaussian transition

(b2) Mode 20: nominal to Gaussian transition
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(b3) Mode 20: nominal to Gaussian transition

(c1) Mode 26: almost-Gaussian
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(c2) Mode 26: almost-Gaussian

(c3) Mode 26: almost-Gaussian
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(d1) Mode 35: almost-Gaussian

(d2) Mode 35: almost-Gaussian
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(d3) Mode 35: almost-Gaussian

(e1) Mode 39: Gaussian to localized transition
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(e2) Mode 39: Gaussian to localized transition

(e3) Mode 39: Gaussian to localized transition
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( f1) Mode 72: Localized

( f2) Mode 72: Localized
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( f3) Mode 72: Localized

(g1) Mode 93: Extreme localized
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(g2) Mode 93: Extreme localized

(g3) Mode 93: Extreme localized

Figure 50: Examples of the main three classes of mode shape statistics:
almost-nominal (sinusoidal), almost-GOE (or Gaussian), and structural loca-
lized statistics (spatial averaging approach). The Gaussian (30%) numerical
results (for pre-selected mode shapes) and analytical prediction (sinusoidal
and Gaussian statistics).
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As shown in Figure 50, the three distinct statistics classes and their
transitions are easily identified in the mode shape analysis of the Gaussian
(30%) random rod. These numerical results illustrate the effects of the pre-
sence of randomness on the mode shape statistics and the statistical mode
shape characteristics as the excitation frequency increases.

For the low mode order range (or low-frequency range), small deviati-
ons are observed in comparison to nominal mode shape statistics and thus the
Waterhouse PDF analytical prediction for one-dimensional sinusoidal mode
shapes, Equation (2.26), conforms well with numerical results, Figure 50 (a).

For modes 26 and 35; Figures 50 (c) and (d), respectively; a good
agreement was obtained between the numerical results and the GOE analy-
tical prediction which states that the GOE mode shapes are statistically in-
dependent and their eigenvector components have an asymptotic Gaussian
distribution.

For the high mode order range (or high-frequency range), the confine-
ment of large mode shape amplitudes to a particular rod region characterizes
the establishment of the structural localization phenomenon. That is, the
PDF of localized mode shape components shows a high probability for mode
shape component amplitudes closer to the mean value and a low probability
for eigenvector amplitudes larger or smaller than the mean value. Additio-
nally, the PT-distribution results for such localized mode shapes show large
magnitudes for the tail region of the distribution, that is, large mode shape
component amplitudes are expected in comparison with the PT-distribution
of the universal GOE mode shapes. In Figures 50 (f) and (g), examples of
moderate and strong structural localization degrees are presented in terms of
the PT-distribution for the mode shapes 72 and 93, respectively.

Although it is not discussed above in detail, an intermediate or transi-
tory statistical behavior occurs between the well-defined mode shape statistics
classes. Indeed, two main transitory statistics are: nominal to almost-GOE
transition, Figure 50 (b) - Mode 20, and almost-Gaussian to localized transi-
tion, Figure 50 (e) - Mode 39.

Considering the performance of the PT-distribution expressions based
on the non-linear sigma model for weakly and strongly localized mode sha-
pes, a good performance of the weak localization expression is observed to
describe the small perturbations due to incipient localization effects, Mode
39 - Figure 50 (e). For strongly localized mode shapes, a normalization
constant (CPT ) was introduced into the non-linear sigma model expression
in order to improve the fit. Indeed, satisfactory performance of the modified
PT-distribution expression based on the non-linear sigma model is verified
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for strong localization regime, Figure 50 (f). However, some small discre-
pancies are also observed in the large mode shape amplitude range where the
PT-distribution results are sensitive to small changes in the system-dependent
contributions.

For extremely localized regime, as the case of mode 93, extremely
large values occur in the PT-distribution curve for the large mode shape ampli-
tude range. Although the PT-distribution expression based on the non-linear
sigma model is not expected to be valid for the extremely localized regime,
a satisfactory performance is surprisingly observed in Figure 50 (g), showing
its capacity to describe the effects of the non-universal perturbations on the
Gaussian PT-distribution curve.

Spectral Kurtosis

Although the Lyon’s Mode Shape Statistics Factor (or spatial kurto-
sis) considers the spatial averaging approach for each mode shape (i.e., an
averaging process over the mode shape component domain), the relevant sta-
tistical mode shape characteristics are also obtained when the mode shape
statistical moments are evaluated for a fixed mode shape component across
the frequency domain (or mode order domain), that is, the spectral averaging
approach is adopted, Gomes and Gerges (101). The relevance of the spectral
kurtosis analysis arises from the fact that the kinetic energy density evalua-
tion for a system subjected to a single point-loading is partially dependent on
the mode shape component amplitudes at excitation point. Thus, a statistical
investigation of the amplitudes of a fixed mode shape component associated
with forcing point is essential, in order to provide a detailed understanding of
the system energy statistical characteristics.

In the revised theory of SEA variance, the GOE statistics model is
adopted for both system modal parameters, Langley et al (18, 3). Therefore,
it is expected that mode shapes are statistically independent and the mode
shape component distribution is asymptotically Gaussian, that is, the mode
shape components are considered uncorrelated Gaussian variables.

In the current analysis, the kurtosis value associated with each mode
shape component, here referred to as spectral kurtosis, was evaluated for all
rod structures investigated in order to verify compliance with the assumption
of sinusoidal and GOE (or Gaussian) mode shape statistics. In Figure 51, the
spectral kurtosis results are shown for all rods investigated.
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(a)

(b)
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(c)

(d)
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(e)

(f)

Figure 51: Spectral kurtosis results for the nominal and random rods and
analytical predictions, GOE and sinusoidal statistics (spectral averaging ap-
proach). Plots: (a) Nominal, (b) Uniform (20%), (c) Mass (20%), (d) Gaus-
sian (10%), (e) Gaussian (20%), and (f) Gaussian (30%).
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According to Figure 51, the nominal spectral kurtosis results conform
very well to the sinusoidal analytical predictions and to the spatial kurtosis
results obtained in previous spatial kurtosis analysis. In this regard, the nomi-
nal rod results suggest that the sinusoidal mode shape statistics are practically
ergodic in terms of the spatial and spectral average statistics being equivalent,
Lyon (48).

For the random rods, the randomness effects are relevant and large
spectral kurtosis values are observed for the rod regions closer to the rod end
vicinities. In a similar way to the spatial kurtosis results, the spectral kurto-
sis results also evidence the non-universal characteristics of the mode shapes
of the random rods investigated. In most of the mode shape components,
the spectral kurtosis values are distinct from the kurtosis value associated
with a perfect Gaussian distribution, suggesting the existence of correlations
between the same component of different mode shapes for all of the random
rod structures investigated. According to Langley et al (18, 35), the corre-
lation between the different mode shapes at the force point may be the main
reason for the reduced performance associated with revised SEA variance the-
ory based on the GOE model, which does not allow the existence of spectral
correlations between the force point component of different mode shapes.

Based on the spectral kurtosis results, it can be suggested that most of
mode shape components present spectral or inter-modal correlations and can
not be considered to have asymptotic uncorrelated characteristics. However,
it is important to emphasize that the spectral kurtosis results only provide
an indirect analysis regarding mode shape component correlations and it is
not possible to establish a direct or linear relationship between the spectral
kurtosis values and the spectral correlation level of different mode shapes at
a fixed mode shape component, Gomes and Gerges (101).

Although it was not investigated here, for the case of the highest fre-
quency range, it appears that the mode shapes may show asymptotically well
established statistics. Considering the extreme condition where the longi-
tudinal wavelength is smaller than the structural irregularity span, the rod
becomes effectively clamped at the structural irregularity locations. There-
fore, independent sets of modes with similar statistics can exist in the vari-
ous sections between the structural irregularities. According to Brown (1)
and Bertelsen (90, 66), an asymptotic exponential PDF is expected for the
natural frequency spacings, since the sum of a large number of statistically
independent sets of random variables has an exponential PDF. However, a
similar conclusion can not be directly extended to the corresponding mode
shapes due to their system-dependent characteristics. In this regard, further
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investigations are necessary in order to clarify the establishment of possible
asymptotic mode shape statistics toward the high-frequency region.

3.4.5 Analysis of Hamiltonian Matrix Structures

In order to understand the effects of uncertainties on the structure of
mass and stiffness matrices, an analysis was performed in relation to the ma-
trix characteristics of the nominal rod structure. The current matrix analysis
is performed in terms of the Hamiltonian matrix which is defined as a com-
bination of the mass and stiffness matrices. According to Brown (1), the
Hamiltonian (H) is the matrix operator which is given by:

H = M−1K. (3.2)

In Figure 52, the Hamiltonian matrices are shown for the nominal and
Gaussian random rods investigated. The magnitudes of the Hamiltonian ele-
ments are presented in terms of the absolute values. In order to visualize the
randomness effects in the Hamiltonian matrix structure, the absolute differen-
ces between the Hamiltonian elements of the nominal and each of the random
rod structures are also presented.

(a)
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(b) (c) (d)

Figure 52: Hamiltonian matrix patterns of the nominal and Gaussian random
rod structures. Plots: (a) Nominal Hamiltonian Matrix - 3D view, (b)-(d)
Hamiltonians of nominal structure; Gaussian structures (10%, 20%, and 30%,
respectively); and Hamiltonian differences. The Hamiltonian elements are
shown in terms of the absolute values.
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As shown in Figure 52 (a), the Hamiltonian matrix structure of the
nominal rod structure does not clearly have the band-matrix characteristics.
Additionally, the large absolute magnitudes are observed for diagonal matrix
elements.

In relation to Figures 52 (b) - (d), the changes in the magnitude of
the Hamiltonian elements occur gradually from the corner to the center of
matrix operator and the patterns are similar for all Gaussian random rods
investigated. Regarding the changes in the magnitude of the Hamiltonian
element, it can be noted that the relationship between the randomness level of
the random rod structures and the changes in the magnitude of Hamiltonian
elements is not linear.

In Figure 53, the Hamiltonian results are shown for random rod struc-
tures which consider a Uniform distribution for the cross-sectional area values
during the randomization process.

The results for the Uniform random rod structures do not suggest a
clear tendency for changes in the magnitude of the nominal Hamiltonian ma-
trix structure. Both results for the Uniform rods showed distinct ranges for
the changes in the amplitude of Hamiltonian elements as well as different pat-
terns for the changes in the Hamiltonian matrix structure due to the presence
of randomness.

In Figure 54, the Hamiltonian results are shown for each one of the
mass-loaded random rod structures. The results for the mass-loaded random
rod structures show explicitly that the perturbed Hamiltonian structure is very
similar to the nominal Hamiltonian structure. It is important to emphasize that
this randomization approach is traditionally applied to induce the universal
establishment of GOE statistics, Langley et al (16, 3, 18, 4, 35).

As shown previously in the natural frequency analysis, the spectral na-
tural frequency statistics of this class of random rod structure presents a high
level of GOE statistics in comparison to other random rod structures. Howe-
ver, the Hamiltonian structures of mass-loaded rod structures seems to be,
surprisingly, almost absent of magnitude changes in the Hamiltonian matrix
elements. This suggests that the modifications in the Hamiltonian structure
do not have a direct relationship with the universal establishment of GOE
statistics for the modal parameters.
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(a) (b)

Figure 53: Hamiltonian patterns of the nominal and Uniform random rod
structures. Plots: (a) - (b) Nominal structure; Uniform structures (10% and
20%, respectively); and Hamiltonian differences. The Hamiltonian elements
are shown in terms of the absolute values.
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(a) (b)

Figure 54: Hamiltonian patterns for the nominal and mass-loaded random
rod structures. Plots: (a) Nominal ; (b) mass-loaded rod structures, Mass
(10% and 20%, respectively); and Hamiltonian differences. The Hamiltonian
elements are shown in terms of the absolute values.
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Although not shown in detail, it is also important to emphasize that the
number of non-zero matrix elements did not change for the stiffness and mass
matrices of all random rod structures investigated when randomness was in-
serted in the nominal rod structure, Gomes (84). However, it is not clear
how the small changes in matrix element magnitudes due to point mass un-
certainties led to modifications in the level of coupling between Hamiltonian
elements and in the modal parameters, natural frequencies and mode shapes,
for the mass-loaded random rod structures investigated.

In conclusion, important evidence arises from the results of this analy-
sis: the universal establishment of GOE statistics can not be evaluated directly
through analysis of the mass and stiffness matrix structures, or the changes in
the magnitude of Hamiltonian matrix structure. Based on this evidence, the
investigation approach based on the matrix structure will not be applied in
the following statistical analysis of the other random structures investigated
in this study.

3.4.6 Spectral Kinetic Energy Density Statistics

In this subsection, the statistical characteristics of the first two statis-
tical moments of the kinetic energy density results are investigated for the
nominal and random longitudinal rod structures. Initially, the general consi-
derations regarding the kinetic energy density evaluation in the SEA predic-
tion context are shown in detail for the case of a longitudinal rod.

SEA Predictions

For a single subsystem, like the longitudinal rod structure considered,
the SEA power balance states that the power input (Πin) to the structure is
equal to the dissipated power (Πdiss):

Πin = Πdiss = Eωη . (3.3)

In SEA analysis, the variables are usually taken as band-averaged variables
and the frequency ω is assumed to be the frequency-band central frequency.
According to Cremer et al (38), the power input for a single point force is
given by:

Πin =
1
2

F2 〈Re(Y (ω))〉 , (3.4)
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where 〈 〉 denotes the spatial average and Y (ω) is the input mobility. Lyon in
(48) showed that the spatial mean of the real part of the mobility can be ade-
quately estimated from the real part of the input mobility results of a corres-
ponding infinite (or semi-infinite) system, Y∞(ω). This assumption is usually
adopted in the analytical SEA field. Thus, Equation (3.4) can be rewritten as:

Πin =
1
2

F2Re(Y∞(ω)) . (3.5)

Considering a unit point force and substituting Equation (3.5) into
Equation (3.3), the total energy is given by:

ESEA =
Re(Y∞(ω))

2ωη
. (3.6)

Therefore, the kinetic energy density for a longitudinal rod is given
by:

TSEA =
ESEA

2Lr
=

Re(Y∞(ω))

4Lrωη
, (3.7)

where Lr is the rod length.
The analytical mobility expressions for infinite and semi-infinite rods

subjected to a single point-excitation are available in the literature. According
to Fahy and Walker (5), the analytical mobility expression for semi-infinite
rods is given by:

Y1
2 ∞

(ω) =
1

S
√

Eymρ
=

1
ρScl

. (3.8)

and for infinite rod systems is given by:

Y∞ (ω) =
1

2S
√

Eymρ
=

1
2ρScl

, (3.9)

where cl , S, and ρ are the longitudinal wave speed, rod cross-sectional area,
and mass density, respectively. The longitudinal wave speed (cl) of a rod is
given by:

cl =

√
Eym

ρ
. (3.10)

Substituting the previous analytical mobility expressions into Equa-
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tion (3.7), the kinetic energy density for a longitudinal rod subjected to a
unitary single point force is given by:

TSEA =
1

4ρSLrωclη
, (3.11)

and the spatially-averaged kinetic energy density is given by:

TSEA =
1

8ρSLrωclη
. (3.12)

Spectral Kinetic Energy Density Statistics: Single Point-Excitation

In this current analysis, the spectral approach will be adopted for the
averaging processes of kinetic energy density results. Therefore, the eva-
luation of the energy response variability was performed within the 1/3 oc-
tave frequency band limits. Similar averaging processes have been applied
in experimental investigations of the energy response variability in the room
acoustics field, Davy et al (53, 54).

In this regard, the kinetic energy density results are evaluated, using
the Equation (2.67), for each of the rod structures subjected to a unitary lon-
gitudinal single point-loading at the left rod end. Additionally, the damping
loss factor (DLF) was considered to be frequency-constant, since the mecha-
nical loss mechanisms for the structure class investigated were considered to
be spatially distributed, (28, 161). Based on the recent literature, four the
DLF values were adopted in order to provide distinct levels of the modal su-
perposition, Langley and Brown (1, 18). The DLF values adopted are η =
0.03, 0.06, 0.12 and 0.24.

The kinetic energy density results for the nominal rod are initially eva-
luated for each DLF in terms of the narrow frequency domain with 10 Hz
frequency intervals. A sufficiently large number of modes was adopted in
the superposition process to provide the correct response convergence in fre-
quency range investigated.

In Figure 55, the kinetic energy density results for the nominal rod
are presented in terms of the narrow frequency domain as well as in terms
of the 1/3 octave frequency bands domain. Additionally, the SEA analytical
predictions were also evaluated and compared with the numerical results.
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(a)

(b)
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(c)

(d)

Figure 55: Kinetic energy density results for the nominal rod excited by uni-
tary longitudinal single point-loading at left end of rod (spectral averaging
approach). Plots: Damping Loss Factors: (a) 0.03, (b) 0.06, (c) 0.12, and (d)
0.24.
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According to Figure 55, the numerical energy results for the nominal
rod conform very well with the SEA predictions mainly in the high-frequency
range, regardless of the damping loss factor value considered. In general, as
the DLF magnitude increases, the numerical energy results become smooth
and a reduction in the oscillation behavior of the energy response curve occurs
around the analytical SEA predicted values.

Considering a spectral averaging process, the relative variances of
the kinetic energy density results, associated with each 1/3 octave frequency
band, were also evaluated for the nominal rod response. In order to identify
clearly the effects on the spectral relative variance of different levels of modal
superposition, the relative variance results for the four DFLs considered are
plotted in terms of the corresponding modal overlap factors, Figure 56.

(a)
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(b)

(c)
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(d)

Figure 56: Spectral relative variances of kinetic energy density results for the
nominal rod excited by unitary longitudinal single point-loading at the left
end of the rod (spectral averaging approach). Plots: Damping Loss Factors:
(a) 0.03, (b) 0.06, (c) 0.12, and (d) 0.24.

As shown in Figure 56, the numerical results of the spectral relative
variance present lower values in comparison to the expected analytical pre-
dictions for all of the DFLs considered. It can be noted that as the DLF value
increases, the energy response becomes multimodal and an asymptotic reduc-
tion in the energy response variability is expected. Indeed, good agreement
occurs between the averaged numerical results and the SEA predictions for
high modal overlap factor magnitudes, Figure 55. In terms of the spectral
relative variance results, similar behavior occurs, since an almost constant
plateau curve with small amplitude is established for high overlap modal fac-
tor values.

Although the SEA variance analytical prediction based on the Poisson
model considers sinusoidal mode shapes like those observed for the nominal
rod structure, the spectral relative variance numerical results for the nominal
rod are much lower than the Poisson predictions, Figure 56. It appears that
this discrepancy is mainly due to differences between the natural frequency
statistics of the nominal rod and Poisson model.

Considering the nominal longitudinal rod structure, the natural fre-



264 3 Numerical Analysis of Random Longitudinal Rods

quency statistics presents high spectral rigidity characteristics as well as the
establishment of a relevant spectral correlation. On the other hand, the SEA
variance prediction based on the Poisson model considers that the natural fre-
quencies are completely uncorrelated. In this regard, the numerical spectral
relative variance results for the nominal rod are expected to be lower than the
analytical predictions based on the Poisson model as well as on the GOE11

model.
As shown in the SEA literature, the relative variance predictions ba-

sed on the Poisson statistics are traditionally expected to be larger than those
based on the GOE model for all two and three-dimensional real engineering
systems (16, 35). In the current analysis, the SEA variance predictions based
on the Poisson model for a longitudinal rod subjected to a single point-loading
are surprisingly lower than corresponding results based on the GOE model,
as presented in Figure 56.

As discussed previously, the point-loading relative variance predic-
tions are highly dependent on the mode shape statistics through the Mode
Shape Statistics Factor (K), Brown et al (1, 18, 3). Considering the SEA re-
lative variance predictions based on the Poisson model, the mode shapes are
assumed to be sinusoidal and thus the Mode Shape Statistics Factor is equal
to K = 1.5 for one-dimensional systems12, Lyon (48). On the other hand,
the relative variance predictions based on the GOE model consider Gaussian
mode shape statistics in which the Mode Shape Statistics Factor is equal to
K = 3.0, regardless of the system dimensionality, Mehta (24).

The natural frequency effects associated with Poisson statistics on the
energy results lead to a large variability in the energy response compared with
those associated with GOE statistics. The current rod relative variance pre-
dictions strongly suggest that the contribution from the mode shape statistics
on the energy density results can be significantly greater than the contribution
the natural frequency statistics for the case of a longitudinal rod subjected to
a single point-loading. Indeed, the statistical moments of the kinetic energy
density response from the engineering structure subjected to a single point-
loading are strongly influenced by the mode shape statistics and thus small
modifications in the mode shape statistics can lead to relevant changes in the
response variance magnitudes.

In summary, lower amplitudes of the point-loading relative variance

11The GOE model considers Rayleigh correlated natural frequencies, Mehta (24).
12For sinusoidal mode shapes, the spatial kurtosis values are dependent on the system di-

mensionality and thus the spatial kurtosis values are 1.5, 2.25, and 3.875 for one, two, and
tri-dimensional systems, respectively, Lyon (48).
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prediction based on the Poisson model can be easily explained considering
the following factors:

• the sinusoidal spatial kurtosis value is much lower than the GOE value
for one-dimensional structures, that is K1D

sin = 1.5 < KGOE = 3, and

• the effects of the mode shape statistics on the energy results become
predominantly greater than the corresponding natural frequency statis-
tics effects for cases where a structure is subjected to a single point-
loading.

Considering random rod structures, the kinetic energy density results
were evaluated in terms of the narrow frequency domain as well as the 1/3
octave frequency-band domain. In Figure 57, the numerical energy results
for the random rods are presented and compared with the SEA analytical
predictions as well as the nominal rod result13.

In these plots, only the spectral variances of the kinetic energy density
results, with η = 0.03, are present for random rods. This technical choice
is based on the premise that small DFL magnitudes provide low modal su-
perposition characteristics and allow a direct visualization of the effects of
the modal parameter statistics on the statistical moments of kinetic energy
density results.

13It is relevant to point out that the comparison with the nominal results provides an efficient
investigation of the performance of the randomization process and the corresponding uncertainty
effects. In other words, this direct comparison enables the identification of the minimum cut-off
frequency at which the energy responses of the random rods are effectively perturbed by the
presence of randomness.
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Figure 57: Kinetic energy density results for the random and nominal rods in
terms of the narrow and 1/3 octave frequency band domains subjected to unit
single point excitation. The analytical SEA predictions are also plotted.

In addition to the kinetic energy density analysis, the spectral relative
variances of the kinetic energy density results were evaluated for the random
and nominal rod structures. The analytical predictions of the relative vari-
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ance based on the Poisson and GOE models were also evaluated in terms of
the 1/3 octave frequency band domain, Figure 58. The DLF magnitude was
considered to be frequency-constant and equal to 0.03 (3%).

Figure 58: Spectral relative variance of kinetic energy density results for the
random and nominal rods subjected to unit single point-loading (spectral ave-
raging approach). The analytical predictions for relative variance based on
the Poisson and GOE models.
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According to Figure 58, the results for the random rods suggest that
the spectral relative variances are dependent on the randomization approach
adopted in the mid and high-frequency ranges. Even though a certain le-
vel of universal statistics is expected for modal parameters toward the high-
frequency range14, the spectral relative variance results showed distinct beha-
viors as well as system-dependent effects in the high-frequency range. Ne-
vertheless, it appears that these distinct behaviors are due to large differences
in the mode shape statistics of the random rod structures considered. In-
deed, the statistical moments of the energy responses for a single point excited
structure are strictly dependent on mode shape statistics and thus small chan-
ges in the mode shape statistics may provide relevant changes in the spectral
relative variance results.

In order to evaluate the effects of the high modal superposition condi-
tion, the statistical moments of the kinetic energy density results were evalua-
ted considering a large DLF value for the nominal and random rod structures.
A large frequency-constant DLF, η = 0.24, was adopted, providing a range
of modal overlap factor values from 0 to 12 modes. In Figure 59, the spectral
mean and relative variance results are shown for the nominal and random rods
with η = 0.24.

14In other words, it is expected that the energy response statistics becomes independent of the
uncertainty sources for a sufficiently random system, Langley et al (4, 23).
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Figure 59: Spectral mean and relative variance of kinetic energy density re-
sults for the random and nominal rods with DLF = 0.24 (spectral averaging
approach). The analytical predictions for relative variance are based on Pois-
son and GOE statistics models.

As shown in Figure 59, the high DLF values provide a smoother mean
response curve than those for the rods with low DLFs. In general, it can be
noted that there is a reduction in the oscillatory behavior around the SEA
predictions and a better agreement is obtained mainly for the 1/3 octave fre-
quency band results.

For spectral relative variance results, lower magnitudes were observed
for all random rod structures. As expected, the high modal superposition con-
dition tends to reduce substantially the spectral relative variance magnitudes
and thus the spectral relative variance magnitudes for the random rods are
similar to that for the nominal rod.

Indeed, the global patterns of the spectral variance results for the ran-
dom rods are very similar to each other, and it seems that small differences
in the relative variance magnitudes of the random rods occurs due to the ef-
fects of the distinct randomization processes adopted during the generation
of these random structures. However, it is important to emphasize that the
differences in the spectral relative variances are very significant for the case
of lightly damped random rod structures, Figures 57 and 58.
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Spectral Kinetic Energy Density Statistics: Spatially-Averaged
Excitation

From the natural frequency statistical observable results, it can be no-
ted that the spectral natural frequency statistics of the Mass (20%) and Gaus-
sian (30%) random rod structures shows a degree of universal characteristics
as well as good agreement between the GOE eigenvalue predictions and the
natural frequency statistics of these rod structures.

Based on the concept of Universality, the establishment of GOE na-
tural frequency statistics is expected for sufficiently random engineering sys-
tems, Langley et al (23, 18, 4). Under this particular condition, the statistics of
the kinetic energy results for the engineering structures subjected to spatially-
averaged excitation15 are practically independent of the precise sources of
uncertainty in the physical properties of system. Thus similar structures with
sufficiently random parameters could give approximately the same mean and
relative variance results in mid and high-frequency ranges. Additionally, it is
also expected that the spatially-averaged mean and relative variance results
can be adequately predicted by the SEA model based on the GOE model for
natural frequency statistics.

In order to verify the validity of the Universality concept for natural
frequency statistics of sufficiently random rod systems, the spatially-averaged
relative variance results for the Mass (20%) and Gaussian (30%) random rod
structures were evaluated for several DFL magnitudes. Considering that the
natural frequency statistics results for the Mass (20%) and Gaussian (30%)
random rods are very similar and conform well with GOE statistics, it is ex-
pected that spatially-averaged energy results for such rod structures will com-
ply with the Universality concept and thus the spectral spatially-averaged re-
lative variances are independent of uncertainty sources and conform very well
to the revised SEA relative variance prediction based on the GOE eigenvalue
statistics.

In Figure 60, the spatially-averaged relative variance results are pre-
sented for both random rod structures. The analytical predictions based on
Poisson and GOE models are also plotted for all cases investigated.

15 As shown in the SEA literature, the spatially-averaged process of a single point-loading
leads to energy results equivalent to those of rain-on-the-roof excitation. It is very important to
emphasize that in both excitation cases the effects of the mode shape statistics are completely
removed from the energy response and thus the kinetic energy density results are dependent only
on the natural frequency statistics.
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(a)

(b)
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(c)

(d)

Figure 60: Spectral relative variance of kinetic energy density results from the
Mass (20%) and Gaussian (30%) random rods subjected to spatially-averaged
(spectral averaging approach) excitation. Several DLF are considered. Plots:
(a) 0.03, (b) 0.06, (c) 0.12, and (d) 0.24.

As shown in Figure 60, the spectral relative variance results for the
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Mass (20%) and Gaussian (30%) rods are very similar, except for the presence
of some small discrepancies, regardless of the DFL value considered.

In Figure 60 (a), the numerical results surprising do not conform well
with the variance prediction based on the GOE model, but a good agreement
with the prediction based on the Poisson model is observed mainly in the
high-frequency range. Indeed, although a spectral averaged behavior similar
to GOE statistics is expected for the natural frequencies, the statistical cha-
racteristics vary substantially in the frequency domain, from almost-nominal
statistics in the lower frequency range with high spectral rigidity characteris-
tics to structural localized statistics in the higher frequency range in which
the natural frequencies have statistical characteristics similar to the Poisson
model.

In Figures 60 (b) - (d), the effects of an increase in the damping level
are investigated. For the random rod structures investigated, the increase in
DLF values is linearly related to the increase in the degree of modal super-
position. Indeed, a large number of modes is expected to contribute to the
energy response and thus the presence of spectral correlations between the
natural frequencies may become more and more relevant and reduces subs-
tantially the spectral variability of the energy responses.

Considering the effects of the increase in damping levels on the per-
formance of the variance prediction based on the Poisson model, the discre-
pancies between the numerical results and analytical prediction become more
and more pronounced as the damping level increases. Additionally, it can be
observed that the numerical results deviate from the Poisson prediction dif-
ferently over the frequency range. Indeed, large deviations of the numerical
results are expected for low and mid-frequency ranges, where the spectral
natural frequency correlations are expected to be more intensive.

Based on the above discussions, it appears that the natural frequencies
of both random rods have well established asymptotic statistics for the extre-
mely high-frequency range. In fact, considering the extreme condition where
the longitudinal wavelength is smaller than the structural irregularity span,
the random rods become effectively clamped on the structural irregularity
locations. Therefore, the structural localization phenomenon is completely
established and independent sets of modes with similar statistics exist in the
various sections between the structural irregularities, providing an asymptotic
exponential PDF for the natural frequency spacings described approximately
by Poisson model, since the sum of a large number of statistically indepen-
dent sets of random variables has an exponential PDF.
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3.4.7 Spatially-Correlated Gaussian Rods

In order to investigate the effects of the spatial correlation of the
geometrical irregularities on the spectral response variability for the one-
dimension real engineering structures, the statistical characteristics of
spatially-correlated longitudinal random rods were investigated considering
several levels of spatial correlation.

In the engineering context, the spatial variation of the physical and
material properties can be appropriately represented by the random fields,
Vanmaercke (162). If the spatial variations in the geometric dimensions are
considered, the application of a continuous random field becomes very ap-
propriate. However, for cases of an existing FEM discretization, a practical
approach is traditionally considered where the random field values in each
finite element domain are considered to be constant throughout on the finite
element extension. It is also important to emphasize that the discretized ran-
dom field model includes the spatial inter-dependencies between the finite
element random field values based on a probabilistic approach, such as the
Monte Carlo simulation.

The essential concepts from the random field theory are briefly pre-
sented below. The random field characteristics adopted in the FEM model
development of Gaussian spatially correlated random rods are discussed in
detail. The effects of the spatial correlation on the modal parameter statis-
tics are investigated for several correlation length magnitudes. In the last
stage, the relationship between the establishment of GOE characteristics for
the modal parameter statistics and the correlation length magnitudes is also
investigated in the spectral response variability context.

Random Field Theory Background

A simple random field model considered in the engineering context is
a homogeneous isotropic Gaussian field. In this field, the random field vari-
ables have a Gaussian distribution with parameters independent of direction
and location. That is, the interdependency between two random variables is
dependent only on the perpendicular distance between the two points consi-
dered. According to Hinke and Mace (25), the correlation function between
two Gaussian random variables is given by:

RHG (dp,Lc,σ) = σ
2 exp

(
−
∣∣∣∣
dp

Lc

∣∣∣∣
2
)
, (3.13)
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where σ is the standard deviation, Lc is the correlation length and dp is the
perpendicular distance between the two points considered.

According to Sakar and Ghanem (163), an alternative correlation func-
tion of the Markovian stochastic process is given by:

RMS (dp,Lc) = exp
(
−
∣∣∣∣
dp

Lc

∣∣∣∣
)
. (3.14)

On comparing the previous random field correlation function definiti-
ons, distinct dependencies on the absolute ratio of the perpendicular distance
to the correlation length magnitude are clearly observed. The Markovian
process correlation function has a linear dependence while the homogene-
ous Gaussian one has a square dependence on the absolute ratio of the dis-
tance to the correlation length. Although both correlation functions show a
decreasing exponential pattern, a more abrupt profile variation in the spatial
domain is expected for the homogeneous Gaussian function due to its square
dependence characteristics.

For n random variables, the covariance matrix Cm is a symmetric and
completely positive matrix. The elements of the n x n covariance matrix ci j
are given by:

ci j = R(di j,Lc,σ) i, j = 1,2, ...,n. (3.15)

A one-dimensional random field, given by a vector u of length n, can
be adequately represented by the Karhunen-Loeve expansion in the form:

u(x,ζ ) = ū(x)+
r≤n

∑
i

√
λiφi (x)ψi (ζ ) , (3.16)

where ū denotes the mean, ψi are uncorrelated standard normal random va-
riables (zero mean and unit variance) and λi and φi are the eigenvalues and
eigenfunctions of the covariance matrix respectively, which are obtained from
the eigenvalue problem:

Cmφi = λiφi. (3.17)

The mean ū and the eigenfunctions φi are deterministic and only con-
tain the spatial coordinate x. The randomness of the field is included through
the ψi (ζ ) parameter. There are n eigensolutions, but in general it is sufficient
to consider only the most important eigenfunctions, which provide a good
approximation to the random field.
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Development of the Spatially-Correlated Longitudinal Random Rods

In order to assess the effects of different levels of the geometry spatial
correlation on the modal parameter statistics, as well as on the statistical mo-
ments of kinetic energy density results, the spatially-correlated longitudinal
random rods were built considering the rod cross-sectional areas as Gaussian
correlated random variables along the rod length domain. The random rod
cross-sectional area values were calculated through the Karhunen-Loeve ex-
pansion based on the modal parameters of the covariance matrix, similarly to
Equation (3.16).

In the current analysis, the random field correlation function definition
based on the Markovian stochastic process was adopted in the FEM models
development for Gaussian spatially-correlated random rods, Equation (3.14).
The main reason for adopting this random field correlation function defini-
tion is based on the performance of the results, which provide a distribution
very close to that of the spatially independent Gaussian values, although the
rod cross-sectional area values are spatially correlated along the rod length
direction.

In contrast, the homogeneous isotropic Gaussian field results present a
distribution which is slightly non-symmetric around the mean value and also
shows small deviations from the Gaussian distribution pattern. The Lilliefors
Test results for both random fields confirm that the Markovian stochastic ran-
dom field values have a more Gaussian distribution than that of the random
field results for the homogeneous isotropic Gaussian case.

In order to perform a direct comparison between the statistical cha-
racteristics of the spatially correlated random rod structures and the spatially
independent Gaussian (30%) rod structure, in which the rod cross-section
areas are not spatially correlated along the rod length direction, the random
field cross sectional area values were adjusted to provide a spatially Gaussian
correlated distribution with the same width distribution and mean value as the
cross-sectional area distribution of the spatially independent Gaussian (30%)
rod structure investigated in the spectral analysis performed in previous sec-
tion 3.4.1.

In Figure 61, the distribution of the random field results are shown
for the Markovian stochastic process and homogeneous isotropic Gaussian
correlation functions. In order to compare the distributions of all of the nu-
merical results, the cross-section area distribution of the spatially independent
Gaussian (30%) rod structure is also presented.
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(a)

(b)
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(c)

Figure 61: Distribution of the rod cross-sectional area values from: (a)
the spatially independent Gaussian (30%) rod, (b) the spatially-correlated
Gaussian rod: Homogeneous isotropic Gaussian random field, and (c) the
spatially- correlated Gaussian rod: Markovian stochastic process random fi-
eld.

In addition, it is also important to note that good performance was ob-
tained in the application of the random fields based on decreasing linear expo-
nential correlation functions, such as that proposed in Equation (3.14), in the
numerical studies regarding the response variability in which the correlation
effects on the geometry of the one-dimensional real engineering structures
were considered, Sakar and Ghanem (163).

In the current analysis, a large range of the correlation length magni-
tudes was considered in order to ensure a complete statistical analysis of the
most representative effects due to spatial correlation, including two extreme
conditions of spatial correlation, that is, rods with spatially independent Gaus-
sian cross-sectional areas provided by the asymptotic null correlation length
magnitudes and, under another extreme condition, rods with cross-sectional
areas strongly spatially correlated which are provided by the asymptotic large
correlation length magnitudes, similar to the nominal rod cross-sectional area
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distribution. The following magnitudes of the correlation length (Lc) were
considered in the spectral analysis: 0.01, 0.06, 0.1, 0.2, 1, 5, and 10; as well
as very large Lc magnitude (approximately infinite correlation length almost
corresponding to the nominal rod).

In the following sections, the spectral statistics of the modal parame-
ters are investigated for each of the spatially-correlated random rods.

Spectral Natural Frequency Statistics

The current spectral analysis of the unfolded natural frequencies con-
siders only the following eigenvalue statistical observables: the PDF of ad-
jacent natural frequency spacings and ∆3-statistics. As discussed previously,
these statistical observables are very efficient in terms of describing the sta-
tistical characteristics associated with short and long-range fluctuations, res-
pectively.

The spectral natural frequency statistics obtained for each of the
spatially-correlated random rods are shown in Figure 62.
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Figure 62: The spectral natural frequency statistical observable results for the
spatially correlated random rod structures: PDF of adjacent natural frequency
spacings and ∆3-statistics results (spectral averaging approach).

As shown in Figure 62, the greatest effect of the spatial correlation
occurred for the smallest correlation lengths investigated. For Lc = 0.01,
the spacing PDF results suggest a partial establishment of spectral charac-
teristics similar to those of the uncorrelated natural frequency statistics, that
is, Poisson statistics. On the other hand, the presence of the level repulsion
characteristics is clearly observed for the smallest natural frequency spacing
range. Additionally, the ∆3-statistics results also showed moderate spectral
rigidity characteristics for large natural frequency spacing range, evidencing
the establishment of some discrepancies in relation to Poisson model.

The occurrence of the Poisson model characteristics for small correla-
tion lengths can be easily explained by the discontinuities introduced by geo-
metrical irregularities which become the nominal rod structure into a built-up
system composed by several substructures connected each other by the irre-
gularities in their extremes. Therefore, for each substructure, there is a set
of natural frequencies which is independent on the natural frequencies asso-
ciated with others substructures. As discussed by Weaver (64), the spectra
of real system can be adequately described by the superposition of indepen-
dent spectra associated with the number of non-interacting substructures or
the number of geometrical symmetries presented by complex vibroacoustic



284 3 Numerical Analysis of Random Longitudinal Rods

system. Thus, a superposition of large number of statistically independent
natural frequency sets has a Exponential PDF and agrees satisfactorily with
the Poisson model PDF spacing, Brown (1).

For Lc = 0.06, the natural frequency statistics results have statistical
characteristics similar to GOE eigenvalue statistics in the short-range fluctu-
ation. For the other greater correlation lengths investigated, the spectral na-
tural frequency statistics obtained are very similar to nominal statistics, that
is, there was a very notable presence of the spectral rigidity characteristics
in the natural frequency domain and an asymptotic delta function distribution
was established for the expected nominal unfolded natural frequency spacing
value.

In addition, the ∆3-statistics results associated with the small spacing
range also suggest that for Lc = 0.06 the spectral short-range fluctuation sta-
tistics are similar to GOE statistics. As shown in Figure 62, for the spatially-
correlated rods with Lc < 0.06, the spectral natural frequency statistics are
asymptotically uncorrelated with the reduction in the correlation length mag-
nitude. In contrast, the ∆3-statistics results for Lc > 0.06 also suggested that
the spectral natural frequency statistics in the short-range fluctuation range
tends to be similar to that of the nominal rod as the correlation length magni-
tude increases.

For the long-range fluctuations, the ∆3-statistics results suggest rele-
vant spectral rigidity characteristics for all correlation lengths investigated.
In general, the increase in the correlation length magnitude leads to a reduc-
tion in the ∆3-statistics for long spectral distances, that is, an increase in the
spectral rigidity effects on the long-range fluctuations.

Although it is not shown here, most of the unfolded natural frequency
spacings of the spatially-correlated rods with small correlation lengths were
perturbed throughout the mode order domain, while the large correlation
lengths perturbed only in a limited range of the mode order domain. Indeed,
it appears that there is a direct relationship between the correlation length
magnitude and the wavelength associated with the frequency affected by the
correlation effects.

Considering the spatially correlated rods with large correlation
lengths, the results suggest that the geometrical perturbations due to correla-
tion effects are practically negligible for the longitudinal wavelengths of the
frequency range investigated and thus the unfolded natural frequency spa-
cings magnitudes are approximately equal to the expected nominal unfolded
spacing magnitude.
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Spatial Mode Shape Statistics

In this subsection, the effects of distinct magnitudes of the correlation
length on the mode shape statistics are investigated considering only the spa-
tial averaging approach. The following eigenvector statistical observables
were considered: spatial kurtosis and Lilliefors Test metric functions. In Fi-
gure 63, the spatial mode shape statistics results are shown as a function of
the mode order domain.
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Figure 63: The spatial mode shape statistical observable results for the
spatially- correlated random Gaussian rods: spatial kurtosis values and spatial
Lilliefors Test results (spatial averaging approach).

As shown in Figure 63, the spatial mode shape statistics results reveal
a direct relationship between the correlation length magnitude and the fre-
quency region affected by geometrical perturbation due to spatial correlation
effects. For the frequency range considered, the spatial mode shape statistics
results suggest that the effects of the smaller correlation length are relevant
and affect almost the whole mode shape order range considered.

For Lc = 0.01, the large magnitudes of the spatial kurtosis are asso-
ciated with the structural localization phenomenon, mainly in the high mode
order range. As the mode order increases, a gradual increase is observed for
the spatial kurtosis magnitudes and for the corresponding dispersion charac-
teristics. Indeed, the spatial kurtosis results suggest a statistical transition
from almost-deterministic statistics (sinusoidal mode shapes) to disordered
statistics (structurally localized mode shapes) as frequency increases. Addi-
tionally, the spatial Lilliefors Test results also suggest the establishment of
intermediate statistics in which the characteristics are almost-Gaussian in the
restricted (limited) mode order region (or frequency region) around the 30th
mode order.

For Lc = 0.06, the several spatial kurtosis values are weakly localized
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and slightly larger than the GOE or Gaussian value, and thus the spectral
mean value of the spatial kurtosis is approximately K = 3.90. Additionally,
the spatial kurtosis results show that the correlation effects are manifested
mainly in the central region of the frequency range investigated. In this central
frequency region, the spatial kurtosis results suggest the establishment of a
weak structural localized statistics, since most of the spatial kurtosis values
affected by the correlation effects are around K = 3.5 (spectral probabilistic
mode value). In addition, the spatial Lilliefors Test results show that the
frequency range associated with GOE or Gaussian mode shapes is wider than
those of other correlation lengths.

For Lc > 0.06, the spatial mode shape statistics results show that the
effects of a given correlation length magnitude are restricted to a particular
frequency range and that the spatial mode shape statistics associated with
mode shapes lying outside this particular frequency range converge asymp-
totically to nominal statistics as the correlation length magnitude increases.
Furthermore, it appears that with an increase in the correlation length mag-
nitude, the establishment of almost-Gaussian (or almost-GOE) mode shape
statistics becomes more and more restricted to a small frequency range (or
mode order range) and the spatial mode shape statistics present asymptoti-
cally similar characteristics to those of sinusoidal statistics corresponding to
nominal mode shape statistics in which a flat pattern for the spatial kurtosis
results is established in the mode order domain.

Non-dimensional Analysis of Mode Shape Statistics

In order to establish a good understanding of the relationship between
the correlation length and its effects on the mode shape statistics, a non-
dimensional analysis was performed. A normalized parameter (or non-
dimensional parameter) is proposed, which relates the correlation length and
wavelength magnitudes.

Considering the assumption that the wavelength of nth mode shape
from the random rod is almost equal to that correspond to the nominal rod16,
that is, λ rand

n ≈ λ 0
n , the normalized parameter (θn) associated with each nth

mode and a certain correlation length (Lc) is given by:

θn(Lc) =
Lc

λ 0
n
, (3.18)

16Detailed analysis performed with extremely localized mode shapes showed that a maximum
error of 2% is associated with the application of this assumption. It appears that the errors are
probably associated with the dispersive nature of rod system investigated, Graff (164).
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where λ 0
n is the nominal wavelength of nth mode shape.

In Figure 64, the spatial kurtosis results are presented in terms of the
normalized parameter domain. This graphical presentation pattern allows the
identification of the frequency range affected by a certain correlation length
as well as the results to be extended to several other random one-dimensional
longitudinal structures.

As shown in Figure 64, for the normalized parameter range in which
the values are greater than unity, an almost flat behavior of spatial kurtosis
results is observed and an asymptotic convergence toward the nominal spa-
tial kurtosis value occurs as the correlation length increases. On the other
hand, for normalized parameter with magnitudes of less than unity, the cor-
responding mode shape statistics are clearly affected by the spatial correlation
effects and large spatial kurtosis magnitudes are observed.

Figure 64: Spatial kurtosis results for the Gaussian spatially correlated ran-
dom rods expressed in terms of the normalized parameter (spatial averaging
approach).

In order to identify the particular correlation length magnitude at
which the corresponding mode shapes have the highest probability of the



290 3 Numerical Analysis of Random Longitudinal Rods

establishment of GOE eigenvector statistics, the spatial mode shape statistics
was investigated throughout an ensemble composed of 500 spatially corre-
lated longitudinal rods. The correlation length magnitude was considered
constant for each member and variable across the ensemble. The correlation
length range was considered from Lc = 0.01 to Lc = 1.00 with constant steps.
In a similar manner to the previous analysis, only the rod cross-sectional area
was considered as a variable parameter in the rod length direction. The other
rod parameters were considered fixed across the frequency and ensemble
domains.

In Figure 65, the spatial kurtosis and corresponding spatial Lilliefors
Test results are presented for each of the ensemble members. Again, the mode
shape statistics results are presented in terms of the normalized parameter
domain.

(a)
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(b)

Figure 65: Spatial mode shape statistics results from an ensemble compo-
sed of 500 spatially-correlated longitudinal rods (spatial averaging approach).
Plot (a): Spatial kurtosis values. Plot (b): Spatial Lilliefors Test results. The
correlation length range adopted was from Lc = 0.01 to Lc = 1.00 with cons-
tant steps.

The spatial mode shape statistics results confirm the main conclusi-
ons obtained from the previous results of the initial non-dimensional analysis
for some discrete correlation length magnitudes, Figure 64, that is, the esta-
blishment of GOE mode shape statistics is restricted to a particular frequency
region and its extension is dependent on the ratio of the correlation length to
the wavelength magnitude.

As shown in Figure 65 (a), the spatial kurtosis results suggest the esta-
blishment of spatial localized mode shape statistics for the small normalized
parameter and small correlation length ranges. In general, structural localized
mode shapes are expected for the normalized parameter range of 0 to unity,
that is, 0 . θn . 1. However, weakly structural localized mode shapes with
spatial statistical characteristics similar to those of GOE statistics occur for
the following normalized parameter range: 0.02. θn . 0.6 as observed in Fi-
gure 65 (b). In other words, for this normalized parameter range, the discrete
occurrence of Gaussian mode shapes in the frequency domain is expected.
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Additionally, the spatial Lilliefors Test results were expressed in terms
of the mode order domain for each of ensemble members17, Figure 66 (a).

(a)

17 The variation of the correlation length magnitude across the ensemble members occurs in
constant steps, that is, an exclusive correlation length magnitude is defined for each rod member
and the difference between the correlation lengths of two successive members remains unaltered
across the ensemble.
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(b)

Figure 66: Previous spatial mode shape statistics results from an ensemble
composed of 500 spatially correlated longitudinal rods: (a) spatial Lilliefors
Test results expressed in terms of the mode order domain, and (b) Histo-
gram of the spatial Lilliefors Test results expressed in terms of the correlation
length domain.

The spatial Lilliefors Test results suggest that the increase in the corre-
lation length magnitude reduces the number of Gaussian (or almost Gaussian)
mode shapes along the mode order domain. In Figure 66 (b), the histogram
associated with spatial Lilliefors Test results in Figure 66 (a) is shown. The
histogram of spatial Lilliefors Test results shows that the largest number of
Gaussian mode shapes is associated with a correlation length range around
Lc ≈ 0.05 for the spatially correlated random longitudinal rods investigated
in this study.

As shown in Figure 64, for the spatially- correlated rods with Lc &
0.05, the spatial mode shape statistics presents an asymptotic statistical tran-
sition from GOE statistics (or Gaussian statistics) to the nominal statistics (or
almost deterministic - sinusoidal statistics) as the correlation length magni-
tude increases. Considering the non-dimensional spatial mode shape statistics
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analysis, very similar results were established for the following normalized
parameter range: θn & 1.00.

Spectral Statistics of the Kinetic Energy Density Results

Similarly to the spectral analysis performed previously in Section
3.4.6, the spectral statistics of the kinetic energy density results was also in-
vestigated for Gaussian spatially-correlated random longitudinal rods consi-
dering two natures (types) of loadings: unitary single point-loading at the
rod end and spatially-averaged excitation. The damping loss factor magni-
tude wass considered frequency-constant and equal to η = 0.06, providing a
range of modal overlap factor magnitudes of 0 to 6 modes. In addition, the
SEA mean and relative variance for 1/3 octave frequency band predictions
were also evaluated considering the Poisson and GOE models. In Figure 67,
the spectral mean and relative variance values are presented for the Gaussian
spatially correlated random longitudinal rod structures subjected to a unitary
single point-loading.

(a)
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(b)

(c)

Figure 67: Kinetic energy density statistics of the Gaussian spatially-
correlated rods subjected to an unitary single point-loading (spectral avera-
ging approach). Plot(a): energy density results expressed in the narrow fre-
quency domain. Plot(b): spectral mean values expressed in terms of the 1/3
oct. frequency band domain. Plot(c): spectral relative variance results ex-
pressed in terms of the 1/3 oct. frequency bands.
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Considering the case of rod structures subjected to a unitary single
point-loading, the energy density results in the narrow frequency domain
showed clearly that the effects of each of the correlation length magnitudes
can be associated with a particular frequency range, Figure 67 (a). Outside
the particular frequency range affected by the spatial correlation effects, the
modal parameter statistics are very similar to those presented by the nominal
rod and a good agreement is expected between the narrow frequency energy
density results and the SEA analytical prediction. Although they are slightly
shifted, similar narrow response patterns to those presented by the nominal
rod are presented for the energy results of the rod structures with large corre-
lation lengths, that is, Lc & 1.

For the Gaussian spatially-correlated rods with small correlation
lengths, large discrepancies in relation to the SEA predictions are noted in
the particular frequency range affected by the correlation effects. For the
spatially Gaussian correlated rod with Lc = 0.06, the correlation effects are
smoother and a moderate oscillatory pattern is established around the SEA
predicted values throughout the frequency domain investigated.

In Figure 67 (b), the spectral mean values in terms of the 1/3 oct. fre-
quency band domain lead to the same conclusions obtained previously from
the narrow frequency kinetic energy results. Additionally, the frequency re-
gions affected by correlation effects can be easily identified due to energy
discrepancies in relation to the 1/3 oct. frequency band SEA predictions.

Considering the spectral relative variance results, a large spectral vari-
ability of the energy density response is expected for the spatially -correlated
rods with small correlation magnitudes in the frequency region affected by
the correlation effects. Since the spectral averaging approach is conside-
red in this current analysis, the spectral relative variance magnitudes are very
sensitive to large changes in the spectral response pattern present within the
frequency band limits. It is important to stress that small relative variance
magnitudes do not express the existence of a good agreement between the
rod energy responses and SEA mean value predictions. The small magnitu-
des of the spectral relative variance represent effectively the occurrence of
small response variability in relation to the response mean value associated
with the frequency band. Indeed, small relative variance magnitudes express
the nonexistence of abrupt oscillations of the energy response pattern within
the frequency band limits.

As shown in Figure 67 (c), the performance of the relative variance
predictions were neither satisfactory nor conservative for the spatially Gaus-
sian correlated rods investigated. Indeed, it appears that the large relative
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variance values for the Gaussian spatially correlated rods are mainly due to
the correlation effects which induce the establishment of the structural locali-
zation phenomenon in the mode shape statistics. It is important to emphasize
that the statistical characteristics of the energy response of a system subjected
to a single point-loading are very sensitive to mode shape statistics. Thus,
the distinct relative variance patterns associated with each of the correlation
length magnitudes can probability be attributed to the different mode shape
statistics obtained for each of the correlation lengths considered.

For the case of a rod structure subjected to spatially-averaged exci-
tation, the kinetic energy density results are independent of the mode shape
statistics. In Figure 68 (a), the narrow frequency results of the kinetic energy
density show a good agreement between the SEA prediction and the nume-
rical rod results for all correlation lengths investigated. As shown Figure
68 (b), although distinct spectral natural frequency statistics were obtained
for each correlation length magnitude, the spectral mean value of the kinetic
energy density results were found to be practically independent of the natural
frequency statistics and an excellent agreement with the band-averaged SEA
prediction was noted for all Gaussian spatially correlated rods investigated.

(a)
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(b)

(c)

Figure 68: Kinetic energy density statistics of the spatially-correlated
rods subjected to spatially-averaged excitation (spectral averaging appro-
ach). Plot(a): energy density results expressed in narrow frequency domain.
Plot(b): spectral mean value results expressed in terms of the 1/3 oct. fre-
quency band domain. Plot(c): spectral relative variance results expressed in
terms of the 1/3 oct. frequency bands.
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In Figure 68 (c), the spatially-averaged relative variance results sug-
gested the establishment of small magnitudes for the spatially-correlated rods
with large correlation length magnitudes. In such rod structures, the modal
parameter statistics are very similar to those of the nominal longitudinal rod
and thus small spectral response variability is expected for the high-frequency
range.

Furthermore, the spectral relative variance values for the spatially -
correlated rods with small correlation lengths are clearly higher than those
of the rods with large correlation length, mainly in the high-frequency range,
Figure 68 (c). Regarding the performance of the SEA relative variance pre-
dictions, that based on the GOE model under predicted the numerical results
with Lc & 0.1. On the other hand, the SEA relative variance prediction ba-
sed on the Poisson model is very conservative and over predicted all of the
rod numerical results throughout the frequency range investigated. Indeed, as
discussed in the preceding section, asymptotic uncorrelated natural frequency
statistics (or almost Poisson statistics) are expected for natural frequencies of
structurally localized rod structures.

As observed in Figure 68 (c), the spectral relative variance results for
rods with small correlation length magnitudes are not explicit regarding the
effects of distinct correlation length magnitudes on the spectral variability of
kinetic energy responses. Indeed, the current spectral relative variance results
are directly influenced by two main factors: the variable degree of modal
superposition in the frequency domain and the distinct number of resonant
modes associated with each frequency band.

In order to evaluate the exact contribution of the correlation length ef-
fects to the spectral variability of the kinetic energy responses, the spectral
relative variance results were calculated considering the following assumpti-
ons:

• fixed modal superposition: the frequency-constant modal overlap fac-
tor is obtained if the damping loss factor magnitude is defined as being
inversely proportional to the angular frequency (ω) and directly pro-
portional to the longitudinal sound speed (cL):

η(ω) =
cL

ω
. (3.19)

• constant number of resonant modes: since the 1/3 octave frequency
bands have varying bandwidths, the number of resonant modes is va-
riable. Therefore, the use of the frequency band domain with fixed
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bandwidth is very convenient and also avoids the contribution from
a variable number of resonant modes in the spectral relative variance
magnitudes.

In Figure 69, the spectral relative variance of the kinetic energy den-
sity results are shown for the single point and spatially-averaged excitations,
respectively. In such spectral relative variance results, the DLF definition pro-
posed in Equation (3.19) was considered and provided the frequency-constant
modal overlap factor magnitudes of approximately 1.6 modes along the fre-
quency domain investigated18. Additionally, a fixed frequency bandwidth of
5 kHz was also considered along the frequency domain in order to obtain a
constant resonant modes contribution to the spectral relative variance magni-
tudes.

(a)

18The DLF magnitudes obtained for the spatially Gaussian correlated longitudinal rods were
considered adequate since their values are very similar to those of numerical investigations with
similar rod structures in the open literature, (161) (163).



3.4 Spectral Averaging Approach 301

(b)

Figure 69: Spectral relative variance of the kinetic energy density results in
the frequency band domain with fixed bandwidth (spectral averaging appro-
ach). Plot(a): unitary single point-loading. Plot(b): spatially-averaged exci-
tation.

As shown in Figure 69 (a), the point loading relative variance results
show that the spatially correlated rods with large correlation length magnitu-
des present low spectral response variability and thus the correlation length
effects are not distinguishable in the spectral relative variance results for spa-
tially correlated rods with Lc& 1 for the frequency range investigated herein.

For the spectral relative variance results for spatially correlated rods
with small correlation lengths, a good agreement with the GOE model pre-
diction is obtained for the spatially correlated rod with Lc = 0.06, although
a slight oscillatory behavior around the GOE prediction is observed in the
frequency range investigated. It is important to note that the modal parame-
ter statistics results for the spatially correlated rod with Lc = 0.06 present
almost GOE statistics for the frequency range investigated. As shown previ-
ously in the modal parameter statistics results, the spectral natural frequency
statistics of the spatially correlated rod with Lc = 0.06 is expected to be simi-
lar to GOE statistics in the short-range fluctuations (local behavior) and also
a higher number of almost GOE mode shapes is expected in the frequency
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range investigated. Indeed, the modal parameter statistics of the Gaussian
spatially-correlated rod with Lc ' 0.06 leads to the most favorable statisti-
cal condition for the establishment of GOE statistics for the frequency range
investigated and explains the good performance of the relative variance pre-
diction based on the GOE model.

In Figure 69 (b), the Gaussian spatially-averaged relative variance re-
sults of the spatially-correlated rods with Lc & 0.1 suggest that an increase in
the correlation length magnitude leads to a reduction in the spectral response
variability. Indeed, the spectral natural frequency statistics results showed
that, for the frequency range considered, as the correlation length magnitude
increases the spectral natural frequency statistics tends asymptotically to be
similar to that presented for the nominal rod. As shown in Figure 69 (b),
a poor agreement occurs between the numerical relative variance results for
random rods with Lc = 0.06 and the GOE prediction, even though the spectral
natural frequency statistics characteristics of the Gaussian spatially- correla-
ted rod with Lc = 0.06 are very similar to the GOE statistics characteristics in
the short-range fluctuations. However, it is important to emphasize that spec-
tral eigenvalue statistical observables are spectrally-averaged metrics which
may eventually mask a certain unexpected statistical characteristics associa-
ted with a particular frequency region. As shown previously, the correlation
length effects are observed in different frequency regions for distinct correla-
tion length magnitudes. Therefore, this characteristic hinders a direct compa-
rison with the correlation effects for rods with distinct correlation lengths in
a fixed frequency range.

Overall, it is important to note that the spatially-averaged relative va-
riance prediction based on the Poisson natural frequency statistics presents
an excellent performance, since the spectral statistical characteristics of the
spatially-averaged energy responses are independent of the mode shape sta-
tistics and an asymptotic Poisson statistics is expected for the structurally
localized one-dimensional structures as in the case of the Gaussian spatially-
correlated rods with small correlation length magnitudes.

3.4.8 Discussions and Remarks

In this initial stage of the statistical investigations of the random lon-
gitudinal rods, a complete analysis of the modal parameter statistics was car-
ried out considering the spectral averaging approach for the natural frequen-
cies and the spatial and spectral averaging approaches for the corresponding
mode shapes. The random longitudinal rods with several natures and levels
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of randomness were systematically investigated using the RMT statistical ob-
servable results.

Considering the RMT eigenvalue statistical observables, the good
performance of their results allowed accurate evaluation of the spectrally-
averaged effects of distinct natures and levels of randomness on the natural
frequency statistics in the short and long-range fluctuations. Although the
number variance and ∆3-statistics results have faster convergence charac-
teristics and provide the averaged results in the natural frequency domain,
these metric functions can unintentionally mask the local characteristics
of the natural frequency statistics associated with a particular range in the
frequency domain.

As discussed in section 3.4.3, it appears that the natural frequency
statistics from any random system is only correctly characterized when all
results for the several natural frequency statistical observables are compa-
red to each other, independent of their individual performance in the des-
cription of spectral natural frequency statistics. Indeed, the spectral natural
frequency statistics results for the Mass (20%) and Gaussian (30%) random
rods demonstrated this particular situation, where the long-range fluctuation
statistical observable results suggest the establishment of spectrally-averaged
statistics very similar to those of the GOE model, although at the extremes
of frequency range investigated the local spectral natural frequency statistics
are completely distinct to the statistical characteristics expected for the GOE
model.

Concerning the spatial mode shape statistics, the eigenvector statisti-
cal observable results allowed an accurate characterization of the effects of
the randomness on the mode shape statistics. Additionally the main non-
universal physical phenomena, such as the structural localization, were cor-
rectly identified and quantified for each individual mode order, allowing a
complete description of the local mode shape statistics in terms of the spa-
tial averaging approach. Indeed, the main characteristics of the well-defined
mode shape statistics classes (sinusoidal, Gaussian and structurally localized)
as well as their statistical transitions were adequately described and compared
with the analytical predictions.

In the current spatial mode shape statistics analysis, the PDFs of spa-
tial kurtosis values for the Gaussian random rods were fitted to expressions of
the non-linear sigma model of the Supersymmetry theory which are traditi-
onally applied in experimental studies of disordered billiards with Anderson
localization characteristics. The agreement between the numerical results and
the fitted non-linear sigma model expressions was satisfactory for the mode-
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rate and strong localization regimes, except for the presence of small discre-
pancies in the distribution tail region, which is extremely sensitive to the de-
tails of the system nature, Figure 47. In a similar manner, the PT-distribution
results were also fitted to the weak and strong localization non-linear sigma
model expressions, Figure 50. The excellent agreement confirmed the high
performance and versatility of the non-linear sigma expressions to describe
accurately the spatial mode shape statistics characteristics in the weak and
strong localization regimes. To the best of the knowledge of the author, this
is the first application of non-linear sigma model expressions to describe the
non-universal localization characteristics of the mode shape statistics of vi-
broacoustic systems.

The spectral mode shape statistics was investigated through the kurto-
sis metrics, proving indirect information on the spectral correlation level for
a fixed mode shape component in the mode order domain. The spectral kur-
tosis results for the nominal rod showed that the sinusoidal mode shapes are
practically ergotic in terms of the spectral and spatial average approaches, va-
lidating the hypothesis proposed initially by Lyon (48) during the evaluation
of the mode shape statistics factors of regular systems, such as a simply sup-
ported rectangular plate or box acoustic room. On the other hand, the spectral
kurtosis results for the random rods also suggested that most of the mode
shape components present some significant spectral or inter-modal correlati-
ons across the mode order domain. However, some mode shape components
of the Mass (20%) and Gaussian (30%) random rods, located in the vicinity of
the central rod domain, were shown to be approximately asymptotic Gaussian
variables. Nevertheless, it is important to emphasize that the spectral kurtosis
as well as the corresponding spectral Lilliefors Test results provide only an
indirect analysis regarding the spectral mode shape component correlations,
and thus it is not possible to establish a linear relationship between the spec-
tral kurtosis values and spectral correlation level of different mode shapes for
a fixed mode shape component.

In general, the modal parameter statistical observable results suggest
that the local statistical characteristics of the modal parameters of the random
longitudinal rods vary substantially in the frequency domain, from an almost-
deterministic or nominal statistics in the lower frequency range toward struc-
tural localized statistics in the higher frequency range, where intermediate
statistics with characteristics similar to those of the GOE model is certainly
established for a limited frequency range. For almost-deterministic or nomi-
nal statistics, the natural frequencies have high spectral rigidity characteris-
tics and the corresponding mode shapes are practically sinusoidal, presenting
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practically constant statistical characteristics for the spatial and spectral mode
shape averaging approaches over the mode order domain.

At the other extreme, the establishment of the structural localization
phenomenon in the high-frequency range leads to local spectral natural fre-
quency statistics with statistical characteristics similar to the Poisson model,
where the spacings seem to be almost uncorrelated. Additionally, the cor-
responding mode shapes present energy confinement in the restricted spatial
region of the rod length domain which establishes strong spectral and spa-
tial correlations between the mode shape components. It is also important
to note that the localized mode shapes did not show asymptotic well-defined
statistics in the high-frequency range due to their relevant non-universal cha-
racteristics associated with the details of the system nature. As demonstrated
by the previous mode shape statistics results, a large mode-to-mode disper-
sion is clearly observed in the high mode order range, hindering the accurate
description of the mode shape statistics by analytical models as well as the
derivation of an efficient analytical methodology to predict the kinetic energy
density statistics.

The kinetic energy density results associated with random rods sub-
jected by a single point-loading were clearly shown to be dependent on the
randomness characteristics. Indeed, the point-loading kinetic energy density
results for light damped rod structures seem to have a significant dependence
on the mode shape statistics and thus small changes in mode shape statistics
become extremely relevant in terms of the energy response statistics. The
spectral point-loading relative variance results for the random rods investiga-
ted here showed very distinct curve patterns as well as a poor agreement with
the analytical predictions based on the Poisson and GOE models. Based on
the spatial and spectral mode shape statistics results, the large values of the
point-loading relative variance are certainly explained by the establishment of
the structural localization phenomenon and its corresponding effects on the
modal parameter statistics.

In order to investigate the establishment of the universal characteris-
tics for natural frequency statistics, Mass (20%) and Gaussian (30%) random
rods were considered since their spectrally-averaged natural frequency statis-
tics are very similar to those of GOE statistics. Additionally, the spatially-
averaged excitation was adopted whereas the kinetic energy results are exclu-
sively dependent on the contributions of the natural frequency statistics. Thus,
the spectral relative variance of the spatially-averaged kinetic energy density
results for the Mass (20%) and Gaussian (30%) random rods were also cal-
culated and compared to the analytical prediction based on the Poisson and
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GOE models for several levels of the modal superposition. The relative va-
riance curve pattern of the numerical results showed clearly that the local
spectral natural frequency statistics varies substantially in the frequency do-
main, from almost-nominal statistics in the lower frequency range with high
spectral rigidity characteristics to structural localized statistics in the higher
frequency range in which the natural frequencies have statistical characteris-
tics similar to the Poisson model.

In second part of the current statistical analysis, systematic investiga-
tions were performed with Gaussian spatially correlated random longitudinal
rods with several correlation length magnitudes. The spectral natural fre-
quency statistical observable results showed that the characteristics of natural
frequency statistics change in a sensitive way for each range of correlation
length magnitudes. As shown in Figure 62, a natural frequency statistical
transition from almost-Poisson to high spectral rigidity statistics is observed
as the correlation length magnitude increases for the frequency range investi-
gated.

Considering the spatial mode shape statistics, the statistical observa-
ble results showed that the level of the localization effects on modal parameter
statistics is clearly dependent on the ratio between the correlation length and
the typical wavelength, and thus for a given correlation length only a limited
frequency range is effectively affected. The results for the non-dimensional
mode shape statistics analysis indicated explicitly this wavelength depen-
dency, showing that for correlation lengths larger than the typical expected
wavelength, the modal parameters statistics converges asymptotically to no-
minal statistics as the excitation frequency increases. Additionally, the spatial
modal parameter statistics results showed that for correlation lengths close to
Lc ≈ 0.05 the corresponding modal parameters have spectrally-averaged sta-
tistics with characteristics similar to those of the GOE model and thus the
best agreement is expected to be between the spectral relative variance results
and the analytical prediction based on the GOE model.

In a manner similar to the previous investigations performed with in-
dependent Gaussian random rods, the point-loading kinetic energy results for
the Gaussian spatially-correlated random rods expressed in terms of the nar-
row frequency band domain also allowed prompt identification of the struc-
tural localization effects associated with each correlation length investiga-
ted. The corresponding results expressed in terms of the 1/3 octave frequency
bands seem to minimize the localization effects and thus an improved agre-
ement with the SEA predictions was only observed for random rods with
large correlation lengths. For Gaussian spatially- correlated random rods with
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small correlation lengths, some discrepancies were clearly observed. Indeed,
it is expected that these random rods do not have a perfect energy reverbe-
rant field due to the establishment of the strong localization phenomenon on
their modal parameters and thus large deviations occur in relation to SEA ba-
sic assumptions, reducing the performance of the frequency-band mean value
predicted by the standard SEA model.

Considering the point-loading relative variance evaluated for the spec-
tral averaging approach, the results associated with rods with small corre-
lation lengths showed large amplitudes as a direct consequence of the loca-
lization phenomenon contribution of the mode shape statistics. Indeed, the
analytical predictions based on the GOE and Poisson models under predicted
the numerical results for these random rods. For the other random rods, their
relative variance results are very similar to those for the nominal rod.

The spatially-averaged kinetic energy density results expressed in
terms of the narrow frequency band domain showed a good agreement with
the SEA prediction, although small oscillations were observed. It is impor-
tant to note that the spatially-averaged excitation removes completely the
contributions of the localized mode shape statistics to the energy results. The
corresponding relative variance results showed clearly the characteristics of
the spectral natural frequency statistics for each of the correlation lengths in-
vestigated and suggested clearly that the spatially-averaged relative variance
prediction based on the Poisson model seems to be a conservative formulation
at least for cases of random rods with strong localization characteristics.

Besides the statistical investigations with the frequency-constant DLF,
the spectral statistics kinetic energy density results for point-loading and
spatially-averaged excitations were also investigated using fixed frequency
bandwidths and an alternative DLF definition which provides a constant num-
ber of resonant modes in each frequency band and a fixed modal superposi-
tion condition in the frequency domain, respectively. These spectral relative
variance results under constant modal superposition condition allowed im-
mediate visualization of the contributions of the modal parameter statistics to
the variance results as well as the performance of the SEA variance predicti-
ons. Overall, the relative variance results also suggested that the increase in
the correlation length reduces the spectral variance for the frequency range
investigated.
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3.5 Ensemble Averaging Approach

In this section the modal parameter statistics across the ensemble are
investigated in order to assess the conditions necessary to establish GOE sta-
tistics for each of the modal parameters as well as to establish a good per-
formance of the relative variance prediction based on the GOE model. Two
random longitudinal rod ensembles are considered: point mass-loaded and
Gaussian spatially-correlated.

In the following sections, the main SEA parameters as well as the
RMT statistical observables, which are applied traditionally in spectral analy-
sis, were adapted in order to allow the evaluation of the statistics of the a fixed
mode order (or spacing) of interest across the ensemble, that is, the adapted
statistical observables are able to characterize the modal parameter statistics
in terms of the ensemble averaging approach.

3.5.1 Random Point Masses

In this subsection the statistical characteristics of an ensemble com-
posed of point mass-loaded rods are investigated across the ensemble. The
manufacturing uncertainties are represented by small point masses attached
to the surface of each rod member of the ensemble in order to reproduce the
possible structural irregularities of the mass distribution in the rod length di-
rection, (4, 3, 17, 35, 18).

For each rod member, 20 point masses (each point mass with 1% of
the total mass of the bare nominal rod) are randomly distributed along the
length on the nominal rod surface. In the current work, an ensemble size of
500 members was considered in order to guarantee the convergence of the
statistical results for the kinetic energy density statistics as well as for the
modal parameter statistics across the ensemble.

Natural Frequency Statistics

Since a large range of the mode orders was considered in the FEM
modal analysis, six particular mode orders, or spacings, were selected in order
to present the main physical phenomena of the modal parameter statistics
across the rod ensemble. The mode orders considered in the current analysis
are: mode 10, mode 20, mode 30, mode 42, mode 60, and mode 80. In Figure
70, the PDFs of adjacent unfolded natural frequency spacings are shown for
the mode orders considered.
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(a)

(b)
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(c)

(d)
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(e)

(f)

Figure 70: PDF of adjacent unfolded natural frequency spacings: numerical
results for the mass-loaded rod ensemble and analytical predictions based
on: Gaussian (Normal), GOE (Rayleigh), and Poisson (Exponential) statistics
(ensemble averaging approach). Plots: (a) Mode 10, (b) Mode 20, (c) Mode
30, (d) Mode 42, (e) Mode 60, and (f) Mode 80.
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As shown in Figure 70, the short-range fluctuation statistics vary sig-
nificantly in the frequency domain (or mode order domain). For the low-
frequency range, for example in the vicinity of mode 10, an approximate
sharp Gaussian distribution is symmetrically established on the unitary spa-
cing value, suggesting a statistical transition from the Delta Dirac function to
Gaussian statistics. Considering mode 20, the spacing PDF results suggest
the establishment of almost-Gaussian statistics. Indeed, a reduction in the
spectral rigidity characteristics associated with nominal rod natural frequen-
cies leads to a more spread out spacing distribution in which several spacing
values are distinct from unitary spacing19.

Thus, as the frequency increases, the longitudinal wavelength redu-
ces and the ensemble natural frequency statistics becomes very sensitive to
structural irregularities and thus the uncertainty effects induce a statistical
transition from almost Delta Dirac statistics to almost Poisson statistics. Ad-
ditionally, intermediate natural frequency statistics are also established in the
frequency domain as Gaussian and Rayleigh20 statistics. For a mass-loaded
rod ensemble, the closest natural frequency spacing statistics to GOE statis-
tics (Rayleigh PDF) occurs for the mode order range close to the vicinity of
mode 42 which corresponds to the frequency range around 20 kHz. Besides
this particular frequency, due to the nature of the randomization process con-
sidered, there is also an increase in the occurrence of small natural frequency
spacings across the ensemble. The higher mode order results, modes 60 and
80, suggest the establishment of an asymptotic Poisson statistics toward the
high-frequency range.

The establishment of the almost-Poisson model characteristics for
high frequency range occurs because the rod becomes effectively clamped
at the point mass locations, actuating as mechanical discontinuities. Indeed,
under this particular condition, a high number of mode sets can exist in the
various rod sections between the point masses which do not interact each
other, Weaver (64). In this regard, a statistics similar to those of Poisson
model is expected for the natural frequencies since the superposition of large
number of statistically independent spectra has an exponential PDF, Brown
(1).

In Figure 71, the number variance results are shown. For the low-

19The mean value of the unfolded natural frequency spacings is expected to be frequency-
constant and unitary for the nominal rod.

20The establishment of a Rayleigh distribution for natural frequency spacings is classically
associated with the eigenvalue statistics of the Gaussian Orthogonal Ensemble (GOE), Mehta
(24).
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frequency range, an ensemble natural frequency statistics with high spectral
rigidity characteristics is clearly established. Similarly to the spectral num-
ber variance results for the nominal rod, for which null values of the number
variance are expected for integer spectral natural frequency spacings, the en-
semble number variance results also show an oscillatory pattern and present
null values for some integer natural frequency spacings, Weaver (64). In-
deed, this oscillatory pattern of ensemble number variance results is associa-
ted with high spectral rigidity characteristics established across the ensemble
and the low performance of the point mass randomization process in the low-
frequency range, Figure 71 (a).

(a)
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(b)

(c)



3.5 Ensemble Averaging Approach 315

(d)

(e)
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(f)

Figure 71: Number variance results of the mass-loaded rod ensemble. Analy-
tical predictions: GOE and Poisson models (ensemble averaging approach).
Plots: (a) Mode 10, (b) Mode 20, (c) Mode 30, (d) Mode 42, (e) Mode 60,
and (f) Mode 80.

As shown in Figure 71 (b), the ensemble number variance results for
mode 20 present moderate oscillatory characteristics with small non-zero va-
lues. The increase in the number variance values is associated with a reduc-
tion of the spectral rigidity characteristics which occurs gradually from the
long to short fluctuation range. Thus, the largest ensemble number variance
values are expected to occur for large natural frequency distance ranges. Si-
milarly to the spacing PDF results, the mode 42 results conform very well
to the GOE prediction and the establishment of a certain level of universal
statistics is again suggested for this narrow frequency range, Figure 71 (d).
The number variance results for modes 60 and 80 also present an asymptotic
Poisson statistics toward the high-frequency range, Figures 71 (e) and (f), res-
pectively. In Figure 72, the ∆3 - statistics results are presented for the mode
orders investigated.
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(a)

(b)
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(c)

(d)
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(e)

(f)

Figure 72: ∆3-statistics results for the mass-loaded rod ensemble (ensem-
ble averaging approach). Analytical predictions: GOE and Poisson models.
Plots: (a) Mode 10, (b) Mode 20, (c) Mode 30, (d) Mode 42, (e) Mode 60,
and (f) Mode 80.

As observed in Figure 72, similar conclusions to those of the previ-
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ous statistical observable results are obtained for the characterization of the
natural frequency statistics across the ensemble. Therefore, the simultaneous
analysis of the natural frequency statistical observable results leads to the fol-
lowing global understanding: the ensemble statistics of the natural frequen-
cies in the low-frequency range, below mode 10 (corresponding approxima-
tely to the frequency of 5 kHz), present an intermediate distribution between
Dirac Delta (nominal) and Gaussian statistics. As the frequency increases, a
statistical transition to GOE statistics occurs where an intermediate statistics
with characteristics similar to those of the Gaussian model is also established.
The establishment of an almost-GOE statistics occurs in the vicinity of mode
42 which corresponds approximately to a frequency of 20 kHz. In this fre-
quency range, the natural frequency spacing PDF is adequately described by a
Rayleigh distribution and the occurrence of the moderate spectral rigidity cha-
racteristics and level repulsion phenomenon can be clearly observed, Mehta
(24).

On the other hand, for the mid and high-frequency ranges, that is above
20 kHz (i.e., higher than mode 42), the establishment of an asymptotic Pois-
son statistics occurs as the excitation frequency increases. In this frequency
range, the spectral rigidity characteristics is significantly reduced and the na-
tural frequencies seem to be almost uncorrelated. In summary, three distinct
major statistics can be adequately established for ensemble natural frequency
statistics in the frequency domain, which are: almost-deterministic statistics,
almost-GOE statistics, and asymptotic-Poisson statistics.

Similar conclusions regarding the natural frequency statistics of
one-dimensional mass-loaded string structures were surprisingly obtained in
Brown’s work (1). In his study, Brown (1) investigated the spectral natural
frequency statistics from a simply supported string with randomly placed
small point masses. Considering a fixed frequency range, the modal parame-
ters were numerically obtained for distinct sizes of point masses. Instead of
the complete set of spectral eigenvalue statistical observables, the chi-square
tests for Rayleigh and Exponential (Poisson) PDFs were adopted in order to
evaluate the confidence levels as a function of the point masses added to the
string surface.

A qualitative comparison21 is performed between the current natu-

21It is important also to note that similar dynamical behaviors are expected for two distinct
conditions: (i) as the frequency range of interest is considered fixed and the randomness level
increases, and (ii) as the randomness level is considered unaltered and the excitation frequency
increases. For both approaches, it is expected that the increase in the random level (or excitation
frequency) leads to the establishment of universal natural frequency statistics which are described
by the Gaussian Orthogonal Ensemble (GOE), (23).
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ral frequency statistics obtained across the mass-loaded rod ensemble and
Brown’s main spectral results. In Figure 73 a plot of the chi-squared confi-
dence intervals is shown for the test results for the Exponential and Rayleigh
PDFs as a function of the size of 5 randomly placed masses.

2: Eigenvalue and Eigenvector Statistics

47

Figure 2.3 is a plot of the chi-squared confidence intervals for the tests for the

exponential and Rayleigh PDFs as a function of the size of 5 randomly placed masses.
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Figure 2.3 Confidence level for chi-squared test for Rayleigh and exponential PDFs

as a function of the mass of 5 randomly placed point masses for a mass loaded string,

for the NNSD of the first 400 modes: , test for Rayleigh PDF ; , test for

exponential PDF.

The trend towards an exponential PDF that is demonstrated in Figure 2.3

occurs because the string becomes effectively clamped, and therefore independent

sets of modes now exist in the various sections between the masses. As stated

previously, the sum of a large number of statistically independent sets of variables has

an exponential PDF. It was found that the location of the region where the Wigner

surmise was fulfilled depended on the number of added masses; for fewer added

masses it occurs at a higher value of added mass.

Although this system is a simple and physically unrealistic case it does indicate

the relevance of the Wigner Surmise. It is shown to hold here and in the work of

others in a variety of one-, two- and three-dimensional systems.
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Figure 73: Confidence levels for chi-squared test results for the mass-loaded
string: — test for Rayleigh PDF and - - - test for exponential PDF, Brown (1).

As shown in Figure 73, the results for the mass-loaded string are very
similar to those for the current mass-loaded rod. In both cases, the natural
frequency statistics is dependent on the excitation frequency (or randomness
level). A global pattern of statistical transition from an almost-nominal sta-
tistics to asymptotic-Poisson statistics is clearly observed22. The asymptotic
statistical trend towards an exponential PDF occurs because the string be-
comes effectively clamped at the point mass locations. Indeed, under this
particular condition, a high number of independent mode sets can exist in the
various string sections between the point masses. Thus, the sum of a large
number of statistically independent sets of variables has an exponential PDF.

The current results for the statistical observables also showed that the

22Although it is not shown here, similar results were also obtained by Cordioli (20) using an
artificial approach. In his study, distinct levels of matrix structure symmetry and randomness
were systematically considered for the random stiffness matrix. The two statistical crossover
regions were individually shown for the natural frequencies under ensemble averaging approach:
GOE model to high spectral rigidity statistics and GOE model to Poisson model statistics.
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establishment of the GOE model for natural frequency statistics occurs only
for a limited and narrow frequency range or randomness level limits, respecti-
vely. It is also important to emphasize that there is no formal evidence regar-
ding the relationship between the system dimensionality and the frequency
range extension of GOE natural frequency statistics. This aspect has recently
been attracting interest and further investigations are required, Gomes (10).

Natural Frequency SEA Parameter: Statistical Overlap Factor

Traditionally, the statistical overlap factor has been used to quantify
the level of randomness of an ensemble composed of random engineering
structures, (18, 3, 4, 14). According to Langley et al (18, 4), statistical over-
lap factor values greater than unity provide a condition appropriate for the
use of the GOE model to describe accurately the modal parameter statistics.
Under such condition, it supposes that the statistics of the energy responses,
which is dependent on the natural frequency and mode shape statistics, will
be independent of the detailed nature of the system randomness, Langley et
al (23, 4) and Cordioli (20).

As discussed by Cordioli (20), two distinct definitions for the statisti-
cal overlap factor are traditionally considered in the SEA context. The first
considers the local mean spacing between natural frequencies, that is, the en-
semble mean value of the spacings between two adjacent natural frequencies,
(15). On the other hand, the second considers the global mean spacing which
represents the mean value of the spacings over the ensemble and spectral do-
mains, (18, 35, 4). In Figure 74, the statistical overlap factor results are shown
for the mass-loaded rod ensemble.
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(a)

(b)

Figure 74: Statistical overlap factor results for a mass-loaded rod ensemble
(ensemble averaging approach). Plot (a): global natural frequency spacing,
local natural frequency spacings, natural frequency standard deviations. Plot
(b): Statistical overlap factor: based on global and local mean values of the
natural frequency spacings.
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According to Figure 74 (b), the statistical overlap factor results suggest
that, for mode orders greater than mode 35 (corresponding to approximately
17 kHz), the statistical overlap factor values are higher than unity and the
system should be considered to have appropriate conditions for the modal
parameters to have GOE statistics. Additionally, Figure 74 (a) shows that
almost constant mean values for the natural frequency spacings are obtained,
regardless of the local or global spacing definitions. On the other hand, large
standard deviation magnitudes are observed for the natural frequencies in the
high mode order range, providing large statistical overlap factor values.

It is important to emphasize that the statistical overlap factor results
are only based on the ensemble natural frequency statistics and any prelimi-
nary conclusion based on exclusively its values regarding the establishment
of the GOE model for the modal parameter statistics should be avoided, since
the statistical overlap factor definition does not take into account directly the
ensemble statistics of the corresponding mode shapes, Cordioli (20).

In the following, a complete statistical analysis is performed with cor-
responding mode shapes. Thus, the mode shape statistics results will contri-
bute to providing a detailed understanding of the modal parameter statistics
as well as additional information to investigate the conditions required for the
establishment of universal statistics described by the GOE model.

Mode Shape Statistics

In a manner similar to the natural frequency statistical analysis, the
mode shape statistics were characterized through the use of the eigenvec-
tor statistical observables of the Random Matrix Theory (RMT). Although
the eigenvector statistical observables were initially defined considering the
spatial or spectral averaging approaches, the results for the eigenvector sta-
tistical observables presented below considered also an ensemble averaging
approach, that is, the statistics of a fixed eigenvector component across the
ensemble is evaluated for a given mode shape (or mode order)23. In this re-
gard, the routines for the previous eigenvector statistical observables which
consider spectral and spatial averaging approaches were modified so as to
also allow an evaluation of the ensemble statistics.

In Figure 75, the spatial kurtosis and Lilliefors Test results are shown
in detail. Arithmetic and geometric averaging processes were performed on
the spatial kurtosis results. The typically expected or probabilistic mode va-

23The definitions of the mode shape statistics averaging approaches are presented in detail in
Section 2.3.2.
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lue for the spatial kurtosis was also determined for each mode order. The
analytical kurtosis predictions are also plotted for Gaussian and sinusoidal
mode shape statistics (GOE and Poisson models), respectively.

According to Figure 75 (a), the spatial kurtosis results across the en-
semble suggest the establishment of three well-defined regions of ensemble
mode shape statistics. The first region is associated with low order mode
shapes which have almost nominal statistics, that is, very close to sinusoidal
statistics. As the mode order, or frequency, increases the typically expected
spatial kurtosis values suggest that there is a statistical transition toward GOE
or Gaussian statistics and thus, around the vicinity of mode 40, the typically
expected spatial kurtosis values are close to the expected Gaussian value, that
is, K ∼ 3. In the last statistical region, beyond the almost-GOE range, large
values of the spatial kurtosis are clearly observed, suggesting the establish-
ment of the structural localization phenomenon, (139, 140, 159). Indeed, as
excitation frequency increases, the effects of the structural localization phe-
nomenon become more and more relevant and there is a highly dispersive
behavior, or large variability, of individual spatial kurtosis values around the
kurtosis mean value curves.

(a)
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(b)

Figure 75: Spatial analysis of the mode shape statistics of a mass-loaded rod
ensemble (spatial averaging approach). Plot (a): spatial kurtosis results. Plot
(b): spatial Lilliefors Test results.

Considering that the performance of the mean values to represen-
ting the typically expected spatial kurtosis value across the ensemble, the
arithmetic as well as geometric mean values are very distinct from the ty-
pically expected spatial kurtosis value across the ensemble, mainly in the
high-frequency range. Indeed, the low performance of both averaging pro-
cesses confirms the establishment of a probabilistic distribution with long tail
characteristics for the spatial kurtosis values.

Additionally, the spatial Lilliefors Test results, Figure 75 (b), suggest
that the largest number of Gaussian mode shapes occurs for a limited mode
order range, approximately from mode 26 to mode 42, and only some mem-
bers of the ensemble, circa 15%, present Gaussian distribution characteristics
for this mode order range.

Although the spatial and ensemble kurtosis averaging approaches were
adopted by Lyon (48) and Langley (18, 3), respectively, in the definition of
the mode shape statistics factor in the SEA variance context, the use of the
spectral averaging approach for the statistical investigation of the kurtosis
parameter can provide important evidence regarding the statistical correla-
tion between the mode shape components, Gomes (101). In this regard, the
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spectral kurtosis and Lilliefors Test results were evaluated for each mode
shape component and each ensemble member. The statistical parameters of
the spectral kurtosis results were investigated using arithmetic and geometric
averaging processes across the ensemble. In Figure 76, the spectral kurto-
sis values and Lilliefors Test results are shown. The Gaussian (GOE) and
sinusoidal (Poisson) analytical predictions are also plotted.

As shown in Figure 76 (a), large spectral kurtosis values are observed
in the rod regions close to both rod ends. An asymptotic establishment of an
almost flat spectral kurtosis mean curve toward the central rod region is also
observed, regardless of the averaging process adopted. Additionally, it can
be noted that the averaging processes provide distinct kurtosis mean values.
Indeed, the spectral kurtosis values also present a probabilistic distribution
with long tail characteristics and thus the arithmetic as well as geometric
mean values do not represent adequately the typically expected value across
the ensemble (ensemble probabilistic mode value).

(a)



328 3 Numerical Analysis of Random Longitudinal Rods

(b)

Figure 76: Spectral analysis of the mode shape statistics (spectral averaging
approach). Plot (a): spectral kurtosis results. Plot(b): spectral Lilliefors Test
results.

In Figure 76 (b), the spectral Lilliefors Test results for each rod mem-
ber of the ensemble as well as the arithmetic mean value across the ensemble
are shown in detail. Similarly to the spectral kurtosis results, the averaged
value of the spectral Lilliefors Test results confirms that the largest number
of mode shape components with Gaussian characteristics occurs in the cen-
tral region of the rod compared to other regions. Indeed, the mean value of
the spectral Lilliefors Test results suggests that the establishment of a Gaus-
sian distribution for a fixed mode shape component, located in the vicinity of
the central region of the rod, across the mode order domain, is expected for
approximately 30% of the rod members of the ensemble. That is, only for
30% of the members of the mass-loaded rod ensemble it is expected that the
mode shapes are statistically independent at a given excitation point located
in the central region of the rod. Therefore, based on the spectral mode shape
statistics results, the most favorable condition for the achievement of a good
performance of the SEA variance predictions based on GOE model statistics
seems to occur when the excitation point is located in the central region of
the mass-loaded rod structure.
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Considering the ensemble mode shape averaging approach, the en-
semble kurtosis value for each mode shape component was evaluated as a
mode order function. The ensemble kurtosis results for each mode shape
component as well as their statistical parameters are shown in Figure 77. The
Gaussian (GOE model) and sinusoidal analytical predictions are also plotted.

Figure 77: Ensemble kurtosis results: individual members, typically expec-
ted, arithmetic and geometric mean values (ensemble averaging approach).

As shown in Figure 77, the ensemble kurtosis results also confirm
the global tendency of the mode shape statistics described previously in the
spatial kurtosis analysis. However, it is relevant to note that in contrast to
the spatial kurtosis variability, which increases gradually as the mode order
(or frequency) increases, the ensemble kurtosis variability presents moderate
magnitudes in the low and mid-frequency range.

In order to identify the most probable mode shape component (excita-
tion point) and mode order range (or frequency range) for the establishment of
Gaussian mode shape statistics across the ensemble, the ensemble Lilliefors
Test results were evaluated, Figure 78.
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Figure 78: Ensemble Lilliefors Test results: bi-dimensional graphical repre-
sentation (ensemble averaging approach).

In Figure 78, the points on the ensemble Lilliefors Test results repre-
sent the data sets approved by the Lilliefors Normality Test in which a good
agreement with GOE or Gaussian mode shape statistics is expected.

It is important to emphasize that the conclusions drawn from the en-
semble Lilliefors Test results agree satisfactorily with those of the previous
mode shape statistics obtained using spatial and spectral averaging approa-
ches. That is, the establishment of Gaussian mode shape statistics across the
ensemble is expected in the vicinity of mode 40 when a single excitation point
is located in the central region of the mass-loaded longitudinal rods.

In addition, Figure 78 shows clearly that the high order modes, beyond
mode 45, are certainly non-Gaussian, regardless of the excitation point loca-
tion. As discussed previously, this frequency region is characterized by the
establishment of ensemble localization statistics.

Based on the above discussion, the bi-dimensional representation of
the ensemble Lilliefors Test results can be considered an excellent tool to
identify the most probable region (mode order range and excitation point lo-
cation) for the establishment of GOE mode shape statistics.

In the Quantum Billiard field, analytical expressions proposed by the
Theory of Supersymmetry are available to describe the statistical characte-
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ristics of localized wavefunctions, Sridhar and others (71, 73, 74). Mir-
lin and Fyodorov (77), based on 1D non-linear sigma model, proposed PT-
distribution patterns for weak and strong localization regimes. These expres-
sions and their parameters are reviewed in section 2.3.4 of Chapter 2.

In the following, the performance of these analytical expressions based
on the non-linear sigma model are evaluated considering PT-distributions of
a fixed mode shape component across the ensemble, instead of the use of a
spatial averaging approach over the mode shape components. Two regimes
(or disorder levels) are investigated: weak and strong localization.

In Figure 79, the numerical ensemble PT-distribution results, the
analytical GOE prediction and the PT-distribution fitted results for the non-
linear sigma models are plotted. In a manner similar to the previous spatial
mode shape analysis performed in section 3.4.4 of the current chapter, a
global normalization constant (C1) was introduced for the strong localization
expression, Equation (2.55).

(a)
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(b)

(c)
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(d)

Figure 79: Ensemble Porter-Thomas distribution results for localized mode
shapes: numerical results for the mode shape component located at 0.658 m,
GOE prediction and non-linear sigma model fitted patterns (weak and strong
localization regimes) (ensemble averaging approach). Plots: (a) mode 26, (b)
mode 39, (c) mode 72, and (d) mode 93.

As shown at Figures 79 (a) and (b), the fitted non-linear sigma mo-
del curves are not able to describe the non-universal statistical characteristics
presented in the PT-distribution results associated with the weakly localized
mode shapes across the ensemble. Indeed, a non logical dispersive behavior
is clearly observed for the numerical PT-distribution results associated with
these mode shape components.

For strongly localized mode shapes, Figures 79 (c) and (d), the fitted
non-linear sigma model curves conform very well to the numerical results.
Indeed, the PT-distribution expression based on the non-linear sigma model
was initially developed for one dimensional disordered systems in which the
dynamical characteristics are very similar to those of the structure class in-
vestigated in this current work.
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Mode Shape SEA Parameters: Normalized ParametersP and Q

Analogously to the statistical overlap factor results which measure the
randomness levels from each natural frequency across the ensemble, the ran-
domness (or disorder) level of the mode shapes can also provide important
information required to define the necessary conditions for the universal esta-
blishment of GOE model for the modal parameter statistics in a given random
vibroacoustic system. In general, it is assumed that the disorder level of the
mode shapes is directly associated with the number of relevant eigenbases
across the ensemble, Zyczkowski (81) and Cordioli (20).

In the current study, the parameters P and Q, originally proposed by
Cordioli (20), were normalized in terms of the mode shape vector size, that
is, the total number of mode shape components, in order to provide appropri-
ate conditions for a direct comparison between vibroacoustical systems with
different numbers of the mode shape components, usually associated with
distinct meshing characteristics. This normalization process minimizes the
effects associated with the meshing characteristics of the vibroacoustical sys-
tem investigated. In Figure 80, the results for the normalized Parameter P
(Pa) and normalized parameter Q (Qa) are presented for the mass-loaded rod
ensemble.

(a)
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(b)

Figure 80: Mode shape SEA parameters of the mass-loaded rod ensemble
(ensemble averaging approach). Plot (a): Parameter Pa. Plot (b): Parameter
Qa.

As shown in Figure 80 (a), the parameter Pa results suggest that the
number of relevant bases increases as the frequency or mode order increases.
Thus, the statistics for high order mode shapes are expected to be closer to
GOE statistics than those for low order mode shapes, that is, an asymptotic
establishment of the GOE statistics is expected as the mode order value (or
excitation frequency) increases.

Considering the parameter Qa results, Figure 80 (b), they have a ten-
dency very similar to that of the parameter Pa results in the low mode order
range, although the results are very distinct for mid and high mode order ran-
ges. Beyond the vicinity of mode 40, the parameter Qa results have almost
flat characteristics (or a plateau region), except for the presence of small os-
cillations. Hence, the number of relevant bases beyond mode 40 would be
expected to remain approximately constant.

As shown previously in the results for the spatial and ensemble sta-
tistical observables, an almost GOE statistics is expected to be established
in a limited (or restricted) mode order range in the vicinity of mode 42, and
beyond this region the establishment of the structural or ensemble localization
phenomena is strongly expected.

Comparing the curve patterns of the spatial and ensemble kurtosis re-
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sults with the performances of the parameters Pa and Qa, only the parame-
ter Qa results are able to identify that significant changes occur in the mode
shape statistics for the mid and high mode order ranges. The parameter Pa
performance is only reliable in the low mode order region where the mode
shape mixing phenomenon is not established. According to Cordioli (20), it
is important to note that the parameter P presents an inadequate performance
in identifying the establishment of GOE statistics in certain situations. Si-
milarly to the statistical overlap factor definition, the parameter P definition
does not take into account the mode shape mixing phenomenon associated
with each mode shape investigated across the ensemble; Cordioli (20), Scha-
adt (110, 69, 70), Bertelsen (90) and Kessissoglou & Langley (80).

On the other hand, the parameter Qa showed convenient characteris-
tics to evaluate the randomness level from a certain mode shape set across
the ensemble, since the mode shape mixing effects are minimized during its
evaluation. However, there is no analytical proof to affirm that an explicit
connection exists between the parameter Qa values and the establishment of
GOE statistics or the establishment of the structural or ensemble localization
phenomena. Thus, it appears that the parameter Qa may be employed to-
gether with other eigenvector statistical observables as an auxiliary parameter
to evaluate the randomness (or disorder) level of mode shapes.

Figure 81: Mode shape SEA parameter of the mass-loaded rod ensemble:
parameter Z (ensemble averaging approach).
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In Figure 81, the parameter Z results are plotted as function of mode
order for the mass-loaded rods. Considering the normalization process adop-
ted for the mode shape SEA parameters P and Q, the evaluation of parameter
Z is given by Z = Pa/Qa.

As shown Figure 81, the parameter Z results have a crescent beha-
vior as the mode order increases, suggesting that the number of superimpo-
sed spectra increases asymptotically toward the high natural frequency range.
For high frequency range, the longitudinal wavelength reduces substantially
in comparison to rod dimensions and thus the point masses actuates as mecha-
nical discontinuities, proving the establishment of non-interacting rod subs-
tructures which are defined by a rod section limited by two successive point
masses, Brown (1). Therefore, a high number of independent mode sets can
exist in the various rod sections between the point masses, explaining the es-
tablishment of the almost-Poisson model characteristics observed previously
for natural frequency statistical observable results24.

Ensemble Analysis of Structural Localization Phenomenon

As observed in the previous analysis of the modal parameter statistics,
the mass-loaded rod ensemble, due to its structural irregularity characteris-
tics, presents a high probability of the establishment of structural localiza-
tion phenomenon in the mid and high-frequency ranges. The main goal of the
analysis which follows is to understand the principal aspects associated with
the establishment of the localization phenomenon, for instance: the physics
of spatial decay and its relationship with the excitation frequency, damping
magnitudes, establishment of the GOE statistics for modal parameters and
others. These structural localization issues are investigated through the use of
the localization factor which allows the identification of the pass-band and
stop-band regions, Pierre (148).

Initially, the ensemble-averaged spatial decay along the length was
evaluated as each rod member is subjected to unitary longitudinal excitation
at the rod end. The frequency-constant and low damping loss factor was
adopted in order to minimize the effects of the damping mechanisms on the
spatial energy response. The arithmetic and geometric averaging processes
were considered and their corresponding localization factors were evaluated

24Although it was not discussed here in details, similar effects on the natural frequency statis-
tics are expected for two distinct situations: (i) the system has several non-interacting substructu-
res (i.e., mass-loaded rod) or (ii) the system has geometric symmetries (i.e., perfectly rectangular
block or plate), Weaver (64), and Cordioli (20).
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for several excitation frequencies. In Figure 82, the performances of the arith-
metic and geometric averaging processes and respective localization factors
are shown in detail for distinct mode shape statistics.

As shown in Figure 82, the establishment of the localization pheno-
menon leads to significant effects on the averaging processes and thus very
distinct localization factor values are expected for the arithmetic and geome-
tric averaging processes, mainly for the high excitation frequency range in
which the mode shape statistics are localized.

(a)
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(b)

(c)
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(d)

Figure 82: Ensemble spatial decay analyses: averaging process performan-
ces and localization factor values (ensemble averaging approach). Plot (a):
Vicinities of Modes 09 and 10: excitation frequency of 4.5 kHz - almost
sinusoidal mode shape statistics. Plot (b): Vicinities of Modes 21 and 22: ex-
citation frequency of 10 kHz - sinusoidal to Gaussian transition mode shape
statistics. Plot (c): Vicinities of Modes 41 and 42: excitation frequency of 20
kHz - almost Gaussian mode shape statistics. Plot (d): Vicinities of Modes
62 and 63: excitation frequency of 30 kHz - localized mode shape statistics.

In general, the results suggest that the use of the geometric averaging
process is more appropriate than the traditional arithmetic averaging process
to represent the typically expected response of an ensemble composed of en-
gineering structures with structural irregularities. Similar results with almost-
periodical structures were obtained by Hodges (159, 150). Additionally, the
expected mean value for the geometric averaging process has a decreasing
linear pattern along the rod length. Hence, the linear best-fit decay provides
a good evaluation of the localization factor mainly in the frequency range
corresponding to localized mode shapes. Indeed, the low performance of the
arithmetic averaging process seems to be based on the significant contribution
of the sporadic localized results associated with the long-tail characteristics
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of the response distribution.
In order to investigate the effects of damping mechanisms on the loca-

lized mode shapes, several magnitudes of damping loss factor were conside-
red and the corresponding localization factors were evaluated for four mode
shape statistics regions considered in the previous analysis. In Table 9, the lo-
calization factors of the arithmetic and geometric decay fitting are presented
for distinct mode shape statistics.

Table 9: Localization factor analysis for longitudinal random mass-loaded
rods: several excitation frequencies and damping loss factor magnitudes (en-
semble averaging approach).

f = 4.5 kHz Almost sinusoidal statistics Modes: 09 - 10
Damping Loss Factor Arithmetic decay Geometric decay

10−2 0.0004 0.0009
10−3 0.0002 0.0005
10−4 0.0002 0.0004
10−6 0.0002 0.0004
10−8 0.0002 0.0004
10−12 0.0002 0.0004

(a) Vicinities of Modes 09 and 10: excitation frequency of 4.5 kHz - almost
sinusoidal mode shape statistics

f = 10 kHz sinusoidal - Gaussian transition Modes: 21 - 22
Damping Loss Factor Arithmetic decay Geometric decay

10−2 0.0031 0.0038
10−3 0.0032 0.0028
10−4 0.0010 0.0027
10−6 0.0000 0.0027
10−8 0.0000 0.0027
10−12 0.0000 0.0027

(b) Vicinities of Modes 21 and 22: excitation frequency of 10 kHz - sinusoidal
to Gaussian transition mode shape statistics
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f = 20 kHz Almost Gaussian statistics Modes: 41 - 42
Damping Loss Factor Arithmetic decay Geometric decay

10−2 0.0080 0.0115
10−3 0.0051 0.0096
10−4 0.0040 0.0094
10−6 0.0042 0.0094
10−8 0.0042 0.0094
10−12 0.0042 0.0094

(c) Vicinities of Modes 41 and 42: excitation frequency of 20 kHz - almost
Gaussian mode shape statistics

f = 30 kHz structural localized statistics Modes: 62 - 63
Damping Loss Factor Arithmetic decay Geometric decay

10−2 0.0165 0.0177
10−3 0.0113 0.0160
10−4 0.0121 0.0159
10−6 0.0123 0.0159
10−8 0.0123 0.0159
10−12 0.0123 0.0159

(d) Vicinities of Modes 62 and 63: excitation frequency of 30 kHz - Localized
mode shape statistics

The localization factor results show the significant influence of mode-
rate and large damping loss factor magnitudes on the evaluation of the spatial
averaged decay across the ensemble. According to the results, a low damping
loss factor provides the most favorable condition for the accurate evaluation
of the localization factor. In addition, it can be noted that the localization
factor magnitudes of the arithmetic and geometric averaging processes have
very distinct characteristics. The localization factors based on the geometric
mean value are expected to be larger than those based on the arithmetic mean
value for most excitation frequency ranges.

In Figure 83, the localization factor results are shown as a function of
the excitation frequency for both decay evaluation averaging processes, that
is, arithmetic and geometric. During the localization factor evaluation, very
low damping loss factor magnitudes were adopted in order to minimize the
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damping effects on the ensemble-averaged spatial decay. The localization
factor results are presented in terms of absolute values.

Figure 83: Localization factor results as a function of excitation frequency:
arithmetic and geometric decay evaluation (ensemble averaging approach).

The localization factor curve of the arithmetic fitted decay has a very
oscillatory behavior and presents some unexpected null as well as negative25

values for the frequency regions of typical localized mode shape statistics.
On the other hand, the localization factor curve of the geometric fitted decay
has an almost continuous pattern and well-defined frequency characteristics.

As shown in Figure 83, as the excitation frequency increases, the struc-
tural localization phenomenon becomes more relevant and large localization
factor values are expected for the high-frequency range. Based on the pre-
vious results for the mode shape statistics analysis, for the frequency range
closest to the vicinity of 20 kHz, the establishment of GOE statistics is ex-
pected for both modal parameters. The localization factor results associated
with this frequency region suggest the presence of a moderate localization
and magnitudes close to 1% for the localization factor.

25The negative values of the localization factors are not emphasized herein because the locali-
zation factor results are presented in terms of absolute values.
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Additionally, the pass-band and stop-band frequency limits were ade-
quately identified. In the current localization analysis, the stop-band threshold
was adopted as the localization factor magnitude is equal to 1.10−3. In the
Pierre’s work (148), a similar stop-band threshold magnitude was adopted for
several finite oscillator chains and an excellent performance was obtained in
the characterization of the pass-band and stop-band frequency regions. For
the low-frequency range, a spatial propagation of the longitudinal wave is ex-
pected throughout the rod structure domain since the uncertainty or disorder
effects are not significant. Therefore, the low localization factor magnitu-
des confirm the establishment of an almost negligible spatial decay, indica-
ting that the pass-band characteristics are associated with the low-frequency
range.

On the other hand, the strong localization and spatial energy confi-
nement phenomena are expected to become more intense as the excitation
frequency increases. The localization factor curve shows also that the lo-
calization factor magnitude increases gradually as the excitation frequency
increases.

Considering the excitation frequency region around 20 kHz, that is,
in the vicinities of modes 41 and 42, the establishment of GOE statistics is
expected for both modal parameters, as shown in previous results from mode
shape statistics analysis. From the localization analysis, the localization fac-
tor results suggest the establishment of a moderate localization regime for this
excitation frequency region since the presence of disorder or uncertainties re-
duces the coupling strength between two successive rod sections separated by
a point mass.

Kinetic Energy Density Statistics: Spatially-Averaged Excitation

In order to investigate the effects of distinct modal parameter statis-
tics on the kinetic energy density statistics, two distinct excitation classes are
considered. The first is a unitary longitudinal single point-loading which pro-
vides the energy response dependent on both modal parameter statistics. The
second considers a spatially-averaged excitation which provides the energy
results identical to those for rain-on-the-roof excitation. It is important to
emphasize that the contributions of the mode shape statistics are removed for
this second excitation class and thus the kinetic energy density statistics are
dependent only on the natural frequency statistics, Brown (1).

In the following, the energy response of each ensemble member is eva-
luated considering a narrow frequency domain with a fixed frequency interval
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of 10 Hz. The modal superposition method was used to evaluate the kinetic
energy density results. Considering the FEM model performance, a detailed
convergence analysis was performed in order to guarantee the response con-
vergence in the frequency range of interest. The ensemble size adopted was
500 members.

In Figure 84, the spatially-averaged kinetic energy density results for
some members are presented for a damping loss factor of magnitude equal to
3%, that is, η = 0.03. This choice is based on the fact that the modal overlap
factor range corresponding to this particular DLF magnitude is adequate to
evaluate directly the effects of the modal parameter statistics on the kinetic
energy density results, since the establishment of a high modal superposition
does not occur. Additionally, the analytical SEA prediction is also plotted.

Figure 84: Kinetic energy density results for spatially-averaged excitation:
members, ensemble arithmetic and geometric mean values and SEA predic-
tion (ensemble averaging approach).

As shown in Figure 84, an excellent agreement was obtained between
the SEA prediction and ensemble mean values mainly in the mid and high-
frequency ranges.

In a similar manner, the relative variance of the spatially-averaged ki-
netic energy density results were also evaluated across the ensemble. The
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numerical results and analytical predictions are plotted in Figure 85.

Figure 85: Relative variance of kinetic energy density results for spatially-
averaged excitation based on: ensemble arithmetic and geometric mean va-
lues (ensemble averaging approach). The Poisson and GOE analytical pre-
dictions are also plotted.

As shown in Figure 85, the level of agreement between the numeri-
cal values and analytical predictions is low for almost the whole frequency
domain. The numerical relative variance results associated with each fre-
quency range can be easily understood when compared to the corresponding
ensemble natural frequency statistics. For the low-frequency range, the spec-
tral rigidity characteristics are relevant. Thus, small differences between the
random rod response and the nominal rod one are expected since almost ne-
gligible deviations occur for the natural frequency locations in comparison to
those of the nominal rod.

As the excitation frequency increases the energy response variability
across the ensemble becomes more and more relevant due to uncertainty or
structural irregularity effects. In the vicinity of 20 kHz (mode 42) the natural
frequency statistics presents an almost-GOE statistics and a good agreement
is expected between the ensemble relative variance results and the analytical
prediction based on the GOE model. Indeed, the relative variance of the
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numerical results conforms well with the GOE prediction in this frequency
region.

Beyond this frequency range, the structural localization effects on the
natural frequency statistics become gradually substantial as the excitation fre-
quency increases. As shown previously, an asymptotic establishment of the
Poisson natural frequency statistics occurs toward the high-frequency range
and thus the relative variance results from the numerical rod ensemble show
intermediate values between the GOE and Poisson analytical predictions.

Based on the performances of the relative variance predictions obtai-
ned in these current analyses, it is possible to affirm that for cases of spatially-
excited one-dimensional random structures, which are evident candidates for
the establishment of the structural localization phenomenon, the relative va-
riance analytical formulations based on the Poisson model can be applied in
a conservative way to predict the expected relative variance in the highest
frequency range.

Kinetic Energy Density Statistics: Single Point-Excitations

In this section, the characteristics of the energy response statistics of
the mass-loaded rods subjected to a unitary longitudinal single point-loading
are investigated for three distinct excitation point locations. The ensemble
mean and relative variance values of the kinetic energy density results were
evaluated considering the arithmetic and geometric averaging processes. Th-
ree distinct excitation points (X0, X2, and X3) are described in Table 10.

Table 10: Three excitation points considered in the statistical analysis of the
kinetic energy density results: point nomenclature, spatial coordinates, and
brief statistical description.

Excitation points Length coordinate [m] Brief description
X0 0 Left rod end
X2 2.125 Almost-GOE
X3 0.658 Arbitrary location

In Figure 86, the ensemble mean and relative variance values are
shown for each excitation point. The analytical predictions based on GOE
and Poisson model statistics are also plotted.
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(a1) Excitation point X0

(a2) Excitation point X0
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(b1) Excitation point X2

(b2) Excitation point X2
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(c1) Excitation point X3

(c2) Excitation point X3

Figure 86: Ensemble mean and relative variance values of the mass-loaded
longitudinal rods subjected to a single point-loading at excitation points X0,
X2, and X3: numerical results and analytical predictions based on GOE and
Poisson models (ensemble averaging approach).

According to Figure 86, the ensemble mean and relative variance va-
lues present very distinct values for each averaging process considered. Since
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the structures investigated have a relevant trend toward the establishment of
the structural localization phenomenon, it is expected that the ensemble mean
values obtained from the geometric averaging process will represent the typi-
cally expected response across the ensemble more adequately than the mean
values obtained from the traditional arithmetic averaging process, Hodges et
al (139, 140, 159).

In general, the ensemble mean values obtained from the geometric
averaging process are lower than those of the SEA predictions and arithmetic
values throughout the excitation frequency domain for all excitation points in-
vestigated. The energy responses of some ensemble members are also plotted
and clearly indicate the good performance of the ensemble geometric mean
values in representing the expected response of a typical member of the en-
semble.

On the other hand, the ensemble mean values obtained from the arith-
metic averaging process conform very well to the SEA predictions. Indeed, it
is important to emphasize that SEA predictions provide an excellent estimate
of the expected arithmetic mean value across the ensemble. As discussed pre-
viously, the evaluation of the arithmetic mean value of the energy responses
has a weak dependence on the modal parameter statistics and thus an excel-
lent agreement between the SEA predictions and ensemble arithmetic mean
values is expected, at least for structure ensembles for which the response
distributions have long-tail distribution characteristics.

Considering the ensemble relative variances of the three distinct ex-
citation points investigated, the results based on the geometric mean values
present larger amplitudes than those based on the arithmetic mean values,
mainly in the mid and high-frequency ranges, for all excitation points inves-
tigated. Indeed, the discrepancies between the relative variance results based
on the arithmetic and geometric mean values are clearly associated with the
establishment, to a high degree, of the ensemble localization phenomenon
which is gradually reinforced as the frequency increases.

The numerical variance results based on the geometric mean value are
high and clearly overestimate the SEA variance predictions based on the GOE
model throughout the frequency range investigated, suggesting that the typi-
cally expected variation in the kinetic energy density results across the ensem-
ble obtained from the probabilistic mode values (typically expected values
across the ensemble) may be substantially higher than the energy variance
predicted by SEA model based on GOE statistics.

Additionally, it is important to emphasize that the ensemble relative
variance results are more sensitive to changes in the modal parameter statis-
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tics than the ensemble mean values, regardless of the averaging process adop-
ted. Unlike the ensemble spatially-averaged relative variance results, which
are dependent only on the natural frequency statistics, the point-loaging re-
lative variance results are dependent on both the modal parameter statistics,
that is, natural frequency statistics and a fixed mode shape component statis-
tics corresponding to excitation point. As discussed previously in the spectral
relative variance analysis, it is expected that the contribution of the mode
shape statistics is usually more predominant for point-loading energy vari-
ance values than those of the natural frequency statistics, since small changes
in the mode shapes may become significant in terms of the relative variance
results.

As observed in Figure 86, the performance of point-loading relative
variance analytical predictions is very limited, regardless of the statistical mo-
del adopted for the modal parameter statistics. Indeed, the good performance
of the point-loading variance prediction based on the GOE model is strictly
associated with the establishment of Gaussian characteristics in the ensemble
and spectral mode shape statistics at the excitation point.

For all excitation points investigated, the relative variance results con-
form satisfactorily with the SEA variance prediction only within a limited
frequency range. The limits of these frequency ranges, in which the GOE
agreement is satisfactory, vary for each excitation point. In Figures 87 and
88, the ensemble kurtosis and Lilliefors Test results are presented for the ex-
citation points X0, X2 and X3, respectively. The analytical predictions for
sinusoidal and Gaussian (GOE model) mode shape statistics are also plotted.
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Figure 87: Ensemble kurtosis results for the mass-loaded rod ensemble: ex-
citation points X0, X2 and X3 (ensemble averaging approach).

In general, the ensemble mode shape statistics results for the excita-
tion points agree with the global tendency previously presented in section
3.5.1. For the lower mode order range, the mode shapes are weakly affected
by the randomness effects and their statistics are almost-sinusoidal (nominal).
As the mode order increases the randomness effects become substantial and
a statistical transition occurs from the sinusoidal to almost-Gaussian mode
shape statistics. For three excitation points, the establishment of Gaussian
statistics is clearly observed in a limited mode order range, although the li-
mits and their extensions vary for each excitation point. Indeed, the achieve-
ment of a good performance of the SEA variance prediction based on GOE
statistics are strictly associated with the location and extension of the mode
order range with Gaussian characteristics. Beyond the Gaussian mode order
range, a gradual establishment of the localization characteristics occurs as the
frequency (mode order) increases. In the following, the performance of the
SEA variance prediction based on the GOE model is discussed in detail for
each excitation point in terms of the statistical characteristics of the ensemble
and spectral mode shape statistics results.
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Figure 88: Ensemble Lilliefors Test results for the mass-loaded rod ensem-
ble (ensemble averaging approach). Plot (a): Excitation point X0. Plot (b)
Excitation point X2. Plot (c): Excitation point X3.
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For excitation point X0, in the frequency range of approximately 12.5
kHz to 15 kHz (corresponding approximately to modes 16-31) there was a
satisfactory agreement between the numerical variance results based on the
arithmetic mean value and the SEA variance prediction based on the GOE
model. Considering the corresponding ensemble mode shape statistics re-
sults, Figure 87 and Figure 88 (a), the ensemble kurtosis results associated
with this mode order range present values close to K ∼ 3 (expected Gaus-
sian kurtosis value), although the Lilliefors Test results reject the hypothesis
of Gaussian distribution for the mode shape components associated with the
excitation point X0 across the ensemble.

Considering again the relative variance results at the excitation point
X0, Figure 86 (a), some discrete peaks can be easily associated with large va-
lues of the ensemble kurtosis results. For example, the narrow peak at appro-
ximately 21.5 kHz is correlated to the localization characteristics of mode 45
where the ensemble kurtosis value is strongly localized, that is, K45 ∼ 9, Fi-
gure 87. Similarly, the peak centered at approximately frequency 24.3 kHz is
strictly associated with the localization characteristics of mode 51 (K51 ∼ 15,
strongly localized).

For excitation point X3, three distinct narrow frequency regions show
an approximate agreement between the analytical prediction based on the
GOE model and the numerical variance results based on the arithmetic mean
value. These three narrow frequency ranges are approximately centered in
the vicinity of 12.5 kHz (corresponding to modes 25-26) for the first range,
in the vicinity of 13.5 kHz (corresponding to modes 29-31) for the second
range, and in the vicinity of 16.8 kHz (corresponding to mode 35) for the last
frequency range.

Considering the corresponding ensemble mode shape statistics results,
Figure 87 (c) and Figure 88, the ensemble kurtosis results show that the mode
shapes associated with these mode order ranges present values close to K ∼ 3
(expected Gaussian kurtosis value), although the Lilliefors Test results reject
the hypothesis of Gaussian distribution only for last frequency region.

Between the second and third frequency ranges, a large peak in the re-
lative variance results is clearly established in the vicinity of frequency 15.8
kHz. This peak is correlated to the localization characteristics of successive
modes 33 and 34 where the ensemble kurtosis values are moderately locali-
zed, that is, K33−34 ∼ 4.5, Figure 87.

For excitation point X2, the arithmetic relative variance results asso-
ciated with the frequency range from approximately 16.2 kHz to 20.6 kHz
(corresponding approximately to modes 34-44) showed a excellent agreement
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with the SEA variance prediction based on the GOE model. Considering the
corresponding ensemble mode shape statistics results, Figures 87 and 88 (b),
the ensemble kurtosis results associated with this mode order range present
values close to K ∼ 3 (expected Gaussian kurtosis value) and the correspon-
ding Lilliefors Test results approve the hypothesis of Gaussian distribution
for the mode shape components associated with excitation point X2 across
the ensemble.

As observed in Figure 86 (b), a well-defined shift in the curve of the
relative variance results occurs at a frequency of approximately 21 kHz (vi-
cinity of mode order 44) and an approximately flat behavior is established
beyond this shift up to a frequency of 29 kHz. Considering the corresponding
ensemble kurtosis results, Figure 87, a similar shift from the almost Gaussian
(K∼42 ∼ 3) to weak localized statistics (K45−58 ∼ 4,) occurs at mode order 45
and a mode order range with weak localization characteristics is established
from mode 45 to mode 58.

Considering the spectral kurtosis and Lilliefors Test results, Figure 76,
the degree of the spectral correlation between the mode shape components
is very substantial for the excitation points X0 and X3. Indeed, the spectral
Lilliefors Test results, Figure 76 (b), suggest that for most of the ensemble
members, circa 99%, the mode shapes can not be considered to be Gaussian
variables at these excitation points. Conversely, the spectral results associated
with excitation point X2, Figure 76 (b), suggest that for less than half of en-
semble members, circa 30%, the mode shape components can be considered
to be almost Gaussian distributed at excitation point X2.

It is also interesting to note that, although the excitation points X2 and
X3 have distinct spectral correlation characteristics in terms of the mode shape
statistics, their agreements with the analytical prediction based on the GOE
model are very similar in the frequency ranges in which the establishment of
Gaussian mode statistics is expected. Indeed, their numerical results conform
very well with those based on GOE predictions over frequency ranges with
similar extensions, suggesting that the presence of an inter-modal correlation
between the mode shapes at the excitation point may not be the main factor
associated with the reduced performance of the relative variance predictions
based on the GOE model observed previously in the SEA variance literature
results.

With respect to the establishment of GOE statistics for each of the mo-
dal parameters, it is important to note that for excitation points X0 and X3 the
frequency ranges associated with ensemble mode shape statistics with almost-
GOE characteristics are clearly distinct to the frequency range in which the
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ensemble natural frequency statistics is approximately described by the GOE
model. Although, it is considered that the best performance of the revised
SEA variance predictions is exclusively obtained when a complete establish-
ment of GOE statistics occurs for both modal parameter statistics, an excel-
lent agreement between the analytical prediction based on the GOE model
and numerical results was observed for the frequency range associated with
Gaussian mode shape statistics, independent of the excitation point location.
This finding appears to indicate that the mode shape contributions to kine-
tic energy density response are more predominant than the natural frequency
contributions in the case of the single point excited rod ensemble investigated.

Considering the point-loading variance results associated with the ex-
citation point X2, an excellent agreement is verified between the variance pre-
diction based on the GOE model and arithmetic numerical results for the ex-
citation frequency range close to the vicinity of 20 kHz. As shown in the
previous analysis of the modal parameter statistics for the ensemble avera-
ging approach, the results for the statistical observables suggest an almost
GOE statistics for point X2 and in the vicinity of 20 kHz frequency (or in
the vicinity of mode 42). Considering the ensemble averaging approach, a
satisfactory establishment of GOE statistics for the modal parameters is also
suggested by the corresponding results for the statistical observables.

On the other hand, it is also important to observe that the spectral
mode shape statistics results associated with the excitation point X2 clearly
indicate an incomplete establishment of the GOE statistics, since for no more
than 30% of the ensemble members the mode shape components are expected
to be Gaussian distributed.

Additionally, the spatial mode shape statistics results, Figure 75, sug-
gest that the occurrence of Gaussian characteristics in the mode shape com-
ponent domain is very limited to a mode order range and also the largest
number of Gaussian mode shapes occurs for a limited mode order range, ap-
proximately modes 26-42, where circa 15% of the ensemble members present
Gaussian distribution characteristics.

3.5.2 Breaking the Geometrical Regularity

In this study, a second ensemble composed of 500 Gaussian spatially-
correlated random rods was also investigated. In order to break the regularity
of the rod geometry along the length, the randomization process considered
the rod cross-sectional area as a random variable along the rod axis direction,
where the values are spatially correlated. For each rod member, a particu-
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lar correlation length is adopted and, using a correlation function, a spatial
variation of cross-sectional area along the rod axis direction is obtained and
the rod cross sectional area values are Gaussian distributed26. The correla-
tion length values vary uniformly across the rod members from Lc = 0.04 to
Lc = 0.08. According to previous results discussed in section 3.4.7, the cor-
relation length range adopted here is associated with the highest probability
for the occurrence of Gaussian mode shapes, Figure 66 (b).

Natural Frequency Statistics

In Figure 89, the results for the natural frequency statistical observa-
bles are shown for several mode orders (or spacings): PDF of adjacent natural
frequency spacings and ∆3 - statistics results.

(a1) Mode 10

26A similar randomization process was adopted previously in the spectral analysis of Gaussian
spatially-correlated random rods. For more details see section 3.4.7.
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(a2) Mode 10

(b1) Mode 20
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(b2) Mode 20

(c1) Mode 35
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(c2) Mode 35

(d1) Mode 40
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(d2) Mode 40

(e1) Mode 65
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(e2) Mode 65

( f1) Mode 80
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( f2) Mode 80

(g1) Mode 95
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(g2) Mode 95

Figure 89: Results for natural frequency statistical observables for Gaussian
spatially-correlated random rods (ensemble averaging approach). Plot (a):
Mode 10. Plot (b): Mode 20. Plot (c): Mode 35. Plot (d): Mode 40. Plot (e):
Mode 65. Plot (f): Mode 80. Plot (g): Mode 95.

As shown in Figure 89, the effects of the spatial correlation vary signi-
ficantly in the frequency range investigated. For mode 10, corresponding ap-
proximately to a frequency of 5 kHz, the natural frequency statistics presents
deterministic-GOE transition statistics characteristics. The high spectral rigi-
dity characteristics are clearly established due to the low performance of the
randomization process. Indeed, the typical wavelength of mode 10 is higher
than the values adopted for the correlation lengths, λ̄10� Lc. For mode 20,
corresponding approximately to a frequency of 10 kHz, the spatial correlation
effects are substantial and a tend toward the establishment of GOE statistics is
observed in the small spacing range, breaking the high spectral rigidity cha-
racteristics. On the other hand, the correlation effects are not effective for
large spectral distances and some residual spectral rigidity characteristics are
still observed in the results for the long-range fluctuation statistical observa-
bles.

Although it not shown here in detail, for modes that lie in the mode
order range of modes 40-65, corresponding approximately to the frequency
range of 20,7 kHz to 34,0 kHz, the GOE statistics is satisfactorily established
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for short and long spectral distances and an excellent agreement with the
RMT predictions is also observed. Beyond this GOE region, the performance
of the randomization process becomes inefficient since the typical wavelength
is expected to be less than the correlation length values, λ̄modes>70 � Lc. In
fact, the spatial correlation effects are clearly minimized as the mode order
increases and the spectral rigidity characteristics are again gradually reesta-
blished. The natural frequency statistical observable results for modes 80 and
95 showed the establishment of an almost-nominal (deterministic) statistics
where high spectral rigidity characteristics are clearly observed.

Natural Frequency SEA Parameter: Statistical Overlap Factor

In the SEA context, the statistical overlap factor has been traditionally
used to verify the applicability of the GOE model to random engineering sys-
tems. In Figure 90, the global and local natural frequency spacings, and natu-
ral frequency standard deviations, as well as the respective statistical overlap
factor results, are presented in terms of mode order domain.

(a)
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(b)

Figure 90: Statistical overlap factor results for a Gaussian spatially-correlated
rod ensemble (ensemble averaging approach). Plot (a): global natural fre-
quency spacing, local natural frequency spacings, natural frequency standard
deviations. Plot (b): Statistical overlap factor: based on the definitions of
global and local mean values for the natural frequency spacings.

As shown in Figure 90 (a), the standard deviation values are less than
natural frequency spacing values throughout the mode order domain investi-
gated. Additionally, it is also observed that the performance of the randomi-
zation process is satisfactory uniform in the central region of the frequency
domain investigated, since the local and global natural frequency spacing va-
lues are very similar.

According to the statistical overlap factor results, Figure 90 (b), the
establishment of GOE statistics would be expected for modes where the sta-
tistical overlap factor values are large than unity, that is, the frequency range
is approximately from 8 kHz to 40 kHz (or the corresponding mode order
region which comprises approximately modes 16-77). Conversely, based on
the previous results for the natural frequency statistical observables, it can be
concluded that the statistical overlap factor analysis clearly failed to identify
the frequency region in which the GOE model is applicable to natural fre-
quency statistics. Indeed, the good and satisfactory agreement between the
GOE predictions and natural frequency statistics is only observed approxi-
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mately in the frequency range of 18 kHz to 35 kHz.

Mode Shape Statistics

In Figure 91, the spatial kurtosis results for each member are presented
in terms of the mode order domain. The probabilistic mode values as well as
the arithmetic and geometric mean values are also presented. The analytical
predictions for sinusoidal and GOE mode shapes are also plotted.

Figure 91: Spatial kurtosis results for the Gaussian spatially-correlated rods:
individual members, probabilistic mode, arithmetic and geometric mean va-
lues and analytical predictions (sinusoidal and GOE) (spatial averaging ap-
proach).

As presented in Figure 91, a high dispersion of spatial kurtosis values
is observed throughout the mode order domain. The distinct mean values
obtained from the arithmetic and geometric averaging processes clearly evi-
dence a possible establishment of the long-tail distribution characteristics for
the mode shapes. Additionally, the high values for the spatial kurtosis are as-
sociated with the occurrence of the structural localization phenomenon in the
mode shapes, mainly beyond mode 20, Hodges and Woodhouse (139, 140).
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Considering again the spatial kurtosis results in Figure 91, the proba-
bilistic mode values suggest that the largest number of Gaussian modes, in
terms of the spatial mode shape domain, occurs mainly in the mode order
region from mode 35 to mode 65 (approximately from 18 kHz to 34 kHz).
In Figure 92, the spatial Lilliefors Test results are presented for individual
member values and arithmetic mean values also are plotted.

Figure 92: Spatial Lilliefors Test results for the Gaussian spatially-correlated
rod ensemble: individual member values and arithmetic mean values (spatial
averaging approach).

As shown in Figure 92, the establishment of Gaussian modes in the
spatial mode shape domain is expected at least for one member of the en-
semble for the mode order range beyond mode 10. Additionally, the results
suggest that the largest number of Gaussian mode across the ensemble occurs
in the mode order range from mode 35 to mode 70 (approximately from 18
kHz to 36 kHz), where it is expected that approximately 10% of the members
have Gaussian mode shape characteristics. Outside this mode order region, a
reduced establishment of spatial Gaussian mode shapes is observed and thus
less than 10% of the members are expected to have mode shapes with Gaus-
sian characteristics.
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In order to assess the establishment of spatial Gaussian mode shapes
across the ensemble, the spatial Lilliefors Test results from each member are
presented in terms of the mode order domain, Figure 93 (a). The points repre-
sent the mode shapes for which the Gaussian hypothesis is held in the spatial
mode shape averaging approach. In general, the spatial Lilliefors Test results
suggest that the establishment of Gaussian modes is approximately uniform
across the ensemble for most mode orders, showing the good performance
of the randomization process adopted. In Figure 93 (b), the total number of
Gaussian mode shapes is presented for each ensemble member. Rather than
presenting the results with the member number on the x-axis, the results are
presented in terms of the particular correlation length (Lc) associated with
each member of the ensemble.

(a)
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(b)

Figure 93: Spatial Lilliefors Test results in terms of: (a) member number and
(b) correlation length associated with each member of the ensemble (spatial
averaging approach).

Another relevant characteristic of the mode shapes is the degree of
statistical independence of a fixed mode shape component associated with
the excitation point. For the case of complete statistical independence, it is
expected that the distribution of the mode shape amplitudes associated with a
given excitation point is Gaussian. In Figure 94, the spectral kurtosis results
for each member are presented in terms of the spatial coordinate domain. The
probabilistic mode values are also presented along with the arithmetic and
geometric mean values. The analytical predictions for sinusoidal and GOE
mode shapes are plotted.

As presented in Figure 94, a high dispersion of the spectral kurtosis
values is observed mainly in the rod regions close the ends. Additionally,
the expected mean and typical values are highest in these rod regions. For
the central rod region, the spectral kurtosis mean values tend asymptotically
toward a kurtosis value slightly lower than the GOE prediction value.
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Figure 94: Spectral kurtosis results for the Gaussian spatially-correlated rods:
individual members, probabilistic mode, arithmetic and geometric mean va-
lues and analytical predictions (sinusoidal and GOE) (spectral averaging ap-
proach).

The ensemble mean values of the spectral kurtosis obtained from the
arithmetic and geometric averaging processes differ slightly, suggesting a
weak effect of the long-tail distribution characteristics on the mode shapes.
In Figure 95, the spectral Lilliefors Test results are presented for individual
members and arithmetic mean values also are plotted.
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Figure 95: Spectral Lilliefors Test results for the spatially-correlated rod en-
semble: individual member values and arithmetic mean values (spectral ave-
raging approach).

As shown in Figure 95, the establishment of Gaussian modes in the
spectral averaging approach is expected at least for a member of the ensem-
ble, regardless of the excitation point location. Additionally, the averaged
results suggest that the largest number of Gaussian modes across the ensem-
ble occurs in the central rod region, circa 80 % of the members. For other
rod regions, a gradual decrease in the number of Gaussian modes across the
ensemble is observed from the central to end regions. According to the ave-
raged spectral Lilliefors Test results across the ensemble, the percentages of
members which have Gaussian mode shapes on the excitation points X0, X2
and X3 are approximately 27%, 80% and 57%, respectively.

Considering the ensemble mode shape averaging approach, the en-
semble kurtosis results, as well as their mean and typical values, are shown
as a function of mode order in Figure 96. The GOE and sinusoidal analytical
predictions are also plotted.

As shown in Figure 96, a high dispersion is expected for all mode
orders. Extremely large ensemble kurtosis values are also observed for some
mode orders mainly in the mid and high mode order ranges.
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Figure 96: Ensemble kurtosis results for the Gaussian spatially correlated
rods: individual member, probabilistic mode, arithmetic and geometric mean
values (ensemble averaging approach).

The ensemble averaged results indicate that as the frequency (or mode
order) increases, a statistical transition occurs for the mode shapes of the ap-
proximately sinusoidal to localized statistics. On the other hand, the typically
expected values of the ensemble kurtosis are lower than both the mean va-
lues throughout the mode order range and indicate that mode shape statistics
similar to GOE are expected to be established for the mode order ranges of ap-
proximately modes 17-33 and modes 70-80 (corresponding to the frequency
ranges of 7.5 kHz to 18 kHz and 37 kHz to 42 kHz, respectively). For the
mode order range of modes 33-70 (corresponding to the frequency range of
18 kHz to 37 kHz), the typical kurtosis results are slightly greater than the
GOE values and suggest the establishment of a weak localization phenome-
non across the ensemble.

In order to identify the most probable mode shape component (i.e.,
excitation point) and mode order range (or frequency range) for the establish-
ment of GOE statistics across the ensemble, the ensemble Lilliefors Test re-
sults are plotted in a bi-dimensional graphical representation, Figure 97 (a).



3.5 Ensemble Averaging Approach 375

(a)

(b)

Figure 97: Ensemble Lilliefors Test results for a Gaussian spatially-correlated
rod ensemble (ensemble averaging approach). Plot (a): bi-dimensional
graphical representation. Plot (b): individual member and the mean values
as a function of the mode order value.
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As shown in Figure 97 (a), the large amount of points associated with
the central rod region shows the high probability of the establishment of GOE
statistics across the ensemble for these mode shape components. In Figure 97
(b), the mean value of the Lilliefors Test results across the ensemble for each
mode order value suggests that the mode order region with the largest pro-
bability for the establishment of a Gaussian distribution for the mode shape
components is approximately from mode 15 to mode 35 (corresponding to the
frequency range of 7.5 kHz to 18 kHz). Beyond this region, a reduced num-
ber of Gaussian distributed mode shape components is clearly observed due
to the establishment of localization phenomenon in the ensemble averaging
approach, including the mode order from mode 70 to 80.

Mode Shape SEA Parameters: Normalized Parameters P and Q

In Figure 98, the results for the normalized parameters P and Q, (Pa
and Qa respectively), are presented as a function of the mode order value.
Considering that for parameter Pa values larger than Pa = 0.4 the establish-
ment of GOE statistics is expected (20), the current parameter Pa results sug-
gest that the complete establishment of GOE statistics occurs beyond mode
08, Figure 98 (a). These results clearly show that the performance of parame-
ter Pa is totally unsatisfactory under particular situations, since this parameter
does not take into account the crossing phenomenon of natural frequencies
due to the presence of system randomness, Kessissoglou and Langley (80)
and Cordioli (20). As discussed by Cordioli (20), the parameter P is expec-
ted to have a performance similar to the statistical overlap factor, which fails
when the system is randomized in particular ways or has the presence of ge-
ometrical symmetries.
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(a)

(b)

Figure 98: Mode shape normalized SEA parameters of the Gaussian spatially-
correlated random rods (ensemble averaging approach). Plot (a): parameter
Pa. Plot (b): parameter Qa.
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Considering the parameter Qa analysis, Figure 98 (b), the establish-
ment of GOE statistics is expected for values higher than Qa = 0.25, Cordioli
(20). Thus, the current parameter Qa results suggest that the establishment of
GOE statistics for the mode shapes is expected to occur for the mode order
range of approximately mode 35 to mode 70 (corresponding to the frequency
range of 18 kHz to 37 kHz). Surprisingly, it can be observed that conclusi-
ons similar to those for parameter Qa were also obtained from the typically
expected spatial kurtosis values in Figure 91.

In Figure 99, the parameter Z results are plotted for the spatially-
correlated rods.

Figure 99: Mode shape SEA parameter of the spatially-correlated rod ensem-
ble: parameter Z (ensemble averaging approach).

As shown Figure 99, the parameter Z results show the highest number
of superimposed spectra occurs for mid frequency range. For this frequency
range, a large level of spatial interference occurs between the typical longitu-
dinal wavelength and the geometrical irregularities.

On the other hand, for high frequency range, the performance of the
randomization process becomes inefficient since the typical wavelength is
expected to be smaller than the correlation length values, λ̄modes>80� Lc. In
fact, the spatial correlation effects are clearly minimized as the mode order
increases and the establishment of an almost-nominal (deterministic) charac-
teristics for both modal parameters statistics is strongly expected. In this
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regard, the reduction of parameter Z amplitudes for higher mode orders re-
flects this situation and the number of non-interacting spectra is gradually
decreased as mode order increases.

Kinetic Energy Density Statistics: Spatially-Averaged Random Rod
Responses

In a manner similar to previous analysis performed with the mass-
loaded rod ensemble, the mean and relative variance values of the kine-
tic energy density results were also evaluated across the Gaussian spatially-
correlated rod ensemble. Two excitation natures are considered: unity single
point-loading on the X0, X2 and X3 excitation points and spatially-averaged
excitation. Analytical predictions based on the Poisson and GOE modal pa-
rameter statistics are compared to all numerical results.

In the current analysis, two approaches to the damping loss factor para-
meter are considered. The first approach considers a frequency-constant value
which is equal to η = 0.03. This DLF approach with a low and frequency-
constant value allows an accurate visualization of the contributions of modal
parameter statistics to the kinetic energy density statistics. In the second ap-
proach, the DLF is defined as being inversely proportional to the frequency
and proportional to the longitudinal sound speed, Equation (3.19). This se-
cond DLF approach removes the effects of the distinct degrees of modal su-
perposition.

In Figure 100, the spatially-averaged kinetic energy density results are
presented for both damping loss factor approaches. The results for some
members along with the arithmetic and geometric mean values are plotted.
Additionally, the analytical SEA prediction is also plotted.
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(a)

(b)

Figure 100: Kinetic energy density results for spatially-averaged excitation:
some individual members, ensemble arithmetic and geometric mean values
and SEA predictions (ensemble averaging approach). Plot (a): frequency-
constant DLF. Plot (b): constant modal superposition DLF.
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As shown in Figure 100 (a), an excellent agreement was obtained
between the SEA predictions and ensemble mean values, mainly in the mid
and high-frequency ranges, regardless of the averaging process adopted. The
same conclusion can be extended to the constant modal superposition energy
results throughout the frequency domain, since the modal overlap factor am-
plitude is greater than unity and the SEA basic assumptions are guaranteed,
Figure 100 (b).

In Figure 101, the relative variance of the spatially-averaged kinetic
energy density results and analytical predictions are plotted. The evaluation
of the spatially-averaged relative variance results was based on the arithmetic
and geometric mean values.

(a)
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(b)

Figure 101: Ensemble relative variance of spatially-averaged kinetic energy
density results based on: arithmetic and geometric mean values. The analy-
tical predictions are based on Poisson and GOE models (ensemble averaging
approach). Plot (a): frequency-constant DLF. Plot (b): constant modal super-
position DLF.

As shown in Figure 101, the numerical relative variance results con-
form very well with the GOE analytical predictions for the frequency range
of 18 kHz to 35 kHz, which corresponds approximately to the mode order
range of modes 35-70. Indeed, this excellent agreement can be attributed to
two main factors: (i) the natural frequency statistics has GOE characteristics
in this frequency range and (ii) the mode shape effects are completely remo-
ved from the ensemble statistics of the kinetic energy density responses due
to the spatially-averaged characteristics of the excitation. Outside this fre-
quency range, the low values for the relative variance are associated with the
establishment of the high spectral rigidity characteristics in natural frequency
statistics and low perturbation of the natural frequency locations across the
ensemble.

Considering the mean and relative variance results obtained from the
arithmetic and geometric averaging processes, the substantial effects of the
use of the distinct averaging processes are only observed in the low-frequency
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range, exclusively for the case of a frequency-constant DLF, Figure 101 (a).
In order to investigate these effects, the histogram of the kinetic energy den-
sity results across the ensemble for distinct conditions of modal superposition
are presented in Figure 102.
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Figure 102: Histogram of the spatially-averaged kinetic energy density res-
ponses for Gaussian spatially-correlated rods excited by spatially-averaged
forces, η = 0.03, 500 members, at various frequencies f (or the modal over-
lap factors m). The arithmetic and geometric mean values are also presented.
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As shown in Figure 102 (a), the kinetic energy response distribution
for the low-frequency region (or low modal superposition condition) presents
a probabilistic distribution with long tail characteristics where the probabilis-
tic mode value is clearly distinct from the arithmetic and geometric mean va-
lues. For the kinetic energy response distribution of the excitation frequency
f = 10kHz (or modal overlap factor m= 0.58), Figure 102 (b), the probabilis-
tic mode value remains distinct for both mean values and an initial statistical
transition from the long tail to Gaussian statistics can be observed. Indeed,
the typically expected value across the ensemble clearly differs from the mean
values obtained from the arithmetic and geometric averaging processes.

In Figures 101 (a) and 102 (a), the effects of non-Gaussian and long
tail distribution characteristics of the kinetic energy density responses are cle-
arly observed, since the arithmetic and geometric values are substantially dis-
tinct. Additionally, it is expected that the effects of long tail distribution cha-
racteristics become increasingly substantial for higher statistical moments of
the kinetic energy density responses.

On the other hand, for the frequency region where the natural fre-
quency statistics conforms well to the GOE model, Figures 102 (c) and (d),
the probabilistic distribution of the kinetic energy density responses are typi-
cally Gaussian and thus the arithmetic and geometric mean values, as well as
the probabilistic mode value, are approximately coincident.

For the high frequency range, Figures 102 (e) and (f), the performance
of the randomization is reduced and a small dispersion of the energy density
results is observed. The probabilistic distribution of the energy density results
is clearly peaked and the two mean values and the probabilistic mode value
are almost identical.

Although it is not presented here in detail, for the case of constant mo-
dal superposition DLF, the degree of modal superposition is high enough to
guarantee that the long tail distribution effects are minimized and thus identi-
cal amplitudes are obtained in the arithmetic and geometric averaging proces-
ses. Indeed, as shown in Figures 100 (b) and 101 (b), the mean and relative
variance values are identical for the two averaging processes in the frequency
range investigated.

Kinetic Energy Density Statistics: Point-Loaded Random Rod
Responses

Considering the kinetic energy density responses of the Gaussian
spatially-correlated random rods subjected to a unitary single point-loading
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at excitation points X0, X2 and X3, the arithmetic mean values and cor-
responding relative variances were evaluated for both damping loss factor
approaches. In Figure 103, the statistical parameters of the kinetic energy
density results are presented for each excitation point. In these results,
frequency-constant and constant modal superposition DLF approaches are
considered. The analytical SEA predictions based on the Poisson and GOE
models are also plotted.

(a)
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(b)

(c)
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(d)

(e)
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(f)

Figure 103: Kinetic energy density results for single point-excited Gaussian
spatially-correlated rods (ensemble averaging approach). Plot (a): arithme-
tic mean results - excitation point X0 and frequency-constant DLF. Plot (b):
arithmetic mean results - excitation point X0 and constant modal superposi-
tion DLF. Plot (c): arithmetic mean results - excitation points X2 and X3 and
frequency-constant DLF. Plot (d): arithmetic mean results - excitation points
X2 and X3 and constant modal superposition DLF. Plot (e): relative variance
results - excitation points X0, X2 and X3 and frequency- constant DLF. Plot
(f): relative variance results - excitation points X0, X2 and X3 and constant
modal superposition DLF.

As shown in Figures 103 (a) - (d), an excellent agreement is obser-
ved between all numerical mean results and the analytical SEA predictions,
regardless of the DLF approach adopted. Indeed, these results showed that
the mean values for the kinetic energy responses are not very sensitive to the
statistical characteristics of modal parameters.

Considering the relative variance results, Figures 103 (e) and (f), a
poor agreement between the numerical results and the analytical GOE and
Poisson predictions is observed. Indeed, the numerical results of the relative
variance for point-loading conform approximately to the GOE predictions
only in limited frequency ranges and the limits of these ranges vary for each
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of the excitation points. Additionally, the relative variance results also suggest
that the spatial location of the excitation point seems to affect the degree of
the establishment of GOE statistics in the energy results.

At most frequencies, the numerical results are higher than the GOE
predictions, mainly in the mid and high-frequency ranges. For the excitation
point X0, some peaks of the relative variance are higher than unity. On the
other hand, the variance results for the excitation points X2 and X3 are slightly
higher than the GOE prediction and present similar behaviors in the mid and
high-frequency ranges. Additionally, a modified GOE prediction with K >
3 was also evaluated for several values of K and the best fitted results for
excitation points X2 and X3 were obtained with approximately K = 4.5, which
corresponds to a mode shape statistics with weak localization characteristics.

In the following, the mean and relative variance of the kinetic energy
density results associated with excitation points X0, X2 and X3 are discus-
sed and assessed in terms of modal parameter statistics. The contributions
of mode shape statistics are identified and discussed. In order to undertake
this task, the ensemble and spectral mode shape statistics results from each
excitation point are presented in detail. Additionally, the performance of ave-
raging processes in the evaluation of the typically expected values across the
ensemble is investigated in terms of the mean and relative variance values of
the kinetic energy density responses.

Statistical Analysis of Excitation Point X2

Considering initially the energy results for the excitation point X2,
some individual member values, the analytical SEA prediction along with the
arithmetic and geometric mean values of the kinetic energy density results are
plotted in Figure 104.

As shown in Figure 104, distinct mean values are obtained from the
arithmetic and geometric averaging processes. This fact clearly suggests that
long tail, or asymmetric, distribution characteristics are presented in the ki-
netic energy density distribution across the ensemble. Hence, the typically
expected values across the ensemble may not be accurately evaluated in the
averaging processes. In Figure 105, the relative variance of the kinetic energy
density results is presented for mean values evaluated from the arithmetic
and geometric averaging processes. The analytical SEA variance predictions
based on the Poisson and GOE models are also plotted.
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(a)

(b)

Figure 104: Kinetic energy density results for excitation point X2 (ensemble
averaging approach). Plot (a): frequency-constant DLF. Plot (b): constant
modal superposition DLF.
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(a)

(b)

Figure 105: Relative variance of the kinetic energy density results for exci-
tation point X2 (ensemble averaging approach). Plot (a): frequency-constant
DLF. Plot (b): constant modal superposition DLF.
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As observed in Figure 105, two distinct frequency regions show a good
agreement with the analytical predictions based on the GOE model. The first
frequency range is approximately 6.5 kHz to 9.6 kHz (corresponding to mo-
des 13-19) and the second range is 11.7 kHz to 18 kHz (corresponding to
modes 23-35). It is important to note that these frequency ranges are clearly
distinct to certain frequency range in which the natural frequency statistics
is approximately described by the GOE model. As discussed previously, the
establishment of GOE statistics for natural frequencies is expected to occur in
the frequency range of 18 kHz to 35 kHz which corresponds, approximately,
to the mode order range of mode 35 to mode 70. Indeed, these relative va-
riance results seem to show that the mode shape contributions are more pre-
dominant in the kinetic energy density response than the natural frequency
contributions for the single point-loaded rod ensemble investigated.

Considering the ensemble mode shape statistics results, Figure 106,
the mode shapes associated with the first frequency range with GOE agre-
ement have ensemble kurtosis values close to K ∼ 3 and the corresponding
skewness values are slightly positive, showing that the mode shape compo-
nent distribution at excitation point X2 is practically symmetric across the
ensemble.
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Figure 106: Ensemble statistics of the mode shape components at excitation
point X2 (ensemble averaging approach). Plot:(a) Kurtosis values, Plot (b):
Skewness values. Plot (c): Lilliefors Test results.
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In the second frequency range of the GOE agreement, from mode 23
to mode 35, the corresponding mode shapes are slightly localized, that is,
K ∼ 3.5, although, the mode shape component distribution at excitation point
X2 are practically Gaussian in the ensemble averaging approach. In Figure
107, an example of a PDF of the mode shape components across the ensem-
ble at excitation point X2 for 30th mode shape is shown in detail. It can be
noted that the mode shape component distribution is approximately Gaussian
since the Lilliefors test approves the normal distribution hypothesis, although
the corresponding ensemble kurtosis value is slight higher than the Gaussian
value.

Figure 107: PDF of mode shape components at excitation point X2 across the
Gaussian spatially-correlated rod ensemble - 30th mode: numerical results
and best-fit Gaussian PDF curve (ensemble averaging approach).

Considering again the relative variance results at excitation point X2,
Figure 105, the large peaks can be easily associated with higher ensemble
kurtosis results. For example, the narrow peak at approximately 10.6 kHz is
associated with the successive localization characteristics of modes 20 to 22
where the ensemble kurtosis values are weakly localized, that is, K20−22 ∼ 4,
Figure 106 (a). The other peaks centered at approximately frequencies 31 and
35 kHz are strictly associated with the localization characteristics of modes
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60 to 62 (K60−62 ∼ 5, moderately localized) and of mode 67 (K67 ∼ 10, stron-
gly localized), respectively. Considering the corresponding skewness results,
the high positive or right skewness values are associated with these localized
mode shapes and apparently suggest that the symmetry of the mode shape
component distribution at the excitation point is also an important characte-
ristic associated with the degree of agreement between the relative variance
results and GOE predictions.

As shown in Figure 106, the ensemble kurtosis results suggest the es-
tablishment of some discrete localized mode shapes in high mode order range
which are inserted among almost sinusoidal or GOE mode shapes. Additio-
nally, the ensemble Lilliefors Test results showed clearly that the normal dis-
tribution hypothesis is rejected for these high-frequency modes. Indeed, the
alternate sequence of localized and almost-nominal (deterministic), or GOE,
mode shapes provides a smooth curve of relative variance with values higher
than those of the GOE predictions in this frequency range.

Considering the spectral mode shape statistics in order to investigate
the inter-modal correlation between the mode shapes of an ensemble rod
member at excitation point X2, the spectral kurtosis results at excitation point
X2 across the ensemble are shown in Figure 108. Additionally, a histogram
of the spectral kurtosis results with their statistical parameters is shown.
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(b)

Figure 108: Spectral mode shape statistics parameters at excitation point X2
(spectral averaging approach). Plot (a): individual ensemble member results,
arithmetic and geometric mean values and sinusoidal and GOE analytical pre-
dictions. Plot (b): Histogram of spectral kurtosis results and their statistical
parameters.

As shown in Figure 108 (a), most of the members have approximately
Gaussian spectral kurtosis values, that is, K ∼ 3. Additionally, the histogram
of the spectral kurtosis results has a well defined peak in the region close to
K = 3, although a small number of discrete high kurtosis values are obser-
ved, Figure 108 (b). These high kurtosis values present moderate localization
characteristics and are associated with the first members of the ensemble, as
observed in Figure 108 (a). The arithmetic and geometric mean and typi-
cally expected (probabilistic mode) values across the ensemble are respec-
tively 2.87, 2.76 and 2.65. Indeed, the spectral kurtosis and Lilliefors Test
results, Figure 108 (a) and Figure 95, suggest that for most of the ensemble
members, circa 80%, the mode shapes can be considered to be practically
Gaussian distributed at excitation point X2. That is, it is expected that most
of the ensemble members have approximately a Gaussian distribution for the
mode shape components at excitation point X2.
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Statistical Analysis of Excitation Point X0

Considering the kinetic energy results for the excitation point X0, loca-
lized at the left rod end, some individual member values, the analytical SEA
prediction along with the arithmetic and geometric mean values of energy
density results are plotted in Figure 109.

(a)
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(b)

Figure 109: Kinetic energy density results for excitation point X0 (ensemble
averaging approach). Plot (a): frequency-constant DLF. Plot (b): constant
superposition DLF.

As shown in Figure 109, the arithmetic-averaged energy numerical re-
sults conform well to the SEA predictions, although some small deviations
are observed in the mid and high-frequency ranges. Additionally, distinct
arithmetic and geometric mean values suggest the establishment of localiza-
tion characteristics in the mode shapes, mainly in the mid-frequency range.
Indeed, the establishment of a long tail distribution for the kinetic energy
density results across the ensemble in mid-frequency range suggests strongly
that typically expected values across the ensemble may be not be accurately
evaluated in the arithmetic nor geometric averaging processes. In the high-
frequency range, the correlation length effects of the randomization process
on the mode shapes are gradually minimized as the excitation frequency in-
creases and thus the two mean values tend to conform asymptotically well
with the SEA predicted values.

In Figure 110, the relative variances of the kinetic energy density re-
sults are presented for the mean values obtained in the arithmetic and geome-
tric averaging processes.
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(a)

(b)

Figure 110: Relative variance of kinetic energy density results for excitation
point X0 (ensemble averaging approach). Plot (a): frequency-constant DLF.
Plot (b): constant superposition DLF.
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As observed in Figure 110, a very restricted and limited frequency
region shows an approximate agreement between the numerical variance re-
sults based on the arithmetic mean value and the analytical predictions based
on the GOE model. This frequency range is approximately from 5.5 kHz to
7.0 kHz (corresponding to modes 11-14). Additionally, it is also observed
that the numerical variance results based on the geometric mean value are
high and clearly overestimate the SEA variance prediction based on the GOE
model for the frequency region investigated. These kinetic energy density
results suggest that the ensemble variation in relation to typically expected
(or mode probabilistic value) is expected to be substantially larger than the
energy variance proposed by the SEA prediction based on the GOE model.

Considering the ensemble mode shape statistics results at excitation
point X0, Figure 111, the mode shapes associated with the frequency range
with GOE agreement have ensemble kurtosis values close to K ∼ 3 and the
corresponding skewness values are slightly positive and present a smooth
behavior.
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Figure 111: Ensemble statistics of the mode shape components at excitation
point X0 (ensemble averaging approach). Plot (a): kurtosis values. Plot (b):
Skewness values. Plot (c): Lilliefors Test results.
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As shown in Figure 111, most of the ensemble kurtosis values are
around K ∼ 5 and the corresponding skewness values are positive, suggesting
that the mode shapes have moderate localization characteristics and are subs-
tantially asymmetric across the ensemble at excitation point X0. The mode
shape statistics results also show some discrete strongly localized mode sha-
pes. In addition, it can be observed that most of ensemble kurtosis values
lie in the following interval 1.5 . K . 8.5 and the typically expected va-
lue for the ensemble kurtosis is well defined and is approximately located at
K ∼ 5. Additionally, some discrete high kurtosis values associated with stron-
gly localized mode shapes with K ∼ 20 are also observed. Indeed, the results
for the statistical mode shape parameters across the ensemble suggest that
the ensemble mode shape statistics at excitation point X0 presents moderate
localization characteristics for most of the mode order values, although the
presence of some discrete strongly localized mode shapes is also expected.

Considering the results in Figure 110 for the relative variance at ex-
citation point X0, the large peaks in the relative variance may be associated
with the high ensemble kurtosis results. For example, the narrow peak cen-
tered approximately at a frequency of 25 kHz is strictly associated with the
localization characteristics of mode 49 (K49 ∼ 20, strongly localized). The
peak at approximately 36 kHz is correlated to successive localization charac-
teristics of modes 68 to 70 where the ensemble kurtosis values are modera-
tely localized, that is, K68−70 ∼ 8, Figure 111. The adjacent peak centered
at approximately frequency 37 kHz is strictly associated with the localization
characteristics of mode 72 (K72 ∼ 20, strongly localized).

For the high-frequency region, beyond mode 72 (approximately 38
kHz), the mode shapes present a statistical transition from moderate localiza-
tion to almost-sinusoidal statistics as the frequency increases. Although, the
ensemble kurtosis results suggest the establishment of some discrete GOE
mode shapes, the Lilliefors Test results showed clearly that the normal distri-
bution hypothesis is rejected for these modes in the high-frequency range. In-
deed, this asymptotic behavior of the mode shapes toward sinusoidal statistics
provides a smooth reduction in the relative variance values as the excitation
frequency increases.

In Figure 112, the spectral kurtosis results for the excitation point X0
across the ensemble are shown. Additionally, a histogram of the spectral
kurtosis results and their statistical parameters can be observed.
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Figure 112: Spectral mode shape statistics parameters at excitation point X0
(spectral averaging approach). Plot (a): individual member spectral kurto-
sis results, arithmetic and geometric mean values and sinusoidal and GOE
analytical predictions. Plot (b): Histogram of spectral kurtosis results and
their statistical parameters. The typically expected, arithmetic and geometric
mean values are respectively 2.82, 3.97 and 3.63.

As shown in Figure 112 (a), most of the first members of the ensemble
have high spectral kurtosis values, which suggests the establishment of weak
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and moderate localization characteristics of the mode shapes. Conversely,
for the last members, the spectral kurtosis values show asymptotic reesta-
blishment of the nominal characteristics due to the low performance of the
randomization process.

In Figure 112 (b), the histogram of the spectral kurtosis values also
suggests a substantial number of discrete high kurtosis values, which leads to
the establishment of a long tail distribution, although the typically expected
(probabilistic mode) value of the spectral kurtosis is close to K ∼ 3. Indeed,
the spectral kurtosis and Lilliefors Test results, Figure 112 and Figure 95,
suggest that for most of the ensemble members, the mode shapes do not have
a Gaussian distribution for their components associated with excitation point
X0, and thus the hypothesis of statistical independence can not likely be en-
sured at excitation point X0.

Statistical Analysis of Excitation Point X3

In Figure 113, the kinetic energy density results for the excitation point
X3 (arbitrary choice) are plotted: some individual member values, analytical
SEA prediction along with arithmetic and geometric mean values.

(a)
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(b)

Figure 113: Kinetic energy density results for excitation point X3 (ensemble
averaging approach). Plot (a): frequency-constant DLF. Plot (b): constant
superposition DLF.

As shown in Figure 113, the ensemble mean value for the energy
numerical results obtained from the geometric averaging process is slightly
lower than that obtained from the arithmetic process and both mean values
present an oscillatory behavior throughout the excitation frequency range
considered. Indeed, distinct arithmetic and geometric mean values suggest
a possible establishment of the long tail distribution for the kinetic energy
density results across the ensemble in the mid and high-frequency range. As
observed only the numerical mean values obtained from the arithmetic pro-
cess conform satisfactorily with the SEA predictions, regardless of the DLF
approach adopted. In Figure 114, the relative variances of the kinetic energy
density results are presented for mean values evaluated from the arithmetic
and geometric averaging processes.
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(a)

(b)

Figure 114: Relative variances of kinetic energy density results for excitation
point X3 (ensemble averaging approach). Plot (a): frequency-constant DLF.
Plot (b): constant superposition DLF.
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As observed in Figure 114, three narrow frequency regions show an
approximate agreement between the analytical predictions based on the GOE
model and the numerical variance results based on the arithmetic mean value.
The limits of these three frequency ranges are approximately from 6 kHz to
7 kHz (corresponding to modes 12-14) for the first range, from 11 kHz to
12 kHz (corresponding to modes 22-24) for the second range, and from 15
kHz to 16 kHz (corresponding to modes 29-31) for the last frequency range.
Additionally, the numerical variance results based on the geometric mean
value are high and clearly overestimate the SEA variance prediction based on
the GOE model throughout the frequency region investigated.

Considering the ensemble mode shape statistics results obtained for
excitation point X3, Figure 115, the regions of the mode shapes with Gaussian
characteristics are clearly inserted between discrete moderately or strongly
localized mode shapes, explaining the oscillatory characteristics of the kinetic
energy density results.
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Figure 115: Ensemble statistics of the mode shape components at excitation
point X3 (ensemble averaging approach). Plot (a): kurtosis values. Plot (b):
Skewness values. Plot (c): Lilliefors Test results.
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As shown in Figure 115, most of the ensemble kurtosis values are
around K ∼ 3.75 and the corresponding skewness values are slightly posi-
tive, suggesting that the mode shapes have weak localization characteristics,
and are almost symmetric across the ensemble at excitation point X3. Howe-
ver, several isolated moderate and strong localization mode shapes are uni-
formly distributed along the mode order domain, inhibiting the establishment
of Gaussian statistics. Indeed, the results for the statistical mode shape para-
meters across the ensemble suggest that the ensemble mode shape statistics
at excitation point X3 presents, in most cases, slight weak localization charac-
teristics for most of the mode order values, interrupted by the presence of the
isolated moderately or strongly localized mode shapes.

Considering again the relative variance results at excitation point X3,
Figure 114, several peaks are clearly observed in the frequency range investi-
gated and they are directly associated with the presence of the localized mode
shapes which have high ensemble kurtosis values. For example, the esta-
blishment of the peaks at around 10 kHz is probably associated with the lo-
calization characteristics of modes 18 to 21, where a local maximum point of
K19 ∼ 5 occurs on the ensemble kurtosis curve. In addition, the peak centered
at approximately frequency 13.5 kHz is directly associated with successive
localization characteristics of modes 25 to 27 where the ensemble kurtosis
values are moderately localized, that is, K25−27 ∼ 8. Similarly, the narrow
peaks centered at approximately frequencies 29.5 and 41.6 kHz are directly
associated with the localization characteristics of mode 57 (K57∼ 15, strongly
localized) and mode 79 (K79 ∼ 18, strongly localized), respectively.

In Figure 116, the spectral kurtosis results at excitation point X3 across
the ensemble are shown. Additionally, a histogram of the spectral kurtosis
results and their statistical parameters can be observed.
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Figure 116: Spectral mode shape statistics parameters at excitation point X3
(spectral averaging approach). Plot (a): individual member spectral kurto-
sis results, arithmetic and geometric mean values and sinusoidal and GOE
analytical predictions. Plot (b): Histogram of spectral kurtosis results and
their statistical parameters. The probabilistic mode, arithmetic and geometric
mean values are, respectively, 2.83, 3.53 and 3.38.

As shown in Figure 116 (a), most of the first members of ensemble
have high spectral kurtosis values which suggests the establishment of weak
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localization characteristics of the mode shapes. Conversely, for the last mem-
bers the spectral kurtosis values show an asymptotic reestablishment of the
nominal characteristics due to the low performance of randomization pro-
cess. In Figure 116 (b), the histogram of spectral kurtosis values also suggests
a substantial number of discrete large kurtosis values which leads to the inci-
pient establishment of a long tail distribution, although the typically expected
(or probabilistic mode) value of spectral kurtosis is close to K ∼ 3. Indeed,
the spectral kurtosis and Lilliefors Test results, Figure 116 and Figure 95,
suggest that for more than half of the ensemble members, the mode shapes
have a distribution close to Gaussian for the components associated with the
excitation point X3, and thus the hypothesis of statistical independence can
not likely be completely ensured at excitation point X3.

3.5.3 Discussion and Remarks

In this second stage of the statistical investigation of random longitu-
dinal rods, a complete analysis of the modal parameter statistics of the two
ensembles of random rods with distinct randomness was carried out consi-
dering the ensemble averaging approach for the natural frequencies and the
spatial, spectral and ensemble averaging approaches for the corresponding
mode shapes.

The first ensemble investigated was composed of mass-loaded rods.
The results for the natural frequency statistical observables showed that
the ensemble natural frequency statistics vary substantially along the fre-
quency domain from almost-nominal statistics in the low-frequency range to
asymptotic-Poisson statistics in the high-frequency range. An intermediate
statistics with characteristics similar to those of GOE model is observed in
the vicinity of mode 42, which corresponds approximately to a frequency of
20 kHz. On the other hand, the statistical overlap factor results clearly failed
to verify the establishment of the GOE statistics, since this factor indicated
incorrectly the application of the GOE model beyond mode 35.

In general, the results for the mode shape statistical observables
showed in an easily perceptible manner the establishment of the structural
localization phenomenon, regardless of the mode shape averaging approach
adopted. The spatial mode shape statistics results suggested the occurrence of
a small number of the mode shapes with Gaussian distribution characteristics
in a narrow frequency range centered at approximately a frequency of 20 kHz
(vicinity of mode 42) for no more than 15% of the members of the ensemble.

The spectral mode shape statistics results showed that most of the
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mode shape components are not Gaussian distributed in the mode order do-
main and thus relevant inter-modal correlations may be certainly expected
for a fixed mode shape component associated with a given excitation point.
Indeed, the spectral Lilliefors Test results suggested that for the mode shape
components located in the vicinity of the central rod, no more than 30% of
the members have a Gaussian distribution.

Additionally, the ensemble mode shape statistics results confirmed the
previous conclusions obtained from the spectral and spatial mode shape sta-
tistics analysis, where the most favorable condition for the establishment of
Gaussian mode shape statistics across the ensemble occurs in the vicinity of
mode 40 when a single excitation point is located in the central region of the
mass-loaded longitudinal rods.

Similarly to the spatial mode shape analysis, the PT-distribution results
were calculated using the ensemble averaging approach. The typical locali-
zed PT-distribution results were fitted to non-linear sigma model expressions
for weak and strong localization regimes. Although a poor agreement was
observed for weakly localized mode shapes, the fitted expressions conform
very well with the strongly localized mode shape results. To the best of the
author’s knowledge, this is the first application of the PT-distribution metric
to a fixed mode shape component of a given mode order across the ensemble,
as well as the use of the non-linear sigma model to describe the non-universal
characteristics of the mode shape statistics in terms of the ensemble averaging
approach.

The results for the normalized mode shape SEA parameters Pa and
Qa did not allow a clear identification of the establishment of Gaussian cha-
racteristics for mode shapes along the mode order domain and showed an
inadequate performance in the verification of the GOE model applicability to
the mass-loaded random rods investigated here. However, these parameter
results may be used as an auxiliary metric with other eigenvector statistical
observables to evaluate the randomness (or disorder) level of the mode shapes
across the ensemble. On the other hand, an excellent performance of parame-
ter Z results was obtained for the indication of the level of superposition of
the independent mode sets which exist in various rod sections between the
point mass locations. Additionally, this mode shape SEA parameter was able
to capture indirectly the some effects on the mode shape statistics due to es-
tablishment of structural localization phenomena in the random rods as the
frequency increases.

In this study, the establishment of the localization phenomenon was
systematically investigated through the localization factor values. The geo-
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metric averaging process was found to be more accurate than the traditional
arithmetic averaging process in representing the typically expected or proba-
bilistic mode value across the ensemble, mainly when the energy response
distribution has long tail characteristics. As shown in Figures 82 and 83,
the localization factor values based on the geometric mean values seem to be
more appropriate to represent the frequency dependence characteristics of the
spatial energy confinement due to the establishment of the structural locali-
zation phenomenon. Indeed, the shape of the curve for the geometric locali-
zation factor showed clearly a gradual transition as the excitation frequency
increases from the weak to strong localization regimes, which was previously
indicated by the results for the spatial mode shape statistical observables.

The ensemble mean values of the spatially-averaged kinetic energy
density results conform very well with the SEA analytical prediction, regar-
dless of the averaging process adopted. The corresponding relative variance
results showed indirectly the gradual transition of the ensemble natural fre-
quency statistics from the nominal to asymptotic Poisson statistics. As expec-
ted, a good agreement between the numerical results based on the arithmetic
mean value and variance prediction based on the GOE model was observed
only within the limited and narrow frequency range in the vicinity of mode
42. On the other hand, the prediction based on Poisson statistics overesti-
mated the numerical results throughout the excitation frequency range inves-
tigated, giving a conservative analytical prediction at least for the excitation
frequency range under the strong localization regime.

The point-loading kinetic energy density responses were evaluated for
three distinct excitation points (X0, X2 and X3) which allowed the systematic
investigation of the contributions of the distinct characteristics of the spatial,
spectral and ensemble mode shape statistics on the kinetic energy density
statistics. The mean values obtained from the arithmetic averaging process
showed an excellent agreement with the standard SEA prediction in the mid
and high-frequency ranges, regardless of the excitation point location. On
the other hand, the mean values based on the geometric averaging process
were clearly lower than the arithmetic values, suggesting the establishment
of the structural localization phenomenon across the ensemble. Indeed, dis-
tinct mean values may indicate, in principle, that the typically expected or
probabilistic mode value may not be well represented by the traditional arith-
metic mean value across the ensemble due to the long tail characteristics of
the kinetic energy distribution in the mid and high-frequency ranges.

Considering the corresponding point-loading relative variances across
the ensemble, the results based on arithmetic mean value conform with the
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GOE prediction in the distinct frequency regions for each excitation point.
Indeed, the frequency range for which there was a good agreement with the
GOE prediction is distinct for each excitation point and is easily associated
with the ensemble mode shape statistics with almost-Gaussian characteristics.
Additionally the notable peaks on the relative variance curve can be directly
associated with the ensemble mode shape statistics with moderate and strong
localization characteristics.

Unexpected evidence emerged regarding the contributions of the spec-
tral mode shape effects (i.e., inter-modal correlation) on the energy response
statistics when the results for the excitation points X2 and X3 are compared
each other. Their point-loading variance results conform well to the analy-
tical prediction based on the GOE model in the excitation frequency ranges
with Gaussian mode shape statistics. However, the excitation points X2 and
X3 have very distinct spectral correlation characteristics for the mode shape
statistics, suggesting likely that the presence of the inter-modal correlations
between the mode shapes at the excitation point may not be the main phe-
nomenon which reduces the performance of the relative variance predictions
based on the GOE model, as observed in the SEA variance literature results.

Another notable finding is associated with the excitation point X3 re-
sults, where the establishment of GOE statistics occurs in separate frequency
regions for each modal parameter. Additionally, a good agreement between
the GOE prediction and numerical relative variance results for excitation
point X3 was observed in the frequency range for which the excitation point
X3 ensemble mode shape statistics are almost-Gaussian, suggesting that the
mode shape contributions to the kinetic energy density response are larger
than those of the corresponding natural frequencies for the case of the mass-
loaded rods excited by a single point force.

The second ensemble investigated here is composed of Gaussian
spatially-correlated random rods. The ensemble natural frequency statistics
results showed that for modes that lie in the mode order range from mode
40 to 65, corresponding to approximately 20.7 kHz to 34.0 kHz, the GOE
statistics is satisfactorily established for short and long spectral distances
and an excellent agreement with the RMT predictions is also observed.
Outside this limited range, the effects of the spatial geometric correlations
are minimized and a transition statistics with intermediate characteristics
between high spectral rigidity and GOE statistics is established.

Analogously to the mass-loaded rod ensemble, the mode shape statis-
tics were strongly affected by the effects of the structural localization phe-
nomenon and thus the establishment of Gaussian modes occurs in a limited
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frequency range (mode order range). Considering the spectral mode shape re-
sults, the Lilliefors Test results clearly indicated that for approximately 80%
of the members the mode shape components located in the vicinity of the cen-
tral rod region are almost Gaussian distributed, suggesting that they may be
almost uncorrelated in the spectral domain, Figure 95. The ensemble mode
shape statistics suggested that the mode order region with the highest pro-
bability of the establishment of Gaussian distribution for these mode shape
components is approximately from mode 15 to 35 (corresponding approxi-
mately to the frequency range of 7.5 kHz to 18 kHz). To the best of the
author’s knowledge, this is the first explicit demonstration that the establish-
ment of GOE statistics can occur in separate frequency regions for each of
the modal parameters.

In order to assess accurately the effects of distinct levels of the esta-
blishment of the GOE model on the modal parameter statistics and their re-
lation with the performance of the relative variance predictions based on the
complete GOE model, the ensemble statistics of the kinetic energy responses
was also evaluated considering constant modal superposition DFLs.

The mean values for the spatially-averaged kinetic energy results con-
formed very well to the SEA prediction throughout the excitation frequency
range investigated, being weakly dependent on the contributions of the en-
semble natural frequency statistics. The corresponding relative variance re-
sults clearly showed an excellent agreement with the prediction based on the
GOE model in a limited frequency range in which the establishment of GOE
statistics is obtained for ensemble natural frequency statistics. It is important
to note that in this particular frequency range the corresponding mode shapes
are weakly localized and their contribution to kinetic energy statistics seems
to be negligible, suggesting the strong predominance of the ensemble natural
frequency statistics contribution to spatially-averaged kinetic energy results.

The point-loading kinetic energy results were strongly affected by the
structural localization effects. The differences between the mean values obtai-
ned from the arithmetic and geometric averaging processes illustrated clearly
these effects, suggesting that the traditional arithmetic mean value may not es-
timate efficiently the typically expected value for the energy response across
the ensemble. The corresponding point-loading relative variance results only
conform well with the analytical GOE prediction in a limited frequency range
in which the ensemble mode shape statistics are almost-Gaussian. Indeed, the
current point-loading relative variance results showed that a satisfactory per-
formance of the GOE prediction can be obtained at least for an incomplete
establishment of the GOE model for the modal parameters, where the natural
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frequency statistics does not conform completely with the statistical charac-
teristics of the GOE model.

Additionally, it is interesting to note that the variance results associa-
ted with excitation points X2 and X3 are very similar, although their spectral
correlation levels at the corresponding excitation points seems to be comple-
tely distinct, suggesting that the inter-modal correlations between the mode
shapes at the excitation point may not be the main reason for the reduction in
the performance of the relative variance predictions based on the GOE model.

For mid and high-frequency ranges, the point-loading relative variance
results have peaks resulting from the establishment of the structural localiza-
tion phenomenon in the mode shapes across the ensemble. Indeed, these
results showed that the analytical prediction based on complete GOE statis-
tics underestimates the numerical results, showing effectively that the K = 3
is not always a totally conservative option as originally expected.

For the current variance results from the excitation points X2 and X3,
a good agreement with numerical results was obtained in mid and high-
frequency ranges when the mode shape statistics factor of the GOE prediction
was changed to K = 4.5. This surprising agreement seems to show that the
good performance of the GOE prediction with the modified mode shape sta-
tistics factor is expected at least for modal parameter statistics with incipient
or weak localization characteristics.

3.6 Summary and Discussion

In this chapter the modal parameter statistics of random longitudinal
rods was systematically investigated through the results for the statistical ob-
servables. The main physical phenomena expected in real engineering struc-
tures, such as level repulsion and spectral rigidity, were accurately identi-
fied and measured. In this regard, the statistical characteristics of the mo-
dal parameters were assessed using several statistical averaging approaches
(spectral, spatial and ensemble) and the results were compared to those of
well-established statistical models (Poisson and GOE models for natural fre-
quencies and sinusoidal and Gaussian for mode shapes).

The complete description of the natural frequency and mode shape sta-
tistics provided a detailed analysis of the agreement with the GOE model as
well as a possible projection of the expected performance of the SEA variance
prediction based on the complete GOE model along the excitation frequency
range for the random rod ensembles investigated. Additionally, the results
for the statistical observables provided a systematic verification of the perfor-
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mance of the SEA parameters presented in the literature used to verify the
application of the GOE model. The inefficacy of these SEA parameters under
certain situations was highlighted. It was observed that the statistical over-
lap factor results, which are exclusively based on natural frequency statistics,
failed when the mode shape mixing phenomenon is established. In a similar
manner, the results for the normalized parameters Pa and Qa were also unable
to identify the frequency range in which the mode shapes are approximately
Gaussian, and these parameters are also not sufficiently representative to ex-
press the establishment of the structural localization phenomenon in the mode
shapes. However, the parameter Z results were able to capture the existence of
a superimposed spectra which is composed by superposition of independent
mode sets from the non-interacting rod substructures. As discussed, these
non-interacting are defined by the various rod sections delimited by structu-
ral irregularities which can be interpreted as mechanical discontinuities for
longitudinal wave propagation in the high frequency range.

Regarding the convergence characteristics of the modal parameter sta-
tistics for the universal establishment of GOE model statistics, it is important
to note that the current results for the natural frequency and mode shape sta-
tistical observables do not suggest the existence of a well-established priority
order, or convergence sequence, between the modal parameters for the esta-
blishment of the universal statistics described by the GOE model. The Gaus-
sian spatially-correlated rod results showed that the establishment of GOE
statistics may occur in separate frequency regions for each of the modal pa-
rameters. In fact, it appears that the level of disorder associated with a fixed
level of randomness may be distinct for each of the modal parameters. The-
refore, the convergence speed and form characteristics of the statistical tran-
sition of each modal parameter to conform to universal statistics are probably
non-universal characteristics which are strongly dependent on the nature of
the randomness and system dimensionality. Further investigations on real en-
gineering systems with distinct dimensionalities are required.

Another important issue investigated in this study was the effect of
the establishment of the structural localization phenomenon on the modal pa-
rameter statistics. The results for the statistical observables of the localized
mode shapes clearly indicated the existence of a strong spatial correlation
between the mode shape components due to the energy confinement. In order
to describe the disorder effects on the mode shapes, the non-linear sigma mo-
del expressions from the supersymmetry theory were used and satisfactory
results were obtained for weak and strong localization regimes.

The statistical results obtained for the two ensembles of random rods
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investigated here showed that two nominally identical ensembles may have
very distinct modal parameter and energy response statistics across the en-
semble. Indeed, the current kinetic energy results suggest that the characte-
ristics of the modal parameter statistics have little influence on the mean value
of the spatially-averaged kinetic energy density results. Thus, a good agree-
ment with the standard SEA prediction is expected on applying the spectral
and ensemble averaging process approaches. In cases of single point-loaded
structures, the contributions of the mode shape statistics seem to be substan-
tial and some small discrepancies may be observed, not invalidating the good
performance of the SEA prediction.

The corresponding relative variance results were found to be very sen-
sitive to the statistical characteristics of the modal parameters, since small
changes in the modal parameter statistics may lead to large changes in the
variance responses, mainly in the mid and high-frequency ranges. Additi-
onally, the current relative variance results also suggested that for random
systems for which the establishment of universal statistics is incomplete or
clearly separated over the frequency domain for each of the modal parame-
ters, the performance of the SEA variance prediction based on the complete
GOE model is strongly dependent on the nature and spatial characteristics
of the excitation. For the random rods investigated herein, two completely
distinct situations were clearly identified: the single point-loaded structure
for which the energy statistics seems to be dominated by the mode shape
statistics contribution; and, on the other extreme, the structure subjected to
spatially-averaged excitation where the energy statistics is exclusively depen-
dent on the natural frequency statistics.

An important aspect investigated in this study is the possible effects
of the inter-modal correlations at the excitation point on the performance of
the SEA variance based on the GOE model. The results of several studies
have indicated that the main reason for the reduced performance of the point-
loading SEA variance prediction based on the complete GOE model is the
existence of inter-modal correlations between the mode shapes. The current
point-loading variance results from the random rod ensembles showed that a
good agreement with GOE prediction is equally obtained for two excitation
points with completely distinct spectral mode shape statistics over the excita-
tion frequency range in which the ensemble mode shape component statistics
are almost Gaussian. Indeed, these results seem to reject the initial hypothesis
that the inter-modal correlations at the force position leads to an incomplete
establishment of Gaussian characteristics for a fixed mode shape component
of a given modal order across the ensemble. However, further systematic in-
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vestigations are required to ascertain whether this unexpected conclusion can
also be extended to real engineering systems with different dimensionalities.

The nature of the random systems investigated here provides important
information regarding the main effects on the modal parameter and energy
response statistics due to the establishment of the structural localization phe-
nomenon under weak and strong regimes. It was observed that the mean value
obtained from the geometric averaging process has a better performance than
the value obtained from the traditional arithmetic averaging process in terms
of representing the typically expected or probabilistic mode value across an
ensemble with long-tail distribution characteristics. In terms of the energy re-
sults, the establishment of spatial energy confinement in some limited regions
of the system domain leads to a class of dynamic behaviors which is not sup-
ported by the basic assumptions of the SEA method. Therefore, large discre-
pancies are expected in relation to the SEA analytical predictions. The point-
loading variance results showed that the prediction based on the GOE model
is not conservative for one-dimensional systems with moderate and strong
structural localization characteristics. For systems with incipient structural
localization characteristics, a unexpectedly good performance of the analyti-
cal point-loading variance prediction based on the complete GOE model was
obtained when the mode shape statistics factor was changed to a value slightly
higher than the Gaussian value. On the other hand, the spatially-averaged va-
riance results for random rods suggested that only the prediction based on the
Poisson model is conservative, since the natural frequency statistics becomes
asymptotically Poissonian as the excitation frequency increases.
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4 NUMERICAL ANALYSIS OF RANDOM FLEXURAL PLATES

4.1 Overview

In this chapter a statistical analysis of the modal parameters of ran-
dom flexural plates is systematically performed. In the first part of this chap-
ter the effects of distinct levels of the system symmetry on the modal para-
meter statistics are numerically investigated considering flexural plates with
several geometries (square, rectangular, rectangular with arc at one corner,
circle, polygon, 1/4 Sinai stadium). These plates were generated using the
Finite Element Method (FEM) and their modal parameter statistics are as-
sessed using the statistical observables, considering the spectral and spatial
averaging approaches. Special attention is focused on the main physical phe-
nomena associated with the establishment of the stable periodic orbits, the
Shnirelman peaks and structural localization and their possible effects on the
modal parameters as well as their corresponding contributions to results for
the statistical observables.

The numerical results for the statistical observables are also compa-
red to analytical predictions based on Poisson and GOE model statistics and
thus the conditions required to obtain good agreement with these statistics
are discussed in detail. Additionally, the spectral mean and relative variance
values of the kinetic energy density results of the bare (nominal) and mass-
loaded rectangular plates were calculated and compared with SEA analytical
formulations based on the Poisson and GOE models.

In the second part of this chapter, the statistical characteristics of two
distinct ensembles of flexural random plates are investigated through the mo-
dal parameter statistical observables. Distinct approaches to randomize a no-
minal rectangular plate are considered for each plate ensemble. The statis-
tics of the point-loading and spatially-averaged kinetic energy density results
across the ensemble were assessed in terms of the narrow and broad frequency
band domains.

4.2 Descriptions of Flexural Plates

In this section the geometrical characteristics of the flexural plates in-
vestigated in this study are described in detail. Additionally, the assumptions
and limitations of FEM models corresponding to these plates are highlighted
and discussed.
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4.2.1 Geometrical Characteristics

In order to investigate the main effects of the distinct levels of system
symmetry on modal parameter statistics, flexural plates with several geome-
tries were considered: square, rectangular, rectangular with arc at one corner,
polygonal, circular, and 1/4 Sinai stadium. These plate geometries are sche-
matically illustrated in Figure 117.

Figure 117: Illustrations of the flexural plate geometries: square, rectangular,
rectangular with one arc at corner, polygonal, circular and 1/4 Sinai stadium,
respectively.

All flexural plates are composed of standard aluminum and have 2 mm
thickness. The main dimensions of the plates and the material proprieties of
standard aluminum are described in Tables 12 and 13, respectively.
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Table 12: Description of the geometrical dimensions of plate systems: square,
rectangular, rectangular with one arc at corner, polygonal, circular and 1/4
Sinai stadium.

Plate Geometry Plate Dimensions [m]
Square a = b = 1.200
Rectangular a = 0.745 and b = 1.200
Rectangular with
one arc at corner

a = 0.745, b = 1.200, and R = 0.300

Polygonal a = 0.860, b = 1.200, c = 0.680, and d = 0.940
Circular R = 0.500
1/4 Sinai stadium a = R = 0.787, b = 1.200, and r = 0.414

Table 13: Standard aluminum properties.

Material Property Parameters Value
Young’s Modulus (Eym) 71 G Pa

Poisson Ratio (υ) 0.33
Mass Density (ρ) 2800 kg/m3

It is important to note that this group of plate geometries leads to very
distinct modal parameter statistics. Indeed, the extreme conditions such as
those described by the Poisson (regular) and GOE (chaotic) models, as well
as the intermediate statistics between them, are expected to be adequately
reproduced. Additionally, the modal density of flexural plates is asymptoti-
cally frequency-constant in the high-frequency range, providing very attrac-
tive characteristics for the spectral natural frequency statistics in order to in-
vestigate the universal establishment of the GOE model, since the normalized
natural frequency statistics results can be directly compared with the analyti-
cal GOE model predictions.
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4.2.2 FEM Model Development

For the development of numerical models of random flexural plate
structures, the FEM commercial software ANSYS was used, (156, 157). In
order to obtain a good description of dynamical behavior from a flexural plate
subjected to either single-point or spatially-distributed normal loadings, the
finite element SHELL63 was adopted. This finite element has both bending
and membrane capabilities. The element has six degrees of freedom at each
node: translations in the nodal x, y, and z directions and rotations about the
nodal x, y, and z-axes.

The free-free boundary condition and only transversal displacements
were considered for all plates investigated herein. The finite element length
was defined as being 1/12 of the bending wavelength. The estimate of the
bending wavelength was based on the analytical formulation for the corres-
ponding infinite isotropic plate, Fahy et al. (7, 5). For the plate geometries
with curved elements (i.e. circular arcs) the mesh discretization was defined
in order to avoid the corruption of finite elements with inappropriate shape
as well as to capture in a satisfactory manner the spatial characteristics of
high-frequency mode shapes.

Besides the bare flexural plates described above, some additional ran-
dom plates with small point masses attached to their surfaces were also in-
vestigated. The small point masses were considered in order to reproduce
possible irregularities of the mass distribution along the spatial domain of the
plate system. The locations of the point masses were randomly distributed
on the spatial domain of the plate systems. For dynamical representation of
the point masses, the finite element MASS21 was adopted. This element is
a point element which has up to six degrees of freedom: translations in the
nodal x, y, and z directions and rotations about the nodal x, y, and z - axes.

Considering the recommendations for the FEM development descri-
bed above, it is believed that the performance of FEM models is sufficiently
reliable to provide accurate modal parameters for the flexural plates investi-
gated in this study.

4.3 Spectral Averaging Approach

In this section the modal parameter statistics of the flexural plates with
the geometries described previously in Section 4.2 are systematically inves-
tigated. The effects of the main physical phenomena which exert substantial
influence on each modal parameter are identified and described in terms of
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the results for the most representative statistical observables. For natural fre-
quencies, the spectral averaging approach is considered and the results for
the eigenvalue statistical observables are compared with the analytical predic-
tions based on the Poisson and GOE models1. For the corresponding mode
shapes, the spatial and spectral averaging approaches are investigated and the
results for the mode shape statistical observables are compared with analyti-
cal predictions based on Gaussian and sinusoidal eigenvectors.

4.3.1 Spectral Natural Frequency Statistics

In order to provide a didactic presentation of the main results of the
statistical analysis of flexural systems investigated herein, the plate systems
are roughly classified in relation to the expected characteristics for the natural
frequency statistics: integrable (or regular), mixed, chaotic and disordered
systems.

Initially, the main aspects considered during the unfolding process are
shown in detail. In subsequent subsections the main physical phenomena
which exert a substantial influence on the modal parameter statistics are iden-
tified and their possible effects on the energy response statistics are also dis-
cussed.

Unfolding Process

For the evaluation of the smooth or average part of the staircase func-
tion, the 2-term Weyl formula was adopted, Bogomolny and Hugues (124):

N(k f ) =
Rak2

f

4π
+βp

Ppk f

4π
, (4.1)

where k f is the flexural wavenumber, Ra is the surface area of the plate, Pp is
the perimeter of the plate, and βp is a geometrical constant which is dependent

1A similar investigation of natural frequency statistics considering the spectral averaging ap-
proach was previously carried out by Cordioli (20). In his work, the shape of a flexural plate was
gradually perturbed from the perfectly rectangular to polygonal geometries so that a statistical
transition was observed from the Poisson to GOE model for spectral natural frequency statistics.
In this section of the current work, the effects of the irregularities of system geometry are also
investigated in systematical manner for the modal parameter statistics. In particular, special at-
tention is focused on the statistics of corresponding mode shapes when they were evaluated on the
spatial and spectral averaging approaches. Additionally, a better understanding of the following
physical phenomena is expected under the mode shape statistics context: establishment of stable
periodic orbits, structural localization, occurrence of degenerated modes (Peak of Shnirelman),
etc.
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on the boundary condition and material properties (through the Poisson coef-
ficient υ): clamped boundary condition (βc =−1.762) for all υ values, sim-
ply supported boundary condition (βss = −1) for all υ values, and free-free
boundary condition which is directly dependent on the Poisson coefficient,
(β f f = 1.7 for aluminum), Schaadt (70).

The flexural wavenumber (k f ) is traditionally evaluated using the
analytical formulation associated with the corresponding infinite plate
system, Cremer et al. (38):

k f =

(
ρhω2

D

) 1
4

, (4.2)

where D is flexural rigidity.
Bertelsen et al. (66) proposed an expansion of the dispersion relation

for flexural plates in terms of the dimensionless frequency (Ω) which is the-
oretically expected to be more accurate for the high-frequency range. This
improved analytical formulation is given by:

k f =

{
2
√

3Ω

K1

[
1+a1Ω+a2Ω

2 +a3Ω
3]
}
, (4.3)

where h is the plate thickness, and the two material property constants and
dimensionless frequency are given, respectively, by:

K1 =

√
2

(1−υ)
, ct =

√
Eym

2ρ(1+υ)
andΩ =

2π f h
ct

. (4.4)

The first two expansion coefficients of the dispersion relation proposed
by Equation (4.3) are analytical functions which are dependent only on the
Poisson coefficient, and are given, respectively, by (70):

a1 =

√
6(17−7υ)

240
√

1−υ
, (4.5)

and:

a2 =
60υ2 +1726υ−1353

134400(1−υ)
. (4.6)

The third expansion coefficient was evaluated experimentally by Scha-
adt (70), being a3 = 8.6810−4 for aluminum plates. In Figure 118, the tradi-
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tional and improved formulations for the flexural wavenumber are compared
with each other, considering a plate of 2 mm thickness.

Figure 118: Flexural wavenumbers: traditional formulation based on the
corresponding infinite plate system - Equation (4.2), and improved high-
frequency formulation - Equation (4.3).

As shown in Figure 118, similar results are obtained up to the fre-
quency of 10 kHz and substantial differences are observed only at around
the 20 kHz. Based on these results, the traditional wavenumber formulation,
Equation (4.2), will be adopted hereafter for evaluation of the 2-term Weyl
formula.

In this study, the natural frequency spectra of all flexural plates, inde-
pendent of their geometry characteristics, were unfolded using two distinct
approaches: the 2-term Weyl formula and the best-fitted third-degree poly-
nomial function. Although not shown in detail here, the best results were
obtained for the smooth part of the staircase function based on the 2-term
Weyl formula, where the resultant fluctuations of the staircase function are
approximately Gaussian distributed and approved by the Lilliefors Normality
Test, Fujisaka and Tohyama (94).
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Integrable Systems: Square and Circular Plates

For flexural plates with several symmetries, such as a square plate,
the fluctuations of the staircase function present clearly an oscillatory pattern,
suggesting the presence of some residual contributions from bouncing ball
orbits, Delande et al. (95). Additionally, the relevant contributions from the
degenerate natural frequencies are also expected. In order to investigate these
effects on the natural frequency statistics, the results for the natural frequency
statistical observables were evaluated for the square plate considering two
distinct approaches.

In the first approach, the smooth part of the staircase function is eva-
luated using the Fourier unfolding process and the results for the natural fre-
quency statistical observables are compared with analytical predictions based
on the Poisson model. In the second approach, the smooth part of the stair-
case function is calculated through a 2-term Weyl formulation and the results
for the natural frequency statistical observables are compared with the resca-
led Poisson model predictions which are corrected by a degeneracy constant
proposed by Theory Shnirelman Peak, Chirikov and Shepelyansky (99).

For quasidegenerate systems, the PDF results for the adjacent natural
frequency spacings show a well-defined peak in the first bin indicating the
occurrence of natural frequency clustering due to the high number of dege-
neracies present in the spectrum, (99) (160). This phenomenon was physi-
cally explained by A. I. Shnirelman in 1993 and named the Shnirelman peak.
Frahm and Shepelyansky (100) showed that the other spacing bins are descri-
bed by a scaled Poisson distribution, given by:

P(s) = (1−αd)
2 exp−(1−αd)s, (4.7)

where the αd is the fraction of degenerate spacings compared to the total
number of spacings.

Based on the Periodical Orbit Theory (POT), Biswas et al. (98) in-
vestigated the main effects of the establishment of periodical orbits on the
statistical observable results associated with the long-range fluctuations. Ad-
ditionally, they proposed analytical predictions of the number variance and
∆3 - statistics for degenerate integrable systems:

Σ
2(L) = nav(L)Σ2

Poisson(L) = nav(L)L, (4.8)

and:
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∆3(L) = nav(L)
L
15

, (4.9)

where nav(L) is a natural frequency degeneracy constant which expresses the
mean degeneracy of the natural frequencies. This parameter can be written in
terms of αd as nav = 1+αd . For the square plate investigated in this study,
the fraction of degenerate spacings is 24.85%. Thus, the mean degeneracy
constant is given by:

nav = 1+αd = 1+0.2485⇒ nav = 1.2485. (4.10)

In Figure 119, the results for the natural frequency statistical observa-
bles are presented considering the two approaches discussed above: Fourier
unfolded natural frequencies and analytical predictions corrected by degene-
racy effects. For the Fourier unfolding process, a cut-off time of tc = 0.1194
seconds was adopted.

As shown in Figure 119 (a), an excessive peak clearly occurs for the
PDF bin associated with smaller spacings, demonstrating the establishment
of degenerate natural frequencies. For other PDF bins, the numerical results
agree satisfactorily with the scaled Poisson PDF prediction, showing a per-
formance similar to that recently reported in the POT literature (100, 98, 99,
160).

(a)
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(b)

Figure 119: Natural frequency statistical observable results for the square
plate (spectral averaging approach). Plot (a): PDF of adjacent natural fre-
quency spacings. Plot (b): ∆3 - statistics.

For the ∆3(L) - statistics results, an excellent agreement between the
numerical results and analytical predictions is observed for two approaches
investigated herein, Figure 119 (b). Considering the scaled Poisson appro-
ach, the analytical predictions corrected by the mean degeneracy factor were
shown to adequately represent the effects of the bouncing ball periodic or-
bits, which reduce the spectral rigidity characteristics of the natural frequency
spectrum. In Figure 120, the individual and mean values of the degeneracy
factors are presented and compared with the analytical value proposed in
Equation (4.10).

The mean value and analytical prediction are very close, but the for-
mer is slightly larger than the latter. Additionally, the individual values have
low dispersion characteristics around the mean and analytical prediction va-
lues. Indeed, the corrections provided by the degeneracy factor to the original
prediction were efficient for the statistical observables associated with the
long-range fluctuations.

Considering the numerical results based on the natural frequency spec-
trum obtained from the Fourier unfolding process, the value adopted for the
cut-off time allowed a correct and complete removal of the bouncing ball
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orbit contribution to the original staircase fluctuations. Hence, the resultant
numerical results conform very well with the standard Poisson analytical pre-
diction. In Figure 121, the effects of an inadequate choice of cut-off time
for the Fourier unfolding process are illustrated for the square plate. The re-
sultant fluctuations of the staircase function and corresponding ∆3 - statistics
results are presented for several cut-off times.

Figure 120: The natural frequency degeneracy factor (nav) for the square
plate: analytical prediction, individual and mean values.
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Figure 121: Analysis of the sensitivity of the ∆3 - statistics results to the
distinct magnitudes of the cut-off times used in the Fourier unfolding process
(spectral averaging approach). The legends of ∆3 - statistics results are that
the same as those of Figure 119 (b).

As shown in Figure 121 (a), for small cut-off time values, the fluc-
tuations have an oscillatory behavior with large amplitudes larger than the
unitary natural frequency spacing, showing clearly that the bouncing ball or-
bit contributions were partially removed from the staircase fluctuations. The
∆3 - statistics results present larger amplitudes than the analytical Poisson
prediction which is directly associated with the low spectral rigidity. On the
other hand, the large cut-off times can remove erroneously the universal cha-
racteristics of the resultant fluctuations, providing a saturation point of ∆3 -
statistics results for a given spectral length as observed in Figures 121 (c)-(f).
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In Figure 122, the results for the natural frequency statistical observa-
bles are presented for the circular plate. The spacing PDF results show the oc-
currence of several natural frequency degeneracies, suggesting the establish-
ment of the Shnirelman peak phenomenon, Figure 122 (a). Additionally, the
scaled Poisson PDF prediction was also calculated through Equation (4.7).
Based on the FEM results, a fraction of the degenerate spacings of 48.2 %
was considered for the circle plate. As expected, a good agreement between
the spacing PDF results and scaled Poisson prediction is observed beyond the
second PDF bin.

As shown in Figures 122 (b) and (c), the results for the long-range
fluctuation statistics are larger than the analytical predictions based on the
Poisson model, showing that the natural frequencies have low spectral rigidity
characteristics. In a manner similar to the square plate results, the ∆3 - sta-
tistics results for the circular plate were also investigated using two different
approaches, Figure 122 (c). The results obtained from the Fourier unfolded
natural frequency spectrum with a cut-off time of 0.48 seconds show excel-
lent agreement with the standard Poisson prediction. On the other hand, the
results from the standard unfolded spectrum show small deviations in relation
to the scaled Poisson prediction.

(a)
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(b)

(c)

Figure 122: Natural frequency statistical observable results for the circular
plate (spectral averaging approach). Plot (a): PDF of adjacent natural fre-
quency spacings. Plot (b): number variance. Plot (c): ∆3 - statistics.
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Mixed Systems: Rectangular and Rectangular with one Arc Plates

In Figure 123, the results for the natural frequency statistical observa-
bles are presented for the rectangular plate. The spacing PDF results show
a satisfactory agreement with the analytical prediction based on the Poisson
model. However, the first PDF bin presents a probability lower than the cor-
responding value predicted by the Poisson model, Figure 123 (a). Indeed,
this unexpected characteristic seems to suggest the incipient establishment of
the level repulsion phenomenon in the natural frequencies. In Figure 123 (b),
the natural frequency correlation coefficient results are presented and com-
pared with the numerical results obtained from the perfect large Poisson and
GOE matrices. The correlation coefficient results for the rectangular plate
have, surprisingly, a negative value for Λ ≈ 1, probably indicating the initial
establishment of veering characteristics for the short-range fluctuations2.

(a)

2According to Brown (1) the negative correlation coefficient result for Λ = 1 means also that
a relatively large spacing is likely to be followed by a relatively small spacing.
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(b)

(c)
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(d)

Figure 123: Natural frequency statistical observable results for rectangular
plate (spectral averaging approach). Plot (a): PDF of adjacent natural fre-
quency spacings. Plot (b): natural frequency correlation coefficient. Plot (c):
number variance. Plot (d): ∆3 - statistics.

For the long-range fluctuations, the number variance and ∆3-statistics
results are slightly lower than those predicted by the Poisson model, Figures
123 (c) and (d). In principle, the discrepancies observed can not be attributed
to the establishment of periodic orbits for two main reasons. Firstly, these re-
sults clearly indicate higher spectral rigidity characteristics than those predic-
ted by the Poisson model, which is the opposite characteristic to that expec-
ted, due to the effect of the establishment of the periodic orbits which reduces
the spectral rigidity characteristics of the natural frequencies, (165, 95, 72).
Another reason is associated with the fact that the geometrical ratio of the rec-
tangular plate dimensions investigated herein is approximately the gold ratio
(≈ 1.6180) which avoids spurious degeneracies, Bertelsen (90) and Schaadt
(69).

In Figure 124, the results for the natural frequency statistical observa-
bles are presented for a rectangular plate with an arc at one corner. The re-
sults associated with the short-range fluctuations show good agreement with
the GOE predictions in the small-spacing range. As shown in Figure 124 (a),
the level repulsion characteristics lead to low PDF values for small adjacent
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natural frequency spacings. Additionally, the correlation coefficient results
conform satisfactorily with numerical results from the large GOE matrices in
the small-spacing range, Figure 124 (b).

(a)

(b)
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(c)

(d)

Figure 124: Natural frequency statistical observable results for the rectangu-
lar plate with an arc at one corner (spectral averaging approach). Plot (a):
PDF of the adjacent natural frequency spacings. Plot (b): natural frequency
correlation coefficient. Plot (c): number variance. Plot (d): ∆3 - statistics.
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As observed in Figures 124 (c) and (d), the results for the long-
range fluctuation statistical observables show that the natural frequencies
have an intermediate statistics between the 2 GOE and GOE model predic-
tions. Although the statistics results associated with the small-spacing range
present a partial establishment of the universal characteristics, the discrepan-
cies observed in relation to the GOE model predictions in the large-spacing
range yield, indirectly, trace information on the system geometry, for exam-
ple, the level of symmetry.

The circular arc introduced at one corner of the perfect rectangular
plate acts as a defocusing element which partially reduces the effects asso-
ciated with the regular characteristics of system symmetries, leading to the
establishment of some deterministic disorder in the modal parameter statis-
tics, (72, 95, 113). Indeed, the natural frequency statistical observable results
show clearly an incomplete establishment of the GOE statistics, partially evi-
dencing the effects of the level repulsion and spectral rigidity phenomena.
Additionally, it also believed that the spectral natural frequency correlations
are associated with the existence of some stable periodic orbits, (72, 113).

Chaotic Systems: 1/4 Sinai Stadium and Polygon Plates

In Figure 125, the results for the natural frequency statistical observa-
bles are presented for 1/4 Sinai stadium plate. As expected, a good agreement
with the GOE model prediction is readily observed, since the Sinai geometry
is classically chaotic and shows the universal statistics described by the GOE
model. Indeed, the breaking of system symmetries leads to a high dispersion
of wave fronts over the spatial domain of the plate system.

The results for the short-range fluctuation statistical observables de-
monstrate a complete establishment of the level repulsion phenomenon, simi-
larly to those associated with the classically chaotic systems. In Figure 125
(a), the PDF of adjacent natural frequency spacings shows a low probability
for small and excessively large natural frequency spacings, conforming very
well with the Rayleigh PDF. In a similar manner, a good agreement with the
GOE statistics is also observed for natural frequency correlation coefficient
results, Figure 125 (b).
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(a)

(b)
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(c)

(d)

Figure 125: Natural frequency statistical observable results for the 1/4 Sinai
stadium plate (spectral averaging approach). Plot (a): PDF of the adjacent na-
tural frequency spacings. Plot (b): natural frequency correlation coefficient.
Plot (c): number variance. Plot (d): ∆3 - statistics.
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As shown in Figures 125 (c) and (d), the establishment of the spec-
tral rigidity characteristics is clearly observed for the long-range fluctuation
statistical observable results. Indeed, a low probability for the establishment
of small and large spacings is expected and most natural frequencies are uni-
formly distributed over the spectral domain, their spacing amplitudes being
close to the spectral average value.

In Figure 126, the results for the natural frequency statistical obser-
vables are shown for the polygonal plate3. The natural frequency statistics
show a surprising agreement with the GOE model predictions. Indeed, the
non-parallel sizes of the polygonal plate prohibit the establishment of boun-
cing ball periodic orbits. The sloped sizes also act as defocusing elements
and lead to a high and fast dispersion of waveguides over the spatial domain
of the plate system, establishing a deterministic chaos.

(a)

3In the current study, the aspect ratio of the sides of the polygonal plate was chosen in order to
guarantee the establishment of a high level of spectral disorder in the modal parameter statistics,
Cordioli (20) and Bertelsen (90).
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(b)

(c)
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(d)

Figure 126: Natural frequency statistical observable results for polygonal
plate (spectral averaging approach). Plot (a): PDF of the adjacent natural
frequency spacings. Plot (b): natural frequency correlation coefficient. Plot
(c): number variance. Plot (d): ∆3 - statistics.

As discussed in the current physics literature (141, 72, 90, 69, 70),
the geometrical characteristics of a given system are very significant for the
determination of the spectral characteristics of the modal parameter statistics.
Indeed, the natural frequency results for the polygonal plate suggest that the
introduction of a certain level of irregularity in the system geometry could
lead to the establishment of disordered statistics with spectral characteristics
similar to those predicted by the GOE model.

Disordered System: Mass-Loaded Plate

In Figure 127, the results for the natural frequency statistical observa-
bles are presented for the mass-loaded rectangular plate. The spectral natural
frequency statistics results associated with the short-range fluctuation charac-
teristics conform well with the analytical predictions based on the GOE mo-
del. Indeed, the PDF of the adjacent natural frequency spacings shows clearly
the establishment of level repulsion and spectral rigidity characteristics, that
is, a low probability for small and excessively large natural frequency spa-
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cings, Figure 127 (a). In a similar manner, a good agreement with the nume-
rical results of large GOE matrices is also observed for the natural frequency
correlation coefficient results, Figure 127 (b).

(a)

(b)
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(c)

(d)

Figure 127: Natural frequency statistical observable results for the mass-
loaded rectangular plate (spectral averaging approach). Plot (a): PDF of the
adjacent natural frequency spacings. Plot (b): natural frequency correlation
coefficient. Plot (c): number variance. Plot (d): ∆3 - statistics results.

As expected the point masses led to the coupling of natural frequen-
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cies and introduced universal characteristics in the high-frequency statistics
similar to those expected for classically chaotic systems. Similar results in the
quantum billiard field have been established for rectangular billiards pertur-
bed by the point scatterers; Weaver et al (166, 167), Shigehara (168), Sridhar
et al. (71, 73, 74).

As shown in Figures 127 (c) and (d), the results for the long-range
fluctuation statistical observables show that spectral rigidity characteristics
are strongly established for the mass-loaded plate. However, some small dis-
crepancies occur in relation to the GOE prediction mainly for larger spectral
distances, where the natural frequencies are separated from each other on the
frequency axis by a large number of other natural frequencies. Indeed, the
longer-range natural frequency statistics are slightly non-universal since the
spectral correlations are influenced by the detailed nature of the system, Lan-
gley (23).

4.3.2 Spatial and Spectral Mode Shape Statistics

In this subsection the mode shape statistics are investigated conside-
ring the spatial and spectral mode shape averaging approaches. The results
for the eigenvector statistical observables are compared with the analytical
predictions based on sinusoidal functions and GOE eigenvectors. As in the
case of the natural frequency statistics results, the spatial and spectral mode
shape statistics results are also presented considering the following the major
classes of statistics: integrable (or regular), mixed, chaotic and disordered.

Integrable Systems: Square and Circular Plates

In Figure 128, the spatial kurtosis and corresponding Lilliefors Test
results are shown for the square plate. As shown in Figure 128 (a), most of
the kurtosis values are surprisingly close to the Gaussian value, that is K ∼ 3
and the spectral mean value of the spatial kurtosis is K = 2.9. Although it
will not be shown here, a sharp and peaked kurtosis distribution centered at
the spectral mean value occurs for spatial kurtosis values.
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Figure 128: Spatial mode shape statistical observable results for square plate
(spatial averaging approach). Plot (a): kurtosis results. Plot (b): Lilliefors
Test results.

On the other hand, the spatial Lilliefors Test results showed that the
hypothesis of a Gaussian distribution is approved only for some discrete mode
orders, Figure 128 (b). Indeed, the free-free boundary condition leads to
the establishment of non-sinusoidal mode shapes, where the nodal lines have
slightly disordered spatial orientations, but a good agreement with chaotic
mode shapes is not expected, A. Leissa (169).

In Figures 129 and 130, the spatial characteristics of the mode shape
components over the system domain are presented for modes 145 and 255,
respectively. As discussed above these mode shapes are expected, in prin-
ciple, to have near-Gaussian characteristics. The spatial PDF of the mode
shape components, spatial configurations and Porter-Thomas distribution re-
sults are shown in detail. The analytical predictions for the Gaussian and
sinusoidal mode shapes are also plotted.
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(a)

(b)
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(c)

(d)

Figure 129: Mode shape statistical observable results for square plate: Mode
145 (spatial averaging approach). Plot (a): spatial PDF of mode shape com-
ponents. Plot (b): spatial configuration. Plot (c): squared mode shape ampli-
tudes. Plot (d): Porter-Thomas distribution.
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(a)

(b)
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(c)

(d)

Figure 130: Mode shape statistical observable results for square plate: Mode
255 (spatial averaging approach). Plot (a): spatial PDF of mode shape com-
ponents. Plot (c): spatial configuration. Plot (b): squared mode shape ampli-
tudes. Plot (d): Porter-Thomas distribution.



4.3 Spectral Averaging Approach 455

As shown in Figures 129 and 130, both mode shapes are delocalized
on the spatial domain of the plate system and present nodal lines with arbi-
trary directions similar to those of the perfect chaotic mode shapes, (73, 126).
The spatial PDF of the mode shape components as well as the PT-distribution
results show good agreement with the GOE model predictions. On the other
hand, the symmetry characteristics of these mode shapes seem to be unbroken
along one of the main diagonals. In other words, the symmetry level of the
mode shape amplitudes is ensured in relation to the main diagonal direction.
It is interesting to note that the results for the mode shape statistical obser-
vables seem not to be able to identify or quantify this characteristic of the
regular mode shape statistics.

The spatial characteristics of the mode shape amplitudes for modes
145 and 255 are likely associated with the occurrence of the mode coupling
phenomenon between degenerate flexural (vertical transverse) and extension
(longitudinal) modes. Bertelsen (90) investigated experimentally this phy-
sical phenomenon in terms of natural frequency statistics using aluminum
plates. A similar investigation was carried out by Schaadt (69, 70) in terms
of wave function statistics.

From the Theory of Elasticity, it is known that the vibration modes of
a plate can usually be classified into two main classes: flexural or extensional.
Additionally, the extensional modes can be further divided or separated into
two major groups: horizontal transverse or longitudinal modes. In Figure 131,
the flexural (vertical transverse) and extensional (longitudinal and horizontal
transverse) mode shapes are illustrated.

Figure 131: Representation of two classes of modes and their symmetry cha-
racteristics, Bertelsen (90, 66).

In Figure 132, the resultant characteristics of the mode shape ampli-
tudes are illustrated for a superposition of two mode shapes with the same
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natural frequencies, Schaadt (69). In order to provide a didactic illustration
of the mode superposition phenomenon, the symmetry with respect to the y
axis is initially considered. The same principle can also be extended to the
case of a reflection with respect to the x axis.

Figure 132: Schematic illustration of the superposition of modes, Schaadt
(69).

As shown in Figure 132, any mode is either symmetric or anti-
symmetric with the y axis. Hence, two results are expected for the modal
superposition, either destructive interference which gives small amplitudes
(a), provided by opposite signs, or constructive interference (A), provided
by matching signs. Further information regarding the mode superposition
phenomenon in plates is available in A. Leissa (169).

In this regard, it seems reasonable to assume that modes 145 and 255
are superposition of the flexural and longitudinal mode shapes with degene-
rate natural frequencies. Although the occurrence of an exact, or very near,
degeneracy of two flexural modes is possible, this case is very rare, since the
flexural modes do not couple with each other. Therefore, it is believed that
the chaotic characteristics emerge from the contributions of the longitudinal
modes. Indeed, Bertelsen and Schaadt’s results (90, 66, 69, 70) demonstrated
that the extensional modes, longitudinal and horizontal transverse, are stron-
gly coupled due to the mode conversion phenomenon at the system bounda-
ries, leading to chaotic characteristics independent of the system geometry.



4.3 Spectral Averaging Approach 457

(a)

(b)

Figure 133: Spatial normalized mode shape correlation results for the square
plate: Mode 255 (spatial averaging approach). Plot (a): linear correlation
function (P1). Plot (b): squared correlation function (P2).

In Figure 133, the linear and squared spatial correlation functions
of the normalized mode shape components are presented for mode 255.
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These numerical results are compared with the GOE model predictions for
bi-dimensional systems, Equations (2.40) and (2.44), respectively. Although
the numerical results for mode 145 are not shown here, similar characteristics
to those of mode 255 were observed.

As observed in Figure 133 (a), a good agreement between the numeri-
cal results and GOE model prediction is observed mainly for small values of
k f r. Indeed, two important conclusions can be drawn: (i) the value of k f eva-
luated using the analytical formula based on the corresponding infinite plate
system seems to represent a good estimate for finite flexural plates and, (ii)
mode 255 can also be classified as a flexural mode. It is important to observe
that some relevant discrepancies occur for large values of k f r and they seem
to be associated with the regular characteristics of the degenerate flexural
mode shape. For the spatial correlation function of the squared mode shape
components, the discrepancies in relation to the GOE prediction are clearly
observed and the contributions of the regular mode shape statistics seem to
be more relevant mainly for large values of k f r, Figure 133 (b). These results
verify that mode 255 is not perfectly chaotic and presents some of the non-
universal characteristics of the regular flexural mode shape associated with
the modal superposition phenomenon. Further investigations are necessary to
describe systematically the individual characteristics of the mode shape sta-
tistics associated with the degeneration phenomenon of the extensional and
flexural mode shapes.

Considering the spectral mode shape averaging approach, the kurto-
sis and corresponding Lillierfors Test results were calculated for each mode
shape component of the square plate. The spectral mode shape statistical
observable results are presented in Figure 134.
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(a)

(b)

Figure 134: Spectral mode shape statistical observable results for the square
plate (spectral averaging approach). Plot (a): kurtosis results. Plot (b): Lilli-
efors Test results.
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As observed in Figure 134 (a), most of the spectral kurtosis results are
close to K ∼ 2.5 suggesting that a large number of mode shape components
is not Gaussian distributed along the spectral domain. In addition, the largest
values obtained for the spectral kurtosis occur for the mode shape compo-
nents located on the main diagonals and on the middle lines parallel to plate
sides. Indeed, the remarkably large spectral kurtosis values can be directly
associated with the symmetry characteristics of the regular systems.

The corresponding spectral Lilliefors Test results allowed the accurate
identification of the effects associated with the presence of the system sym-
metries as well as an indirect estimate of the spectral correlation strength for a
given mode shape component. In Figure 134 (b), the mode shape components
not approved by the Lilliefors Test results can be easily associated with the
establishment of the periodic orbits. In a similar manner to the results for the
spectral kurtosis, the bouncing ball and main diagonal periodic orbits were
detected by the spectral Lilliefors Test results. However, surprisingly, the Lil-
liefors Test results allowed an accurate identification of the periodic orbits
along the secondary diagonal and a perfect characterization of the symmetry
effects on the spectral mode shape statistics.

In Figure 135, the spatial kurtosis and Lilliefors Test results are shown
for the circular plate. Although, in principle, it is expected that the mode sha-
pes of the circular plate are well-behaved, since the geometry of this system
is perfectly symmetric, several discrete peaks in the spatial kurtosis results
are observed along the mode order domain.
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Figure 135: Spatial mode shape statistical observable results for the circular
plate (spatial averaging approach). Plot (a): kurtosis values. Plot (b): Lillie-
fors Test results.

According to Figure 135 (a), the mode shapes seem to be classified
into two major groups. The first group corresponds to mode shapes for which,
apart from the first mode orders, the spatial kurtosis results are weakly locali-
zed with kurtosis values close to K∼ 3.2. On the other hand, the second group
comprises the mode shapes for which the spatial kurtosis values are peaked,
suggesting the establishment of characteristics similar to those expected for
the mode shapes under the moderate localization regime. It is also interes-
ting to note that the values of these peaked spatial kurtosis results increase
asymptotically toward the high mode order range. Additionally, the spatial
Lilliefors Test results show clearly that all mode shapes reject the Gaussian
distribution hypothesis, although most of the spatial kurtosis values are close
to the GOE value (KGOE = 3), Figure 135 (b).

In order to obtain a better understanding of the physical phenomena
associated with each one of these mode shape groups, one typical mode shape
from each group was investigated using the complementary mode shape sta-
tistical observables. In Figures 136 and 137, the spatial representation of
squared mode shape components, PDF of the mode shape components (nor-
malized to have zero mean amplitude) and Porter Thomas-distribution results
are presented for modes 142 and 229, respectively.
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(a)

(b)
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(c)

(d)

Figure 136: Spatial mode shape characteristics for the circular plate: Mode
142 (spatial averaging approach). Plot (a): spatial PDF of mode shape com-
ponents. Plot (b): spatial configuration. Plot (c): squared mode shape ampli-
tudes. Plot (d): Porter-Thomas distribution.

As shown in Figure 136, the nodal lines are well-defined along the ra-
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dial direction and have a high degree of geometrical regularity. For mode 142,
the amplitudes of the mode shape components located near the circle center
are practically null while the adjacent ones are slightly larger than the others.
These characteristics can also be observed in the spatial PDF results for the
mode shape components, where a peak centered on null amplitude is clearly
pronounced. On the other hand, the mode shapes with spatial characteristics
similar to those of mode 229 have larger amplitudes in the region close to the
circle edge, where the mode shape component amplitudes of other regions are
practically null, Figure 137 (b).

(a)
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(b)

(c)
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(d)

Figure 137: Spatial mode shape characteristics for the circular plate: Mode
229 (spatial averaging approach). Plot (a): spatial PDF of mode shape com-
ponents. Plot (b): spatial configuration. Plot (c): squared mode shape ampli-
tudes. Plot (d): Porter-Thomas distribution.

As shown in Figure 137 (a), a large peak centered on null mode shape
component amplitude is clearly observed, suggesting, in principle, the esta-
blishment of spatial characteristics similar to those associated with the struc-
tural localization phenomenon. Similar conclusions were reached on consi-
dering the PT-distribution results, where the non-universal characteristics in
relation to the Gaussian prediction were observed, Figure 137 (d).

Although the spatial mode shape characteristics described above are
completely distinct to those expected for rectangular quantum billiards, it is
important to note that the two groups of mode shapes investigated herein have
also been observed in studies with circular billiards carried out by Arnd Bäc-
ker (127), where these spatial characteristics were also associated with the
regular statistics.

The spectral characteristics of the mode shapes for the circular plate
are demonstrated in Figure 138. The spectral kurtosis values showed that
almost-GOE characteristics are expected to be established in the ring region
close to the edge, Figure 138 (a).
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(a)

(b)

Figure 138: Spectral mode shape characteristics of the circular plate (spectral
averaging approach). Plot (a): kurtosis values. Plot (b): Lilliefors Test results.

As shown in Figure 138 (b), the Lilliefors Test results confirm the
establishment of a Gaussian distribution for the mode shape components lo-
cated in the ring region close to the edge, suggesting that these mode shape
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components are likely uncorrelated along the mode order domain.

Mixed Systems: Rectangular and Rectangular with One Arc Plates

Considering the mode shapes of the rectangular plate, the spatial kur-
tosis and corresponding Lilliefors Test results are shown in Figure 139.
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Figure 139: Spatial mode shape statistical observable results for the rectan-
gular plate (spatial averaging approach). Plot (a): spatial kurtosis. Plot (b):
Lilliefors Test.

As shown in Figure 139(a), most of the kurtosis values are slightly
larger than the expected kurtosis value for 2D-sinusoidal mode shapes, that is,
K ∼ 2.6 > 2.25 = K2D

sin . Additionally, some small and discrete peaks and anti-
peaks are observed. Although not shown here, a sharp and peaked distribution
centered around the spectral mean value (K̄ = 2.64) occurs for the spatial
kurtosis values.

The spatial Lilliefors Test results suggest that the hypothesis of Gaus-
sian distribution is approved only for some discrete mode orders, Figure
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139(b). Leissa in (169) demonstrated that the free-free boundary condition
leads to the establishment of non-sinusoidal mode shapes for rectangular pla-
tes, where the nodal lines are not perfectly parallel to the plate sides.

According to Figure 139, the mode shapes 68 and 186 are expected
to be almost-Gaussian and to have good agreement with the GOE eigen-
vector statistics. In Figures 140 and 141, the spatial characteristics of the
mode shape components are presented for modes 68 and 186, respectively.
The spatial PDF of the mode shape components, spatial configurations and
Porter-Thomas distribution results are plotted and compared with the analyti-
cal predictions for Gaussian and sinusoidal mode shape statistics.

(a)
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(b)

(c)
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(d)

Figure 140: Spatial mode shape statistical observable results for the rectan-
gular plate: Mode 68 (spatial averaging approach). Plot (a): spatial PDF of
mode shape components. Plot (b): spatial configuration. Plot (c): squared
mode shape component amplitudes. Plot (d): Porter-Thomas distribution.
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(a)

(b)
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(c)

(d)

Figure 141: Spatial mode shape statistical observable results for the rectan-
gular plate: Mode 186 (spatial averaging approach). Plot (a): spatial PDF of
mode shape components. Plot (b): spatial configuration. Plot (c): squared
mode shape component amplitudes. Plot (d): Porter-Thomas distribution.
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As shown in Figures 140 and 141, both mode shapes are delocalized
on the spatial system domain and present nodal lines with arbitrary directions.
The PDF of mode shape components and PT-distribution results show a good
agreement with GOE model predictions. On the other hand, the symmetry
characteristics of these mode shapes are clearly unbroken along the horizon-
tal axis. Indeed, substantial contributions of the effects associated with the
geometrical regularity, such as the establishment of the bouncing ball perio-
dic orbits, are expected for rectangular plates due to the parallel sides.

In a similar manner to the mode shapes of the square plate which have
Gaussian characteristics, it is probable that the mode shapes 68 and 186 of the
rectangular plate can be defined as modal superpositions of degenerate flexu-
ral (vertical transverse) and extension (longitudinal) modes, Schaadt (69) and
A. Leissa (169). In principle, it is expected that the surprising Gaussian cha-
racteristics of modes 68 and 186 arise from the contributions of the chaotic
characteristics associated with the extensional mode. Indeed, due to the mode
conversion phenomenon at the system boundaries, the longitudinal and hori-
zontal transverse extensional modes are strongly coupled and present chaotic
characteristics, regardless of the symmetry characteristics of the system geo-
metry, Bertelsen (90, 66) and Schaadt (69, 70).

In Figure 142, the linear and squared spatial correlation functions
of the normalized mode shape components are presented for mode 186.
These numerical results are compared with GOE model predictions for bi-
dimensional systems, Equations (2.40) and (2.44), respectively.



4.3 Spectral Averaging Approach 475

(a)

(b)

Figure 142: Spatial normalized mode shape correlation function results for
the rectangular plate: Mode 186 (spatial averaging approach). Plot (a): linear
correlation function (P1). Plot (b): squared correlation function (P2).

As observed in Figure 142 (a), the numerical results for small values
of k f r conform well with the analytical prediction based on the GOE model.
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This good agreement is likely associated with the relevant chaotic characte-
ristics of the longitudinal mode.

For the squared spatial mode shape correlation function results, the
existing discrepancies, in relation to prediction based on the GOE model, ob-
served for large values of k f r seem to be directly associated with the relevant
contributions of the regular characteristics of the flexural mode shapes, Figure
142 (b). Indeed, these results suggest that the mode shape 186 is not perfectly
chaotic and presents non-universal characteristics certainly associated with
the regular flexural mode shape.

In Figure 143, the spectral kurtosis and corresponding Lilliefors Test
results are presented for each mode shape component of the rectangular plate.

(a)
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(b)

Figure 143: Spectral mode shape statistical observable results for the rectan-
gular plate (spectral averaging approach). Plot (a): kurtosis results. Plot (b):
Lilliefors Test results.

As observed in Figure 143(a), most of the mode shape components are
not Gaussian distributed and have spectral kurtosis values close to K ∼ 2.4.
For the mode shape components located on the middle lines parallel to the
plate sides large values occur for the spectral kurtosis, which can be associ-
ated with the establishment of the bouncing ball periodic orbits. The corres-
ponding spectral Lilliefors Test results allow the effects associated with the
presence of system symmetries to be clearly identified, Figure 143 (b). Diffe-
rently from the spectral mode shape results for the square plate, the spectral
kurtosis and Lilliefors Test results for the rectangular plate showed that the
symmetry effects associated with the establishment of periodic orbits on the
secondary diagonal are clearly reduced for the rectangular plate.

In Figure 144, the spatial kurtosis and Lilliefors Test results are shown
for the rectangular plate with a circular arc at one corner. The spatial kurto-
sis values are slightly higher than those expected for perfect Gaussian mode
shapes. Additionally, these results suggest that the mode shapes are homo-
geneously perturbed by the effect of the arc along the mode order domain
investigated herein.
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Figure 144: Spatial mode shape statistical observable results for the rectangu-
lar plate with an arc at one corner. Plot (a): kurtosis values (spatial averaging
approach). Plot (b): Lilliefors Test results. Plot (c): PT-distribution results.
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According to Figure 144 (b), the Lilliefors Test results show that, apart
from the first mode orders, a Gaussian distribution for the mode shape com-
ponents is expected for several mode shapes. Indeed, the focusing and defo-
cusing effects associated with the presence of the arc lead to the establishment
of a deterministic chaos for mid and high-frequency mode shapes. In Figure
144 (c), the PT-distribution results confirm the trend of the establishment of
universal characteristics for the mode shapes, although small discrepancies
are observed in the range associated with the large squared mode shape am-
plitudes.

In Figure 145, the spatial representation of the mode shape compo-
nents and corresponding PT-distribution results are presented for some modes
with almost-Gaussian characteristics.

(a2)
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(b1)

(b2)

Figure 145: Spatial representation of the mode shape components and cor-
responding PT-distribution results for some almost-Gaussian mode shapes of
the rectangular plate with an arc at one corner (spatial averaging approach).
Plot (a): mode 137. Plot (b): mode 218.

For modes 137 and 218, the spatial layout of their nodal lines confirms
the establishment of chaotic characteristics, evidencing the breaking of sys-
tem symmetries by the arc effects. However, the low-frequency mode shapes
are weakly influenced by the arc effects, since the typical wavelengths are
larger than the circle radius. Additionally, bouncing ball periodic orbit effects
are certainly expected due to the residual degree of system symmetry associ-
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ated with the parallel sides of a perfect rectangular plate. In Figure 146, the
statistical observable results of some low-frequency mode shapes are shown
in detail.

(a1)

(a2)
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(b1)

(b2)
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(c1)

(c2)

Figure 146: Spatial representation of the mode shape components and corres-
ponding PT-distribution results for some low-frequency mode shapes of the
rectangular plate with an arc at one corner (spatial averaging approach). Plot
(a): mode 08. Plot (b): mode 11. Plot (c): mode 44.

As shown in Figure 146, the nodal lines are practically parallel to the
plate sides, showing characteristics similar to those associated with the re-
gular billiard systems with a perfect rectangular shape. The PT-distribution
results in the tail region (i.e., large normalized mode shape amplitudes) are
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lower than the analytical prediction based on the GOE model, suggesting a
relevant contribution of the bouncing ball periodic orbit effects to the mode
shape statistics.

Chaotic Systems: 1/4 Sinai Stadium and Polygon Plates

In Figure 147, the spatial kurtosis and Lilliefors Test results are shown
for the 1/4 Sinai stadium plate. The spatial kurtosis results suggest that most
of the mode shapes are Gaussian, that is, K ≈ 3. It is important to observe
that the kurtosis values are not constant along the mode order domain and a
narrow mode-to-mode fluctuation occurs around the GOE kurtosis value due
to the effects associated with the finite characteristics of the system domain.

As shown in Figure 147 (b), the spatial Lilliefors Test results also sug-
gest that a Gaussian distribution is expected for the mode shape components
in the mid and high-mode order ranges. Indeed, the focusing and defocusing
effects associated with the non-parallel and non-concentric circular sides lead
to the establishment of chaotic statistics for mode shapes.

(a)
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(b)

Figure 147: Spatial mode shape statistical observable results for 1/4 Sinai
stadium plate (spatial averaging approach). Plot (a): kurtosis values. Plot (b):
Lilliefors Test results.

In Figure 148, the spatial representation of the mode shape compo-
nents and corresponding PT-distribution results are presented for some exam-
ples of the modes with almost-Gaussian characteristics.

(a1)



486 4 Numerical Analysis of Random Flexural Plates

(a2)

(b1)
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(b2)

(c1)
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(c2)

Figure 148: Spatial representation of the mode shape components and cor-
responding PT-distribution results for the 1/4 Sinai stadium plate (spatial ave-
raging approach). Plot (a): mode 61. Plot (b): mode 186. Plot (c): mode
249.

As observed in Figure 148, the disordered spatial layout of the nodal
lines and non-localized mode shape amplitudes strongly suggest the establish-
ment of chaotic characteristics. The corresponding PT-results conform very
well with the GOE prediction. Although it is not predicted by RMT, a small
dispersion around the GOE prediction is observed over the range of large
squared mode shape amplitudes. Indeed, these discrepancies are established
due to incipient non-universal contributions associated with the effects of the
finite nature of the system.

In Figure 149, the spectral mode shape statistics results are presented
for the 1/4 Sinai stadium plate. As observed in Figure 149 (a), the most of
spectral kurtosis values are also close to the expected Gaussian value, that is,
K ≈ 3.

The corresponding spectral Lilliefors Test results also suggest that
most of the mode shape components have a Gaussian distribution, Figure 149
(b). Indeed, the spatial and spectral mode shape statistics results demonstrate
that the universal characteristics are certainly established for several mode
shapes of the 1/4 Sinai stadium plate.
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(a)

(b)

Figure 149: Spectral mode shape statistics results for the 1/4 Sinai stadium
plate (spectral averaging approach). Plot (a): kurtosis results. Plot (b): Lilli-
efors Test results.
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(a)

(b)

Figure 150: Spatial mode shape statistical observable results for the polygo-
nal plate (spatial averaging approach). Plot (a): kurtosis values. Plot (b):
Lilliefors Test results.

In Figure 150, the spatial kurtosis and Lilliefors Test results are shown
for the polygonal plate. In a similar manner to the mode shape statistics re-
sults for the 1/4 Sinai stadium plate, the spatial kurtosis results also suggest
that several mode shapes are near-Gaussian,Figure 150 (a). Indeed, the two
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non-parallel sides of the polygonal plate seem to remove completely the ef-
fects of the system symmetry on the mode shape statistics. As is known, the
effects associated with the finite nature of the system on the mode shapes
are clearly expressed through a narrow mode-to-mode fluctuation around the
GOE kurtosis value.

As shown in Figure 150 (b), the spatial Lilliefors Test results also
showed that a Gaussian distribution occurs for several mode orders, sugges-
ting the establishment of chaotic statistics for mid and high-frequency mode
shapes.

In Figure 151, the spatial representation of the mode shape compo-
nents and corresponding PT-distribution results are presented for some modes
with almost-Gaussian characteristics.

(a1)
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(a2)

(b1)
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(b2)

Figure 151: Spatial representation of the mode shape components and corres-
ponding PT-distribution results for some mode shapes of the polygonal plate
(spatial averaging approach). Plot (a): mode 198. Plot (b): mode 220.

As observed in Figure 151, the disordered spatial orientation of the
nodal lines suggests a deterministic establishment of chaotic characteristics
for the mode shapes of the polygonal plate. In Figure 152, the spectral mode
shape statistics results for the polygonal plate are presented. The kurtosis and
Lilliefors Test results seem to demonstrate that universal characteristics are
established for several mode shape statistics.

Although the polygon plate does not present a classically chaotic geo-
metry, similar results to those of the 1/4 Sinai stadium plate were surprisingly
observed. Indeed, this good agreement with the GOE statistics demonstra-
tes that the geometrical perturbation of the system symmetries through the
breaking of the geometrical regularity leads to the establishment of substan-
tial effects on the modal parameter statistics. As discussed in the RMT and
POT literature, the disorder strength of these effects is associated with the
magnitude of the ratio of the frequency wavelength to the typical size of the
focusing or defocusing elements, (113, 65, 72).
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(a)

(b)

Figure 152: Spectral mode shape statistics results for the polygonal plate
(spectral averaging approach). Plot (a): kurtosis results. Plot (b): Lilliefors
Test results.
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Disordered System: Point Mass-loaded Rectangular Plate

In Figure 153, the spatial kurtosis and Lilliefors Test results are shown
for the mass-loaded rectangular plate. The spatial kurtosis results suggest that
most of the mode shapes are near-Gaussian, where the probabilistic mode
value is K ∼ 3.1 and the spectral mean value is K̄ = 3.26. It is important to
observe that the kurtosis values are not constant along the mode order domain
and a mode-to-mode fluctuation occurs around the typically expected kurtosis
value.
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Figure 153: Spatial mode shape statistical observable results for the mass-
loaded rectangular plate (spatial averaging approach). Plot (a): kurtosis va-
lues. Plot (b): Lilliefors Test results.

As observed in Figure 153 (a), a good agreement is observed between
the numerical results and the GOE prediction beyond mode 50. For the low-
order mode shapes, a gradual transition from almost-nominal to Gaussian
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statistics is expected as the mode order increases. Additionally, some discrete
peaks in the kurtosis curve suggest the establishment of an incipient structural
localization.

The corresponding spatial Lilliefors Test results are shown in Figure
153 (b) and suggest that only a reduced number of mode shapes have com-
ponents with Gaussian distribution, although the spatial kurtosis values of
several modes are close to the value expected for Gaussian mode shapes. In
Figures154 (a) and (b), histograms of the skewness coefficient and spatial kur-
tosis can be observed. These results show that for most of the mode shapes
the components have an approximately symmetric distribution. Additionally,
the spatial kurtosis results have an almost-Gaussian distribution with proba-
bilistic mode value of close to KGOE ∼ 3.

Figure 154: Histograms of the spatial skewness coefficients and kurtosis va-
lues for the mass-loaded rectangular plate.

Based on these spatial mode shape statistics results, three major clas-
ses of spatial mode shape statistics are clearly established: almost-nominal,
almost-Gaussian and weakly localized. In Figure 155, the PDF of the mode
shape components and the spatial representation of squared mode shape am-
plitudes are presented for a typical mode shape of these statistical mode shape
classes.
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In Figure 155 (a), the main spatial characteristics of the almost-
Gaussian mode shape statistics are demonstrated for mode 207. The spatial
distribution of the mode shape components of mode 207 is Gaussian, as
expected for GOE eigenvectors. Additionally, the mode shape amplitudes
are delocalized throughout the spatial domain of the plate system and the
nodal lines have random orientations, characterizing a good agreement with
the GOE model.
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Figure 155: Spatial mode shape characteristics of the mass-loaded rectangu-
lar plate: PDF of the mode shape components and spatial representation of
the squared mode shape amplitudes (spatial averaging approach). Plot (a):
Mode 207 - almost-Gaussian. Plot (b): Mode 230 - weakly localized. Plot
(c): Mode 003 - almost-nominal.

As observed in Figure 155 (b), the spatial characteristics of mode 230
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show the establishment of the incipient or weak localization characteristics
which are associated with the kurtosis values slightly higher than k = 3. The
amplitudes of the mode shape components localized in the upper region of
the plate are slightly larger than those localized in the bottom region. In
Figure 155 (c), the main spatial characteristics of the almost-nominal mode
shape statistics are demonstrated for mode 003. The spatial distribution of
the mode shape components presents intermediate characteristics between the
Waterhouse and Gaussian PDF predictions. The establishment of the nodal
lines parallel to the plate sides shows that mode shape symmetries remained
unbroken in relation to the plate sides. Indeed, for low-order mode shape the
wavelengths are larger than the typical distances between two point masses
and thus the effects of the scatter phenomenon are certainly minimized.

(a)
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(b)

(c)
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(d)

Figure 156: Porter-Thomas distribution results for the mass-loaded rectangu-
lar plate (spatial averaging approach). Plot (a): some typical mode orders.
Plots (b) and (c): modes 180 and 207 (almost-Gaussian mode shape statis-
tics), respectively. Plot (d): mode 230 (weak localization statistics) and non-
linear sigma model expression (fitted with dL = 0.36 - Equation 2.53).

As shown in Figure 156 (a), the Porter-Thomas distribution results
are presented for most of the mode shapes. Small discrepancies in relation
to the GOE model predictions are observed mainly in the range associated
with the large normalized mode shape amplitudes (i.e., the tail region of the
distribution) which is strongly sensitive to details of the system nature. Two
examples of almost-Gaussian mode shapes are shown in Figures 156 (b) and
(c). A good agreement with the analytical prediction based on the GOE model
is observed for the distribution of normalized mode shape components of
modes 180 and 207, showing a perfect compatibility with the Lilliefors Test
results shown in Figure 153 (b).

In Figure 156 (d), the PT-distribution results for mode 230 are presen-
ted and the incipient elevation of the distribution tail suggests the establish-
ment of weak localization characteristics. In this regard the numerical results
were fitted by the non-linear sigma model expression for a weak localization
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regime, proposed by Equation (2.53). Good performance is observed when a
disorder localization parameter equal to dL = 0.36 is considered.

Considering the spatial correlation characteristics of the mode shape
components of the mass-loaded rectangular plate, the linear and squared spa-
tial correlation functions of the normalized mode shape components were
evaluated for some modes with almost-Gaussian statistics characteristics. In
Figure 157, the numerical results are compared with the GOE model predic-
tions for bi-dimensional systems, Equations (2.40) and (2.44), respectively.

As shown in Figure 157 (a), a small dispersion is observed around the
analytical GOE prediction when only the individual results are considered.
In this regard, the mean value seems to be a robust and representative para-
meter to describe the spatial correlation statistics4. The agreement between
the analytical GOE prediction and numerical results is certainly improved as
the averaging process is considered in the evaluation of the spatial correlation
functions of normalized mode shape components.

On other hand, the results for the squared correlation function of the
normalized mode shape components seem to be more sensitive to small non-
universal characteristics associated with the details of the system nature and
thus some discrepancies in relation to the prediction based on the GOE model
occur mainly for large values of k f r, Figure 157 (b). It is important to note
that these results seem to demonstrate that the application of the dispersion
relation of infinite plate, Equation (4.2), is also sufficiently accurate for fi-
nite and almost-homogeneous plates, such as the mass-loaded plate system
investigated here. To the best of the author’s knowledge, this is the first appli-
cation of non-linear sigma model expressions to describe the spatial correla-
tion characteristics of the mode shape statistics of almost-chaotic engineering
systems, since the mass-loaded plate system could be considered to be very
similar to an equipment-loaded satellite panel, Brown et al. (1, 18).

The statistical characteristics of the mode shape components conside-
ring the spectral averaging approach are presented in Figure 158. The spec-
tral kurtosis results are close to the Gaussian value, that is, K ≈ 3, except for
the small and isolated peaks observed, which are likely associated with the
weak localization characteristics, Figure 158 (a). Although not shown here
in detail, most of the spectral kurtosis values lie within the following range:
2.7.K . 3.1, where the spatial mean and typically expected, or probabilistic
mode, values are 3.02 and 2.85, respectively.

4This hypothesis has been successfully adopted by several researchers in the Quantum Phy-
sics field, (71, 69, 74, 70).
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(a)

(b)

Figure 157: Spatial normalized mode shape correlation results for the mass-
loaded rectangular plate: modes 153, 167,180, and 207 (spatial averaging ap-
proach). Plot (a): linear correlation function (P1). Plot (b): squared function
(P2).
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(a)

(b)

Figure 158: Spectral mode shape statistics results for the mass-loaded rectan-
gular plate (spectral averaging approach). Plot (a): kurtosis results. Plot (b):
Lilliefors Test results.
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As shown in Figure 158 (b), most of the mode shape components were
approved in the Lilliefors Test, suggesting the establishment of a Gaussian
distribution. Indeed, similar characteristics are observed for perfect GOE ei-
genvectors, where the eigenvectors are almost statistically independent and
their inter-modal correlations can be neglected when large matrix dimensi-
ons are considered, Brody et al. (56). On the other hand, most of the plate
locations, for which the mode shape components were not approved by the
Lilliefors Test, can be directly associated with the mode shape component lo-
cations where the kurtosis values are larger than the Gaussian kurtosis value,
that is, K > 3. Thus, these particular mode shape components are expected to
be influenced by the incipient structural localization effects, where their spa-
tial distributions are slightly asymmetric and have long-tail characteristics.

4.3.3 Kinetic Energy Density Statistics

In this subsection the spectral statistics of the kinetic energy density
results for the bare and mass-loaded rectangular plates are investigated con-
sidering two types of excitations: single-point and spatially-averaged. The
spectral mean and relative variance of the kinetic energy density results are
compared with SEA predictions based on GOE and Poisson models.

SEA Prediction

For an excited single subsystem, the SEA power balance showed that
the power input (Πin) to the structure is equal to the dissipated power (Πdiss).
Indeed, the total energy of the flexural plates investigated here can be ade-
quately expressed in terms of the real part of the input mobility results of an
infinite plate system, Y∞(ω). This assumption is usually adopted in the analy-
tical SEA field, Lyon and Dejong (29). A generic expression for the SEA
predicted energy is given by:

ESEA =
Re(Y∞(ω))

2ωη
. (4.11)

Therefore, the kinetic energy density for a flexural plate is given by:

TSEA =
ESEA

2Ra
=

Re(Y∞(ω))

4Raωη
, (4.12)

where Ra is the area of the plate.
The analytical mobility expression for an infinite plate subjected to a
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single-point excitation is available in the literature, (29, 38, 5). According to
Fahy and Walker (5), the analytical mobility expression for an infinite plate
system is given by:

Y∞ (ω) =
πn(ω)

2M
, (4.13)

where M and n(ω) are the total mass and modal density of the flexural plate,
respectively.

Lyon and Dejong (29) showed that the expression for the modal den-
sity of an isotropic plate is given by:

n(ω) =
RaA
√

3
2πhcp

L
, (4.14)

where cp
L is the longitudinal wave speed in a plate and is given by:

cp
L =

√
Eym

ρ (1−ν2)
. (4.15)

Substituting the previous analytical mobility expression, Equation
(4.13), into Equation (4.12), the kinetic energy density for a flexural plate is
given by:

TSEA =
πn(ω)

8MRaωη
. (4.16)

Spectral Kinetic Energy Density Statistics: General Considerations

In the following, the spectral averaging approach was adopted to in-
vestigate the statistical characteristics of the kinetic energy density responses
for the bare and mass-loaded rectangular plates. The first two statistical mo-
ments of the kinetic energy density responses were evaluated within the 1/3
octave frequency band limits.

Two types of loadings were considered: unitary single-point and
spatially-averaged excitations. For the single-point case, the spatial location
of the excitation point (X0) was an arbitrary choice and was considered to be
the same for the two plates investigated herein. The spatial coordinates of the
excitation point are given by X0 = (0.923,0.227) m.

Additionally, the damping loss factor (DLF) was considered
frequency-constant, since the mechanical loss mechanisms for metal plates
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are considered to be approximately spatially-distributed, (28). In this regard,
three distinct DLF values were considered in order to provide distinct levels
of modal superposition. The DLF values adopted are η = 0.010, 0.015 and
0.030. The free-free boundary condition was also adopted for both flexural
plates investigated herein.

The kinetic energy density results for the bare and mass-loaded rectan-
gular plates are initially evaluated for each DLF in terms of the narrow fre-
quency band domain with intervals of 10 Hz. The excitation frequency range
considered was from 0 to 1400 Hz. A sufficiently large number of modes was
assumed in the superposition process to ensure the response convergence in
the frequency range investigated.

Spectral Kinetic Energy Density Statistics: Spatially-Averaged
Excitation

For the evaluation of the spatially-averaged kinetic energy density re-
sults, the single-point responses were evaluated for 100 distinct excitation
points with arbitrary locations. In Figure 159 (a), the individual kinetic energy
density responses and arithmetic mean values are presented for the bare rec-
tangular plate along with the SEA analytical prediction for a damping loss
factor magnitude of 1%, that is, η = 0.010. The corresponding 1/3 octave
frequency band kinetic energy density results are presented in Figure 159 (b).
An excellent agreement is observed between the SEA prediction and averaged
numerical results, regardless of the frequency band domain considered.
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(a)

(b)
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(c)

Figure 159: Spatially-averaged kinetic energy density results for the bare rec-
tangular plates with η = 0.010. Plot (a): individual responses and spatially-
averaged value - narrow frequency band domain (spatial averaging appro-
ach). Plot (b): individual responses and spatially-averaged value - 1/3 oct.
frequency band domain (spatial averaging approach). Plot (c): spectral rela-
tive variance of spatially-averaged kinetic energy density response (spectral
averaging approach).

The spectral relative variance of the spatially-averaged kinetic energy
density response is presented in Figure 159 (c). As expected, the numeri-
cal results conform very well with the Poisson prediction mainly in the mid
and high-frequency ranges. This agreement is supported by two factors: (i)
the spatially-averaged excitation completely removes the contribution of the
mode shape statistics to the kinetic energy responses and (ii) the spectral na-
tural frequency statistics are approximately Poissonian.

In Figure 160, the relative variance results associated with the other
two values for the DLF are plotted along with the analytical predictions based
on the Poisson and GOE models.
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(a)

(b)

Figure 160: Relative variance of the spatially-averaged kinetic energy density
results for the bare rectangular plate with η = 0.015 and 0.030, respectively
(spectral averaging approach).

As shown in Figures 160 (a) and (b), the analytical prediction based
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on the Poisson model overestimates both numerical results. Additionally, it
is observed that the spectral relative variance results are gradually reduced
as the damping loss factor increases. Indeed, as the damping mechanism
effects become substantial a large number of modes contribute to the energy
response, and thus the small discrepancies in the long-range fluctuations (i.e.,
large spectral distances) between the statistics of the Poisson eigenvalues and
the natural frequencies may become relevant in terms of the kinetic energy
density responses.

As observed previously in Figure 123, the spectral natural frequency
statistics of the bare rectangular plate are slightly more rigid than those descri-
bed by the Poisson model. Therefore, the reduction in the spectral variability
of the spatially-averaged kinetic energy density results could be associated
with the establishment of the inter-modal correlations which reinforce the
spectral rigidity characteristics of the natural frequencies along the frequency
domain.

Similarly to the case of the bare rectangular plates, the evaluation of
the spatially-averaged kinetic energy density response for the mass-loaded
rectangular plate was based on the single-point responses for 100 distinct
excitation points5.The individual kinetic energy density responses and arith-
metic mean value are presented along with the SEA analytical prediction for
a damping loss factor of 1%, that is, η = 0.010, Figure 161 (a). The 1/3 oc-
tave frequency band kinetic energy density results are plotted in Figure 161
(b). As in the case of the bare rectangular plate, the averaged numerical re-
sults conform very well with the SEA prediction, regardless of the frequency
domain considered.

5Although not shown here, convergence analysis of the first two statistical moments of the
kinetic energy results was carried out in relation to the number of excitation points in order to
guarantee the efficiency of the spatial averaging process.
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(a)

(b)
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(c)

Figure 161: Spatially-averaged kinetic energy density results for the mass-
loaded rectangular plates with η = 0.010. Plot (a): individual responses and
spatially-averaged value - narrow frequency band domain (spatial averaging
approach). Plot (b): individual responses and spatially-averaged value - 1/3
oct. frequency band domain (spatial averaging approach). Plot (c): spec-
tral relative variance of the spatially-averaged kinetic energy density response
(spectral averaging approach).

As observed in Figure 161 (c), the spectral relative variance of the
spatially-averaged kinetic energy density response shows intermediate cha-
racteristics between the Poisson and GOE model predictions. As discussed in
the SEA and Physics literature (167, 168, 16, 18), the introduction of the point
masses to the bare rectangular plate probably leads to coupling of the natural
frequencies, changing substantially their statistical characteristics along the
spectral domain. Indeed, the spectral natural frequency statistical observable
results for the mass-loaded rectangular plate also suggest the establishment
of the level repulsion phenomenon and spectral rigidity characteristics for
the natural frequencies, which reduces the relative variance of the spatially-
averaged kinetic energy density response.

In Figure 162, the relative variance results for the mass-loaded rectan-
gular plate associated with η = 0.015 and 0.030 are plotted along with the
analytical predictions based on Poisson and GOE models.
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(a)

(b)

Figure 162: Relative variance of the spatially-averaged kinetic energy density
responses for the mass-loaded rectangular plates with η = 0.015 and 0.030,
respectively (spectral averaging approach).

As shown in Figures 162 (a) and (b), the spectral relative variance re-
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sults have intermediate characteristics between the predictions based on the
Poisson and GOE models. As observed previously in Figure 127, the spectral
natural frequency statistics of the mass-loaded rectangular plate are slightly
less rigid than those described by the GOE model, mainly for the long-range
fluctuation statistics (i.e., statistics of the large spectral distances). Therefore,
the existing discrepancies between the numerical results and GOE predicti-
ons could be associated with the non-universal characteristics of the spectral
natural frequency statistics which are reinforced as the damping loss factor
increases.

Spectral Kinetic Energy Density Statistics: Single Point-Loading

In Figure 163, the spectral mean and relative kinetic energy density
responses are shown for the bare and mass-loaded rectangular plates subjec-
ted to a unitary single-point loading at excitation point X0. The kinetic energy
density results expressed in the narrow and 1/3 oct. frequency band domains
are presented along with the SEA analytical predictions based on the Poisson
and GOE models.

(a)
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(b)

(c)
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(d)

Figure 163: Spectral mean and relative variance values of the kinetic energy
response for the bare and mass-loaded rectangular plates subjected to single-
point loading with η = 0.010 (spectral averaging approach). Plot (a): kinetic
energy density response of the bare rectangular plate - narrow and 1/3 oct.
frequency domains. Plot (b): relative variance of the bare rectangular plate -
1/3 oct. frequency band domain. Plot (c): kinetic energy density response of
the mass-loaded rectangular plate - narrow and 1/3 oct. frequency domains.
Plot (d): relative variance of the mass-loaded rectangular plate - 1/3 oct. fre-
quency band domain.

As observed in Figure 163 (a), the SEA predicted values describe very
well the overall spectral tendency of the kinetic energy density results ex-
pressed in terms of the narrow frequency band domain. Additionally, the
1/3 oct. frequency band numerical results conform very well with the SEA
predictions, mainly in the mid and high-frequency ranges. Figure 163 (c)
shows that the corresponding narrow frequency band kinetic energy density
response for the mass-loaded rectangular plate has large and well-defined pe-
aks and anti-peaks in the mid and high-frequency ranges, suggesting that the
current single-point energy results are probably affected strongly by the con-
tribution from the weakly localized mode shapes. The small discrepancies
observed between the 1/3 oct. frequency band numerical results and SEA
predictions suggest that the reverberant characteristics are partially ensured
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over the spatial domain for the energy field of the mass-loaded plate.
Figures 163 (b) e (d) show that the spectral relative variance of the

single-point kinetic energy density responses for the bare and mass-loaded
rectangular plates are slightly higher than the Poisson prediction, mainly in
the mid and high-frequency ranges. This discrepancy can be explained by
the following factors: (i) the large number of modes contributing, since the
modal overlap factor is proportional to the excitation frequency, and; (ii) some
high-order mode shapes have weak localization characteristics, see Figures
155 (b) and 156 (d). These relative variance results are typical examples
which demonstrate that the mode shape contribution to the kinetic energy
density response is more relevant than the corresponding natural frequency
contribution for the case of single point-loading.

In Figure 164, the relative variance results associated with the other
two DLF values are plotted for the bare and mass-loaded rectangular plates.

(a)
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(b)

(c)
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(d)

Figure 164: Relative variance of the single-point loading kinetic energy den-
sity responses for the bare and mass-loaded rectangular plates with η = 0.015
and 0.030 (spectral averaging approach). Plot (a): spectral relative variance
of the single-point loading kinetic energy density response for a bare rec-
tangular plate with η = 0.015. Plot (b): spectral relative variance of the
single-point loading kinetic energy density response for a bare rectangular
plate with η = 0.030. Plot (c): spectral relative variance of the single-
point loading kinetic energy density result for a mass-loaded rectangular plate
with η = 0.015. Plot (d): spectral relative variance of the single-point loa-
ding kinetic energy density response for a mass-loaded rectangular plate with
η = 0.030.

The numerical results show a reduction in the spectral variance as the
damping loss factor increases. It is interesting to note that the mass-loaded
plate results are always higher than those of the bare rectangular plate, re-
gardless of the DLF magnitude. As discussed previously, the differences are
directly associated with mode shape contributions of the weakly localized
mode shapes which are amplified as the frequency or DLF increases.
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4.3.4 Discussion and Remarks

In this section the statistical characteristics of the modal parameters of
plate systems with several geometries were investigated through the results
for the statistical observables. The main effects of some particular physical
phenomena, which can be established in real engineering systems and affect
substantially the modal parameter statistics, were quantified using the results
for the statistical observables. Their possible impacts on the performance of
the SEA variance predictions based on the Poisson and GOE models were
discussed in detail.

The statistical investigation of the natural frequencies of integrable
systems, as such the square and circle plates, allowed the main effects of the
degenerate natural frequencies on the statistical observable results to be as-
sessed. As expected, the results for the natural frequency statistics showed
that the spectral rigidity characteristics are substantially reduced with the oc-
currence of degenerate modes. In this study, two distinct approaches were
considered to investigate the statistical characteristics of degenerate natural
frequency spectra.

The first approach, employing the Fourier unfolding process, applied
a low-pass filter to the staircase function fluctuations removing the non-
universal contributions from the original staircase function. As observed in
Figures 119 (b) and 122 (d), an excellent agreement was ensured between the
numerical results from the Fourier unfolding process and the standard Poisson
model prediction when a suitable cut-off time is adopted. The effects of an
inadequate choice for the cut-off time on the long-range statistical observable
results were demonstrated in Figure 121.

The second approach proposes the use of the scaled Poisson model
predictions based on a degeneracy parameter. This corrective procedure is
supported by the Shnirelman peak theory (99), where the degeneracy parame-
ter is defined as the fraction of the number of degenerate natural frequencies
in relation to the total number of natural frequencies. For the integrable plate
systems investigated herein, the fraction of the degenerate natural frequencies
was determined using the FEM model results. Thus, the scaled Poisson pre-
dictions were evaluated and conformed very well with the numerical results
for short and long-range fluctuation statistics. Indeed, these two investigation
approaches can be considered to have equivalent performance for the natural
frequency statistical observable results of the regular systems with degenerate
natural frequencies investigated herein.

For plate systems with rectangular-like shapes, the spatial mode shape
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statistics showed strong evidence of the establishment of the modal superpo-
sition phenomenon for two degenerate mode shapes of distinct mode clas-
ses, where the resultant characteristics of the mode shape statistics are al-
most-Gaussian, Figures 129 - 130 and 140 - 141. As demonstrated for
square and rectangular plates, the spatial representations of these mode shapes
showed clearly delocalized amplitudes and nodal lines with arbitrary directi-
ons, although some geometrical symmetries remain unbroken. As reported in
the literature (169, 69), these mode shapes are typical examples of the modal
superposition of degenerate modes: flexural (vertical transverse) mode which
has the characteristics of regular statistics and the extensional (longitudinal)
mode which has the characteristics of chaotic statistics.

It is important note that only the results for the linear and squared
spatial correlation functions of the normalized mode shape components were
able to identify explicitly the regular statistics contributions from the flexural
mode shape. Additionally, the spectral mode shape statistics results showed
that these mode shapes are not perfectly Gaussian and that some regular or
non-universal characteristics remain. As observed in Figures 134 and 143, the
good performance of the spectral kurtosis and Lilliefors Test results suggests
that these functions are efficient mode shape metrics to obtain an accurate
identification of the establishment of the bouncing ball or stable periodic or-
bits on the spatial domain of the plate systems investigated herein.

The corresponding effects of the modal superposition of the flexural
and extensional mode shapes on the natural frequency statistics were clearly
visualized in the natural frequency statistical observable results of the rectan-
gular plate, since the ratio of the sides of this system is close to the gold ratio,
which avoids spurious degeneracies. The results for the natural frequency sta-
tistical observables show the establishment of incipient level repulsion cha-
racteristics in the short-range fluctuation range. For the long-range fluctuation
statistics, a gradual increase in the spectral rigidity occurs as the spectral dis-
tance between the natural frequencies increases, leading to discrepancies in
relation to the analytical prediction based on the Poisson model.

As discussed in Chapter 2, 2D-systems such as flexural plates are con-
venient systems to carry out systematic investigations on the effects of brea-
king symmetry on the modal parameter statistics. Considering all of the plate
geometries investigated herein, the statistical observable results were able to
describe the main effect on the spectral natural frequency statistics when the
symmetry characteristics were altered or perturbed. Overall, a gradual sta-
tistical transition from regular to disordered statistics was established for the
modal parameters.
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Special importance is given to two particular systems investigated he-
rein: the rectangular plate with an arc at one corner and the mass-loaded
rectangular plate. These systems present statistical characteristics similar to
those presented for real engineering systems, where the modal parameter sta-
tistics are strongly dependent on the excitation frequency. In the case of the
rectangular plate with one arc, the statistical observable results show that the
breaking of the system symmetries through the focusing and defocusing ge-
ometrical elements may provide the establishment of a high-frequency de-
terministic chaos in which the long-range fluctuation statistics of the modal
parameters deviate slightly from the GOE model due to the non-universal
effects originating from the pseudo-integrable nature of the system.

In the case of the mass-loaded rectangular plate, small perturbations
in the mass or stiffness characteristics of a regular system lead to significant
effects on the modal parameter statistics and the strength of these effects is
dependent on the excitation frequency. The current spatial and spectral results
for the mode shape statistics of the mass-loaded plate showed an overall agre-
ement with the GOE model in the mid and high-frequency ranges. However,
some discrete modes in the highest frequency range do not conform with the
GOE model, showing incipient structural localization characteristics, as de-
monstrated by mode 230 in Figures 155 (b) and 156 (d). Additionally, these
weak localization effects are expected for corresponding natural frequencies,
leading to an incipient establishment of the non-universal characteristics in
the long-range fluctuation range.

In last subsections, the analysis of the statistical characteristics of the
kinetic energy responses for the bare and mass-loaded rectangular plates sub-
jected to single-point and spatially-averaged excitations allowed the systema-
tic investigation of the contribution of each modal parameter statistics to the
kinetic energy density results as well as to its first two statistical moments
when a spectral averaging process is adopted.

In the cases of plates subjected to the spatially-averaged excitation,
the kinetic energy density results conformed very well to standard SEA pre-
dictions for the two classes of plates investigated herein, regardless of the
frequency band domain considered. Indeed, this excellent agreement can be
attributed to the following factors: (i) the spectral mean values are weakly
affected by the natural frequency contributions, and (ii) the averaging pro-
cess over the spatial domain of the system removes the non-reverberant mode
shape contributions, such as those associated with the establishment of the
structural localization phenomenon (i.e., the spatial confinement of energy
close to the excitation point).
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The corresponding spectral relative variance results are strongly influ-
enced by the statistical properties of the natural frequencies along the spec-
trum, showing distinct characteristics for the bare and mass-loaded rectangu-
lar plates. As observed in Figures 123 and 127, the spectral natural frequency
statistics for the bare rectangular plate are almost-Poissonian while those for
the mass-loaded rectangular plate conform with the GOE model. Therefore,
satisfactory agreement between the spectral relative variance numerical re-
sults and the SEA analytical predictions based on the Poisson and GOE model
was obtained for the bare and mass-loaded rectangular plates, respectively.

However, as the damping loss factor increases, inter-modal correlati-
ons are likely established between the natural frequencies along the frequency
domain and the small discrepancies between the spectral natural frequency
statistics and the well-defined statistics (Poisson and GOE models) may be-
come relevant, directly affecting the level of agreement with the analytical
predictions as observed in Figures 160 and 162. Indeed, the main characte-
ristics of the damping mechanism effects are a substantial reduction in the
oscillatory behavior of the energy response and a decrease in the spectral va-
riability, mainly in the mid and high-frequency ranges where a large number
of modes contribute to the energy response.

In the case of plates subjected to a single-point excitation, the kinetic
energy density results are expected to be strongly influenced by the statistical
mode shape properties at the excitation point.

As observed in Figures 163 and 164, the difference between the 1/3
octave frequency band energy responses for the bare and mass-loaded rectan-
gular plates can be associated with distinct characteristics of the mode shape
statistics. Indeed, the characteristics of the spatial mode shape statistics for
the bare rectangular plate are well-behaved along the mode order domain
while those of the mass-loaded rectangular plate have some high-order mode
shapes with weak localization characteristics which introduce a peak or anti-
peak in the energy response, see Figures 139 and 153, respectively. Additio-
nally, it is interesting to note that the attachment of the point masses affects
substantially the spectral mode shape statistics, breaking the symmetry effects
and dissolve the bouncing ball periodic orbits.

In this regard, these notable differences in the modal parameter statis-
tics support the very distinct spectral variance results observed for bare and
mass-loaded rectangular plates mainly in the mid and high-frequency ranges.
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4.4 Ensemble Averaging Approach

4.4.1 Random Rectangular Plates

In this study, a first ensemble composed of 500 random rectangular
plates was investigated. The plate ensemble was artificially generated based
on a nominal structure which is identical to the rectangular plate investigated
previously in Section 4.3.

In the randomization process, the plate sides of each member, a and
b, were considered to be independent Gaussian variables, Manohar and Ke-
ane (15) and Cordioli (20). For each ensemble member, the plate sides are
calculated using the following equations:

a = a0 (1+ εpUg) andb = b0 (1+ εpUg) , (4.17)

where a0 and b0 are the sides of the nominal rectangular plate6, Ug is a Gaus-
sian random variable with zero mean and unit standard deviation, and εp is
a parameter which describes the randomness level of the system. Additio-
nally, geometrical regularity was assumed for each plate member such that
the opposite sides were considered identical and parallel, ensuring a perfect
rectangular shape for all ensemble members.

In order to guarantee that the strength of the level of the system ran-
domness assumed for the plate sides has a significant effect on the modal
parameter statistics, a value of εp = 0.12 was adopted for both plate sides.
The free-free boundary condition was considered in the development of the
FEM models. Thus, the natural frequencies and corresponding mode shapes
were numerically evaluated for each plate member of the ensemble through
the FEM modal analysis.

In the following sections, the best-known RMT statistical observables
were evaluated for the first 250 modes, considering the ensemble averaging
process approach for the natural frequencies and the ensemble, spatial and
spectral averaging process approaches for the corresponding mode shapes7.

6It is important to note that this randomization approach allows that the typically expected
values for the plate sides across the ensemble are identical to those presented for a nominal
rectangular plate, that is, E [a] = a0 and E [b] = b0.

7A similar statistical investigation with random rectangular plates was previously carried out
by Cordioli (20). In his work the natural frequency statistics were assessed using ensemble
averaging approach. The statistical analysis of the mode shape statistics at excitation point was
only investigated considering the ensemble averaging approach, through the values obtained for
the mode shape statistics factor (K). Additionally, the kinetic energy density results considered
a type of excitation field, the single-point loading. In this section of current work, two types
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These numerical results are compared to analytical predictions based on GOE
and Poisson models. Additionally, the performance of the main SEA para-
meters applied traditionally to verify the establishment of GOE statistics for
modal parameters was verified in relation to the conclusions drawn from the
statistical observable results.

Natural Frequency Statistics

In Figure 165, the PDF of adjacent natural frequency spacings and ∆3
- statistics results are shown for several mode orders (or natural frequency
spacings).

(a1)

of excitation field are considered in the statistical analysis of the kinetic energy density results:
single-point and spatially-averaged excitations. For the obtaining of the mode shape statistical
observable results, the spatial and spectral averaging approaches are also considered, since their
results contribute significantly for an improved and systematically understanding of the non-
universal deviations observed in the literature results of SEA variance.
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(a2)

(b1)
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(b2)

(c1)
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(c2)

(d1)
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(d2)

Figure 165: Natural frequency statistical observable results for the random
rectangular plates (ensemble averaging approach). Plot (a): Mode 20. Plot
(b): Mode 80. Plot (c): Mode 120. Plot (d): Mode 200.

As shown in Figure 165, the ensemble natural frequency statistical
observable results showed a satisfactory agreement with the analytical pre-
dictions based on the Poisson model. Only small discrepancies are observed
for the first bins of the PDF of the adjacent natural frequency spacings, sug-
gesting an incipient establishment of level repulsion characteristics for the
natural frequencies. On the other hand, the ∆3 - statistics results suggest that
the discrepancies observed between the analytical prediction based on the
Poisson model and numerical results are amplified as the natural frequency
spacing increases.

Based on the current results for the natural frequency statistical ob-
servables, the Poisson model is expected to perform well in representing the
natural frequency statistics across the ensemble only for plates with very light
damping levels. Indeed, for these plates, the number of resonant modes which
contribute substantially to the kinetic energy density response is not high and
the actual differences between the numerical results and analytical predictions
based on the Poisson model are minimized for the natural frequency statistics.

In Figure 166, the spectral natural frequency statistical observable re-
sults of the nominal rectangular plate investigated in section 4.3.1 are compa-
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red to the ensemble natural frequency statistical observable results.

(a1)

(a2)
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(b1)

(b2)
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(c1)

(c2)

Figure 166: Natural frequency statistical observable results for nominal and
random rectangular plates: spectral and ensemble averaging approaches.

As observed in Figure 166, a satisfactory equivalence is observed
between the ensemble and spectral natural frequency statistics mainly in the
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small spacing domain and thus the validity of the spectral-ensemble ergo-
dicity is ensured locally sense8for natural frequencies. On the other hand,
for large natural frequency spacings, the differences between the spectral
and ensemble natural frequency statistics results become substantial and the
spectral-ensemble ergodicity assumption is no longer valid for natural fre-
quency statistics.

Natural Frequency SEA Parameter: Statistical Overlap Factor

The statistical overlap factor is a natural frequency SEA parameter
which is traditionally used to quantify the level of randomness of an ensem-
ble composed of random engineering structures, (18, 3, 4, 14). In the SEA
context, the statistical overlap factor can be defined using: the local mean
spacing between natural frequencies (15), or global mean spacing concept
which represents the mean value for the spacings over ensemble and spectral
domains, (18, 35, 4). In Figure 167, the statistical overlap factor results are
shown for a random rectangular plate ensemble.

(a)

8According to Langley (23), local sense term means a group of neighboring natural frequen-
cies with nearly constant mean spacing.
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(b)

Figure 167: Statistical overlap factor results for an ensemble of the random
rectangular plates (ensemble averaging approach). Plot (a): global natural
frequency spacing, local natural frequency spacings, natural frequency stan-
dard deviations. Plot (b): Statistical overlap factor: based on global and local
mean values of the natural frequency spacings.

As shown in Figure 167 (b), the statistical overlap factor results sug-
gest approximately that, for mode orders greater than mode 20 (corresponding
approximately the frequency of 100 Hz), the statistical overlap factor values
are greater than unity. According to Langley et al (18, 4), the establishment of
the GOE model for modal parameter statistics would be expected for modes
where the statistical overlap factor values are greater than unity. Additionally,
Figure 167 (a) shows that large standard deviations are also observed in the
mid and high mode order ranges, leading to large statistical overlap factor
values.

It is important to emphasize that the statistical overlap factor results
lead to the opposite conclusions compared with the results obtained previ-
ously for the natural frequency statistical observable results. Indeed, the reli-
ability of the statistical overlap factor performance in terms of verifying the
applicability of the GOE model to the modal parameter statistics is not totally
consolidated in the analytical SEA field and further systematic investigations
are certainly needed, kessissoglou et al (80). Indeed, the statistical overlap
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factor results are based on the ensemble natural frequency statistics only and
any preliminary conclusion regarding to the establishment of GOE statistics
for the modal parameters should be avoided, since the definition of the statis-
tical overlap factor does not take into account the ensemble statistics for the
corresponding mode shapes.

Mode Shape Statistics

In this section, a statistical analysis of the corresponding mode shapes
is performed in order to provide a detailed understanding of the modal pa-
rameter statistics characteristics as well as of the conditions required for the
establishment of universal statistics described by the GOE model.

In Figure 168, the spatial kurtosis and Lilliefors Test results for each
member are presented in terms of the mode order domain. The arithmetic and
geometric mean values are also presented along with the analytical predicti-
ons based on sinusoidal and GOE mode shapes.

(a)
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(b)

Figure 168: Spatial mode shape statistics results for the random rectangular
plates (spatial averaging approach). Plot (a): spatial kurtosis results: indivi-
dual members, arithmetic and geometric mean values and analytical predicti-
ons (sinusoidal and GOE). Plot (b): spatial Lilliefors Test results: individual
member values and arithmetic mean values.

As observed in Figure 168 (a), a moderate level of dispersion is ob-
served for the spatial kurtosis values throughout the mode order domain. The
mean values obtained from the arithmetic and geometric averaging proces-
ses are very similar suggesting that the traditional arithmetic mean value is
sufficiently accurate to represent the typically expected or probabilistic mode
value. Indeed, the spatial kurtosis results show that most values are slightly
larger than the 2D-sinusoidal kurtosis value, that is, K ' 2.6 > 2.25 = K2D

sin ,
regardless of mode order value across the ensemble.

The corresponding Lilliefors Test results clearly show that most of the
mode shapes are not Gaussian, although a small number of the mode sha-
pes are accepted, Figure 168 (b). These modes with Gaussian characteristics
may be associated with a particular group of mode shapes resulting from the
modal superposition of two degenerate mode shapes: flexural (vertical trans-
verse) and extension (longitudinal), where the flexural modes present regular
statistics while the extensional modes have chaotic statistics, Schaadt (69, 70).

Another relevant characteristics of the mode shapes is the degree of
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statistical independence at a fixed mode shape component, for example, that
associated with a given excitation point. In the case of the GOE eigenvec-
tors, their components are statistically independent and their distribution is
expected to be Gaussian. In Figure 169, the spectral kurtosis and Lilliefors
Test results at excitation point X0

9 are presented for each plate member. As
shown in Figure 169(a), the spectral kurtosis results are approximately cons-
tant across the ensemble and a small dispersion is also observed around the
ensemble kurtosis mean value (K = 2.33).

(a)

9The spatial coordinates of excitation point X0 are identical to those adopted previously in the
spectral analysis of the kinetic energy density results of the nominal rectangular plate described
in subsection 4.3.3, that is, X0 = (0.923, 0.227) m.
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(b)

Figure 169: Spectral mode shape statistics results at excitation point X0 for
the random rectangular plates (spectral averaging approach). Plot (a): spec-
tral kurtosis: individual members, arithmetic and geometric mean values and
analytical predictions (sinusoidal and GOE models). Plot (b): spectral Lillie-
fors Test results: individual member and arithmetic mean values.

In Figure 169(b), the spectral Lilliefors Test results at excitation point
X0 are presented for random rectangular plate members. The arithmetic mean
value suggests, surprisingly, that for approximately 70% of the plate mem-
bers the mode shape components have a Gaussian distribution at excitation
point X0. However, the corresponding spectral kurtosis results are substanti-
ally lower than the GOE value (K = 3) and suggest that intermediate statistics
between the sinusoidal and GOE models is established for these mode sha-
pes, where the distribution of the mode shape amplitudes associated with the
excitation point X0 is slightly more spread out around the mean value than
the corresponding Gaussian distribution, see Figure 169. Indeed, these re-
sults for the spectral mode shape statistics illustrate the difficulty involved in
obtaining an exclusive eigenvector statistical observable which is able to ve-
rify, with sufficient accuracy, not considering the other eigenvector statistical
observable results, the agreement with the GOE model.

As discussed in the previous chapter, the modal parameter statistics
of a given random system is only correctly characterized when all available
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results for the statistical observables are analyzed together and compared to
each other, regardless of their individual performance in the characterization
of the modal parameter statistics.

In Figure 170 the ensemble kurtosis values associated with the exci-
tation point X0 and their corresponding Lilliefors Test results are shown for
the random rectangular plates. As observed in Figure 170 (a), the ensem-
ble kurtosis values have a small dispersion around the spectral mean value
(K̄ = 2.36). Although not shown here in detail, the distribution of the mode
shape component associated with the excitation X0 across the ensemble is al-
most symmetric and presents a well-defined peak. Thus, the spectral mean
value is sufficiently representative to determine the typically expected value
for the ensemble kurtosis along the mode order domain.

Figure 170: Ensemble mode shape statistics results at excitation point X0
for the random rectangular plates (ensemble averaging approach). Plot (a):
ensemble kurtosis, spectral arithmetic mean value and analytical predictions
(sinusoidal and GOE models). Plot (b): ensemble Lilliefors Test results.
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The corresponding ensemble Lilliefors Test results associated with the
excitation point X0 suggest that most of the mode shape amplitudes do not
have a Gaussian distribution. Although some mode shapes are approved in
the Lilliefors Test, the corresponding kurtosis results clearly show that these
mode shapes have an incomplete establishment of universal statistics descri-
bed by the GOE model.

It is interesting to note that the spectral and ensemble kurtosis curves
have very similar characteristics along the respective domains. In Figure 171,
the PDF values for the mode shape components associated with the excitation
point X0 are plotted considering the spectral and ensemble domains. For the
evaluation of the spectral results at excitation point X0, a typical plate member
was considered, for which the spectral kurtosis value is the same as the typi-
cally expected value across the ensemble. For the evaluation of the ensemble
results, three spacings along the mode order domain were considered.

(a)
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(b)

(c)

Figure 171: PDF values of the mode shape amplitudes associated with the
excitation point X0 for the random rectangular plates: spectral and ensemble
averaging approaches.
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As observed in Figure 171, the spectral and ensemble PDF results
are similar, although some small discrepancies can be clearly observed. The
ensemble PDF results are discontinuous and incipiently disordered while the
spectral results are approximately continuous and well-behaved, showing a
distribution close to the Gaussian pattern.

Considering the mode shape SEA parameters P and Q proposed origi-
nally by Cordioli (20), their evaluations consider a fixed number of compo-
nents for the ith-mode shapes of members across the ensemble; see Equations
(2.46) and (2.49), respectively. In the case of the random rectangular ensem-
ble investigated herein, for all plate members a fixed mesh size was adopted
for the development of the FEM model . As a direct consequence, the num-
ber of nodes (or mode shape components) for each plate member can not be
fixed across the ensemble since the plate sides are independent Gaussian vari-
ables, and thus the evaluation of these mode shape SEA parameters becomes
inappropriate.

Kinetic Energy Density Statistics: General Considerations

The ensemble averaging approach was then adopted to assess the sta-
tistical characteristics of the kinetic energy density results for the random
rectangular plates.

In order to investigate the effects of distinct modal parameter statistics
on the kinetic energy density statistics, two distinct excitation classes are con-
sidered. The first is a unitary longitudinal single point-loading which provi-
des an energy response dependent on both modal parameter statistics. In this
analysis, the location of the excitation point was considered to be the same for
all plate members and identical to that adopted previously during the spectral
analysis of the kinetic energy density statistics, that is, X0 = (0.923, 0.227)
m.

The second excitation class considers a spatially-averaged excitation
which provides energy results identical to those obtained for rain-on-the-roof
excitation. It is important to emphasize that the contributions of the mode
shape statistics are removed for this second excitation class and thus the ki-
netic energy density statistics are dependent only on the natural frequency
statistics, Brown (1).

Based on a similar analysis reported in the current SEA literature (1,
3, 35, 18), the damping loss factor (DLF) was considered to be frequency-
constant and three distinct values were considered to ensure distinct levels of
modal superposition, that is, η = 0.010, 0.015 and 0.030. Additionally, the
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free-free boundary condition was adopted for the random rectangular plates.
Thus, the single-point and spatially-averaged kinetic energy density results
were evaluated for the narrow frequency band domain with intervals of 10
Hz. The excitation frequency range considered was from 0 to 1400 Hz. It is
also important to note that a sufficient number of modes was adopted in the
superposition process so as to provide the correct response convergence in the
frequency range investigated.

Kinetic Energy Density Statistics: Spatially-Averaged Excitation

In Figure 172, the mean and relative variance results are shown for the
spatially-averaged excited rectangular plates with η = 0.01. The numerical
results are compared with the SEA predictions based on the Poisson and GOE
models.

(a)



546 4 Numerical Analysis of Random Flexural Plates

(b)

Figure 172: Mean and relative variance of the spatially-averaged kinetic
energy density results for the random rectangular plates with η = 0.01 (en-
semble averaging approach). Plot (a): mean values. Plot (b): relative variance
values.

As observed in Figure 172 (a), an excellent agreement with the SEA
prediction is observed for the frequency range considered. Indeed, the statisti-
cal characteristics of the mean value for the spatially-averaged kinetic energy
density results are expected to be weakly dependent on the natural frequency
statistical characteristics (i.e., spacing distribution, spectral correlations, etc),
(84, 154).

Considering the corresponding relative variance results, some discre-
pancies are clearly observed between the numerical results and the SEA pre-
diction. As shown in Figure 172 (b), the analytical prediction based on the
Poisson model slightly overpredicts the numerical results. Indeed, good agre-
ement with the SEA prediction based on the Poisson model is strictly associ-
ated with the following factors: (i) the ensemble natural frequency statistics
are almost-Poissonian; and (ii) the contributions of the mode shape statistics
to the spatially-averaged kinetic energy density results are neglected, Brown
(1). Therefore, the slight overprediction of the SEA formulation based on
the Poisson model is easily explained by the small discrepancies observed in
the ∆3 - statistics results. Indeed, the statistical characteristics of the natural
frequencies are slightly more rigid than those expected for perfect Poissonian
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eigenvalues.
In Figures 173 and 174, the mean and relative variance results are

shown for the spatially-averaged excited rectangular plates with η = 0.015
and η = 0.030, respectively. The numerical results are compared with SEA
predictions based on Poisson and GOE models.

(a)
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(b)

Figure 173: Mean and relative variance for the spatially-averaged kinetic
energy density results of the random rectangular plates with η = 0.015 (en-
semble averaging approach). Plot (a): mean values. Plot (b): relative variance
values.

(a)
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(b)

Figure 174: Mean and relative variance of the spatially-averaged kinetic
energy density results for the random rectangular plates with η = 0.030 (en-
semble averaging approach). Plot (a): mean values. Plot (b): relative variance
values.

As observed in Figures 172 - 174, the variability of the kinetic energy
results across the ensemble is gradually reduced as the damping loss factor
increases. The increase in the DLF value leads to an increase in the modal
superposition and thus the difference between the ensemble natural frequency
and the Poisson model statistics becomes substantial and strong spectral cor-
relations between the natural frequencies are established, which reduces the
energy response variability over the spectral and ensemble domains.

Kinetic Energy Density Statistics: Single Point-Loading

In Figure 175, the mean and relative variance values of the single-point
kinetic energy density results are shown for the rectangular plates with η =
0.01. The numerical results are compared with the SEA predictions based on
the Poisson and GOE models.
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(a)

(b)

Figure 175: Mean and relative variance of the single-point kinetic energy
density results for the random rectangular plates with η = 0.01 (ensemble
averaging approach). Plot (a): mean value. Plot (b): relative variance values.

As observed in Figure 175 (a), an excellent agreement is observed
between the SEA prediction and the mean values. The corresponding relative
variance results also show, surprisingly, agreement with the SEA prediction
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based on the Poisson model, Figures 175 (b). As demonstrated by the ensem-
ble modal parameter statistics results, the incipient discrepancies were clearly
identified in relation to the Poisson model for the natural frequencies and in
relation to the sinusoidal statistics for the corresponding mode shapes. Indeed
the natural frequencies are slightly more rigid than the Poisson eigenvalues
and the corresponding mode shapes are not perfectly sinusoidal, since the
free-free boundary condition was adopted. Thus, it would be expected that
the numerical results do not conform very well with the analytical prediction
based on the Poisson model, where the natural frequencies are perfectly un-
correlated and the mode shapes are assumed to be the product of sinusoidal
functions. Therefore, the unexpected good agreement observed in Figure 175
(b) seems to be due to the fact that these possible non-Poisson effects of the
modal parameter statistics could be sufficiently compensated in the modal su-
perposition process, since the single-point kinetic energy density results are
affected by the statistical contributions from the natural frequencies and mode
shapes.

In Figures 176 and 177, the mean and relative variance values of the
single-point kinetic energy density results are shown for the rectangular pla-
tes with η = 0.015 and η = 0.030, respectively. The numerical results are
compared with the SEA predictions based on the Poisson and GOE models.

(a)
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(b)

Figure 176: Mean and relative variance of the single-point kinetic energy
density results for the random rectangular plates with η = 0.015 (ensemble
averaging approach). Plot (a): mean values. Plot (b): relative variance values.

(a)
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(b)

Figure 177: Mean and relative variance of the single-point kinetic energy
density results for the random rectangular plates with η = 0.030 (ensemble
averaging approach). Plot (a): mean values. Plot (b): relative variance values.

As observed in Figures 175-177, as the damping loss factor increa-
ses the variability of the single-point kinetic energy density results across the
ensemble is gradually reduced and the level of agreement with the analyti-
cal Poisson prediction seems to become lower, mainly in the high-frequency
range. It is important to note that, despite the strong spectral correlations
which are introduced by the increase in the modal superposition, relevant con-
tributions from the mode shape statistics associated with the excitation point
X0 can be expected for single-point kinetic energy density statistics since the
mode shape statistics are very sensitive to the detailed nature of the system.

4.4.2 Random Mass-Loaded Plates

In this study, the statistical characteristics of a second ensemble com-
posed of the 500 random mass-loaded rectangular plates are investigated
across the ensemble. The structural irregularities of the mass distribution
along the spatial domain of the system associated with the manufacturing un-
certainties were represented by small point masses attached to the surface of
each plate member.

For each mass-loaded rectangular plate member, 20 point masses
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(each point mass with 1% of the total mass of the bare rectangular plate)
are randomly distributed over the surface of the nominal rectangular plate.
In this study, the ensemble size adopted guaranteed the convergence of the
statistical results of the kinetic energy density statistics as well as of the
modal parameter statistics across the ensemble.

As discussed on the previous chapters, the statistical investigation of
modal parameters from the mass-loaded plate systems has been extensively
carried out by several researchers, considering ensemble averaging approach
Langley et al. (16, 3, 18, 4, 35, 17), Brown (1), Cordioli et al. (19) and
Cordioli (20). However, in this section of current work, the spatial and spec-
tral averaging approaches are also considered for the obtaining of the mode
shape statistical observable results. Additionally, two types of excitation field
are considered in the statistical analysis of the kinetic energy density results:
single-point and spatially-averaged excitations. In this context, the compari-
son between the energy results and modal parameter statistical observables re-
sults evaluated under several averaging approach provide significant contribu-
tions for an improved and systematically understanding of the non-universal
deviations observed in the literature results of SEA variance.

Natural Frequency Statistics

In Figure 178, the PDF values for adjacent natural frequency spacings
and the ∆3 - statistics results are shown for several mode orders. The statistical
characteristics of the transition from Poisson to GOE statistics are demons-
trated in Figures 178 (a) - (c). Additionally, the natural frequency results for
mode 35 suggest that the establishment of universal statistics for the natu-
ral frequencies of the mass-loaded plate occurs initially for the short-range
fluctuations (i.e., small natural frequency distances), Figure 178(b).
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(a1)

(a2)
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(b1)

(b2)
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(c1)

(c2)



558 4 Numerical Analysis of Random Flexural Plates

(d1)

(d2)
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(e1)

(e2)
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( f1)

( f2)

Figure 178: Natural frequency statistical observable results for the mass-
loaded rectangular plates (ensemble averaging approach). Plot (a): Mode
30. Plot (b): Mode 35. Plot (c): Mode 50. Plot (d): Mode 175. Plot (e):
Mode 230. Plot (f): Mode 250.
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As observed in Figures 178 (d) - (f), the ensemble natural frequency
statistical observable results show satisfactory agreement with the analytical
predictions based on the GOE model. The establishment of level repulsion
characteristics is clearly observed in the short-range fluctuation statistical ob-
servable results. However, the ∆3 - statistics results showed small deviations
in relation to GOE model prediction for large natural frequency distances.

Based on the current results for the natural frequency statistical obser-
vables, the application of the GOE model for the natural frequency statistics
across the ensemble is considered to hold in the local sense only. In other
words, universal statistics would only be established for a limited frequency
range where the neighboring natural frequencies have a nearly frequency-
constant spacing mean value, since for long-range variations in the mean spa-
cing, non-universal characteristics associated with system-dependent effects
are certainly established, Langley (23).

In Figure 179, the spectral natural frequency statistical observable re-
sults of the mass-loaded rectangular plate investigated in section 4.3.1 are
compared to the ensemble natural frequency statistical observable results.

(a1)
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(a2)

(b1)
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(b2)

(c1)
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(c2)

Figure 179: Natural frequency statistical observable results for mass-loaded
rectangular plates: spectral and ensemble averaging approaches.

As can be seen in Figure 179, a satisfactory equivalence is observed
between the ensemble and spectral statistics in the small spacing domain and
thus, the validity of spectral-ensemble ergodicity is locally ensured for the
mid and high natural frequencies of the mass-loaded rectangular plate.

On the other hand, the differences between the spectral and ensemble
long-range fluctuation statistics become asymptotically relevant as the fre-
quency increases, and thus the spectral-ensemble ergodicity assumption is no
longer valid for natural frequency statistics.

Natural Frequency SEA Parameter: Statistical Overlap Factor

In Figure 180, the statistical overlap factor results are shown for the
mass-loaded rectangular plate ensemble. The definitions based on the local
and global mean spacings were considered for the evaluation of the statistical
overlap factor results.
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(a)

(b)

Figure 180: Statistical overlap factor results for an ensemble of the mass-
loaded rectangular plates (ensemble averaging approach). Plot (a): global na-
tural frequency spacing, local natural frequency spacings, natural frequency
standard deviations. Plot (b): Statistical overlap factor: based on global and
local mean values for the natural frequency spacings.
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As observed in Figure 180 (a), the global mean spacing value seems
to be sufficiently accurate to represent the typically expected value for the
local mean spacings along the mode order domain. In Figure 180 (b), the
statistical overlap factor results suggest that the establishment of the GOE
model for the modal parameter statistics would be expected for mode orders
greater than mode 50 (corresponding approximately to a frequency of 250
Hz), since the statistical overlap factor values are larger than unity.

It is important to emphasize that the conclusions of the statistical over-
lap factor analysis are in agreement with the results obtained previously for
the natural frequency statistical observables. However, the reliability of the
statistical overlap factor analysis in terms of verifying the applicability of the
GOE model to modal parameter statistics is not totally consolidated. Indeed,
some examples of the unsuccessful application of the statistical overlap fac-
tor analysis have been reported in the SEA literature and further investigations
are certainly needed, Cordioli (20) and kessissoglou et al (80).

Mode Shape Statistics

In this section, a statistical analysis of the corresponding mode shapes
is performed considering spatial, spectral and ensemble averaging approa-
ches. In Figure 181, the spatial kurtosis and Lilliefors Test results for each
mass-loaded plate member are presented in terms of the mode order domain.
The arithmetic and geometric mean values are also presented along with the
analytical predictions based on sinusoidal and GOE mode shapes.

As observed in Figure 181 (a), a moderate level of dispersion is ob-
served for the spatial kurtosis values throughout the mode order domain. The
mean values of the spatial kurtosis are slightly larger than GOE kurtosis value,
suggesting an incipient establishment of the structural localization phenome-
non. Additionally the small differences between the mean values obtained
from the arithmetic and geometric averaging processes suggest that the tradi-
tional arithmetic mean value is sufficiently accurate to represent the typically
expected or probabilistic mode value.

The corresponding Lilliefors Test results show clearly that most of the
mode shapes are not Gaussian, although a small number of the mode shapes
of some members are accepted in the high-frequency range, Figure 181 (b).
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(a)

(b)

Figure 181: Spatial mode shape statistics results for the mass-loaded rectan-
gular plates (spatial averaging approach). Plot (a): spatial kurtosis results:
individual members, arithmetic and geometric mean values and analytical
predictions (sinusoidal and GOE). Plot (b): spatial Lilliefors Test results: in-
dividual member values and arithmetic mean values.
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In Figure 182, the spectral characteristics of mode shape component
associated with the excitation point X0 are presented for each mass-loaded
plate member. The spectral kurtosis and Lilliefors Test results are plotted
along with the GOE and sinusoidal model predictions.

As shown in Figure 182 (a), the spectral kurtosis results are approxi-
mately constant across the ensemble and a small dispersion is also observed
around the ensemble kurtosis arithmetic mean value (K̄ = 3.01). Indeed, this
good kurtosis agreement with the GOE values suggests that the mode shape
components have a Gaussian distribution and are probably statistically inde-
pendent at excitation point X0.

(a)
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(b)

Figure 182: Spectral mode shape statistics results at excitation point X0 for
the mass-loaded rectangular plates (spectral averaging approach). Plot (a):
spectral kurtosis: individual members, arithmetic and geometric mean values
and analytical predictions (sinusoidal and GOE models). Plot (b): spectral
Lilliefors Test results: individual member and arithmetic mean values

As shown in Figure 182 (b), the corresponding spectral Lilliefors Test
results at excitation point X0 are presented for mass-loaded rectangular plate
members. The arithmetic mean value suggests that for approximately 90%
of the mass-loaded plate members the mode shape components have a Gaus-
sian distribution at excitation point X0. These results suggest that the spec-
tral mode shape statistics at excitation point X0 are very close to those ex-
pected for perfect GOE eigenvectors, where the eigenvector components are
statistically independent variables with Gaussian distribution characteristics,
(56, 24).

In Figure 183 the ensemble kurtosis values associated with the excita-
tion point X0 and their corresponding Lilliefors Test results are shown for the
mass-loaded rectangular plates. As observed in Figure 183 (a), the ensemble
kurtosis values have a moderate dispersion around the spectral mean value
(K = 2,73). Although not shown here in detail, the distribution of the ensem-
ble kurtosis results associated with the excitation point X0 along the mode
order domain is approximately symmetric, but the typically expected value is
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lower than the spectral mean value, that is Ktyp = 2.60. 2.73 = K.

Figure 183: Ensemble mode shape statistics results at excitation point X0 for
the mass-loaded rectangular plates (ensemble averaging approach). Plot (a):
ensemble kurtosis, spectral arithmetic mean value and analytical predictions
(sinusoidal and GOE models). Plot (b): ensemble Lilliefors Test results.

The corresponding ensemble Lilliefors Test results associated with the
excitation point X0 suggest that most of the mode shape amplitudes do not
have a Gaussian distribution. Although not shown here, the ensemble skew-
ness coefficient results have dispersive characteristics along the mode order
domain, showing that the distribution of the mode shape components associa-
ted with excitation point X0 are strongly asymmetric for several mode orders.

In Figure 184, the PDF values for the mode shape components asso-
ciated with the excitation point X0 are plotted considering the spectral and
ensemble domains. For the evaluation of the spectral results at excitation
point X0, a typical mass-loaded plate member was considered while for the
evaluation of the ensemble results, three values along the mode order domain
were considered.
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(a)

(b)
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(c)

Figure 184: PDF values for the mode shape amplitudes associated with the
excitation point X0 for the mass-loaded rectangular plates: spectral and en-
semble averaging approaches.

As observed in Figure 184, the spectral and ensemble PDF results are
completely distinct. The ensemble PDF results are discontinuous while the
spectral results are approximately continuous and have a well-behaved distri-
bution. These notable differences between the characteristics of the spectral
and ensemble mode shape statistics results clearly demonstrate the distinct
levels of the establishment of chaotic statistics for the mode shapes.

Although the evaluations of the mode shape SEA parameters (P and
Q) are ideally possible for the mode shapes of the random mass-loaded plates,
computational limitations occurred during in their processing for the mathe-
matical software used in the current work. Therefore, the calculation of these
mode shape SEA parameters becomes prohibitive for this particular applica-
tion. Additionally, it is important to emphasize that mode shapes consist on
vectors with large dimensions since that a large number of the degrees of fre-
edom are employed for the building of FEM model of each mass-loaded plate
member of ensemble.
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Kinetic Energy Density Statistics: Spatially-Averaged Excitation

In Figure 185, the mean and relative variance results are shown for the
spatially-averaged excited mass-loaded plates with η = 0.01. The numerical
results are compared with the SEA predictions based on the Poisson and GOE
models.

As observed in Figure 185 (a), the mean value of the spatially-
averaged kinetic energy density results conform very well with the SEA
prediction. This excellent agreement can be attributed to the fact that the
mean results are weakly dependent on the statistical characteristics of the
natural frequencies, (84, 154).

(a)
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(b)

Figure 185: Mean and relative variance of the spatially-averaged kinetic
energy density results for the mass-loaded rectangular plates with η = 0.01
(ensemble averaging approach). Plot (a): mean values. Plot (b): relative
variance values.

The corresponding relative variance results conform well with the
SEA prediction based on the GOE model, except for some small deviations
observed in the high-frequency range. As shown in Figure 185 (b), the nume-
rical results are slightly higher than the GOE model prediction and the deviati-
ons seem to be amplified as the excitation frequency increases. Indeed, a large
number of modes contributes to the energy response in the high-frequency
range, and thus the small discrepancies in the long-range fluctuation statistics
become relevant to the statistical characteristics of the spatially-averaged ki-
netic energy density results. Therefore, the increase in the relative variance
values in the high-frequency range is supported by the reduction in spectral
rigidity characteristics of the natural frequencies which can be clearly ob-
served in the results for the long-range fluctuation statistical observables in
Figure 178.

In Figures 186 and 187, the mean and relative variance results are
shown for the spatially-averaged excited mass-loaded plates with η = 0.015
and η = 0.030, respectively. The numerical results are compared with the
SEA predictions based on the Poisson and GOE models.
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(a)

(b)

Figure 186: Mean and relative variance for the spatially-averaged kinetic
energy density results for the mass-loaded rectangular plates with η = 0.015
(ensemble averaging approach). Plot (a): mean values. Plot (b): relative
variance values.
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(a)

(b)

Figure 187: Mean and relative variance of the spatially-averaged kinetic
energy density results for the mass-loaded rectangular plates with η = 0.030
(ensemble averaging approach). Plot (a): mean values. Plot (b): relative
variance values.

As shown in Figures 185 - 187, the variability of the kinetic energy
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results across the ensemble is gradually reduced as the damping loss factor
increases. Additionally, the reduction in the level of agreement with the GOE
model prediction suggests that the small long-range differences between the
ensemble natural frequency and GOE model statistics are substantial in the
high-frequency range due to the establishment of a high modal superposition
condition.

Kinetic Energy Density Statistics: Single-Point Excitation

In Figure 188, the mean and relative variance values for the single-
point kinetic energy density results are shown for the mass-loaded plates with
η = 0.01. The numerical results are compared with the SEA predictions based
on the Poisson and GOE models.

(a)
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(b)

Figure 188: Mean and relative variance of the single-point kinetic energy
density results for the mass-loaded rectangular plates with η = 0.01 (ensemble
averaging approach). Plot (a): mean value. Plot (b): relative variance values.

As can be seen in Figure 188 (a), an excellent agreement is obser-
ved between the standard SEA formulation and the arithmetic mean values
of the kinetic energy density results. Figure 188 (b) shows that the analyti-
cal prediction based on the GOE model overestimates the numerical results
throughout the frequency domain investigated. Indeed, the discrepancies ob-
served between the numerical results and the GOE prediction for the variance
can be attributed to non-universal characteristics present in the mode shape
statistics.

As discussed in the previous subsections, the mode shape statistics of
the mass-loaded plates have significant deviations in relation to the statistics
expected for perfect GOE eigenvectors. The main non-universal characteris-
tics were identified in the results for the eigenvector statistical observables
evaluated through the spatial and ensemble averaging processes.

In Figure 181, the ensemble mode shape statistics do not conform per-
fectly with the GOE model characteristics. The spectral mean of the ensem-
ble kurtosis results is lower than the GOE kurtosis value and the correspon-
ding Lilliefors Test results clearly reject the hypothesis that the mode shape
components associated with excitation point X0 have a Gaussian distribution
across the ensemble. Additionally the spatial mode shape statistics suggest
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an incipient establishment of the structural localization phenomenon in the
mode shapes, which leads to large values for spatial kurtosis results.

On the other hand, the current variance results show, surprisingly, that
an excellent agreement was obtained when a value of 2.7 was adopted for the
mode shape statistics factor. This good performance of the GOE prediction
with K modified may be attributed to the following factors: (i) the short-range
fluctuation statistics of the natural frequencies conform well with the GOE
model; and (ii) the corresponding mode shapes present some initial level of
universal characteristics along the spectral domain.

As observed in Figure 182, the spectral characteristics of the fixed
mode shape component associated with the excitation point X0 are very si-
milar to those expected for perfect GOE eigenvectors. The ensemble mean
value for the spectral kurtosis results is approximately equal to 3 and only a
small dispersion across the ensemble is observed. Additionally, the spectral
Lilliefors Test results show that for approximately 90% of the mass-loaded
plate members the mode shape components have a Gaussian distribution at
excitation point X0, suggesting that the spectral mode shape statistics at exci-
tation point X0 are very similar to those expected for perfect GOE eigenvec-
tors, where the eigenvector components can be considered to be statistically
independent variables with Gaussian distribution characteristics.

In Figures 189 and 190, the mean and relative variance values for the
single-point kinetic energy density results are shown for the mass-loaded pla-
tes with η = 0.015 and η = 0.030, respectively. The numerical results are
compared with the SEA predictions based on the Poisson and GOE models.
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(a)

(b)

Figure 189: Mean and relative variance of the single-point kinetic energy den-
sity results for the rectangular mass-loaded plates with η = 0.015 (ensemble
averaging approach). Plot (a): mean values. Plot (b): relative variance values.
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(a)

(b)

Figure 190: Mean and relative variance of the single-point kinetic energy den-
sity results for the mass-loaded rectangular plates with η = 0.030 (ensemble
averaging approach). Plot (a): mean values. Plot (b): relative variance values.
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The variance results shown in Figures 188-190 demonstrate that the
variability of the single-point kinetic energy density results across the ensem-
ble is gradually reduced as the damping loss factor increases. In principle, the
level of agreement with the GOE model predictions with K = 3 or K = 2.7
seems to remain unaltered for the DLF values investigated herein. In general,
the relative variance results become smoother as the damping effect increases.

4.4.3 Discussion and Remarks

In this second part of the statistical investigation of flexural plates, a
complete statistical analysis of the modal parameters of two nominally iden-
tical ensembles of rectangular plates with distinct randomness natures was
performed considering the ensemble averaging approach for the natural fre-
quencies and the spatial, spectral and ensemble averaging approaches for the
corresponding mode shapes.

The first ensemble investigated herein was composed of random rec-
tangular plates the sides of which have a Gaussian distribution. The results
for the eigenvalue statistical observables showed that the ensemble natural
frequency statistics conform well with the analytical predictions based on the
Poisson model and the small discrepancies suggested an incipient establish-
ment of the level repulsion phenomenon which becomes more pronounced as
the natural frequency spacing increases. Additionally, the comparisons with
the previous natural frequency statistical observable results obtained using
the spectral averaging approach demonstrated that the validity of the spectral-
ensemble ergodicity only holds locally for the natural frequencies of random
rectangular plates. On the other hand, the statistical overlap factor analysis
led to the opposite conclusions to those obtained for the statistical observa-
bles results, which suggest a satisfactory agreement with the Poisson model
throughout the frequency range investigated. Indeed, the statistical overlap
factor results indicated erroneously that the universal establishment of GOE
statistics for the natural frequencies would be expected for mode orders grea-
ter than mode 20 (that is, approximately a frequency of 100 Hz).

Overall, the results for the mode shape statistical observables showed
the establishment of an intermediate statistics between sinusoidal and Gaus-
sian statistics, that is, an incomplete establishment of the GOE model, regar-
dless of the mode shape averaging approach adopted. The spatial mode shape
statistics results suggested the establishment of a transitory state between the
sinusoidal and Gaussian statistics, where the typically expected value for the
spatial kurtosis is K ' 2.6 and most of the Lilliefors Test results rejected the
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hypothesis of a Gaussian distribution for the mode shape components.
The spectral kurtosis values also suggested that the mode shape com-

ponents associated with excitation point X0 have a non-Gaussian distribution.
However, the corresponding Lilliefors Test results suggested that for approxi-
mately 70% of plate members the mode shape components have a Gaussian
distribution at excitation point X0. Additionally, the ensemble mode shape
statistics results confirmed the previous conclusions obtained from the spa-
tial and spectral mode shape statistics analysis, where the establishment of an
intermediate state between sinusoidal and Gaussian mode shape statistics is
clearly observed.

The mean values for the spatially-averaged kinetic energy density re-
sults across the ensemble conformed very well with the standard SEA predic-
tion, independently of the damping loss factor adopted. For the corresponding
relative variance, the analytical prediction based on the Poisson model sligh-
tly overpredicted the numerical results since the ensemble natural frequency
statistics are slightly more rigid than those expected for perfect Poissonian
eigenvalues. As the damping loss factor was increased, the existing diffe-
rences between the ensemble natural frequency statistics and Poisson model
were amplified and introduced spectral or inter-modal correlations between
the natural frequencies which reduce the energy response variability over the
spectral and ensemble domains and also degrade the performance of the SEA
variance prediction based on the Poisson model.

The point-loading kinetic energy density results allowed the assess-
ment of the statistical contribution of each modal parameter to the first two
statistical moments of the energy response across the ensemble. As expected,
an excellent agreement was observed between the standard SEA prediction
and the mean values for the numerical results. Additionally, the correspon-
ding relative variance results conformed surprisingly well with the Poisson
prediction. Indeed, this good agreement seems to be supported by the fact
that the small deviations observed, in relation to the Poisson model for natu-
ral frequencies and in relation to the sinusoidal functions for the mode shapes,
could be successfully compensated in the modal superposition process, since
the point-loading kinetic energy density results are simultaneously affected
by the statistical contributions from the natural frequencies and correspon-
ding mode shapes.

However, as the damping loss factor increased, the level of agreement
with the Poisson prediction became substantially lower. Indeed, despite the
strong inter-modal correlations associated with the high modal superposition
condition, relevant contributions from the mode shape statistics at the exci-
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tation point can also be expected since the mode shape statistics are very
sensitive to non-universal effects associated with the detailed nature of the
system.

The second ensemble investigated herein is composed of mass-loaded
rectangular plates. The ensemble natural frequency statistical observable re-
sults showed a transitory process from Poisson to GOE model statistics for
the low-frequency range. On the other hand, a satisfactory agreement with the
GOE model prediction was observed in the mid- and high-frequency ranges,
particularly beyond mode 50 (corresponding approximately to a frequency
of 250 Hz). Indeed, the establishment of the level repulsion characteristics
in the short-range fluctuation statistics was clearly observed, although there
were some small long-range deviations in the large natural frequency dis-
tances. Additionally, the universal establishment of GOE statistics for the
natural frequencies was suggested by the statistical overlap factor results for
mode orders greater than mode 50.

Considering the results for the corresponding mode shape statistical
observables, they showed an incomplete establishment of the GOE model.
The spatial mode shape statistics suggested an incipient establishment of the
structural localization phenomenon, since the spatial kurtosis values are lar-
ger than the GOE kurtosis value and the Lilliefors Test confirmed that the
mode shape components have a non-Gaussian distribution over the spatial
domain of the plate system. In principle, these non-universal characteristics
can be explained by the energy confinement phenomenon between the adja-
cent point-masses.

The spectral mode shape statistics results showed a satisfactory agre-
ement with the GOE model since for most of ensemble members the spectral
kurtosis values are close to K = 3, suggesting that the mode shape compo-
nents associated with the excitation point X0 have a Gaussian distribution
along the spectral domain. Additionally, the corresponding Lilliefors Test re-
sults suggested that for approximately 90% of plate members the mode shape
components have a Gaussian distribution at excitation point X0, showing re-
sults similar to those expected for perfect GOE eigenvectors where their com-
ponents are statistically independent variables with Gaussian distribution cha-
racteristics.

On the other hand, the ensemble mode shape statistics results also
showed an incomplete establishment of the GOE model, since the spectral
mean value for the ensemble kurtosis results associated with the excitation
point X0 is K = 2.7 < KGOE = 3 and the corresponding Lilliefors Test results
rejected the hypothesis of a Gaussian distribution for the mode shape com-
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ponents. Therefore, it is interesting to note that the spectral and ensemble
mode shape statistics results at excitation point X0 have completely distinct
characteristics along the respective domains.

As observed previously in Figures 185 - 187, the ensemble mean va-
lues for the spatially-averaged kinetic energy density results conformed very
well with the standard SEA prediction, independently of the damping loss
factor adopted. For the corresponding relative variance results, there was
good agreement with the SEA prediction based on the GOE model, except for
small discrepancies in the high-frequency range, which are associated with
the reduction in the spectral rigidity characteristics of the natural frequencies.
These discrepancies observed in the long-range fluctuations are expected to
be amplified as the damping loss factor increases and thus the level of agree-
ment with the GOE model prediction is substantially reduced in the mid and
high-frequency ranges.

For the point-loading kinetic energy density results, an excellent agre-
ement was observed between the standard SEA prediction and the mean va-
lues of the numerical results. The numerical relative variance results were
clearly overpredicted by the analytical results based on the GOE model and
K = 3 throughout the frequency domain investigated herein. Based on the re-
sults obtained for the mode shape statistical observables, these discrepancies
are strongly associated with the incomplete establishment of the GOE model
for mode shapes, which is demonstrated by the non-universal characteristics.

On the other hand, surprisingly, an excellent agreement with the GOE
prediction was observed when the value of 2.7 was adopted for the mode
shape statistics factor. Despite the natural frequency statistics are almost-
GOE, this good performance of the GOE prediction with K = 2.7 can be
attributed to the fact that an initial degree of universality is observed for the
spectral statistical characteristics of the mode shape components associated
with the excitation X0.

Additionally, the spectral Lilliefors Test and kurtosis results for the
mass-loaded rectangular plates demonstrated indirectly that the mode shape
characteristics are very close to those expected for the perfect GOE eigen-
vector components, where the mode shape components associated with the
forcing position would be considered uncorrelated Gaussian variables. In
this regard, the occurrence of reduced agreement between the GOE prediction
with K = 3 and current relative variance results suggested that the existence of
inter-modal correlations between the mode shapes at the excitation point may
not play an important role in the overprediction of the SEA variance predic-
tion based on the complete GOE model. It is important to note that this new
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finding can lead to conclusions which are the opposite to those of Langley
and Brown who speculate that the correlation between the same component
of different mode shapes at excitation point could be mainly responsible for
the discrepancies in relation to the GOE model prediction, (18, 1). However,
further systematic investigations are required to ascertain whether this unex-
pected conclusion can be extended to real engineering systems with different
natures and dimensionality.

4.5 Summary and Final Discussion

The numerical analysis carried out with random flexural plates in this
chapter allowed the systematic investigation of the modal parameter statistics.
The main effects of the physical phenomena expected in real engineering
2D-systems were identified and measured through the statistical observable
results.

Initially, the effects of the breaking of the geometrical regularity of
plate systems on the modal parameter statistics were adequately characteri-
zed since the plate geometries investigated herein provided a gradual statisti-
cal transition from the regular to disordered statistics, where a deterministic
chaotic statistics described by the GOE model was observed in the mid and
high-frequency ranges when focusing and defocusing elements are introduced
at the system boundaries (i.e., circular arc elements, nonparallel or irregular
sides, and non-concentric arc elements).

For plate systems with rectangular-like shapes, the main effects of the
establishment of stable periodical orbits were promptly identified in the na-
tural frequency statistics, which lead to a reduction in the spectral rigidity
characteristics of the natural frequency statistics. As demonstrated for rec-
tangular plates, these non-universal contributions can be accurately taken into
account in the natural frequency statistical observable results through the use
of the Fourier unfolding process. In this regard, the direct consequences of
an incorrect choice for the cut-off time were highlighted and demonstrated
through numerical results for the long-range statistical observables. For the
corresponding mode shapes, the main effect of stable periodic orbits is the
establishment of regular nodal lines, mainly for the case of the bouncing ball
periodic orbits which lead to the occurrence of nodal lines within the paral-
lel sides of the system. Additionally, the effects of the occurrence of perfect
or quasi-degenerate modes on the natural frequencies statistics were investi-
gated using the short and long-range fluctuation statistical observables. The
analytical scaled Poisson predictions based on the Shnirelman Peak theory
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showed good agreement with the numerical results.
The investigation of the square and perfect rectangular plates also de-

monstrated the existence of discrete mode shapes with almost-Gaussian cha-
racteristics, which are provided by the modal superposition phenomenon of
two degenerate modes of different wave classes: the flexural (or vertical trans-
verse) mode which has regular statistics characteristics and the extensional
(or longitudinal) mode which has chaotic statistics characteristics. Indeed,
these mode shape results for degenerate modes may explain the level repul-
sion characteristics observed in the natural frequency statistics.

Overall, the modal parameter results for the statistical observables al-
lowed an accurate verification of the level of agreement with the GOE mo-
del (or Poisson model) as well as the classification and measurement of the
deviations. Additionally, the expected performance of the SEA variance pre-
diction based on the complete GOE model (or Poisson model) was estimated
for the cases where the modal parameter statistics do not comply perfectly
with GOE model (or Poisson model). It is important to emphasize that the
statistical overlap factor analysis was inefficient in terms of verifying the ap-
plication of the GOE model to the modal parameter statistics, mainly in the
case of the ensemble of random rectangular plates. Indeed, the excellent per-
formance of the statistical observable results in terms of characterizing the
statistics of each modal parameter confirmed, definitively, that the statistical
overlap factor analysis is not appropriate to verify the agreement with GOE
model.

The statistical results obtained for the two plate ensembles investi-
gated herein demonstrated that the nominally identical ensembles may have
very distinct modal parameter and energy response statistics across the en-
semble. As observed, the statistical analysis of the kinetic energy results sug-
gested that the characteristics of the modal parameter statistics seem to have
little influence on the mean values across the ensemble for the plate systems
investigated herein.

The corresponding relative variance value for the spatially-averaged
kinetic energy results was shown to be highly sensitive to the natural fre-
quency statistics since the mode shape contributions were completely remo-
ved due to the averaging process over the spatial domain of the plate systems.
Therefore, based on the ensemble natural frequency statistical observable re-
sults, good agreement with the different models was observed for each plate
ensemble. For random rectangular plates, the numerical variance results con-
formed very well with the analytical prediction based on the Poisson model
prediction while for the mass-loaded rectangular plates good agreement with
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the GOE model prediction was locally observed across the ensemble. Addi-
tionally, small effects of long-range fluctuation deviations in relation to the
Poisson model (or GOE model) were clearly observed in the high-frequency
range and for the high superposition modal condition, where several mo-
des contribute to the energy response and the establishment of non-universal
inter-modal correlations possibly occurs between the natural frequencies.

Based on the modal parameter statistical observable results, the long-
range fluctuation deviations observed for the natural frequency statistics of
random rectangular plates can be explained by the modal superposition phe-
nomenon of degenerate flexural and extensional modes which slightly incre-
ases the spectral rigidity characteristics of the natural frequencies along the
frequency range. On the other hand, the long-range fluctuation deviations ob-
served for the mass-loaded rectangular plates are probably associated with the
incipient establishment of structural localization for the corresponding mode
shapes.

The relative variance values of the point-loading kinetic energy den-
sity results demonstrated the substantial contributions of the mode shapes to
the kinetic energy statistics across the ensemble. For the random rectangu-
lar plates, the numerical variance results conformed surprisingly well with
the Poisson model prediction, although the natural frequency statistics do not
agree perfectly with the Poisson model and the mode shape statistics deviate
slightly from the sinusoidal eigenvector statistics. Indeed, this good agree-
ment seems to be associated with the fact that the modal parameter deviations
in relation to the Poisson model are successfully compensated in the mo-
dal superposition process. For mass-loaded plates, the GOE prediction with
K = 3 overestimated the numerical variance results, suggesting the incom-
plete establishment of the GOE model for mode shape statistics, since good
agreement with GOE prediction was observed for the natural frequency sta-
tistical observable results as well as for the relative variance of the spatially-
averaged kinetic energy results. However, when the value of K = 2.7 was
adopted for the mode shape statistics factor, an excellent agreement between
the numerical values and GOE prediction was observed, since the natural fre-
quency statistics are almost-GOE and the some universal characteristics are
observed for the spectral mode shape statistics.

Important conclusions on the modal parameter statistics can be drawn
when the current plate results are compared with the rod results investigated
in the previous chapter. The different dimensionality of the mass-loaded sys-
tem allowed the systematic investigation of the main aspects associated with
the structural localization phenomenon, which is expected to affect substan-
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tially the statistical moments of the high-frequency energy responses in real
engineering systems.

For the same level of mass randomness (20%), different levels of the
establishment of the structural localization phenomenon were observed for
the modal parameters of the random mass-loaded systems investigated herein.
The rod system, due to its one-dimensional characteristics, was shown to be
a natural candidate for the establishment of the structural localization pheno-
menon in the high-frequency range. Indeed, the modal parameter statistical
observable and localization factor results showed a simultaneously different
regime for the structural localization along the frequency range investigated
herein. On the other hand, the presence of point masses established a small
degree of disorder in the mass-loaded rectangular plates, and thus only in-
cipient localization effects on the natural frequencies and mode shapes were
observed.

For both mass-loaded systems, good agreement was observed between
the numerical mean value and standard SEA prediction for the spatially-
averaged kinetic energy density results since the highly disordered mode
shape contributions are completely removed by the spatial averaging of the
excitation points.

However, for single point-excited structures, the structural localization
effect becomes substantial as the excitation frequency increases. Due to the
contributions of disordered mode shapes, the system dynamic characteristics
do not conform well with the basic assumptions of the SEA theory, reducing
strongly the performance of the SEA formulations, regardless of the statistical
model adopted.

Considering the universal establishment of the GOE model for the
modal parameters, distinct convergence characteristics were observed for the
mass-loaded rod and plate ensembles with the same level of mass randomness
(20% of total mass). For rod systems, the universal establishment of GOE
model occurs simultaneously for the natural frequency and mode shape statis-
tics over a small and limited frequency interval located in the mid-frequency
range. On the other hand, for the mass-loaded rectangular plates, satisfactory
establishment of the GOE model was only observed for the natural frequency
statistics in the mid and high-frequency ranges. The corresponding mode
shape statistics presented substantial non-universal characteristics since that
the mode shape statistical observable results showed notable discrepancies in
relation to the GOE model for the spatial and ensemble averaging approa-
ches. It is interesting to note that the convergence characteristics of the modal
parameter statistics for mass-loaded plate ensemble are very similar to those
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proposed initially by Figure 12, which have been extensively reported in the
SEA variance literature.

In this study, the statistical results for the Gaussian spatially-correlated
rod ensemble showed an unexpected dynamical behavior which, to the best
of the author’s knowledge, has not previously been reported in the SEA va-
riance literature. The individual results for the natural frequency and mode
shape statistical observables showed that the universal establishment of GOE
statistics may occur in separated frequency regions for each modal parameter.
Additionally, the initial hypothesis, which states that the conditions necessary
for the universal establishment of the GOE model for natural frequency sta-
tistics are less stringent than those for their corresponding mode shapes, that
is, the mode shape statistics require a larger disorder in the system parameters
than the corresponding natural frequency statistics for the universal establish-
ment of the GOE model, was completely discarded considering the statisti-
cal results for the Gaussian spatially-correlated rods, where the mode shape
universal limit occurs before the natural frequency limit along the frequency
range.

Based on all of the numerical results obtained in this study, the con-
vergence characteristics of the universal establishment of the GOE model for
each modal parameter statistics seem to be a highly non-universal phenome-
non, since the random systems investigated herein showed completely distinct
characteristics, suggesting a strong dependence on the detailed nature of the
system and the dimensionality.

Other important issue investigated in this study was the incomplete es-
tablishment of GOE statistics for the mode shapes and the possible impacts on
the performance of the SEA variance prediction based on the complete GOE
model. As discussed in the SEA variance literature, the inter-modal correla-
tions at the excitation point are attributed as the main factor for the reduced
performance of the SEA variance prediction based on the GOE model.

In the current model, the numerical point-loading variance results
showed that good agreement with the GOE model prediction can be obtai-
ned, at least for a completely different level of agreement with the GOE sta-
tistics along the spectral domain, provided that the mode shape statistics at
the excitation point across the ensemble ensure satisfactory establishment of
the GOE model. Indeed, the random Gaussian spatially-correlated rod and
mass-loaded plate results for the mode shape and point-loading energy sta-
tistics seem to suggest that the contributions of the spectral and spatial mode
shape statistics are less expressive in comparison to that associated with the
ensemble mode shape statistics at the excitation point, in terms of obtaining
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good performance of the GOE model prediction.
For cases of random systems with the incomplete establishment of the

GOE model for natural frequencies or mode shapes, good performance of the
GOE prediction for point-loading with K modified is expected only for cases
of random systems for which the modal parameter statistics do not deviate
substantially from the GOE model characteristics. Indeed, the attribution of
K value must be based on the engineering analysis, so that the possible ef-
fects of the nonuniversal phenomena associated with the detailed nature of
the system and dimensionality are taken into account. For Gaussian spatially-
correlated rods, the value which gave the best fit was K = 4.5, suggesting the
incipient establishment of the structural localization phenomenon while for
the mass-loaded rectangular plates the value of K = 2.7 is associated with
the establishment of intermediate mode shape statistics between sinusoidal
and perfect Gaussian mode shapes. It is important to emphasize that the nu-
merical examples shown in this study are limited to the cases of simple one-
and two-dimensional non-deterministic systems and further investigations are
needed in order to extend the current conclusions and findings to cases of tri-
dimensional random systems such as non-deterministic acoustical rooms.
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5 CONCLUSIONS AND FURTHER WORK

In this last chapter, the initial research aims of the current work are
reviewed. The main conclusions drawn in the previous chapters are restated
and their possible implications in relation to results recently reported in the
SEA literature are discussed. Based on these contributions and their possible
extension to real engineering systems, some suggestions for further research
are outlined.

5.1 Conclusions

The primary aim of this work was to obtain a better understanding
of the statistical characteristics of the modal parameters of uncertain or non-
deterministic structures in the mid to high-frequency ranges. In particular,
considerable interest was focused on the complete description of the statis-
tical characteristics of each modal parameter during the statistical transitory
process of the universal establishment of GOE statistics.

In the introductory chapter, a literature review was carried out on the
main effects of the system parameter uncertainties on the dynamic response
statistics. In the low-frequency range, the uncertainty effects are almost ne-
gligible and traditional deterministic models, such as FEM, are sufficiently
accurate to predict the dynamic response of the system. In the mid to high-
frequency ranges, a wavelength reduction is expected and the uncertainty ef-
fects become increasingly substantial as the excitation frequency increases,
leading to a large energy response variability. However, some SEA variance
studies with artificially generated random systems have strongly suggested
that the modal parameters as well as energy response statistics tends to have a
universal behavior and thus the high-frequency energy response statistics be-
comes practically independent of the nature of the uncertainty of the physical
parameters. Indeed, these results recently presented in the SEA literature also
suggest the existence of a good agreement between the statistics of the GOE
model and the high-frequency modal parameter statistics for real random en-
gineering systems. Thus, the prediction problem of the maximum response
variability becomes more appropriate from the analytical point of view. Lan-
gley and Brown (18, 3) took advantage of this fact and derived analytical
expressions to predict the relative variance of kinetic energy density results
for a generic excitation based on the GOE model for modal parameter sta-
tistics. Although satisfactory prediction results were observed for cases of
random systems subjected to spatially-averaged excitations, a reduced per-



594 5 Conclusions and Further Work

formance of the single point-loading relative variance was clearly observed
at least for artificially generated random systems which are usually conside-
red to be sufficiently random to ensure the complete establishment of GOE
statistics for the modal parameters. As discussed previously, SEA results re-
ported in the literature suggest that the deviations can probably be attributed
to the incomplete establishment of GOE statistics for the mode shapes and
thus non-universal system-dependent characteristics would be expected at le-
ast for the high-frequency mode shape statistics of real random engineering
systems. Based on the results reported in the literature, it can be suggested, in
principle, that the amount of randomness necessary to establish GOE statistics
for mode shapes would probably be higher than the corresponding amount for
natural frequencies and thus for real random engineering systems it would be
expected that the universal establishment of GOE statistics is fulfilled more
easily for natural frequencies than for the corresponding mode shapes. In
this regard, several problematic issues were identified and the importance of
a better understanding of the statistics characteristics during the process of
the establishment of universal statistics for each modal parameter as well as
the relevance of the development of metric functions to verify accurately the
agreement with the GOE model were highlighted.

A review of the concepts of the Random Matrix Theory RMT applied
to the prediction of the energy response statistics of random dynamical sys-
tems was performed. The main characteristics of well-defined statistical mo-
dels, such as the Poisson and GOE models, were presented and discussed in
terms of their application to the natural frequency statistics of real enginee-
ring systems. Special attention was given to the description of the statistical
characteristics of a particular ensemble composed of large random symme-
tric matrices called the Gaussian Orthogonal Ensemble (GOE), since their
eigenvalue statistics are expected to be very similar to the natural frequency
statistics of sufficiently random vibroacoustic systems. The metric functions,
denominated herein as statistical observables, were introduced to verify the
level of agreement of the natural frequency statistics with GOE and Poisson
models. Additionally, the results for the statistical observables demonstra-
ted the occurrence of the main physical phenomena, such as level repulsion
and spectral rigidity, of the natural frequency spectrum of real engineering
systems. The possible effects of the finite wavelengths on the eigenvalue
statistical results for the long-range fluctuations were investigated through a
numerical methodology based on the Monte Carlo method. The numerical
results showed that the finite wavelength effects can be significant for GOE
random matrices and thus large fluctuations in the results for the natural fre-
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quency statistical observables across the ensemble may be expected for ran-
dom matrices of small dimensions.

As in the case of the natural frequencies, the main statistical aspects as-
sociated with the corresponding mode shapes of the dynamical systems were
also reviewed in detail. The spatial, spectral and ensemble averaging ap-
proaches to the mode shape statistics were introduced and their relevance in
the statistical analysis was highlighted. Results reported in the literature for
the eigenvector statistical observables were used to describe the main statis-
tical characteristics of the mode shapes of chaotic, regular and localized sys-
tems. The performance of the results for the statistical observables was dis-
cussed considering two main aspects: (i) verification of the level of agreement
between the mode shape statistics of real engineering systems and the GOE
eigenvector statistics, and (ii) direct characterization of the non-universal ef-
fects through the results for the mode shape statistical observables. Addi-
tionally, the main statistical issues associated with the establishment of the
structural localization phenomenon were discussed and the analytical expres-
sions of the non-linear sigma model from the Theory of Supersymmetry were
introduced for weak and strong localization regimes.

Considering the SEA variance context, the derivations of the narrow
and broad frequency band analytical predictions for the energy density vari-
ance were briefly reviewed for a single random dynamic system. The main
aspects and limitations associated with the application of the Poisson and
GOE models to the statistics of the natural frequencies of real engineering
systems were presented. Based on recent results for the SEA variance re-
ported in the literature, a detailed discussion was carried out regarding the
main possible non-universal physical phenomena of the mode shape statistics
which may contribute to the reduced performance of the point-loading SEA
relative variance predictions.

In chapter 3 the modal parameter statistics of random longitudinal rods
were systematically investigated using several averaging approaches. The
most representative statistical observables for each modal parameter were se-
lected and their results described adequately the main physical phenomena
which are expected to be established in the modal parameters of real engine-
ering systems. For the natural frequency statistics, the spectral rigidity and
level repulsion characteristics were promptly identified, while for the mode
shape statistics the main aspects associated with the establishment of structu-
ral localization were assessed along the excitation frequency range.

Based on the results for the statistical observables, the deviations from
the universal statistics described by the GOE model were accurately identified
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for each modal parameter. Therefore, the main impacts on the mean and
relative variance of the kinetic energy density results as well as a possible
reduction in the performance of the SEA variance prediction based on the
complete GOE model (or Poisson model) were discussed in detail for the
random rod ensembles investigated herein.

Regarding the convergence characteristics of the modal parameter sta-
tistics for the universal establishment of GOE model statistics, it is important
to note that the current rod results for the natural frequency and mode shape
statistical observables do not suggest the existence of a well-established pri-
ority order, or convergence sequence, between the modal parameters for the
establishment of the universal statistics described by the GOE model, de-
monstrating that the hypothesis initially proposed in Figure 12 may be limited
to a particular group of engineering systems. Indeed, the spatially-correlated
Gaussian rod results showed that the establishment of GOE statistics may oc-
cur in separate frequency regions for each modal parameter. Additionally,
the current results for the modal parameter statistics of random rods also sug-
gested that the convergence speed and form characteristics of the statistical
transition of each modal parameter required to conform to GOE statistics are
non-universal characteristics which are strongly dependent on the nature of
the randomness and system dimensionality.

The current relative variance results for random rods also suggested
that for random vibroacoustic systems for which the establishment of univer-
sal statistics is incomplete or clearly separated over the frequency domain for
each of the modal parameters, the performance of the SEA variance predic-
tion based on the complete GOE model is strongly dependent on the nature
and spatial characteristics of the excitation field.

In chapter 4 the statistical investigation of several geometries of fle-
xural plates provided a better understanding of the effects of the breaking of
the system symmetries on the modal parameter statistics. The presence of
focusing and defocusing elements were shown to be a highly relevant factor
for the establishment of a deterministic chaos on the modal parameter statis-
tics in the mid to high-frequency ranges. Furthermore, special attention was
focused on the identification and statistical description of the main physical
phenomena associated with the random two-dimensional systems, for exam-
ple: establishment of the stable periodic orbits, the occurrence of degenerate
natural modes and structural localization aspects.

An important aspect investigated in this study was the possible effects
of the inter-modal correlations at the excitation point on the performance of
the SEA variance predicton based on the GOE model. The point-loading
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variance results from the random rod ensembles showed that a good agree-
ment with GOE prediction is equally obtained for two excitation points with
completely distinct spectral mode shape statistics over the frequency range in
which the ensemble mode shape component statistics are almost-Gaussian.

For the case of the mass-loaded plate ensemble, the spectral mode
shape statistics associated with the excitation point location was found to be
almost-Gaussian, but the best performance of the SEA variance prediction ba-
sed on the GOE model was only obtained when a value of 2.7 was adopted for
the mode shape statistics factor. Indeed, this good agreement can be explained
by the current results for the mode shape statistical observables which suggest
the incomplete establishment of Gaussian characteristics across the ensemble
for the mode shape components associated with the excitation point. Thus,
these results for the random rods and mass-loaded plates seem to reject the
initial speculation that the inter-modal correlations at the force position are
the main reason for the reduction in the performance of the SEA variance
prediction based on the GOE model.

Finally, the findings in this study clarified some important issues regar-
ding the modal parameter statistics and the universal establishment of GOE
statistics. On the other hand, much work still needs to be carried out to extend
these contributions to built-up complex real engineering systems in order to
derive an efficient methodology with low computation cost characteristics for
the prediction of high statistical moments of the energy responses.

5.2 Suggestions for Further Work

The numerical investigation of the modal parameter statistics descri-
bed in this study revealed further research directions regarding the main as-
pects of the incomplete establishment of universal statistics in real enginee-
ring systems. In the author’s opinion, the directions outlined below are exam-
ples of work areas which may warrant further research work:

• Modal parameter statistics of real engineering systems: Although the
statistical observables can be applied to any generic vibroacoustic
system, the investigation of the modal parameter statistics carried out
in this study were limited to simple one- and bi-dimensional structu-
res artificially randomized. Indeed, these randomized rod and plate
system models are very simplified compared to “realistic” systems
and were also investigated over a limited frequency range. In this
regard, it would be of great interest to extend the current analysis of
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the statistical modal parameters to more realistic systems with several
shapes, boundary conditions and dimensionality. In real engineering
structures, the uncertainties associated with manufacturing and as-
sembly processes are expected to be much more complex than those
investigated here. Typical examples might be non-homogeneities and
discontinuities of the material, spot welds, holes for bolts or rivets and
non-parallel edges. It is known that these structural irregularities will
lead to the scattering phenomenon of the waveguide modes, which will
probably result in the establishment of universal or disordered modal
parameter statistics, depending on the dimensionality and symmetry
characteristics of the system. Indeed, systematic investigations with
more realistic systems from the naval, automotive and aeronautics
fields are certainly necessary to characterize the typically expected
modal parameter statistics in the high-frequency range.

• Accurate definition of the confidence limits: The currently available
mean and variance analytical predictions of the kinetic energy density
results are not sufficient to determine the maximum and minimum
confidence intervals for an ensemble of structures. To undertake
this task, a derivation of the statistical characteristics of the energy
PDF for a generic system subjected to different types of excitation
would be necessary. Considering the point process theory, a possible
analytical approach is the use of high-order cumulants of the energy
density. Some initial analysis to evaluate the high-order culmulants of
modal parameters has been carried out for Poisson statistics and GOE
statistics, (55, 35). For the well-defined statistics of modal parameters,
results reported in the literature indicate that lognormal and Gaussian
PDFs are expected for single point and spatially-averaged excitations,
respectively. In this regard, it would be of interest to extend the analy-
tical and numerical (or experimental) investigations on the form of
PDF energy density to several types of excitation as well as to generic
modal parameter statistics.

• Point-to-point transfer response statistics: Besides the evaluation of the
spatially-averaged energy response variance results across the ensem-
ble, the variance of the energy response at a given point remote from
the excitation point is of interest to many engineering applications. The
pioneering studies in this area were carried out in the room acoustics
field, and they considered the natural frequency statistics described by
the Poisson model. It is known that the establishment of the Poisson
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model is unlikely in real engineering systems since the small random
imperfections originating from manufacturing and assembly processes
can greatly affect the modal parameter statistics, mainly in the high-
frequency range. Considering that the energy response across the en-
semble can be treated as a random point process, and the modal para-
meter statistics comply completely with the GOE model, Langley and
Cotoni (35), based on the high-order culmulant values of the modal
parameters, proposed analytical point-to-point relative variance predic-
tions for response points located in the drive and far field positions. Ac-
cording to the modal parameter statistics results obtained in this study,
it seems that the GOE statistics may not be completely established for
modal parameters in some excitation frequency regions. Thus, further
investigations are necessary to assess the main effects of different le-
vels of agreement with the GOE model on the performance of the ap-
plication of the point-to-point variance predictions in real engineering
systems. Additionally, a systematic analysis needs to be carried out to
determine the mean and variance values of the real and imaginary parts
of the point-to-point transfer functions as well as to assess the statistical
distributions of their amplitudes and phases.

• Damping effects on energy response statistics: Some basic studies
using membranes with complex geometry have investigated the effects
of distinct levels of the damping mechanism on the modal parameter
statistics and the results indicated that the damped natural frequency
spectra have spectral correlations which are consistent with GOE
statistics, provided that the damping level is moderate (170, 106).
However, for highly damped systems, the damping effects on the
modal parameter statistics are substantial and thus their natural fre-
quencies become strongly correlated in the spectral domain, and they
may not conform with GOE statistics. Therefore, it would be of
great interest to investigate the effects of different types and levels of
damping mechanisms on the modal parameter statistics. Although it
was not investigated here, the existence of variable modal damping
factors is certainly expected for real engineering systems. In the
elastodynamical literature, a good agreement with the chi-squared dis-
tribution has been observed for sufficient lightly damped systems. As
discussed in the SEA variance literature, the possible mode-to-mode
fluctuation of the modal damping loss factors may lead to important
effects on the energy variance results. The results of some initial
studies have been reported in the literature by Weaver et al (50, 75),
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but the complete formulation of the two-level cluster function was not
considered. The derivation of the complete variance prediction for the
variable modal damping factor is a complex and interesting analytical
task. Thus, there are good physical as well as mathematical reasons
to carry out a systematic study of the effect of damping mechanisms
on the universal establishment of GOE statistics for each of the modal
parameters as well as an assessment of the expected contributions of
the variable modal damping factors to the energy response statistics of
real engineering systems.

• Semi-classical acoustics and non-linear sigma models: In this study,
several conceptual results from the semi-classical acoustics area were
considered in the statistical analysis of the modal parameters. In parti-
cular, the statistical investigation of the random rods and plates showed
that the non-universal mode shape deviations due to the establishment
of the structural localization phenomenon were accurately described
in the weak and strong localization regimes by the non-linear sigma
model expressions taken from the supersymmetry theory. Thus, one
idea for future study would be to introduce non-universal deviations
into the SEA variance theory through of use of non-linear sigma model
expressions. However, this procedure is a complex analytical task and
would probably provide an additional parameter associated with the
level of disorder of systems and the localization phenomenon, moving
away from the conceptual aim of SEA method which is to avoid the
need for detailed information on the system geometry or the statistics
of its parameters. Finally, further studies are required to explore the
possible benefits of the semi-classical acoustics results on the theory
of SEA variance.
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APPENDIX A – STATISTICAL PROPERTIES OF SUPERIMPOSED
SPECTRA

A.1 Two Independent GOE Eigenvalue Sequences

The analytical predictions for the eigenvalue statistical observables of
a spectrum composed of two independent GOE eigenvalue sequences were
proposed by Weaver (64) and they are given by:

P2GOE (x) =
1
2

{
E
(

1
2

x
)

PGOE

(
1
2

x
)
+

[
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(
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2
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, (A.3)

where:

F (y) =

y∫

0

PGOE (z)dz, (A.4)

E (y) =
∞∫

y

[1−F (z)]dz. (A.5)

A.2 Several Independent GOE Eigenvalue Sequences

For a composite spectrum which is composed of the superposition of
several Gaussian ensembles with different relative densities, the analytical
prediction of statistical observables were proposed by Mehta (24). The spa-
cing PDF of a superposition of N spectra with individual spacing PDFs Pi and
relative densities gi = ρi/ρ (where ρ = ∑

N
i=1 ρi is the total density), is given
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by:

P(s) = E (s)
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(A.6)
where the auxiliary functions are given by:

Fi (gis) =

gis∫

0

Pi (t)dt, (A.7)

Ei (gis) =
∞∫

gis

[1−Fi (t)]dt, (A.8)

E (s) =
N

∏
i=1

Ei(gis) . (A.9)

For the analysis of long-range fluctuations, the analytical prediction of
∆3 - statistics for independent superimposed GOE spectra is given by:

∆3 (L) = ∑∆3, i (giL) , (A.10)

where gi and ∆3, i are the relative density and the ∆3 - statistics associated with
ith GOE spectrum, respectively.

In Figures 191 and 192, the PDFs and ∆3 - statistics curves are shown
for the 1 GOE, 2 GOE, 4 GOE and Poisson spectra, Gomes and Gerges (101).
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Figure 191: The spacing PDF predictions for the superimposed GOE and
Poisson distributions, Gomes and Gerges (101).

Figure 192: ∆3 - statistics: superimposed GOE and Poisson predictions, Go-
mes and Gerges (101).
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A.3 Two GOE Eigenvalue Sequences with Distinct Densities

In order to visualize the effects of the different relative densities, the
spacing PDF and ∆3 - statistics results of the 2 GOE spectra were plotted for
several relative densities in Figure 193, Gomes and Gerges (101).

Figure 193: The spacing PDFs of several 2 GOE spectra with distinct relative
densities, Gomes and Gerges (101).

As discusssed by Bertelsen (90), for s = 0, P(0) is only dependent
on the relative densities, P(0) = 1−∑

N
i=1 g2

i . Indeed, for relative densities
close to gi = 0.5, the results suggest that P(0) is not very sensitive to small
variations in gi, Figure 193. Thus, 2 GOE behavior is expected when two
independent classes coexist, even if they do not have exactly the same level
density, Bertelsen (90). However, the results in Figure 193 also suggest sig-
nificant deviations for relative densities outside the range of 30 to 70% in
comparison to 2 GOE (with 50% relative densities).
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Figure 194: The ∆3 - statistics results for several 2 GOE spectra with distinct
relative densities, Gomes and Gerges (101).

As shown in Figure 194, the similar effects of the distinct relative den-
sities are also observed for the evaluation of ∆3 - statistics results. Therefore,
for similar relative densities, the statistical behavior is almost the same obtai-
ned for 2 GOE with equal relative densities, Bertelsen (90).

The PDFs and ∆3 - statistics results shown in Figures 193 and 194
were evaluated using Equations (A.6) and (A.10), respectively. The indivi-
dual evaluations for each spectrum were made using the analytical definitions
for all cases. Additional details regarding the superposition of independent
spectra are beyond the scope of this initial analysis and will not be discussed
here; further information is available in: Mehta (24), Brody et al (56), and
Bertelsen (90).
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APPENDIX B – NUMERICAL INVESTIGATION OF THE FINITE
DIMENSION EFFECTS ON THE EIGENVALUE
STATISTICS

The effects of the finite wavelengths are traditionally quantified using
statistical tools such as the Bootstrap technique (171, 90, 69) or Monte Carlo
method (114). In the present study, the Monte Carlo method was adopted to
assess numerically the finite wavelength effects on the eigenvalue statistical
observable results and to evaluate the expected range of fluctuations in the ∆3
- statistics results1, Gomes and Gerges (101).

Considering an ensemble composed of 100 GOE matrices with
dim(300x300), the spectral mean value of ∆3(L, Z0)-statistics results and
the corresponding spectral variances2, Var 〈∆3(L, Z0)〉s, were evaluated for
each GOE matrix member of the ensemble, Figures 195 (a) and (b), respecti-
vely. Additionally, the ensemble mean values were also determined for both
parameters.

As shown in Figure 195 (a), a large ensemble variability (or dispersion
across ensemble members) is expected as the spectral eigenvalue distance in-
creases. For ∆3(L) -statistics results, the ensemble mean value agrees very
well with the GOE prediction. Additionally, the 95% confidence limits were
calculated from the numerical results and showed good performance in quan-
tifying the expected range of fluctuations across the ensemble.

Considering the corresponding spectral variance values from each
GOE member, Var 〈∆3(L, Z0)〉Z0

, a similar dispersive behavior across the
ensemble is also observed as the spectral eigenvalue distance increases.
In this case, the mean of the spectral variance values across the ensemble
presents a approximately logarithmic pattern and does not conform very
well to the asymptotic analytical prediction proposed by Bohigas et al (114),
that is VarGOE 〈∆3(L, Z0)〉Z0

≡ 0.012. As shown in Figure 195 (b), a good
agreement with the numerical results is only expected for extremely large
spectral eigenvalue distances, since the analytical prediction of the spectral
variance is constant for all spectral eigenvalue distances.

1In this Appendix, the finite wavelength effects were investigated using the ∆3-statistics, since
the application of this statistical observable is one of the most popular long-range fluctuation
metrics and also presents faster convergence characteristics, Cordioli (20), Bertelsen (90) and
Gomes (101).

2For each GOE matrix, the spectral variability of the ∆3(L, Z0) -statistics results was evalua-
ted over eigenvalue domain, considering all available starting points Z0.
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17

(a)

18

(b)

Figure 195: ∆3-statistics results for the 100 GOE matrices with dim (300 x
300). Plot (a): individual spectral mean values and ensemble mean value. Plot
(b): individual spectral variance values and ensemble mean value of spectral
variances. Additionally, the analytical GOE predictions are also plotted, Go-
mes and Gerges (101).
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In Figure 196 (a), the corresponding variance value of ∆3 - statistics
results evaluated across the ensemble is also presented. It can be noted that the
ensemble mean value for the spectral variance is expected to be much larger
than the ensemble variance value of ∆3 -statistics results across the ensemble.
In order to guarantee that the adopted size of the ensemble is large enough
to provide representative numerical results, the statistical convergence of the
spectral variance results was carefully evaluated in terms of the ensemble
size for several spectral eigenvalue distances. The numerical results from the
convergence analysis of the spectral variance values are presented for several
eigenvalue spectral distances in Figure 196 (b). The numerical results are only
shifted to better visualize the convergence characteristics associated with each
spectral eigenvalue distance. The vertical amplitude scale remains unaltered.

As observed in Figure 196 (b), the size of the ensemble is adequate
to obtain representative statistical results for the mean value of the spectral
variance across the ensemble. Overall, a fast convergence along ensemble is
expected for small spectral distances.

19

(a)
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20

ensemble_convergence_02

(b)

Figure 196: Plot (a): Ensemble variance value of ∆3 - statistics results. Plot
(b): statistical convergence analysis of the mean value of spectral variance
results across the ensemble, Gomes and Gerges (101).

In order to verify the performance of the numerical methodology des-
cribed above in evaluating the expected ensemble mean value for the spectral
variance of the ∆3 - statistics results, E

[
Var 〈∆3(L, Z0)〉Z0

]
, the ensemble

mean value for the numerical spectral variance results is compared with that
for the experimental results available in the RMT literature. The experimental
results were obtained in a laboratory study on complex nuclei systems carried
out by Bohigas et al (114). The nuclear data ensemble comprises 1407 reso-
nance energies corresponding to 30 sequence of 27 different nuclei systems.
In Figure 197, the ∆3 - statistics and their spectral variance results for the
nuclear data ensemble are compared with the numerical results for the Monte
Carlo numerical method described above, as well as with asymptotic analyti-
cal predictions. The expected range of fluctuations in the ∆3 - statistics across
the ensemble is presented in terms of one standard deviation.
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(a)

(b)

Figure 197: Results from the numerical methodology to estimate the ensem-
ble mean values of ∆3 - statistics results and corresponding spectral variance
values. The experimental data from nuclei systems are also plotted, Bohigas
et al (114). Plot (a): ensemble mean values of ∆3- statistics results. Plot
(b): ensemble mean value of the spectral variances of ∆3 - statistics results,
Gomes and Gerges (101).
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As shown in Figures 197 (a) and (b), a good performance in obtaining
the estimates from the numerical results is observed for ensemble mean va-
lues of ∆3 -statistics results and their corresponding spectral variance values,
respectively. Indeed, the ensemble mean value of spectral variance values
from the numerical method, which takes into account the finite wavelength
effects, presents an excellent agreement with that from the experimental va-
lues, clearly showing that this is an appropriate alternative methodology to
estimate the ensemble mean value of spectral variance values and to replace
asymptotic analytical predictions for large spectral eigenvalue distances.

Based on the excellent performance of the numerical methodology in
describing the ensemble mean values of the ∆3 - statistics results and their
spectral variances, it is reasonable to consider that this methodology is ap-
propriate to accurately estimate the expected variability of the ∆3 - statistics
results across the ensemble, that is, the expected fluctuation ranges of the ∆3
- statistics due to finite wavelength effects.

In this regard, the expected fluctuation ranges of the ∆3 - statistics
across the ensemble were evaluated for several dimensions of random matri-
ces with GOE statistics. Additionally, the convergence analysis of the first
two statistical moments of the ∆3 - statistics results across the ensemble was
carried out to provide statistically representative results. In Figure 198, the
numerical results for the ensemble variance of the ∆3 - statistics are presented
for three ensembles of GOE random matrices with the following dimensions:
100, 150 and 300 elements, respectively.

As observed in Figure 198, the finite wavelength effects are signifi-
cant for GOE random matrices and thus large fluctuations in the ∆3 - statis-
tics results across the ensemble are expected for random matrices with small
dimensions. Therefore, the numerical ensemble variance results presented in
Figure 198 may eventually be employed together with respective RMT analy-
tical predictions in this current work to express the expected fluctuation range
across the ensemble due to finite wavelength effects.
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fluctuation_expected_numerical

Figure 198: Numerical variance results of ∆3 - statistics values from the en-
sembles of GOE random matrices with different dimensions, Gomes and Ger-
ges (101).
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APPENDIX C – NUMERICAL INVESTIGATION OF THE FINITE
DIMENSION EFFECTS ON THE MODE SHAPE
STATISTICS

In this Appendix the analytical estimates of the kurtosis values based
on the prediction proposed by Equation (2.63) are compared to the numeri-
cal kurtosis results for perfect GOE matrices with several finite dimensions,
Figure 199.

Figure 199: Numerical investigation of the finite dimension effects on the
spatial and spectral kurtosis metrics: the expected ensemble kurtosis mean
values and respective variance values from the finite GOE matrices with the
following dimensions: 30, 50, 100, 300 and 500 elements are compared with
available analytical predictions, using Equation (2.63).

As shown in Figure 199, finite GOE matrices with the following di-
mensions: 30 x 30, 50 x 50, 100 x 100, 300 x 300 and 500 x 500 elements
were considered in current investigation. In order to guarantee the statisti-
cal convergence of the numerical kurtosis results, the matrix ensembles were
composed of 2000 members. For each random GOE matrix, the individual
spatial (and spectral) kurtosis values associated with each mode order value
(or each mode shape component) were initially evaluated. Additionally, the
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spatial and spectral kurtosis mean and variance values associated with each
ensemble member were then calculated. Finally, the mean values of spatial
and spectral kurtosis results across the ensemble were calculated for each one
of the ensembles of the matrices with finite dimensions.

A good agreement was observed between the analytical prediction ba-
sed on Equation (2.63) and the ensemble mean values of the numerical kur-
tosis results evaluated for spatial and spectral mode shape averaging approa-
ches. Additionally, it can be observed that the ensemble mean and variance
kurtosis results are almost identical for the spatial and spectral mode shape
averaging approaches for all matrix dimensions investigated.

Based on the above numerical results, it appears that the finite dimen-
sion effects on the results for the eigenvector statistical observables associated
with the spatial and ensemble mode shape approaches are expected to be al-
most negligible for the random structures investigated in this study. Indeed,
the results for the statistical observables associated with the spatial eigen-
vector averaging approach are commonly evaluated using a large number of
mode shape components from a typical FEM model of an engineering system
which usually has several degrees of freedom. Similarly, the results for the
mode shape statistical observables associated with the ensemble averaging
approach are evaluated using a large number of ensemble members since the
size of the ensemble should be large enough to guarantee the statistical con-
vergence of the statistical moments of the energy results.

However, the results for the statistical observables associated with the
spectral eigenvector averaging approach are clearly more susceptible to finite
dimension effects since a limited number of the mode orders (or modes) is
traditionally available from the typical engineering models and experimental
measurements. Thus, it is recommended that the maximum number of availa-
ble modes should be used during the evaluation of the results for the spectral
statistical observables in order to minimize possible finite dimension effects.
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