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RESUMO

A confeccdo de um sistema mecdnico estd sempre sujeita as im-
perfei¢des e incertezas oriundas do seu processo de fabricacdo que podem
eventualmente estabelecer diferengas significativas entre o desempenho dese-
jado inicialmente em projeto e aquele efetivamente apresentado pelo sistema
real. Como conseqiiéncia deste fato, uma variacdo aleatdéria das respostas
dinimicas é certamente esperada ao longo de um ensemble composto de sis-
temas similares, dificultando de forma consideravel as anélises de engenharia
nas regides de médias e altas frequéncias. Assim, com o objetivo de garantir
que os requisitos de projeto e certificacdo sejam devidamente cumpridos, um
engenheiro projetista deve considerar os principais efeitos decorrentes destas
incertezas na elaboracdo dos seus modelos matemdticos. Neste sentido,
intensos esforcos t&m sido realizados pela comunidade académica para o
desenvolvimento de metodologias eficazes e otimizadas para a descricdo
estatistica das respostas oriundas de sistemas randdmicos (i.e. sistemas com
propriedades ndo-deterministicas). Atualmente, a Andlise Estatistica de
Energia (SEA) € uma das principais metodologias para andlise vibroacustica
nas regioes de médias e altas frequéncias, visto que seus resultados predizem
o comportamento médio esperado de um ensemble composto de sistemas
similares, como por exemplo: carros que saem de uma linha de montagem
ou avides produzidos em série. Recentemente, as formulagdes analiticas
de SEA foram estendidas para predizer a varidncia da resposta energética.
Nestas formulagdes, as estatisticas dos pardmetros modais (frequéncias
naturais e formas modais) foram descritas pelas estatisticas dos auto-valores
e auto-vetores de uma matriz do tipo GOE (Gaussian Orthogonal Ensemble)
oriunda da Teoria da Matriz Randdémica. Diversos trabalhos experimentais
e numéricos tém confirmado um estabelecimento satisfatério da estatistica
GOE para as frequéncias naturais de sistemas suficientemente randdmicos.
Entretanto, alguns desvios significativos em relagdo ao modelo GOE tém sido
identificados para as formas modais correspondentes afetando sensivelmente
o desempenho das predi¢des da variancia de SEA. Neste trabalho de douto-
rado, as estatisticas dos parametros modais de sistemas randdmicos foram
sistematicamente investigadas com o auxilio dos resultados dos observadores
estatisticos oriundos da Teoria da Matriz Randomica. Duas classes de pro-
blemas foram analisadas: ondas longitudinais em barras e ondas de flexdo em
placas. Para as estatisticas de cada um dos parametros modais, os niveis de
concordancia com o modelo GOE (ou de Poisson) foram prontamente avalia-
dos. Além disso, os valores da média e da varidncia relativa da densidade de



energia cinética foram calculados e comparados com as predi¢des analiticas
de SEA baseadas nos modelos GOE e de Poisson. Os possiveis impactos, ou
degradagdes, no desempenho das predi¢des da variancia de SEA baseadas
no modelo GOE foram investigados para os casos em que as estatisticas dos
parametros modais nao concordam plenamente com a estatistica descrita pelo
modelo GOE. Dentre as principais contribui¢des deste trabalho de doutorado
destacam-se o estabelecimento de métricas eficientes para a verificacdo do
nivel de concordéancia de cada um dos parametros modais com as estatisticas
descritas pelos modelos GOE e de Poisson, bem como a obtengdo de uma
melhor compreensdo das relagdes existentes entre as estatisticas do modelo
GOE (ou de Poisson) e as estatisticas esperadas para os parametros modais
de sistemas vibroactsticos de engenharia.

Palavras Chaves: Incertezas, Andlise Estatistica Energética (SEA), Pa-
rimetros Modais, Teoria da Matriz Randomica, Estatistica GOE.



ABSTRACT

A component of a mechanical system is always affected by the im-
perfections and uncertainties arising from the manufacturing and assembly
processes, which can lead to the establishment of substantial differences
between the vibroacoustical performance presented by the real engineering
system and that initially targeted in the first design stage. As a direct conse-
quence of this, a random variation in the dynamic responses occurs across the
ensemble, making it difficult to carry out vibroacoustical analysis in the mid
and high-frequency ranges. In order to guarantee compliance with the design
and certification requirements, a design engineer must take into account
the effects of uncertainty in the derivation of the mathematical models. In
this regard, several efforts have been made by the academic community to
develop optimized methods to accurately predict the statistical moments of
dynamic responses of random systems (i.e., systems with non-deterministic
properties). Statistical Energy Analysis (SEA) is one of main methodologies
employed for vibroacoustical analysis in the mid and high-frequency ranges,
since its results predict the average response of an ensemble composed of
similar systems, such as cars from an assembly line or aircraft manufactured
in series. Recently, the SEA predictions were extended to evaluate the rela-
tive variance of energy responses. In these new formulations, the statistics of
the modal parameters (natural frequencies and mode shapes) were described
through the statistics of the eigenvalues and eigenvectors of a special class of
matrices known as the Gaussian Orthogonal Ensemble (GOE) of the Random
Matrix Theory (RMT). Several experimental and numerical studies have
confirmed the satisfactory establishment of GOE statistics for the natural
frequencies of sufficiently random systems. However, some deviations in
relation to the GOE model have been identified for the corresponding mode
shapes, affecting substantially the performance of SEA variance predictions.
In this doctoral study, the statistics of the modal parameters of random
systems were systematically investigated through the statistical results of
particular metric functions from the Random Matrix Theory (RMT) called
statistical observables. Two classes of structural systems were investigated:
longitudinal rods and flexural plates. The level of agreement with the GOE
(or Poisson) model was evaluated for each one of the modal parameter
statistics. Additionally, the mean and relative variance of the kinetic energy
density results were calculated and compared with the analytical SEA pre-
dictions based on the GOE and Poisson models. The possible impacts on
the performance of the SEA variance prediction based on the GOE model



were highlighted for the cases in which the modal parameter statistics do not
conform perfectly with the statistics described by the GOE model. The main
contributions of the study reported herein are the investigation of the efficient
metric function for each one of the modal parameters to verify the agreement
between the modal parameter statistics and those described by the GOE
and Poisson models. Furthermore, an improved understanding was obtained
regarding the relationship between the GOE (or Poisson) statistics and those
expected for the modal parameters of random vibroacoustical systems.

Keywords: Uncertainties, Statistical Energy Analysis (SEA), Modal Pa-
rameters, Random Matrix Theory, GOE statistics.
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1 INTRODUCTION

1.1 Overview

The vibroacoustical response of a complex built-up system is stron-
gly dependent upon the frequency of excitation. The excitation sources are
usually classified according to three major ranges: low-frequency, medium-
frequency or high-frequency. At low-frequency range only the first modes
of a vibroacoustic system are excited, and the dynamical response can nor-
mally be predicted with good accuracy using a well-established deterministic
method of analysis (1), for example, the Finite Element Method (FEM), Zi-
enkiewicz (2).

In medium to high-frequency ranges, many hundreds of modes can be
excited and it becomes extremely difficult to predict the precise dynamical
response of the system (3)). Indeed, beyond the first modes, a large variabi-
lity of the energy response is expected, meaning that a detailed and accurate
deterministic model of a system with nominal parameters would provide inac-
curate results (4} 15, [1).

High-frequency excitations lead to the establishment of wavelengths
much smaller than the system dimensions (1)). As a direct consequence, these
higher-order modes become very sensitive to small variations introduced du-
ring the manufacturing proces leading to a significant random spread in the
energy responses across an ensemble of nominally identical systemAE] @ 3L11).

A typical example of the practical investigation of the dynamical res-
ponse variability in ensembles composed of nominally identical structures
from a production line is the research carried out in the automotive indus-
try field. Kompella and Bernhard (8| |9), through an extensive experimental
analysis, showed the relevance of response variability in an ensemble compo-
sed of 99 nominally identical vehicles. The Frequency Response Functions
(FRFs) for both transmission paths, structure-borne and air-borne, were eva-
luated for a high number of similar vehicles. In their work, only the uncer-
tainties originating from the assembly processes were considered. Although
the vehicles were considered nominally identical, their FRF measurements

"In most engineering structures, the variation of the mechanical component parameters may
occur over the ensemble, in space or over time (1). It is important to emphasize that the physical
parameters from an individual mechanical component may also be gradually modified with time
due to wear, environmental and working conditions (6).

2The nominal ensemble is defined, hereafter, as an ensemble composed of similar vibroa-
coustic systems with uncertain or non-deterministic parameters which are commonly considered
nominally identical in a production line.
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showed a range of response variability up to 10 dB for a fixed frequency

range. In Figures |I| (a) and (b), two examples of FRF measurements are
shown in detail.
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Figure 1: Magnitudes of FRFs from 99 nominally identical vehicles, Kom-
pella and Bernhard (9).

As shown in Figures[I] (a) and (b), the largest response variability oc-
curs mainly toward the high-frequency range. In this frequency range, the
wavelength reduces and it is expected that the dynamical response becomes
very sensitive to the presence of structural uncertainrylﬂ 4,15, [1).

Another practical example of the uncertainty effects on the energy res-
ponses from an ensemble composed of nominally identical structures was
shown by Frank Fahy (7). In his work, the responses from 41 aluminum cans
acoustically excited were measured, Figure 2]

3Structural uncertainty, or randomness, is defined as mass, stiffness, or damping perturbati-
ons able to cause a variation in the dynamical response of the system, even when the system is
subjected to purely deterministic excitation, Brown (1)).
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Figure 2: Magnitudes of responses from 41 nominally identical beer cans
acoustically excited, Fahy (7).

As shown in Figure[2] the large variability in the can responses is stric-
tly associated with the high intensity of uncertainty effects on the frequency
range investigated (7). Additionally, these results emphasize the evident ne-
cessity for further detailed investigations on how to include the contributions
from the uncertainty effects in the analytical and numerical methods for the
prediction of the energy response statistics (4} 15} 16} [10).

In order to investigate systematically the main effects of structural
uncertainties on the energy response statistics, several research studies have
adopted the use of numerical and experimental approaches in which the en-
sembles of simple random structures are artificially generated (11, 12,13} 14}
15). Such artificial ensembles are traditionally composed of perturbed sys-
tems with simple geometries such as beams, plates, and cylinders; Langley et
al (4,116} 13,117, [18), Brown (1) and Cordioli et al. (19,120). Additionally it is
important to note that this investigative approach is a very convenient mean to
reproduce and also to assess the main effects of several sources and different
levels of structural uncertainty on the modal parameter statistics as well as on
the statistical moments of the energy responses (10).

Johnson (21)), using a simple beam structure, investigated experimen-
tally the effects of the structural uncertainties on the dynamical responses.
In his work a beam ensemble was artificially generated using twelve small
point masses attached randomly onto the surface of a nominal beam along the
length direction. The point masses were adopted in order to represent mass
distribution uncertainties along beam structures. For each beam member of
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the artificial ensemble, the point mass locations were randomly modified to
produce an ensemble composed of 20 random beam structures. The transfer
mobility functions were measured between two fixed points for each one of
the random beam members. The FRF measurements form an ensemble of
results, Figure 3]
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Figure 3: Experimental cross-mobility results from an artificial ensemble of
beams with randomly attached point masses, Johnson (21).

As shown in Figure 3] the FRF results from the random beams suggest
that the beam responses are almost insensitive to the presence of point masses
in the low-frequency range, since the natural frequency locations are almost-
deterministic across the ensemble. However, for the high-frequency range,
the beam responses become very sensitive to the presence of the point masses
and the natural frequency locations are very random in the frequency domain
as well as across the ensemble.

Although the experimental results reviewed previously are associated
with a particular group of random systems, an evident conclusion arises: the
dynamical response of a real engineering system is very sensitive to the pre-
sence of uncertainties in the mechanical properties and its sensitivity to un-
certainty effects is amplified as the excitation frequency increases, Langley et
al. (d). In this regard, the accurate prediction of the statistical characteristics
of the dynamical response expected across the ensemble is essential to meet
the design and product certification requirements.

In what follows, the physics of uncertainties associated with random
systems are discussed and their main effects on the energy response statis-
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tics are highlighted. In the following sections, the performances of various
prediction methods of the dynamical response applicable to the analysis of
built-up systems are considered and briefly commented on. Special attention
is given to Statistical Energy Analysis (SEA) which is an appropriate method
for the energy diffusion analysis of uncertain or random systems in mid- to
high-frequency ranges. The problem of predicting the SEA variance of the
energy responses is discussed and the main conclusions and contributions
from the current SEA variance literature are reviewed and summarized.

Next, a brief overview of the statistical models from the Random Ma-
trix Theory (RMT) and their application to elastodynamic structures is pro-
vided. The main aspects associated with the statistics of each of the modal
parameters (natural frequencies and corresponding mode shapes) and the ap-
plication of RMT models are discussed with reference to recent results from
the SEA variance and quantum physics fields published in the literature. The
review is then summarized and some conclusions are initially drawn regar-
ding the universal establishment of GOE statisticsﬂ for the natural frequen-
cies and the corresponding mode shapes of real engineering systems with
uncertain or non-deterministic parameters (10). Finally, the examples of the
open problems identified from the current review are highlighted, and based
on the gaps identified, the scope and aims of the current work are presented
{1ap.

1.2 The Physics of High-Frequency Range

In a typical automotive or aerospace application, the equations of dy-
namic equilibrium can be easily generated using a commercial Finite Element
software program and several degrees of freedom are necessary (4)). The dy-
namic equilibrium equations are given by (22):

MX + CX + KX =F, (1.1)

where M, C and K are the mass, damping and stiffness matrices, respectively,
and X and F are the response and external force vectors, respectively.

In the engineering context, the main goal of a dynamical analysis is
to evaluate the system performance and contribute to the design process as
well as the product certification (4). For a complete dynamical analysis, it is
necessary to solve a system of linear equations described by Equation (T.1J)
for several loading cases as well as for several design proposals (4). In this

4The statistical characteristics of GOE model will be presented and discussed in next chapter.
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methodology, a large number of degrees of freedom is usually applied and
the computational processing cost becomes high and prohibitive in several
engineering applications (3 16, 4, 1} 20).

As discussed by Langley et al. (4), a complete and efficient compu-
tational model must offer the design engineer not only information regarding
the dynamical response from the perfect nominal system, but also a good es-
timate of the expected response variability. However, in the development of
such models the following difficulties are encountered (5, 4): (i) input-data
regarding uncertainty statistics: information on the system properties is ex-
tremely limited; and (if) computational cost: even provided with a complete
probabilistic description of the system parameter uncertainties, the analytical
and computational task of converting this data into a response description, th-
rough motion equations, is immense and prohibitive for almost all ensembles
of engineering systems.

In order to solve this engineering problem, a good understanding of
the physical phenomena associated with the energy response statistics from
uncertain systems is essential to provide effective methodologies to predict
the statistical moments of the ensemble responses. According to Langley (4)
and Mace ((6)) as the excitation frequency, or the uncertainty level (or random-
ness amount) increases, it is expected that the ensemble response statistics
will become independent of the detailed nature of the uncertainties, provided
that the systems are random enough across the ensemble. Indeed, under this
particular condition, the analytical problem becomes easier due to the esta-
blishment of a physical phenomenon called Universality (23| 14). The main
statistical aspects of the Universality concept applied to dynamical random
systems were demonstrated through a numerical example performed by Lan-
gley et al (4) and the main conclusions will be described below.

In order to evaluate the sensitivity of response statistics to different
sources and levels of uncertainties, three distinct plate ensembles were nu-
merically generated. The uncertainty sources for each plate ensemble were:
9 random edge springs, 10 random located point masses (corresponding to
20% plate mass absent of uncertainties), and 5 randomly located point mas-
ses (corresponding to 5% plate mass absent of uncertainties). The ensembles
were composed of 200 random plate members. For each plate ensemble,
a point force was applied to each plate member and their energy responses
were evaluated. The randomization approaches, the individual and ensemble
mean energy responses are shown in Figure [
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Figure 4: The energy responses from the random plates for three distinct
ensemble approaches, Langley et al (4).

As shown in Figure [} the ensemble mean values for the energy res-

ponses show distinct curve patterns for each of the randomization approaches
in the low-frequency range. For the high-frequency range, the curve patterns
of the ensemble mean values are surprisingly similar and seem to be inde-
pendent of the randomization approaches adopted. In order to understand in
detail the application of the Universality concept, the energy response varian-
ces were also evaluated for all random plate ensembles, Figure 3]
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Figure 5: The energy response variances from three distinct ensemble appro-
aches, Langley et al (4)).

According to Figure[5] the energy response variances from the random
plate ensembles are clearly dependent on the uncertainty source characteris-
tics in the low-frequency range. However, when the excitation frequency
increases, the energy response variance results for three distinct random plate
ensembles become very similar and only small differences were observed
between them.

In summary, these numerical results suggest that, for sufficiently ran-
dom engineering systems, the ensemble mean and variance curve patterns
may be independent of the detailed nature of the system randomness at high
frequencies (4). Thus, it might be anticipated that the energy response statis-
tics at high frequencies will be exclusively dependent on the natural frequency
and mode shape statistics (4). Indeed, this physical behavior provides a fun-
damental hypothesis for the evaluation of the prediction methods based on
the application of the Universality concept from the Random Matrix Theory
(RMT), Mehta (24) and Langley (23).
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1.3 Methods of Response Prediction of Complex Vibroacoustical Sys-
tems with Uncertain Parameters

Most built-up engineering systems have components with complex ge-
ometries and are composed of a large range of materials and distinct structu-
ral connections (5)). In principle, the construction of a detailed deterministic
model of such systems, such as the well-established FEM models, would be
feasible and its application would provide the linear response to applied for-
ces/displacements at any frequency and at any point, Fahy and Langley (5).

In the context of the Finite Element Method (FEM) (2), the vibroa-
coustical system is split up into a mesh of discrete finite elements, and the
elastic and kinetic energies of these elements are described in terms of dis-
placements and their time derivatives (1). Although, the application of FEM
models is a well-established approach in the engineering field, due to its high
performance in terms of accurately modeling a wide range of complex sys-
tems, the FEM model is traditionally limited to the low and mid-frequency
range engineering applications. Indeed, there are two major factors that hin-
der the direct use of the deterministic approaches, such as the FEM, BEM, or
Rayleigh-Ritz method, in high-frequency range applications (3).

The first factor is associated with the fact that the size of the finite
elements used to represent any component must be considerably smaller than
the minimum wavelength in that component at any frequencyE] L 15). That
is, the mesh size needs to become increasingly smaller at higher frequencies
in order to describe accurately the variation in the modal displacement (J5)).
As demonstrated in several structural applications, the number of elements,
or the model size, increases exponentially with an increase in the excitation
frequency and with the geometric and material complexities of a model (5)).

The second factor is more evident and is associated with irreducible
uncertainties related to the high-order modes (3). Although it is, in principle,
possible for current computers to extend deterministic modeling to the high-
frequency range, this approach suffers from the unavoidable impossibility of
possessing complete and exact knowledge of the mechanical and material
properties of any real systems (4} (6, 5)).

According to Mace et al (6, 25)), the response variation due to the un-
certainty effects is usually described using two major approaches. The first
approach comprises the possibilistic methods in which the physical properties
of a system are assumed to lie within certain ranges and no attempt is made to

5 According to F. Fahy (5), the usual recommendation is at least 6 nodes per half wavelength
of deformation.
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describe any probabilistic distributions within these ranges et al (6, [25)). In-
deed, the main objective is to provide the expected boundaries of the response
given a certain set of input values (1} 25). However, setting the limits for the
ranges is also very problematical (6). The application of internal or fuzzy
analyses to FE models are examples of possibilistic approaches (235). An ex-
cellent overview of the publications available on the possibilistic approach
has been presented by Elishakoff (26).

On the other hand, the second approach is associated with probabilis-
tic methods in which the physical properties of a system are assumed to have
statistical distributions and the main aim is to predict the response statistics
(6). However, quantifying the statistics of the physical properties is very pro-
blematical, especially in an industrial field (6). In practice, the engineer is
likely to make estimates of input parameter uncertainties based on prior ex-
perience and perhaps based on a very limited number of measurements (6).
The stochastic FE method (SFEM), perturbation methods and procedures ba-
sed on Monte Carlo simulation are examples of probabilistic approaches (25)).

Considering the dynamical behavior of a complex vibroacoustic sys-
tem in the high-frequency range, the effects resulting from the uncertainties
are substantial and thus their natural frequencies and corresponding mode
shapes should be considered random variables (1, 27). The high-frequency
dynamical behaviors of random vibroacoustical systems are usually investi-
gated through an energy flow approach, which considers statistical concepts
in order to take into account the uncertainty effects on the energy responses
(28). The most traditional energy flow method is known as Statistical Energy
Analysis (SEA), in which the results predict the expected mean value of the
energy responses from an ensemble composed of similar systems with uncer-
tain or non-deterministic parameters, Lyon and Dejong (29). One of the main
limitations to this approach is the impossibility to extend SEA results with
accuracy to higher statistical moments of the energy responses (30, [1} 7).

Recently, a nonparametric approach (31} 6)) has been presented which
considers the uncertainty effect directly in the eigensolutions of the system
in order to predict the energy response statistics of non-deterministic systems
in the high-frequency range, Langley and Brown (18, 3). As stated previ-
ously, the uncertainties of the physical parameters of the system will lead to
the establishment of uncertainty in the natural frequencies and corresponding
mode shapes (1} 27). In most practical engineering structures is expected that
the level of uncertainty is sufficiently large so that the detailed statistics of
the physical parameters of the system do not need to be considered to predict
high-frequency energy response statistics, Langley et al (4} 23). For these
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random systems, the natural frequencies can therefore be considered as ran-
dom variables on the frequency axis so that the well-established statistical
models can be adopted to model the modal parameter statistics (1} 4} 23} 27)).
In this regard, the analytical formulations can be conveniently determined to
predict the expected ensemble response variance associated with SEA results
in the mid and high-frequency ranges, regardless of the detailed nature of
the uncertainties of the physical parameters of the system (1} 4} [23| [27). In
next section, the main concepts and basic hypothesis of the SEA method are
briefly reviewed.

1.4 Statistical Energy Analysis

1.4.1 SEA Overview

Several academic texts can be recommended for an introduction to the
basic concepts of Statistical Energy Analysis (SEA), for example: Lyon and
Dejong (29), Fahy (32), Woodhouse (33) and Gerges (34). In this methodo-
logy, an energy diffusion analysis associated with low computational effort
may be performed for several classes of complex built-up systems, applying
only previously known global design characteristics (34, 28)).

The main differences between deterministic and energy flow methods
(or statistical methods) in terms of their conceptualizations and application
fields are broadly shown in Figure [f] Gomes (28). In deterministic methods,
such as Finite and Boundary Element Methods, the system of interest is divi-
ded into the finite or semi-infinite elements. The deterministic input parame-
ters are discrete forces and displacements and their output results are sound
pressures and local displacements of specific points of the system (the nodes),
Figure[6] (a).

In contrast, in the statistical methods, such as SEA, the system is split
up into subsystems and the input parameters are described by time-averaged
steady-state input powers and their results are the expected energy mean va-
lue across the ensemble, Lyon and Dejong (29). The SEA results take into
account the spatial characteristics of high-order modes which are very sen-
sitive to parametric variations from the manufacturing process and assembly
conditions, Figure [f[b).

It is important to emphasize that the deterministic and statistical pre-
diction methods are complementary analysis tools in which FEM and BEM
are the most appropriate methods for dynamical analysis in the low-frequency
range and SEA is a methodology most convenient for energy diffusion analy-



1.4 Statistical Energy Analysis 71

sis in the mid and high-frequency ranges, Gomes (28)).
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Figure 6: Examples of numerical simulations in the automobile field: compa-
rison between deterministic and statistical approaches. Sub-figure (a): FEM
and BEM variables. Sub-figure (b): SEA variables, Gomes (28)).

1.4.2 SEA Equations

In the SEA context, the analyzed system is divided into basic units
which are called subsystems. According to Lyon and Dejong (29)), the subsys-
tems may correspond to different regions of the structure, or different mode
(or wave) types within a single region, for example: longitudinal vibration
beam modes, acoustical cavity modes, bending (or flexural) plate modes,
among others. In SEA modeling, each subsystem represents a local mecha-
nism of energy storage or the expected mean modal energy from a wave type
associated with a particular component of a complex built-up system (34} 28)).

The basic SEA equations have been presented by several researches
using distinct approaches, (35) (29). Traditionally, the SEA equations are
given as following:

E_Ej|. :
W,—a)n,E,—i—j;iwnuN, [M N]} i=1,2,3,...,k (1.2)
where k is the number of subsystems, W is the external input power of the i*"
subsystem, E; is the total energy of the i’ subsystem, 7; is the damping loss
factor of the i subsystem, 7); ; 1s the coupling loss factor between the i and
7" subsystems, N; is the number of resonant modes in the analyzed frequency
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band of the i"" subsystem. All terms from Equation (T.2) are averaged over
time, over the ensemble of the system considered, and spatially, over the rele-
vant subsystems, over the frequency band of interest, wherever these distinct
types of averaging processes are appropriate, (1)).

The first term on the right side of Equation (T.2) represents the inter-
nal power dissipated by mechanical loss in a particular subsystem and the
second term represents the power transmitted to other subsystems. The key
to the SEA method is the hypothesis of local dynamical behavior. In other
words, the power flow between two subsystems is proportional to the diffe-
rence between their modal energies, regardless of the energy distributions in
other subsystems. The expression of the transmitted power flow is given as
follows:

E, E;
Wij = oni;Ni [Ni - Nj] ;

where W;; is transmitted power flow between subsystem 7 and subsystem j.

(1.3)

1.4.3 Basic Assumptions of SEA

In the derivation of the SEA equations certain simplified assumptions
are made, which may limit the application of the SEA model. The basic
assumptions of the SEA theory are the following (29, 28)):

* The subsystems are weakly coupled and the coupling between the
subsystems is linear and conservative (non-dissipative).

* Each mode is considered to store energy and the modal energy equipar-
tition is considered valid for a set of resonant modes contained within
a particular frequency range.

* For all subsystems, the absence of coupling or interation between mo-
des inside or outside the frequency range of interest is considered (i.e.,
modal incoherence). A practical analogy may be established with pi-
ano keys. That is, each key is understood to be a resonant mode and its
behavior is independent of the others (28]).

e For practical convenience, the damping loss factor is assumed to be
constant for all modes belonging to the frequency band of interest (re-
sonant modes) for each subsystem. This practical hypothesis is very
convenient and simplifies the energy diffusion analysis.
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* Each mode corresponding to a natural frequency (f;) is considered to
be a random variable and has uniform probability to lie inside i'" fre-
quency band. This hypothesis is directly associated with the fact that
subsystems considered nominally identical have randomly distributed
parameters, mainly in the high-frequency range.

* The dissipated power flow is mainly provided by resonant modes as-
sociated with the frequency band of interest. The external loadings
are adequately considered random forces with uncorrelated phases or
broad-band pressure fields.

* The reciprocity relationship among subsystems is considered valid.

1.4.4 SEA Parameters

In this section, the main SEA parameters are briefly reviewed. The
best-known procedures for the determination of SEA parameters are also pre-
sented and discussed (28). Further information on the analytical evaluation
and experimental obtaining of SEA parameters are available in: Lyon and
Dejong (29); Brown (1)) and Cordioli (20).

Subsystem Energy

The subsystem energy is defined in terms of the spatial squared velo-
city or pressure integrated in the frequency band, Lyon and Dejong (29). For
structural subsystems, the total subsystem energy is given by (29):

E:M<v7>, (1.4)

where M is the mass subsystem and v is the structural velocity.
For acoustical subsystems, the total subsystem energy is given by (29):

g Ve <?>, (1.5)

pocs

where V, is the volume of the acoustical subsystem, <?> is the time-space

average of squared pressure, po is the volumetric density of fluid, and cg is
the sound velocity in a fluid.
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Damping Loss Factor

The input power to a subsystem is dissipated through several loss me-
chanisms: acoustical radiation, structural damping, weld or screw junctions,
etc. Generally, analytical expressions are not available to determine the dam-
ping loss factor from the structural components and acoustical cavities.

The Damping Loss Factor (DLF), 1, can be evaluated through ex-
perimental techniques: half-power band, structural decay (or acoustical re-
verberation time) (Tgo) or Power Inject Method (PIM), Fahy et al (36) and De
Langhe (37)). The damping loss factor amplitude can be easily related to other
well-known parameters: critical damping ratio ({), reverberation time (T4()
and averaged absorption coefficient (&) (29} 130, 15).

Modal Density

The modal density, n(f), is defined as the number of resonant modes
that lie within the frequency band limits divided by frequency band width,
Lyon and Dejong (29).

For subsystems with simple geometries, for example: beams, plates
and rectangular acoustic cavities, the analytical formulations are available,
Lyon and Dejong (29), Cremer et al (38), and Gomes (28). However, for
systems with complex geometries, the modal density can be adequately esti-
mated through experimental or numerical techniques. For structural compo-
nents, the Point Mobility Method is traditionally applied; Clarkson (39, 40),
Brown and Norton (41)), and Ranky and Clarkson (42).

Modal Overlap Factor

The modal overlap factor, m, is defined as the ratio between the half-
power band width, f7, and the mean natural frequency spacing, d f , that is
(29):

m= Y1 (1.6)

(6f)
where angular brackets ( ) represent the average value for the frequency band.
In Figure[7] a graphical representation illustrates the modal overlap definition,
Gomes (28)).
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Figure 7: Parameters used in the modal overlap factor definition: half-power
band and mean natural frequency spacing, both frequency band average va-
lues, Gomes (28)).

The mean natural frequency spacing is directly related to the modal
density parameter by the following relationship (29):

(1.7)

Substituting Equation (I.7) into Equation (I.6), the modal overlap fac-
tor is given by:

m(f) = fnn(f), (1.8)

or it can also be expressed in terms of angular frequency, ®, by:

m(®) = onn (o). (1.9)

According to Rodrigues (43), it is expected that the modal superposi-
tion occurs under the following conditions:

1
m>l:fn>m:>fn>6f:>fnn(f)>l. (1.10)
n
In the SEA context, the modal overlap factor is a relevant parameter in
the description of the expected response variability from an ensemble com-
posed of similar systems as well as in the analysis of the validity of SEA
assumptions, Lyon and Dejong (29) and Gomes (28)).
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Coupling Loss Factor

The Coupling Loss Factor (CLF) is an exclusive SEA parameter. Ge-
nerally, the calculation of the CLF parameter can be associated with other
relevant physical parameters (29, [28). In the case of vibroacoustical structu-
res, the CLF associated with flexural panel - acoustic cavity junctions is di-
rectly associated with frequency band-averaged acoustic radiation efficiency,
Gomes (28).

For structural junctions, there are difficulties associated with the evalu-
ation of CLF parameters. Indeed, the coupling between two structural subsys-
tems is dependent on several parameters, such as the spatial extension of the
structural components, the geometry and the nature of the junctions (28). Tra-
ditionally, the evaluation of CLF associated with structural junctions is based
on the coefficient of transmitted energy, Cremer and Heckel (38). Several
studies have been performed in order to evaluate analytically the CLFs for
particular structural junctions, for example: Langley and Heron (44), Craik
and Smith (45)), and Bosmans and Vermeir (46)), Meeds and Vermeir (47) and
others.

1.5 SEA Variance

Over several years, a great amount of effort has been dedicated to ex-
tending the SEA model capacity to predict the higher statistical moments of
energy responses from an ensemble composed of similar systems with non-
deterministic parameters (48, 49, 50, [18} 30, 51}, 15). Broadly, these research
works on SEA variance may be divided into two major approaches, Brown (1))
and Cordioli (20). The first approach comprises the numerical investigation
activities, where probabilistic models are adopted for the physical parameters
of the system, whereby the energy response from each member of the ensem-
ble is calculated and then the response statistics are subsequently evaluated
across the ensemble (1, 20). On the other hand, the second approach is based
on the random point processes, where probabilistic models are adopted for
the dynamical properties of the ensemble, that is, statistical models are assu-
med for natural frequency and mode shape statistics (1,/20). In what follows,
some literature examples and basic concepts from each one of these SEA va-
riance approaches are briefly presented and discussed. Excellent overviews of
the available publications on the existing approaches to the dynamic analysis
of uncertain structures have been presented by Brown (1)) and Cordioli (20).

In the SEA context, several studies with dynamical systems with non-
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deterministic parameters and properties have been adopting the numerical
approach in order to investigate the relationship between the modal overlap
factor value and the energy response statistics across the ensemble (11} [12}
14).

Fahy and Mohammed (13) investigated numerically several structural
systems comprised of coupled beams and plates. In order to generate the
ensembles of the systems, the Monte Carlo Method was used. The effects of
small perturbations in the subsystem geometries on the determination of the
coupling loss factors as well as on the frequency-averaged transmitted power
flows were investigated. The results suggested that the transmitted power flow
and coupling loss factor variance values are strictly dependent on the modal
overlap factor values and decreased with an increase in the latter.

Manohar and Keane (15) investigated the performance of SEA predic-
tions for a system of two multimodal, random, one-dimensional subsystems
coupled through a spring and subjected to single frequency forcing. The va-
riability of the dissipated power spectrum was investigated numerically th-
rough the Monte Carlo Method. The energy flow calculations were based
on an exact formulation which uses the Green functions from the uncoupled
subsystems, which are expressed as summations over the uncoupled modes.
The effects on the energy response resulting from different damping models,
loading natures and probabilistic models for the structural parameters statis-
tics were investigated in detail. The results suggested that the damping model
of a structure may be related to the statistical convergence of the frequency
mean value, and the convergence speed is directly associated with the modal
overlap factor value. The analysis of the Probability Density Function (PDF)
of the natural frequencies shows that there is a high superposition of PFDs
as the excitation frequency or system randomness level increases. Thus, an
increase in the PDF superpositions may be associated with an increase in reso-
nant modes that contribute to the response and the establishment of a smooth
response along the excitation frequency range. In this regard, a new parame-
ter was proposed in order to quantify the randomness level of the system and
the minimum cut-off frequency beyond which the response statistics are no
longer dominated by individual modes. This new parameter was denominated
the statistical overlap factor, for the ith natural frequency, and its definition
is given by:

204,
Si=—

Hi
where 0y, is the standard deviation associated with the ith natural frequency

(1.11)
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and ; is the ensemble mean spacing between the ith and (i+1)#h natural fre-
quencies. Manohar and Keane also showed that the statistical overlap factor
may be related to a cut-off frequency beyond which the oscillations on statis-
tical moments of the energy responses becomes smoothed.

In the second approach, random point process, probabilistic models
are adopted in order to describe the statistics of the system modal parame-
ters, that is, statistical hypothesis are considered for natural frequencies and
their corresponding mode shapes (1}, 20). Historically, the initial studies on
the response statistics from a single subsystem were associated with acoustic
roomsP| (52,53, [54).

One of pioneering work was carried out by Lyon (48)), where the na-
tural frequencies of a single system were described by the Poisson Point Pro-
cess (55) and analytical predictions were proposed for the energy response
variance from single geometry systems, such as a rectangular plate and box-
shaped acoustical cavity. Additionally, the mode shapes were considered as
a product of the sinusoidal functions. For the case of a subsystem subjected
to point-loading, the results demonstrated that the statistical characteristics
of mode shapes exert a substantial influence on the energy response vari-
ance prediction through a parameter called Spatial Factor of Mode Shapes{Z]
(K). Additionally, the effect of application of the non-Poisson distribution
for natural frequency spacings was evaluated using an empirical distribution
formula. Lyon shows that when the empirical distribution formula is consi-
dered, the energy response variance is reduced in comparison to that which
is based on the Poisson distribution. However, an analytical prediction using
the empirical distribution formula was not proposed at that time.

Davy (53! [54) extended Lyon’s formulations (48)), the analytical pre-
dictions based on Poisson and non-Poisson models were derived for several
source and receiver points. Considering the ensemble-frequency ergodicity
considered valid for the averaging process, the spectral statistics of the expe-
rimental measurements were compared with the analytical predictions. The
analytical predictions based on the non-Poisson empirical distribution provi-
ded a better performance than the previous formulation based on the Poisson
model. An experimental investigation of the spatial factor of mode shapes
was carried out in detail. The results showed that the hypothesis of sinusoi-
dal mode shapes provided an overestimated prediction in comparison with
the experimental measurements. In this regard, it was suggested that the ac-

SFor acoustic room systems, there are several acoustic modes in the audible frequency range
and thus the use of determinist models becomes prohibitive in several applications (1).
"This SEA parameter will be introduced and discussed in the following chapters (48] [18] 35).
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curate determination of this factor is essential to obtaining good analytical
predictions for cases of single point excitation.

In general, the natural frequency statistics adopted by Lyon (48)) and
Davy (53)) are considered invalid for most of engineering systems (35} 4} 23)).
Several studies, mainly in the physics field, have established that natural fre-
quency statistics from the random dynamical systems may be correctly descri-
bed by eigenvalue statistics from the Gaussian Orthogonal Ensemble (GOE)
of Random Matrix Theory (RMTﬂ (24). However, the GOE statistics are
not expected for systems with several symmetries, such as a simply suppor-
ted perfect rectangular plate or a box-shaped acoustic space (35} 23). For
this class of systems, the Poisson statistical hypothesis initially proposed by
Lyon (48) and also supported by Davy (53) is correct, but the presence of
small perturbations in the system parameters may lead to changes in the sys-
tem symmetries and the establishment of GOE statistics is expected for the
high-frequency range.

Langley and Brown (18)) considered the GOE model for modal para-
meter statistics and proposed analytical formulations for the energy response
variance from an ensemble composed of similar subsystems. In their work,
the original and complete formulation of the two-level cluster functimﬂ was
used for modeling the local correlations of the natural frequencies. Numeri-
cal simulations and experimental measurements with flexural plates perturbed
with small point masses were performed for single point and rain-on-the-roof
excitations. For rain-on-the-roof excitation, the analytical prediction confor-
med very well with the energy results. On the other hand, for the point-
loading case, the GOE prediction over-predicted the energy variance results.
The analytical formulation was fitted with numerical results, considering the
mode shape statistics factor as an independent variable. The best-fitted value
of K was lower than the GOE value proposed by RMT, that is, K < 3.

According to Lobkis et al (50), this finding may be associated with the
presence of complex mode shapes. However, the proportional damping ap-
proach was adopted in Langley’s formulation which provides fully real mode
shape components, thus discarding Lobkis’ hypothesis (18). Langley and
Brown (18) conclude that further investigations are necessary to evaluate the
most adequate value for the mode shape spatial factor.

Although the studies described above are limited to the evaluation of
energy response variance from a single subsystem, several attempts have been

8The RMT literature related to GOE eigenvalue and eigenvector statistics is very well-
established in the physics and mathematics fields (244156} 157, 158).
9The definition of rwo-level cluster function will be introduced in next chapter.
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made to extend the SEA variance prediction to complex engineering systems
composed of several connected or coupled subsystems, (16} 35 4)), as well
as to FEM-SEA hybrid systems, (59, 160). Further details concerning SEA
variance theory are presented in Chapter 4.

1.6 Universal Statistics

1.6.1 Random Matrix Theory

As mentioned in the previous section, the spacing distribution of ei-
genvalues (or natural frequencies) and their spectral correlations are essential
key points during the development of analytical methods aimed at predicting
the variance in the energy response of vibroacoustical systems (1} 51). In this
section, the main concepts of the Random Matrix Theory (RMT) are briefly
reviewed with the focus being on its application to random vibroacoustical
systems. The RMT analytical results for the eigenvalue statistics are usually
adopted in derivations of analytical formulations to predict the variance of the
energy responses, (18 48)).

Random Matrix Theory (RMT) arose in the early 1960’s and its main
goal was to give mathematical support to the statistical analysis of spectra of
the energy levels{lﬁl of complex nuclei, Wigner (61) (62). In nuclear systems,
the energy levels are evaluated through a finite Hermitian matrix operator
call a Hamiltonian (H), Guhr et al. (57,163). In general, the eigenproblem
associated with a Hamiltonian matrix H is described as in (23)):

Hu; = Auj, H=UAUT,UUT =1, (1.12)

where A; and u; are the i""eigenvalue and eigenvector of the Hamiltonian H,

respectively. The matrix U has eigenvectors in its columns and the matrix A
is diagonal and contains the eigenvalues in diagonal elements.

In a series of studies, Wigner (61} 162)) showed that the statistical pro-
perties of energy levels from nuclear systems with complex nuclei can be
adequately represented by the statistics of eigenvalues from random matrices
with large dimensions.

Recently, several studies have obtained promising results for the ap-
plication of RMT concepts in the analysis of natural frequency statistics from
systems with several physical natures (64} 165} 166, 20) . Indeed, a surprising
conclusion arises from the numerical and experimental analysis of random

101n nuclear systems, a graph of the resonance levels shows several peaks which corresponding
to energy levels, Mehta (24).
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systems: in most of them the natural frequency statistics are described by
statistics from the Gaussian Orthogonal Ensemble (GOE) of Random Matrix
Theory (RMT) (23116, 20).

One of the pioneering studies on the application of RMT concepts in
vibroacoustical systems was carried out by Weaver (64). In his work, the
natural frequencies of aluminum blocks were measured and their statistics
shown excellent agreement with analytical RMT predictions. Additionally,
Langley and collaborators (4} [17, 51} [16} 18 3, 35, 23) and Cordioli (20)
have shown that the RMT models can also be applied to describe the natural
frequency statistics of random dynamical systems.

It is also important to emphasize that there is, as yet, no explicit proof
as to why the RMT concepts are so widely applicable to random systems from
many different areas (67, [23). The matrices arising from the mathematical
modeling of any physical system differ considerably from the RMT random
matrices (23). Some authors postulate that this good agreement is supported
by the establishment of the Universality concept (4} |6, 23). Therefore, the
conditions necessary for the universal establishment of GOE statistics for
each modal parameter have been investigated by several researchers; Bohigas
et al (67), Langley (23)), Cordioli (20) and others.

In the RMT context, analytical expressions are proposed to describe
eigenvalue statistics from the universal classes of large random matrices
which are called as Gaussian Ensembles, Andersen (68)). According to Bohi-
gas et al (67), the eigenvalue statistics from a Hamiltonian matrix associated
with a random chaotic syste are expected to correspond to those of the
eigenvalues from the GOEFZ] matrices.

In GOE statistics, the universal statistics of the eigenvalues from the
large symmetric random matrices present spectral rigidity and level repulsion
characteristics and thus their spectral statistics obey the Wigner surmise which
states that the PDF of adjacent eigenvalue spacings is described by a Rayleigh
PDF, Weaver (64, [1). The level repulsion characteristic is associated with the
establishment of a low probability of small spacings between the adjacent
levels (or natural frequencies) and the spectral rigidity is associated with the
establishment of a perfect uniform spacing distribution between the adjacent
natural frequencies along the spectrum, that is, there are no small or large

n the classic context, chaotic systems are systems whose ray trajectories are unstable with
respect to the initial conditions, that is, the distance between two particles inside a billiard scatters
in an exponential way over time, covering the entire surface of the system due to scattering at the
boundaries, Bohigas et al (67).

12The statistical characteristics of a GOE model associated with natural frequency and the
corresponding mode shape statistics are presented in detail in Chapter 2.
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level spacings (64, [1)).

Considering the complete establishment of universal statistics, the
GOE eigenvectors are expected to be statistically independent, and thus their
distribution of eigenvector (or eigenfunction) components is assumed to be
Gaussian, (69, [10} [71). Additionally, the components of GOE eigenvectors
(or mode shapes) present normal distribution and therefore the mode shape
statistics factor value (K) is expected to be equal to 3 for perfect GOE mode
shapes, KGOE —3 1L 118).

Traditionally, the hypothesis of the universal establishment of GOE
statistics has been extended to the corresponding mode shapes in the deriva-
tion of analytical methods to predict the response variance of random vibro-
acoustical systems, Langley et al (16,13, 18} 4). However, relevant numerical
and experimental results have suggested non-trivial deviations of mode shape
statistics from the GOE eigenvector statistics (35,49, (3 [17, [18l 14).

Recently, considerable effort has been directed toward the Quantum
Physics field in order to quantify and classify the deviations of the mode
shape statistics from the GOE eigenvector statistics, Kudrolli and Pradhan
(711 172, [73\ [74)). On the other hand, a reduced number of similar studies
has been performed for random vibroacoustical systems (10). In this regard,
further investigations are necessary to characterize the non-universal statistics
of mode shapes of random engineering systems, Gomes (10).

1.6.2 Establishment of GOE Statistics

Considering the ensemble response variability in the SEA variance
context, an excellent performance of the revised SEA relative variance predic-
tion is confirmed provided that the system modal parameters are conside-
red to be sufficiently random across the ensemble, Langley et al. (18,13L[17./4).
Under this particular condition, it is expected that the modal parameter sta-
tistics across the ensemble have universal characteristics and are adequately
described by the statistics from a Gaussian Orthogonal Ensemble (GOE) of
Random Matrix Theory (RMT), (23, 4,16, [1).

Although the hypothesis that modal parameter statistics of random en-
gineering structures have GOE statistics across the ensemble is commonly
adopted in the SEA variance context (18, 149,75} 150), several numerical and
experimental results from the artificially generated random systems investiga-

B3The revised SEA relative variance predictions are based on the hypothesis that complete
establishment of GOE statistics occurs for both system modal parameters, natural frequencies
and corresponding mode shapes, Langley and Brown (18l 3).
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ted recently in the SEA literature show strong evidence that while the natural
frequency statistics are accurately described by the GOE model, the corres-
ponding mode shape statistics do not completely conform to the GOE model
and present almost-Gaussian characteristics (35} 149, 13| [17, [16} 18 4} [10).
Thus, a partial establishment of the GOE model occurs for the mode shape
statistics and the revised SEA relative variance predictions based on complete
GOE statistics over predict the ensemble relative variance results for such ar-
tificial random systems (18 |1, 135 76 [10).

In Figure [§] examples of the performance of the revised SEA rela-
tive variance prediction are shown for random systems subjected to a single
point—loadinﬂ These examples clearly indicate that the revised SEA re-
lative variance prediction based on the complete GOE statistics model over
predicts the ensemble relative variance results (18} 3). However, an excellent
performance of the revised SEA normalized variance prediction is obtained
when the mode shape statistics factor values are adequately adjusted. Indeed,
the adjusted value of the mode shape statistics factor provides an excellent
agreement between the numerical (or experimental) results and revised SEA
variance predictions, (18, 13).

In Table [T} examples of adjusted mode shape statistics factor values
are shown for the random artificial systems investigated previously in the cur-
rent SEA variance literature (35, 149} 3} [18] [17} 16} [18] 20} |4). The adjusted
mode shape statistics factor values were obtained through the fitting processes
between the numerical (or measured) relative variance results and best fitted
revised SEA variance predictions based on the GOE model.

141n cases of a single point-loading, the contributions of the mode shape statistics to the energy
response statistics are more substantial than in the case of other types of excitation, (18l 48).
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Figure 8: Examples of performance of the revised SEA relative variance pre-
dictions for the case of a single punctual excitation. Upper Plot: The rela-
tive standard deviation of energy density compared to analytical predictions:
numerical results (gray solid line); GOE theoretical prediction with K = 3
(gray dashed-dotted line); modified GOE prediction with K = 2.74 (black
solid line). Lower Plot: Relative standard deviation of energy density for
32 member ensemble: experimental results (gray solid line); band average
of experimental results (black solid line); GOE theoretical prediction with
K =3 (black dotted line); and GOE theoretical prediction with K = 2.5 (black
dashed line), Langley and Brown (18]).
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Table 1: The adjusted mode shape statistics factor (K) from SEA variance
studies performed with artificial random systems reported in the recent SEA
variance literature. The values were obtained through the fitting processes
between the numerical (or measured) relative variance results and best fitted

revised SEA relative variance predictions based on the GOE model.

System/Approach System  Des- | Literature Re- | Modified
cription ference K

Single/Numerical Mass-loaded Langley and | 2.87
plates Cotoni (35)

Single/Numerical Reverberation Weaver (49) 2.60
room

Single/Numerical Mass-loaded Langley and | 2.75
plates Brown (3)

Single/Numerical Mass-loaded Langley and | 2.74
plates Brown (18)

Single/Numerical Mass-loaded Cordioli (20) 2.50
plates

Built-up/Numerical Line-connected | Cotoni and | 2.70
plates Langley (17)

Built-up/Numerical Point- Langley and | 2.75
connected Cotoni (16)
plates

Single/Experimental Mass-loaded Langley and | 2.50
plates Brown (18)

Built-up/Experimental | Cylinder-plate Cotoni  and | 2.70
structures Langley (17)

Built-up/Experimental | Cylinder-plate Langley and | 2.75
structures Shorter (4))

As shown in Table ] the adjusted (or modified) mode shape statistics
factor values obtained through a fitting process are obviously smaller than
the expected GOE value, that is, K < 3 for all random systems investigated.
Additionally, the adjusted mode shape statistics factor values are very distinct
for each random system investigated and also strongly suggest the incomplete
establishment of GOE statistics for the mode shapes (76, [10).

It is also important to emphasize that for the artificial random systems
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investigated in Table (1] although their mode shape statistics do not perfectly
conform to GOE model, the revised SEA relative variance predictions using
the best fitted mode shape statistics factor conform very well with the nu-
merical (or experimental) relative variance results. Indeed, the uncertainty
levels associated with these artificial random systems seem to be only able to
provide the universal establishment of the GOE characteristics for the natural
frequency statistics, while for the corresponding mode shapes some residual
non-universal characteristics are clearly observed due to the contributions as-
sociated with system-dependent effects (76, [10).

In the elastodynamics field, Schaadt (70) carried out an experimental
investigation of flexural wave physics from a disordered system in order to
assess the universal establishment of GOE statistics for modal parameters as
the frequency increases. In his work, the spectral fluctuation statistics (i.e.,
natural frequency statistics) were assessed for a thin disordered fused quartz
plate in Bunimovich shape. In order to introduce a certain degree of disorder
(uncertainties) in the analyzed system, small holes were drilled on the surface
of the plate. The spectral statistics of natural frequencies were determined in
five different frequency ranges in order to assess the distinct strengths of the
effects of disorder on the natural frequency statistics. The natural frequency
statistics results suggested a gradual transition pattern from almost Poisson
statistics to GOE statistics as the frequency increases{ﬂ

As known in RMT context, GOE model can be established for eigen-
value statistics through the introduction of the off-diagonal coupling elements
in the Hamiltonian matrix structure (63, [77). The presence of the off-diagonal
elements couples the unperturbed eigenvalues and provides the establishment
of universal level repulsion and spectral rigidity characteristics on the eigen-
value spectrum (77, 78)).

Schaadt (70) also investigated experimentally the effect of the intro-
duction of a certain amount of disorder (uncertainties) on the mode shape
statistics. However, due to experimental difficulties, it was not possible to
measure the corresponding mode shapes for the same Bunimovich plate in
which the natural frequency statistics was previously evaluated (70). In this
second stage of his analysis, a reduced model of the aluminum Bunimovich
plate was used to understand the physical phenomena resulting from the pre-

15Similar results were also presented in Cordioli’s work (20). Using metric functions of RMT,
the natural frequency statistics of flexural plates with structural uncertainties were investigated in
detail. The good agreement with GOE predictions for short and long-range fluctuation statistics
was obtained as the frequency increases and suggested the occurrence of Univervality phenome-
non toward the high-frequency range.
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sence of disorder in the mode shape statistics. Its important to note that no
attention was given to compare the convergence speed characteristics for the
universal establishment of GOE statistics for each of the modal parameters,
(10). In Figure Q] the spatial characteristics of the disordered mode shapes
investigated are presented for distinct natural frequencies.

f=10kHz f =20 kHz

Figure 9: Measured mode shape patterns from a disordered plate with Buni-
movich shape, Schaadt (70).

As discussed by Schaadt, the experimental results shown in Figure
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suggest that the mode shapes are not obviously localized for all frequencies
investigated (70). Indeed, the low-frequency wavelengths are not affected
by the holes and the mode shape symmetry is not broken. As the frequency
increases, the disorder effects of the holes become more and more relevant.
The nodal line and symmetry characteristics evidence clearly a gradual fre-
quency statistical transition toward almost-GOE statistics (70). Considering
the mode shape associated with the natural frequency of 135 kHz, the spa-
tial mode shape characteristics shows that the symmetry around the vertical
axis is certainty broken, but the symmetry around the horizontal axis seems
almost unbroken. For the highest frequency analyzed (375 kHz) the spatial
mode shape characteristics showed that both symmetry axes were completely
broken and the GOE characteristics were adequately established.
Unfortunately, no conclusions regarding the convergence speed cha-
racteristics of the modal parameter statistics to the universal establishment of
GOE statistics can be drawn from the experimental results obtained by Scha-
adt (70), because the natural frequency and mode shape statistics were obtai-
ned from distinct disordered systems (10). Nevertheless, it can be verified that
the presence of uncertainties (or disorder) provides a gradual and continuous
frequency transition of the mode shapes from almost-deterministic statistics
to GOE statistics as the excitation frequency increases and wavelength redu-
cesE], Gomes (10). According to Schaadt (70), his analysis was incomplete
and further investigations are needed in order to obtain clear information on
the convergence speed characteristics of the modal parameter statistics to the
universal establishment of the GOE statistics in disordered systems.
Additionally, a series of numerical experiments with Band Random
Matrices (BRM) have been carried out to investigate the convergence speed
characteristics for the establishment of GOE statistics for each of the modal
parameters, Casati et al (77,78, [79). The BRM are traditionally applied to
model the Hamiltonian of perturbed integrable or regular systems of solid
state physics (78)). This type of random matrix is able to model the transition
from Poisson statistics to GOE statistics (77)). Casati et al (78, [79) showed,
through a set of numerical studies using the band random matrices, that the
scaling (transition) characteristics are dependent only on the scaling parame-
te which is defined as x; = bgv /N, where b,, is the band half-width and N

16 Although the modal parameter statistics were only evaluated as a function of excitation
frequency, similar results are also expected when the modal parameter statistics are evaluated in
function of uncertain level under a fixed excitation frequency range, Gomes (10).

"The scaling parameter describes the statistics of modal parameters in the regime of full
classical chaos. The term b%v is proportional to the localization length associated with the rate of
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is the random matrix size.

In the RMT context, the scaling parameter can be seen as a parameter
used to quantify the level of coupling between the unperturbed eigenvalues,
since this parameter is directly related to the number of non-zero off-diagonal
elements of the Hamiltonian (79). Indeed, an eigenvalue convergence to GOE
statistics is expected to occur with an increase in non-zero elements, that is,
when the off-diagonal coupling elements are introduced in a symmetric Ha-
miltonian matrix (78)).

Casati et al (78, [79) in their numerical analysis adopted a BRM en-
semble which is defined as the set of real symmetric diagonal matrices with
half bandwidth b,,. The matrix elements were chosen as independent random
variables with Gaussian distributions. Diagonal elements have the double va-
riance of off-diagonal ones, similarly to traditional GOE matrices. Thus, the
band matrix structure allowed the intermediate and extreme modal parameter
statistics to be reproduced (i.e., Poisson and GOE matrices). For the case of
the diagonal matrices (b,, = 1), the eigenvalues are expected to be uncorre-
lated and the PDF of the adjacent eigenvalue spacings, P(s), conformed very
well with Poisson statistics. In the opposite case, for fully random matri-
ces (b, = N), the P(s) results conform well with GOE statistics which are
described by the well-known Wigner surmise (i.e., Rayleigh distribution).

The relationship between spectral eigenvalue statistics and the scaling
parameter (x;) was investigated using a phenomenological formula for PDF of
adjacent eigenvalue spacings which is associated with the level repulsion pa-
rameter (B,), Casati et al (78). This formula also allows the correct characte-
rization of the intermediate eigenvalue statistics during a Poisson-GOE cros-
sover transition as well as the best known eigenvalue statistics. For f3, = 0,
they reduce to Poisson statistics and for 8, = 1, 2, 4 to Gaussian Orthogonal,
Unitary and Symplectic Ensembles (GOE, GUE and GSE), respectively. The
numerical experiments were performed using several ensembles of the band
random matrices composed of different matrix dimensions and bandwidths.
The level repulsion parameter (f,) was fitted for each corresponding scaling
parameter (x5) in order to describe in detail the eigenvalue statistics during
a Poisson-GOE crossover transition. The main eigenvalue statistics results
related to the scaling parameter dependence are shown in Figure[I0}

exponential decay of the eigenvectors at the limit of infinite size (N — o). Further information on
the physical meaning of scaling parameter and its application to statistical analysis of quantum
systems are available in Casati and Molinari (78, 179).
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Figure 10: Plot(a): The PDF of adjacent eigenvalue spacings. Plot (b): the
level repulsion parameter 3, for intermediate eigenvalue statistics P(s) plotted
against the scaling parameter, x; = bﬁ, /N. For the matrix dimensions: N =
400(+), N = 800(A), and N = 1600(<>). Each B, value was obtained by a
fitting process from the numerical data for eigenvalue spacing distribution,
Casati et al (78).
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According to Figure the results suggested that as the matrix
bandwidth (or scaling parameter) increases, the eigenvalue statistics tend to
conform to the GOE model (78). Surprisingly, one can note that the GOE
model is established for eigenvalue statistics even for non complete fully
random matrices (78)). That is, it is not necessary to have a complete insertion
of the off-diagonal coupling elements in the Hamiltonian for the eigenvalue
statistics to satisfactorily obey the GOE model.

In a complementary study, Casati et al (79) also investigated the sta-
tistics of corresponding eigenvectors in the Poisson-GOE statistics transition
and their relationship with the scaling parameter (x;). Based on the defini-
tion of the entropy localization lengtim of normalized squared eigenvectors
of the BRM matrices (78), a measure parameter called the scaled localization
lengtﬁx) was proposed, in order to quantified the deviations from GOE
eigenvector statistic In cases of extreme statistics, the scaled localization
length is unitary for GOE statistics and null for perfectly diagonal matrices
with a large N-limit (79).

Similarly to Casati et al (/8), the scaled localization length was evalu-
ated for normalized squared eigenvectors of the band random matrices with
several sizes and bandwidths in order to characterize the eigenvector statistics
during Poisson-GOE crossover transition and investigate their relationship
with the scaling parameter (x;). The main eigenvector statistics results for
the Poisson-GOE statistics transition are shown in Figure [IT| for several band
random matrix dimensions.

8The entropy localization length is a measure parameter based on the difference between
the effective number of nonzero components of a given eigenvector and its corresponding GOE
eigenvector, Casati and Molinari (78). Further information on the calculation and practical ap-
plication of entropy localization length for wavefunctions of quantum systems are available in:
Casati and Molinari (78)), and Mirlin and Fyodorov (77).

9The scaled localization length is defined as the average of the entropy localization lengths
of the eigenvectors divided by the random matrix size, Casati and Molinari (78).

20 In current investigation, the level repulsion and scaled localization length parameters pro-
posed by Casati and Molinari (78 [79) are not used to verify the agreement with the GOE model
statistics. In principle, there is no apparent limitations for the application of these parameters
to statistical analysis of natural frequencies and corresponding mode shapes of real engineering
systems. Therefore, systematical investigations on the performance of application of these para-
meters to verify the establishment of GOE statistics are needed for random systems with several
natures.
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Figure 11: Scaled localization length () versus scaling parameter (x;) for random
matrix dimensions: N = 200(e), N = 400(A), N = 600(0), and N = 800(m). The
dashed line relates to the fitting of numerical data and follows the standard formula-
tion: fBs = Yxs/(1+ ¥sxs), where 7 is a real constant. Plot (a): the numerical data
show a notable trasition (scaling) pattern with the scaling parameter. Plot (b): com-
plete range of scaling parameters in log-log plot, where y = B;/(1 — f3), Casati el al

(9.



1.6 Universal Statistics 93

As shown in the eigenvector statistics results, as the matrix bandwidth
increases there is an asymptotic tendency toward GOE statistics, (79)). Si-
milarly to the eigenvalue scaling behavior, the scaling parameter values can
easily be associated with the level of establishment of the chaotic (or univer-
sal) statistics of the eigenvectors of the band random matrices.

Additionally, important conclusions can be directly drawn when the
scaling parameter results for the modal parameters are compared. For ei-
genvalue statistics, it is considered that GOE statistics are satisfactorily esta-
blished when the level repulsion parameter () is approximately unitary, that
is, it corresponds to the scaling parameter value of x; = 4, Figure [I0] On the
other hand, for the corresponding eigenvector statistics results, it is also ex-
pected that GOE statistics will occur when the scaled localization length ()
is approximately unitary. According to the eigenvector statistics results in
Figure[TT] the pattern of the asymptotical results suggests that this universal
cut-off limit will be reached for large values of the scaling parameter, x; > 8.

Thus, these BRM numerical results provide convincing evidence that
the dependencies of the scaling parameter (uncertainty level) are distinct for
eigenvalue and the corresponding eigenvector statistics. In other words, the
convergence speed characteristics for the universal establishment of GOE sta-
tistics show different patterns for each modal parameter (10). Indeed the re-
quirements to establish GOE statistics for eigenvectors seem to be more strin-
gent and a higher level of coupling between Hamiltonian matrix elements is
necessary for eigenvectors, in comparison to the corresponding eigenvalues,
that is, the universal cut-off limit for the establishment of GOE statistics can
be reached more easily for eigenvalues than the corresponding eigenvectors
{10).

Considering the extension of the previous BRM numerical results to
the modal parameter statistics of random engineering systems with uncertain
or non-deterministic parameters, the scaling parameter value can be directly
associated with the uncertainty level of a given real engineering system. It
seems reasonable to assume that the conclusions obtained previously regar-
ding the convergence speed characteristics of BRM modal parameter statis-
tics could be extended to modal parameter statistics from real engineering
systems. That is, the amount of randomness necessary to establish GOE sta-
tistics for mode shapes is greater than that necessary for the corresponding
natural frequencies and, thus, for real random engineering systems it is ex-
pected that the universal establishment of GOE statistics is easier for natural
frequencies than for the corresponding mode shapes (10).

However, it is important to emphasize that there is no explicit evidence
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that the Hamiltonians of random engineering systems with non-deterministic
parameters are adequately described by the BRM when randomness effects
are introduced into the Hamiltonian matrices from the nominal engineering
systems. For the quantum systems, an excellent performance of the BRM sta-
tistics is expected to describe the modal parameter statistics in the Poisson-
GOE transition range, (79, [77). Therefore, further investigations are required
to verify the BRM performance in order to describe the modal parameter sta-
tistics of real random engineering systems with uncertain or non-deterministic
parameters, Gomes (10).

Cordioli in (20) investigated the conformity level between the modal
parameter statistics of engineering systems and the universal statistics des-
cribed by GOE model. Considering several ensembles of random flexural
plates with distinct levels and natures of structural uncertainty, the agree-
ment between the natural frequency statistics and GOE model statistics were
systematically evaluated through the results of RMT metric functions. The
statistical overlap factor and mode shape statistics factors were also evaluated
for natural frequencies and mode shapes, respectively. Additionally two new
parameters based on mode shapes, Parameters P and O, were proposed to
analyze the agreement with GOE eigenvector statistics. The results provided
an improved understanding of main aspects associated with the establishment
of universal GOE statistics for real engineering systems. More information
on these new SEA parameters is available in (20).

1.7 Summary and Discussion

This chapter presented a brief review of the energy response statistics
across a nominal ensemble which is composed of similar engineering systems
with uncertain or non-deterministic parameters and properties. As is already
known, the effects of the presence of uncertainties become more relevant as
the excitation frequency increases (5). In the low-frequency range, the long
wavelengths are not substantially affected by uncertainty effects (1). Thus a
well-established deterministic model of an engineering structure which con-
siders the nominal physical parameters is able to provide a satisfactory pre-
diction of the dynamical response (6)).

In the mid to high-frequency ranges, the statistics of the modal pa-
rameters are highly complex and the evaluation of the dynamical response
statistics using analytical formulations or numerical deterministic methods
becomes a vigorous task due to two major factors (5). The first is associated
with the fact that the application of the Monte Carlo method for an ensemble
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of complex structures, through the FEM models, may become an extremely
hard task and requires a high computational cost, since short wavelengths and
data on several input parameters are involved in this process (3). The second
factor is associated with the total or partial absence of statistical data from the
system parameters or properties of real engineering systems (4). Even though
these statistics of the system parameters are in principle available, the predic-
tion of the response variance across the ensemble, based on a probabilistic
method, is considered a prohibitive task for most engineering companies (5).

Considering that the real engineering systems have several uncertain
physical properties, the Statistical Energy Analysis (SEA) is an appropriate
analytical method to predict the ensemble average response for complex sys-
tems, mainly in the mid to high-frequency ranges (29). The SEA formula-
tions take into account the high-frequency uncertainty effects on the energy
response and thus their results provide the expected mean value of the energy
responses from an ensemble composed of similar systems (29, 32} 133 34).

Although the SEA performance is satisfactory in several real enginee-
ring applications to predict the ensemble average results, two key parameters
have a significant influence on the response variability across the ensemble
(). The first parameter is the modal overlap factor. Several studies have
shown that with an increase in this factor, multi-modal characteristics are es-
tablished and the dynamic response becomes smooth making it difficult to
identify the contributions of the individual modes (11} 12, [13| [14). The se-
cond parameter is the statistical overlap factor which defines how much the
position of any natural frequency tends to change across the ensemble of sys-
tems (15} 1}, 14} 180).

In the past, the earliest analytical investigations to predict the mean
and variance of the energy responses were developed in the room acoustics
context, (52, 48). In these pioneering works, the Poisson Point Process ap-
proach (55) were considered. The Poisson model was initially adopted for the
natural frequency statistics due to analytical convenience (48). Additionally,
the mode shapes were assumed to be a product of sinusoidal functions. Later,
the analytical predictions were conveniently extended in order to allow mul-
tiple source and microphone points as well as the adoption of alternative and
empirical non-Poisson statistical models for the natural frequencies, (52} 48]).
Satisfactory agreement was obtained for the analytical formulation based on
the Poisson model, but surprisingly improved agreement with experimental
results was established when an empirical non-Poisson model from quantum
physics was applied (53} 154} 49). Indeed, these improved analytical results
demonstrated the establishment of two main spectral characteristics associ-
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ated with real engineering systems: the level repulsion and spectral rigidity
(49, 75,150, 118).

Some years ago, relevant experimental and numerical results from the
elastodynamics field suggested that the natural frequency statistics can be
adequately described by the eigenvalue statistics from the Gaussian Orthogo-
nal Ensemble (GOE) of Random Matrix Theory (RMT) (64, 167).

The establishment of GOE statistics has also been extended to random
systems of many different areas of physics, including acoustical and structural
dynamics (23| 14, 150). For the modal parameters from these systems, a statis-
tical transition from deterministic statistics to GOE statistics is expected with
an increase in the frequency or a increase in the degree of asymmetry or di-
sorder of system (6). A typical example of this gradual statistical transition to
GOE was clearly demonstrated in (70) by Schaadt’s mode shape results in the
elastodynamic field, Figure[0] It is also important to note that the GOE ma-
trices are clearly differ from the large matrices of the mathematical models
associated with the these random systems (23 4). Indeed, the main reason
why the GOE statistics are so widely applicable to a large number of systems
with distinct natures is not totally explicit (23).

Although, much effort has been made to provide the required con-
ditions for the establishment of GOE statistics in random systems (23)), the
explicit reasons for the establishment of distinct universal limits for each of
the modal parameters are not totally clear for random engineering systems
(4L 230 20). In particular, a large number of investigations have been perfor-
med on the statistics of natural frequencies from random systems, (67, 23)).
However, a reduced number of studies has been performed to investigate the
conditions necessary for the establishment of the GOE statistics for corres-
ponding mode shapes, (81, 20). Further investigations in this direction are
certainly necessary, Gomes (10).

Several results in the SEA variance field reported in the literature have
suggested the existence of a well-established cut-off frequency (or cut-off
randomness amount) at which an increase of the excitation frequency (or ran-
domness amount in the system physical properties) does not affect substan-
tially the modal parameter statistics (27, 14, [15). Thus, the precise sources of
uncertainty in the physical properties of a system seem to be less important
and it becomes more adequate to describe the uncertainty effects directly in
terms of uncertainties in the dynamical properties of the system, that is, in
terms of statistical models for system modal parameters (6, 27, 4). Above
this cut-off limit, the modal parameter statistics seem to have a high degree
of universal statistics and are adequately described by the GOE model (27).
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Thus the precise description of uncertainty sources as well as the statistics of
uncertainties in the physical properties of a system become unnecessary to
model accurately the modal parameter statistics (14 (18l 14).

In the SEA variance context, this cut-off limit, also called the universal
limiﬂ represents a saturation point at which an increase in the uncertainty
level of the system physical properties (or an increase in the excitation fre-
quency) does not cause significant changes in the dynamical properties of
the system. Therefore, the accurate identification of the universal limit for
the establishment of GOE statistics for the modal parameters makes the pro-
blem more appropriate from the analytical point of view (10). Indeed, under
this condition, simple statistical expressions based on the GOE model can be
adopted for the mode shape and natural frequency statistics. Thus, it is possi-
ble to develop analytical formulations to predict the mean and corresponding
relative variance of the energy responses across a nominal ensemble (1} 82).

Langley and Brown (18| [3) considered that the real engineering sys-
tems are sufficiently random to ensure that both modal parameter statistics
in the high-frequency range are described by the GOE model in an accurate
way. Indeed, the adoption of the GOE model for modal parameters repro-
duces adequately some relevant dynamical characteristics expected for most
real engineering systems with uncertain or non-deterministic properties, for
example the level repulsion and spectral rigidity phenomena associated with
the natural frequencies (64,51} 23)).

Currently, the best performance of SEA variance predictions based on
the GOE model is observed for the response variance of sufficiently random
engineering systems subjected to spatially distributed loadings, for exam-
ple rain-on-the-roof loading (18, 16, [17). There are two main reasons for
the good performance of SEA variance predictions associated with spatially-
distributed loadings. The first is related to the fact that the contribution of
the mode shape statistics to the energy response statistics is not substantial
for most systems excited by spatially-distributed 1oadinﬂ The second re-
ason is associated with the fact that most real practical engineering systems
are considered sufficiently random to ensure that their high-frequency natural
frequencies are adequately described by the GOE model (6, 4, 23). There-
fore, the major contributions to the energy response statistics from a random
system subjected to spatially-distributed excitation are expected to be from
the natural frequency statistics (1} 48)), which, in turn, are expected to present

21 According to AutoSEA Variance Manual (27), this limit is also known as the acoustic limit.
22The same conclusion can be extended to the spatially-averaged response statistics, Brown
(.
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GOE characteristics for sufficiently random systems, thus providing a good
agreement between the experimental (or numerical) results and GOE variance
predictions.

In cases where random engineering systems are subjected to a sin-
gle point-loading, the energy response statistics are highly sensitive to mode
shape statistics (L} 48)), that is, small changes in the statistical characteristics
of the mode shapes may have a substantial effects on the response variabi-
lity (L0). As discussed, an incomplete establishment of GOE statistics seems
to be expected for real random engineering systems in the high-frequency
range, at least for artificially generated systems usually considered suffici-
ently random in SEA variance analysis (10). Indeed, it is expected that the
natural frequency spacings obey adequately the Rayleigh PDF and the cor-
responding mode shapes are near-Gaussian, not complying perfectly with
the universal eigenvector statistics proposed by the GOE model which pre-
dicts perfect Gaussian mode shapes (18, [10). In Table 1.1, these mode shape
discrepancies expressed by the mode shape statistics factor values seem to ex-
plain the reduced performance of the revised SEA variance theory for cases
of single point-loaded systems as well as why the improved performance is
obtained when the mode shape statistics factor value is adequately modified
s e, [17).

Extending the main conclusions from the previous BRM results to ran-
dom engineering systems, it seems that the level of uncertainty necessary to
establishment of universal statistics, which is described by GOE model, may
be very distinct for the natural frequencies and the corresponding mode sha-
pes (20). As demonstrated previously by the BRM numerical results in Fi-
gures [10] and [TT] the necessary conditions associated with eigenvectors for
the establishment of GOE statistics seem to be more stringent and require a
higher level of uncertainty than the corresponding conditions associated with
eigenvalues.

Considering the most practical random engineering systems, the level
of uncertainty in their physical parameters seems to be sufficient to ensure that
the universal limit associated with natural frequencies (6,5,;1?‘5 ) is reached, and
thus their natural frequency statistics are correctly described by the GOE mo-
del in the high-frequency range (10). However, it is important to emphasize
that the same conclusion cannot necessarily be extended to the corresponding
mode shapes. It has been shown that the effects of such uncertainties on the
mode shapes are not sufficient to ensure that the universal limit associated
with mode shapes (8¢ ) is reached, at least for high-frequency modes (10).

Based on the results from the SEA variance and BRM literature previ-
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ously shown in the Section 1.6.2, an initial sketch is proposed in Figure[I2]for
the statistical patterns expected for each one of the modal parameter statistics
when structural uncertainties are introduced in a typical engineering system
with perfect nominal characteristics; Gomes (10), Langley and Cordioli (76).
In the current proposal, the expected effects of the increase in the amount of
randomness, or uncertainty level, on each one of the modal parameter statis-
tics across the ensemble are illustrated for a fixed frequency rang
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uncertainties (J)

Figure 12: Schematic representation of the typically expected pattern of the
modal parameter statistics for an ensemble composed of similar systems with
uncertain or non-deterministic parameters. The effects of an increase in the
amount of randomness on the statistical characteristics of each one of the
modal parameters are illustrated for a fixed frequency range, Gomes (10).

As shown in Figure [I2] it is expected that the increase in the level
of uncertainty in the physical parameters of engineering systems provides
a gradual statistics transition for both modal parameters from an almost-
deterministic statistics (i.e., almost complete absence of uncertainties) to a
universal statistics which is described by the GOE model (4} 23} 16/ [10). As
previously discussed, the speeds of convergence to GOE statistics may be
substantially different for each modal parameter and thus distinct universal li-
mits occur for natural frequencies and their corresponding mode shapes (10).

23Similar statistical behavior is expected under partner conditions as the uncertainty level of
system ensemble is considered fixed and the excitation frequency increases, Langley et al (4) and
Gomes (10).
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For the natural frequencies, it is expected that the presence of a small
amount of disorder in the system may provide a fast convergence toward
the universal establishment of GOE statistics, and therefore universal limited
SZf,;I.QE is expected to be more easily reached for most real engineering systems
(20). On the other hand, an asymptotic slow speed convergence for GOE sta-
tistics is expected for the corresponding mode shape (eigenvector) statistics,
since in order to reach the limit of universal statistics 51SS0E , the mode shape
statistics seems to require a larger disorder in the system parameters than the
corresponding natural frequency statistics (I0). Thus, in principle the §G¢°
is expected to be larger than 87 and may be not readily reached in the case
of practical engineering systems, Gomes and Langley (10, [76). Indeed, it is
expected that the conditions necessary to comply with GOE statistics for na-
tural frequencies are less stringent than for their corresponding mode shapes
10).

In summary, Figure [T2] suggests that the statistical characteristics of
modal parameters from a random engineering system are divided into three
major groups (10). In the first region, below the 51\(,;19’5 and 5,3?‘5 universal
limits, the amount of randomness in the physical parameters of the system
is relatively low and thus only incipient uncertainty effects are observed on
the statistics of the natural frequencies and corresponding mode shapes (6).
Indeed, the level of disorder provided by such structural uncertainties is not
able to ensure the establishment of GOE statistics for both modal parameters
10). As shown in Figure @ the universal limits associated with the natural
frequencies (SI%QE ) and mode shapes (55?5 ) are not reached and the statis-
tical characteristics of the modal parameters are completely non-universal,
having system-dependent characteristics (10). That is, their modal parameter
statistics are strongly dependent on the statistical characteristics of the un-
certainties of the physical parameters of the system (27). Indeed, transitory
statistics with intermediate characteristics between the almost-deterministic
and GOE models is established for both modal parameters in this first region
{aap.

At the other extremity, in the last region, the amount of randomness is
sufficiently large to ensure that both universal limits are adequately reached
and the universal statistics are established for modal parameters and thus the
GOE model is perfectly applicable to describe the ensemble statistics of the
natural frequencies and corresponding mode shapes (1} [23). For this region,
universal statistics are completely established across the ensemble so that
both modal parameters are practically independent of precise sources of un-
certainties in the physical properties of a subsystem (27, 4} 23). The natural
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frequencies are expected to obey the Wigner surmise which states that the
adjacent natural frequency spacings are Rayleigh distributed and there is the
establishment of level repulsion and spectral rigidity phenomena in the na-
tural frequency correlations (64} [1). Additionally, the corresponding mode
shapes are expected to be statistically independent and their component am-
plitudes uncorrelated and Gaussian distributed, so that the value of the mode
shape statistics factor is K = 3 (27, 4} [1).

In the second region, intermediate range, an incomplete establishment
of universal statistics occurs where only the universal limit associated with
one of modal parameters is reached (10). According to Figure [I2} the lite-
rature results discussed above suggest that, in principle, the universal limit
of natural frequencies 51{,;1915 is effectively reached while the universal limit
of corresponding mode shapes 519[?5 is not (10). In this regard, the statis-
tics of natural frequencies are adequately described by the GOE model and
present universal characteristics, that is, the natural frequency statistics are
expected to be independent of the precise sources of the structural uncertain-
ties of the system physical parameters (6,4} [23). On the other hand, the mode
shape universal limit (SA(,I;SOE ) is not effectively reached and it is expected that
the corresponding mode shapes will still present some residual non-universal
characteristics, where the system-dependent effects may be relevant to the sta-
tistics of the mode shapes (10). Indeed, a mode shape component distribution
with near-Gaussian characteristics is expected for this intermediate region
and the mode shape statistics factor values are lower than the expected Gaus-
sian value, that is, K < Kgor = 3 (18,16, 17).

Considering the SEA variance context, the revised analytical formula-
tion of the relative variance derived by Langley and Brown (18 (1)) assumes
that both modal parameter statistics comply with the GOE model. This condi-
tion is associated with a complete establishment of universal statistics simul-
taneously for both modal parameters. According to Figure [I2] the condition
of the complete establishment of universal statistics is expected, in principle,
to be ensured only beyond the mode shape universal limit (§$¥) where the
natural frequency as well as the mode shape statistics are perfectly described
by the GOE model (10). Indeed, the best performance of the revised SEA
variance formulations based on the complete GOE model is expected for ran-
dom engineering systems in which the modal parameter statistics are similar
to those associated with the third region of Figure[T2] (10).

Based on the above discussion of the results available in the literature
for energy response variance, the discrepancies observed between the experi-
mental measurements (or numerical) results and analytical variance predicti-
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ons based on the GOE model seem to be explained by the existence of deviati-
ons of the mode shape statistics in relation to universal statistics (10). Indeed,
the characteristics of the modal parameter statistics from the random systems
investigated in the SEA variance literature seem to correspond to the modal
parameter statistics associated with the second region of Figure 2] (10). As
shown in Table 1.1, an incomplete establishment of universal statistics for
modal parameters is certainly expected for most random engineering systems
in which the level of uncertainty of the system parameters is not large enough
to guarantee the establishment of GOE statistics for mode shapes although
these are adequately established for natural frequencies across the ensemble
(10). Therefore, systematic investigations are also required to provide a bet-
ter understanding of the effects of non-universal mode shape statistics on the
energy response statistics of real engineering systems subjected to different
natures of excitation, so that it will be possible to estimate with good accuracy
the errors associated with the application of the revised SEA variance pre-
diction based on the complete GOE model to real engineering vibroacoustic
systems in which an incomplete establishment of GOE statistics is expected
for the mode shapes, Gomes (10}, 183} 84).

1.8 Scope, Aims and Outline of the Thesis

The main goal of current work is to provide a better understanding on
the performance of SEA method to predict the energy response statistics of
random engineering structures in the mid and high-frequency ranges. Several
investigations on the application of SEA models have been carried out at La-
boratory of Vibration and Acoustics (LVA) from Federal University of Santa
Catarina (UFSC) with aeronautical structures: Rodrigues (43), Gomes (28)),
Gomes et al. (85)), Cordioli and Gerges (86); and with automotive structures:
Calcada (87) e Gomes et al. (88). Recently, research activities have been car-
ried out on the use of SEA models to predict the higher statistical moments of
energy responses. In overall, the basic assumptions and performance of The-
ory of SEA Variance have been discussed: Corlioli and Gerges (19), Cordioli
(20) and Gomes (10).

In this regard, the problem of interest investigated in this thesis is asso-
ciated with the characterization of deviations of the modal parameter statistics
in relation to universal statistics described by a Gaussian Orthogonal Ensem-
ble (GOE) from Random Matrix Theory (RMT) (10). This study also aims to
investigate the main effects of the non-universal characteristics of the modal
parameters on the energy response statistics and their possible impacts on the
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performance of SEA variance theory which considers a complete establish-
ment of GOE statistics for both modal parameters (10).

1.8.1 Open Problems and Motivations

From the previous discussions based on the existing literature results,
it is clear that in spite of extensive research efforts, many issues regarding
the extension of the validity of the Universality concept for random vibroa-
coustic systems with uncertain or non-deterministic parameters as well as the
complete establishment of GOE model for their modal parameters are not still
sufficiently clear to academic community (10). The following questions are
examples of the main open problems which are of interest in this study and
they can be broadly divided as follows (10):

1. Investigation of statistical characteristics of modal parameters in the
high-frequency range

* In real engineering structures, what type of statistics are most proba-
ble for each of the modal parameters in the high-frequency range? Is
the universal establishment of GOE statistics expected for the mode
shapes? How much randomness is needed to ensure it?

e If the mode shapes are not perfectly GOE in the high-frequency range,
which are the most effective metric functions to verify the agreement le-
vel (or possible deviations) between the real engineering system mode
shape statistics and GOE eigenvector statistics?

2. Statistical transition process of the universal establishment of GOE
statistics for each modal parameter

* Is the initial proposal for the expected transition pattern of modal para-
meter statistics, shown in Figure [2] valid for all random engineering
systems, or is its validity limited to only a particular group of random
engineering systems?

* Are the characteristics of the convergence of mode shape statistics
toward GOE model dependent on the system characteristics or dimensi-
onality? If the answer is positive, what would be the expected statistical
transition pattern for each modal parameter?
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¢ Is there a well-defined sequence between the modal parameters for the
universal establishment of GOE statistics? In other words, is it always
expected that the mode shapes will require a higher level of disorder
than the corresponding natural frequency to comply with the universal
statistics described by the GOE model?

3. Impacts on performance of SEA variance prediction due to the
incomplete establishment of GOE statistics

e For the cases of an incomplete establishment of GOE statistics, what
are main impacts on the performance of the revised SEA variance pre-
dictions if the mode shapes are not considered perfectly GOE? How
can we modify the SEA variance theory to allow for this?

* Is the SEA variance prediction based on complete GOE statistics con-
servative for all real engineering structures? What are the possible sta-
tistical parameters based on mode shape statistics which can readily
provide this information?

1.8.2 Aims and Scope of this Thesis

In view of the above open problems, the main aims of this thesis are
presented below. The three main objectives are the following:

* To gain a better understanding of the relationship between the modal
parameter statistics of the GOE ensemble and those expected for real
structure ensemble, as well as of how the deviations might be readily
verified. Special attention is given to the accurate description of the sta-
tistical characteristics of each of modal parameters during the transitory
process for the universal establishment of GOE statistics, for example,
speed convergence and its dependence on the amount of randomness or
the excitation frequency to comply with GOE statistics.

 To carry out a global analysis of the main physical phenomena associa-
ted with the non-universal characteristics of the mode shapes expected
in random engineering systems with uncertain or non-deterministic pa-
rameters in the high-frequency range. That is, the derivation of an effi-
cient methodology to indentify and quantify the discrepancies between
the mode shapes of real engineering systems and GOE eigenvectors.
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* A systematic investigation of the effects of the incomplete establish-
ment of GOE modal parameter statistics on the energy response statis-
tics as well as their consequences in terms of the expected performance
of the revised SEA variance prediction.

1.8.3 Outline of the Thesis

Motivated by the existing open problems highighted in previous sec-
tions, a systematic study on the statistical characteristics of the modal para-
meters and energy responses of vibroacoustic systems with uncertain or non-
deterministic parameters and properties will be carried out. In order to deal
with this task, this document is subdivided into the following chapters:

In Chapter 2 a brief literature review is presented on the main aspects
associated with the statistical analysis of modal parameters of engineering
systems. Initially, the main concepts of Random Matrix Theory (RMT) ap-
plied to the statistical analysis of the natural frequencies from vibroacoustical
systems are briefly reviewed. In complementary manner, the statistical pro-
perties of the corresponding mode shapes are also introduced for GOE and si-
nusoidal eigenvectors. The main limitations to the direct use of RMT tools in
the statistical analysis of vibroacoustic systems are identified and their non-
universal physical phenomena (such as finite wavelength effects, periodical
orbits, and structural Localization) are also discussed in detail. Considering
SEA model applications, the analytical predictions based on the Poisson and
GOE models are presented for the energy density variance of a single random
dynamical system.

In Chapter 3, a complete statistical analysis is performed with the ran-
dom one-dimensional structures and the effect of distinct uncertainty sources
on the modal parameter statistics are investigated in detail through the me-
tric functions from the RMT. Random longitudinal rods were generated using
the Finite Element Method (FEM) and the distinct structural irregularities, or
uncertainties, were introduced to a nominal rod structure and different appro-
aches to the uncertainty distribution (randomization approaches) were also
considered.

During the numerical analysis, the spectral and ensemble averaging
processes were performed for random rod structure responses. In addition,
the main effects of the spatial correlation on the rod geometry and of the
structural localization phenomenon on the modal parameter statistics were
also assessed through RMT tools. The relevant findings were then obtained
regarding the universal establishment of GOE statistics for each of the modal
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parameters as well as for the statistical moments of the kinetic energy density
results from the random longitudinal rod structures.

In Chapter 4, a statistical analysis is systematically performed with the
random two-dimensional structures. Flexural plates with several geometries
(square, rectangular, rectangular with arc at one corner, circle, polygon, 1/4
Sinai stadium) are numerically generated by FEM models. Considering the
spectral and spatial averaging approaches, the effects of distinct levels of the
system symmetry are assessed and the resulting modal parameter statistics are
compared with analytical predictions based on the Poisson and GOE models.
Special attention is focused on the main physical phenomena expected for
the mode shapes of real engineering systems (i.e., the establishment of stable
periodic orbits, the structural localization and others).

In a similar manner to random rod analysis, two distinct ensembles of
random flexural plates are also investigated considering the spectral and en-
semble averaging processes. The statistics of the point-loading and spatially-
averaged kinetic energy density results in terms of the narrow and broad fre-
quency band domains are compared with SEA analytical formulations based
on the Poisson and GOE models. Therefore, the performance of the analy-
tical prediction is discussed in terms of the corresponding modal parameter
statistics and then conclusions are drawn regarding the application of the uni-
versality concept to real engineering systems in the mid and high-frequency
ranges.

Finally, Chapter 5 presents the main original conclusions emerging
from the present work and gives some directions and suggestions for future
research studies.
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2 LITERATURE REVIEW

2.1 Introduction

In this chapter the basic theoretical concepts on the modal parameter
statistics are briefly reviewed. The main aspects on the statistical analysis
of natural frequencies and corresponding mode shapes are introduced and
discussed in detail'l

Initially, the main tools of Random Matrix Theory (RMT) applied to
the statistical analysis of the natural frequency statistics from vibroacoustical
systems are presented. The limitations to the direct use of RMT tools in the
statistical analysis of vibroacoustic systems are also highlighted and discus-
sed using illustrative literature examples and results from numerical studies
using finite GOE matrices.

The statistical properties of the corresponding mode shapes are intro-
duced in Section 2.3. The main metric functions adopted to characterize the
statistics of the mode shapes of random systems are defined and the analytical
predictions are presented for GOE and sinusoidal eigenvectors. The two clas-
ses of mode shape statistics deviations from the universal GOE eigenvector
statistics are identified and illustrated through results for microwave cavity
systems reported in the literature.

Finally, the analytical predictions, based on the Poisson and GOE mo-
dels, are presented for the energy density variance. Based on the results repor-
ted in the SEA variance literature, a detailed discussion is presented regarding
the effects of the mode shape statistics factor on the performance of relative
SEA variance predictions.

2.2 Random Matrix Theory

In this section the main RMT concepts are briefly reviewed. Initially,
the historical context and the first applications in the Quantum Physics field
are presented. The best known Gaussian ensembles from RMT are classi-
fied and their statistical characteristics are described. The RMT statistical
observables applied to evaluate the spectral statistics of eigenvalues of large
random matrices are introduced. Typical examples of the application of sta-

"Further information is available in Cordioli (20) and Brown (T).
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tistical observables in the description of spectral characteristics of chaotic and
integrable (or regular) systems are shown.

The principal analogies between quantum and vibroacoustic systems
are emphasized and the limitations to the use of RMT tools in the analysis
of spectral natural frequency statistics are also presented and illustrated. The
link between the theory of variance of Statistical Energy Analysis (SEA) and
RMT statistics models is highlighted. Finally, the application of RMT con-
cepts to describe the response statistics of dynamical systems is discussed in
detail.

2.2.1 Historical Context

The Random Matrix Theory (RMT) appeared in the early 1960s and
its main goal was to give mathematical support to the statistical analysis of
the spectra of the energy levels of complex nuclei, (62). For atoms with light
nuclei, there are few energy levels on the spectrum and it is possible to carry
out a complete description of the energy level behavior using both experi-
mental and analytical approaches. On the other hand, for atoms with heavy
nuclei, the energy level density is extremely high and the identification of in-
dividual energy levels may become prohibitive. In the latter cases, a statistical
description of the spectral proprieties is strongly recommended, Mehta (24).

In Figure examples of energy level spectra are shown for two ty-
pical nuclear systems. The peak curves correspond to energy levels. A large
number of peaks is expected mainly for the high energy range since the spec-
tra relate to nuclear systems with heavy nuclei, Mehta (24).

In quantum nuclear systems, the energy levels are evaluated through a
Hermitian matrix operator known as Hamiltonian. For continuous systems,
the Hamiltonian is described by an infinite number of eigenvalue Almeida
(58). For practical applications, a truncation process is necessary and a large
limited number of eigenvalues is considered in the statistical analysis. In this
context, based on the statistical properties of the Hamiltonian matrix and con-
sidering some hypothesis concerning its structure (i.e., presence of symme-
tries), the main aim of RMT is to describe the global statistical characteristics
of the eigenvalues and eigenvectors of Hamiltonian matrices.

The main conclusions of Wigner’s studies showed that the statistical
spectral properties of nuclear systems with complex nuclei can be adequately

2In the vibroacoustic context, the Hamiltonian matrix H of a dynamic system can be evaluated
through the combination of the mass and stiffness matrices, H = M~ K. For continuous vibro-
acoustic systems, their Hamiltonians are described by an infinite number of degrees of freedom,
Meirovitch (89).
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described by the eigenvalue statistics of random matrices with large dimen-
sions, (61 162). However, the eigenvalue statistics of large random matrices
can not be used to predict in detail an energy level sequence of a nuclear sys-
tem, but the RMT statistical models are only able to describe correctly the
global statistics and the level of irregularity expected from the nuclear system
spectra.
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Figure 13: Examples of energy level spectra of nuclear systems, Mehta (24).

Recently, several studies have showed a series of promising results for
the use of RMT tools in the analysis of the eigenvalue statistics of physical
systems with several natures. These results suggest that the application of
RMT concepts are not limited to nuclear systems. One of the pioneering
works in this regard was carried out by Weaver (64). In his work, the natural
frequencies of aluminum blocks were measured and their spectral statistics
showed an excellent agreement with analytical RMT predictions. Some years
later, Langley and other researchers (4} 17,511 [18 13} 35} 23)) showed that the
RMT models could be applied to describe the natural frequency statistics of
random dynamical systems. In particular, a good and promising agreement
was found for large symmetric random matrices in vibroacoustic applications,
(16} 18,14} 135 23).

It is also important to emphasize that there is, as yet, no explicit ex-
planation as to why the RMT concepts are so widely applicable to several
systems with different natures. The matrices arising from the mathematical
model of any physical system are considerably different than the random ma-
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trices of RMT. Some studies propose that this good agreement is based on
the validity of the Universality concept. Therefore, the conditions required
for the occurrence of universal statistics have been strongly investigated by
several researchers, Bohigas et al (67)), Langley (23) and others. The mathe-
matical details concerning RMT concepts and the derivation of their results
are beyond the scope of the current work and will not be discussed in detail
below. Further information is available in: Mehta (24), Brody (56), Almeida
(58), and Guhr et al (57, 163).

2.2.2 Gaussian Ensembles of Random Matrices

In this section, the three best known Gaussian ensembles from Ran-
dom Matrix Theory (RMT) are introduced, they are: the Gaussian Orthogo-
nal Ensemble (GOE), the Gaussian Unitary Ensemble (GUE) and the Gaus-
sian Symplectic Ensemble (GSE), Mehta (24)).

According to Langley et al. (4,[23)), the Gaussian Orthogonal Ensem-
ble (GOE) is the Gaussian ensemble most commonly adopted in general ap-
plications, since its most attractive characteristic is the invariance of the ma-
trix probability distribution function under orthogonal transformations (i.e.,
change of basis). The corresponding results can be extended to Hermitian
matrices in which the Gaussian Unitary Ensemble (GUE) pdf is statistically
invariant under unitary transformations. Similarly, the Gaussian Symplectic
Ensemble (GSE) is composed of quaternion-real self-dual matrices, and its
pdf function is invariant under symplectic transformation.

In order to classify the Gaussian ensembles, the Hamiltonian matrix
structure is considered as the main factor in the classification process, Ander-
sen (68). Traditionally, Dyson’s Index () is adopted for the identification of
each Gaussian ensemble, Guhr (57, 163). In Table Q], the main characteristics
of Gaussian ensembles are described, Andersen (68).

The Gaussian Orthogonal Ensemble (GOE) is composed of real sym-
metric random matrices and its main characteristics are the following (23)):

e the entries have zero mean and are uncorrelated Gaussian random vari-
ables,

* the diagonal elements have twice the variance of the off-diagonal ele-
ments, and

e the Hamiltonian is invariant under orthogonal transformation H —
WTHW, where W is an orthogonal matrix, (90).
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Table 2: Main characteristics of Gaussian ensembles: nomenclature, abbrevi-
ation, random matrix structure and Dyson’s index (f3), Andersen (68]).

Nomenclature Abbreviation | Random Matrix | Dyson’s
Structure Index (B)

Gaussian Ortho- GOE Real Symmetric | f =1

gonal Ensemble

Gaussian Unitary GUE Hermitian p=2

Ensemble

Gaussian ~ Sym- GSE Quaternion-real B=4

plectic Ensemble self-dual

Although the structure of a GOE matrix is completely distinct from
those of the matrices of the mathematical models of engineering systems, the
statistics of the eigenvalues are surprisingly similar to the natural frequency
statistics of the matrices associated with the mathematical model of random
dynamical systems, Langley (23).

The Gaussian Unitary Ensemble (GUE) has an eigenvalue spectrum
described by the Hermitian matrix (68). According to Weaver (64)), the GUE
statistics are not expected to apply to vibroacoustic systems, except for the
cases in which there is a gyroscopic force in one of system components, for
example: a Coriolis force which is dependent on the component velocity,
Santos (91)).

In this context, a general statement of the Universality principle would
be to claim for large matrices that, apart from well defined exceptions, all
symmetric random matrices should have local GOE eigenvalue statistics, all
Hermitian random matrices should have local GUE eigenvalue statistics, and
all quaternion-real self-dual matrices should have local GSE eigenvalue sta-
tistics, (4} 23)). Further detailed descriptions of GUE and GSE statistics are
available in the physics literature, (24,56, 58l 168).

2.2.3 Unfolding Process

In the RMT context, before starting a statistical analysis of any spec-
trum of a certain physical system, it is necessary to carry out a normalization
process in order to extract from the spectrum the particular characteristics
which are dependent on the nature of the system under analysis, i.e., the se-
cularities, (64}190). This normalization process is traditionally known as the
unfolding process and its resultant spectrum as the unfolded spectrum. The
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main advantage provided by the unfolding process is that the unfolded spec-
tral statistics of systems with different natures can be directly compared to
each other and also to RMT analytical predictions.

By definition, the eigenvalues of RMT matrices show a unitary mean
spacing between two successive eigenvalues, (23| 24} 156). Thus, an effici-
ent unfolding process has to provide appropriate conditions, so that a direct
and systematic comparison can be made between the spectral statistics of the
system analyzed and the analytical RMT predictions, Brody et al (56).

In the Quantum Physics context, the staircase function is defined as a
step function which counts the number of energy levels present below a par-
ticular energy level, ¢;, Bertelsen (90). Similarly for vibroacoustic systems,
the staircase function describes the number of natural or resonant frequencies
below a particular frequency, f; , Weaver (64). The staircase function can be
decomposed into two major components and is given by (69, 90):

N(f):NaV(f)+NfluL(f)7 (21)

where N, (f) and Ny, (f) are the average and oscillatory components of the
staircase function, respectively.

The average (or monotonic) component of the staircase function, also
called the smooth component, expresses the expected average number of na-
tural frequencies of a particular system and is associated with the global beha-
vior of the staircase function, Stockmann and Stein (92). On the other hand,
the oscillatory component of the staircase function is associated with the stair-
case function fluctuations and describes the level of interaction among the
natural frequencies. According to Bertelsen (90), the average component of a
staircase function has system-dependent characteristics and its behavior dif-
fers for physical systems of different natures. In contrast, the oscillatory com-
ponent of the staircase function shows a universal behavior regardless of the
particular physical properties of the system. In this regard, the unfolding pro-
cess tends to emphasize the universal statistics of the oscillatory component
of the staircase function and provides ideal conditions for direct and normali-
zed analysis of the spectral fluctuations and their respective natural frequency
interactions.

The evaluation of the average staircase function component can be car-
ried out using analytical functions, for example: Weyl’s formula, Stockmann
(92) and Brown (1)). Hereafter in this document, the unfolding process which
employs analytical asymptotic functions will be referred to as the standard
unfolding process.

For thin plates, the analytical asymptotic functions for average stair-
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case function are dependent only on the geometrical dimensions and material
properties, Lyon and Dejong (29) and Bertelsen (90). In Figure [I4] examples
of the smooth component evaluations of the staircase functions are shown for
two aluminum plates: Square and 1/4 Sinai stadium geometries, Gomes and

Gerges (93)).
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Figure 14: Examples of staircase function for two aluminum plates. Plot (a):
Square geometry. Plot (b): Sinai stadium geometry. The step function is
associated with numerical results and the dashed line represents the analyti-
cal prediction of Weyl’s formula. The zoom plots emphasize the differences
between Square and Sinai stadium results, Gomes and Gerges (93)).

In the zoom plots, relevant differences can be noted between the fluc-
tuation characteristics of the plates. In general, the fluctuation magnitudes of
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the Square plate are expected to be larger than those of the Sinai stadium plate
due to the establishment of the periodic orbits, Gomes and Gerges (93).

In order to evaluate the universal fluctuations of a particular spectrum,
the unfolding process must be carried out. According to Weaver (64), once
there is a satisfactory estimate for the average component of staircase func-
tion, N, (f), the data of the original spectrum can be normalized by the fol-
lowing transformation:

Zzi = Nay (fz)7 (2-2)

where z;, is the ith unfolded (or normalized) natural frequency which cor-
responds to the ith natural frequency, f;. The unfolded frequencies have an
unitary mean spacing and their statistics can be directly compared to analyti-
cal RMT predictions, Weaver (64). According to Bertelsen (60), the unfolded
s~taircase function has the same fluctuations as the original slaircase function,
Nyiu(z) = Nye(f), but its smooth component is given by N, (z) = z. Then,
the unfolded staircase function is given by (69, 90):

N(Z) =N (Nl;l (Z)) +Nf1uc (N[;;I (Z)) = Z+]vfluc (f (Z)) (2.3)

It is very important to emphasize that the unfolded spectra from diffe-
rent systems can be directly compared to each other since the normalization
process (or unfolding process) provides an unitary mean spacing (64, 90).
As discussed by Bertelsen (90), it is no trivial task to evaluate correctly the
smooth (or average) component of a staircase function, mainly for complex
geometries where the asymptotic analytical formulations are not available.
The main difficulty is to correctly ascertain how close the smooth compo-
nent should be near to the original staircase function. If the smooth com-
ponent is too close to the original staircase function, the universal properties
of the fluctuations can be erroneously removed. On the other hand, if the
smooth component is too far from the original staircase function, the system-
dependent effects are not removed and the resultant oscillatory component of
the staircase function will be present in the non-universal spectral fluctuati-
ons. According to Bertelsen (90), good performance of unfolding process can
be observed by the following condition:

N(z)—z< 1. (2.4)

Additionally, it is also expected that the fluctuations follow a Gaussian
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distribution, Fujisaka and Tohyama (94). In Figure T3] the condition propo-
sed by the Equation (2:4) can be verified for both plates, Square and Sinai
geometry. The high amplitudes of unfolded staircase fluctuations are mainly
observed for Square plates, and for Sinai plates these are reduced.
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Figure 15: The oscillatory components of unfolded staircase functions of pla-

tes, Gomes and Gerges (93). Plot (a): Square geometry. Plot (b): Sinai
geometry.
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Some researchers uphold that the reasons for the discrepancies are the
presence of the periodic orbits: Bertelsen (90), Schaadt (69), Deland et al
(93D, Grif et al (96) and Wright & Ham (97). They have been shown that
the effects resulting from the presence of periodic orbits modify strongly the
spectral statistics. Therefore, further investigations are also necessary in or-
der to evaluate the effects of the periodic orbits on the eigenvalue statistical
observable results for random dynamical systems, (98,199, [100).

2.2.4 Eigenvalue Statistics

In this section, the best known statistical observables associated with
eigenvalues from Gaussian ensembles are introduced. In the RMT context,
the statistical observables are defined as particular functions (metrics) which
are able to describe the statistical characteristics of a spectrum, Guhr et al (57,
63)) and Brody et al (56). Asymptotic analytical formulations are available for
the spectral eigenvalue statistics of random matrices with well-established
statistical characteristics, such as Poisson and Gaussian Ensemble statistics.

The analytical formulations for eigenvalue statistical observables will
be introduced for short and long-range spectral fluctuations. These are based
on eigenvalues normalized by the unfolding process, that is, the mean spa-
cing of adjacent eigenvalues must be unitary and frequency-constant, Mehta
(24). It is important to emphasize that under these conditions, it is possible
to compare spectral natural frequency statistics from systems with different
natures as well as with different modal densities, Gomes et al (101, [93) and
Bertelsen et al (90, [66).

PDF of Adjacent Eigenvalue Spacings

One of the best known statistical observables is the Probability Density
Function of adjacent eigenvalue spacings, P(s). This function is traditionally
used to evaluate the local characteristics of a spectrum (i.e., the short-range
fluctuation statistics). In the Quantum Physics field, this statistical observable
is also known as the Nearest Neighbor Spacing Distribution (NNSD), Mehta
(24), Brody et al (56), and Bertelsen (90). Further details on the statistical
properties of PDF are described in Soong (102) and Montgomery & Runger
103).

In the Quantum Physics context, there are two best known classes of
statistical behaviors: integrable (or regular) and chaotic. The first class is as-
sociated with the group of systems in which the eigenproblems can be solved
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analytically. These systems are usually denominated regular or integrable
systems, Schaadt (69).

In the vibroacoustic field, the regular systems are generally associated
with systems with simple geometry characteristics. A simply supported rec-
tangular plate or a box-shaped acoustic space represent typical examples of
regular systems, Lyon (48) and Langley and Cotoni (35)). The spectral natu-
ral frequency statistics of the integrable systems conforms very well with the
Poisson distribution model (also called the random number statistics, Soong
(102)). The PDF of adjacent eigenvalue spacings for the Poisson distribution
model, P (Pis507) (5) is given by:

P(Poisson) (S) _ e—s’ 2.5)

where s; = z;11 — z; is the distance between adjacent unfolded natural fre-
quencies. According to Equation (2.3), the spacing distribution of the Poisson
model statistics is described by an Exponential PDF.

On the other hand, there is a second best known class of systems which
is denominated chaotic systems. In the classical context, the chaotic systems
are systems whose trajectories are unstable with respect to the initial conditi-
ons, that is, the distance between two particles inside of a billiamﬂ scatter in
an exponential way over time, Bohigas et al (67). In the vibroacoustic con-
text, the chaotic systems are commonly associated with systems in which the
acoustic waveguides propagate in a very disordered way within the system.
For a spectrum of a chaotic system, the unfolded natural frequency statistics
can be adequately described by eigenvalue statistics from a GOE matrix. Ac-
cording to Brody et al (56)), the spacing PDF for chaotic systems is given
by:

PIGOE) (5) = gs exp (—gsz) . (2.6)

According to Equation (2.6)), the spacing distribution of the GOE sta-
tistics is described by a Rayleigh PDF, Montgomery and Runger (103)). This
distribution is also known as the Wigner surmise in the Quantum Physics fi-
eld, since Wigner proposed it in 1957, Bohigas et al (67). In Figure the
PDFs of adjacent eigenvalue spacings for Poisson (Exponential) and Wigner
(Rayleigh) model statistics are shown.

3A classical billiard consists of a point particle which moves freely in a compact domain of
d - dimensional space and reflects elastically in the boundary of this domain, Guhr et al (57, 163).



2.2 Random Matrix Theory 119

— Rayleigh PDF
; ; i Poisson PDF
0.8 S 7

0.6

P(s)

TN S T —

S IR

0 0.5 1. 15 2 25 3
adjacent eigenvalue spacing (s)

Figure 16: The PDFs of adjacent eigenvalue spacings for Poisson (Exponen-
tial) and Wigner (Rayleigh) model statistics

As shown in Figure[T6] the most relevant difference between the Pois-
son and Rayleigh PDFs is noted for a small eigenvalue spacing range. For
the Poisson PDF, there is a large probability for the occurrence of small ei-
genvalue spacings, that is, a strong tendency toward eigenvalue clustering is
observed. On the other hand, for the Rayleigh PDF there is a small probability
for the occurrence of small eigenvalue spacings. This veering phenomenon
is traditionally known as level repulsion in the Quantum Physics field; Mehta
(24)), Brody et al (56), Guhr et al (57, 163), and Stockmann (104). The level
repulsion phenomenon is characterized by a strong tendency for the eigenva-
lues to repel each other, avoiding clustering. Therefore, a low probability is
expected for the occurrence of small eigenvalue spacings. It is very impor-
tant to emphasize that the Rayleigh distribution is also characterized by a low
probability for the occurrence of large eigenvalue spacings. These properties
of the Rayleigh PDF are associated with high spectral rigidity characteristics
of the eigenvalues of the GOE matrices, Bohigas et al (67)).



120 2 Literature Review

Correlation Functions

The PDF of adjacent natural frequency spacings is one of the most
important statistical observables in RMT, but great practical interest is tra-
ditionally directed toward correlation functions associated with two eigen-
value interactions which is also known as the two-level correlation function,
R (A1,A2), Mehta (24), Brody et al (56), Guhr et al (57, [63) Langley (23),
and Cordioli (20). According to Cordioli (20), this function may be interpre-
ted as the probability of at least two eigenvalues have been found in small
distinct regions dA around A; and A, respectively, independent of the pre-
sence of other eigenvalues outside these regions. The two-level correlation
function is given by (20):

Ry (Al,lz) =R (ll —lz) =R(AA)=1-1, (Aﬂ,), 2.7

where Y» (A1) is the two-level cluster function, Stockmann (104). It can be
noted that the two - level correlation function is dependent only on the ei-
genvalue difference, that is, it is a translation invariant through the spectrum,
Cordioli (20) and Guhr et al (57, 163).

For the Poisson case, correlations between eigenvalues are absent.
This reflects the fact that the k—level correlation function involves only one-
level correlation functions and is given by (57, 163):

N!

Rk(ﬁ,l,lz, ,lk) = (N—k)'

k
HRl (&) =1. 2.8)
1
In Equation (2.8), the correlation functions are unitary for all eigenva-
lues in the Poisson case. Thus, the two-level cluster function, ¥>(AA), accep-
tably measures the deviation from the uncorrelated Poisson case, Guhr et al
(57, 163). An analytical evaluation of the two-level cluster for the GOE case
was proposed by Stockmann (104) and it is given by:

in(nAL)]? A in (A
V> () = {S ;ZA“] +[Zsen(a2) -si(an)] l“’i&” - S(ﬂfm@)
2.9
where the sgn(AA) function is given by:
1 if AL > 0
sgn(AL) = 0 if AL = 0 | (2.10)
-1 if AA < 0
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and the Si(x) function is given by:

X

Si(x) = /%U) dt. @2.11)
0

It is important to emphasize that the two-level cluster function is used
in the analytical prediction of the revised SEA variance, Brown and Langley
(181111 3).

According to Guhr et al (57,163)), the eigenvalue spacing PDF for GOE
model can be approximated by the two - level correlation function for small
spectral distances:

RO (AL) = PYOE (A2). (2.12)

On other hand, for a large range of the eigenvalue spacings, the two-
level correlation function, R<2GOE> (AA), saturates to unitary amplitude and
Rayleigh PDF, P9OF (A1), tends asymptotically to zero. According to Guhr
et al (57, 163)), the two-level correlation function may be interpreted as a joint
probability density function with the additional requirement that the two le-
vels considered are adjacent, i.e., there are no levels between them. Thus,
although the adjacent eigenvalue spacing distribution mathematically invol-
ves all level correlations, it gives, in practice, meaningful information only
regarding the two-level correlation.
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Figure 17: The GOE two-level correlation function and Rayleigh PDF for
adjacent unfolded eigenvalues, Guhr et al (57, 163)).

In order to evaluate the global statistics of a spectrum, the statistical
observables for long-range fluctuations are recommended, Brody ef al (56).
In what follows, the best known statistical observables employed for the eva-
luation of long-range fluctuation characteristics will be defined.

Number Variance

By definition, the expected average number of eigenvalues in an in-
terval of length L in an unfolded spectrum is L, Weaver (64) and Guhr et al
(57, 163). According to Weaver (64), the number variance, 2 (L), refers to
the expected mean-square fluctuation of the eigenvalues lying in a range of L
mean spacings. In the RMT context, the number variance is defined by (68)):

$2(L) = <1T/2 (L,Zo)>z - <1V (L,ZO)>;), (2.13)

0
where N (L,Zy) is the number of eigenvalues that lie within the interval
[Zo,Zy + L] and the angular brackets describe the averaging process over all
possible starting points Z.

According to Andersen (68)), the number variance is a measure of the
long-range fluctuation statistics and it can be related to the two-level cluster
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(2.14)
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function, ¥>(r), by the relation:
L
(L) :L—Z/(L—r)Yg(r)dr.
0

For large spectral lengths, L 2 2, Andersen (68) shows that the number
(2.15)

variance associated with GOE statistics is analytically given by:
2 2 T
2(L) = = [1n(L)+1n(2n)+y+1— 1,
T 8
where Y = 0.5772 is the Euler constant.
For Poisson statistics, the two-level cluster function is null due to the
absence of eigenvalue correlations, Guhr ef al (57, 163). Then, the number
variance for Poisson statistics is given by (68):
»?(L)=L. (2.16)

In Figure [T8] examples of number variance functions are shown for

GOE and Poisson eigenvalue statistics.
A - Poisson
— GOE - Equation (2.15)

—— GOE - Equation (2.16)
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Figure 18: Number variance: GOE and Poisson eigenvalue statistics, Gomes

and Gerges (101)).
A periodicly spaced array of eigenvalues would have the number va-
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riance X2 (L) = O for all integer L, Weaver (64). Thus, the establishment of
small number variance values means that there is a small deviation from pe-
riodicity, that is, the spectrum has high spectral rigidity characteristics.

Az - statistics

The spectral rigidity or Asz- statistics is one of most popular measu-
res of spectral rigidity characteristics and long-range fluctuation in the RMT
context, Mehta (24) and Guhr et al. (57,163). Here, Az - statistics is defined
as the least-square deviation of the unfolded staircase function from its best
fitted straight line and is given by (90, 64):

1 - 2
A3 (Zo,L) = S mina / [N(z)—Az—B dz, (2.17)
0

where A and B are the particular line coefficients associated with the best
straight line fit for each interval [Zy, Zo + L].
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Figure 19: Example of the evaluation process of Asz- statistics, Gomes and
Gerges (93).

According to Bertelsen (90), the mean value can be evaluated over
possible points Zg by considering many non overlapping intervals of length
L, and computing the Az (Zy, L) for each interval. Therefore, the Az (L) is now
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defined as this averaged value over all possible starting points and is given by
©0):

As(L) = %minA,B <7 [ﬁ(z) —Az—Brdz> : 2.18)
Z

0 0

where the angular brackets indicate an averaging process over starting points
Zy.

The ensemble-averaged As- statistics can be related to the two-level
cluster function using the following expression (68)):

L 1

A3 (L) =15~ 757

L
/ (L—x)* (2L? = 9Lx — 3x*) V> (x) dx. (2.19)
0

For L 2 10, it is expected that the GOE eigenvalues show a logarithmic
behavior, Weaver (64). According to Andersen (68), an asymptotic prediction
for large spectral distances (or long-range fluctuations) is given by:

1 5
Az (L) = = [ln (L)+In(2m)+7y— ek (2.20)
where ¥ =~ 0.5772 is the constant of Euler.
For a sequence of uncorrelated eigenvalues as in Poisson statistics, the
two-level cluster function is null for all eigenvalue spacings and the resultant
A3 - statistics can be express by (68)):

L
=I5

In Figure 20} examples of As-statistics results are shown for GOE and
Poisson eigenvalues. The logarithmic and linear behaviors can be easily noted
throughout the spectra, respectively.

As (L) (2.21)
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Figure 20: Aj3 - statistics: GOE and Poisson eigenvalue spectra, Gomes and
Gerges (101)).

Although not discussed here in detail, the presence of system sym-
metries is a relevant factor in the resultant dynamical behavior of a system,
Cordioli (20). The breaking of the system symmetries leads to very strong
effects on the spectrum and an analysis of these effects aids the physical un-
derstanding of existent interactions among the natural frequencies.

As discussed in Physiscs literature (64,901 169)), the spectrum of a sys-
tem can be understood as superposition of independent spectra. Indeed, it
is believed that the number of independent spectra needed to describe the
spectral natural frequency statistics of a given system is associated with the
number of symmetries in this system (90, 169) or is associated with the number
of uncoupled substructures of systems which do not interact with the others
(64).

According to Weaver (64), the superposition of independent spectra
leads to a decrease in the spectral rigidity characteristics, that is, an increase in
the As- statistics values. In Appendix A the analytical predictions are shown
for the eigenvalue statistical observables of a spectrum composed of several
independent GOE eigenvalue sequences.
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2.2.5 Universality

The Universality concept was initially associated with Bohigas’ work
which investigated experimentally a microwave cavity with Sinai geometry,
Bohigas et al (67). In his work, the results suggested that the statistics of
spectral fluctuations from the chaotic systems can be correctly described by
the statistics of the eigenvalues of the Gaussian Orthogonal Ensemble (GOE).
Since that time, Random Matrix Theory (RMT) has been become a powerful
tool for the statistical analysis of the spectral properties of chaotic systems.
A relevant characteristic of chaotic systems is that their eigenvalue statistics
show universal statistics provided that the spectrum of the original system is
correctly unfolded. In other words, the resultant spectrum from the unfolding
process must have a unitary mean spacing, Mehta (24)).

In the RMT context, the Bohigas-Giannoni-Schmit (BGS) conjecture
states that: Spectra of systems whose classical analogues are fully chaotic
show correlation properties as modeled by the Gaussian ensembles, Bohigas
et al (67). On the other hand, the Berry-Tabor (BT) conjecture is comple-
mentary and states: Spectra of systems whose classical analogues are fully
regular show correlation properties which are often those of the Poisson type,
Guhr et al (57,163)). Several research works A general statement of the princi-
ple of Universality would be to claim that, for large matrices, apart from well
defined exceptions, all symmetric random matrices should have local GOE
eigenvalue statistics, all Hermitian random matrices should have local GUE
eigenvalue statistics, and all quaternion-real self-dual matrices should have
local GSE eigenvalue statistics, Langley (23)).

Although the RMT was initially developed to describe the nuclear
spectra statistics, it is expected that the RMT concepts are global and applica-
ble to systems of several natures: quantum billiard systems (92)), microwave
cavities (105)), metal blocks (64), membranes (106)), elastic plates (66)), finan-
cial correlations (107), and others. For all of these above-mentioned fields,
excellent agreements are observed between the RMT analytical predictions
and eigenvalue statistics. However, it is also very important to emphasize
that there is a relevant limitation to extending the use of RMT concepts to
systems of several natures. Pandey (108) showed analytically that the Uni-
versality concept is restricted only in a local sense, that is, it is valid only for
a set of adjacent eigenvalues with almost constant mean spacing. For a set of
eigenvalues where the spacings are larger than the mean spacing, the fluctu-
ations are not universal and are dependent on the particular system analyzed
(system-dependent effects). In these cases, the spectral statistics may not be
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correctly described by RMT analytical predictions, Langley (23).

Several results from studies on uncertain or non-deterministic vibro-
acoustic systems have suggested that the statistics of the natural frequencies
may be adequately described by the GOE model provided that there is a suf-
ficiently large amount of randomness in the system parameters, Langley et
al (23} 14, 18). Recently, analytical and numerical investigations have been
carrying out in order to highlight the conditions required for the occurrence
of Universality for the modal parameter statistics of vibroacoustic systems:
Langley (23)), Cordioli (20), etc.

2.2.6 Analogies: Quantum and Vibroacoustic Systems

In principle, it is believed that all RMT concepts from the Quantum
Chaos field can be adequately applied to classical wave vibroacoustic sys-
tems, since the RMT assumptions are very general and do not include any
quantum mechanical arguments, Schaadt (69).

In recent decades, several researchers have carried out experimental
activities with systems of distinct natures and their spectral natural frequency
statistics have been successfully comparing to RMT predictions(105 164} [66)).
However, it is important to emphasize that there is no analytical proof to en-
sure that the random dynamical systems are completely described by RMT,
(64) (66) (109). In general, it is recommended that all system-dependent ef-
fects be removed from the original spectrum in order to compare the spectral
statistics of the random engineering systems with the universal RMT statis-
tics. Inspired by the success of experimental studies, complementary theore-
tical work was performed to describe the main analogies between the quan-
tum mechanical and vibroacoustic systems. Several evidences confirm this
attractive possibility, (92, [105, [106)). On the other hand, there are some par-
ticular characteristics which can become very complex the direct use of this
quantum-vibroacoustic analogy, (64) (69) (110)(70)(95). In the present study,
these details will be presented and discussed for random dynamical systems
in the context of SEA variance theory. In order to highlight the analogies
between the quantum and vibroacoustic phenomena, the well-established si-
milarities are shown in Table 3
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Table 3: Analogies between the Quantum and Vibroacoustic systems, Bertel-
sen (90) and Schaadt (70).

’ Quantum system \ Vibroacoustic system
Quantum mechanics Theory of elasticity
Schrodinger equation Acoustic wave equation

Energy levels Natural frequencies
Eigenfunctions Mode shapes or Standing waves

Semi-classical limit Acoustic ray theory

Ray splitting Modal conversion

One of pioneering application of RMT models to systems with natures
distinct to those of nuclear and quantum systems was carried out by Weaver
(64)). In his work, the aluminum rectangular blocks were perturbed by drills
(slits) on their faces in different ways in order to break the system symmetries.
The natural frequencies from each one of the blocks with different degrees of
symmetry were measured and their corresponding unfolded spectra were also
evaluated. The eigenvalue statistical observable results were determined and
compared with analytical predictions from GOE and 2 GOE spectra. The re-
sults showed that the natural frequency statistics of the most perturbed block,
which has all symmetries broken, presents a universal behavior adequately
described by the GOE model. For less perturbed block, one reflection sym-
metry was retained and their spectral natural frequency statistics were in good
agreement with the 2 GOE model predictions.

Bertelsen et al (90, 166) investigated experimentally the spectral natural
frequency statistics of free plates with a shape of the quarter Sinai Stadium
billiard (chaotic billiard shape). For the plates investigated, two type waves
were considered: transverse (symmetric and antisymmetric) and in-plane wa-
ves. The statistical observable results displayed 2 GOE statistics (i.e., one
GOE spectrum for each type of wave), since for the experimental range of
natural frequencies investigated, both waves types contribute to the same ex-
tent. In order to confirm this conclusion, two cuts were made in one plate face
to break the symmetry in the up-down or thickness direction, where flexural
and in-plane modes are strongly coupled. The resultant statistical observable
results displayed GOE statistics due to the occurrence of coupling between
the two wave types.

Fujisaka and Tohyama (94) investigated numerically acoustic fields
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surrounded by 2D-semi-stadium-type boundaries, as examples of boundaries
where chaotic properties are hidden, in order to understand the spectral cha-
racteristics of complex sound fields and to gain new insight into sound field
design. Several geometries were parametrically investigated, from regular
to completely chaotic. Through the statistical observable results, the natural
frequency statistics, including the mode shapes, were described. The statisti-
cal characteristics from the modal parameters in the Poisson-GOE crossover
region were demonstrated, and an excellent agreement was observed for the
extreme limit statistical cases.

Weaver, Stockmann and Kuhl published an excellent review paper
(111), describing the technical and analytical details regarding the transport
properties of classical waves through chaotic systems with special emphasis
on microwaves and sound waves.

Based on the successful results obtained from the initial parametric
study performed by Bertelsen (90) with a 1/4 Sinai stadium plate, Schaadt
(110, 70) investigated the parametric variation of the natural frequencies when
a chaotic plate is subjected to a perturbation via an external parameter. In his
study, the size of the plate was adopted as the external parameter. The nor-
malized correlation metrics associated with the first and second derivatives as
a function of the external parameter were evaluated and the dynamics of the
natural frequencies from a chaotic plate was accurately characterized. The ex-
perimental results were compared to RMT numerical results for large random
matrices presented in the physics literature, Li and Robnik (112). An excel-
lent agreement was observed for both derivative metrics, suggesting that the
RMT correlation results can be extended to wave systems other than quantum
systems.

As observed here, excellent results can be obtained with the applica-
tion of the quantum-vibroacoustic analogy to practical engineering situations
where the natural frequency statistics of sufficiently random engineering sys-
tems may be adequately described by the GOE model of RMT. However,
most random vibroacoustic systems do not have the conditions necessary for
a direct comparison between the quantum mechanics and vibroacoustics re-
sults, Bertelsen (90). A good example of a direct application of the quantum-
vibroacoustic analogy may be expected in the Geometric Acoustic Ray field
where the acoustic wavelengths tend to reach the semi-classical limit, Deland
et al (95) and Schaadt (70).

In what follows, the main effects provided by some system-dependent
phenomena, such as finite wavelengths (113) and periodic orbits (935) and
others (69, [70), are discussed with regard to the establishment of the semi-
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classical limit in vibroacoustic systems.

2.2.7 Finite Wavelength Effects

Within the analogy with RMT applied to dynamics, GOE statistics are
expected when the classical limit (here geometrical acoustics limit) exhibits
chaoticﬂaehavior, 113). The geometrical acoustics limit corresponds to the
deterministic motion of a point-like particle propagating in straight lines in-
side the system and being specular reflecting at the system boundaries, Bohi-
gas et al (113)). In other words, the geometrical acoustics limit corresponds to
the lower cut-off frequency in which the geometrical ray approach is valid.

Considering again Weaver’s results (64), slits on the faces of rectangu-
lar aluminum blocks were made to break the system symmetry. A good agre-
ement was observed between the spectral statistics of the natural frequencies
and GOE model predictions, although the classical geometrical ray acoustics
trajectories are not chaotic. According to Bohigas et al (113), the pertur-
bed block systems used by Weaver belong to the class of pseudointegrable
systems that are both regular (integrable) but non-separable in orthogonal va-
riables.

As discussed by Bohigas et al (113), a possible explanation for the
good agreement of Weaver’s results arises from the comparative analysis of
the scale magnitude of the acoustic wavelength and the characteristic size
of the system. For the frequency range considered, the corresponding wa-
velengths are typically of the order of centimeters and are much larger than
typical dimensions of slits cut in the block faces for which the scale is of
the order of millimeters. As a consequence, the typical acoustic wave inside
the block can not distinguish a thin straight split from a wider split with a
spherical tip. Although the spherical tip has a diameter of the order of the
wavelength, it acts as a strong focusing element and ensures the existence of
deterministic chaos. That is, this geometrical perturbation at the boundaries
of the order of the wavelength results in focusing or defocusing effects which
also lead to a very rapid divergence of trajectories initially separated by a
distance of the order of the wavelength.

In summary, based on the above discussion, the following behavior
is expected for a random engineering system along the frequency domain.
For the natural frequencies where the wavelengths approximately match the

“In the classic context, chaotic systems are systems whose ray trajectories are unstable with
respect to the initial conditions, that is, the distance between two particles inside a billiard scatters
in an exponential way over time, covering the entire surface of the system due to scattering at the
boundaries, Bohigas et al (67).
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dimensions of the focusing or defocusing boundaries present in the system,
the classical motion may be expected to have a chaotic behavior described by
the GOE statistics model.

According to Bohigas et al (113)), for the much higher frequencies,
other physical parameters beyond boundary perturbation, such as surface
roughness and material heterogeneity, can no longer be neglected and the
corresponding wavelength becomes similar in size to the scale of the mate-
rial imperfections, a regular motion in the geometrical acoustic limit must be
recovered and the spectral natural frequency statistics become Poissonian.

In the low-frequency range, where the wavelengths are longer than
the focusing or defocusing boundary spans, the acoustic waves can not re-
solve the geometrical perturbations and thus it may be that the low natural
frequencies are not strongly coupled each other, leading to non-universal ef-
fects on the modal parameter statistics, Schaadt (69). In the Quantum Physics
literature (69) [113)), these classes of nonuniversal behaviors are traditionally
denominated finite wavelength effects. Therefore, an efficient quantification
of these effects on the modal parameter statistics is essential in order to ex-
tend the analogy of random matrix theory to engineering applications in the
vibroacoustics field, Gomes (10)).

In Appendix B, the finite wavelength effects are numerically investi-
gated using GOE random matrices with several dimensions. The main effects
are investigated on the Ajz - statistics results. Additionally, the expected fluc-
tuations along the spectral domain and across the ensemble are determined
and compared to analytical predictions available in RMT literature, Bohigas
et al. (114). The numerical analysis shown that large fluctuations in the A3 -
statistics results across the ensemble are expected for random matrices with
small dimensions.

2.2.8 Effects of Periodic Orbits

Considering the context of Ray Acoustics, periodic orbits are defined
as ray paths in an acoustic system that return to their starting position with
the same direction of motion. The establishment of periodic orbit effects can
lead to significant changes in the spectral statistics of natural frequencies as
well as in the statistical characteristics of the corresponding mode shapes.

According to C. Ham (115)), the periodic orbits are classified into three
major classes: stable, unstable or marginally stable. A periodic orbit is stable
if each ray on it belongs to some interval such that every orbit starting from
an arbitrary point in the interval converges to the periodic orbit. A periodic
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orbit is unstable if each ray on it belongs to some interval such that every
orbit starting from an arbitrary point in the interval diverges from the periodic
orbit. A periodic orbit is marginally stable if each ray on it belongs to some
interval such that every orbit starting from an arbitrary point in the interval
neither converges to or diverges from the periodic orbit.

In the quantum chaologyE] field, periodic orbits have been used as a
semiclassical tool in the statistical analysis of billiard systems, (92} 96, (95}
97, [115). Stable periodic orbits can be identified through the application of
Fourier transform on the unfolded staircase function fluctuations considering
the wavenumber as an independent variable, Delande et al (95). In Figure[21]
an example of the results from the Fourier transform of the staircase function
fluctuations of a rectangular Sinai microwave cavity is presented. The peaks
of the Fast Fourier Transform correspond to the lengths of the most relevant
periodic orbits, Stockmann and Stein (92)).

Iﬁ(l)lz/a.u.

0.0 1.0 2.0
l/m

Figure 21: Example of Fourier transform of staircase function fluctuations
of a rectangular Sinai (a = 56cm, b = 20cm and r = 7cm). Inset Figure:
identification of main periodic orbits, Stockmann and Stein (92)).

In the inset of the Figure [21] a typical example of the identification
of periodic orbits through the Fourier transform of staircase function fluc-
tuations is presented. The numbered peaks in the Fourier transform results
are associated with periodic orbits. In particular, large contributions to spec-
tral statistics are expected for bouncing ball orbits (orbit number 1 in inset).

S Quantum chaology is the study of how chaos in classical mechanics arises at the limit of
quantum mechanics, Stockmann (104).
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The bouncing ball orbits are a special class of periodic orbits which propa-
gate perpendicularly to two parallel system boundaries. As observed, the
establishment of stable periodical orbits seems to be directly associated with
the presence of system symmetries as well as the regularity of system geo-
metry. Indeed, further systematical investigations are certainly necessary to
highlight the exact relationship between the geometrical characteristics of a
vibroacoustical system and the periodical orbit effects on the modal parame-
ter statistics.

The main effects of the periodic orbits are directly observed in the os-
cillatory component of the natural frequency staircase function. In general,
the fluctuations are large, corresponding to the deviation of several natural
frequency spacing units from the average or smooth component of the stair-
case function, which is usually evaluated by polynomial functions or the Weyl
formula. An illustrative example of fluctuations from the aluminum block,
which are affected by the bouncing ball periodic orbit effects, is presented in
Figure[22](a), Schaadt (69).

Fluctuation
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Figure 22: Periodic orbit effects on the spectral natural frequency statistics.
Plot(a): fluctuations or oscillatory component of staircase function. Plot(b):
Power spectrum from the FFT of the staircase function fluctuations. Plot(c):
resultant fluctuations from Fourier unfolding process, Schaadt (69).
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The identification of the periodic orbits and respective lengths is not a
trivial task in the case of vibroacoustic systems. However, on performing the
Fast Fourier Transform (FFT) of the fluctuations, their peaks on the power
spectrum (with time or length on the x-axis) identify the dominant frequen-
cies of the fluctuations, Schaadt (69) and Delande et al (95)). Indeed, the peak
locations on the power spectrum may be directly associated with stable peri-
odic orbits which contribute significantly to the large scale oscillatory pattern
of the staircase fluctuations, Figure 22](b).

In order to quantify the periodic orbit contributions to the average or
smooth staircase function component of stable periodic orbits and remove
them from the staircase function, the Inverse Fourier Transform (IFT) is per-
formed, including only those Fourier components that lie below some cut-off
time, .. That is, all Fourier components above the cut-off time 7, are discard
(set to zero), and one keeps only the Fourier components which are lower
than 7.. In this new unfolding process, here referred to as the Fourier unfol-
ding process, the effective average staircase function component is evaluated
as the sum of the polynomial component and the inverse Fourier transform
contributions. Note that the total procedure is similar to a low-pass filter ap-
plied to the staircase function fluctuations. In Figure 22] (c), the resultant
fluctuations obtained from the Fourier unfolding process are presented for a
certain cut-off frequency.

The choice of cut-off time is essential to obtaining a good performance
of the Fourier unfolding process. According to Schaadt (69, 70), a short cut-
off time will not take into account all of the significant contributions from
the periodic orbits, and the resultant fluctuations will present nonuniversal
characteristics. On the other hand, for an excessively long cut-off time, the
universal characteristics are erroneously removed and a saturation point is
expected beyond some spectral eigenvalue distance. Thus, the adopted value
for the cut-off time must be selected so as to avoid the effects described above
and simultaneously provide a resultant unfolded spectrum in which all of the
universal characteristics are not affected by the unfolding process, (90, (69,
70).

Considering the results for the natural frequency statistical observa-
bles, the contributions of the periodic orbit effects on these results are ex-
pected to be gradually more pronounced only for large spectral distances. In
Figure 23] illustrative examples of As-statistics results affected by the effects
of the bouncing ball periodic orbits are presented. The Az- statistics results
based on the standard unfolded spectra are compared to results based on the
Fourier unfolded spectrum in which the effects of periodic orbits are removed.
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Figure 23: Examples of the effects of periodic orbits on the Az - statistics
results. Upper Plot: Sinai block, Schaadt (69). Lower Plot: Microwave cavity
resonator, Grif et al (96).

As shown in Figure 23] the effects of the periodic orbits lead to a
slightly higher increase in the A3 - statistics than expected. Using the Fourier
unfolding process appropriately, all such effects were totally removed and a
good agreement with GOE statistics was observed, Figure 23] (a). However,
when the time cut-off is too long the universal characteristics are removed in
the resultant Fourier unfolded spectrum and the corresponding As - statistics
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curve saturates beyond a certain spectral distance, Figure [23|(b). Thus, it can
be noted that the periodic orbit effects can not be removed without saturating
the Az - statistics curve, Bertelsen (90).

An alternative approach to understanding natural frequency statistics
was introduced by the Gutzwiller trace formula, (104} [116). In this semi-
classical approximation, the oscillatory staircase function component can be
described as a sum of all classical periodic orbits, (92, [96)). Although the
semiclassical approach is very attractive in the periodic orbit application fi-
eld, its application to vibroacoustic systems is very limited for the following
reasons: (i) a large number of periodic orbits is required to provide a good ap-
proximation of the staircase function, (ii) the accuracy of the results increases
exponentially with the number of periodic orbits, and (iii) the characteriza-
tion of the classical periodic orbits is very complex or at least prohibitive.
Recently, the main limitations and performances of the extension of the semi-
classical tools to vibroacoustic systems applications have been investigated in
detail and their results support the interdisciplinary research field known as
Semiclassical Acoustics, Wright and Howls (117).

2.3 Mode Shape Statistics

In this section the statistical properties of eigenvectors of large ran-
dom matrices are presented and discussed in detail. The main eigenvector
statistical observables are introduced along with the analytical predictions for
GOE and sinusoidal eigenvectors. A complete statistical characterization is
performed for mode shapes from chaotic and regular systems. Additionally,
the main classes of mode shape statistics deviations from the GOE eigen-
vector statistics are identified and their effects on the mode shape statistical
observables results are discussed and illustrated through results reported in
the literature for microwave cavity systems.

Lastly, the effects of Localization phenomenon are discussed for quan-
tum billiard and vibroacoustic systems. The performance of the applications
of non-linear sigma models from the Supersymmetry theory to describe the
characteristics of the mode shape statistics deviations from the GOE eigen-
vector statistics is discussed for weak and strong localization regimes.



2.3 Mode Shape Statistics 139

2.3.1 Eigenvector Applications

In a vibroacoustic system, a vibration or acoustic mode is characteri-
zed by a natural (or modal) frequency and a mode shape (spatial interference
pattern - standing wave), Ewins (118)). The natural frequencies and mode sha-
pes are characteristic of a particular structure and its boundary conditions, but
are independent of the form of excitation, Fahy (5). If the system is placed
exactly in one of its mode shape configurations and left to vibrate freely, it will
present a harmonic motion and its vibrating frequency will be associated with
a particular natural frequency corresponding to that mode shape. However,
in practical situations, when a system vibrates freely or in a forced manner,
assuming linear behavior, its total displacement will be a superposition of the
mode shapes of the individual modes.

In engineering structures, an eigenproblem equation can be conveni-
ently written and the undamped modal parameters, natural frequencies and
corresponding mode shapes, can be easily determined. The natural angular
frequencies @; and mode shapes ¢; of the system satisfy the following equa-
tion:

—07M¢; = 9K, (2.22)

where M and K are the mass and stiffness matrices of system, respectively.

(@ (b)



140 2 Literature Review

(© (d)

Figure 24: Numerical modal analysis of an automotive dash panel using FEM
models. Plot (a): structural FEM mesh model. Plots (b) - (d): Mode shapes
corresponding to the following natural frequencies: 61.215 Hz, 101.088 Hz,
and 114.507 Hz, respectively, Gomes (10).

Nowadays, the high processing capacity and storage characteristics of
computers allow numerical methods to be employed in the dynamical analysis
of engineering structures. One of these methods, the Finite Element Method
(FEM) presents excellent versatility and performance for almost all practical
applications, Zienkiewicz (2). In the case of relatively complex engineering
structures, the mass and stiffness matrices can be satisfactorily evaluated th-
rough numerical methods, and the characteristic equation can be adequately
established. In Figure [24] some mode shapes of a typical vehicle dash pa-
nel obtained in numerical modal analysis using FEM models are presented,
Gomes (10).

In a complementary way to numerical models, there are well esta-
blished experimental methods which allow the evaluation of mode shapes
from a given vibroacoustic system. Modal analysis, or more accurately expe-
rimental modal analysis, is the field of measuring and analyzing the dynamic
response of structures and or fluids when excited by an external input, Ewins
(118). The modal testing and analysis methods seek to determine the mo-
dal parameters, such as natural frequencies, damping ratios and mode shapes,
from the measured transfer functions, and then fit a damping matrix to these
data. However, the experimental methods for the evaluation of modal para-
meters are traditionally restricted to low order modes.

In the Quantum Physics field, the Hamiltonian operator from the nu-
clear systems is modeled through large random matrices, Mehta (24). Addi-
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tionally to the spectral statistics of energy levels (x,) which are traditionally
evaluated through the eigenvalue statistics from a large random matrix H, the
statistics of the wave functions (u,) can also be investigated considering the
corresponding eigenvectors, Guhr et al (57, 163). The typical eigenproblem
associated with a nuclear system is given by:

Hu, = xyu, ,n=1,2,...,N. (2.23)

where N is the size of Hamiltonian matrix H.

While the characteristics of the spectral statistics of the energy levels
are well known for nuclear systems, only a small number of experimental
investigations have been carried out regarding the statistical characteristics
and properties of the corresponding wave functions. The main reason for this
apparently low interest is associated with the lack of accessibility to wave
functions in nuclear systems. In atoms and complex nuclei systems, the wave
function characteristics are expressed through the indirect parameters as tran-
sition amplitudes and widths which also provide information on the matrix
elements of a transition operator, Guhr et al (37, 163) and Brody et al (56).
In order to overcome these experimental difficulties, the quantum billiard
systemsﬁ] with classically chaotic geometries have been used as convenient
experimental models to represent chaotic nuclear systems, since their natural
frequencies and corresponding mode shapes can be easily measured and their
modal parameter statistics adequately compare to analytical predictions from
the RMT.

The main experimental method used to evaluate the wave functions
from the quantum billiard systems is the technique of Microwave Cavity Per-
turbation, developed by Kudrolli and Sridhar (105). In this experimental
technique, a small metal bead (perturber) is introduced into the microwave
cavity at coordinate (x,y). If the bead is sufficiently small compared to the
wavelength, the resultant shift in the natural frequencies, Af;, due to the per-
turbation, is proportional to the square of the Electric field (hence, the wave
function), at the location of the bead (x,y). By moving the bead with a mag-
net, the wave function can be mapped out. In overall, one of the main advan-
tages of this method is the direct visualization of the eigenfunctions without
inserting a probe into the cavity. The literature results form the quantum phy-
sics field has been shown excellent performance of this experimental method
for a variety of microwave cavity geometries, including integrable, pseudo-

S A billiard is defined as a dynamical system in which a particle alternates between motion in
a straight line and specular reflections from a boundary.
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integrable, isospectral and chaotic, (72,71} 11051119, (120, [121)).

Recently, the mode shape statistics have currently become a signifi-
cant area of interest in the quantum physics field. The main topics of research
associated with the wave function statistics of billiard systems in the quantum
physics field are: physical interpretation of wave functions in terms of classi-
cal trajectories, including the scar phenomena predicted by Heller (122)); tran-
sition of wave function statistics over a localization-delocalization regime in
disordered systems (100}, [74,1123| [73|[71)), and other subjects (97, [115} [117)).

It is also important to emphasize the increasing and substantial advan-
ces in the semi-classical acoustics research area in relation to modal parame-
ter statistics, Wright and Howls (117). Semi-classical acoustics is a multi-
disciplinary research field which uses tools from the semi-classical theory of
Quantum Physics such as periodic orbit theory (SPOT, WBKIJ and EBK ap-
proximations) (97, 1115) and the Weyl series (124) to address engineering pro-
blems in the vibroacoustics field. The mathematical details regarding the ana-
logy between the Schrodinger and Helmohtz equations are beyond the scope
of this current work and further information is available in (71} (105119} 120).

2.3.2 Eigenvector Statistical Observables

In this section, the statistical observables associated with the eigen-
vectors of large random matrices are defined and their performance in cha-
racterizing the eigenvector statistics are briefly discussed. The characteristics
of the mode shape statistics of classically chaotic and integrable (or regular)
systems are introduced and demonstrated through typical examples of eigen-
vector statistical observables results.

Porter-Thomas Distribution

The Porter-Thomas distribution, Ppr (|w|?), is the most traditional ei-
genvector statistical observable used to characterize the GOE eigenvector sta-
tistics in the RMT field. This metric function is defined as the probability
density function of squared mode shape amplitude{] (normalized to have unit
mean). For a system respecting time reversal invariance, Haake (116) de-
monstrated that for classically chaotic systems the Porter-Thomas distribu-

In the Quantum Billiard context, the probability density function of squared mode shape
amplitudes is also known as the density distribution, Sridhar (120).
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tionﬁ is a universal GOE eigenvector feature and is given by:

GOE

PS¢ (2.24)

2
(1W7) = e (1),
V2r|yl? 2
where \l//|2 is the normalized squared mode shape amplitud which is defi-
ned as:
2 ¢

vl = ooy (2.25)
where ¢ is the mass-normalized mode shape amplitude and angular bracket
() denotes the mean value from an averaging process over the eigenvector
component domain (i.e. over the spatial domain of the system).

The Porter-Thomas analytical prediction proposed for GOE eigenvec-
tors has been confirmed in several experimental studies on two dimensio-
nal chaotic microwave cavities (71, [74) and elastodynamical system plates
(691 193)) as well as in numerical studies with large random matrices (79, [101)).

A typical example of an experimental investigation on the distribu-
tion of normalized squared mode shape amplitudes of chaotic systems can
be observed in Kudrolli et al (71). In their work, the normalized squared
mode shape amplitudes, |y 2, from two microwave cavities with Sinai Sta-
dium and Billiard geometries were measured using the cavity perturbation
technique, which considers that the Schrodinger and Helmholtz equations
coincide. The distributions of normalized squared mode shape amplitudes of
such microwave cavities were compared with the Porter-Thomas distribution
predictions for GOE eigenvector statistics, Figure [23]

8Traditionally, this function is evaluated considering the spatial domain of system (i.e., spatial
averaging approach). Illustrative examples of its application for billiard systems are available in
quantum physics literature, (7111741 169).

9For this normalization process, the scalar parameter \W\z can be understood as simplified
notation of the i-th squared mode shape component of a mode shape normalized to have a unit
mean, (711169).
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Figure 25: Examples of Porter-Thomas distribution: GOE prediction, Sinai
Billiard, and Sinai Stadium measured results, Kudrolli et al. (71).

As shown in Figure [25] the GOE prediction for Porter-Thomas distri-
bution shows that universal mode shapes present a finite, although exponen-
tially vanishing, probability of finding large mode shape amplitudes. A good
agreement is observed for the Sinai Stadium, while the Sinai Billiard results
display slight deviations in the large mode shape amplitude rang due to
the establishment of non-universal statistics associated with bouncing-ball
orbitd"] (1231 172).

For integrable systems, the distribution of normalized squared mode
shape amplitudes is often truncated at some finite value of |y|?> and is not
universal, Haake (116). In the case of a rectangular geometry, it is expected
that a truncation point occurs approximately at |l;/\2 =4, Schaadt (69). In
Figure [26] the flexural mode shapes of the rectangular quartz plate and their
respective Porter-Thomas distribution results are presented, Schaadt (69)).

For pseudo-integrable systems, their mode shapes have, simultane-
ously, the statistical characteristics of regular and chaotic systems. Overall,
the non-universal mode shape characteristics are mainly established in the
range of large mode shape amplitudes, where the Porter-Thomas distribution
amplitudes of the large mode shape amplitude range are usually less than

10The main difference between these Sinai geometries is the existence of parallel sides for the
Sinai billiard one which provide the establishment of stable periodical orbits of type bouncing
ball, more details will be presented and discussed along the text.

" Further details regarding the effects of bouncing ball orbits on the mode shape statistics are
presented in the section@}
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or greater than the universal expected amplitudes described by the GOE PT-
distribution, (123| [72)).
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Figure 26: Examples of regular or integrable mode shapes and their PT- dis-
tributions from a rectangular plate of quartz, Schaadt (69). In these plots,
the smooth and well-behaved function is the analytical formulation of PT-
distribution for perfect GOE eigenvectors, Equation @, and the results
with step function-like format expresses the experimental measurements. Plot
(a): Natural frequency of 419.6 kHz. Plot (b): Natural frequency of 437.7
kHz.

Spatial Distribution of the Mode Shape Components

Considering the spatial mode shape characteristics, the chaotic or
GOE mode shapes are traditionally identified by the presence of disordered
nodal line curves which have the orientations quite random inside the body,
(126,[73,[127). In Figure 27} some examples of chaotic or GOE mode shapes
are presented.
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For classically chaotic systems as well as large symmetric random ma-
trices, such as perfect GOE matrices, the mode shapes (or eigenvectors) are
expected to be Gaussian distributed, that is, a normal distribution for their
eigenvector (mode shape) components is established over the mode shape (or
eigenvector) component domain, (71, [128). Indeed, a Gaussian mode
shape component can be understood as being a random superposition of real
plane waves reflected from the boundaries (or discontinuities) of the system,
Lobiks et al (50). If the system boundaries or irregularities are sufficiently to
scatter the waveguides in several directions, the central limit theorem will be
applicable. This theorem states that the sum of a large number of random va-
riables tends asymptotically to present Gaussian distribution characteristics,
provided that the random variables are independent or identically distributed,

Conover (129).
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Figure 27: Typical examples of GOE mode shapes of chaotic billiards. Plot
(a): Sinai stadium geometry, McDonald and Kaufman (126)). Plot (b): 1/4 Si-

nai geometry, Pradhan and Sridhar (73). Plot (c): cardioid geometry, Backer
(127).

Waterhouse (130) proposed analytical expressions for the spatial PDF
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(with the sample space taken to be the area of the system) of sinusoidal mode
shapes for one, two, and three-dimensional systems, and these expressions
are given by, respectively:

Pw(¢)=%(1—¢2)_%,if—1§¢§1, (2.26)
Poo(9) = Kl (1-%) it ~ 159 <1, @.27)

8 (1K) (1—¢?
Pip(¢9) = ;/q) Mdu, if—1<¢<I, (2.28)

where K ell (x) is the complete elliptic integral of the first kind of x and:

Pip(¢) = Pop(9) = Pip(9) =0, if [¢| > 1. (2.29)

Lilliefors Test

In order to evaluate the agreement between the Gaussian PDFE] and
the PDF of mode shape components from a random system, the Lilliefors
normality test can be considered adequat Conover (129). The Lilliefors
test is an adaptation of the Kolmogorof-Smirnoff Test, which is applied to ve-
rify the establishment of normal statistics for a set of dataE-] In the Lilliefors
normality test, the test statistics (Syr) are defined as:

Sir = sup|®(x) — Fz(x)|, (2.30)

where ®(x) is the standard Gaussian cumulative distribution function and the
sup(x) function refers to the maximum value of the difference over the range

12 According to RMT, Gaussian or normal distribution is expected for eigenvector components
of classically chaotic systems, Mehta (24).

3In probability theory and the statistics field, the skewness coefficient is a measure of the
asymmetry of the probability distribution of a random variable. For normal distribution (or any
perfectly symmetric distribution), the skewness coefficient is zero, (1311[1321[103). In the present
study, some analysis carried out with mode shape components used this metric function as an
auxiliary or complementary result to investigate indirectly the degree of the establishment of
GOE (or Gaussian) statistics for the mode shapes of random engineering systems.

14A detailed description of the most well known normality tests is available in Conover (129)
and Montgomery & Runger (103).
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of x considered, and Fz(x) is the empirical cumulative distribution function
of the normalized sample values which is defined as:
Xi — lux

Zi= , (2.31)
Ox

where [y and Oy are the mean and standard deviation values from the empi-
rical data.

The Lilliefors test is implemented in the standard libraries of several
mathematical software programs, for instance: Statistics and Matlab (133,
1311 1132)). The Lilliefors test results are based on the corresponding level of
significance for a particular value of a certain statistic. In the Matlab software,
the Lilliefors test results are presented in terms of two distinct values. If
the Lilliefors test result is unity, the hypothesis that variable X; has a normal
distribution can be rejected. On the other hand, if the Lilliefors test result is
null (zero), the hypothesis of the normal distribution cannot be rejected.

Kurtosis Metrics

The kurtosis is a statistical observable which measures how outlier-
prone a distribution is, that is, it quantifies the degree to which a uni-modal
distribution is peaked, Montgomery and Runger (103). In the mode shape
context, the definition of kurtosis is given by:

o E[0"
= R
E[9?]
where E [] usually denotes the expected value from the averaging process
over the mode shape component domain.

Regardless of the averaging process approach adopted, the kurtosis
can be adequately defined as the ratio of the fourth central moment divided
by the square of the second central moment. If the distribution is normal,
then the kurtosis value is exactly equal to 3. A kurtosis value greater than
3 indicates the presence of several values in the neighborhood of the mean
value, that is the distribution is more peaked than the normal distribution. If
the kurtosis value is less than 3, the distribution curve is flatter than the normal
distribution.

(2.32)
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Figure 28: Definitions of kurtosis averaging approaches. Plot (a): Ensemble
mode shapes. Plots (b - d): Graphical representations of the spatial, spectral,
and ensemble kurtosis averaging approaches, respectively, Gomes and Gerges

(101).

Although the kurtosis evaluation for mode shapes traditionally consi-
ders the expected values from an averaging process over the spatial domain
(i.e., over the mode shape component domain), other alternative kurtosis ave-
raging approaches can be considered and their statistical results provide rele-
vant information about the mode shape statistics, Gomes and Gerges (101).

In the present study, three distinct mode shape averaging approaches
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were considered for the kurtosis evaluation from the mode shapes: spatial,
spectral, and ensemble averaging approaches. In Figure 28] the kurtosis ave-
raging approaches are illustrated.

Mode Shape Statistics Factor

The parameter known as the Mode Shape Statistics Factor (K) was
initially proposed by Lyon (48)) in order to represent the spectral statistics
of mode shapes in the Theory of SEA variance, (48| 53| 154, 49| 150). The
definition of the Mode Shape Statistics Factor (K) is given by:

4
k= EL° ()] )]2, 2.33)
E[9 (x/)]
where x is the excitation force point.

In order to simplify the evaluation of the mode shape statistics fac-
tor, Lyon (48)) considered, for convenience, the mode shapes as sinusoidal
functions and the term E[] denoted the expected values from the spatial
averaging process. It is important to emphasize that, for mass normalized
mode shapes with zero mean amplitudes, Lyon’s mode shape statistics fac-
tor definition becomes identical to the spatial kurtosis, Equation (2.32)). For
mode shapes described by sinusoidal functions, the spatial kurtosis values
are Ky, = 1.5,2.25and 3.375, for one, two, and three-dimensional systems,
respectively.

Considering the context of the energy response variance across the en-
semble, Langley and Brown (18) adopted the ensemble averaging approach
in the evaluation of the mode shape statistics factor. Thus, for mass normali-
zed mode shapes with zero mean amplitudes, Langley’s mode shape statistics
factor definition becomes identical to the ensemble kurtosis definition for any
given mode shape component (i.e., at a fixed excitation point) across the en-
semble. In SEA variance predictions, Langley and Brown (18)) considered
the GOE model for both modal parameter statistics, and thus the ensemble
mode shape statistics at the excitation point was assumed to be Gaussian and
an ensemble kurtosis value of 3 was adopted, regardless of the system dimen-
sionality.

Inverse Participation Ratio

In the disordered Quantum Billiard context, the Inverse Participation
Ratio - IPR (1) is an eigenvector statistical observable which measures the
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disorder strength from the mode shapes, Pradhan and Sridhar (123). Accor-
ding to Pradhan and Sridhar (73)), the kth statistical moment of nth normalized
squared mode shape amplitudes (I;) is given by:

1(m) = [ 1 (7) a2 (2.34)

where Q is the spatial domain of system and |y, (7)|? is the nth normalized
squared mode shape amplitude at spatial position 7, which is normalized to
have unit mean:

Ii(n) = /Q v (7)2dQ = 1. (2.35)

The definition of the Inversion Participation Ratio arises from the se-
cond statistical moment of normalized squared mode shape amplitudes (nor-
malized to have unit mean) as follows:

bin) = [ 1y (P)['d = E |y (7)) 236

where E [] denotes the value expected from the averaging process over the
spatial system domain.

According to Equation (2.36), the Inversion Participation Ratio defi-
nition can be considered identical to Lyon’s Mode Shape Statistics Factor or
the spatial kurtosis when they are evaluated considering normalized squared
mode shapes instead of mass normalized mode shapes. Burhhardt and Wea-
ver (75)) called this factor the Modal Participation Ratio.

The second statistical moments (1) and their probabilistic distribution
Py, (L) are very important measures of the statistical properties of the cha-
otic and disordered eigenfunctions, (73| [74). For finite chaotic systems, it
is expected that the spectral mean value of L, (), is close to that of the
universal GOE limiting value of () = 3.0, with small mode-to-mode fluc-
tuations 81, < (b), resulting in a nearly symmetric distribution around (I).
On the other hand, the statistical moments [; of squared normalized mode
shape amplitudes from an infinite classically chaotic system are expected to
have fixed values with no mode-to-mode fluctuations, with I, = 3.0, i. e.,
P, (L) =6(1L—3.0).

Similarly to the spatial kurtosis values, the inverse participation va-
lues of I, = 1.5, 2.25, and 3.375 are expected for all mode shapes from the
one, two and three-dimensional regular or integrable systems, respectively, in
which their mode shapes are described as product of sinusoidal functions.
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Spatial Correlation of Mode Shape Components

Another eigenvector statistical observable is the spatial correlation
Sfunction of the mode shape components which describes the spatial corre-
lation of mode shape amplitudes, (71, [73). In the present study, two types
of spatial correlations are investigated: the linear and squared mode shape
spatial correlation functions, P; (kr) and P, (kr), respectively.

In the Quantum Billiard field, the linear and squared spatial mode
shape correlation functions of the n-th mode shape, P; (k,r) and P (k,r) res-
pectively, are defined as:

— —
Pi(kar) = (1yn(karo)| Vi (aro + kar)| ), (237)
and:
— —
Pa(lka) = (1¥alhar) P W lhart + ar) ) 238)

where Y, is the nth normalized mode shape amplitude (normalized to have
unit mean), k, is the wave number of n-th mode, r is the magnitude of the
distance between 7 and 74 points, and the angular brackets () denote the

averaging process over 171’0, and angles between k9, and k, r. Traditionally,
an averaging process over many mode shapes (wave functions) is adopted in
order to obtain more robust and representative results, and thus the angular
brackets also include the averaging process over different mode shapes.

Since the mode shapes are traditionally scaled to unit-generalized
mass in the vibroacoustics field, the definition of the frequency-averaged li-
near mode shape correlation function can be conveniently re-written as:

Py (kr) = ME [¢,(X0)9n(x)], (2.39)

where @), is the n-th mass-normalized mode shape, M is system mass and E [ |
denotes the expected frequency-averaged value of the product of the mode
shape amplitudes at the x( and x positions.

Considering that the mode shapes form a homogeneous random field,
the linear mode shape correlation function is identical to the acoustic field
correlation function (Ry):

P] (kr) :ME[(P,Z(X())(])"(X)] :Rf(X—X()). (240)
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For the ideal diffuse acoustic field, Cremer and Heckel (38) defined
analytical expressions of diffuse field correlation functions for two and three-
dimensional systems as:

) — Jo(kr), 2D-systems,
Rrlx XO){ sin(kr)/(kr), 3D-systems,

where Jy denotes the zeroth order Bessel function.

Langley and Cotoni (35)) showed that the diffuse field correlation func-
tions can be directly extended to classically chaotic dynamical systems in
which the mode shape statistics conform to the GOE model. Prigodin (134)
also showed that the same correlation function expressions can also be obtai-
ned through the Friedel functions in the ballistic regime for wave functions
from the 2D- and 3D-quantum chaotic disordered systems.

Similarly to the linear correlation function of the mode shape compo-
nents, the definition of the squared correlation function of the mode shape
components can be re-written in terms of the mass-normalized mode shapes:

(2.41)

Py (kr) = M?E [ (x0) 97 (x)] - (2.42)

Considering the statistical characteristics of covariance function, the
P, definition is conveniently expressed as an expansion of ¢, terms, (35):

Py(kr) = ME [¢2(x0)] E [92(x)] +2M> E [9(x0) 9, (x)]* (2.43)

Considering that the linear correlation function of the mode shape
components is adequately described by a diffused field correlation function
and the fact that the mode shapes are scaled to unit generalized mass so that
E [¢}(x0)] = 1/M, the frequency-averaged squared correlation function of
the mode shape components for GOE mode shapes is given by:

PO (kr) = 1+ cgordd (kr), (2.44)

where cgor = 2 for chaotic systems.

A similar expression to Equation (2.44) was also obtained by Prigodin
et al (135} 134) through the use of disordered system models at the ballistic
or extreme diffusive limit. An excellent agreement with this analytical pre-
diction has recently been confirmed with mode shape correlation results from
the chaotic systems such as the Sinai stadium and other classically chaotic
geometries, (71, 135} 134} 136)).
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According to Equation (2.44), P,(kr) — 1 for large distances since
Jg (kr) — 0 for r — oo. Therefore, it is expected that the squared mode shape
amplitudes are uncorrelated for sufficiently large distances. The coefficient
cGok, in front of the Bessel function term, corresponds to P>(0) — 1 and is in
agreement with the Porter-Thomas distribution for GOE mode shapes, Equa-
tion (2.24)), and thus:

22(0) = (vl v art) P ) = (I ara) ) = [ P59 (232 =3,

(2.45)
—>
knro

).

2.3.3 Mode Shape SEA Parameters

where z = |y, (

In the SEA variance context, the mode shape statistics provides a sig-
nificant contribution to the energy response from an ensemble composed of
similar random engineering structures with uncertain or non-deterministic pa-
rameters. Therefore, major effects of the mode shape statistics on the statisti-
cal moments of energy responses are expected for cases of structures subjec-
ted to single point-loadings rather than the spatially-distributed excitations,
Brown (1).

The definitions of mode shape SEA parameters are described in detail
below. These mode shape parameters are metric functions which quantify the
level of randomness of random systems through the measurement of mode
shape dispersion characteristics across the ensemble.

Additionally, it is generally considered that, in principle, the results
from these mode shape SEA parameters also allow the correct identification
of the level of uncertainty necessary to guarantee that the universal statistics
threshold limit is reached and a GOE model can be completely established
for both modal parameter statistics.

In the Quantum Physics field, good results have been obtained in the
quantifying of universal statistics based on the eigenvector statistics. Karol
Zyczkowski (81) showed through a single parameter, called M(r), which is
based on the minimal number of relevant eigenstates, that the level of uni-
versal statistics associated with a certain system can be correctly identified
through the number of eigenbases present on their eigenvectors. For a classi-
cally chaotic system, a large number of eigenbases is expected since the disor-
der effects are strongly established across the eigenvector domain. However,
only a small number of eigenbases is required to describe the eigenvectors
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of integrable or regular systems. Additionally, the proposed parameter ba-
sed on the minimal number of relevant eigenstates also allows three known
universality symmetry classes to be distinguished, GOE, GUE and GSE.

Based on a similar concept to Zyczkowski’s, Cordioli (20) employed
the Singular Value Decomposition (SVD) techniques and proposed SEA pa-
rameters based on the mode shape statistics in order to verify the applicability
of GOE statistics to the modal parameters from an ensemble composed of si-
milar random structures. The definitions of these parameters are reviewed
below. Further information concerning the performance of these mode shape
SEA parameters will not be discussed here in detail, but is available in Cor-
dioli (20).

Let us consider that N mode shapes are presented in terms of incre-
asing natural frequencies for each ensemble member and the size of the en-
semble is N, members. For the kth mode shapes across the ensemble, the
mode shape matrix Dy is defined as:

Di=[u w .. ue], (2.46)

where u}; is the kth mode shape from the ith ensemble member.
According to Singular Value Decomposition (SVD)(137)), the mode
shape matrix Dy can be decomposed as:

Dy = WS, Vi, (2.47)

where the W, and V. are matrices which contain a set of the orthonormal
output and input (or analysing) basis vectors displayed in their columns, res-
pectively, and Sy is the diagonal matrix which presents the corresponding
singular values.

In order to determine the minimum number of relevant singular values
(or eigenstates) of the mode shape matrix, a particular threshold limit (7'L)
is adopted for convenience, considering that all important basis vectors are
included. Therefore, the first mode shape SEA parameter, Parameter P(k),
which quantifies the number of important basis vector, is defined as:

P(k)

y (S{?)z = TL{: (S§)2, (2.48)
izl

i=1
where S; is the i-th singular value for k#h mode shapes, which is assumed to

be labeled in order of decreasing magnitude. Traditionally, the threshold limit
value (T'L) adopted is TL = 0.90 or 0.99, (81} 20).
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Before introducing the second mode shape SEA parameter, Parameter
QO(k), the concept of the eigenvector mixing phenomenon is illustrated th-
rough the results from a parametric study with an externally perturbed quan-
tum chaotic billiard system performed by Schaadt et al (69, [110, [70). In
parametric studies of billiard systems in the Quantum Physics field, the repre-
sentation of effects of an increase in the level of disorder (external parameter)
on the modal parameters is performed through the curves of unfolded energy
levels (eigenvalues) as a function of the disorder level (external parameter
magnitude). Thus, a set of curves of unfolded natural frequencies are simul-
taneously represented for each mode order, which present a pattern similar to
spaghetti in appearance, Figure [29|(a).
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Figure 29: Representation of the effects of an increase in the amount of un-
certainty associated with the unfolded natural frequency of a random system.
Plot (a): Example of spaghetti unfolded frequency curves, Schaadt (70). Plot
(b): Modal parameter characteristics of the avoided crossing region (mixing
of mode shapes), Schaadt (69).

Due to the level repulsion effects expected for classically chaotic sys-
tems, no natural frequency curves can cross each other. As shown in Figure
[29](b), the natural frequencies close to the crossing region have avoided cros-
sing characteristics, that is, the natural frequencies repel each other due to the
level repulsion effects and move apart again. Although the natural frequen-
cies do not cross the corresponding mode shapes do cross. Now consider that
the mode shape of the n-th natural frequency before the avoided crossing re-
gion is the same as the mode shape of the (n+ 1)-th natural frequency after
the avoided crossing region. This phenomenon of a change in the mode shape
position in the natural frequency domain is known as the mixing of eigenvec-
tors.

It is also important to emphasize that for structures in which several
classes of modes exist, only mode shapes of the same mode class will show
avoided crossing characteristics, while two mode shapes from distinct mode
classes will cross each other without any iteration.

Considering the avoided crossing phenomena, Cordioli (20) proposed
a second mode shape SEA parameter, Parameter Q(k), which is related to
the mixing of eigenvectors. For the kth mode shapes across the ensemble,
the level of eigenvector mixing is evaluated through the auxiliary matrix (Ry)
which is defined as the projection of each u; on the SVD basis vectors of the
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D, that is:

Re= (W) 'Dp=[rf o5 - rf ], (2.49)

where the matrix dimensions are: dim(Ry) = (N, N,), dim(W;) = (N, N) and
dim(Dy) = (N, N,), respectively.

Therefore, each vector rff has a unitary module and contains the inter-
nal product of the kth mode shape of the ith ensemble member with the basis
vector from W;y. For cases where a particular rf‘ component is large, a high
alignment is expected with a specific basis vector. On the other hand, if se-
veral ré‘ amplitudes are significant, the rf vector is composed of several basis
vectors. Similarly to the determination of the Parameter P(k), the number of
relevant basis vectors, Q% (i) of each rf-‘ vector is given by:

)y

ok (i)
z=1

(r’? )2 —TL (2.50)
iz ) .

where the components of the rf vector are labeled in order of decreasing
magnitude.

The Parameter Q(k) associated with the k-th mode shapes across the
ensemble is defined as the ensemble mean of the QX (i) parameters and is
given by:

1%

Q(k) = E;Qk(i)- @2.51)

In order to verify the number of symmetries of system, a third mode
shape SEA parameter, Parameter Z, was also proposed by Cordioli (20). Ba-
sed on the Parameters P(k) and Q(k) results, the Parameter Z(k) associated
with the k-th mode shapes across the ensemble is given by:

Z(k) = ——=. (2.52)

For systems with several symmetries as those have Poisson statistics,
large values are expected for Parameter Z results. Further information con-
cerning the application and performance of the Parameter Z is available in
Cordioli (20).
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2.3.4 Nonuniversal Eigenvector Statistics

As discussed in the previous section, some relevant mode shape statis-
tics deviations in relation to the expected GOE eigenvector statistics are ob-
served for most random engineering systems, Gomes (10). The main physical
phenomena associated with the establishment of nonuniversal mode shape
statistics can be classified into two major deviation classes. In first mode
shape deviation class, the phenomena are related to the effects of the presence
of stable periodic orbits which are strongly associated with the geometrical
characteristics of the system, (92,96, 95, 97, [115). The second mode shape
deviation class is associated with the structural localization effects of the
presence of impurities and structural irregularities along the spatial domain
of system, (136} 138 71 [139, [140)

In the following subsections, the effects of periodic orbits and structu-
ral localization phenomena on the mode shape statistics are discussed in detail
and illustrated in terms of the eigenvector statistical observables results.

Effects of Periodic Orbits on the Mode Shapes

In the quantum chaology[TE] field, periodic orbits have been used as a
semiclassical tool in the spectral analysis of the energy levels from billiard
systems, (92} 96} 95,197, [115). From the mode shape statistics point of view,
periodic orbits provide an efficient means to clarify the connections between
the mode shape characteristics and the system geometry characteristics since
every mode shape is considered to be composed of resonance functions which
are constructed on periodic orbits at the semiclassical limit, (97, [115]).

Considering the effects of periodic orbits on the mode shape statistics,
the presence of stable periodic orbits leads to the establishment of the scars
phenomenon of the mode shapes, (141} [119). According to Kudrolli and
Sridhar (103)), the scars are defined as mode shape regions of enhanced inten-
sity along the periodic orbits. Some scarred mode shapes of billiard systems
investigated in the recent literature are presented below and examples are dis-
cussed in order to illustrate how the effects of periodic orbits may become
significant in terms of the mode shape statistics characteristics. In Figure [30]
an example of the bouncing balm state and its respective Porter Thomas dis-
tribution results are presented, Kudrolli and Sridhar (72). The main stable

S Quantum chaology comprises the study of how chaos in classical mechanics arises it the
limit of quantum mechanics, Stockmann (104).

16The bouncing ball orbits are a special class of periodic orbits which propagate perpendicu-
larly to two parallel system boundaries.
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periodic orbits of a quarter Sinai rectangular billiard are shown in Figure

(a).
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Figure 30: Example of a typical bouncing ball state of a quarter Sinai rectan-
gular billiard. Plot (a): Main periodic orbits. Plot (b): squared mode shape
amplitudes. Plot (c): Porter-Thomas distribution results, Kudrolli and Sridhar
(72).

As shown in Figures [30] (b) and (c), the establishment of bouncing
ball periodic orbits provides significant changes mainly in the range of mode
shape components with large amplitudes. Indeed, the quarter Sinai rectan-
gular billiard presents some geometrical characteristics similar to classical
regular systems, where the periodic orbits with bouncing ball characteristics
are established and their effects reduce the probability of the occurrence mode
shape components with large amplitudes.

In Figure [31] other examples are presented from an experimental in-
vestigation with disordered Sinai billiard micro-cavities, Sridhar et al (119}
122).
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Figure 31: Examples of mode shapes associated with periodical orbits,
Sridhar and Heller (119).

As shown in Figures B;fl (a) and (b), the periodical orbits are the half
diagonal lines and main diagonal lines, respectively. While the qualitative as-
sociation with the periodical orbits is easily determined, the evaluation of the
corresponding natural frequency through simple geometric rules is someti-
mes a very complex task, Sridhar (119). In Figure @ (c), the enhanced mode
shape amplitudes are established predominantly along the diagonal direction,
while the corresponding periodic orbits are not perfectly isolated.

For a regular or integrable system like a rectangular billiard, the sta-
ble periodic orbits provide an asymptotic tendency to establishment of good
quantum numbers, that is, the establishment of well-defined modal indexes
associated with each mode shape, (119)). For vibroacoustical systems, the
good quantum numbers correspond to the wavenumbers which allow adequa-
tely to describe the spatial configuration of a mode shape and evaluate its
corresponding natural frequency.

On the other hand, for systems with classically chaotic or sufficiently
disordered geometries, an exact identification of quantum numbers becomes
very complex, (119). In these cases, the complexity arises because in cha-
otic geometries, natural frequency is the only well-defined parameter, while
other quantum numbers, like &, and k, wavenumbers for regular geometry,
are absent.
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Disorder and Anderson Localization Effects

The second class of the nonuniversal deviations of the mode shape
statistics is related to the establishment of localization phenomen The lo-
calization phenomenon was initially predicted by the American physicist P.
W. Anderson, also known as Anderson localization, Anderson (142). In ge-
neral, the localization concept is associated with the absence of the diffusion
of waves in a random medium and can be extended to a general wave pheno-
menon that applies to the transport of electromagnetic waves, acoustic waves,
quantum waves and spin waves, etc.

The several experimental observations of the localization phenomena
have been made in disordered billiard systems in the quantum physics field.
For disordered systems such as microcavities perturbed with small metallic
scatters (tiles), there are three characteristic lengths which may affect the sta-
tistical behavior of the mode shapes, or wavefunctions. They are the system
size or span length (R,), the mean free patlm (1), and the wavelength of the
resonance frequency (4,,).

The most relevant physical phenomenon associated with disordered
quantum billiard systems is Anderson Localization or simply Localization
which is established under conditions where the wavelength is similar to mean
free path, A, ~ [, Sridhar (120). Examples of the experimental localized wa-
vefunctions are shown in Figure [32]

"The occurrence of this physical phenomena can be attributed to the existence of a the large
degree of randomness of the impurities or defects inside the system domain, (711 1120).

8The mean free path of a particle is the average distance covered by a particle between sub-
sequent impacts.
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(@) (b)

Figure 32: Examples of the wavefunctions of disordered billiard systems de-
monstrating the establishment of Anderson Localization. Plot (a): weak lo-
calization regime. Plot (b): strong localization regime, Pradhan and Sridhar

(73.174).

As shown in Figure [32] the localization effects on mode shape ampli-
tudes are significant and provide the confinement of large mode shape ampli-
tudes in certain spatial mode shape regions. Furthermore, the degree of lo-
calization varies, either changing the frequency range or changing the mean
free path through an increase or decrease in the uncertainty level of system
(tiles, irregularities, or discontinuities). In general, two major regimes of lo-
calization are established: weak and strong localizations, Figures [32] (a) and
(b), respectively.

For localized wavefunctions (or mode shapes), the probability density
function of squared normalized mode shape amplitudes, Ppr(|y|?), devia-
tes significantly from the universal GOE PT-distribution, PS?F (|y|?), Equa-
tion (2.24). The localization effects lead to the probability density function
of squared normalized mode shape amplitudes, Ppr(|w|?), being much lar-
ger than the prediction of the universal GOE PT-distribution, PSP (| y|?) for
range of large |w|? magnitudes, Pradhan and Sridhar (123). Additionally, a
slight reduction in the universal GOE PT-distribution, PSE (|y[?), is also ex-
pected for the region of small normalized squared mode shape amplitudes for
strong localization regimeEl

According to Sridhar (120), the degree of localization of wavefunc-

19Examples of PT-distribution results for weak and strong localization regimes are presented

in Figure[34
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tions (or mode shapes) can be correctly expressed by the higher statistical
moments of the normalized squared mode shape amplitudes as the Inverse
Participation Ratio, I, that is P»(0). For disordered wavefunctions (or mode
shapes) subjected to the establishment of localization phenomenon, values of
I, > 3 are expected. For a weak or incipient localization regime, the mode
shapes are almost delocalized and most values of I, are expected to be sligh-
tly greater that the universal value IgOE =3 as I ~ 4, as well as present a
small level-to-level variation. However, for a strong localization regime, the
values of I, are expected to be very large in comparison to the universal value
as I, ~ 20 for extremely localized mode shape.

Besides the individual values of I, for each mode shape, important
conclusions concerning the spectral characteristics of mode shape statistics
can be obtained when the Probability Density Function of I, is also evaluated
for disordered systems.

For chaotic geometries, such as the 1/4 Sinai stadium, the mode shapes
are delocalized and the Py, (I») is expected to be nearly symmetric around to
spectral mean value of I, which is identical to the expected universal value of
IzGOE = 3. Due to finite dimensions, the boundary scattering phenomenon on
the system length scale, leads to the incipient establishment of nonuniversal
correlations, which is not consistent with the RMT hypothesis of Gaussian
fluctuations of eigenfunction amplitude, and provides fluctuations in the dis-
tribution of Py, (1), although of narrow distribution width, Pradhan

For disordered structures, the mode shapes tend to be spatially locali-
zed for some frequencies. As discussed above, the degree of localization of
a certain mode shape can be associated with the /, value, and thus a strong
localization leads to large values of I, which may be as high as I, ~ 20. In
general, the P, (I>) is asymmetric and the spectral mean value, (1), is higher
than the expected universal GOE value Ig OF —3 m

Since the establishment of the localization phenomenon provides the
absence of wave diffusion, the significant localization effects on the energy
spatial distribution as well as on the spatial correlation of mode shapes are
expected for localized mode shapes. In Figure[33] examples of the evaluation
of squared spatial correlation functions of the mode shape components are
presented for weak and strong localization regimes, Kudrolli et al (71)).

20practical examples of the PDF of I, are depicted for disordered systems under ballistic (i.e.,
chaotic) and strong localization regimes Figure@ respectively.
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Figure 33: Examples of squared spatial correlation functions of the mode
shape components for weak and strong localization regimes, Kudrolli et al
71).

As observed in Figure [33] the squared spatial mode shape correlation
function results do not obey the universal GOE expression proposed by Equa-
tion (2:44). The amplitudes of spatial mode shape correlation function results
are larger than those of the universal GOE prediction, mainly for a small kr
region. This pattern shows clearly that the localization effects cause an incre-
ase in the spatial correlation between the mode shape components mainly for
small distances. Additionally, the amplitudes of the spatial correlation functi-
ons of localized mode shapes die out faster with an increase in the magnitude
of kr and tend to be uncorrelated for large distances.

Theory of Supersymmetry: Nonlinear Sigma Model

The Theory of Supersymmetry is an alternative approach which ena-
bles us to describe of spectral correlations of disordered systems, such as the
natural frequency spacing statistics, the linear and squared mode shape am-
plitude distributions and the spatial correlation of squared mode shape ampli-
tudes, Efetov (136 138)).

From the perspective of transport in disordered systems, the chaotic
systems correspond to disordered systems with a ballistic or diffusive limit
where the mean free path and conductanceEr] are infinite, (138, 123}, [73)). Due

21 Details regarding the conductance parameter are provided later in this section.
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to the establishment of incipient localization effects, the universal properties
are no longer ensured and the modal parameter statistics deviates substantially
from the RMT predictions. Thus, a perturbative treatment has been achieved
using nonlinear sigma models from the supersymmetry theory, (138). Ori-
ginally, the development of these models was motivated by the problem of
electrons in a disordered metal.

In general, the nonlinear sigma model has proven to be a very powerful
tool for the characterization of the statistical properties of energy levels (natu-
ral frequencies) and eigenfunctions (mode shapes) in disordered and chaotic
systems, (71} [73} [123). The main advantage of nonlinear sigma models is
associated with the ballistic regime, kI > 1, where the expressions proposed
by nonlinear sigma models reduce to RMT predictions for both modal para-
meters.

As the disorder level increases the finite mean free path and conduc-
tance are established and the modal parameter statistics are no longer uni-
versal and can be not described by the RMT predictions. Through 1D sigma
models, a perturbative correction is taken into account due to the finite con-
ductance g and a finite disorder strength parameter 2k/. Further details regar-
ding the theory of supersymmetry are beyond the scope of this work and are
available in the related literature, (138 (143 [104).

The main expressions of eigenvector statistical observables based on
the nonlinear sigma model of supersymmetry theory are presented below and
examples of their applications are demonstrated through illustrative results
from the quantum physics literature.

Mirlin and Fyodorov (77)) investigated analytically and numerically
the higher moments of the normalized squared mode shape amplitudes of
large random matrices with a band structure. They were able to describe
the localization correlation of weak localized mode shapes of a quasi-one
dimensional wire, using the 1D nonlinear sigma model of supersymmetry.
For incipient localization, Mirlin and Fyodorov show that the distribution of
normalized squared mode shape amplitudes can be expressed as a correction
function for the universal GOE PT-distribution and is given by:

P = fur (lw?) PSPE(lw]?), (2.53)

where fyr is the Mirlin - Fyodorov correction function for weak localization
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is given by:

4 2 12

fur(lw?) = 1+d;

2 2)2
1_M_JWU]’ 2.58

where dy is the fitted disorder localization parameter.

For a strong localization regime, large deviations are expected for the
Ppr(|w|?) results, which can not be described by the localization correcti-
ons proposed for PWF(|w|?), as in Equation (2.54). Mirlin and Fyodorov
proposed the following PT-distribution expression for the strong localization

regime:
8 | d 2(lyl*)
PL(lyP) = = Lk |2 7 (2.55)
vr (1T a2\ 2y dr

where K| (x) is the MacDonald Function, or modified Bessel function of the
second kind of first order, (144). In the Mathematics field, the modified Bessel
functions of the second kind are sometimes also called the Basset functions,
modified Bessel functions of the third kind, or MacDonald functions. The
definition of the modified Bessel function of the second kind of nth order is
given by:

1
Kn(x) = 5m‘”“H,i”(ix), (2.56)
where H,El)(x) is the Hankel function of the first kind of x, (131} [132). In
Figure 34] examples of the good performance of PT- distribution expressions
for localization in weak and strong regimes are presented, Kudrolli et al (71).
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Figure 34: Porter - Thomas results for weakly and strongly localized mode
shapes: experimental and analytical patterns based on nonlinear sigma model
of supersymmetry, Kudrolli ez al (71)).

Analytical developments regarding the distribution of Inverse Partici-
pation Ratio values have been performed by Prigodin and Altschuler (145).
Based on nonlinear sigma models from the mesocopic systems, they showed
that the PDF of I, values, P, (I,), follows an exponential decay law and, for
L < (), is given by:

8 8 T g,
Po(b) = Ci5exp =8 (h— (b)) = Ze iB=D] - 257)
while, for I, > (I), the Py, (I») is given by:
o 8 F
Py(B) = Coy [ exp { : glz} , 2.58)

where C; and C; are the normalization constants. For a mesoscopic system,
the spectral distribution of I, Py, (I»), is dependent on the dimensionless con-
ductivity g of a system which is defined as:

n (1) (h—3)
= W= , 2.59
8 W) w 3 (2.59)
where R, is the system size, [ is the mean free path and (---) denotes the
expected averaged value for a fixed disorder strength, 2ki.
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In Figure[35] examples of the good performance of fitted forms of PDF
of values I, Py, (I2), proposed by nonlinear sigma model of supersymmetry
theory are presented for chaotic and disordered systems, Pradhan and Sridhar
73).

0.41 N Sinai stadium
o
0 i t t t
Disordered billiards
0.31 |=8.9cm
= e
a0 + t t t
Disordered billiards
0.2 A\;jicm
0 O/ . O 5= Q 0
0 3 6 9 12 15 18
IPR 1,

Figure 35: Examples of the nonlinear sigma model forms for chaotic and
disordered systems. In the top panel: chaotic Sinai-stadium billiard. In the
middle and bottom panels: disordered billiards under weak and strong locali-
zation regimes, respectively. The solid lines represent the calculations based
on the nonlinear sigma model, Pradhan and Sridhar (73)).

Pradhan and Sridhar (74) have extended the calculation of the spa-
tial squared mode shape correlation functions of chaotic to localized mode
shapes. The spatial squared mode shape correlation function for a moderate
disorder regime is given by:

P (kar) = { 195 o) [ (ar + K )2 ) = 14+ (B = D Ky (K1), (2.60)

where the function K} (x) is defined as:

l/MLJ kx(1 4+ ) | d
7)o 11270 2w |

2

K (x) = 2.61)

Since the evaluation of the function K(x) is a very complex task, the
Equation (2.60) can be approximately expressed in a region r < [ by a decay-
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length scale of scattering mean path length / as follows:

P kur) = { [y o) [ (et + Kar ) ) = 1+ (1 — 1) 3 (k[ ) 474
(2.62)
As observed in the Equation (2.62)), the decay length of the spatial
squared mode shape correlation function is a classical mean free path /. In Fi-
gure [36] examples of both analytical evaluations of the spatial squared mode
shape correlation function, Equations (2.60) and (2.62)), are presented for cha-
otic and moderate localized regimes for fixed disorder strength 2k/, Pradhan
and Sridhar (74).
Additionally, for large disordered strength 2k, corresponding to a bal-
listic or chaotic regime, the above expressions, Equations (2.60) and (2.62),
will converge to the expression of a classically chaotic system, Equation

<I(r) e () P>

Figure 36: Spatial squared mode shape correlation functions of Sinai (cha-
otic) and disordered (localized) billiards with fixed disordered strength 2k/
(dotted lines). The analytical nonlinear sigma model results: - - - Equation

(2.60) (dashed line) and — Equation (2.62)) (solid line), Pradhan and Sridhar
(74).
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Mode Shape Component Correlations and Finite Size Effects

Although the use of random matrices with finite dimensions is rele-
vant in certain applications of RMT models, only a few studies have been
performed to evaluate and quantify the effects of the truncation process on
the results for the statistical observables of the modal parameters.

Izrailev (128)) investigated the statistical properties of the eigenfunc-
tions in a quantum model with a finite number of states. In his work, the
effects of the truncation process on the eigenfunction statistical characteris-
tics were numerically investigated considering the kicked rotor Hamiltonians
with a distinct number of states (that is, a distinct number of the mode shape
components). The eigenfunction component distribution results suggested
that the best agreement with the GOE analytical prediction is observed when
a large number of states (i.e., large number of the eigenvector components)
was considered.

One of the pioneering analytical studies regarding the correlations
between the Hamiltonian elements was carried out by Ullah and Porter (146).
They showed analytically that there are no correlations between the diago-
nal and off-diagonal matrix elements and between the off-diagonal matrix
elements, while the diagonal elements are correlated for some (invariant) ei-
genvalue distribution. In this study, no reference was made to the possible
relationship between the performance of the truncation process and the ef-
fects of the correlation of the Hamiltonian elements on the modal parameter
statistics.

Brody et al (56)) investigated the level of correlation between the ei-
genvector components. In their study, they showed analytically for a GOE
matrix that the distinct components of the same eigenvector, as well as the
same component from distinct eigenvectors are not completely uncorrelated
for finite eigenvector dimensions. However, they could only affirm that the
eigenvector component distribution becomes asymptotically Gaussian with
an increase in the eigenvector size. Additionally, Brody et al (56)) also sug-
gested that the correlation of the eigenvector components of sufficiently large
eigenvectors would be likely considered weak and they could be neglected for
convenience. However, it was noted that for other cases where the contributi-
ons of the component correlations on the eigenvector statistics are substantial
they should certainly be considered.

Considering the orthogonally invariant statistics, Brody et al (56) pro-
posed analytical expressions for the statistical moments of a d,-dimensional
eigenvector, Langley and Cotoni (35)). The odd statistical moments are iden-
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tically null and the even statistical moments of an entry of the eigenvector

components are given by:

2v—1!(d, —2)!
(do+2v=2)11 7~

E[¢7(z)] = (2.63)
where x!! means the Double Factoria of variable x. According to Weisstein
(147), the definition of the Double Factorial (x!!) is given by:

n.(n—2)...53.1 n>0o0dd
xMN=< n(n—2)...642 n>0even . (2.64)
1 n=-1,0

Cordioli in (20) investigated the effects of spectral correlations
between the mode shape components on the performance of SEA variance
predictions based on GOE model. In his analysis, the point-loading variance
results were numerically evaluated considering the excitation point location
as a random variable across the ensemble. An improved agreement was
obtained between numerical results and GOE prediction with K = 3. The
direct comparison with variance results evaluated under fixed excitation
point location suggested that the spectral correlations between the mode
shape components are substantially reduced when the averaging process was
carried for different components of different mode shapes. It was also argued
that the spectral correlations between mode shape components play role in
the kinetic energy statistics and may be the main reason for the deviations
between the numerical (or measured) results and GOE prediction with K =3
extensively reported in SEA literature.

A numerical investigation of the effects of finite dimensions on the
evaluation of kurtosis metrics is presented in Appendix C. The kurtosis va-
lues were evaluated for several sets of perfect GOE matrices with distinct
finite dimensions. The spatial and spectral averaging approaches were con-
sidered. The mean and variance values of kurtosis results were calculated
and compared with available analytical predictions. In overall, the kurtosis
results demonstrate indirectly that the mode shape statistical observables eva-
luated under spectral averaging approach may be more susceptible to finite
dimension effects. In order to minimize possible finite dimension effects, it
was recommended that the maximum number of available modes should be
used during the evaluation of the results for the spectral mode shape statistical

22The Double Factorial is also known as Factorial 2. More information regarding the defini-
tion and properties of double factorial are available in Weisstein (147).
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observable results.

2.3.5 Structural Localization Phenomenon in Vibroacoustic Systems

Although the localization phenomenon is well established in solid
physics, mainly in disordered quantum systems, the corresponding localiza-
tion effects in structural dynamics are less understood and explored. Indeed,
one of the reasons for this is that in engineering system must always deal
with finite structures, and considering the limit as the structure becomes infi-
nite - as is typically applied in localization proofs in solid state physics - is of
limited practical relevance.

The pioneering studies in the structural dynamics field considered sim-
ple systems such as coupled pendulums and string, and they were only a con-
cept proof, not addressing the possibility of localization effects in practical
structures, (140l 139, 148). In typical periodic engineering structures, such
as turbine and compressor rotors of airplanes where the mounted blades are
nominally equidistant to each other, any imperfection or disorder may break
the blade-to-blade periodicity and induce the establishment of structural lo-
calization. Thus, in-depth knowledge of the localization effects is essential
to estimating the dynamical stresses and fatigue life as well as the expected
range of dynamical response, Bendiksen (149).

In order to introduce the physical concept of the structural localization
phenomenon, a simple system composed of a row of N identical pendulums
is considered, Figure 37} In this system, each pendulum is weakly coupled
to its two neighbors with all couplings being identical, so that the pendulum
system can be considered to have one-dimensional periodic characteristics,
Hodges and Woodhouse (150).

Figure 37: Pendulum system: a chain of pendulums coupled by springs, Hod-
ges and Woodhouse (150).
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When the pendulum system is excited at one of the ends and its vibra-
tions can propagated unattenuated along the chain structure, this excitation
frequency is within the pass bands. For excitation frequencies outside this
range, that is, within the stop bands, the vibrations can not propagate along
the chain at all and an exponential decaying near-field around the driving
point is observed.

In order to understand the effects of pass and stop-bands on the mode
shapes of the pendulum chain, let’s consider the ideal case where the cou-
pling strength between the pendulums is null. In this case, the mode shapes
of the N independent pendulums would consist simply of each pendulum se-
parately, vibrating at its natural frequency. Since the pendulums are identical,
their frequencies are all the same and the N-fold natural frequency degene-
racy is established. However, if there is a small degree of coupling between
the pendulums, the natural frequency degeneracy will be no longer valid and
a frequency cluster will be established close to the natural frequency of an
uncoupled pendulum. The frequency region corresponding to this frequency
cluster is defined as the passband region.

It is also important to emphasize that the mode shapes associated with
the passband frequencies are extended throughout the whole structure and
have amplitudes which vary sinusoidally with distance along the chain, (150).
On the other hand, if there is some disorder (or randomness) in the pendulum
system, and thus the pendulums have slightly distinct natural frequencies, the
pendulum system mode shapes can be very distinct to those expected for a
pendulum system absent of disorder.

Therefore, it is clearly intuitive that when at least one of pendulum na-
tural frequencies is sufficiently different, the pendulum system mode shapes
will be localized around individual pendulums. Considering that the indivi-
dual pendulum frequencies are not degenerate, the coupling between pendu-
lums is no longer strong enough to produce extended mode shapes in which
all pendulums contribute more or less equivalent amplitudes. In this regard,
it is important to point out that the establishment of structural localization is
substantially dependent on the trade-off relationship between the disorder le-
vel and coupling strength, that is, the magnitude of the disorder to coupling
ratio.

In the strong localization regime, where a large disorder to coupling
ratio is established, large structural localization effects are expected for highly
disordered periodical systems with weak couplings between their periodical
substructures. On the other hand, for the weak localization regime, the disor-
der to coupling ratio is not so large and only incipient localizations effects are
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observed. Indeed, the weak localization effects are very similar to the dyna-
mical behavior of the wave interference between multiple-scattering paths.

Although the pendulum system described above is really a very sim-
ple system, their qualitative conclusions regarding the structural localization
phenomenon characteristics can be adequately extended to almost periodic or
random engineering structures.

In real engineering structures, the structural localization phenomenon
can be understood as the vibration confinement due to the presence of irregu-
larity over the spatial domain of a structure. For localized systems, the energy
is confined spatially to a particular structural region close a driving point and
at particular frequencies, Pierre (148)). For practical purposes, the localization
effects can be considered to be similar to damping effects, since they lead to
spatial decay of the vibration amplitude along the structure, even though for
localized vibrations the energy is confined to near the source of excitation,
while for damping it is dissipated as it propagates, Pierre (148)). Additionally,
in general, it is known that the dynamic response of a typical disordered struc-
ture would decay exponentially moving away from the driving point, where
the decay constant is referred to as the the localization factor, Pierre (148).

With respect to the statistical moments of energy responses across an
ensemble of engineering structures, the establishment of localization pheno-
mena in some of the ensemble members may strongly affect the statistical
moments of the energy response as well as the significance of the expected
energy response in terms of a typical individual member of the ensemble. The
structural localization effects may lead to energy response distributions with
long tail characteristics where the mean and probabilistic mode values of the
response distribution across the ensemble are substantially distinct, as shown
in Figure
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Figure 38: Pictorial example of a long tail response distribution expected for
an ensemble of localized structures: the linear or arithmetic mean (the center
of mass) and the typical value (probabilistic mode or peak) of the distribution
are very distinct, adaptation of Hodges and Woodhouse (140).

Considering the variability of the dynamical responses of an ensemble
composed of engineering structures with non-deterministic parameters, the
arithmetic mean or linear average is usually applied over the configurations
in the ensemble and satisfactory results are obtained. However, under certain
circumstances, such as that presented in Figure [38] the geometric mean or
logarithmic average value over the ensemble can be adequately applied to es-
timate the typically expected value for the responses across the ensemble (that
is, the probabilistic mode or peak value of distribution). Indeed, the geome-
tric averaging process is less sensitive to anomalous or sporadic contributions
that occur in the energy response distributions with long tail characteristics,
Hodges and Woodhouse (140).

In the SEA context, perfect energy diffusion is considered in the deri-
vation of the analytical predictions through the establishment of a reverberant
field in subsystems, Lyon and Dejong (29). For systems composed of rever-
berant and weak-coupled subsystems, a satisfactory agreement is expected
between the SEA predictions and the ensemble mean value, regardless of the
averaging process adopted, Fahy (30).

On the other hand, the establishment of structural localization phe-
nomenon across the ensemble inhibits a good agreement between the SEA
predictions and the typically expected value across the ensemble. Indeed, in



2.4 Theory of SEA Variance 177

this situation, perfect energy diffusion and modal equipartition conditions do
not occur over the system spatial domain and the linear average is no longer
representative for the evaluation of the typically expected response across the
ensemble members.

Detailed reviews of the implications of the structural localization ef-
fects on the performances of SEA and other diffusive transport theories are
presented in Hodges and Woodhouse (151) and Fahy (30).

2.4 Theory of SEA Variance

In the high-frequency range, a large variability in the energy responses
across the ensemble is expected due to small variations introduced during the
manufacturing and assembly processes, and thus successive nominal systems
from a production line may present a significant random spread in their dy-
namical performances. In order to determine if the statistics of the dynamical
responses over an ensemble composed of random similar products meet the
design and certification requirements, extensive effort has been directed by
the vibroacoustic community toward developing robust and widely applica-
ble analytical methods.

In this section, the analytical predictions of the energy density vari-
ance are presented for a single random dynamic system subjected to a ge-
neric nature of excitation. The Poisson and GOE models are considered for
the statistics of the natural frequenciesFEl The narrow and broad frequency
band analytical formulations for the relative variance are obtained for each
statistical model. Based on the current results reported in the SEA variance
literature, a detailed discussion is presented regarding the effect of the mode
shape statistics factor (K) on the performance of relative variance predictions.

2.4.1 Energy Response Statistics

The response of a linear dynamical system can be correctly described
using the method of modal superposition, Meirovitch (22). The complex mo-
bility function between a sinusoidal force at frequency @ and drive point xy
and the velocity of the response point at x is given by:

23Although it is not discussed here in details, the SEA variance literature has been shown
that distinct statistics can be established for the modal parameter statistics, these being directly
associated with degree of uncertainty and the characteristics of the geometrical irregularities
present in the random system, (48154} [1, 18} 13).
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n

(2.65)

where ¢, is the nth mode shape, @, is nth natural frequency and 7 is the dam-
ping loss factor. For cases of engineering systems in which the performances
of the damping effects are spatially distributed, for convenience, the damping
loss factor can be adopted as the frequency-constant parameter, Gomes (28)).

The time-space averaged kinetic energy density 7 of a system subjec-
ted to sinusoidal single excitation at frequency , location xy and magnitude
F, is given by:

F2

T (O),XQ) = iR

/pd Y (o, xo, x)|*dx, (2.66)
Ru

where R, is the system or unit span. The energy density given by Equation
(2.60) is the average over the main spatial dimensionality associated with the
system of interesting for a single excitation point at xy.

Therefore, using the orthogonal relationship, the simplified expression
for kinetic energy density is given by,(22):

® Cn
AR T (02 — 0?)’ + (na?)®

(2.67)

This equation might represent, for example, the spatially-averaged ki-
netic energy density of a system when excited by a point-loading. In this
excitation case ¢, is equal to the square of the nth mode shape at the drive
point xo multiplied by the square of the force amplitude:

cn=F29? (xo). (2.68)

In the derivation of SEA analytical formulations, the rain-on-the-roof
excitation is defined as a spatially distributed loading where the point for-
ces are considered statistically independent and delta-correlated in the space
domain.

On the other hand, several numerical investigations on SEA vari-
ance have considered an averaging process over the force positions, that is,
spatially-averaged excitation. Therefore, it is important to emphasize that
both excitations remove the effects of the mode shape statistics on the res-
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ponse variance results, since the set of ¢, values is averaged out, Brown (1J).
The spatially-averaged response to a single point force for a homoge-
neous system is given by:

—  F’0? 1
T(a)):4 5 > 5
deu n 4o (a)n—a)) +(nww")

5 (2.69)

where the over bar notation denotes the averaging process over all possible
excitation points. It is also important to note that the following approximation
was assumed given that each mode bandwidth is small in comparison to the
natural frequency@

(02— 0°)’ + (ow,)’ =40 (0, — 0)>+ (no?)* (2.70)

2.4.2 Random Point Process

As stated previously, the statistics of the kinetic energy density re-
sults can be adequately evaluated through the random point process approach,
(821 155)). Assuming a unitary punctual force, Equation is conveniently
rewritten and is given by:

T(0) =) ang(w,— o), 2.71)
where a,, is given by:
2
X
ay = ¢21(eu0)’ 2.72)

and the function g (0) is given by:

o’
) — @) = . 2.73
g (0~ ) 402 (@, — 0)* + (n©?)* &7

In the next sections, the analytical predictions based on Poisson and
GOE modes are presented for the relative variance of the kinetic energy den-

24 Although it will not be demonstrated here, Equation also provides a good performance
for almost homogeneous systems, such as mass-loaded structures, Langley and Brown (164 13|18]
4).
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sity results. Further details are available in Langley and Brown (18| 3} |1)) and
Cordioli (20).

Poisson Statistics

The pioneering studies on the energy response variability were perfor-
med in the room acoustics field. These adopted the Poisson model to describe
the resonant or natural frequency statistics due to its analytical convenience,
Lyon (48)). That is, the natural frequencies were considered to form a Poisson
Point Process (55, 151) on the frequency axis, where the natural frequencies
are uncorrelated and their adjacent spacings have an exponential distribution.
For the natural frequency statistics which obeys the Poisson model, the rela-
tive variance of the kinetic energy density results (r%) is given by:

2
e L B (2.74)
(ur) 7m

where m is the modal overlap factor and the parameter « is the spatial factor
which is given by:

(2.75)

The term o describes the influence that spatial matching between the
excitation field and the mode shapes of the subsystem has on the relative
variance, (18, 27).

For the case of systems subjected to a single point loading, the spatial
factor () is identical to mode shape statistics factor (K) proposed initially
by Lyon (48), which is a function dependent exclusively on the mode shape
characteristics:

(6]

E
oa=K= 5 -

E[¢;]

For a rain-on-the-roof excitation in which the response is averaged
over the loading statistics prior to considering the statistics over the system
ensemble, the value of o = 1 is expected. According to Langley and Brown
(3), the value of v = 1 also occurs for the cases where the response to a single
point force is averaged over all possible locations of the point-loading, prior
to considering the ensemble statistics.

(2.76)
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GOE Statistics

Langley and Brown (18) considered that the natural frequencies are
substantially correlated and their local iteration across the ensemble is descri-
bed accurately by the eigenvalue statistics from the large random symmetric
matrices of GOE type from RMT. In order to model the correlation of two ad-
jacent natural frequencies the two-level cluster function (Y») was considered
in the derivation of analytical formulation. Therefore, the modal parameter
statistics which obeys the GOE model, the relative variance of the kinetic
energy density results (%) is given by:

L N S Y AU P (—nwB)do 2.77)
T_(ﬂT)z_”n 0 27n P ’ .

where b(0) is the Fourier transform of the two-level cluster function. This
function was described by Mehta (24), being given by:

b(0) /MY( )exp(—27ir6)d IR P LS
= r —2Tir r= 2[6[+1 )
w2 P *1+‘9|ln<2Ite1) 6]=1

(2.78)

Brown (1) evaluated the integral of Equation (2.77), so that:

A= {oc I g (1 exp(~2m)] + Ey () [cosh(nm) - sinh(nm)} } .
(2.79)

Here, E| (x) is the exponential integral and is given by:

Ei(x) = /X ) e"ptﬁdﬁ (2.80)

Using an expansion of the exponential integral valid for large argu-
ments, it is possible to demonstrated that Equation (2.79) can be correctly
simplified to provide:
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2.81)

According to Brown (1)), the accuracy of Equation (2.8T]) is guaranteed
only for m > 0.6. In the case of single point excitation when (@ = K), it can
be observed that the first term of equation (2.8T) agrees with Weaver’s result
(49), and thus the relative variance is predominantly proportional to 1/ (7m).
However, in the case of spatially-averaged excitation, with & = 1, the energy
variance is proportional to 1/ (7rm)?. The term proportional to 1/ (mm)? does
not appear in the previous expression given by Weaver (49), demonstrating
the high accuracy of the expression given by Equation (2.8T).

2.4.3 Band-Averaged Energy Response Statistics

In several engineering applications, the external excitation does
not perform at a single frequency @ but rather over a broad fre-
quency band. If the kinetic energy is averaged over the frequency band
Ry = [0y —Aw/2, @+ Aw/2], it is given by:

Th (0,A0) = T (w)do, (2.82)

Aw Jr,

where Aw is the averaging bandwidth.

Neglecting the small contributions from the modes outside the fre-
quency band of interest (non-resonant modes), Equation ([2.82) can be ade-
quately simplified as, (48):

1"Ng, =
Pa 5, Aw 2nawp’

Th (0,A®) ~= (2.83)
where N is the sequence number of the lowest natural frequency in the fre-
quency band and N, the sequence number of the highest natural frequency in
the band.

The analytical expressions of the relative variance of frequency band-
averaged kinetic energy density responses are presented below considering
modal parameter statistics based on the Poisson and GOE models, respecti-
vely. Further details concerning the analytical derivation of the frequency-
band averaged relative variance formulations are available in the SEA vari-
ance literature: (11153} 154! 3, 148).
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Poisson Statistics

Davy (53) extended the Lyon’s work and proposed analytical expres-
sions for the case of multiple source and receiver positions in the room acous-
tics field. The Poisson model was adopted to describe the natural frequency
statistics and the mode shapes were assumed to be the product of sinusoidal
functions. The proposed analytical expression for the relative variance of the
frequency-band averaged kinetic energy density results is given by:

I :{ L m 1 [KH—]} [K—H—l]}F(B)
r NiNp A® n(O))AO) Ny Np Ng Ng ’
(2.84)
where Ny is the number of source points (or excitation points), Ng is the
number of receiver points (or response points) and the bandwidth parameter

B is defined as:

Aw
= 0’777 (2.85)

In the case of a system subjected to a single point excitation, that is,
N, =1 and N = oo, the relative variance is given by:

K

2
=———F(B 2.86
T n ((I)) A® ( ) ’ ( )
where the function F(B) is defined as:
F(B)= 2) arctan (B) — L (1+B?) (2.87)
p s . .

In the case of a system subjected to a spatially-averaged excitation,
that is, N; = oo and Nr = oo, the relative variance is given by:

2= F(B). (2.88)
GOE Statistics

Langley and Brown (3)) extended the relative variance analytical for-
mulation based on the GOE model for a narrow frequency domain, Equation
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(2.81)), to the case of a frequency-band averaged response. The relative va-
riance of the frequency-band averaged kinetic energy density results is given
by:

7 (0,A0) = (aﬂ:nl) (;2) {ZB [z—arctan (;)} —ln(1+Bz)}+

1) (Blz> In(1+B%). (2.89)

(mm)?

According to Brown (1)), the accuracy of Equation (2.89) with the ad-
justed spatial parameterE] (for instance o ~ 2.7) is guaranteed within the
range of m > 0.4 for a single point excitation. For a spatially distributed
excitation where a = 1, such as a rain-on-the-roof loading, Equation (2-89)
is expected to have good accuracy for m > 1, Langley et al (18 (3116} 4).

2.4.4 Comments on Spatial Factor Characteristics

Regardless of the nature of the excitation, the kinetic energy density
response of a particular subsystem can be written as (18 13)):

2 /a)+A/2 J,

dw (2.90)
o+-4/2 (@2 — w2)2 + (1160(1),1)2

n
where the summation is taken over the local modes of the subsystem, and
J, is the modulus squared generalized force associated with the nth mass-
normalized mode shape. Thus, the spatial factor «, defined previously in

Equation (2.79), can be rewritten as:

(2.91)

In cases where the power arises from a spatially-distributed force ap-
plied over the spatial domain Q of the subsystem, the squared generalized
force J, is written as (27):

J, = //q)n (x,x') ¢, (x') dxax/, (2.92)

25 Note that Gaussian mode shapes or perfect GOE eigenvector would yield o = 3, Mehta (24).
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where ¢, is the nth mode shape of the subsystem and R; represents the
narrow-band spatial correlation function of the excitation. As observed in
Equation (2.92)), the value of the spatial factor a is dependent on the spatial
characteristics of the excitation field and the statistics of the subsystem mode
shapes. Physically, this term indicates the sensitivity of the joint acceptance
functior@ between the excitation and modes of the subsystem to changes in
the mode shapes of the subsystem.

As discussed by Langley and Brown (1}, 118l 13), the value of parameter
a varies typically between 1 and 3 depending on the spatial characteristics
of the excitation field and the main dimensionality of the subsystem of inte-
rest. The minimum value of the statistical factor is equal to unity and this is
expected when the joint acceptance function is independent of changes in the
mode shapes of the subsystem. For the particular case of spatially incohe-
rent rain-on-the-roof excitation the term is unity and thus the input power to a
subsystem is not sensitive to the mode shape statistics of the subsystem. For
example, an upper value of approximately 3 will occur for a three dimensional
cavity with Gaussian mode shapes excited by a single point excitation.

2.4.5 Non-universal Mode Shape Statistics Deviations

For the case of single point excitation, the spatial factor () is identical
to the mode shape statistics factor (K) and the input power to a subsystem
is highly sensitive to the mode shape statistics of the subsystem. In 1969,
Lyon (48)) defined the mode shape statistics factor using a spatial averaging
approach. Considering, for convenience, the mode shapes as a product of
the sinusoidal functions, mode shape statistics factor values of K = 1.5, K =
2.25, and K = 3.375 were obtained for uni, bi, and tri-dimensional systems,
respectively.

The hypothesis of sinusoidal mode shapes has commonly been adop-
ted for SEA variance predictions based on the Poisson natural frequency sta-
tistics, Lyon (48) and Davy (53, 154). However, it is important to emphasize
that the mode shapes associated with Poisson natural frequency statistics are
not necessarily sinusoidal and the sinusoidal mode shape hypothesis is very
limited, being only valid for certain cases, such as simple geometry systems,

20The joint acceptance function is a measure of the strength of coupling between two wave
fields where they are joined along a line or over an area, taking into account the relative amounts
of phase reinforcement and cancellation over the space of the junction, Mead and Richards (152).
In other words, the joint acceptance is a type of correlation-coupling function which describes
how well the vibration modes harmonize with the spatial characteristics of the external excitation
field, Gomes (28)).
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for example: a simply supported rectangular plate or a box-shaped acoustic
spac Langley and Cotoni (35)).

Recently Langley and Brown (18)) defined the mode shape statistics
factor using the ensemble averaging approach and assumed that the mode
shape components of random engineering system are statistically independent
and have a Gaussian distribution across the ensemble as described by the
GOE model. For perfect Gaussian mode shapes, a value of K = 3 is obtained,
regardless of the system dimensionality, (35)).

In the SEA variance literature, an excellent agreement was reached
between the predicted single-loading relative variance values and the nume-
rical (or experimental) results when a value of K lower than 3 was adopted.
Indeed, it is usually argued that the good agreement with the SEA variance
theory for K < 3 is due to the distribution of the mode shape components not
being perfectly Gaussian as predicted by the GOE model of the RMT.

The main factors and influences associated with these mode shape sta-
tistics factor discrepancies between the mode shape statistics of random en-
gineering systems and the GOE eigenvector statistics have been the subject
of several academic research studies. In the RMT field, Brody et al (56)
suggested that the GOE mode shapes become asymptotic Gaussian with an
increase in the eigenvector dimension and thus a value of K = 3 is only ex-
pected in the case of very large random matrices. In the elastodynamics field,
the numerical and experimental results obtained in Lobkis’ studies showed
that the natural frequency statistics conform very well with the GOE model,
although some deviations have been identified for the corresponding mode
shapes, (50). Lobkis er al suggested that these mode shape statistics discre-
pancies and low values of K may be associated with the presence of complex
modes. Subsequently, Langley and Brown (18| 13| [1)) investigated the mode
shape statistics of mass-loaded plate systems. The typical values of K found
were significantly lower than the Gaussian value of K = 3. Since the mode
shape components were considered to be fully real numbers, the postulation,
proposed previously by Lobkis et al (50)), that the mode shape statistics factor
will be lowered if the mode shapes are complex, was definitively discarded.

Additionally, Brown in (L) suggested that the establishment of correla-
tions between the same component of different mode shapes may be respon-
sible for the discrepancies observed between the numerical (or experimental)

2"In the present study, the SEA variance predictions based on Poisson model for natural fre-
quency statistics consider that the corresponding mode shapes have sinusoidal statistics, while
those based on GOE model for natural frequency statistics consider that the corresponding mode
shape have Gaussian statistics.
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results and the theoretical variance prediction based on the GOE model, since
the theory assumes statistical independence of the mode shape components
and does not allow for correlations between different mode shapes. In par-
ticularly, in the case of mass-loaded plates, the point masses attached to the
plate surface could make the plate effectively clamped at those point mass
locations and lead to the introduction of significant correlations between dif-
ferent mode shapes at the force position. Indeed, if large amounts of point
masses were placed randomly on the plate, the variance of the energy res-
ponse for a point excitation could under predict the analytical expression due
to this clamping effect.

Recently, Langley and Cotoni (35) investigated numerically the statis-
tical moments of the mode shape amplitudes across an ensemble composed of
very perturbed mass-load plates. The statistical moments of the mode shape
amplitudes across an ensemble were also compared with analytical predicti-
ons based on Gaussian and sinusoidal mode shapes. A value of K = 2.87 was
observed for the mode shape statistics factor associated with the excitation
point across the ensemble. The results suggested that the distribution of the
mode shape components is expected to be almost Gaussian when an ensem-
ble mode shape averaging approach is considered. Considering that the mode
shapes are almost Gaussian, the current value of the mode shape statistics fac-
tor from the numerical analysis of the statistical moments of the mode shape
components was employed in point-loading relative variance formulations.
The adjusted theoretical variance prediction was compared with numerical re-
sults from an ensemble composed of 200 mass-loaded plate members. Again,
the adjusted theoretical variance prediction, surprisingly, over predicted the
numerical results. Additional numerical simulations were performed using
10,000 realizations for four discrete frequencies and the numerical varian-
ces were in closer agreement with variance prediction based on GOE model.
These results indicate that the performance of theoretical variance prediction
is dependent on the size of the ensemble adopted, that is, the ensemble must
include a sufficient number of members to yield realistic results for the energy
response statistics.

Based on the above discussion, several possible reasons for the esta-
blishment of non-Gaussian statistics for the mode shapes of sufficiently ran-
dom systems were identified and further investigations are certainly required
to determine the precise contributions from each mode shape deviation class
to the energy variance results, Gomes (10).
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2.5 Summary and Discussions

In this chapter a brief literature review were carried on the main as-
pects associated with the statistical analysis of natural frequencies and cor-
responding mode shapes of vibroacoustic systems.

Initially, the main concepts of Random Matrix Theory (RMT) applied
to statistical analysis for the natural frequencies of random systems were revi-
ewed. Particular attention was given to descriptions of the statistical charac-
teristics of a particular ensemble composed of large random symmetric ma-
trices known as the Gaussian Orthogonal Ensemble (GOE). As shown in the
literature, the eigenvalue statistics of GOE matrices are expected to be surpri-
singly very similar to the natural frequency statistics of sufficiently random
vibroacoustic systems. The definitions of particular metric functions called
statistical observables were introduced for short and long fluctuation ranges.
These functions shown to be able to describe correctly the typically physical
phenomena expected for the natural frequency spectrum of real engineering
systems, such as level repulsion and spectral rigidity.

Although the excellent results have been founded for the use of RMT
concepts in the statistical analysis of random vibroacoustic systems, some li-
mitations to the direct use of RMT concepts have been identified in studies
carried out with elastodynamical systems. Two classes of non-universal na-
tural frequency statistics deviations were identified: the effects of the finite
wavelengths and the establishment of stable periodic orbits. The main effects
on natural frequency statistics due to the establishment of non-universal ef-
fects were also discussed in terms of the statistical observable results for short
and long fluctuation ranges.

Considering the corresponding mode shapes, a complete characteri-
zation of the universal GOE statistics of mode shapes was performed using
the results for the eigenvector statistical observables. Besides the proposed
analytical predictions presented extensively in RMT literature, the definitions
of the kurtosis metrics and Lilliefors normality test were introduced and their
applications were discussed for statistical mode shape analysis of the vibroa-
coustic systems. The possible kurtosis averaging approaches to evaluation of
the Mode Shape Statistics Factor were reviewed in the SEA context.

Although the universal characteristics of mode shapes are extremely
convenient from an analytical point of view, some non-universal characteris-
tics are observed in the mode shape statistics of random engineering systems.
Therefore, the main possible deviations from universal mode shape statistics
were identified and discussed in the context of vibroacoustic systems. Two
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classes of non-universal mode shape deviations were considered: the esta-
blishment of periodical orbits and the effects of structural localization.

In last section the main aspects associated with SEA variance theory
were discussed. The analytical predictions based on Poisson and GOE mo-
dels for the relative variance of the energy responses across the ensemble
were presented for single subsystem subjected to point-loading and spatially-
averaged excitations. The main details associated with the evaluation of the
spatial factor parameter and its relationship with the joint acceptance func-
tion, which quantifies the degree of harmonization between the mode shapes
and the spatial characteristics of the excitation field, were highlighted. For
the case of single point-loading, the possible reasons for the establishment of
the non-universal characteristics of the mode shapes of random engineering
systems were highlighted and discussed in detail.

In the next chapters, the systematic numerical analysis of random sys-
tems will be carried in order to understand the main practical aspects asso-
ciated with the establishment of universal statistics as well as the resultant
performance of the relative variance predictions based on the complete GOE
model. The main statistical observables reviewed in this chapter will be em-
ployed to verify the agreement of each modal parameter statistics with the
universal statistics described by the GOE model. Additionally, the typical
non-universal characteristics of modal parameters expected from the real ran-
dom engineering systems will be identified and classified. The main impacts
of the non-universal contributions on the performance of the SEA variance
prediction based on a complete GOE model will be investigated in detail.
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3 NUMERICAL ANALYSIS OF RANDOM LONGITUDINAL RODS

3.1 Overview

Although the application of Random Matrix Theory concepts to the
statistical analysis of engineering systems has been the subject of many pu-
blications in recent years, some important questions still remain unclear. The
issue regarding the complete establishment of universal GOE statistics for
modal parameterg | of real engineering systems as well as the validity of er-
godicity concep w are aspects of recent interest and further investigations are
required, Gomes (10).

In this chapter, a complete statistical analysis is performed with ran-
dom one-dimensional structuresﬂ The effects of distinct uncertainty sources
on the modal parameter statistics are investigated through the statistical ob-
servables of Random Matrix Theory (RMT). In this study, the random lon-
gitudinal rods were generated using Finite Element Method (FEM). The dis-
tinct structural irregularities, or uncertainties, were introduced on a nominal
rod structure and different approaches to the uncertainty distribution (rando-
mization approaches) were also considered. In the numerical analysis, the
spectral and ensemble averaging processes were performed for random rod
energy responses. In addition, the main effects of the spatial correlation from
the rod geometry and of the structural localization phenomenon on the modal
parameter statistics were also investigated using the RMT statistical observa-
bles.

Finally, important contributions were obtained regarding the establish-
ment of universal statistics for each one of the modal parameters as well as
for the statistical moments of the kinetic energy density results of random
longitudinal rod structures.

'In the Dynamics field, the system modal parameters comprise the natural frequencies and
the mode shapes (or eigenvalues and eigenvectors, respectively), Meirovitch (221|89).

2The validity of ergodicity concept ensures that there is an equivalence between the theore-
tically calculated ensemble average and the physically more relevant spectral average, Pandey
(108).

3The work presented in this chapter was carried out under the supervision of and with the
collaboration of professors Brian R. Mace and Neil S. Ferguson from the Dynamics Group,
Institute of Sound and Vibration Research (ISVR) at the University of Southampton; Gomes and
Gerges (153); Gomes and Mace (83); Gomes, Mace and Ferguson (154).
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3.2 Longitudinal Rod Characteristics

In order to investigate the universal establishment of GOE statistics
for the modal parameters of random one-dimensional structures, the nume-
rical analysis was performed using longitudinal rods with uncertain or non-
deterninistic parameters and properties. The main reasons for adopting this
class of nominal structure are:

* frequency-constant modal density: the natural frequency spectrum of a
nominal longitudinal rod shows frequency-constant natural frequency
spacings, as well as stationary statistical properties along the frequency
domain, Timoshenko and Young (155). These characteristics are very
convenient for performing direct comparisons between numerical re-
sults and RMT analytical predictions, since the latter are based on the
unitary and frequency-constant eigenvalue spacing mean, Mehta (24).

e sinusoidal mode shapes: the longitudinal mode shapes of the nominal
rod structure are perfectly sinusoidal. Considering sinusoidal eigen-
vector statistics, the available analytical predictions provide a complete
description of the mode shape statistics, Waterhouse (130). In this re-
gard, the sinusoidal analytical predictions are efficient tools to charac-
terize the main effects of the introduction of the uncertainties on the
nominal mode shape statistics.

* low computational cost: since the system analyzed is one-dimensional,
low computational processing skills are required and thus several clas-
ses of uncertainty sources can be easily investigated with low compu-
tational cost.

3.3 Finite Element Model: Longitudinal Rod

In this study, the random rod structures investigated were generated
using the Finite Element Method (FEM), Zienkiewicz (2). The FEM model
characteristics and validation process are described in detail below.

3.3.1 FEM Model Development

For the development of numerical models of random longitudinal rod
structures, the FEM commercial software ANSYS was used, (156, [157). In
the current work, the investigated system comprises a longitudinal cylindrical



3.3 Finite Element Model: Longitudinal Rod 193

rod with uncertain or non-deterministic parameters. The random rod parame-
ters may vary across the ensemble or spatially along its length. In addition,
some random rods investigated also considered small point masses attached to
the rod surface in the randomization process, in order to simulate the possible
irregularities of mass distribution along the rod length, (18) (335).

In order to obtain a good description of the dynamical behavior from
arod structure subjected to a longitudinal loading, the finite element BEAM3
was adopted, (156). This finite element is a uniaxial element with tension,
compression, and bending capabilities. The element has three degrees of fre-
edom at each node: translations in the nodal x and y directions and rotation
about the nodal z - axis.

For the FEM representation of structural point masses, the finite ele-
ment MASS21 was adopted. This element is a point element having up to
six degrees of freedom: translations in the nodal x, y, and z directions and
rotations about the nodal x, y, and z - axes. In Figure [39] a typical example
of a random rod structure investigated in this study is shown. In this FEM
model, 20 small point masses (corresponding to 20% rod mass absent of un-
certainties) are randomly attached onto the rod surface along its length.

¥

Figure 39: An example of the FEM model of a typical random rod investiga-
ted in this study.
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3.3.2 FEM Model Validation

In order to validate the numerical FEM model performance, a direct
comparison was made between the modal parameters obtained from the FEM
model and those evaluated from the analytical predictions for a longitudinal
rod with a circular cross-sectional area; Thomson (158)), and Timoshenko &
Young (155). The FEM model was built considering a nominal rod, the para-
meters of which are absent of uncertainties. In Tables [ and [5] the geometric
dimensions and material properties of the nominal rod are described, respec-
tively.

Table 4: Nominal longitudinal rod: geometric dimensions.

Geometric parameter | Value |

Longitudinal length (L,) 5m
Cross-section diameter (d,) | 1 cm

Table 5: Nominal longitudinal rod: material properties - standard carbon
steel.

| Material property parameters | Value |
Young’s modulus (E),,) 210 G Pa
Poisson ratio (V) 0.3
Density (p) 7860 kg/m>

During the FEM model development, the common rule of 12 finite ele-
ments for the smallest longitudinal wavelength was considered, Zienkiewicz
(2). Additionally, it is important to emphasize that the validity conditions
of the analytical models were also respected for the highest frequency of in-
terest. That is, the smallest longitudinal wavelength is larger than the rod
cross-sectional dimension, Timoshenko and Young (155)).

The free-free boundary condition was considered. The frequency
range considered was from 0 to 50 kHz and the first 100 longitudinal mo-
des were evaluated for both model approaches. In Figure 0] the FEM model
performance is shown in terms of natural frequencies.
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FEM natural fregquencies

Analytical natural frequencies x10°

Figure 40: Natural frequency performance: FEM model results and analytical
predictions.

According to Figure the natural frequency results suggest only
small discrepancies for the high order mode range. In general, the natural
frequency results obtained from the FEM model conform very well with the
analytical predictions. In Figure @1} some longitudinal mode shapes obtained
from the FEM model are compared to those corresponding to the analytical
formulation. The mode shapes are normalized to have unit maximum ampli-

tude.
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Figure 41: Mode shape performance: FEM model results and analytical pre-
dictions. Plots: (a) Mode 05, (b) Mode 25, (c) Mode 36, and (d) Mode 80
(higher order mode - zoom plot).

Similarly to the natural frequency results, the excellent performance
of the FEM model was also confirmed for the corresponding mode shapes.
Indeed, the FEM mode shapes conformed very well with the sinusoidal pre-
dictions.

In summary, based on Figures [40] and 1] in relation to the modal
parameter performance results, it appears that the numerical FEM models are
able to represent adequately the modal parameter statistics for the class of rod
structure investigated herein.

As described, several FEM models were developed in order to investi-
gate the main effects of the uncertainties on the modal parameter statistics as
well as on the statistical moments of the kinetic energy density results obtai-
ned from the distinct natures of external loadings.

3.4 Spectral Averaging Approach

In this section, the main effects of different uncertainty sources are
evaluated through the use of the statistical observables of the Random Matrix
Theory (RMT). The spectral statistics of the modal parameters, natural fre-
quencies and corresponding mode shapes, are evaluated and compared with
analytical predictions obtained using the best known statistical models: Pois-
son statisticﬂ and the statistics of the Gaussian Orthogonal Ensemble (GOE)

4Poisson statistics is also known as random number statistics, Montgomery and Runger
(103).
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of RMT, Mehta (24).

In the following sections, the spectral averaging approach is initially
adopted in the first stage of this study, and statistical analysis of the kine-
tic energy density results was performed in the 1/3-octave frequency band
domain for each random rod structure investigated. Additionally, the relati-
onship between the statistical moments of the kinetic energy density results
and the modal parameter statistics are highlighted and discussed.

In the next subsections, the two main classes of random rod structures
investigated hereafter are described in terms of their uncertainty levels and
sources. The numerical results of the spectral analysis are presented and dis-
cussed in terms of the modal parameter statistics as well as in terms of the
statistical moments of the kinetic energy density results as the random rods
are excited by a single point-loading or spatially-averaged excitation.

3.4.1 Breaking the Geometrical Regularity

The first rod class investigated considers the cross-sectional area of the
circular rod as a random variable along the rod length. The other rod para-
meters: length and material properties, are adopted to be identical to nominal
rod parameters, that is, absent of uncertainties. In this context, it appears that
a breaking of the geometry regularity is obtained as the cross-sectional area
varies sufficiently along the rod length.

In order to evaluate the sensitivity of the statistical moments of the
energy responses to different randomization approaches, distinct probabilistic
distributions are considered for the rod cross-sectional area values (uniform
and normal distributions). Additionally, different randomness (or uncertainty)
levelsﬂ are also considered for each randomization approach. Therefore, seve-
ral FEM models were built with several randomness levels and distinct source
probabilistic distributions. In Table[6] the main characteristics adopted in the
development of the random longitudinal rods investigated hereafter are des-
cribed in detail.

5The randomness levels of the rod cross-sectional area were defined in relation to the nominal
cross-sectional area.
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Table 6: Random rod descriptions - spectral averaging approach: nomencla-
ture, random variable, statistical distribution, and randomness level.

Nomenclature Random variable Statistical Randomness
distribution | level (%)

Nominal Cross-sectional area | Dirac delta | Null
Gaussian (10 %) Cross-sectional area | Gaussian 10

Gaussian (20 %) Cross-sectional area | Gaussian 20

Gaussian (30 %) Cross-sectional area | Gaussian 30

Uniform (10 %) Cross-sectional area | Uniform 10

Uniform (20 %) Cross-sectional area | Uniform 20

3.4.2 Random Point Masses

In order to evaluate the effects of mass distribution irregularities on the
modal parameters and the kinetic energy response statistics, a second class
of random rod structures was also investigated. These random rods were
generated through the attachment of 20 small point masses on the nominal
rod surface.

A uniform spatial distribution is adopted for point mass locations and
mass perturbation levels of 10% and 20% are considered in relation to the
bare nominal rod mass. In this second class of the rod structures, the rod
parameters and properties are considered identical to those of the nominal
rod, that is, with the absence of uncertainties. In Table[/] the descriptions of
the random mass-loaded rods are shown in detail.

Table 7: Descriptions of the random mass-loaded rods - spectral averaging
approach: nomenclature, random variable, statistical distribution, and ran-
domness level.

Nomenclature | Random va- | Statistical Randomness level (%)
riable distribution

Mass (10%) Point mass | Spatially 10 % of bare rod mass
location uniform

Mass (20%) Point mass | Spatially 20 % of bare rod mass
location uniform
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It is import to emphasize that bi-dimensional random mass-loaded
structures similar to ones presented in Table [/| have been commonly adop-
ted in numerical and experimental validations of revised SEA variance pre-
dictions which consider in their derivation the GOE model for both modal
parameter statistics, Langley et al (16, 3, [18} 4, |35} [17) and Cordioli et al.
(19) and Cordioli (20).

In the present work, particular interest is focused on one-dimensional
random mass-loaded structures since, for this particular group of structures,
the establishment of the structural localization phenomenon is expected. As
shown by Hodges et al (140} [139} [151} [159), the structural localization ef-
fects may modify significantly the probabilistic distribution characteristics of
kinetic energy responses of engineering structures, because their effects are
directly associated with the occurrence of energy confinement to certain spa-
tial regions of the structure. In this regard, numerical investigations were
performed in this study in order to establish a consistent relationship between
structural localization effects and the SEA prediction performance.

3.4.3 Spectral Natural Frequency Statistics

In the following sections, the statistical characterizations of the natu-
ral frequencies of random longitudinal rod structures, described in previous
subsections, are performed using the RMT eigenvalue statistical observable
results.

Probability Density Function of Adjacent Natural Frequency Spacings

The first eigenvalue statistical observable evaluated is the Probability
Density Function (PDF) of adjacent natural frequency spacings, which des-
cribes the short-range fluctuation statistics. In Figure the numerical PDF
results for random rods described previously are show% The analytical pre-
dictions: Gaussian (Normal), Poisson (Exponential), and GOE (Rayleigh) are
also plotted. It is important to emphasize that all numerical spacing PDF re-
sults were evaluated from the unfolded spectra where the mean value of the
natural frequency spacings is frequency-constant and unitary.

%The modal parameter statistics of the Uniform (10%) and Mass (10%) rod structures are
evaluated indirectly through the Hamiltonian matrix structural analysis performed in the section

B43
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Figure 42: The unfolded natural frequency spacing PDF results and analyti-
cal predictions: Gaussian (Normal), Poisson (Exponential), and GOE (Ray-
leigh) (spectral averaging approach). Plots: (a) Nominal, (b) Uniform (20%),
(c) Mass (20%), (d) Gaussian (10%), (e) Gaussian (20%), and (f) Gaussian
(30%).
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As shown in Figure (a), the spacing PDF result for the nominal
rod has a curve pattern similar to Delta Dirac (pulse) function. Indeed, as
expected for the nominal rod structure, the natural frequency spacings are
practically frequency-constant, Timoshenko and Young (153).

As shown in Figures 2] (b) - (f), the numerical PDF results suggest
the establishment of the high spectral rigidity characteristics in the natural
frequency spectra for all random rods investigated. That is, a large probability
associated with the occurrence of unitary natural frequency spacings is clearly
observed, regardless of the uncertainty sources and levels.

As the randomness level increases, the spectral spacing statistics of
the nominal unfolded natural frequencies, which is similar to Dirac Delta
distribution, are significantly perturbed and disordered statistics are clearly
established for the random rods with a high level of randomness. As obser-
ved in Figure [42] the intermediate distribution similar to those of the Normal
and Rayleigh cases (Gaussian and GOE statistics, respectively) are expected
during the statistical transition process from nominal to disordered statistics.
A good example of this statistical transition process is observed in the random
Gaussian rods as the randomness level increases in a gradual manner.

Natural Frequency Correlation Coefficient

In order to assess the spectral correlations between the natural frequen-
cies, the eigenvalue correlation coeﬁ‘icienﬂ was evaluated for each one of the
random rods investigated, Brody et al (56)).

The definition of the natural frequency correlation coefficient is given
by:

E[(zi —7) (zi+a —72)]
E [(Zi —Z)Z}

where z; is the ith unfolded spacing, 7 is the spectral spacing mean value,
and A is the number of spacings between values. For GOE eigenvalues, this
correlation coefficient has been evaluated to be C; (A) = —0.271 for A =1,
Brody et al (56)).

According to Langley and Brown (1} [18), the natural frequency cor-
relation has significant influence on the energy response variance in the SEA
context. The natural frequency correlation reduces the response variance,

G(A)=

, 3.1

"The eigenvalue correlation coefficient is also known as the correlation function of the natural
frequency spacings, Brody et al (56).
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since larger fluctuations in the kinetic energy density results arise when there
is a succession of small or large natural frequency spacings. Additionally, it is
also expected that natural frequency correlation effects become more relevant
as the modal overlap increases.

The natural frequency correlation coefficient results are shown in Fi-
gure The correlation coefficient results computed for the eigenvalues of
large random matrices with GOE and Poisson statistics are also plotted, Go-
mes and Gerges (101).

In Figure 3] (a), the nominal rod results suggest a high correlation le-
vel between the natural frequencies even for large spectral natural frequency
distances. On the other hand, the eigenvalues from the large GOE and Poisson
random matrices shown almost-null correlation coefficient values for most of
spacing numbers (A), suggesting the establishment of spectral rigidity cha-
racteristics lower than those displayed by the natural frequencies of nominal
rod¥]

As shown in Figures 3] (b) - (f), the presence of uncertainties leads to
a significant reduction in the spectral natural frequency correlation for all ran-
dom rods investigated. Indeed, it is also relevant to observe that all random
rod results showed negative values for unitary spacing (A = 1), suggesting
the establishment of the level repulsion phenomenon for natural frequencies.
On the other hand, the presence of small discrete peaks is observed for large
spectral distances, showing some residual high spectral rigidity characteris-
tics which are associated with the expected spectral characteristics of the no-
minal rod.

8More details on the physical interpretation of the correlation coefficient results for random
dynamical systems are available on Langley and Brown (18) and Brown (1)).
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Figure 43: Correlation coefficient of the natural frequency spacings: the ran-
dom rod results are compared to the eigenvalue correlation function results of
the dim (500*500) GOE and Poisson matrices (spectral averaging approach).
Plots: (a) Nominal, (b) Uniform (20%), (c) Mass (20%), (d) Gaussian (10%),
(e) Gaussian (20%), and (f) Gaussian (30%).
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Number Variance and As-statistics

The measure functions of the long-range fluctuation statistics used tra-
ditionally in the random matrix literature are the number variance and the
As-statistics, Mehta (24). In Figure 44] the number variance results for the
nominal and random longitudinal rods are compared to the GOE and Poisson
model predictions.

For the nominal rod, it is expected that number variance values are
null for integer spectral natural frequency spacings, Weaver (64). As shown in
Figure[d4](a), the number variance results comply with this hypothesis mainly
in the small spacing range, but some small discrepancies are clearly observed
in the large spacing range. In fact, it appears that these small disagreements
are due to slightly reduced FEM model performance associated with the high-
frequency range.
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Figure 44: The number variance results for the nominal and random rods, and
GOE and Poisson analytical predictions (spectral averaging approach). Plots:
(a) Nominal, (b) Uniform (20%), (c) Mass (20%), (d) Gaussian (10%), (e)
Gaussian (20%), and (f) Gaussian (30%).

On the other hand, for random rod structures, Figures @] (b) - (), the
uncertainty effects reduce the spectral rigidity characteristics and lead to an
increase in the number variance values. The number variance results suggest
different levels of spectral rigidity characteristics for each one of the randomi-
zation approaches investigated. In general, as the uncertainty level increases,
there is a strong tendency for the establishment of statistics described by the
GOE model. This tendency is observed in the number variance results for the
Mass (20%) and Gaussian (30%) random rod structures, Figures [#4] (c) and
(), respectively. Although the uncertainty sources of these rod structures are
completely distinct, their spectral natural frequency statistics are very similar
and show approximately GOE natural frequency statistics. In Figure the
As-statistics results for the nominal and random rods are displayed.
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sian (10%), (e) Gaussian (20%), and (f) Gaussian (30%).
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According to Figures (a) - (b) and (d), the As-statistics results
for the nominal and random rod structures with a low level of randomness
showed an almost constant value throughout the natural frequency spacing
domain. Indeed, this global pattern for the Az - statistics results occurs due
to significant spectral rigidity characteristics associated with this particular
group of structures. For Uniform (20%) and Gaussian (10%) random rods,
the As - statistics results suggest a small and uniform reduction in the spec-
tral rigidity characteristics throughout the natural frequency spacing domain,
that is, uniform and slightly increasing of Ajz - statistics values. Therefore,
it appears that the increase in the randomness level leads to a transition from
high spectral rigidity statistics to GOE statistics in Figures 3] (d) - (f). The
results for the Gaussian rod structures suggest that the reduction in the spec-
tral rigidity characteristics begins at large spectral natural frequency distances
(long-range fluctuation) and continues until small spectral natural frequency
distances (short-range fluctuation). Similarly to the number variance results,
the Asz- statistics results for the Mass (20%) and Gaussian (30%) random rods
also show a certain level of universal characteristics and conform well with
the GOE analytical predictions, Figures 5] (c) and (f), respectively.

Although the A3 - statistics function is successfully applied to the spec-
tral analysis of random systems with distinct natures, some relevant issues
must be highlighted regarding the performance of its use to characterize the
spectral natural frequency statistics.

Considering the natural frequency statistics results for the Gaussian
(30%) and Mass (20%) random rods, an excellent agreement with the analy-
tical prediction based on the GOE model is observed for A; - statistics as
well as the number variance results. However, the corresponding natural fre-
quency statistics results for the statistical observables for short-range fluctu-
ation, the spacing PDF and natural frequency correlation coefficient, shown
high spectral rigidity characteristics for the small natural frequency spacing
range, Figures[#2]and [43] respectively. In other words, the short-range fluctu-
ation statistics results for both random rods showed a high probability for the
natural frequency spacings to be close to unitary magnitude (expected mean
value of the nominal unfolded natural frequency spacings). Thus, it appears
that the spectral natural frequency statistics for these random rods do not con-
form completely with the universal statistics described by the GOE model
and that they have system-dependent characteristics.

It is important to emphasize that the long-range fluctuation statistical
observables, the A3 - statistics and number variance 2, provide the averaged
results in the natural frequency domain and they can opportunely mask natu-
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ral frequency statistics characteristics associated with a particular range of the
natural frequency domain. In conclusion, from the previous discussion arises
a relevant observation: the natural frequency statistics from any random sys-
tem is only correctly characterized when all results from several eigenvalue
statistical observables are analyzed together and compared to each other, re-
gardless of their individual performance in the characterization of the spectral
natural frequency statistics.

3.4.4 Spatial and Spectral Mode Shape Statistics

In addition to the natural frequency analysis, a statistical investigation
of the corresponding mode shapes of the nominal and random rod structures
was also carried out. The best known eigenvector statistical observables of
RMT were evaluated and their results were compared with analytical predic-
tions, GOE (Gaussian) and sinusoidal mode shape statistics.

Spatial Kurtosis

In the current analysis, the kurtosisﬂ is defined as the ratio of the fourth
statistical moment of the eigenvector components to the square of second one,
Montgomery and Runger (103). According to Gomes and Gerges (101} 93)),
Lyon’s mode shape statistic factor can be also understood as spatial kurto-
sis, since a spatial averaging approach is adopted in the evaluation of eigen-
vector component statistical moments. In other words, the evaluation of the
eigenvector component statistical moments for each eigenvector mode order
is performed along the eigenvector components (i.e., spatial domain of sys-
tem). Therefore, in order to emphasize the averaging approach adopted in the
kurtosis parameter evaluation, the nomenclature of spatial kurtosis will be in-
tentionally adopted herein for Lyon’s Mode Shape Statistics Factor. In Figure
M6 the spatial kurtosis results are shown for each rod structure investigated.

9The kurtosis is a metric parameter reflecting whether the data are peaked or flat relative to
a normal distribution. That is, data sets with high kurtosis tend to have a distinct peak near the
mean, decline rather rapidly, and have heavy tails. Data sets with low kurtosis tend to have a flat
top near the mean rather than a sharp peak. A uniform distribution would be considered as the
extreme case, Montgomery and Runger (103)).
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Figure 46: Lyon’s Mode Shape Statistics Factor or spatial kurtosis results for
the nominal and random rods (spatial averaging approach). Plots: (a) Nomi-
nal, (b) Uniform (20%), (c) Mass (20%), (d) Gaussian (10%), (e) Gaussian
(20%), and (f) Gaussian (30%).

According to Figure 6] (a), the nominal rod spatial kurtosis results
suggest that the mode shapes are perfectly sinusoidal. For spatial kurtosis
results for the random rods, Figures [46] (b) - (f), distinct intensities of the
randomness effects in the mode order domain are clearly observed for each
of random rods investigated.

For almost all of the random rods, small deviations in comparison to
the nominal mode shape statistics occurs for the low-frequency range (or low
mode order range). As expected, the large randomness effects are observed
in the mid and high-frequency ranges for all random rods investigated.

Overall, the random rod spatial kurtosis results suggest that as the
mode order (or excitation frequency) increases, a mode shape statistics tran-
sition occurs from almost sinusoidal statistics to disordered statistics. For di-
sordered mode shape statistics, the spectral mean values of the spatial kurtosis
results for the random rods are larger than the sinusoidal and GOE predicted
values.

As observed in Figure [46] the spatial kurtosis results for the random
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rods show a high level of dispersion around the global spectral tendency, and
the degree of spatial kurtosis variability becomes more intense as the excita-
tion frequency (mode order) or the randomness level increases.

In the current analysis, the spatial kurtosis results for the Gaussian
random rods show a typical example of the effects of the different randomness
levels on the mode shape statistics. Considering a fixed frequency range, for
example, around the 70¢2 mode order vicinities, the spatial kurtosis results
for the Gaussian (10%) random rod show a smooth curve with values close
to K ~ 2.00. For the Gaussian (20%) random rod, the spatial kurtosis results
vary moderately between 3 < K < 5. On the other hand, for the Gaussian
(30%) random rod, the spatial kurtosis results vary considerately between 5 <
K < 10. Indeed, for the Gaussian rod structures, as the level of randomness
increases for a fixed frequency range, a simultaneous increase in the spatial
kurtosis values and in their spectral variability is expected due to the gradual
establishment of the structural localization effects on the mode shapes.

Besides investigating the kurtosis magnitudes, it is also relevant to
analyze the spatial kurtosis distribution in the mode order domain, Gomes
and Gerges (101). According to Pradhan and Sridhar (73} [123|[74), a perfect
Dirac delta function for the spatial kurtosis distribution centered at K9OF =3
is no longer expected for a classically chaotic engineering system due to the
finite system dimension effects. In Figure[47] the spatial kurtosis PDF results
are presented for each of the Gaussian random rods. Additionally, the non-
linear sigma model expressions from the supersymmetry theory for the expo-
nential decay law of spatial kurtosis (or Inverse Participation Ratio) values,
Equation (2.59), are also plotted (linear and logarithmic plots, respectively).
The dimensionless conductivity (g) and the normalization constant (C;) va-
lues from the fitting processes are: g = 10 and C> = 8.10* for Gaussian (10%)
rod, g = 0.8 and C; = 60 for Gaussian (20%) rod and, g = 0.28 and C; =75
for Gaussian (30%) rod.
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Figure 47: PDFs of spatial kurtosis from the Gaussian random rods (spatial
averaging approach). Plots: (a) Gaussian (10%), (b) Gaussian (20%), and (c)
Gaussian (30%).

As shown in Figure 7] for all Gaussian random rods, the spatial kur-
tosis PDF results suggest a large PDF kurtosis amplitude for kurtosis values
close to the nominal value. In fact, the patterns of these PDF results may be
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directly associated with the poor performance of the randomization proces-
ses in the low-frequency range (or low mode order range). Considering the
results for the Gaussian random rods, it can be noted that the increase in the
randomness level leads to an increase in the PDF kurtosis amplitudes asso-
ciated with large spatial kurtosis values. In fact, none of the spatial kurtosis
PDF results show a tendency toward a Gaussian distribution and their spectral
mean or probabilistic mode values are very distinct from the kurtosis value
expected for the GOE model. Similarly to the main conclusions drawn from
the previous analysis of the spatial kurtosis values, the patterns of the spatial
kurtosis PDF results also confirm that the performance of the randomization
process is not homogeneous over the frequency domain for all Gaussian ran-
dom rods.

In the Statistics field, a distribution with large kurtosis values is called
leptokurtic, or leptokurtotic. In terms of distribution shape, a leptokurtic dis-
tribution has a more acute peak around the mean value{ﬂ For the mode shapes
with large spatial kurtosis values it is expected that most of their mode shape
components have amplitudes close to the probabilistic mode value and only a
small number of mode shape components have large amplitudes beyond the
probabilistic mode value. Therefore, these distribution characteristics suggest
the existence of large localized mode shape component amplitudes confined
to a particular (or spatially limited) region of Gaussian random rods. It is also
important to note that these effects are very similar to those of the structural
localization phenomenon, Hodges et al (139).

Considering again the spatial kurtosis results for the Mass (20%) ran-
dom rod, Figure 6] (c), a similar conclusion regarding the effects of an incre-
ase in uncertainty level on the mode shape statistics can be also extended to
the effects of an increase in excitation frequency on the mode shape statistics
of a structure with a fixed randomness level. Indeed, the Mass (20%) spatial
kurtosis results suggest that the effects of randomness on the low-frequency
range are almost negligible and the spatial kurtosis values are very similar
to the kurtosis value predicted for sinusoidal mode shapes (i.e., nominal kur-
tosis value). As the excitation frequency (or the mode order) increases, the
pattern of spatial kurtosis curve becomes gradually discontinuous (looks like
a zigzag) and dispersed.

As shown in the previous spatial kurtosis analysis for all random rods,
there is an evident tendency toward the establishment of large kurtosis va-
lues in the mid and high mode order ranges. For almost-periodic structures,
large values for the spatial kurtosis can be easily associated with the struc-

10 For most practical distributions, the mean value is equal to the probabilistic mode value.
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tural localization phenomenon, Hodges et al (139,[151). A similar tendency
has been established for disordered billiard systems in the Quantum Physics
field, (71, 100, [120). In such studies, the localized wave function amplitudes
occur in a certain region of the microwave cavity due to energy confinement
provided by small tiles (disorder or irregularity).

Considering the Mass and Gaussian random rods, they may be con-
sidered possible candidates for the establishment of structural localization
effects, (140, [139.[159). In Figures [46] (c) and (f), the results for the Mass
(20%) and Gaussian (30%) random rods showed the large spatial kurtosis va-
lues as well as a high dispersion around the spectral mean value mainly in
the high mode order range. Although, this global pattern of results is very
similar to those observed for the disordered billiard systems, it is important to
emphasize that there is no evident reasons to affirm that the predictions from
the supersymmetry models valid for quantum nuclear or billiard systems can
be directly extended to the random dynamical structures.

Considering the spatial kurtosis PDF results for the Gaussian (20%
and 30%) rods, the Figures (b) and (c), a satisfactory performance of
the non-linear sigma model expression is observed mainly in the kurtosis
range associated with weak and moderate localization characteristics, that
is 3.5 S K <9. At the tail of the kurtosis distribution, a dispersion of kurto-
sis PDF around the fitted non-linear sigma model expression is clearly noted.
Indeed, it is also important to emphasize that the spatial kurtosis values asso-
ciated with the tail kurtosis distribution have strong and extremely strong lo-
calization characteristics, being strictly sensitive to system-dependent effects.
For the Gaussian (10%) rod, as discussed previously, the localization cha-
racteristics are only established for a small number of mode shapes and thus
it is expected that the non-linear sigma model expression is no longer valid.
However, the non-linear sigma model expression was fitted to the numerical
kurtosis results, Figure 47| (a). The fitted non-linear sigma model expression
showed good versatility and performance in describing the exponential decay
law as the spatial kurtosis value increases.

Although the Universality concept states that the modal parameter
statistics (inclusive mode shape statistics) tends asymptotically to be inde-
pendent of uncertainty sources and converge to the GOE model, the current
spatial kurtosis results did not confirm this universal tendency for the fre-
quency range investigated. For all random rods investigated, their spatial
kurtosis results showed distinct high-frequency asymptotic tendencies and
their asymptotic values did not conform well to the GOE predicted value.
Indeed, the relevant non-universal mode shape characteristics were identified
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for all of the random rods investigated, since their mode shape statistics seem
to have structural localization characteristics, showing system-dependent ef-
fects, Bertelsen et al (90}, 166).

Spatial Lilliefors Test

In order to evaluate the agreement between the mode shape statistics of
the random rods and GOE statistics, the Lilliefors Test was also adopted, since
the Gaussian distribution is expected for the GOE eigenvector components,
Mehta (24). The Lilliefors Test is able to identify the particular frequency
range (or mode order range) in which the mode shape statistics are almost-
Gaussian (GOE), Montgomery and Runger (103). In Figure the spatial
Lilliefors Test results are shown for all rods investigated.

According to Figure 48] the spatial Lilliefors Test results from all ran-
dom rods show that the Gaussian distribution hypothesis is rejected for the
mode shape components in the low mode order range. For this range, the
mode shapes are weakly affected by randomness effects and their component
distributions are similar to those expected for the sinusoidal mode shapes.

However, as the excitation frequency or randomness level increases,
a statistical transition occurs initially from almost-nominal to GOE statis-
tics. Thus, the establishment of almost-Gaussian mode shapes (or GOE mode
shape statistics) occurs in a particular limited frequency region (or mode or-
der) for each of the random rod structures investigated.
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Figure 48: The spatial Lilliefors Test results for the nominal and random
rods (spatial averaging approach). Plots: (a) Nominal, (b) Uniform (20%),
(c) Mass (20%), (d) Gaussian (10%), (e) Gaussian (20%), and (f) Gaussian
(30%).

For the high mode order range, beyond the Gaussian mode shape re-
gion, the spatial Lilliefors Test results showed that the spatial distribution of
the mode shape components is no longer Gaussian and the Gaussian distribu-
tion hypothesis is again rejected for the mode shape components. Based on
the previous and current eigenvector statistical observable results, it appears
that these mode shapes might establish the structural localization phenome-
non in the high mode order range. Indeed, this fact once again upholds the
evidence that the mode shape statistics have non-universal characteristics in
the high-frequency range for random rod structures.

Overall, the spatial Lilliefors Test results in the mode order domain
suggest three well defined patterns for the spatial mode shape statistics:
almost-nominal statistics, almost-GOE statistics, and structural localized
statistics, respectively.

Porter-Thomas Distribution

In the RMT context, the one of the best known eigenvector statis-
tical observables is the Porter-Thomas distribution, also known as the PT-
distribution, kudrolli et al. (71)). This metrics is based on the distribution of
normalized squared mode shape amplitudes (to have unit mean value), and
its application is commonly used to verify the agreement between the ran-
dom system eigenvector statistics and the GOE eigenvector statistics, Brody
et al (56). In addition, the PT-distribution results also allow the identification
of the deviation classes of a particular mode shape statistics in comparison
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to the expected universal GOE mode shape statistics. In other words, it is
possible to identify correctly the sources (or their class) of eigenvector de-
viation which lead to non-universal behavior in the mode shape statistics,
119, 72} [160} [74). In the RMT context, the main physical phenomena as-
sociated with non-universal mode shape statistics can be classified into two
major classes: periodical orbits (presence of geometrical symmetries) and
structural localization (spatial confinement of energy). In Figure 9] the PT-
distribution results are shown for the nominal and random longitudinal rods
investigated.

For the nominal rod, the mode shapes are perfect sinusoidal functions
and the PT-distribution results are very similar for all mode shapes in the fre-
quency range investigated, Figure [49] (a). In addition, it can be noted that,
for all nominal mode shapes, the normalized squared amplitudes are less than
2 and the PT-distributions have a well defined pattern. Indeed, for the no-
minal longitudinal rod, the mode shapes are written as ¢ (x) = A,sin(x) and
thus (¢2) = 4 and max (¢) = A2. For the normalized squared mode shape

2
amplitude z4 = <ﬁ§> , and max (z4) = 2 as observed in Figure a).
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Figure 49: PT-distribution results for the nominal and random rods and GOE
predictions (Gaussian mode shapes) (spatial averaging approach). Plots: (a)
Nominal, (b) Uniform (20%), (c) Mass (20%), (d) Gaussian (10%), (e) Gaus-
sian (20%), and (f) Gaussian (30%).

For all random rods investigated, the PT-distribution results suggest a
partial elevation of tail distribution for some higher mode orders. This cha-
racteristic traditionally occurs due to the establishment of a certain degree of
structural localization of the mode shapes, (71, [73)).

For the low order mode shapes, the randomness effects are almost ne-
gligible and it is expected that their PT-distribution results are very similar to
the nominal results. In contrast, as the frequency increases the structural irre-
gularities lead to the establishment of structural localization associated with
the high probability of large normalized mode shape amplitudes. As shown
in Figures |Zf;9| (b) - (c), the PT-distribution results allow the identification of
the different levels of non-universal characteristics as well as the effects of
the different randomization processes (or distinct randomness sources) on the
mode shape statistics.

Nevertheless, it is also important to emphasize that the large norma-
lized squared mode shape amplitudes are very sensitive to system-dependent
effects and thus they become a key point in the checking process of the uni-
versal establishment of GOE mode shape statistics. In Figures @l ) - ),
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the PT-distribution results suggest that the increase in randomness level rein-
forces the structural localization effects since the tail distribution becomes
thicker and the occurrence of large normalized mode shape amplitudes is ex-
pected.

Spatial PDF of Mode Shape Components

In this study, a detailed analysis was performed with some particu-
lar mode shapes from each random rod structure in order to investigate the
establishment of the universal GOE statistics and structural localization cha-
racteristics (non-universal effects). Due to the large amount of data obtained
in this analysis and the high similarity of some results obtained, only the most
relevant results will be shown below. Based on complete set of results, it ap-
pears that the mode shape statistical results for the Gaussian (30%) random
rod are very representative and demonstrate the most relevant physical phe-
nomena of all of the random rods investigated, Gomes (84).

The statistical characteristics of the three major classes of mode shape
statistics will be presented in detail below. These main mode shape statisti-
cal classes are: almost-nominal (sinusoidal), almost-GOE (or Gaussian), and
structural localized statistics.

In Table [§] the statistical characteristics of the Gaussian (30%) mode
shapes investigated in this section are presented in detail. These pre-selected
mode shapes are representative samples of each mode shape statistics class.
Additionally, some mode shapes are also considered in order to investigate
the statistical transition characteristics between the well-defined mode shape
statistics classes.

In Figure 50} the spatial representation of mode shape amplitudes, the
PDF of mode shape components, and the PT-distribution results are presen-
ted for some pre-selected mode shapes of the Gaussian (30%) random rod.
The analytical predictions for sinusoidal and Gaussian mode shape statistics
are also compared to numerical results. Additionally, the performance of the
PT-distribution based on the non-linear sigma model expressions of the su-
persymmetry, Equations (2.53) and (2.55), are verified for the mode shapes
with weak and strong localization characteristics.
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Table 8: Mode shapes investigated: subfigure, mode order, spatial kurtosis,
and mode shape statistics.

Sub-figure Mode Spatial Mode shape statistics
order kurtosis
(K)
Figure[50](a) 05 1.498 almost-nominal
Figure [50|(b) 20 2.182 nominal - Gaussian
o transition
Figure[50](c) 26 2.773 almost-Gaussian
Figure [50[(d) 35 2.786 almost-Gaussian
Figure[50|(e) 39 3.759 Gaussian - localized
o transition
Figure [50] () 72 13.024 structural localized
Figure[50|(g) 93 24.492 structural localized

Normalized Amplitude

2 3
Length [m]

(a1) Mode 05: almost-nominal
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Figure 50: Examples of the main three classes of mode shape statistics:
almost-nominal (sinusoidal), almost-GOE (or Gaussian), and structural loca-
lized statistics (spatial averaging approach). The Gaussian (30%) numerical
results (for pre-selected mode shapes) and analytical prediction (sinusoidal
and Gaussian statistics).
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As shown in Figure [50] the three distinct statistics classes and their
transitions are easily identified in the mode shape analysis of the Gaussian
(30%) random rod. These numerical results illustrate the effects of the pre-
sence of randomness on the mode shape statistics and the statistical mode
shape characteristics as the excitation frequency increases.

For the low mode order range (or low-frequency range), small deviati-
ons are observed in comparison to nominal mode shape statistics and thus the
Waterhouse PDF analytical prediction for one-dimensional sinusoidal mode
shapes, Equation (2.26), conforms well with numerical results, Figure [50] (a).

For modes 26 and 35; Figures [50] (c) and (d), respectively; a good
agreement was obtained between the numerical results and the GOE analy-
tical prediction which states that the GOE mode shapes are statistically in-
dependent and their eigenvector components have an asymptotic Gaussian
distribution.

For the high mode order range (or high-frequency range), the confine-
ment of large mode shape amplitudes to a particular rod region characterizes
the establishment of the structural localization phenomenon. That is, the
PDF of localized mode shape components shows a high probability for mode
shape component amplitudes closer to the mean value and a low probability
for eigenvector amplitudes larger or smaller than the mean value. Additio-
nally, the PT-distribution results for such localized mode shapes show large
magnitudes for the tail region of the distribution, that is, large mode shape
component amplitudes are expected in comparison with the PT-distribution
of the universal GOE mode shapes. In Figures [50] (f) and (g), examples of
moderate and strong structural localization degrees are presented in terms of
the PT-distribution for the mode shapes 72 and 93, respectively.

Although it is not discussed above in detail, an intermediate or transi-
tory statistical behavior occurs between the well-defined mode shape statistics
classes. Indeed, two main transitory statistics are: nominal to almost-GOE
transition, Figure [3_0] (b) - Mode 20, and almost-Gaussian to localized transi-
tion, Figure [50] (e) - Mode 39.

Considering the performance of the PT-distribution expressions based
on the non-linear sigma model for weakly and strongly localized mode sha-
pes, a good performance of the weak localization expression is observed to
describe the small perturbations due to incipient localization effects, Mode
39 - Figure [50| (e). For strongly localized mode shapes, a normalization
constant (Cpr) was introduced into the non-linear sigma model expression
in order to improve the fit. Indeed, satisfactory performance of the modified
PT-distribution expression based on the non-linear sigma model is verified
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for strong localization regime, Figure [50] (f). However, some small discre-
pancies are also observed in the large mode shape amplitude range where the
PT-distribution results are sensitive to small changes in the system-dependent
contributions.

For extremely localized regime, as the case of mode 93, extremely
large values occur in the PT-distribution curve for the large mode shape ampli-
tude range. Although the PT-distribution expression based on the non-linear
sigma model is not expected to be valid for the extremely localized regime,
a satisfactory performance is surprisingly observed in Figure[50](g), showing
its capacity to describe the effects of the non-universal perturbations on the
Gaussian PT-distribution curve.

Spectral Kurtosis

Although the Lyon’s Mode Shape Statistics Factor (or spatial kurto-
sis) considers the spatial averaging approach for each mode shape (i.e., an
averaging process over the mode shape component domain), the relevant sta-
tistical mode shape characteristics are also obtained when the mode shape
statistical moments are evaluated for a fixed mode shape component across
the frequency domain (or mode order domain), that is, the spectral averaging
approach is adopted, Gomes and Gerges (101). The relevance of the spectral
kurtosis analysis arises from the fact that the kinetic energy density evalua-
tion for a system subjected to a single point-loading is partially dependent on
the mode shape component amplitudes at excitation point. Thus, a statistical
investigation of the amplitudes of a fixed mode shape component associated
with forcing point is essential, in order to provide a detailed understanding of
the system energy statistical characteristics.

In the revised theory of SEA variance, the GOE statistics model is
adopted for both system modal parameters, Langley et al (18, 13). Therefore,
it is expected that mode shapes are statistically independent and the mode
shape component distribution is asymptotically Gaussian, that is, the mode
shape components are considered uncorrelated Gaussian variables.

In the current analysis, the kurtosis value associated with each mode
shape component, here referred to as spectral kurtosis, was evaluated for all
rod structures investigated in order to verify compliance with the assumption
of sinusoidal and GOE (or Gaussian) mode shape statistics. In Figure[51] the
spectral kurtosis results are shown for all rods investigated.
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Figure 51: Spectral kurtosis results for the nominal and random rods and
analytical predictions, GOE and sinusoidal statistics (spectral averaging ap-
proach). Plots: (a) Nominal, (b) Uniform (20%), (c) Mass (20%), (d) Gaus-
sian (10%), (e) Gaussian (20%), and (f) Gaussian (30%).



250 3 Numerical Analysis of Random Longitudinal Rods

According to Figure|51] the nominal spectral kurtosis results conform
very well to the sinusoidal analytical predictions and to the spatial kurtosis
results obtained in previous spatial kurtosis analysis. In this regard, the nomi-
nal rod results suggest that the sinusoidal mode shape statistics are practically
ergodic in terms of the spatial and spectral average statistics being equivalent,
Lyon (48)).

For the random rods, the randomness effects are relevant and large
spectral kurtosis values are observed for the rod regions closer to the rod end
vicinities. In a similar way to the spatial kurtosis results, the spectral kurto-
sis results also evidence the non-universal characteristics of the mode shapes
of the random rods investigated. In most of the mode shape components,
the spectral kurtosis values are distinct from the kurtosis value associated
with a perfect Gaussian distribution, suggesting the existence of correlations
between the same component of different mode shapes for all of the random
rod structures investigated. According to Langley er al (18 [35), the corre-
lation between the different mode shapes at the force point may be the main
reason for the reduced performance associated with revised SEA variance the-
ory based on the GOE model, which does not allow the existence of spectral
correlations between the force point component of different mode shapes.

Based on the spectral kurtosis results, it can be suggested that most of
mode shape components present spectral or inter-modal correlations and can
not be considered to have asymptotic uncorrelated characteristics. However,
it is important to emphasize that the spectral kurtosis results only provide
an indirect analysis regarding mode shape component correlations and it is
not possible to establish a direct or linear relationship between the spectral
kurtosis values and the spectral correlation level of different mode shapes at
a fixed mode shape component, Gomes and Gerges (101)).

Although it was not investigated here, for the case of the highest fre-
quency range, it appears that the mode shapes may show asymptotically well
established statistics. Considering the extreme condition where the longi-
tudinal wavelength is smaller than the structural irregularity span, the rod
becomes effectively clamped at the structural irregularity locations. There-
fore, independent sets of modes with similar statistics can exist in the vari-
ous sections between the structural irregularities. According to Brown (1)
and Bertelsen (90, [66), an asymptotic exponential PDF is expected for the
natural frequency spacings, since the sum of a large number of statistically
independent sets of random variables has an exponential PDF. However, a
similar conclusion can not be directly extended to the corresponding mode
shapes due to their system-dependent characteristics. In this regard, further
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investigations are necessary in order to clarify the establishment of possible
asymptotic mode shape statistics toward the high-frequency region.

3.4.5 Analysis of Hamiltonian Matrix Structures

In order to understand the effects of uncertainties on the structure of
mass and stiffness matrices, an analysis was performed in relation to the ma-
trix characteristics of the nominal rod structure. The current matrix analysis
is performed in terms of the Hamiltonian matrix which is defined as a com-
bination of the mass and stiffness matrices. According to Brown (1)), the
Hamiltonian (H) is the matrix operator which is given by:

H=M'K. (3.2)

In Figure[52} the Hamiltonian matrices are shown for the nominal and
Gaussian random rods investigated. The magnitudes of the Hamiltonian ele-
ments are presented in terms of the absolute values. In order to visualize the
randomness effects in the Hamiltonian matrix structure, the absolute differen-
ces between the Hamiltonian elements of the nominal and each of the random
rod structures are also presented.

(a)
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Figure 52: Hamiltonian matrix patterns of the nominal and Gaussian random
rod structures. Plots: (a) Nominal Hamiltonian Matrix - 3D view, (b)-(d)
Hamiltonians of nominal structure; Gaussian structures (10%, 20%, and 30%,
respectively); and Hamiltonian differences. The Hamiltonian elements are
shown in terms of the absolute values.
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As shown in Figure (a), the Hamiltonian matrix structure of the
nominal rod structure does not clearly have the band-matrix characteristics.
Additionally, the large absolute magnitudes are observed for diagonal matrix
elements.

In relation to Figures [52] (b) - (d), the changes in the magnitude of
the Hamiltonian elements occur gradually from the corner to the center of
matrix operator and the patterns are similar for all Gaussian random rods
investigated. Regarding the changes in the magnitude of the Hamiltonian
element, it can be noted that the relationship between the randomness level of
the random rod structures and the changes in the magnitude of Hamiltonian
elements is not linear.

In Figure[53] the Hamiltonian results are shown for random rod struc-
tures which consider a Uniform distribution for the cross-sectional area values
during the randomization process.

The results for the Uniform random rod structures do not suggest a
clear tendency for changes in the magnitude of the nominal Hamiltonian ma-
trix structure. Both results for the Uniform rods showed distinct ranges for
the changes in the amplitude of Hamiltonian elements as well as different pat-
terns for the changes in the Hamiltonian matrix structure due to the presence
of randomness.

In Figure 54] the Hamiltonian results are shown for each one of the
mass-loaded random rod structures. The results for the mass-loaded random
rod structures show explicitly that the perturbed Hamiltonian structure is very
similar to the nominal Hamiltonian structure. It is important to emphasize that
this randomization approach is traditionally applied to induce the universal
establishment of GOE statistics, Langley er al (16} |3, 18 4} 35).

As shown previously in the natural frequency analysis, the spectral na-
tural frequency statistics of this class of random rod structure presents a high
level of GOE statistics in comparison to other random rod structures. Howe-
ver, the Hamiltonian structures of mass-loaded rod structures seems to be,
surprisingly, almost absent of magnitude changes in the Hamiltonian matrix
elements. This suggests that the modifications in the Hamiltonian structure
do not have a direct relationship with the universal establishment of GOE
statistics for the modal parameters.
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Figure 53: Hamiltonian patterns of the nominal and Uniform random rod
structures. Plots: (a) - (b) Nominal structure; Uniform structures (10% and
20%, respectively); and Hamiltonian differences. The Hamiltonian elements
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Although not shown in detail, it is also important to emphasize that the
number of non-zero matrix elements did not change for the stiffness and mass
matrices of all random rod structures investigated when randomness was in-
serted in the nominal rod structure, Gomes (84). However, it is not clear
how the small changes in matrix element magnitudes due to point mass un-
certainties led to modifications in the level of coupling between Hamiltonian
elements and in the modal parameters, natural frequencies and mode shapes,
for the mass-loaded random rod structures investigated.

In conclusion, important evidence arises from the results of this analy-
sis: the universal establishment of GOE statistics can not be evaluated directly
through analysis of the mass and stiffness matrix structures, or the changes in
the magnitude of Hamiltonian matrix structure. Based on this evidence, the
investigation approach based on the matrix structure will not be applied in
the following statistical analysis of the other random structures investigated
in this study.

3.4.6 Spectral Kinetic Energy Density Statistics

In this subsection, the statistical characteristics of the first two statis-
tical moments of the kinetic energy density results are investigated for the
nominal and random longitudinal rod structures. Initially, the general consi-
derations regarding the kinetic energy density evaluation in the SEA predic-
tion context are shown in detail for the case of a longitudinal rod.

SEA Predictions

For a single subsystem, like the longitudinal rod structure considered,
the SEA power balance states that the power input (I;,) to the structure is
equal to the dissipated power (ITy;):

IT;, = Hdiss = Ewn- (33)

In SEA analysis, the variables are usually taken as band-averaged variables
and the frequency w is assumed to be the frequency-band central frequency.
According to Cremer et al (38), the power input for a single point force is
given by:

iy = 57 (Re (Y (@))), (3.4)
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where () denotes the spatial average and Y (®) is the input mobility. Lyon in
(48)) showed that the spatial mean of the real part of the mobility can be ade-
quately estimated from the real part of the input mobility results of a corres-
ponding infinite (or semi-infinite) system, Y..(®). This assumption is usually
adopted in the analytical SEA field. Thus, Equation (3.4) can be rewritten as:

I, = %FzRe (Yoo @)). (3.5)

Considering a unit point force and substituting Equation (3.3) into
Equation (3.3), the total energy is given by:

Re (Yo (®))
Espa = ——. 3.6
SEA 20m (3.6)
Therefore, the kinetic energy density for a longitudinal rod is given
by:
Espa RE(YOO((D))
Topa = = 3.7
SEA = aLon (3.7)

where L, is the rod length.

The analytical mobility expressions for infinite and semi-infinite rods
subjected to a single point-excitation are available in the literature. According
to Fahy and Walker (5)), the analytical mobility expression for semi-infinite
rods is given by:

Y. (0) = 1 (3.8)

S\/Eymp B pSCl.

and for infinite rod systems is given by:

1 1

T 25 /Emp 29S¢/’

where ¢;, S, and p are the longitudinal wave speed, rod cross-sectional area,
and mass density, respectively. The longitudinal wave speed (c;) of a rod is
given by:

Yo (@) 3.9)

Eym
c = . (3.10)
P

Substituting the previous analytical mobility expressions into Equa-




258 3 Numerical Analysis of Random Longitudinal Rods

tion (3.7), the kinetic energy density for a longitudinal rod subjected to a
unitary single point force is given by:

1

Topp = ——— 3.11
SEA = 4oSLoam’ (3.11)
and the spatially-averaged kinetic energy density is given by:
Tspa = ! (3.12)
SEA ™ 8pSL.wcm’ '

Spectral Kinetic Energy Density Statistics: Single Point-Excitation

In this current analysis, the spectral approach will be adopted for the
averaging processes of kinetic energy density results. Therefore, the eva-
luation of the energy response variability was performed within the 1/3 oc-
tave frequency band limits. Similar averaging processes have been applied
in experimental investigations of the energy response variability in the room
acoustics field, Davy et al (53| 154).

In this regard, the kinetic energy density results are evaluated, using
the Equation (2.67), for each of the rod structures subjected to a unitary lon-
gitudinal single point-loading at the left rod end. Additionally, the damping
loss factor (DLF) was considered to be frequency-constant, since the mecha-
nical loss mechanisms for the structure class investigated were considered to
be spatially distributed, (28l [161). Based on the recent literature, four the
DLF values were adopted in order to provide distinct levels of the modal su-
perposition, Langley and Brown (1 [18). The DLF values adopted are ) =
0.03, 0.06, 0.12 and 0.24.

The kinetic energy density results for the nominal rod are initially eva-
luated for each DLF in terms of the narrow frequency domain with 10 Hz
frequency intervals. A sufficiently large number of modes was adopted in
the superposition process to provide the correct response convergence in fre-
quency range investigated.

In Figure 53] the kinetic energy density results for the nominal rod
are presented in terms of the narrow frequency domain as well as in terms
of the 1/3 octave frequency bands domain. Additionally, the SEA analytical
predictions were also evaluated and compared with the numerical results.
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Figure 55: Kinetic energy density results for the nominal rod excited by uni-
tary longitudinal single point-loading at left end of rod (spectral averaging
approach). Plots: Damping Loss Factors: (a) 0.03, (b) 0.06, (c) 0.12, and (d)
0.24.
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According to Figure [53] the numerical energy results for the nominal
rod conform very well with the SEA predictions mainly in the high-frequency
range, regardless of the damping loss factor value considered. In general, as
the DLF magnitude increases, the numerical energy results become smooth
and a reduction in the oscillation behavior of the energy response curve occurs
around the analytical SEA predicted values.

Considering a spectral averaging process, the relative variances of
the kinetic energy density results, associated with each 1/3 octave frequency
band, were also evaluated for the nominal rod response. In order to identify
clearly the effects on the spectral relative variance of different levels of modal
superposition, the relative variance results for the four DFLs considered are
plotted in terms of the corresponding modal overlap factors, Figure[56
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Figure 56: Spectral relative variances of kinetic energy density results for the
nominal rod excited by unitary longitudinal single point-loading at the left
end of the rod (spectral averaging approach). Plots: Damping Loss Factors:
(a) 0.03, (b) 0.06, (c) 0.12, and (d) 0.24.

As shown in Figure [56] the numerical results of the spectral relative
variance present lower values in comparison to the expected analytical pre-
dictions for all of the DFLs considered. It can be noted that as the DLF value
increases, the energy response becomes multimodal and an asymptotic reduc-
tion in the energy response variability is expected. Indeed, good agreement
occurs between the averaged numerical results and the SEA predictions for
high modal overlap factor magnitudes, Figure 53] In terms of the spectral
relative variance results, similar behavior occurs, since an almost constant
plateau curve with small amplitude is established for high overlap modal fac-
tor values.

Although the SEA variance analytical prediction based on the Poisson
model considers sinusoidal mode shapes like those observed for the nominal
rod structure, the spectral relative variance numerical results for the nominal
rod are much lower than the Poisson predictions, Figure [56] It appears that
this discrepancy is mainly due to differences between the natural frequency
statistics of the nominal rod and Poisson model.

Considering the nominal longitudinal rod structure, the natural fre-
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quency statistics presents high spectral rigidity characteristics as well as the
establishment of a relevant spectral correlation. On the other hand, the SEA
variance prediction based on the Poisson model considers that the natural fre-
quencies are completely uncorrelated. In this regard, the numerical spectral
relative variance results for the nominal rod are expected to be lower than the
analytical predictions based on the Poisson model as well as on the GOEE]
model.

As shown in the SEA literature, the relative variance predictions ba-
sed on the Poisson statistics are traditionally expected to be larger than those
based on the GOE model for all two and three-dimensional real engineering
systems (16} 135). In the current analysis, the SEA variance predictions based
on the Poisson model for a longitudinal rod subjected to a single point-loading
are surprisingly lower than corresponding results based on the GOE model,
as presented in Figure[56

As discussed previously, the point-loading relative variance predic-
tions are highly dependent on the mode shape statistics through the Mode
Shape Statistics Factor (K), Brown et al (1,118} 13). Considering the SEA re-
lative variance predictions based on the Poisson model, the mode shapes are
assumed to be sinusoidal and thus the Mode Shape Statistics Factor is equal
to K = 1.5 for one-dimensional systemsFZ], Lyon (48). On the other hand,
the relative variance predictions based on the GOE model consider Gaussian
mode shape statistics in which the Mode Shape Statistics Factor is equal to
K = 3.0, regardless of the system dimensionality, Mehta (24).

The natural frequency effects associated with Poisson statistics on the
energy results lead to a large variability in the energy response compared with
those associated with GOE statistics. The current rod relative variance pre-
dictions strongly suggest that the contribution from the mode shape statistics
on the energy density results can be significantly greater than the contribution
the natural frequency statistics for the case of a longitudinal rod subjected to
a single point-loading. Indeed, the statistical moments of the kinetic energy
density response from the engineering structure subjected to a single point-
loading are strongly influenced by the mode shape statistics and thus small
modifications in the mode shape statistics can lead to relevant changes in the
response variance magnitudes.

In summary, lower amplitudes of the point-loading relative variance

"'The GOE model considers Rayleigh correlated natural frequencies, Mehta (24).

2For sinusoidal mode shapes, the spatial kurtosis values are dependent on the system di-
mensionality and thus the spatial kurtosis values are 1.5, 2.25, and 3.875 for one, two, and
tri-dimensional systems, respectively, Lyon (48)).
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prediction based on the Poisson model can be easily explained considering
the following factors:

« the sinusoidal spatial kurtosis value is much lower than the GOE value
for one-dimensional structures, that is Ksliln) =1.5<K;or =3, and

* the effects of the mode shape statistics on the energy results become
predominantly greater than the corresponding natural frequency statis-
tics effects for cases where a structure is subjected to a single point-
loading.

Considering random rod structures, the kinetic energy density results
were evaluated in terms of the narrow frequency domain as well as the 1/3
octave frequency-band domain. In Figure 57} the numerical energy results
for the random rods are presented and compared with the SEA analytical
predictions as well as the nominal rod resultlT_B-l

In these plots, only the spectral variances of the kinetic energy density
results, with 11 = 0.03, are present for random rods. This technical choice
is based on the premise that small DFL magnitudes provide low modal su-
perposition characteristics and allow a direct visualization of the effects of
the modal parameter statistics on the statistical moments of kinetic energy
density results.

31t is relevant to point out that the comparison with the nominal results provides an efficient
investigation of the performance of the randomization process and the corresponding uncertainty
effects. In other words, this direct comparison enables the identification of the minimum cut-off
frequency at which the energy responses of the random rods are effectively perturbed by the
presence of randomness.
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Figure 57: Kinetic energy density results for the random and nominal rods in
terms of the narrow and 1/3 octave frequency band domains subjected to unit
single point excitation. The analytical SEA predictions are also plotted.

In addition to the kinetic energy density analysis, the spectral relative
variances of the kinetic energy density results were evaluated for the random
and nominal rod structures. The analytical predictions of the relative vari-
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ance based on the Poisson and GOE models were also evaluated in terms of
the 1/3 octave frequency band domain, Figure 58] The DLF magnitude was

considered to be frequency-constant and equal to 0.03 (3%).
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Figure 58: Spectral relative variance of kinetic energy density results for the
random and nominal rods subjected to unit single point-loading (spectral ave-
raging approach). The analytical predictions for relative variance based on
the Poisson and GOE models.
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According to Figure the results for the random rods suggest that
the spectral relative variances are dependent on the randomization approach
adopted in the mid and high-frequency ranges. Even though a certain le-
vel of universal statistics is expected for modal parameters toward the high-
frequency range{ﬂ the spectral relative variance results showed distinct beha-
viors as well as system-dependent effects in the high-frequency range. Ne-
vertheless, it appears that these distinct behaviors are due to large differences
in the mode shape statistics of the random rod structures considered. In-
deed, the statistical moments of the energy responses for a single point excited
structure are strictly dependent on mode shape statistics and thus small chan-
ges in the mode shape statistics may provide relevant changes in the spectral
relative variance results.

In order to evaluate the effects of the high modal superposition condi-
tion, the statistical moments of the kinetic energy density results were evalua-
ted considering a large DLF value for the nominal and random rod structures.
A large frequency-constant DLF, n = 0.24, was adopted, providing a range
of modal overlap factor values from 0 to 12 modes. In Figure[59] the spectral
mean and relative variance results are shown for the nominal and random rods
with n =0.24.
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14In other words, it is expected that the energy response statistics becomes independent of the
uncertainty sources for a sufficiently random system, Langley et al (4,123).
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Figure 59: Spectral mean and relative variance of kinetic energy density re-
sults for the random and nominal rods with DLF = 0.24 (spectral averaging
approach). The analytical predictions for relative variance are based on Pois-
son and GOE statistics models.

As shown in Figure[59] the high DLF values provide a smoother mean
response curve than those for the rods with low DLFs. In general, it can be
noted that there is a reduction in the oscillatory behavior around the SEA
predictions and a better agreement is obtained mainly for the 1/3 octave fre-
quency band results.

For spectral relative variance results, lower magnitudes were observed
for all random rod structures. As expected, the high modal superposition con-
dition tends to reduce substantially the spectral relative variance magnitudes
and thus the spectral relative variance magnitudes for the random rods are
similar to that for the nominal rod.

Indeed, the global patterns of the spectral variance results for the ran-
dom rods are very similar to each other, and it seems that small differences
in the relative variance magnitudes of the random rods occurs due to the ef-
fects of the distinct randomization processes adopted during the generation
of these random structures. However, it is important to emphasize that the
differences in the spectral relative variances are very significant for the case
of lightly damped random rod structures, Figures[57 and [58]
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Spectral Kinetic Energy Density Statistics: Spatially-Averaged
Excitation

From the natural frequency statistical observable results, it can be no-
ted that the spectral natural frequency statistics of the Mass (20%) and Gaus-
sian (30%) random rod structures shows a degree of universal characteristics
as well as good agreement between the GOE eigenvalue predictions and the
natural frequency statistics of these rod structures.

Based on the concept of Universality, the establishment of GOE na-
tural frequency statistics is expected for sufficiently random engineering sys-
tems, Langley et al (231118l 4)). Under this particular condition, the statistics of
the kinetic energy results for the engineering structures subjected to spatially-
averaged excitatiorﬂ are practically independent of the precise sources of
uncertainty in the physical properties of system. Thus similar structures with
sufficiently random parameters could give approximately the same mean and
relative variance results in mid and high-frequency ranges. Additionally, it is
also expected that the spatially-averaged mean and relative variance results
can be adequately predicted by the SEA model based on the GOE model for
natural frequency statistics.

In order to verify the validity of the Universality concept for natural
frequency statistics of sufficiently random rod systems, the spatially-averaged
relative variance results for the Mass (20%) and Gaussian (30%) random rod
structures were evaluated for several DFL magnitudes. Considering that the
natural frequency statistics results for the Mass (20%) and Gaussian (30%)
random rods are very similar and conform well with GOE statistics, it is ex-
pected that spatially-averaged energy results for such rod structures will com-
ply with the Universality concept and thus the spectral spatially-averaged re-
lative variances are independent of uncertainty sources and conform very well
to the revised SEA relative variance prediction based on the GOE eigenvalue
statistics.

In Figure [60] the spatially-averaged relative variance results are pre-
sented for both random rod structures. The analytical predictions based on
Poisson and GOE models are also plotted for all cases investigated.

15 As shown in the SEA literature, the spatially-averaged process of a single point-loading
leads to energy results equivalent to those of rain-on-the-roof excitation. It is very important to
emphasize that in both excitation cases the effects of the mode shape statistics are completely
removed from the energy response and thus the kinetic energy density results are dependent only
on the natural frequency statistics.
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Figure 60: Spectral relative variance of kinetic energy density results from the
Mass (20%) and Gaussian (30%) random rods subjected to spatially-averaged
(spectral averaging approach) excitation. Several DLF are considered. Plots:
(a) 0.03, (b) 0.06, (c) 0.12, and (d) 0.24.

As shown in Figure [60] the spectral relative variance results for the
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Mass (20%) and Gaussian (30%) rods are very similar, except for the presence
of some small discrepancies, regardless of the DFL value considered.

In Figure [60] (a), the numerical results surprising do not conform well
with the variance prediction based on the GOE model, but a good agreement
with the prediction based on the Poisson model is observed mainly in the
high-frequency range. Indeed, although a spectral averaged behavior similar
to GOE statistics is expected for the natural frequencies, the statistical cha-
racteristics vary substantially in the frequency domain, from almost-nominal
statistics in the lower frequency range with high spectral rigidity characteris-
tics to structural localized statistics in the higher frequency range in which
the natural frequencies have statistical characteristics similar to the Poisson
model.

In Figures [60] (b) - (d), the effects of an increase in the damping level
are investigated. For the random rod structures investigated, the increase in
DLF values is linearly related to the increase in the degree of modal super-
position. Indeed, a large number of modes is expected to contribute to the
energy response and thus the presence of spectral correlations between the
natural frequencies may become more and more relevant and reduces subs-
tantially the spectral variability of the energy responses.

Considering the effects of the increase in damping levels on the per-
formance of the variance prediction based on the Poisson model, the discre-
pancies between the numerical results and analytical prediction become more
and more pronounced as the damping level increases. Additionally, it can be
observed that the numerical results deviate from the Poisson prediction dif-
ferently over the frequency range. Indeed, large deviations of the numerical
results are expected for low and mid-frequency ranges, where the spectral
natural frequency correlations are expected to be more intensive.

Based on the above discussions, it appears that the natural frequencies
of both random rods have well established asymptotic statistics for the extre-
mely high-frequency range. In fact, considering the extreme condition where
the longitudinal wavelength is smaller than the structural irregularity span,
the random rods become effectively clamped on the structural irregularity
locations. Therefore, the structural localization phenomenon is completely
established and independent sets of modes with similar statistics exist in the
various sections between the structural irregularities, providing an asymptotic
exponential PDF for the natural frequency spacings described approximately
by Poisson model, since the sum of a large number of statistically indepen-
dent sets of random variables has an exponential PDF.
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3.4.7 Spatially-Correlated Gaussian Rods

In order to investigate the effects of the spatial correlation of the
geometrical irregularities on the spectral response variability for the one-
dimension real engineering structures, the statistical characteristics of
spatially-correlated longitudinal random rods were investigated considering
several levels of spatial correlation.

In the engineering context, the spatial variation of the physical and
material properties can be appropriately represented by the random fields,
Vanmaercke (162). If the spatial variations in the geometric dimensions are
considered, the application of a continuous random field becomes very ap-
propriate. However, for cases of an existing FEM discretization, a practical
approach is traditionally considered where the random field values in each
finite element domain are considered to be constant throughout on the finite
element extension. It is also important to emphasize that the discretized ran-
dom field model includes the spatial inter-dependencies between the finite
element random field values based on a probabilistic approach, such as the
Monte Carlo simulation.

The essential concepts from the random field theory are briefly pre-
sented below. The random field characteristics adopted in the FEM model
development of Gaussian spatially correlated random rods are discussed in
detail. The effects of the spatial correlation on the modal parameter statis-
tics are investigated for several correlation length magnitudes. In the last
stage, the relationship between the establishment of GOE characteristics for
the modal parameter statistics and the correlation length magnitudes is also
investigated in the spectral response variability context.

Random Field Theory Background

A simple random field model considered in the engineering context is
a homogeneous isotropic Gaussian field. In this field, the random field vari-
ables have a Gaussian distribution with parameters independent of direction
and location. That is, the interdependency between two random variables is
dependent only on the perpendicular distance between the two points consi-
dered. According to Hinke and Mace (25)), the correlation function between
two Gaussian random variables is given by:
2
) , (3.13)

Rug (dp,Lc.0) = 6% exp <—
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where o is the standard deviation, L. is the correlation length and d), is the
perpendicular distance between the two points considered.

According to Sakar and Ghanem (163)), an alternative correlation func-
tion of the Markovian stochastic process is given by:

) : (3.14)

On comparing the previous random field correlation function definiti-
ons, distinct dependencies on the absolute ratio of the perpendicular distance
to the correlation length magnitude are clearly observed. The Markovian
process correlation function has a linear dependence while the homogene-
ous Gaussian one has a square dependence on the absolute ratio of the dis-
tance to the correlation length. Although both correlation functions show a
decreasing exponential pattern, a more abrupt profile variation in the spatial
domain is expected for the homogeneous Gaussian function due to its square
dependence characteristics.

For n random variables, the covariance matrix Cp, is a symmetric and
completely positive matrix. The elements of the n x n covariance matrix c;;
are given by:

dp

Rus (dp,Le) = exp (— 7
C

Cij :R(d,'j,LL-,O') i,j=12,....n. (3.15)

A one-dimensional random field, given by a vector u of length n, can
be adequately represented by the Karhunen-Loeve expansion in the form:

r<n

u(x.§) =a(x)+ Y VAG ) v (L), (3.16)

where @ denotes the mean, y; are uncorrelated standard normal random va-
riables (zero mean and unit variance) and A; and ¢; are the eigenvalues and
eigenfunctions of the covariance matrix respectively, which are obtained from
the eigenvalue problem:

Cm¢i = Ai¢;. (3.17)

The mean @ and the eigenfunctions ¢; are deterministic and only con-
tain the spatial coordinate x. The randomness of the field is included through
the y; (§) parameter. There are n eigensolutions, but in general it is sufficient
to consider only the most important eigenfunctions, which provide a good
approximation to the random field.
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Development of the Spatially-Correlated Longitudinal Random Rods

In order to assess the effects of different levels of the geometry spatial
correlation on the modal parameter statistics, as well as on the statistical mo-
ments of kinetic energy density results, the spatially-correlated longitudinal
random rods were built considering the rod cross-sectional areas as Gaussian
correlated random variables along the rod length domain. The random rod
cross-sectional area values were calculated through the Karhunen-Loeve ex-
pansion based on the modal parameters of the covariance matrix, similarly to
Equation (3.T6).

In the current analysis, the random field correlation function definition
based on the Markovian stochastic process was adopted in the FEM models
development for Gaussian spatially-correlated random rods, Equation (3.14)).
The main reason for adopting this random field correlation function defini-
tion is based on the performance of the results, which provide a distribution
very close to that of the spatially independent Gaussian values, although the
rod cross-sectional area values are spatially correlated along the rod length
direction.

In contrast, the homogeneous isotropic Gaussian field results present a
distribution which is slightly non-symmetric around the mean value and also
shows small deviations from the Gaussian distribution pattern. The Lilliefors
Test results for both random fields confirm that the Markovian stochastic ran-
dom field values have a more Gaussian distribution than that of the random
field results for the homogeneous isotropic Gaussian case.

In order to perform a direct comparison between the statistical cha-
racteristics of the spatially correlated random rod structures and the spatially
independent Gaussian (30%) rod structure, in which the rod cross-section
areas are not spatially correlated along the rod length direction, the random
field cross sectional area values were adjusted to provide a spatially Gaussian
correlated distribution with the same width distribution and mean value as the
cross-sectional area distribution of the spatially independent Gaussian (30%)
rod structure investigated in the spectral analysis performed in previous sec-
tion 3411

In Figure the distribution of the random field results are shown
for the Markovian stochastic process and homogeneous isotropic Gaussian
correlation functions. In order to compare the distributions of all of the nu-
merical results, the cross-section area distribution of the spatially independent
Gaussian (30%) rod structure is also presented.
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Figure 61: Distribution of the rod cross-sectional area values from: (a)
the spatially independent Gaussian (30%) rod, (b) the spatially-correlated
Gaussian rod: Homogeneous isotropic Gaussian random field, and (c) the
spatially- correlated Gaussian rod: Markovian stochastic process random fi-
eld.

In addition, it is also important to note that good performance was ob-
tained in the application of the random fields based on decreasing linear expo-
nential correlation functions, such as that proposed in Equation (3.14)), in the
numerical studies regarding the response variability in which the correlation
effects on the geometry of the one-dimensional real engineering structures
were considered, Sakar and Ghanem (163)).

In the current analysis, a large range of the correlation length magni-
tudes was considered in order to ensure a complete statistical analysis of the
most representative effects due to spatial correlation, including two extreme
conditions of spatial correlation, that is, rods with spatially independent Gaus-
sian cross-sectional areas provided by the asymptotic null correlation length
magnitudes and, under another extreme condition, rods with cross-sectional
areas strongly spatially correlated which are provided by the asymptotic large
correlation length magnitudes, similar to the nominal rod cross-sectional area
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distribution. The following magnitudes of the correlation length (L.) were
considered in the spectral analysis: 0.01, 0.06, 0.1, 0.2, 1, 5, and 10; as well
as very large L. magnitude (approximately infinite correlation length almost
corresponding to the nominal rod).

In the following sections, the spectral statistics of the modal parame-
ters are investigated for each of the spatially-correlated random rods.

Spectral Natural Frequency Statistics

The current spectral analysis of the unfolded natural frequencies con-
siders only the following eigenvalue statistical observables: the PDF of ad-
jacent natural frequency spacings and As-statistics. As discussed previously,
these statistical observables are very efficient in terms of describing the sta-
tistical characteristics associated with short and long-range fluctuations, res-
pectively.

The spectral natural frequency statistics obtained for each of the
spatially-correlated random rods are shown in Figure

i{| — Gauss PDF

i{| — Rayleigh PDF
| —— Poisson PDF
] Numeric: LE =0.01

08

PDF

05 1 1.5 2 25 3
Adjacent natural frequency spacing



280 3 Numerical Analysis of Random Longitudinal Rods

P S AN WSS N—S—
s atis e S
= : :
0.2t Rt SUULLIEEREELES Froeeeeseeees .
0.1} -------------- —— GOE prediction H
: | — Poisson prediction
3 H —e Numerical: LC =0.01
0 1 | I I
0 5 10 15 20 25
Length (L)
{| — Gauss PDF
o OSSN S {| — Rayleigh PDF i

;| —— Poisson PDF
| Numeric: LC =0.06

05 1 1.5 2 25
Adljacent natural frequency spacing



3.4 Spectral Averaging Approach

281

0.5 , , : :
: | —— GOE prediction
: —— Poisson prediction
04l —e— Numerical:L_=0.06 |
i : 3
0.3 Fomomoeer i i — -
=) ! i
=i ! i
0.2 f oo R RS LI LR proeesnneee .
R/ — T — _—
0 | | | |
0 5 15 20 25
Length (L)
35 T , r r
: o — Gauss PDF
Ao ] —— Rayleigh PDF
—— Poisson PDF
D1 N S I R ] Numeric:L_=0.
2 ____________________________________________________________________
[T
a
i -] S
L1 T S,
=il

05 1

1.5 2 25
Adjacent natural frequency spacing



282 3 Numerical Analysis of Random Longitudinal Rods

0.5 ! ! T T
: i | —— GOE prediction
: i | —— Poisson prediction
(317 | MRRRRU 1SS t.| —g— Numerical: L_=0.1
03|
g H H T H
& | | | |
0.2f et oo Broressnnnneedionnn e froreeannone 8
oa| Jp T IR S _—
0 i i i i
0 5 10 15 20 25
Length (L)
g T T

—— Gauss PDF : : 3
8) — Rayleigh PDF  |{----- P P F

—— Poisson PDF
7 — Numeric: L_=0.2

PDF

Pl | 1T e e e

04 06 08 1 12 14 186
Adjacent natural frequency spacing




3.4 Spectral Averaging Approach 283

05 , , : :

: i | — GOE prediction

: i | — Poisson prediction
()RS Ny SE— S Numerical:L_=0.2 ||

0.3

8,(0)

0.2

0.1

0 5 10 15 20 25
Length (L)
Figure 62: The spectral natural frequency statistical observable results for the
spatially correlated random rod structures: PDF of adjacent natural frequency
spacings and As-statistics results (spectral averaging approach).

As shown in Figure [62] the greatest effect of the spatial correlation
occurred for the smallest correlation lengths investigated. For L, = 0.01,
the spacing PDF results suggest a partial establishment of spectral charac-
teristics similar to those of the uncorrelated natural frequency statistics, that
is, Poisson statistics. On the other hand, the presence of the level repulsion
characteristics is clearly observed for the smallest natural frequency spacing
range. Additionally, the Asz-statistics results also showed moderate spectral
rigidity characteristics for large natural frequency spacing range, evidencing
the establishment of some discrepancies in relation to Poisson model.

The occurrence of the Poisson model characteristics for small correla-
tion lengths can be easily explained by the discontinuities introduced by geo-
metrical irregularities which become the nominal rod structure into a built-up
system composed by several substructures connected each other by the irre-
gularities in their extremes. Therefore, for each substructure, there is a set
of natural frequencies which is independent on the natural frequencies asso-
ciated with others substructures. As discussed by Weaver (64), the spectra
of real system can be adequately described by the superposition of indepen-
dent spectra associated with the number of non-interacting substructures or
the number of geometrical symmetries presented by complex vibroacoustic
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system. Thus, a superposition of large number of statistically independent
natural frequency sets has a Exponential PDF and agrees satisfactorily with
the Poisson model PDF spacing, Brown (1).

For L. = 0.06, the natural frequency statistics results have statistical
characteristics similar to GOE eigenvalue statistics in the short-range fluctu-
ation. For the other greater correlation lengths investigated, the spectral na-
tural frequency statistics obtained are very similar to nominal statistics, that
is, there was a very notable presence of the spectral rigidity characteristics
in the natural frequency domain and an asymptotic delta function distribution
was established for the expected nominal unfolded natural frequency spacing
value.

In addition, the Asz-statistics results associated with the small spacing
range also suggest that for L. = 0.06 the spectral short-range fluctuation sta-
tistics are similar to GOE statistics. As shown in Figure[62] for the spatially-
correlated rods with L, < 0.06, the spectral natural frequency statistics are
asymptotically uncorrelated with the reduction in the correlation length mag-
nitude. In contrast, the As-statistics results for L. > 0.06 also suggested that
the spectral natural frequency statistics in the short-range fluctuation range
tends to be similar to that of the nominal rod as the correlation length magni-
tude increases.

For the long-range fluctuations, the As-statistics results suggest rele-
vant spectral rigidity characteristics for all correlation lengths investigated.
In general, the increase in the correlation length magnitude leads to a reduc-
tion in the As-statistics for long spectral distances, that is, an increase in the
spectral rigidity effects on the long-range fluctuations.

Although it is not shown here, most of the unfolded natural frequency
spacings of the spatially-correlated rods with small correlation lengths were
perturbed throughout the mode order domain, while the large correlation
lengths perturbed only in a limited range of the mode order domain. Indeed,
it appears that there is a direct relationship between the correlation length
magnitude and the wavelength associated with the frequency affected by the
correlation effects.

Considering the spatially correlated rods with large correlation
lengths, the results suggest that the geometrical perturbations due to correla-
tion effects are practically negligible for the longitudinal wavelengths of the
frequency range investigated and thus the unfolded natural frequency spa-
cings magnitudes are approximately equal to the expected nominal unfolded
spacing magnitude.
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Spatial Mode Shape Statistics

In this subsection, the effects of distinct magnitudes of the correlation
length on the mode shape statistics are investigated considering only the spa-
tial averaging approach. The following eigenvector statistical observables
were considered: spatial kurtosis and Lilliefors Test metric functions. In Fi-
gure the spatial mode shape statistics results are shown as a function of
the mode order domain.
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Figure 63: The spatial mode shape statistical observable results for the
spatially- correlated random Gaussian rods: spatial kurtosis values and spatial
Lilliefors Test results (spatial averaging approach).

As shown in Figure[63] the spatial mode shape statistics results reveal
a direct relationship between the correlation length magnitude and the fre-
quency region affected by geometrical perturbation due to spatial correlation
effects. For the frequency range considered, the spatial mode shape statistics
results suggest that the effects of the smaller correlation length are relevant
and affect almost the whole mode shape order range considered.

For L. = 0.01, the large magnitudes of the spatial kurtosis are asso-
ciated with the structural localization phenomenon, mainly in the high mode
order range. As the mode order increases, a gradual increase is observed for
the spatial kurtosis magnitudes and for the corresponding dispersion charac-
teristics. Indeed, the spatial kurtosis results suggest a statistical transition
from almost-deterministic statistics (sinusoidal mode shapes) to disordered
statistics (structurally localized mode shapes) as frequency increases. Addi-
tionally, the spatial Lilliefors Test results also suggest the establishment of
intermediate statistics in which the characteristics are almost-Gaussian in the
restricted (limited) mode order region (or frequency region) around the 30th
mode order.

For L. = 0.06, the several spatial kurtosis values are weakly localized
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and slightly larger than the GOE or Gaussian value, and thus the spectral
mean value of the spatial kurtosis is approximately K = 3.90. Additionally,
the spatial kurtosis results show that the correlation effects are manifested
mainly in the central region of the frequency range investigated. In this central
frequency region, the spatial kurtosis results suggest the establishment of a
weak structural localized statistics, since most of the spatial kurtosis values
affected by the correlation effects are around K = 3.5 (spectral probabilistic
mode value). In addition, the spatial Lilliefors Test results show that the
frequency range associated with GOE or Gaussian mode shapes is wider than
those of other correlation lengths.

For L. > 0.06, the spatial mode shape statistics results show that the
effects of a given correlation length magnitude are restricted to a particular
frequency range and that the spatial mode shape statistics associated with
mode shapes lying outside this particular frequency range converge asymp-
totically to nominal statistics as the correlation length magnitude increases.
Furthermore, it appears that with an increase in the correlation length mag-
nitude, the establishment of almost-Gaussian (or almost-GOE) mode shape
statistics becomes more and more restricted to a small frequency range (or
mode order range) and the spatial mode shape statistics present asymptoti-
cally similar characteristics to those of sinusoidal statistics corresponding to
nominal mode shape statistics in which a flat pattern for the spatial kurtosis
results is established in the mode order domain.

Non-dimensional Analysis of Mode Shape Statistics

In order to establish a good understanding of the relationship between
the correlation length and its effects on the mode shape statistics, a non-
dimensional analysis was performed. A normalized parameter (or non-
dimensional parameter) is proposed, which relates the correlation length and
wavelength magnitudes.

Considering the assumption that the wavelength of nth mode shape
from the random rod is almost equal to that correspond to the nominal rocﬁl
that is, /'L,{“"d = l,?, the normalized parameter (6,) associated with each nth
mode and a certain correlation length (L.) is given by:

L

en(Lc) = Fa

(3.18)

19Detailed analysis performed with extremely localized mode shapes showed that a maximum
error of 2% is associated with the application of this assumption. It appears that the errors are
probably associated with the dispersive nature of rod system investigated, Graff (164).
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where ),,? is the nominal wavelength of nth mode shape.

In Figure [64] the spatial kurtosis results are presented in terms of the
normalized parameter domain. This graphical presentation pattern allows the
identification of the frequency range affected by a certain correlation length
as well as the results to be extended to several other random one-dimensional
longitudinal structures.

As shown in Figure [64] for the normalized parameter range in which
the values are greater than unity, an almost flat behavior of spatial kurtosis
results is observed and an asymptotic convergence toward the nominal spa-
tial kurtosis value occurs as the correlation length increases. On the other
hand, for normalized parameter with magnitudes of less than unity, the cor-
responding mode shape statistics are clearly affected by the spatial correlation
effects and large spatial kurtosis magnitudes are observed.
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Figure 64: Spatial kurtosis results for the Gaussian spatially correlated ran-
dom rods expressed in terms of the normalized parameter (spatial averaging
approach).

In order to identify the particular correlation length magnitude at
which the corresponding mode shapes have the highest probability of the
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establishment of GOE eigenvector statistics, the spatial mode shape statistics
was investigated throughout an ensemble composed of 500 spatially corre-
lated longitudinal rods. The correlation length magnitude was considered
constant for each member and variable across the ensemble. The correlation
length range was considered from L. = 0.01 to L. = 1.00 with constant steps.
In a similar manner to the previous analysis, only the rod cross-sectional area
was considered as a variable parameter in the rod length direction. The other
rod parameters were considered fixed across the frequency and ensemble
domains.

In Figure [65] the spatial kurtosis and corresponding spatial Lilliefors
Test results are presented for each of the ensemble members. Again, the mode
shape statistics results are presented in terms of the normalized parameter
domain.
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Figure 65: Spatial mode shape statistics results from an ensemble compo-
sed of 500 spatially-correlated longitudinal rods (spatial averaging approach).
Plot (a): Spatial kurtosis values. Plot (b): Spatial Lilliefors Test results. The
correlation length range adopted was from L, = 0.01 to L. = 1.00 with cons-
tant steps.

The spatial mode shape statistics results confirm the main conclusi-
ons obtained from the previous results of the initial non-dimensional analysis
for some discrete correlation length magnitudes, Figure [64] that is, the esta-
blishment of GOE mode shape statistics is restricted to a particular frequency
region and its extension is dependent on the ratio of the correlation length to
the wavelength magnitude.

As shown in Figure[63](a), the spatial kurtosis results suggest the esta-
blishment of spatial localized mode shape statistics for the small normalized
parameter and small correlation length ranges. In general, structural localized
mode shapes are expected for the normalized parameter range of 0 to unity,
that is, 0 < 6, < 1. However, weakly structural localized mode shapes with
spatial statistical characteristics similar to those of GOE statistics occur for
the following normalized parameter range: 0.02 < 6, < 0.6 as observed in Fi-
gure[63] (b). In other words, for this normalized parameter range, the discrete
occurrence of Gaussian mode shapes in the frequency domain is expected.
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Additionally, the spatial Lilliefors Test results were expressed in terms
of the mode order domain for each of ensemble member Figure [66(a).
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17 The variation of the correlation length magnitude across the ensemble members occurs in
constant steps, that is, an exclusive correlation length magnitude is defined for each rod member

and the difference between the correlation lengths of two successive members remains unaltered
across the ensemble.
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Figure 66: Previous spatial mode shape statistics results from an ensemble
composed of 500 spatially correlated longitudinal rods: (a) spatial Lilliefors
Test results expressed in terms of the mode order domain, and (b) Histo-
gram of the spatial Lilliefors Test results expressed in terms of the correlation
length domain.

The spatial Lilliefors Test results suggest that the increase in the corre-
lation length magnitude reduces the number of Gaussian (or almost Gaussian)
mode shapes along the mode order domain. In Figure [66] (b), the histogram
associated with spatial Lilliefors Test results in Figure [66] (a) is shown. The
histogram of spatial Lilliefors Test results shows that the largest number of
Gaussian mode shapes is associated with a correlation length range around
L. =~ 0.05 for the spatially correlated random longitudinal rods investigated
in this study.

As shown in Figure for the spatially- correlated rods with L. =
0.05, the spatial mode shape statistics presents an asymptotic statistical tran-
sition from GOE statistics (or Gaussian statistics) to the nominal statistics (or
almost deterministic - sinusoidal statistics) as the correlation length magni-
tude increases. Considering the non-dimensional spatial mode shape statistics
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analysis, very similar results were established for the following normalized
parameter range: 6, = 1.00.

~

Spectral Statistics of the Kinetic Energy Density Results

Similarly to the spectral analysis performed previously in Section
3.4.6, the spectral statistics of the kinetic energy density results was also in-
vestigated for Gaussian spatially-correlated random longitudinal rods consi-
dering two natures (types) of loadings: unitary single point-loading at the
rod end and spatially-averaged excitation. The damping loss factor magni-
tude wass considered frequency-constant and equal to 11 = 0.06, providing a
range of modal overlap factor magnitudes of O to 6 modes. In addition, the
SEA mean and relative variance for 1/3 octave frequency band predictions
were also evaluated considering the Poisson and GOE models. In Figure [67]
the spectral mean and relative variance values are presented for the Gaussian
spatially correlated random longitudinal rod structures subjected to a unitary
single point-loading.
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Figure 67: Kinetic energy density statistics of the Gaussian spatially-
correlated rods subjected to an unitary single point-loading (spectral avera-
ging approach). Plot(a): energy density results expressed in the narrow fre-
quency domain. Plot(b): spectral mean values expressed in terms of the 1/3
oct. frequency band domain. Plot(c): spectral relative variance results ex-
pressed in terms of the 1/3 oct. frequency bands.
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Considering the case of rod structures subjected to a unitary single
point-loading, the energy density results in the narrow frequency domain
showed clearly that the effects of each of the correlation length magnitudes
can be associated with a particular frequency range, Figure [67] (a). Outside
the particular frequency range affected by the spatial correlation effects, the
modal parameter statistics are very similar to those presented by the nominal
rod and a good agreement is expected between the narrow frequency energy
density results and the SEA analytical prediction. Although they are slightly
shifted, similar narrow response patterns to those presented by the nominal
rod are presented for the energy results of the rod structures with large corre-
lation lengths, that is, L. 2 1.

For the Gaussian spatially-correlated rods with small correlation
lengths, large discrepancies in relation to the SEA predictions are noted in
the particular frequency range affected by the correlation effects. For the
spatially Gaussian correlated rod with L. = 0.06, the correlation effects are
smoother and a moderate oscillatory pattern is established around the SEA
predicted values throughout the frequency domain investigated.

In Figure [67] (b), the spectral mean values in terms of the 1/3 oct. fre-
quency band domain lead to the same conclusions obtained previously from
the narrow frequency kinetic energy results. Additionally, the frequency re-
gions affected by correlation effects can be easily identified due to energy
discrepancies in relation to the 1/3 oct. frequency band SEA predictions.

Considering the spectral relative variance results, a large spectral vari-
ability of the energy density response is expected for the spatially -correlated
rods with small correlation magnitudes in the frequency region affected by
the correlation effects. Since the spectral averaging approach is conside-
red in this current analysis, the spectral relative variance magnitudes are very
sensitive to large changes in the spectral response pattern present within the
frequency band limits. It is important to stress that small relative variance
magnitudes do not express the existence of a good agreement between the
rod energy responses and SEA mean value predictions. The small magnitu-
des of the spectral relative variance represent effectively the occurrence of
small response variability in relation to the response mean value associated
with the frequency band. Indeed, small relative variance magnitudes express
the nonexistence of abrupt oscillations of the energy response pattern within
the frequency band limits.

As shown in Figure [67] (c), the performance of the relative variance
predictions were neither satisfactory nor conservative for the spatially Gaus-
sian correlated rods investigated. Indeed, it appears that the large relative
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variance values for the Gaussian spatially correlated rods are mainly due to
the correlation effects which induce the establishment of the structural locali-
zation phenomenon in the mode shape statistics. It is important to emphasize
that the statistical characteristics of the energy response of a system subjected
to a single point-loading are very sensitive to mode shape statistics. Thus,
the distinct relative variance patterns associated with each of the correlation
length magnitudes can probability be attributed to the different mode shape
statistics obtained for each of the correlation lengths considered.

For the case of a rod structure subjected to spatially-averaged exci-
tation, the kinetic energy density results are independent of the mode shape
statistics. In Figure [68|(a), the narrow frequency results of the kinetic energy
density show a good agreement between the SEA prediction and the nume-
rical rod results for all correlation lengths investigated. As shown Figure
[68] (b), although distinct spectral natural frequency statistics were obtained
for each correlation length magnitude, the spectral mean value of the kinetic
energy density results were found to be practically independent of the natural
frequency statistics and an excellent agreement with the band-averaged SEA
prediction was noted for all Gaussian spatially correlated rods investigated.

-
Du
&

o S P

SEA Prediction

Nominal Rod
Random Rod: LC =0.01

Random Rod: LE =0.06
Random Rod: LC =0.1

Random Rod:L_=0.2 §
Random Rod: L_=1
Random Rod:

-
D\

Kinetic Energy Density [Joule/m]

20 30
Frequency [kHz]

()



298 3 Numerical Analysis of Random Longitudinal Rods

—— SEA Prediction

Nominal Rod
Random Rod: Lc =0.01

Random Rod: LE =0.06
Random Rod: L_=0.1
Random Rod:L_=0.2

ey
o '
-

{

Kinetic Energy Density [Joule/m]

107 pooi A RandomRod:LZ=1
; Random Rod:L_=5
7 ..s. Random Rod:L_=10
xR T e
- B e T e 2 e R SR SR U 4
0 4 T
Fi Mg,

3 I — 4
10 Frequency [Hz] 10

(b)

—— Poisson Prediction

N — GOE Prediction
Nominal Rod L

Random Rod:
Random Rod:
Random Rod:
Random Rod:
Random Rod:
Random Rod:

C
L
C
L
c
L
C
L
c
L
C
LC
. Random Rod: LC

Relative variance

Frequency [Hz] 10
©

Figure 68: Kinetic energy density statistics of the spatially-correlated
rods subjected to spatially-averaged excitation (spectral averaging appro-
ach). Plot(a): energy density results expressed in narrow frequency domain.
Plot(b): spectral mean value results expressed in terms of the 1/3 oct. fre-
quency band domain. Plot(c): spectral relative variance results expressed in
terms of the 1/3 oct. frequency bands.
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In Figure [68] (c), the spatially-averaged relative variance results sug-
gested the establishment of small magnitudes for the spatially-correlated rods
with large correlation length magnitudes. In such rod structures, the modal
parameter statistics are very similar to those of the nominal longitudinal rod
and thus small spectral response variability is expected for the high-frequency
range.

Furthermore, the spectral relative variance values for the spatially -
correlated rods with small correlation lengths are clearly higher than those
of the rods with large correlation length, mainly in the high-frequency range,
Figure [68] (¢). Regarding the performance of the SEA relative variance pre-
dictions, that based on the GOE model under predicted the numerical results
with L. 2 0.1. On the other hand, the SEA relative variance prediction ba-
sed on the Poisson model is very conservative and over predicted all of the
rod numerical results throughout the frequency range investigated. Indeed, as
discussed in the preceding section, asymptotic uncorrelated natural frequency
statistics (or almost Poisson statistics) are expected for natural frequencies of
structurally localized rod structures.

As observed in Figure [68](c), the spectral relative variance results for
rods with small correlation length magnitudes are not explicit regarding the
effects of distinct correlation length magnitudes on the spectral variability of
kinetic energy responses. Indeed, the current spectral relative variance results
are directly influenced by two main factors: the variable degree of modal
superposition in the frequency domain and the distinct number of resonant
modes associated with each frequency band.

In order to evaluate the exact contribution of the correlation length ef-
fects to the spectral variability of the kinetic energy responses, the spectral
relative variance results were calculated considering the following assumpti-
ons:

e fixed modal superposition: the frequency-constant modal overlap fac-
tor is obtained if the damping loss factor magnitude is defined as being
inversely proportional to the angular frequency () and directly pro-
portional to the longitudinal sound speed (cy.):

CL
0)=—. 3.19
n(w)=— (3.19)
e constant number of resonant modes: since the 1/3 octave frequency
bands have varying bandwidths, the number of resonant modes is va-
riable. Therefore, the use of the frequency band domain with fixed
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bandwidth is very convenient and also avoids the contribution from
a variable number of resonant modes in the spectral relative variance
magnitudes.

In Figure [69] the spectral relative variance of the kinetic energy den-
sity results are shown for the single point and spatially-averaged excitations,
respectively. In such spectral relative variance results, the DLF definition pro-
posed in Equation (3.19) was considered and provided the frequency-constant
modal overlap factor magnitudes of approximately 1.6 modes along the fre-
quency domain investigateﬂ Additionally, a fixed frequency bandwidth of
5 kHz was also considered along the frequency domain in order to obtain a
constant resonant modes contribution to the spectral relative variance magni-
tudes.
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8The DLF magnitudes obtained for the spatially Gaussian correlated longitudinal rods were
considered adequate since their values are very similar to those of numerical investigations with
similar rod structures in the open literature, (161) (163).
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Figure 69: Spectral relative variance of the kinetic energy density results in
the frequency band domain with fixed bandwidth (spectral averaging appro-
ach). Plot(a): unitary single point-loading. Plot(b): spatially-averaged exci-
tation.

As shown in Figure [69] (a), the point loading relative variance results
show that the spatially correlated rods with large correlation length magnitu-
des present low spectral response variability and thus the correlation length
effects are not distinguishable in the spectral relative variance results for spa-
tially correlated rods with Lc 2 1 for the frequency range investigated herein.

For the spectral relative variance results for spatially correlated rods
with small correlation lengths, a good agreement with the GOE model pre-
diction is obtained for the spatially correlated rod with L. = 0.06, although
a slight oscillatory behavior around the GOE prediction is observed in the
frequency range investigated. It is important to note that the modal parame-
ter statistics results for the spatially correlated rod with L. = 0.06 present
almost GOE statistics for the frequency range investigated. As shown previ-
ously in the modal parameter statistics results, the spectral natural frequency
statistics of the spatially correlated rod with L. = 0.06 is expected to be simi-
lar to GOE statistics in the short-range fluctuations (local behavior) and also
a higher number of almost GOE mode shapes is expected in the frequency
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range investigated. Indeed, the modal parameter statistics of the Gaussian
spatially-correlated rod with L. ~ 0.06 leads to the most favorable statisti-
cal condition for the establishment of GOE statistics for the frequency range
investigated and explains the good performance of the relative variance pre-
diction based on the GOE model.

In Figure[69] (b), the Gaussian spatially-averaged relative variance re-
sults of the spatially-correlated rods with L. 2 0.1 suggest that an increase in
the correlation length magnitude leads to a reduction in the spectral response
variability. Indeed, the spectral natural frequency statistics results showed
that, for the frequency range considered, as the correlation length magnitude
increases the spectral natural frequency statistics tends asymptotically to be
similar to that presented for the nominal rod. As shown in Figure [69] (b),
a poor agreement occurs between the numerical relative variance results for
random rods with L, = 0.06 and the GOE prediction, even though the spectral
natural frequency statistics characteristics of the Gaussian spatially- correla-
ted rod with L, = 0.06 are very similar to the GOE statistics characteristics in
the short-range fluctuations. However, it is important to emphasize that spec-
tral eigenvalue statistical observables are spectrally-averaged metrics which
may eventually mask a certain unexpected statistical characteristics associa-
ted with a particular frequency region. As shown previously, the correlation
length effects are observed in different frequency regions for distinct correla-
tion length magnitudes. Therefore, this characteristic hinders a direct compa-
rison with the correlation effects for rods with distinct correlation lengths in
a fixed frequency range.

Overall, it is important to note that the spatially-averaged relative va-
riance prediction based on the Poisson natural frequency statistics presents
an excellent performance, since the spectral statistical characteristics of the
spatially-averaged energy responses are independent of the mode shape sta-
tistics and an asymptotic Poisson statistics is expected for the structurally
localized one-dimensional structures as in the case of the Gaussian spatially-
correlated rods with small correlation length magnitudes.

3.4.8 Discussions and Remarks

In this initial stage of the statistical investigations of the random lon-
gitudinal rods, a complete analysis of the modal parameter statistics was car-
ried out considering the spectral averaging approach for the natural frequen-
cies and the spatial and spectral averaging approaches for the corresponding
mode shapes. The random longitudinal rods with several natures and levels
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of randomness were systematically investigated using the RMT statistical ob-
servable results.

Considering the RMT eigenvalue statistical observables, the good
performance of their results allowed accurate evaluation of the spectrally-
averaged effects of distinct natures and levels of randomness on the natural
frequency statistics in the short and long-range fluctuations. Although the
number variance and Ajz-statistics results have faster convergence charac-
teristics and provide the averaged results in the natural frequency domain,
these metric functions can unintentionally mask the local characteristics
of the natural frequency statistics associated with a particular range in the
frequency domain.

As discussed in section 3.4.3, it appears that the natural frequency
statistics from any random system is only correctly characterized when all
results for the several natural frequency statistical observables are compa-
red to each other, independent of their individual performance in the des-
cription of spectral natural frequency statistics. Indeed, the spectral natural
frequency statistics results for the Mass (20%) and Gaussian (30%) random
rods demonstrated this particular situation, where the long-range fluctuation
statistical observable results suggest the establishment of spectrally-averaged
statistics very similar to those of the GOE model, although at the extremes
of frequency range investigated the local spectral natural frequency statistics
are completely distinct to the statistical characteristics expected for the GOE
model.

Concerning the spatial mode shape statistics, the eigenvector statisti-
cal observable results allowed an accurate characterization of the effects of
the randomness on the mode shape statistics. Additionally the main non-
universal physical phenomena, such as the structural localization, were cor-
rectly identified and quantified for each individual mode order, allowing a
complete description of the local mode shape statistics in terms of the spa-
tial averaging approach. Indeed, the main characteristics of the well-defined
mode shape statistics classes (sinusoidal, Gaussian and structurally localized)
as well as their statistical transitions were adequately described and compared
with the analytical predictions.

In the current spatial mode shape statistics analysis, the PDFs of spa-
tial kurtosis values for the Gaussian random rods were fitted to expressions of
the non-linear sigma model of the Supersymmetry theory which are traditi-
onally applied in experimental studies of disordered billiards with Anderson
localization characteristics. The agreement between the numerical results and
the fitted non-linear sigma model expressions was satisfactory for the mode-
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rate and strong localization regimes, except for the presence of small discre-
pancies in the distribution tail region, which is extremely sensitive to the de-
tails of the system nature, Figure In a similar manner, the PT-distribution
results were also fitted to the weak and strong localization non-linear sigma
model expressions, Figure [50] The excellent agreement confirmed the high
performance and versatility of the non-linear sigma expressions to describe
accurately the spatial mode shape statistics characteristics in the weak and
strong localization regimes. To the best of the knowledge of the author, this
is the first application of non-linear sigma model expressions to describe the
non-universal localization characteristics of the mode shape statistics of vi-
broacoustic systems.

The spectral mode shape statistics was investigated through the kurto-
sis metrics, proving indirect information on the spectral correlation level for
a fixed mode shape component in the mode order domain. The spectral kur-
tosis results for the nominal rod showed that the sinusoidal mode shapes are
practically ergotic in terms of the spectral and spatial average approaches, va-
lidating the hypothesis proposed initially by Lyon (48)) during the evaluation
of the mode shape statistics factors of regular systems, such as a simply sup-
ported rectangular plate or box acoustic room. On the other hand, the spectral
kurtosis results for the random rods also suggested that most of the mode
shape components present some significant spectral or inter-modal correlati-
ons across the mode order domain. However, some mode shape components
of the Mass (20%) and Gaussian (30%) random rods, located in the vicinity of
the central rod domain, were shown to be approximately asymptotic Gaussian
variables. Nevertheless, it is important to emphasize that the spectral kurtosis
as well as the corresponding spectral Lilliefors Test results provide only an
indirect analysis regarding the spectral mode shape component correlations,
and thus it is not possible to establish a linear relationship between the spec-
tral kurtosis values and spectral correlation level of different mode shapes for
a fixed mode shape component.

In general, the modal parameter statistical observable results suggest
that the local statistical characteristics of the modal parameters of the random
longitudinal rods vary substantially in the frequency domain, from an almost-
deterministic or nominal statistics in the lower frequency range toward struc-
tural localized statistics in the higher frequency range, where intermediate
statistics with characteristics similar to those of the GOE model is certainly
established for a limited frequency range. For almost-deterministic or nomi-
nal statistics, the natural frequencies have high spectral rigidity characteris-
tics and the corresponding mode shapes are practically sinusoidal, presenting
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practically constant statistical characteristics for the spatial and spectral mode
shape averaging approaches over the mode order domain.

At the other extreme, the establishment of the structural localization
phenomenon in the high-frequency range leads to local spectral natural fre-
quency statistics with statistical characteristics similar to the Poisson model,
where the spacings seem to be almost uncorrelated. Additionally, the cor-
responding mode shapes present energy confinement in the restricted spatial
region of the rod length domain which establishes strong spectral and spa-
tial correlations between the mode shape components. It is also important
to note that the localized mode shapes did not show asymptotic well-defined
statistics in the high-frequency range due to their relevant non-universal cha-
racteristics associated with the details of the system nature. As demonstrated
by the previous mode shape statistics results, a large mode-to-mode disper-
sion is clearly observed in the high mode order range, hindering the accurate
description of the mode shape statistics by analytical models as well as the
derivation of an efficient analytical methodology to predict the kinetic energy
density statistics.

The kinetic energy density results associated with random rods sub-
jected by a single point-loading were clearly shown to be dependent on the
randomness characteristics. Indeed, the point-loading kinetic energy density
results for light damped rod structures seem to have a significant dependence
on the mode shape statistics and thus small changes in mode shape statistics
become extremely relevant in terms of the energy response statistics. The
spectral point-loading relative variance results for the random rods investiga-
ted here showed very distinct curve patterns as well as a poor agreement with
the analytical predictions based on the Poisson and GOE models. Based on
the spatial and spectral mode shape statistics results, the large values of the
point-loading relative variance are certainly explained by the establishment of
the structural localization phenomenon and its corresponding effects on the
modal parameter statistics.

In order to investigate the establishment of the universal characteris-
tics for natural frequency statistics, Mass (20%) and Gaussian (30%) random
rods were considered since their spectrally-averaged natural frequency statis-
tics are very similar to those of GOE statistics. Additionally, the spatially-
averaged excitation was adopted whereas the kinetic energy results are exclu-
sively dependent on the contributions of the natural frequency statistics. Thus,
the spectral relative variance of the spatially-averaged kinetic energy density
results for the Mass (20%) and Gaussian (30%) random rods were also cal-
culated and compared to the analytical prediction based on the Poisson and
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GOE models for several levels of the modal superposition. The relative va-
riance curve pattern of the numerical results showed clearly that the local
spectral natural frequency statistics varies substantially in the frequency do-
main, from almost-nominal statistics in the lower frequency range with high
spectral rigidity characteristics to structural localized statistics in the higher
frequency range in which the natural frequencies have statistical characteris-
tics similar to the Poisson model.

In second part of the current statistical analysis, systematic investiga-
tions were performed with Gaussian spatially correlated random longitudinal
rods with several correlation length magnitudes. The spectral natural fre-
quency statistical observable results showed that the characteristics of natural
frequency statistics change in a sensitive way for each range of correlation
length magnitudes. As shown in Figure [62] a natural frequency statistical
transition from almost-Poisson to high spectral rigidity statistics is observed
as the correlation length magnitude increases for the frequency range investi-
gated.

Considering the spatial mode shape statistics, the statistical observa-
ble results showed that the level of the localization effects on modal parameter
statistics is clearly dependent on the ratio between the correlation length and
the typical wavelength, and thus for a given correlation length only a limited
frequency range is effectively affected. The results for the non-dimensional
mode shape statistics analysis indicated explicitly this wavelength depen-
dency, showing that for correlation lengths larger than the typical expected
wavelength, the modal parameters statistics converges asymptotically to no-
minal statistics as the excitation frequency increases. Additionally, the spatial
modal parameter statistics results showed that for correlation lengths close to
L. = 0.05 the corresponding modal parameters have spectrally-averaged sta-
tistics with characteristics similar to those of the GOE model and thus the
best agreement is expected to be between the spectral relative variance results
and the analytical prediction based on the GOE model.

In a manner similar to the previous investigations performed with in-
dependent Gaussian random rods, the point-loading kinetic energy results for
the Gaussian spatially-correlated random rods expressed in terms of the nar-
row frequency band domain also allowed prompt identification of the struc-
tural localization effects associated with each correlation length investiga-
ted. The corresponding results expressed in terms of the 1/3 octave frequency
bands seem to minimize the localization effects and thus an improved agre-
ement with the SEA predictions was only observed for random rods with
large correlation lengths. For Gaussian spatially- correlated random rods with
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small correlation lengths, some discrepancies were clearly observed. Indeed,
it is expected that these random rods do not have a perfect energy reverbe-
rant field due to the establishment of the strong localization phenomenon on
their modal parameters and thus large deviations occur in relation to SEA ba-
sic assumptions, reducing the performance of the frequency-band mean value
predicted by the standard SEA model.

Considering the point-loading relative variance evaluated for the spec-
tral averaging approach, the results associated with rods with small corre-
lation lengths showed large amplitudes as a direct consequence of the loca-
lization phenomenon contribution of the mode shape statistics. Indeed, the
analytical predictions based on the GOE and Poisson models under predicted
the numerical results for these random rods. For the other random rods, their
relative variance results are very similar to those for the nominal rod.

The spatially-averaged kinetic energy density results expressed in
terms of the narrow frequency band domain showed a good agreement with
the SEA prediction, although small oscillations were observed. It is impor-
tant to note that the spatially-averaged excitation removes completely the
contributions of the localized mode shape statistics to the energy results. The
corresponding relative variance results showed clearly the characteristics of
the spectral natural frequency statistics for each of the correlation lengths in-
vestigated and suggested clearly that the spatially-averaged relative variance
prediction based on the Poisson model seems to be a conservative formulation
at least for cases of random rods with strong localization characteristics.

Besides the statistical investigations with the frequency-constant DLF,
the spectral statistics kinetic energy density results for point-loading and
spatially-averaged excitations were also investigated using fixed frequency
bandwidths and an alternative DLF definition which provides a constant num-
ber of resonant modes in each frequency band and a fixed modal superposi-
tion condition in the frequency domain, respectively. These spectral relative
variance results under constant modal superposition condition allowed im-
mediate visualization of the contributions of the modal parameter statistics to
the variance results as well as the performance of the SEA variance predicti-
ons. Overall, the relative variance results also suggested that the increase in
the correlation length reduces the spectral variance for the frequency range
investigated.
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3.5 Ensemble Averaging Approach

In this section the modal parameter statistics across the ensemble are
investigated in order to assess the conditions necessary to establish GOE sta-
tistics for each of the modal parameters as well as to establish a good per-
formance of the relative variance prediction based on the GOE model. Two
random longitudinal rod ensembles are considered: point mass-loaded and
Gaussian spatially-correlated.

In the following sections, the main SEA parameters as well as the
RMT statistical observables, which are applied traditionally in spectral analy-
sis, were adapted in order to allow the evaluation of the statistics of the a fixed
mode order (or spacing) of interest across the ensemble, that is, the adapted
statistical observables are able to characterize the modal parameter statistics
in terms of the ensemble averaging approach.

3.5.1 Random Point Masses

In this subsection the statistical characteristics of an ensemble com-
posed of point mass-loaded rods are investigated across the ensemble. The
manufacturing uncertainties are represented by small point masses attached
to the surface of each rod member of the ensemble in order to reproduce the
possible structural irregularities of the mass distribution in the rod length di-
rection, (4. 317,350 [18)).

For each rod member, 20 point masses (each point mass with 1% of
the total mass of the bare nominal rod) are randomly distributed along the
length on the nominal rod surface. In the current work, an ensemble size of
500 members was considered in order to guarantee the convergence of the
statistical results for the kinetic energy density statistics as well as for the
modal parameter statistics across the ensemble.

Natural Frequency Statistics

Since a large range of the mode orders was considered in the FEM
modal analysis, six particular mode orders, or spacings, were selected in order
to present the main physical phenomena of the modal parameter statistics
across the rod ensemble. The mode orders considered in the current analysis
are: mode 10, mode 20, mode 30, mode 42, mode 60, and mode 80. In Figure
[70} the PDFs of adjacent unfolded natural frequency spacings are shown for
the mode orders considered.
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Figure 70: PDF of adjacent unfolded natural frequency spacings: numerical
results for the mass-loaded rod ensemble and analytical predictions based
on: Gaussian (Normal), GOE (Rayleigh), and Poisson (Exponential) statistics
(ensemble averaging approach). Plots: (a) Mode 10, (b) Mode 20, (c) Mode

30, (d) Mode 42, (e) Mode 60, and (f) Mode 80.
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As shown in Figure the short-range fluctuation statistics vary sig-
nificantly in the frequency domain (or mode order domain). For the low-
frequency range, for example in the vicinity of mode 10, an approximate
sharp Gaussian distribution is symmetrically established on the unitary spa-
cing value, suggesting a statistical transition from the Delta Dirac function to
Gaussian statistics. Considering mode 20, the spacing PDF results suggest
the establishment of almost-Gaussian statistics. Indeed, a reduction in the
spectral rigidity characteristics associated with nominal rod natural frequen-
cies leads to a more spread out spacing distribution in which several spacing
values are distinct from unitary spacin

Thus, as the frequency increases, the longitudinal wavelength redu-
ces and the ensemble natural frequency statistics becomes very sensitive to
structural irregularities and thus the uncertainty effects induce a statistical
transition from almost Delta Dirac statistics to almost Poisson statistics. Ad-
ditionally, intermediate natural frequency statistics are also established in the
frequency domain as Gaussian and RayleigiEG] statistics. For a mass-loaded
rod ensemble, the closest natural frequency spacing statistics to GOE statis-
tics (Rayleigh PDF) occurs for the mode order range close to the vicinity of
mode 42 which corresponds to the frequency range around 20 kHz. Besides
this particular frequency, due to the nature of the randomization process con-
sidered, there is also an increase in the occurrence of small natural frequency
spacings across the ensemble. The higher mode order results, modes 60 and
80, suggest the establishment of an asymptotic Poisson statistics toward the
high-frequency range.

The establishment of the almost-Poisson model characteristics for
high frequency range occurs because the rod becomes effectively clamped
at the point mass locations, actuating as mechanical discontinuities. Indeed,
under this particular condition, a high number of mode sets can exist in the
various rod sections between the point masses which do not interact each
other, Weaver (64). In this regard, a statistics similar to those of Poisson
model is expected for the natural frequencies since the superposition of large
number of statistically independent spectra has an exponential PDF, Brown
(.

In Figure the number variance results are shown. For the low-

9The mean value of the unfolded natural frequency spacings is expected to be frequency-
constant and unitary for the nominal rod.

20The establishment of a Rayleigh distribution for natural frequency spacings is classically
associated with the eigenvalue statistics of the Gaussian Orthogonal Ensemble (GOE), Mehta
24).
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frequency range, an ensemble natural frequency statistics with high spectral
rigidity characteristics is clearly established. Similarly to the spectral num-
ber variance results for the nominal rod, for which null values of the number
variance are expected for integer spectral natural frequency spacings, the en-
semble number variance results also show an oscillatory pattern and present
null values for some integer natural frequency spacings, Weaver (64). In-
deed, this oscillatory pattern of ensemble number variance results is associa-
ted with high spectral rigidity characteristics established across the ensemble
and the low performance of the point mass randomization process in the low-
frequency range, Figure [71](a).
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Figure 71: Number variance results of the mass-loaded rod ensemble. Analy-
tical predictions: GOE and Poisson models (ensemble averaging approach).
Plots: (a) Mode 10, (b) Mode 20, (c) Mode 30, (d) Mode 42, (¢) Mode 60,
and (f) Mode 80.

As shown in Figure (/1| (b), the ensemble number variance results for
mode 20 present moderate oscillatory characteristics with small non-zero va-
lues. The increase in the number variance values is associated with a reduc-
tion of the spectral rigidity characteristics which occurs gradually from the
long to short fluctuation range. Thus, the largest ensemble number variance
values are expected to occur for large natural frequency distance ranges. Si-
milarly to the spacing PDF results, the mode 42 results conform very well
to the GOE prediction and the establishment of a certain level of universal
statistics is again suggested for this narrow frequency range, Figure [71] (d).
The number variance results for modes 60 and 80 also present an asymptotic
Poisson statistics toward the high-frequency range, Figures(e) and (f), res-
pectively. In Figure the Az - statistics results are presented for the mode
orders investigated.
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Figure 72: Ajz-statistics results for the mass-loaded rod ensemble (ensem-
ble averaging approach). Analytical predictions: GOE and Poisson models.
Plots: (a) Mode 10, (b) Mode 20, (c) Mode 30, (d) Mode 42, (e) Mode 60,
and (f) Mode 80.

As observed in Figure [72] similar conclusions to those of the previ-
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ous statistical observable results are obtained for the characterization of the
natural frequency statistics across the ensemble. Therefore, the simultaneous
analysis of the natural frequency statistical observable results leads to the fol-
lowing global understanding: the ensemble statistics of the natural frequen-
cies in the low-frequency range, below mode 10 (corresponding approxima-
tely to the frequency of 5 kHz), present an intermediate distribution between
Dirac Delta (nominal) and Gaussian statistics. As the frequency increases, a
statistical transition to GOE statistics occurs where an intermediate statistics
with characteristics similar to those of the Gaussian model is also established.
The establishment of an almost-GOE statistics occurs in the vicinity of mode
42 which corresponds approximately to a frequency of 20 kHz. In this fre-
quency range, the natural frequency spacing PDF is adequately described by a
Rayleigh distribution and the occurrence of the moderate spectral rigidity cha-
racteristics and level repulsion phenomenon can be clearly observed, Mehta
24).

On the other hand, for the mid and high-frequency ranges, that is above
20 kHz (i.e., higher than mode 42), the establishment of an asymptotic Pois-
son statistics occurs as the excitation frequency increases. In this frequency
range, the spectral rigidity characteristics is significantly reduced and the na-
tural frequencies seem to be almost uncorrelated. In summary, three distinct
major statistics can be adequately established for ensemble natural frequency
statistics in the frequency domain, which are: almost-deterministic statistics,
almost-GOE statistics, and asymptotic-Poisson statistics.

Similar conclusions regarding the natural frequency statistics of
one-dimensional mass-loaded string structures were surprisingly obtained in
Brown’s work (1)). In his study, Brown (1)) investigated the spectral natural
frequency statistics from a simply supported string with randomly placed
small point masses. Considering a fixed frequency range, the modal parame-
ters were numerically obtained for distinct sizes of point masses. Instead of
the complete set of spectral eigenvalue statistical observables, the chi-square
tests for Rayleigh and Exponential (Poisson) PDFs were adopted in order to
evaluate the confidence levels as a function of the point masses added to the
string surface.

A qualitative compariso is performed between the current natu-

211t is important also to note that similar dynamical behaviors are expected for two distinct
conditions: (i) as the frequency range of interest is considered fixed and the randomness level
increases, and (ii) as the randomness level is considered unaltered and the excitation frequency
increases. For both approaches, it is expected that the increase in the random level (or excitation
frequency) leads to the establishment of universal natural frequency statistics which are described
by the Gaussian Orthogonal Ensemble (GOE), (23).
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ral frequency statistics obtained across the mass-loaded rod ensemble and
Brown’s main spectral results. In Figure [73|a plot of the chi-squared confi-
dence intervals is shown for the test results for the Exponential and Rayleigh
PDFs as a function of the size of 5 randomly placed masses.
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Figure 73: Confidence levels for chi-squared test results for the mass-loaded
string: — test for Rayleigh PDF and - - - test for exponential PDF, Brown (1J).

As shown in Figure[73] the results for the mass-loaded string are very
similar to those for the current mass-loaded rod. In both cases, the natural
frequency statistics is dependent on the excitation frequency (or randomness
level). A global pattern of statistical transition from an almost-nominal sta-
tistics to asymptotic-Poisson statistics is clearly observeﬂ The asymptotic
statistical trend towards an exponential PDF occurs because the string be-
comes effectively clamped at the point mass locations. Indeed, under this
particular condition, a high number of independent mode sets can exist in the
various string sections between the point masses. Thus, the sum of a large
number of statistically independent sets of variables has an exponential PDF.

The current results for the statistical observables also showed that the

22Although it is not shown here, similar results were also obtained by Cordioli (20) using an
artificial approach. In his study, distinct levels of matrix structure symmetry and randomness
were systematically considered for the random stiffness matrix. The two statistical crossover
regions were individually shown for the natural frequencies under ensemble averaging approach:
GOE model to high spectral rigidity statistics and GOE model to Poisson model statistics.
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establishment of the GOE model for natural frequency statistics occurs only
for a limited and narrow frequency range or randomness level limits, respecti-
vely. It is also important to emphasize that there is no formal evidence regar-
ding the relationship between the system dimensionality and the frequency
range extension of GOE natural frequency statistics. This aspect has recently
been attracting interest and further investigations are required, Gomes (10).

Natural Frequency SEA Parameter: Statistical Overlap Factor

Traditionally, the statistical overlap factor has been used to quantify
the level of randomness of an ensemble composed of random engineering
structures, (18} 13} 14} [14). According to Langley et al (18} 4), statistical over-
lap factor values greater than unity provide a condition appropriate for the
use of the GOE model to describe accurately the modal parameter statistics.
Under such condition, it supposes that the statistics of the energy responses,
which is dependent on the natural frequency and mode shape statistics, will
be independent of the detailed nature of the system randomness, Langley et
al (23, 4)) and Cordioli (20).

As discussed by Cordioli (20), two distinct definitions for the statisti-
cal overlap factor are traditionally considered in the SEA context. The first
considers the local mean spacing between natural frequencies, that is, the en-
semble mean value of the spacings between two adjacent natural frequencies,
(15). On the other hand, the second considers the global mean spacing which
represents the mean value of the spacings over the ensemble and spectral do-
mains, (18[35,4). In Figure the statistical overlap factor results are shown
for the mass-loaded rod ensemble.
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Figure 74: Statistical overlap factor results for a mass-loaded rod ensemble
(ensemble averaging approach). Plot (a): global natural frequency spacing,
local natural frequency spacings, natural frequency standard deviations. Plot
(b): Statistical overlap factor: based on global and local mean values of the
natural frequency spacings.
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According to Figure[74](b), the statistical overlap factor results suggest
that, for mode orders greater than mode 35 (corresponding to approximately
17 kHz), the statistical overlap factor values are higher than unity and the
system should be considered to have appropriate conditions for the modal
parameters to have GOE statistics. Additionally, Figure [74] (a) shows that
almost constant mean values for the natural frequency spacings are obtained,
regardless of the local or global spacing definitions. On the other hand, large
standard deviation magnitudes are observed for the natural frequencies in the
high mode order range, providing large statistical overlap factor values.

It is important to emphasize that the statistical overlap factor results
are only based on the ensemble natural frequency statistics and any prelimi-
nary conclusion based on exclusively its values regarding the establishment
of the GOE model for the modal parameter statistics should be avoided, since
the statistical overlap factor definition does not take into account directly the
ensemble statistics of the corresponding mode shapes, Cordioli (20).

In the following, a complete statistical analysis is performed with cor-
responding mode shapes. Thus, the mode shape statistics results will contri-
bute to providing a detailed understanding of the modal parameter statistics
as well as additional information to investigate the conditions required for the
establishment of universal statistics described by the GOE model.

Mode Shape Statistics

In a manner similar to the natural frequency statistical analysis, the
mode shape statistics were characterized through the use of the eigenvec-
tor statistical observables of the Random Matrix Theory (RMT). Although
the eigenvector statistical observables were initially defined considering the
spatial or spectral averaging approaches, the results for the eigenvector sta-
tistical observables presented below considered also an ensemble averaging
approach, that is, the statistics of a fixed eigenvector component across the
ensemble is evaluated for a given mode shape (or mode orderﬁ In this re-
gard, the routines for the previous eigenvector statistical observables which
consider spectral and spatial averaging approaches were modified so as to
also allow an evaluation of the ensemble statistics.

In Figure[75] the spatial kurtosis and Lilliefors Test results are shown
in detail. Arithmetic and geometric averaging processes were performed on
the spatial kurtosis results. The typically expected or probabilistic mode va-

23The definitions of the mode shape statistics averaging approaches are presented in detail in
Section 2.3.2.
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lue for the spatial kurtosis was also determined for each mode order. The
analytical kurtosis predictions are also plotted for Gaussian and sinusoidal
mode shape statistics (GOE and Poisson models), respectively.

According to Figure [75](a), the spatial kurtosis results across the en-
semble suggest the establishment of three well-defined regions of ensemble
mode shape statistics. The first region is associated with low order mode
shapes which have almost nominal statistics, that is, very close to sinusoidal
statistics. As the mode order, or frequency, increases the typically expected
spatial kurtosis values suggest that there is a statistical transition toward GOE
or Gaussian statistics and thus, around the vicinity of mode 40, the typically
expected spatial kurtosis values are close to the expected Gaussian value, that
is, K ~ 3. In the last statistical region, beyond the almost-GOE range, large
values of the spatial kurtosis are clearly observed, suggesting the establish-
ment of the structural localization phenomenon, (139} 140} [159)). Indeed, as
excitation frequency increases, the effects of the structural localization phe-
nomenon become more and more relevant and there is a highly dispersive
behavior, or large variability, of individual spatial kurtosis values around the
kurtosis mean value curves.
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Figure 75: Spatial analysis of the mode shape statistics of a mass-loaded rod
ensemble (spatial averaging approach). Plot (a): spatial kurtosis results. Plot
(b): spatial Lilliefors Test results.

Considering that the performance of the mean values to represen-
ting the typically expected spatial kurtosis value across the ensemble, the
arithmetic as well as geometric mean values are very distinct from the ty-
pically expected spatial kurtosis value across the ensemble, mainly in the
high-frequency range. Indeed, the low performance of both averaging pro-
cesses confirms the establishment of a probabilistic distribution with long tail
characteristics for the spatial kurtosis values.

Additionally, the spatial Lilliefors Test results, Figure [75| (b), suggest
that the largest number of Gaussian mode shapes occurs for a limited mode
order range, approximately from mode 26 to mode 42, and only some mem-
bers of the ensemble, circa 15%, present Gaussian distribution characteristics
for this mode order range.

Although the spatial and ensemble kurtosis averaging approaches were
adopted by Lyon (48) and Langley (18| 3), respectively, in the definition of
the mode shape statistics factor in the SEA variance context, the use of the
spectral averaging approach for the statistical investigation of the kurtosis
parameter can provide important evidence regarding the statistical correla-
tion between the mode shape components, Gomes (101). In this regard, the
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spectral kurtosis and Lilliefors Test results were evaluated for each mode
shape component and each ensemble member. The statistical parameters of
the spectral kurtosis results were investigated using arithmetic and geometric
averaging processes across the ensemble. In Figure the spectral kurto-
sis values and Lilliefors Test results are shown. The Gaussian (GOE) and
sinusoidal (Poisson) analytical predictions are also plotted.

As shown in Figure[76] (a), large spectral kurtosis values are observed
in the rod regions close to both rod ends. An asymptotic establishment of an
almost flat spectral kurtosis mean curve toward the central rod region is also
observed, regardless of the averaging process adopted. Additionally, it can
be noted that the averaging processes provide distinct kurtosis mean values.
Indeed, the spectral kurtosis values also present a probabilistic distribution
with long tail characteristics and thus the arithmetic as well as geometric
mean values do not represent adequately the typically expected value across
the ensemble (ensemble probabilistic mode value).
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Figure 76: Spectral analysis of the mode shape statistics (spectral averaging
approach). Plot (a): spectral kurtosis results. Plot(b): spectral Lilliefors Test
results.

In Figure|76|(b), the spectral Lilliefors Test results for each rod mem-
ber of the ensemble as well as the arithmetic mean value across the ensemble
are shown in detail. Similarly to the spectral kurtosis results, the averaged
value of the spectral Lilliefors Test results confirms that the largest number
of mode shape components with Gaussian characteristics occurs in the cen-
tral region of the rod compared to other regions. Indeed, the mean value of
the spectral Lilliefors Test results suggests that the establishment of a Gaus-
sian distribution for a fixed mode shape component, located in the vicinity of
the central region of the rod, across the mode order domain, is expected for
approximately 30% of the rod members of the ensemble. That is, only for
30% of the members of the mass-loaded rod ensemble it is expected that the
mode shapes are statistically independent at a given excitation point located
in the central region of the rod. Therefore, based on the spectral mode shape
statistics results, the most favorable condition for the achievement of a good
performance of the SEA variance predictions based on GOE model statistics
seems to occur when the excitation point is located in the central region of
the mass-loaded rod structure.
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Considering the ensemble mode shape averaging approach, the en-
semble kurtosis value for each mode shape component was evaluated as a
mode order function. The ensemble kurtosis results for each mode shape
component as well as their statistical parameters are shown in Figure[77} The
Gaussian (GOE model) and sinusoidal analytical predictions are also plotted.
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Figure 77: Ensemble kurtosis results: individual members, typically expec-
ted, arithmetic and geometric mean values (ensemble averaging approach).

As shown in Figure the ensemble kurtosis results also confirm
the global tendency of the mode shape statistics described previously in the
spatial kurtosis analysis. However, it is relevant to note that in contrast to
the spatial kurtosis variability, which increases gradually as the mode order
(or frequency) increases, the ensemble kurtosis variability presents moderate
magnitudes in the low and mid-frequency range.

In order to identify the most probable mode shape component (excita-
tion point) and mode order range (or frequency range) for the establishment of
Gaussian mode shape statistics across the ensemble, the ensemble Lilliefors
Test results were evaluated, Figure 78]
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Figure 78: Ensemble Lilliefors Test results: bi-dimensional graphical repre-
sentation (ensemble averaging approach).

In Figure the points on the ensemble Lilliefors Test results repre-
sent the data sets approved by the Lilliefors Normality Test in which a good
agreement with GOE or Gaussian mode shape statistics is expected.

It is important to emphasize that the conclusions drawn from the en-
semble Lilliefors Test results agree satisfactorily with those of the previous
mode shape statistics obtained using spatial and spectral averaging approa-
ches. That is, the establishment of Gaussian mode shape statistics across the
ensemble is expected in the vicinity of mode 40 when a single excitation point
is located in the central region of the mass-loaded longitudinal rods.

In addition, Figure[78|shows clearly that the high order modes, beyond
mode 45, are certainly non-Gaussian, regardless of the excitation point loca-
tion. As discussed previously, this frequency region is characterized by the
establishment of ensemble localization statistics.

Based on the above discussion, the bi-dimensional representation of
the ensemble Lilliefors Test results can be considered an excellent tool to
identify the most probable region (mode order range and excitation point lo-
cation) for the establishment of GOE mode shape statistics.

In the Quantum Billiard field, analytical expressions proposed by the
Theory of Supersymmetry are available to describe the statistical characte-
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ristics of localized wavefunctions, Sridhar and others (71, [73, [74). Mir-
lin and Fyodorov (77)), based on 1D non-linear sigma model, proposed PT-
distribution patterns for weak and strong localization regimes. These expres-
sions and their parameters are reviewed in section 2.3.4 of Chapter 2.

In the following, the performance of these analytical expressions based
on the non-linear sigma model are evaluated considering PT-distributions of
a fixed mode shape component across the ensemble, instead of the use of a
spatial averaging approach over the mode shape components. Two regimes
(or disorder levels) are investigated: weak and strong localization.

In Figure @} the numerical ensemble PT-distribution results, the
analytical GOE prediction and the PT-distribution fitted results for the non-
linear sigma models are plotted. In a manner similar to the previous spatial
mode shape analysis performed in section 3.4.4 of the current chapter, a
global normalization constant (Cy) was introduced for the strong localization
expression, Equation (2.55).
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Figure 79: Ensemble Porter-Thomas distribution results for localized mode
shapes: numerical results for the mode shape component located at 0.658 m,
GOE prediction and non-linear sigma model fitted patterns (weak and strong
localization regimes) (ensemble averaging approach). Plots: (a) mode 26, (b)
mode 39, (c) mode 72, and (d) mode 93.

As shown at Figures (a) and (b), the fitted non-linear sigma mo-
del curves are not able to describe the non-universal statistical characteristics
presented in the PT-distribution results associated with the weakly localized
mode shapes across the ensemble. Indeed, a non logical dispersive behavior
is clearly observed for the numerical PT-distribution results associated with
these mode shape components.

For strongly localized mode shapes, Figures[/79](c) and (d), the fitted
non-linear sigma model curves conform very well to the numerical results.
Indeed, the PT-distribution expression based on the non-linear sigma model
was initially developed for one dimensional disordered systems in which the
dynamical characteristics are very similar to those of the structure class in-
vestigated in this current work.
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Mode Shape SEA Parameters: Normalized ParametersP and Q

Analogously to the statistical overlap factor results which measure the
randomness levels from each natural frequency across the ensemble, the ran-
domness (or disorder) level of the mode shapes can also provide important
information required to define the necessary conditions for the universal esta-
blishment of GOE model for the modal parameter statistics in a given random
vibroacoustic system. In general, it is assumed that the disorder level of the
mode shapes is directly associated with the number of relevant eigenbases
across the ensemble, Zyczkowski (81) and Cordioli (20).

In the current study, the parameters P and Q, originally proposed by
Cordioli (20), were normalized in terms of the mode shape vector size, that
is, the total number of mode shape components, in order to provide appropri-
ate conditions for a direct comparison between vibroacoustical systems with
different numbers of the mode shape components, usually associated with
distinct meshing characteristics. This normalization process minimizes the
effects associated with the meshing characteristics of the vibroacoustical sys-
tem investigated. In Figure the results for the normalized Parameter P
(P,) and normalized parameter Q (Q,) are presented for the mass-loaded rod
ensemble.

I i
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Figure 80: Mode shape SEA parameters of the mass-loaded rod ensemble
(ensemble averaging approach). Plot (a): Parameter P,. Plot (b): Parameter

Qa.

As shown in Figure [80] (a), the parameter P, results suggest that the
number of relevant bases increases as the frequency or mode order increases.
Thus, the statistics for high order mode shapes are expected to be closer to
GOE statistics than those for low order mode shapes, that is, an asymptotic
establishment of the GOE statistics is expected as the mode order value (or
excitation frequency) increases.

Considering the parameter Q, results, Figure 80 (b), they have a ten-
dency very similar to that of the parameter P, results in the low mode order
range, although the results are very distinct for mid and high mode order ran-
ges. Beyond the vicinity of mode 40, the parameter Q, results have almost
flat characteristics (or a plateau region), except for the presence of small os-
cillations. Hence, the number of relevant bases beyond mode 40 would be
expected to remain approximately constant.

As shown previously in the results for the spatial and ensemble sta-
tistical observables, an almost GOE statistics is expected to be established
in a limited (or restricted) mode order range in the vicinity of mode 42, and
beyond this region the establishment of the structural or ensemble localization
phenomena is strongly expected.

Comparing the curve patterns of the spatial and ensemble kurtosis re-
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sults with the performances of the parameters P, and Q,, only the parame-
ter Q, results are able to identify that significant changes occur in the mode
shape statistics for the mid and high mode order ranges. The parameter P,
performance is only reliable in the low mode order region where the mode
shape mixing phenomenon is not established. According to Cordioli (20), it
is important to note that the parameter P presents an inadequate performance
in identifying the establishment of GOE statistics in certain situations. Si-
milarly to the statistical overlap factor definition, the parameter P definition
does not take into account the mode shape mixing phenomenon associated
with each mode shape investigated across the ensemble; Cordioli (20), Scha-
adt (110, 69\ [70), Bertelsen (90) and Kessissoglou & Langley (80).

On the other hand, the parameter Q, showed convenient characteris-
tics to evaluate the randomness level from a certain mode shape set across
the ensemble, since the mode shape mixing effects are minimized during its
evaluation. However, there is no analytical proof to affirm that an explicit
connection exists between the parameter Q, values and the establishment of
GOE statistics or the establishment of the structural or ensemble localization
phenomena. Thus, it appears that the parameter Q, may be employed to-
gether with other eigenvector statistical observables as an auxiliary parameter
to evaluate the randomness (or disorder) level of mode shapes.

Parameter Z

40 60
Mode Order

Figure 81: Mode shape SEA parameter of the mass-loaded rod ensemble:
parameter Z (ensemble averaging approach).
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In Figure the parameter Z results are plotted as function of mode
order for the mass-loaded rods. Considering the normalization process adop-
ted for the mode shape SEA parameters P and Q, the evaluation of parameter
Z is given by Z = P,/ Q,,.

As shown Figure [81] the parameter Z results have a crescent beha-
vior as the mode order increases, suggesting that the number of superimpo-
sed spectra increases asymptotically toward the high natural frequency range.
For high frequency range, the longitudinal wavelength reduces substantially
in comparison to rod dimensions and thus the point masses actuates as mecha-
nical discontinuities, proving the establishment of non-interacting rod subs-
tructures which are defined by a rod section limited by two successive point
masses, Brown (1). Therefore, a high number of independent mode sets can
exist in the various rod sections between the point masses, explaining the es-
tablishment of the almost-Poisson model characteristics observed previously
for natural frequency statistical observable resultstl

Ensemble Analysis of Structural Localization Phenomenon

As observed in the previous analysis of the modal parameter statistics,
the mass-loaded rod ensemble, due to its structural irregularity characteris-
tics, presents a high probability of the establishment of structural localiza-
tion phenomenon in the mid and high-frequency ranges. The main goal of the
analysis which follows is to understand the principal aspects associated with
the establishment of the localization phenomenon, for instance: the physics
of spatial decay and its relationship with the excitation frequency, damping
magnitudes, establishment of the GOE statistics for modal parameters and
others. These structural localization issues are investigated through the use of
the localization factor which allows the identification of the pass-band and
stop-band regions, Pierre (148).

Initially, the ensemble-averaged spatial decay along the length was
evaluated as each rod member is subjected to unitary longitudinal excitation
at the rod end. The frequency-constant and low damping loss factor was
adopted in order to minimize the effects of the damping mechanisms on the
spatial energy response. The arithmetic and geometric averaging processes
were considered and their corresponding localization factors were evaluated

24 Although it was not discussed here in details, similar effects on the natural frequency statis-
tics are expected for two distinct situations: (i) the system has several non-interacting substructu-
res (i.e., mass-loaded rod) or (ii) the system has geometric symmetries (i.e., perfectly rectangular
block or plate), Weaver (64), and Cordioli (20).
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for several excitation frequencies. In Figure[82] the performances of the arith-
metic and geometric averaging processes and respective localization factors
are shown in detail for distinct mode shape statistics.

As shown in Figure 82] the establishment of the localization pheno-
menon leads to significant effects on the averaging processes and thus very
distinct localization factor values are expected for the arithmetic and geome-
tric averaging processes, mainly for the high excitation frequency range in
which the mode shape statistics are localized.
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Figure 82: Ensemble spatial decay analyses: averaging process performan-
ces and localization factor values (ensemble averaging approach). Plot (a):
Vicinities of Modes 09 and 10: excitation frequency of 4.5 kHz - almost
sinusoidal mode shape statistics. Plot (b): Vicinities of Modes 21 and 22: ex-
citation frequency of 10 kHz - sinusoidal to Gaussian transition mode shape
statistics. Plot (c): Vicinities of Modes 41 and 42: excitation frequency of 20
kHz - almost Gaussian mode shape statistics. Plot (d): Vicinities of Modes
62 and 63: excitation frequency of 30 kHz - localized mode shape statistics.

In general, the results suggest that the use of the geometric averaging
process is more appropriate than the traditional arithmetic averaging process
to represent the typically expected response of an ensemble composed of en-
gineering structures with structural irregularities. Similar results with almost-
periodical structures were obtained by Hodges (159, [150). Additionally, the
expected mean value for the geometric averaging process has a decreasing
linear pattern along the rod length. Hence, the linear best-fit decay provides
a good evaluation of the localization factor mainly in the frequency range
corresponding to localized mode shapes. Indeed, the low performance of the
arithmetic averaging process seems to be based on the significant contribution
of the sporadic localized results associated with the long-tail characteristics
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of the response distribution.

In order to investigate the effects of damping mechanisms on the loca-
lized mode shapes, several magnitudes of damping loss factor were conside-
red and the corresponding localization factors were evaluated for four mode
shape statistics regions considered in the previous analysis. In Table[9] the lo-
calization factors of the arithmetic and geometric decay fitting are presented
for distinct mode shape statistics.

Table 9: Localization factor analysis for longitudinal random mass-loaded
rods: several excitation frequencies and damping loss factor magnitudes (en-
semble averaging approach).

] f=45kHz | Almost sinusoidal statistics | Modes: 09 - 10 |
| Damping Loss Factor | Arithmetic decay | Geometric decay |

1072 0.0004 0.0009

1073 0.0002 0.0005

1074 0.0002 0.0004

1076 0.0002 0.0004

1078 0.0002 0.0004

10~ 12 0.0002 0.0004

(a) Vicinities of Modes 09 and 10: excitation frequency of 4.5 kHz - almost
sinusoidal mode shape statistics

] f=10kHz | sinusoidal - Gaussian transition | Modes: 21 -22 |
’ Damping Loss Factor \ Arithmetic decay \ Geometric decay ‘

1072 0.0031 0.0038

1073 0.0032 0.0028

1077 0.0010 0.0027

107 0.0000 0.0027

1078 0.0000 0.0027

10~ 12 0.0000 0.0027

(b) Vicinities of Modes 21 and 22: excitation frequency of 10 kHz - sinusoidal

to Gaussian transition mode shape statistics
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’ f=20kHz \ Almost Gaussian statistics \ Modes: 41 - 42 ‘
’ Damping Loss Factor \ Arithmetic decay \ Geometric decay ‘

1072 0.0080 0.0115

1073 0.0051 0.0096

1077 0.0040 0.0094

107 0.0042 0.0094

1073 0.0042 0.0094

10712 0.0042 0.0094

(c) Vicinities of Modes 41 and 42: excitation frequency of 20 kHz - almost
Gaussian mode shape statistics

] f=30kHz | structural localized statistics | Modes: 62 - 63 |
| Damping Loss Factor | Arithmetic decay | Geometric decay |

1072 0.0165 0.0177

1073 0.0113 0.0160

10°7 0.0121 0.0159

107° 0.0123 0.0159

1078 0.0123 0.0159

10712 0.0123 0.0159

(d) Vicinities of Modes 62 and 63: excitation frequency of 30 kHz - Localized
mode shape statistics

The localization factor results show the significant influence of mode-
rate and large damping loss factor magnitudes on the evaluation of the spatial
averaged decay across the ensemble. According to the results, a low damping
loss factor provides the most favorable condition for the accurate evaluation
of the localization factor. In addition, it can be noted that the localization
factor magnitudes of the arithmetic and geometric averaging processes have
very distinct characteristics. The localization factors based on the geometric
mean value are expected to be larger than those based on the arithmetic mean
value for most excitation frequency ranges.

In Figure[83] the localization factor results are shown as a function of
the excitation frequency for both decay evaluation averaging processes, that
is, arithmetic and geometric. During the localization factor evaluation, very
low damping loss factor magnitudes were adopted in order to minimize the
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damping effects on the ensemble-averaged spatial decay. The localization
factor results are presented in terms of absolute values.
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Figure 83: Localization factor results as a function of excitation frequency:
arithmetic and geometric decay evaluation (ensemble averaging approach).

The localization factor curve of the arithmetic fitted decay has a very
oscillatory behavior and presents some unexpected null as well as negativ
values for the frequency regions of typical localized mode shape statistics.
On the other hand, the localization factor curve of the geometric fitted decay
has an almost continuous pattern and well-defined frequency characteristics.

As shown in Figure[83] as the excitation frequency increases, the struc-
tural localization phenomenon becomes more relevant and large localization
factor values are expected for the high-frequency range. Based on the pre-
vious results for the mode shape statistics analysis, for the frequency range
closest to the vicinity of 20 kHz, the establishment of GOE statistics is ex-
pected for both modal parameters. The localization factor results associated
with this frequency region suggest the presence of a moderate localization
and magnitudes close to 1% for the localization factor.

25The negative values of the localization factors are not emphasized herein because the locali-
zation factor results are presented in terms of absolute values.
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Additionally, the pass-band and stop-band frequency limits were ade-
quately identified. In the current localization analysis, the stop-band threshold
was adopted as the localization factor magnitude is equal to 1.1073. In the
Pierre’s work (148), a similar stop-band threshold magnitude was adopted for
several finite oscillator chains and an excellent performance was obtained in
the characterization of the pass-band and stop-band frequency regions. For
the low-frequency range, a spatial propagation of the longitudinal wave is ex-
pected throughout the rod structure domain since the uncertainty or disorder
effects are not significant. Therefore, the low localization factor magnitu-
des confirm the establishment of an almost negligible spatial decay, indica-
ting that the pass-band characteristics are associated with the low-frequency
range.

On the other hand, the strong localization and spatial energy confi-
nement phenomena are expected to become more intense as the excitation
frequency increases. The localization factor curve shows also that the lo-
calization factor magnitude increases gradually as the excitation frequency
increases.

Considering the excitation frequency region around 20 kHz, that is,
in the vicinities of modes 41 and 42, the establishment of GOE statistics is
expected for both modal parameters, as shown in previous results from mode
shape statistics analysis. From the localization analysis, the localization fac-
tor results suggest the establishment of a moderate localization regime for this
excitation frequency region since the presence of disorder or uncertainties re-
duces the coupling strength between two successive rod sections separated by
a point mass.

Kinetic Energy Density Statistics: Spatially-Averaged Excitation

In order to investigate the effects of distinct modal parameter statis-
tics on the kinetic energy density statistics, two distinct excitation classes are
considered. The first is a unitary longitudinal single point-loading which pro-
vides the energy response dependent on both modal parameter statistics. The
second considers a spatially-averaged excitation which provides the energy
results identical to those for rain-on-the-roof excitation. It is important to
emphasize that the contributions of the mode shape statistics are removed for
this second excitation class and thus the kinetic energy density statistics are
dependent only on the natural frequency statistics, Brown (1)).

In the following, the energy response of each ensemble member is eva-
luated considering a narrow frequency domain with a fixed frequency interval
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of 10 Hz. The modal superposition method was used to evaluate the kinetic
energy density results. Considering the FEM model performance, a detailed
convergence analysis was performed in order to guarantee the response con-
vergence in the frequency range of interest. The ensemble size adopted was
500 members.

In Figure the spatially-averaged kinetic energy density results for
some members are presented for a damping loss factor of magnitude equal to
3%, that is, 1 = 0.03. This choice is based on the fact that the modal overlap
factor range corresponding to this particular DLF magnitude is adequate to
evaluate directly the effects of the modal parameter statistics on the kinetic
energy density results, since the establishment of a high modal superposition
does not occur. Additionally, the analytical SEA prediction is also plotted.
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Figure 84: Kinetic energy density results for spatially-averaged excitation:
members, ensemble arithmetic and geometric mean values and SEA predic-
tion (ensemble averaging approach).

As shown in Figure[84] an excellent agreement was obtained between
the SEA prediction and ensemble mean values mainly in the mid and high-
frequency ranges.

In a similar manner, the relative variance of the spatially-averaged ki-
netic energy density results were also evaluated across the ensemble. The
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numerical results and analytical predictions are plotted in Figure

Arithmetic Average
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Relative variance
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Figure 85: Relative variance of kinetic energy density results for spatially-
averaged excitation based on: ensemble arithmetic and geometric mean va-

lues (ensemble averaging approach). The Poisson and GOE analytical pre-
dictions are also plotted.

As shown in Figure [85] the level of agreement between the numeri-
cal values and analytical predictions is low for almost the whole frequency
domain. The numerical relative variance results associated with each fre-
quency range can be easily understood when compared to the corresponding
ensemble natural frequency statistics. For the low-frequency range, the spec-
tral rigidity characteristics are relevant. Thus, small differences between the
random rod response and the nominal rod one are expected since almost ne-
gligible deviations occur for the natural frequency locations in comparison to
those of the nominal rod.

As the excitation frequency increases the energy response variability
across the ensemble becomes more and more relevant due to uncertainty or
structural irregularity effects. In the vicinity of 20 kHz (mode 42) the natural
frequency statistics presents an almost-GOE statistics and a good agreement
is expected between the ensemble relative variance results and the analytical
prediction based on the GOE model. Indeed, the relative variance of the
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numerical results conforms well with the GOE prediction in this frequency
region.

Beyond this frequency range, the structural localization effects on the
natural frequency statistics become gradually substantial as the excitation fre-
quency increases. As shown previously, an asymptotic establishment of the
Poisson natural frequency statistics occurs toward the high-frequency range
and thus the relative variance results from the numerical rod ensemble show
intermediate values between the GOE and Poisson analytical predictions.

Based on the performances of the relative variance predictions obtai-
ned in these current analyses, it is possible to affirm that for cases of spatially-
excited one-dimensional random structures, which are evident candidates for
the establishment of the structural localization phenomenon, the relative va-
riance analytical formulations based on the Poisson model can be applied in
a conservative way to predict the expected relative variance in the highest
frequency range.

Kinetic Energy Density Statistics: Single Point-Excitations

In this section, the characteristics of the energy response statistics of
the mass-loaded rods subjected to a unitary longitudinal single point-loading
are investigated for three distinct excitation point locations. The ensemble
mean and relative variance values of the kinetic energy density results were
evaluated considering the arithmetic and geometric averaging processes. Th-
ree distinct excitation points (Xp, X, and X3) are described in Table

Table 10: Three excitation points considered in the statistical analysis of the
kinetic energy density results: point nomenclature, spatial coordinates, and
brief statistical description.

| Excitation points | Length coordinate [m] | Brief description |

Xo 0 Left rod end
X5 2.125 Almost-GOE
X3 0.658 Arbitrary location

In Figure 86 the ensemble mean and relative variance values are
shown for each excitation point. The analytical predictions based on GOE
and Poisson model statistics are also plotted.
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Figure 86: Ensemble mean and relative variance values of the mass-loaded
longitudinal rods subjected to a single point-loading at excitation points X,
X5, and X3: numerical results and analytical predictions based on GOE and
Poisson models (ensemble averaging approach).

According to Figure [86] the ensemble mean and relative variance va-
lues present very distinct values for each averaging process considered. Since
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the structures investigated have a relevant trend toward the establishment of
the structural localization phenomenon, it is expected that the ensemble mean
values obtained from the geometric averaging process will represent the typi-
cally expected response across the ensemble more adequately than the mean
values obtained from the traditional arithmetic averaging process, Hodges et
al (139,140, 159).

In general, the ensemble mean values obtained from the geometric
averaging process are lower than those of the SEA predictions and arithmetic
values throughout the excitation frequency domain for all excitation points in-
vestigated. The energy responses of some ensemble members are also plotted
and clearly indicate the good performance of the ensemble geometric mean
values in representing the expected response of a typical member of the en-
semble.

On the other hand, the ensemble mean values obtained from the arith-
metic averaging process conform very well to the SEA predictions. Indeed, it
is important to emphasize that SEA predictions provide an excellent estimate
of the expected arithmetic mean value across the ensemble. As discussed pre-
viously, the evaluation of the arithmetic mean value of the energy responses
has a weak dependence on the modal parameter statistics and thus an excel-
lent agreement between the SEA predictions and ensemble arithmetic mean
values is expected, at least for structure ensembles for which the response
distributions have long-tail distribution characteristics.

Considering the ensemble relative variances of the three distinct ex-
citation points investigated, the results based on the geometric mean values
present larger amplitudes than those based on the arithmetic mean values,
mainly in the mid and high-frequency ranges, for all excitation points inves-
tigated. Indeed, the discrepancies between the relative variance results based
on the arithmetic and geometric mean values are clearly associated with the
establishment, to a high degree, of the ensemble localization phenomenon
which is gradually reinforced as the frequency increases.

The numerical variance results based on the geometric mean value are
high and clearly overestimate the SEA variance predictions based on the GOE
model throughout the frequency range investigated, suggesting that the typi-
cally expected variation in the kinetic energy density results across the ensem-
ble obtained from the probabilistic mode values (typically expected values
across the ensemble) may be substantially higher than the energy variance
predicted by SEA model based on GOE statistics.

Additionally, it is important to emphasize that the ensemble relative
variance results are more sensitive to changes in the modal parameter statis-
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tics than the ensemble mean values, regardless of the averaging process adop-
ted. Unlike the ensemble spatially-averaged relative variance results, which
are dependent only on the natural frequency statistics, the point-loaging re-
lative variance results are dependent on both the modal parameter statistics,
that is, natural frequency statistics and a fixed mode shape component statis-
tics corresponding to excitation point. As discussed previously in the spectral
relative variance analysis, it is expected that the contribution of the mode
shape statistics is usually more predominant for point-loading energy vari-
ance values than those of the natural frequency statistics, since small changes
in the mode shapes may become significant in terms of the relative variance
results.

As observed in Figure [86] the performance of point-loading relative
variance analytical predictions is very limited, regardless of the statistical mo-
del adopted for the modal parameter statistics. Indeed, the good performance
of the point-loading variance prediction based on the GOE model is strictly
associated with the establishment of Gaussian characteristics in the ensemble
and spectral mode shape statistics at the excitation point.

For all excitation points investigated, the relative variance results con-
form satisfactorily with the SEA variance prediction only within a limited
frequency range. The limits of these frequency ranges, in which the GOE
agreement is satisfactory, vary for each excitation point. In Figures [87] and
B8] the ensemble kurtosis and Lilliefors Test results are presented for the ex-
citation points Xp, X» and X3, respectively. The analytical predictions for
sinusoidal and Gaussian (GOE model) mode shape statistics are also plotted.
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Figure 87: Ensemble kurtosis results for the mass-loaded rod ensemble: ex-
citation points Xy, X, and X3 (ensemble averaging approach).

In general, the ensemble mode shape statistics results for the excita-
tion points agree with the global tendency previously presented in section
3.5.1. For the lower mode order range, the mode shapes are weakly affected
by the randomness effects and their statistics are almost-sinusoidal (nominal).
As the mode order increases the randomness effects become substantial and
a statistical transition occurs from the sinusoidal to almost-Gaussian mode
shape statistics. For three excitation points, the establishment of Gaussian
statistics is clearly observed in a limited mode order range, although the li-
mits and their extensions vary for each excitation point. Indeed, the achieve-
ment of a good performance of the SEA variance prediction based on GOE
statistics are strictly associated with the location and extension of the mode
order range with Gaussian characteristics. Beyond the Gaussian mode order
range, a gradual establishment of the localization characteristics occurs as the
frequency (mode order) increases. In the following, the performance of the
SEA variance prediction based on the GOE model is discussed in detail for
each excitation point in terms of the statistical characteristics of the ensemble
and spectral mode shape statistics results.
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Figure 88: Ensemble Lilliefors Test results for the mass-loaded rod ensem-
ble (ensemble averaging approach). Plot (a): Excitation point Xy. Plot (b)

Excitation point X,. Plot (¢): Excitation point X3.
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For excitation point Xy, in the frequency range of approximately 12.5
kHz to 15 kHz (corresponding approximately to modes 16-31) there was a
satisfactory agreement between the numerical variance results based on the
arithmetic mean value and the SEA variance prediction based on the GOE
model. Considering the corresponding ensemble mode shape statistics re-
sults, Figure and Figure (a), the ensemble kurtosis results associated
with this mode order range present values close to K ~ 3 (expected Gaus-
sian kurtosis value), although the Lilliefors Test results reject the hypothesis
of Gaussian distribution for the mode shape components associated with the
excitation point Xy across the ensemble.

Considering again the relative variance results at the excitation point
Xo, Figure[86] (a), some discrete peaks can be easily associated with large va-
lues of the ensemble kurtosis results. For example, the narrow peak at appro-
ximately 21.5 kHz is correlated to the localization characteristics of mode 45
where the ensemble kurtosis value is strongly localized, that is, K45 ~ 9, Fi-
gure[§7] Similarly, the peak centered at approximately frequency 24.3 kHz is
strictly associated with the localization characteristics of mode 51 (K5; ~ 15,
strongly localized).

For excitation point X3, three distinct narrow frequency regions show
an approximate agreement between the analytical prediction based on the
GOE model and the numerical variance results based on the arithmetic mean
value. These three narrow frequency ranges are approximately centered in
the vicinity of 12.5 kHz (corresponding to modes 25-26) for the first range,
in the vicinity of 13.5 kHz (corresponding to modes 29-31) for the second
range, and in the vicinity of 16.8 kHz (corresponding to mode 35) for the last
frequency range.

Considering the corresponding ensemble mode shape statistics results,
Figure[87)(c) and Figure[88] the ensemble kurtosis results show that the mode
shapes associated with these mode order ranges present values close to K ~ 3
(expected Gaussian kurtosis value), although the Lilliefors Test results reject
the hypothesis of Gaussian distribution only for last frequency region.

Between the second and third frequency ranges, a large peak in the re-
lative variance results is clearly established in the vicinity of frequency 15.8
kHz. This peak is correlated to the localization characteristics of successive
modes 33 and 34 where the ensemble kurtosis values are moderately locali-
zed, that is, K33_34 ~ 4.5, Figure[§7]

For excitation point X, the arithmetic relative variance results asso-
ciated with the frequency range from approximately 16.2 kHz to 20.6 kHz
(corresponding approximately to modes 34-44) showed a excellent agreement
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with the SEA variance prediction based on the GOE model. Considering the
corresponding ensemble mode shape statistics results, Figures [87)and [88] (b),
the ensemble kurtosis results associated with this mode order range present
values close to K ~ 3 (expected Gaussian kurtosis value) and the correspon-
ding Lilliefors Test results approve the hypothesis of Gaussian distribution
for the mode shape components associated with excitation point X, across
the ensemble.

As observed in Figure [86] (b), a well-defined shift in the curve of the
relative variance results occurs at a frequency of approximately 21 kHz (vi-
cinity of mode order 44) and an approximately flat behavior is established
beyond this shift up to a frequency of 29 kHz. Considering the corresponding
ensemble kurtosis results, Figure[87] a similar shift from the almost Gaussian
(K47 ~ 3) to weak localized statistics (K35_53 ~ 4,) occurs at mode order 45
and a mode order range with weak localization characteristics is established
from mode 45 to mode 58.

Considering the spectral kurtosis and Lilliefors Test results, Figure 76}
the degree of the spectral correlation between the mode shape components
is very substantial for the excitation points Xy and X3. Indeed, the spectral
Lilliefors Test results, Figure [76 (b), suggest that for most of the ensemble
members, circa 99%, the mode shapes can not be considered to be Gaussian
variables at these excitation points. Conversely, the spectral results associated
with excitation point X, Figure (b), suggest that for less than half of en-
semble members, circa 30%, the mode shape components can be considered
to be almost Gaussian distributed at excitation point X;.

It is also interesting to note that, although the excitation points X, and
X3 have distinct spectral correlation characteristics in terms of the mode shape
statistics, their agreements with the analytical prediction based on the GOE
model are very similar in the frequency ranges in which the establishment of
Gaussian mode statistics is expected. Indeed, their numerical results conform
very well with those based on GOE predictions over frequency ranges with
similar extensions, suggesting that the presence of an inter-modal correlation
between the mode shapes at the excitation point may not be the main factor
associated with the reduced performance of the relative variance predictions
based on the GOE model observed previously in the SEA variance literature
results.

With respect to the establishment of GOE statistics for each of the mo-
dal parameters, it is important to note that for excitation points Xy and X3 the
frequency ranges associated with ensemble mode shape statistics with almost-
GOE characteristics are clearly distinct to the frequency range in which the
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ensemble natural frequency statistics is approximately described by the GOE
model. Although, it is considered that the best performance of the revised
SEA variance predictions is exclusively obtained when a complete establish-
ment of GOE statistics occurs for both modal parameter statistics, an excel-
lent agreement between the analytical prediction based on the GOE model
and numerical results was observed for the frequency range associated with
Gaussian mode shape statistics, independent of the excitation point location.
This finding appears to indicate that the mode shape contributions to kine-
tic energy density response are more predominant than the natural frequency
contributions in the case of the single point excited rod ensemble investigated.

Considering the point-loading variance results associated with the ex-
citation point X», an excellent agreement is verified between the variance pre-
diction based on the GOE model and arithmetic numerical results for the ex-
citation frequency range close to the vicinity of 20 kHz. As shown in the
previous analysis of the modal parameter statistics for the ensemble avera-
ging approach, the results for the statistical observables suggest an almost
GOE statistics for point X, and in the vicinity of 20 kHz frequency (or in
the vicinity of mode 42). Considering the ensemble averaging approach, a
satisfactory establishment of GOE statistics for the modal parameters is also
suggested by the corresponding results for the statistical observables.

On the other hand, it is also important to observe that the spectral
mode shape statistics results associated with the excitation point X, clearly
indicate an incomplete establishment of the GOE statistics, since for no more
than 30% of the ensemble members the mode shape components are expected
to be Gaussian distributed.

Additionally, the spatial mode shape statistics results, Figure [75] sug-
gest that the occurrence of Gaussian characteristics in the mode shape com-
ponent domain is very limited to a mode order range and also the largest
number of Gaussian mode shapes occurs for a limited mode order range, ap-
proximately modes 26-42, where circa 15% of the ensemble members present
Gaussian distribution characteristics.

3.5.2 Breaking the Geometrical Regularity

In this study, a second ensemble composed of 500 Gaussian spatially-
correlated random rods was also investigated. In order to break the regularity
of the rod geometry along the length, the randomization process considered
the rod cross-sectional area as a random variable along the rod axis direction,
where the values are spatially correlated. For each rod member, a particu-
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lar correlation length is adopted and, using a correlation function, a spatial
variation of cross-sectional area along the rod axis direction is obtained and
the rod cross sectional area values are Gaussian distributed®] The correla-
tion length values vary uniformly across the rod members from L. = 0.04 to
L. =0.08. According to previous results discussed in section [3.4.7] the cor-
relation length range adopted here is associated with the highest probability
for the occurrence of Gaussian mode shapes, Figure[66](b).

Natural Frequency Statistics

In Figure 89} the results for the natural frequency statistical observa-
bles are shown for several mode orders (or spacings): PDF of adjacent natural
frequency spacings and A3 - statistics results.
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26 A similar randomization process was adopted previously in the spectral analysis of Gaussian
spatially-correlated random rods. For more details see section[3.4.7]
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Figure 89: Results for natural frequency statistical observables for Gaussian
spatially-correlated random rods (ensemble averaging approach). Plot (a):
Mode 10. Plot (b): Mode 20. Plot (c¢): Mode 35. Plot (d): Mode 40. Plot (e):
Mode 65. Plot (f): Mode 80. Plot (g): Mode 95.

As shown in Figure89] the effects of the spatial correlation vary signi-
ficantly in the frequency range investigated. For mode 10, corresponding ap-
proximately to a frequency of 5 kHz, the natural frequency statistics presents
deterministic-GOE transition statistics characteristics. The high spectral rigi-
dity characteristics are clearly established due to the low performance of the
randomization process. Indeed, the typical wavelength of mode 10 is higher
than the values adopted for the correlation lengths, 110 > L.. For mode 20,
corresponding approximately to a frequency of 10 kHz, the spatial correlation
effects are substantial and a tend toward the establishment of GOE statistics is
observed in the small spacing range, breaking the high spectral rigidity cha-
racteristics. On the other hand, the correlation effects are not effective for
large spectral distances and some residual spectral rigidity characteristics are
still observed in the results for the long-range fluctuation statistical observa-
bles.

Although it not shown here in detail, for modes that lie in the mode
order range of modes 40-65, corresponding approximately to the frequency
range of 20,7 kHz to 34,0 kHz, the GOE statistics is satisfactorily established
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for short and long spectral distances and an excellent agreement with the
RMT predictions is also observed. Beyond this GOE region, the performance
of the randomization process becomes inefficient since the typical wavelength
is expected to be less than the correlation length values, Anodes>70 < Le. In
fact, the spatial correlation effects are clearly minimized as the mode order
increases and the spectral rigidity characteristics are again gradually reesta-
blished. The natural frequency statistical observable results for modes 80 and
95 showed the establishment of an almost-nominal (deterministic) statistics

where high spectral rigidity characteristics are clearly observed.

Natural Frequency SEA Parameter: Statistical Overlap Factor

In the SEA context, the statistical overlap factor has been traditionally
used to verify the applicability of the GOE model to random engineering sys-
tems. In Figure[90} the global and local natural frequency spacings, and natu-
ral frequency standard deviations, as well as the respective statistical overlap
factor results, are presented in terms of mode order domain.
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Figure 90: Statistical overlap factor results for a Gaussian spatially-correlated
rod ensemble (ensemble averaging approach). Plot (a): global natural fre-
quency spacing, local natural frequency spacings, natural frequency standard
deviations. Plot (b): Statistical overlap factor: based on the definitions of
global and local mean values for the natural frequency spacings.

As shown in Figure [@] (a), the standard deviation values are less than
natural frequency spacing values throughout the mode order domain investi-
gated. Additionally, it is also observed that the performance of the randomi-
zation process is satisfactory uniform in the central region of the frequency
domain investigated, since the local and global natural frequency spacing va-
lues are very similar.

According to the statistical overlap factor results, Figure 00| (b), the
establishment of GOE statistics would be expected for modes where the sta-
tistical overlap factor values are large than unity, that is, the frequency range
is approximately from 8 kHz to 40 kHz (or the corresponding mode order
region which comprises approximately modes 16-77). Conversely, based on
the previous results for the natural frequency statistical observables, it can be
concluded that the statistical overlap factor analysis clearly failed to identify
the frequency region in which the GOE model is applicable to natural fre-
quency statistics. Indeed, the good and satisfactory agreement between the
GOE predictions and natural frequency statistics is only observed approxi-
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mately in the frequency range of 18 kHz to 35 kHz.

Mode Shape Statistics

In Figure[0T] the spatial kurtosis results for each member are presented
in terms of the mode order domain. The probabilistic mode values as well as
the arithmetic and geometric mean values are also presented. The analytical
predictions for sinusoidal and GOE mode shapes are also plotted.
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Figure 91: Spatial kurtosis results for the Gaussian spatially-correlated rods:
individual members, probabilistic mode, arithmetic and geometric mean va-
lues and analytical predictions (sinusoidal and GOE) (spatial averaging ap-
proach).

As presented in Figure[91] a high dispersion of spatial kurtosis values
is observed throughout the mode order domain. The distinct mean values
obtained from the arithmetic and geometric averaging processes clearly evi-
dence a possible establishment of the long-tail distribution characteristics for
the mode shapes. Additionally, the high values for the spatial kurtosis are as-
sociated with the occurrence of the structural localization phenomenon in the
mode shapes, mainly beyond mode 20, Hodges and Woodhouse (139, [140).
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Considering again the spatial kurtosis results in Figure the proba-
bilistic mode values suggest that the largest number of Gaussian modes, in
terms of the spatial mode shape domain, occurs mainly in the mode order
region from mode 35 to mode 65 (approximately from 18 kHz to 34 kHz).
In Figure 92} the spatial Lilliefors Test results are presented for individual
member values and arithmetic mean values also are plotted.
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Figure 92: Spatial Lilliefors Test results for the Gaussian spatially-correlated
rod ensemble: individual member values and arithmetic mean values (spatial
averaging approach).

As shown in Figure [02] the establishment of Gaussian modes in the
spatial mode shape domain is expected at least for one member of the en-
semble for the mode order range beyond mode 10. Additionally, the results
suggest that the largest number of Gaussian mode across the ensemble occurs
in the mode order range from mode 35 to mode 70 (approximately from 18
kHz to 36 kHz), where it is expected that approximately 10% of the members
have Gaussian mode shape characteristics. Outside this mode order region, a
reduced establishment of spatial Gaussian mode shapes is observed and thus
less than 10% of the members are expected to have mode shapes with Gaus-
sian characteristics.
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In order to assess the establishment of spatial Gaussian mode shapes
across the ensemble, the spatial Lilliefors Test results from each member are
presented in terms of the mode order domain, Figure[93](a). The points repre-
sent the mode shapes for which the Gaussian hypothesis is held in the spatial
mode shape averaging approach. In general, the spatial Lilliefors Test results
suggest that the establishment of Gaussian modes is approximately uniform
across the ensemble for most mode orders, showing the good performance
of the randomization process adopted. In Figure 03] (b), the total number of
Gaussian mode shapes is presented for each ensemble member. Rather than
presenting the results with the member number on the x-axis, the results are
presented in terms of the particular correlation length (L.) associated with
each member of the ensemble.
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Figure 93: Spatial Lilliefors Test results in terms of: (a) member number and
(b) correlation length associated with each member of the ensemble (spatial
averaging approach).

Another relevant characteristic of the mode shapes is the degree of
statistical independence of a fixed mode shape component associated with
the excitation point. For the case of complete statistical independence, it is
expected that the distribution of the mode shape amplitudes associated with a
given excitation point is Gaussian. In Figure[94] the spectral kurtosis results
for each member are presented in terms of the spatial coordinate domain. The
probabilistic mode values are also presented along with the arithmetic and
geometric mean values. The analytical predictions for sinusoidal and GOE
mode shapes are plotted.

As presented in Figure [94] a high dispersion of the spectral kurtosis
values is observed mainly in the rod regions close the ends. Additionally,
the expected mean and typical values are highest in these rod regions. For
the central rod region, the spectral kurtosis mean values tend asymptotically
toward a kurtosis value slightly lower than the GOE prediction value.
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Figure 94: Spectral kurtosis results for the Gaussian spatially-correlated rods:
individual members, probabilistic mode, arithmetic and geometric mean va-
lues and analytical predictions (sinusoidal and GOE) (spectral averaging ap-
proach).

The ensemble mean values of the spectral kurtosis obtained from the
arithmetic and geometric averaging processes differ slightly, suggesting a
weak effect of the long-tail distribution characteristics on the mode shapes.
In Figure 03] the spectral Lilliefors Test results are presented for individual
members and arithmetic mean values also are plotted.
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Figure 95: Spectral Lilliefors Test results for the spatially-correlated rod en-
semble: individual member values and arithmetic mean values (spectral ave-
raging approach).

As shown in Figure [93] the establishment of Gaussian modes in the
spectral averaging approach is expected at least for a member of the ensem-
ble, regardless of the excitation point location. Additionally, the averaged
results suggest that the largest number of Gaussian modes across the ensem-
ble occurs in the central rod region, circa 80 % of the members. For other
rod regions, a gradual decrease in the number of Gaussian modes across the
ensemble is observed from the central to end regions. According to the ave-
raged spectral Lilliefors Test results across the ensemble, the percentages of
members which have Gaussian mode shapes on the excitation points Xp, X»
and X3 are approximately 27%, 80% and 57%, respectively.

Considering the ensemble mode shape averaging approach, the en-
semble kurtosis results, as well as their mean and typical values, are shown
as a function of mode order in Figure [06] The GOE and sinusoidal analytical
predictions are also plotted.

As shown in Figure 96| a high dispersion is expected for all mode
orders. Extremely large ensemble kurtosis values are also observed for some
mode orders mainly in the mid and high mode order ranges.
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Figure 96: Ensemble kurtosis results for the Gaussian spatially correlated
rods: individual member, probabilistic mode, arithmetic and geometric mean
values (ensemble averaging approach).

The ensemble averaged results indicate that as the frequency (or mode
order) increases, a statistical transition occurs for the mode shapes of the ap-
proximately sinusoidal to localized statistics. On the other hand, the typically
expected values of the ensemble kurtosis are lower than both the mean va-
lues throughout the mode order range and indicate that mode shape statistics
similar to GOE are expected to be established for the mode order ranges of ap-
proximately modes 17-33 and modes 70-80 (corresponding to the frequency
ranges of 7.5 kHz to 18 kHz and 37 kHz to 42 kHz, respectively). For the
mode order range of modes 33-70 (corresponding to the frequency range of
18 kHz to 37 kHz), the typical kurtosis results are slightly greater than the
GOE values and suggest the establishment of a weak localization phenome-
non across the ensemble.

In order to identify the most probable mode shape component (i.e.,
excitation point) and mode order range (or frequency range) for the establish-
ment of GOE statistics across the ensemble, the ensemble Lilliefors Test re-
sults are plotted in a bi-dimensional graphical representation, Figure (97| (a).
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Figure 97: Ensemble Lilliefors Test results for a Gaussian spatially-correlated
rod ensemble (ensemble averaging approach). Plot (a): bi-dimensional
graphical representation. Plot (b): individual member and the mean values
as a function of the mode order value.
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As shown in Figure|97|(a), the large amount of points associated with
the central rod region shows the high probability of the establishment of GOE
statistics across the ensemble for these mode shape components. In Figure[97]
(b), the mean value of the Lilliefors Test results across the ensemble for each
mode order value suggests that the mode order region with the largest pro-
bability for the establishment of a Gaussian distribution for the mode shape
components is approximately from mode 15 to mode 35 (corresponding to the
frequency range of 7.5 kHz to 18 kHz). Beyond this region, a reduced num-
ber of Gaussian distributed mode shape components is clearly observed due
to the establishment of localization phenomenon in the ensemble averaging
approach, including the mode order from mode 70 to 80.

Mode Shape SEA Parameters: Normalized Parameters P and Q

In Figure O8] the results for the normalized parameters P and Q, (P,
and Q, respectively), are presented as a function of the mode order value.
Considering that for parameter P, values larger than P, = 0.4 the establish-
ment of GOE statistics is expected (20), the current parameter P, results sug-
gest that the complete establishment of GOE statistics occurs beyond mode
08, Figure[98](a). These results clearly show that the performance of parame-
ter P, is totally unsatisfactory under particular situations, since this parameter
does not take into account the crossing phenomenon of natural frequencies
due to the presence of system randomness, Kessissoglou and Langley (80)
and Cordioli (20). As discussed by Cordioli (20), the parameter P is expec-
ted to have a performance similar to the statistical overlap factor, which fails
when the system is randomized in particular ways or has the presence of ge-
ometrical symmetries.
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