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Overview 
Prerequisites for the assessment of the threat of introduced and invasive marine pests to a 
particular ecosystem are knowledge of species present, their current distributions and 
abundances.  This information, however, largely does not exist for microalgal communities in 
the Great Barrier Reef World Heritage Area (GBRWHA).  The need for such baseline 
information was recognised by the Australian Ballast Water Management Advisory Council 
(ABWMAC), the Standing Committee on Agriculture and Resource Management (SCRAM), 
and the Australian and New Zealand Environment and Conservation Council (ANZECC).  In 
recognition of these problems, baseline studies through port surveys have been conducted in 
Australia to define the state of introductions and occurrences of non-indigenous species.  
These efforts were coordinated largely by the CSIRO Centre for Research on Introduced 
Marine Species (CRIMP) and also involved several State agencies and research 
organisations. 
 
Despite these surveys, knowledge on current microalgal community structure, occurrences 
and abundances of toxic microalgae in the GBRWHA remains scarce and incomplete, in 
particular in regard to introductions and invasiveness, which is defined in this review as 
range-expansions of existing microalgae due to habitat change.  The main reasons for the 
paucity of information on toxic microalgae in the GBRWHA lies in the restriction of sampling 
efforts for only certain species, the sporadic and short term nature of port surveys, and the 
fact that samples were only analysed by traditional morphology-based techniques, which 
yield no information regarding toxicity of certain microalgal species.  Taxonomical analysis 
based on morphology alone is also insufficient because the identification is often tentative at 
best, which is partially due to morphological plasticity within many microalgal species.  
 
Due to the lack of developed molecular probes for fast and unambiguous identification of 
Great Barrier Reef (GBR)-specific microalgae, several issues and questions remain and may 
become more pressing under climate change scenarios. These are:  
 
• Acknowledgement of the necessity for molecular tool development to overcome 

identification problems and expedite sample analyses specifically for the GBR. 
• Acknowledgement of the need to develop tools to differentiate between toxic and non-

toxic strains of identical morphology. 
• What is the distribution of toxic strains? 
• What are the economic and health threats for the region and how will climate change 

influence these risks?  
• Are temperate regions more at risk from proliferation of introduced species of toxic 

microalgae than tropical regions, or is this perception merely a reflection of a greater 
human population density and associated eutrophication, as well as an imbalance of 
frequencies / durations of surveys between the regions?  

• What is the current status of toxic microalgal invasions and realised modes of 
invasiveness in the GBRWHA? 

 
This review will provide an overview of current knowledge of toxic microalgae with a focus on 
toxic dinoflagellates.  It will briefly describe dinoflagellate characteristics, which impede 
identification and molecular tool development (see Introduction), provide an overview of 
microalgal toxins and associated human health issues, and summarise information available 
on the distribution of toxic microalgae in the GBRWHA and Australasia and their threats to 
the region.  At the end, this review will also introduce suitable molecular techniques that need 
to be developed and utilised for GBR-specific toxic microalgal identifications in order to 
effectively predict the risks and threats that these organisms pose to the GBRWHA and the 
local human population now and under future temperature regimes.  
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Introduction 
Microalgae are of considerable importance within marine ecosystems; they are significant 
contributors to primary productivity and food webs, some are endosymbiotic with, for 
example, scleractinian corals, anemones, foraminiferans, etc.  Some are parasitic, and 
others can produce harmful toxins which can accumulate in shellfish and finfish and, upon 
consumption, cause human poisonings.  Phytoplankton (microalgae living freely suspended 
in the water column) is estimated to fix 70% of the 2.2 x 105 tonnes of carbon fixed daily 
within the GBR (Furnas & Mitchell 1996), showing the importance of microalgae as a carbon 
sink.  
 
In the past few years, research has focussed on the detection of toxic microalgae because of 
their negative impact on economies, costing fisheries millions of dollars per annum.  The 
most prominent toxic microalgae are those that form harmful algal blooms (HABs).  Blooms 
are defined as temporary and localised excessive proliferations of particular microalgal 
species.  These blooms are designated to be harmful if they harm marine life and/or humans 
either through the production of toxins or by other means, e.g. clogging of fish gills.  
Sometimes blooms are also referred to as red or brown tides, because densities of 
organisms present discolour the water.  The terms red or brown tides, however, are not 
synonymous with the term HABs because they may not have adverse effects on humans or 
marine life.  It must be emphasised that the occurrence of HABs is not a prerequisite for 
adverse impacts of algal toxins on human health as toxins can be bioaccumulated in shellfish 
and reef fish and passed onto humans via the consumption of contaminated marine 
organisms.  Toxin production and levels of toxicity is another research area having received 
much attention recently.  However, the nature of toxin production, e.g. whether toxins are 
produced by microalgae themselves or by associated intra- or extracellular bacteria, or are 
modified upon ingestion, has still not been resolved.  For the purpose of this review, we will 
assume toxins are produced directly by microalgae, dinoflagellate species or strains, 
because these have always been observed to be present in outbreaks. 
 
In the past few decades, incidences of toxic microalgal outbreaks have increased and the 
greater geographical range of many species has been documented (Hallegraeff 2003).  The 
genera Gymnodinium and Alexandrium receive the most research attention worldwide as 
they can form large blooms of more than twenty million cells per litre (Hackett et al. 2005) 
and are predominantly consumed by filter-feeding molluscs such as mussels and oysters.  
The toxins are lipophilic, bioaccumulate in fatty tissues of animals and are passed up the 
food chain where they can cause serious neurological symptoms and even death to higher 
order predators such as cetaceans (Doucette et al. 2006) and humans (Hallegraeff 1998).  
 
Dinoflagellate lifecycles and modes of nutrition can be exceedingly diverse.  Although they 
are classified as ‘algae’, approximately half the extant species do not contain chloroplasts 
and are thought to be obligate heterotrophs (Gaines & Elbrächter 1987).  Of those remaining, 
the majority are mixotrophic, requiring organic compounds in addition to photosynthetic 
products to sustain growth.  Phagotrophy is common in dinoflagellates, and many prey on 
both prokaryotic and eukaryotic prey.  
 
Dinoflagellates are primarily haploid with vegetative reproduction dominating their lifecycle 
(Pfeister & Anderson 1987).  Typically, during sexual reproduction gametes fuse to form 
diploid planozygotes, which enlarge and upon loss of flagella transform into hypnocysts, 
which sink to the sediments.  Hypnocysts undergo a requisite period of dormancy before 
being able to hatch, although they may remain viable in the sediment for five to ten years 
(Anderson et al. 1995).  Under the correct environmental conditions hypnocysts can 
germinate, entering the vegetative reproduction cycle.  Excessive numbers of cell divisions 
are thought to occur under suitable climatic and nutrient conditions leading to the initiation of 
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a bloom.  Hypnocysts have been proposed to be ‘seeds’ for initiating blooms (Hallegraeff et 
al. 1998).  Some species also produce vegetative temporary cysts by shedding their flagella 
and rounding of the cell (Marasovic 1989).  Vegetative cyst formation often occurs when 
environmental conditions deviate greatly from the optimum, in the absence of another mating 
compatible strain, and is thought to function as a protective mechanism (Marasovic 1989, 
Garces et al. 2002).  Although these are the lifecycle stages of typical free living 
dinoflagellates, there are many variants on this.  The heterotrophic dinoflagellate Pfiesteria 
piscida, nicknamed the ‘cell from hell’, has caused the death of billions of fish in estuarine 
waters within the USA (mode of action, e.g. toxin production, currently unknown and 
disputed) (Burkholder et al. 1992) and is thought to have the most complex life cycle with up 
to 24 lifecycle stages.  The life cycle of Pfiesteria includes flagellated, and several amoeboid 
and cyst stages, which are all morphologically dissimilar to the vegetative cell (Burkholder et 
al. 1992).  The complex life cycle of dinoflagellates and the occurrence of life cycle stages 
that often bear no resemblance to the vegetative cell generating them, as well as the 
occurrence of life cycle stages that are morphologically similar between different species, are 
major impediments to correct identification using light microscopy.  Even under scanning 
electron microscopy, differences between cysts of different species can be imperceptible to 
the untrained eye and therefore experts are needed for correct identification of species 
present. 
 
Dinoflagellates are unusual organisms in that they show a mixture of prokaryotic and 
eukaryotic features.  They can contain more than a hundred chromosomes, which remain 
condensed throughout the cell cycle except for a short period in which they uncoil to allow 
replication (Dodge 1966).  Their genome is extremely large and a haploid nucleus can 
contain over sixty times more DNA than a human diploid nucleus (Spector 1984).  Unlike 
other eukaryotic cells they do not contain nucleosomes (Herzog & Soyer 1981), although 
histone-like proteins (HLPs) have been found within the nucleus (Rizzo 1981).  Phylogenetic 
analysis of dinoflagellate HLPs show that they are closely related to proteobacterial HLPs 
and may have been acquired by lateral gene transfer (Hackett et al. 2005).   
 
To date, efforts to identify genes that might code for toxins have been unsuccessful.  The 
large genome size of dinoflagellates has hindered genome projects aimed to reveal the 
genes responsible for toxin production.  Hackett et al. (2005) generated and analysed 10,885 
expressed sequence tag (EST) sequences from Alexandrium tamarense, but no genes 
involved in toxin production were identified.   
 

Table 1:  ABWMAC Target Toxic Dinoflagellate Species (Hewitt & Martin 2001). 
 

Species Potential Origin 
Alexandrium catenella Global temperate 
Alexandrium minutum Mediterranean, Atlantic Europe 
Alexandrium tamarense Global temperate 
Gymnodinium catenatum East Pacific, Northern Europe 

 
Bloom-forming toxic dinoflagellates are intensely researched due to their invasive nature, the 
history of recent introductions, huge economic losses and their risk to human health.  The 
ABWMAC table of target marine pest species lists four toxic dinoflagellates (Table 1) thought 
to have been introduced to Australia through semi-dry and dry ballast and ballast water.  
Despite the temperate latitudes in which these organisms occur, they have been the focal 
point even in surveys of tropical Australian ports.  A few of these temperate species have 
been used in development of molecular taxonomic tools.  Although range expansions of 
these organisms is theoretically possible due to suitable habitat structure, e.g. in the Port of 
Townsville (CSIRO 1998), there is clearly a need to analyse toxic microalgal abundance and 
occurrence on the GBR by traditional means and with molecular techniques, to capture the 
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possible introduction of toxic tropical microalgae and potential range expansions of existing 
GBR-toxic microalgae (see next section) under changed climatic conditions to protect the 
health of the local community.  
 

Toxic Microalgae Involved in Human Poisonings 
There are five main human poisonings caused by consumption of seafood contaminated by 
microalgal toxins; four are mainly attributable to the presence of toxic dinoflagellates.  These 
are ciguatera fish poisoning (CFP), paralytic shellfish poisoning (PSP) diarretic shellfish 
poisoning (DSP), and neurotoxic shellfish poisoning (NSP).  Amnesiac shellfish poisoning 
(ASP) occurs through the consumption of seafood contaminated by toxic diatoms.  The 
causative agents for other minor poisonings, e.g. azaspiriscid poisoning, are unknown 
(Daranas et al. 2001).  We will therefore restrict this review to the five main poisonings (CFP, 
NSP, PSP, DSP and ASP), as they are likely to be the area of greatest concern within the 
GBR Ecosystem.  Table 2 summarises microalgal species, their toxins, and current 
distributions relevant to Australia for the five main poisoning events.  Those species 
considered of immediate or future concern to the GBR are indicated with an asterisk.  
Relevant references are cited in the text. 
 
Although poisoning events are reportable, except for NSP, which is reportable only in Florida 
and only since 1999, attempts to quantify them are hindered by overlapping symptoms 
between the differing types of seafood poisoning and the fact that affected individuals often 
only show some of the symptoms, leading to misdiagnoses.  All seafood poisonings, 
regardless of type, include symptoms such as nausea and gastrointestinal discomfort.  Such 
symptoms can have many other unrelated causes and it is likely that the real number of 
cases is largely underestimated (e.g. weaker poisoning events are not diagnosed).  Typically, 
misdiagnosis is only detected when numbers of patients with similar symptoms increase 
sharply in a short period of time.  Authorities and the public are alerted more efficiently when 
regular monitoring programmes, aimed to quantify toxic microalgal abundances and the toxin 
content in shellfish beds, are in place within the region.  While these procedures do little to 
reduce economic losses, at least human health is far better protected.  It needs to be 
emphasised that there are no microalgal toxin monitoring programs in place for the 
GBRWHA, leaving the local population largely oblivious to potential danger from seafood 
poisoning and therefore unprotected. 
 

Ciguatera Fish Poisoning (CFP) 
Ciguatera is endemic to tropical and sub-tropical regions, and ciguateric fish are 
predominantly reef or oceanic fish species which feed on the reef.  Ciguatera fish poisoning 
caused by the consumption of contaminated finfish is probably the most commonly reported 
seafood poisoning (Lehane & Lewis 2000) and exhibits a diverse array of symptoms.  Some 
gastrointestinal symptoms can include diarrhea, nausea, vomiting and abdominal pains, 
whilst neurological symptoms can include paraesthesia, dysaesthesia, temperature reversal, 
pruritus and headaches and cardiovascular symptoms such as bradycardia and hypotension 
(Calvert 1991, Lehane & Lewis 2000).  In some cases neurological effects may persist for 
months or years (Gillespie et al. 1986).  It is suggested that fifty thousand or more cases 
occur globally per annum (Lehane & Lewis 2000, Daranas et al. 2001).  The numbers of 
diagnosed ciguatera poisonings is, however, thought to be vastly underestimated as the 
symptoms vary greatly leading to frequent misdiagnosis (Lewis 2001).  The low number of 
human fatalities from ciguatera poisoning may be attributable to fish mortalities at higher 
levels of ciguatera contamination (Lewis 1992).  
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Table 2:  Summary of toxic microalgal species, their toxins and their distributions. 
 

Ciguatera fish poisoning (CFP) 
Species Toxin Distribution 

Gambierdiscus toxicus* 

• Gambiertoxins (precursor for 
ciguatera toxin? toxins are lipid 
soluble) 

• Maitotoxin (water soluble toxin) 

Tropical, Tahiti, GBR 

Ostreopsis spp.* 
• Ostreotoxins (precursor to 

ciguatera toxins?) 
• Palytoxin-like analogues 

Tropical, Indian Ocean,  
GBR (reported), Japan,  
New Zealand 

oolia spp.* • Cooliatoxins (precursors to 
ciguatera toxins?) 

Tropical, GBR (likely),  
New Zealand 

Neurotoxic shellfish poisoning (NSP) 
Species Toxin Distribution 

Karenia brevis 

• Brevetoxins 
• Hemolytic toxins  

(both toxins are lipid soluble, 
heat and acid stable) 

Gulf of Mexica, Carribean, 
Texas, Louisiana, East coast 
of Florida, North and South 
Carolina 

Paralytic shellfish poisoning (PSP) 
Species Toxin Distribution 

Alexandrium catenella* 
Subarctic to tropical, 
Japan, New South Wales, 
Victoria, New Zealand 

Alexandrium minutum 
Mediterranean Sea, South 
East Asia, South Australia, 
New Zealand 

Alexandrium tamarense* Subarctic to tropical 

Gymnodinium catenatum Tasmania, New Zealand, 
Singapore 

Pyrodinium bahamense var. 
compressum* 

• Saxitoxin and saxitoxin-
analogues (water soluble toxin, 
of bacterial origin?) 

Tropical, Philippines, 
Indonesia, Malaysia,  
Papua New Guinea,  
Brunei, GBR(?) 

Diarrhetic shellfish poisoning (DSP) 
Species Toxin Distribution 

Dinophysis spp.* 
• Okadaic acid and derivates 

(lipophilic toxin, digestion 
product of dinophysis toxins?) 

Japan, Tropical, GBR 

Prorocentrum spp.* • Okadaic acid and derivates Tropical, GBR 

Amnesiac shellfish poisoning (ASP) 
Species Toxin Distribution 

Pseudo-nitzschia spp.* • Domoic acid (water soluble and 
heat stable toxin) 

Temperate, Canada, 
Massachusetts, West coast  
of United States, Japan,  
New Zealand, Australia (?) 

*Species considered of immediate or future concern for the GBRWHA.
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The primary causative agent in ciguatera poisoning is Gambierdiscus toxicus, which 
produces gambiertoxins (GTXs) thought to be the precursors to ciguatoxins (CTXs) (Holmes 
et al. 1991).  These toxins bioaccumulate in the food chain, with herbivorous fish and/or 
invertebrates acting as the vectors of ciguatoxins to carnivorous fish (Lewis 2001).  CTXs are 
a family of lipid soluble, heat stable cyclic polyether molecules (Lewis 2001) and are 
structurally similar to brevetoxins (Holmes et al. 1991), although much more potent 
(Yasumoto & Murata 1993).  It is thought that CTXs are oxidized to more potent forms upon 
ingestion (Lewis et al. 1991).  As these toxins are lipid soluble, they primarily accumulate in 
the viscera of fish, although the majority of human poisonings result from fish muscle which 
is consumed more often and in higher quantities (Lehane & Lewis 2000).  Gambierdiscus 
toxicus is also known to produce large quantities of maitotoxins, which are water-soluble.  
Although these are extremely toxic, they are not considered to contribute to ciguatera 
poisoning as they do not accumulate to a large degree in the muscle of fish (Lewis & Holmes 
1993). 
 
There has been some controversy on whether the diversity of symptoms may be wholly due 
to different types of ciguatoxins (Lewis 2001, Lewis 2006), or due to the presence of a 
combination of ciguatoxins and other dinoflagellate toxins present in fish (Yasumoto et al. 
1987, Tindall et al. 1990, Morton et al. 1992).  Legrand et al. (1990) found multiple toxins in 
the viscera of a moray eel, suggestive of the involvement of different genera and species.  
The toxic dinoflagellate genera Ostreopsis and Coolia, which coexist with G. toxicus 
(Steidinger 1993), are less well studied, but have also been implicated as causative agents in 
ciguatera poisoning  (Yasumoto et al. 1987, Tindall et al. 1990, Morton et al. 1992, Daranas 
et al. 2001).  Species from the genus Ostreopsis have been found to produce ostreotoxins 
and palytoxin analogues (Meunier et al. 1997, Lenoir et al. 2004), those from the genus 
Coolia produce cooliatoxins (Holmes et al. 1995).  The genus Prorocentrum, which also 
coexists with G. toxicus, does not produce ciguatera toxins but okadaic acid derivatives 
(Morton et al. 1998).  The okadaic acid group of toxins cause diarrhetic shellfish poisoning 
(Daranas et al. 2001) and, if consumed in conjunction with ciguatoxins, are believed to 
enhance ciguatera symptoms. 
 
Dinoflagellates associated with ciguatera are distributed in the benthos often associated with 
macroalgae, coral rubble and fine silty sands on the reef (Lehane & Lewis 2000).  Worldwide 
reports on the distribution of ciguatera are patchy.  Some regions appear relatively free from 
ciguatera but are found next to regions with high incidence (Lewis 2001).  This is also true for 
the distribution of ciguateric dinoflagellates.  Gillespie et al. (1985) sampled G. toxicus on a 
number of reef sites along the Queensland coast (Figure 1) and found, although distributed 
across all sites tested, they were only present in large numbers at certain sites.  Not all 
strains of G. toxicus are toxic; Tosteson et al. (1989) stated that 1 out of 5 clones was toxic, 
whilst Holmes et al. (1991) found 1 in 13.  Very little is known about toxin production.  It might 
be that certain strains are genetically programmed to be toxic whilst others are not.  
However, it is equally likely that toxin production could be controlled by environmental 
parameters (e.g. enhanced nutrient availability: eutrophic conditions).  Toxin production may 
cease under laboratory culturing conditions and in some instances methods used for the 
detection of gambiertoxins may fail (Holmes et al. 1991). 
 
The taxonomy of ciguatera-causing dinoflagellates is not well understood.  Until recently it 
was thought that Gambierdiscus toxicus was the only species within the genus.  However, 
currently, five different Gambierdiscus species are recognised (Chinain et al. 1999), which 
are all thought to produce ciguatoxins or their precursors.  Gambierdiscus toxicus forms 
blooms at sea temperatures of ~30°C, whilst in the laboratory optimum growth rates were 
between 26-29 °C (Bomber et al. 1988).  Gambierdiscus toxicus and Ostreopsis lenticularis 
bloomed in unison during a ciguatera outbreak in Tahiti (Bagnis et al. 1990).  Reasons for 
bloom formation are not understood.  While some authors argue that blooms of ciguateric 
dinoflagellates are not seasonal (linked to temperature) (Harbungs et al. 2001), others 
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believe that CFP will increase with increasing sea-surface temperatures (SSTs) (Hales et al. 
1999, Chateau-Degat et al. 2005).  Cateau-Degat et al. (2005) observed a correlation 
between increased G. toxicus abundance and higher sea surface temperatures.  If the latter 
observation in response to increased temperature is correct, then the GBRWHA and its local 
community will be more affected by CFP then in the past, as predictions of the effect of 
climate change on reefs have forecast a phase shift to macroalgal dominance, one of the 
preferred habitats for CFP-associated dinoflagellates.   
 

Neurotoxic Shellfish Poisoning (NSP) 
NSP symptoms are similar to those of CFP and PSP.  NSP is caused by brevetoxins found in 
the toxic dinoflagellate Karenia brevis (formerly Gymnodinium breve).  NSP symptoms are 
gastroenteritis accompanied by neurological symptoms.  Karenia brevis produces two types 
of lipid-soluble toxins, brevetoxins, which are responsible for the neurotoxic symptoms, and 
hemolytic toxins, which are thought to contribute to fish kills (Baden et al. 1993).  Both toxins 
are heat- and acid-stable and therefore are not destroyed in the cooking process (Baden et 
al. 1993).  Karenia brevis blooms lead to NSP poisoning in humans upon consumption of 
contaminated shellfish, but the aerosols created by cell lysis through beach wave action can 
adversely affect the respiratory system of beach goers with many people suffering asthma-
like symptoms.  Toxins of K. brevis are also responsible for vast fish kills; in particular 
endangered manatees in Florida have been severely affected. 
 
Karenia brevis was initially believed to be restricted in its distribution to the tropical and 
subtropical regions of the Gulf of Mexico and Caribbean (Tester et al. 1991, Tester & 
Steidinger 1997), because it was assumed that the orgnanism would be unable to acclimate 
to lower temperatures.  To date, however, K. brevis-associated outbreaks of NSP have also 
been recorded for Texas, Mississippi, Louisiana and the East coast of Florida up to North 
Carolina (Tester et al. 1991), suggesting that the organism is capable of surviving and 
proliferating in a broad range of temperatures.  The 1987-1988 blooms of K. brevis along the 
coast of North- and South Carolina dissipated as seawater temperatures cooled and due to 
increasing wind stress (Tester et al. 1991).  In Texas, beaches and shellfish beds were 
closed to protect human health from illnesses derived from toxic ocean spray and 
consumption of contaminated seafood.  Brevetoxins have recently also been identified in 
New Zealand cockles and oysters, but the causative agent was not identified (Ishida et al. 
1996). 
 
Economic impacts of K. brevis blooms are huge.  It is estimated that the cost of a bloom in 
the early 1970s which affected several councils in Florida was $15-20 million US dollars, and 
$25 million for the 1987-1988 bloom in North Carolina (Boesch et al. 1997), which lasted 
several months.  These days, economic impacts are likely to be much higher as frequent K. 
brevis outbreaks, almost yearly in Florida, have severe consequences for Florida’s tourism 
industry and fisheries. 
 

Paralytic Shellfish Poisoning (PSP) 
PSP is caused by saxitoxin and saxitoxin derivatives found in a number of different 
Alexandrium species, Gymnodinium catenatum and Pyrodinium bahamense var. 
compressum (Daranas et al. 2001).  The illness is caused by the consumption of filter-
feeding molluscs which filter these species from the water column.  PSP can be fatal in some 
cases due to muscular and respiratory paralysis (Hallegraeff 1995) and many areas where 
the organisms are found and cause blooms are extensively monitored.  PSP toxins cause 
tingling and prickly sensations, headaches, dizziness, nausea, vomiting and diarrhea.  These 
toxins also cause mortality in fish, marine mammals and seabirds (Pitcher & Calder 2000, 
Doucette et al. 2006).  
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It is currently unknown whether toxin production is controlled by the dinoflagellates directly or 
by their symbiotic bacteria.  Kodama et al. (1990) found that cultures of the bacterium 
Moxarella sp., isolated from Alexandrium tamarense produced PSP toxins, suggesting that 
they may indeed be of bacterial origin.   
 
Alexandrium is one of the most harmful genera of saxitoxin-producing microalgae due to its 
extensive geographical distribution and the large number of toxic species (Usup et al. 2002).  
Until the late 1970s, blooms of saxitoxin-producing dinoflagellates were restricted to 
temperate coastal waters (Dale & Yentsch 1978).  However, it appears that the ranges of 
Alexandrium spp. have since expanded and harmful blooms have been well documented in 
Australia, Papua New Guinea, the Philippines, Thailand, India and South Africa (Hallegraeff 
1995).  The tropical dinoflagellate Pyrodinium bahamense var. compressum is responsible 
for a greater number of human poisonings than the genus Alexandrium (Azanza & Taylor 
2001).  The former was not recorded in South East Asian waters until the 1970s.  Since its 
establishment there, this organism has caused enormous economic and human health 
problems.  In the Philippines alone, 1995 incidents occurred between 1983 and 1999 – 117 
of which were fatal (Azanza & Taylor 2001).  The GBRWHA area should be monitored for the 
presence of this species, as it appears to be highly invasive and has the potential to cause 
severe regional economic losses and health issues. 
 

Diarrhetic Shellfish Poisoning (DSP) 
DSP is primarily caused by the toxin okadaic acid and its derivatives (González et al. 2001).  
These are a group of polyether toxins which are lipophilic and cause protein phosphorylation 
(Daranas et al. 2001).  Symptoms of DSP are gastrointestinal such as diarrhoea, nausea, 
vomiting and abdominal pains (Lange et al. 1990).  Although no human fatalities have been 
recorded (Hallegraeff 1995), it is thought that these toxins are tumour promoters (Daranas et 
al. 2001), causing chronic health problems.  This illness was first documented in Japan in 
1976, (Yasumoto et al. 1980) and has mainly been reported from temperate regions 
(Hallegraeff 1995), although accumulation of DSP toxins in shellfish has also been recorded 
in Singapore and the Philippines (Holmes et al. 1999, Marasigan et al. 2001). 
 
DSP is caused by consumption of filter feeding molluscs such as scallops and mussels 
(Yasumoto et al. 1980, Holmes et al. 1999).  In the first recorded incidence of DSP, 
Dinophysis fortii was discovered to be the causative agent (Yasumoto et al. 1980). Since the 
initial discovery, several species of Dinophysis and the epibenthic Prorocentrum, which co-
occurs with G. toxicus on macroalgae but is also present in the plankton (Garrard pers. obs.), 
are now known to cause DSP (Daranas et al. 2001).  It was originally assumed that okadaic 
acid was produced directly by DSP-causing dinoflagellates, but it now appears likely that 
okadaic acid may also be a product derived from sulphated precursors such as 
dinophysistoxins in the digestive tracts of shellfish (Quilliam & Ross 1996).  
 
Dinoflagellates from the genus Dinophysis can form toxic red tides with reported cell 
densities of up to 0.5 x 106 cells L-1 (Subba Rao et al. 1993).  Species of Dinophysis are 
phagotrophic (Koike et al. 2000), but contain chloroplasts and several species occur in the 
GBRWHA within the plankton and associated with macroalgae (Heimann pers. obs).  
Dinophysis blooms typically contain other phytoplankton species (Subba Rao et al. 1993), 
which has cast doubt on Dinophysis as the sole causative agent of DSP.  Most attempts at 
culture establishment have been unsuccessful (Maestrini et al. 1995).  The first successful 
attempt was by Park et al. (2006), who cultured Dinophysis acuminata by feeding it the ciliate 
prey Myrionecta rubra.  Hopefully, this breakthrough will enable direct quantification of the 
DSP toxin. 
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Amnesiac Shellfish Poisoning (ASP) 
ASP is typically caused by the toxin domoic acid, which is produced by species of the diatom 
genus Pseudo-nitzschia and affects humans by ingestion of contaminated shellfish.  ASP is 
characterised by both gastrointestinal and neurological symptoms, such as nausea, vomiting, 
abdominal cramps, and diarrhea, dizziness, headache, seizures, disorientation, short-term 
memory loss, respiratory difficulty, and coma.  Domoic acid is a water-soluble toxin that is 
similar to its biochemical analogues kainic acid and glutamic acid and binds at the same 
receptor site in the central nervous system (Novelli et al. 1992).  Curiously, ASP victims can 
suffer dementia if the ASP poisoning event involved gastrointestinal, as well as neurological, 
symptoms. 
 
ASP was first reported from Canada, where, by the end of 1987, 153 patients had been 
diagnosed with acute symptoms through consumption of contaminated shell fish.  Acute ASP 
has been responsible for four deaths in elderly patients and nineteen hospitalisations with 
twelve patients being admitted to Intensive Care.  The causative agent in these poisonings 
was Pseudo-nitzschia pungens.  Since then, Pseudo-nitzschia multiseries and P. 
delicatissima have been associated with domoic acid accumulation in mussels from France 
(Amzil et al. 2001), Japan (P. multiseries, (Kotaki et al. 1999), in Massachusetts (P. pungens 
f. multiseries, (Villareal et al. 1993)), the West coast of the United States (P. australis, (Villac 
et al. 1993)) and New Zealand (P. multistirata and P. delicatissima, (Rhodes & Scholin 
2000)).  By and large, domoic acid-producing species of the genus Pseudo-nitzschia appear 
to be absent from tropical locations, but a note exists from the Intergovernmental 
Oceanographic Commission (IOC) for subtropical and tropical (Thailand) occurrences of P. 
multistriata, which could be of concern to the GBRWHA.  
 

Apparent Range Expansions by Toxic Microalgae 
Climate change is a growing problem and microalgal communities will be affected by climatic 
stressors such as changes in water temperatures, ocean chemistry, ultraviolet radiation and 
nutrient enrichment.  Indirect effects of changing oceanographic processes affecting mixing 
and advection have also been predicted to change microalgal communities (McKinnon et al. 
2007).  Shifts in community composition may favour toxic microalgal species.  
 
Coral reefs are subject to frequent disturbances such as high temperatures and irradiance, 
crown-of-thorns outbreaks and cyclones, causing coral mortality and a reduction in coral 
cover.  Especially in areas where eutrophication and overfishing occurs, this may cause a 
phase shift from coral dominated to macroalgae dominated reefs (McCook 1999).  Terrestrial 
discharge onto the Great Barrier Reef includes sediment, fertilisers, pesticides and 
herbicides and other contaminants.  Aerial mapping has documented plume extensions of up 
to fifty kilometres from the coast (Devlin & Brodie 2005).  As coral bleaching increases, so 
does macroalgal cover on the reef (Shulman & Robertson 1996), which is likely to enhance 
proliferation of macroalgal-associated microalgae.  On average, Carlson & Tindall (1985) 
found that 76% of macroalgal-associated dinoflagellate communities were toxic.  
 
The distinction between introduced and invasive species is often not clearly made (Falk-
Petersen et al. 2006).  Introduced species are defined as species that are not indigenous to a 
given area, and instead have been accidentally or deliberately transported to this new 
location by human activity (Binggeli 1996), whilst invasive species are defined as species 
that establish a new range in which they proliferate, persist and spread to become 
economically or ecologically harmful (Mack et al. 2000).  Although many macroalgal-
associated dinoflagellates are known to be native to the GBR region, they should be classed 
as invasive if a range expansion has occurred (Mack et al. 2000).  Evidence of translocation 
of dinoflagellates within Australia is convincing.  Introduction of a dinoflagellate species is 
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often deduced by its absence from sediment cores and plankton records, and when sudden 
proliferations of the organism occur in the area.  Molecular methods are also used to 
determine the source population of a species (see Introduction to molecular tools section) 
(Hallegraeff 1992, Bolch & de Salas 2007).  Likely reasons for the increased geographical 
range of species are the transport to non-native locations via ships’ ballast water, 
aquaculture and increased tourism.  It is estimated that up to ten thousand species are 
transported in ballast water each day (Carlton 1999), taken up from native ports and released 
upon arriving at the destination.  As ocean travel increases, so does the distribution of 
marine microalgae across the globe.  Many species of dinoflagellates are able to survive in 
ballast water by forming cysts or using modes of nutrition other than photosynthesis (Doblin 
et al. 2004).  
 
The ABWMAC schedule of introduced species has listed Alexandrium minutum, A. catenella, 
A. tamarense and Gymnodinium catenatum as target pest species (Table 1), which are likely 
to be spread through ballast water transport.  These species have a large global distribution 
and their cysts have been detected in the ballast waters of ships in Australian ports and 
successfully germinated (Hallegraeff & Bolch 1992, Hallegraeff 1998).  The phenomenon of 
toxic algal blooms causing shellfish poisonings, was virtually unknown in Australia until 1986, 
when large concentrations of saxitoxin were discovered in wild mussels in Port Phillip Bay 
and saxitoxin derivatives, thought to be produced by Alexandrium catenella and 
Gymnodinium catenatum respectively, in shellfish farms in Tasmania (Hallegraeff 1992).  As 
Alexandrium spp. and Gymnodinium spp. have not been found in cyst records from 
sediments or previous plankton monitoring schemes in Australia, it is likely that they have 
been introduced (Hallegraeff 1992).  The first verification of a toxic algal outbreak in New 
Zealand occurred in 1993 for the PSP-causing toxic dinoflagellate Alexandrium minutum in 
the Bay of Plenty (Chang et al. 1997).  Investigation into the toxin profiles of cockles and 
oysters during this event also discovered evidence of brevetoxin contamination (Ishida et al. 
1996) and the co-occurrence of the neurotoxin-producer Karenia breviculata (Chang et al. 
2001). Subsequent outbreaks have occurred with considerable costs to the shellfish industry, 
leading to the initiation of extensive monitoring programs to aid in the early detection of toxic 
microalgal blooms (Rhodes et al. 2001).  
 

Distribution of Toxic Microalgae within the GBR and 
Australasia 
Very little is known about community structure, distribution and abundance of sediment- and 
macroalgal-associated microalgae within the GBR ecosystem.  Sites of surveys within 
Queensland and locations of known blooms of toxic microalgae within the Australasian area 
are presented in Figure 1.  Gillespie et al. (1985) investigated a range of sites across 
Queensland, but restricted the investigation to the distribution of Gambierdiscus toxicus, 
although the presence of the genera Ostreopsis and Prorocentrum were noted. Queensland 
ports have been surveyed sporadically as part of the Port Baseline Surveys for Introduced 
Marine Pests coordinated by CSIRO-CRIMP, e.g. Hay Point/ Mackay, 17 May to 1 June 
1997 (CSIRO 1998) and the Port of Townsville, November 2000 (Neil et al. 2001). Survey 
follow-up included morphological identification of toxic microalgae from within the water 
column and sediments. Cysts of the genus Gymnodinium were recorded although none of 
the ABWMAC target pest microalgal species (Table 1) were found.  
 
Species producing paralytic shellfish toxins, such as Alexandrium catenella, A. minutum and 
Gymnodinium catenatum, are now known to cause blooms in southern Australia (Hallegraeff 
et al. 1988) and G. catenatum has caused large economic losses in New Zealand (Rhodes et 
al. 2001). Gymnodinium catenatum has also been found in the tropical plankton 
assemblages of Singapore (Holmes & Teo 2002), suggesting that although it is commonly 
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only found in temperate areas it can survive and grow in a wide range of seawater 
temperatures.  Although Dinophysis caudata occurred in low numbers in Singapore, the 
green mussel Perna viridis, which feeds upon this species, contained persistent, low 
concentrations of diarrhetic shellfish toxins.  Dinophysis caudata is also abundant in tropical 
phytoplankton communities of the GBR and combined with the recent introduction of P. 
viridis to the GBRWHA, DSP outbreaks could increase in this region. 
 
The saxitoxin-producing dinoflagellate Pyrodinium bahamense var. compressum is the 
greatest threat to countries within South East Asia.  Although it has only caused bloom 
events since the 1970s, there have been a large number of fatalities from PSP events and 
bloom events now occur in the Philippines, Malaysia, Indonesia, Jakarta, Brunei and Papua 
New Guinea (Maclean 1977, 1989, Matsuoka et al. 1998, Azanza & Taylor 2001).  
 

Assessment of Toxic Microalgal Species of Risk in 
the GBR Ecosystem 
The target pest species outlined in the ABWMAC schedule of introduced species commonly 
form blooms in temperate regions and may currently not be considered of great concern in 
Queensland.  Range expansions of tropical macro- (e.g. Caulerpa taxifolia (Meinesz et al. 
1993, Chisholm et al. 2000, Dalton 2000, Meinesz et al. 2001, Fama et al. 2002)) and toxic 
microalgae (e.g. Karenia brevis Florida to Texas, (Tester et al. 1991)) to more subtropical 
and even temperate locations have been demonstrated.  This indicates that the development 
of cold-tolerant strains is possible for both macro- and microalgae.  Although no strong case 
can be made at present for or against the potential for more temperate species of microalgae 
to adapt to tropical conditions, many toxic dinoflagellates show increased toxin production 
and growth at higher temperatures between 22-25°C.  Furthermore, some of the most potent 
toxic microalgae already occur in the GBRWHA, e.g. cyst records of Pyrodinium bahamense 
var. compressum, Gambierdiscus toxicus, Coolia spp. and Ostreopsis spp.,  area and in 
tropical regions and those species and strains must be monitored for their occurrence, 
abundance and distribution pattern in the GBR to protect human health and biodiversity.  
 
The ABWMAC target pest species have historically caused economic problems in temperate 
regions such as California, Alaska and Japan (Hallegraeff et al. 1988), and recently in 
Australia.  Cysts of Alexandrium catenella are now common around the coastline of New 
South Wales, where coastal temperatures range from 13-25°C (Hallegraeff et al. 1998).  An 
increase in temperature from 17-25°C, caused increased germination success in Australian 
isolates of A. catenella (Hallegraeff et al. 1998), which is within sea temperatures for 
Queensland.  Ballast water from a single ship in Eden, New South Wales, Australia was 
estimated to contain over three hundred million Alexandrium cysts (Hallegraeff & Bolch 
1992).  It would only be necessary for a few cells to acclimatise to the seawater temperatures 
in this region and successfully germinate to establish a bloom.  Toxic dinoflagellate cysts are 
likely to accumulate in sheltered areas with soft, silty bottoms (CSIRO 1998), fitting the 
description of the habitat within many ports (Garrard pers obs).  If ballast water introductions 
occur in this area, cysts may remain viable in the sediment for five to ten years (Anderson et 
al. 1995).  
 
Although they are not on the list of target species, Alexandrium tamiyavanichii and 
Pyrodiumium bahamense var compressum are saxitoxin producers, which are known to 
cause PSP in tropical waters (Usup et al. 2002).  The latter species was previously known for 
its bioluminescent blooms in the Caribbean (Seliger et al. 1970), and has spread through 
South East Asia causing numerous cases of human poisonings, a number of which have 
resulted in fatalities (Azanza & Taylor 2001).  Although to date no blooms of this species 
have occurred in Australian waters, cysts have been found in the fossil record, suggesting 
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that P. bahamense var. compressum may be common in this area but for unknown reasons 
presently does not proliferate.  With climate change, many species are extending their 
geographic range south and blooms of P. bahamense var compressum have been linked to 
El Niño events (Maclean 1989).  The possibility of ballast water transport of this cyst-forming 
species from other areas, or transport via currents from Papua New Guinea is realistic and 
there is every possibility of this species spreading to Northern Australia (Maclean 1989).  
 
Knowledge of how climate change will affect microalgal community structure is limited and 
fast, efficient and cost-effective methods of detecting toxic microalgae are necessary in order 
to provide early warning and prevent economic losses and risk to human health.  Prior to 
1993, Heterosigma akashiwo was the only toxic dinoflagellate forming blooms in New 
Zealand, which, although causing massive fish kills, did not pose a risk to human health.  
Since then, a large number of toxic microalgal blooms have occurred and nearly all known 
toxic microalgal species occur in New Zealand now (Rhodes et al. 2001).  Microalgal 
monitoring programmes in New Zealand involve weekly surveys and have been 
internationally accredited (Rhodes et al. 2001).  In contrast, in Queensland only a few one-
off, morphologically-based surveys have been carried out.  
 
In terms of human illness caused by the consumption of seafood contaminated with 
microalgal toxins, ciguatera fish poisoning has been the greatest threat to residents in the 
GBR region.  The earliest reports were by Captain Cook in the 18th Century (Lewis 2006).  In 
Australia, ciguatera poisoning is correlated to consumption of fish caught in Queensland and 
the Northern Territory (Capra & Cameron 1991), with most cases being linked to 
consumption of fish caught on the GBR (Lewis 2006).  Approximately 0.16 cases per 10,000 
residents are reported in Queensland per annum, although it is estimated that fewer than 
20% of cases that occur are reported and/or diagnosed (Lewis 2001).  Between 1964 and 
1974, 750 cases of ciguatera were reported in Townsville alone (Gillespie et al. 1986).  This 
is not to say that this is the only risk posed by toxic microalgae.  As explained above, many 
species originally only occurred in the northern hemisphere but are now being detected in the 
southern hemisphere.  Similarly, temperate species have begun to expand their range into 
tropical and subtropical regions.  Our knowledge of toxic microalgal species composition in 
the GBR is extremely limited and it is therefore impossible to determine which species pose 
the greatest risk in this region.  Equally, the limited knowledge of microalgal flora of the GBR 
region makes it impossible to determine introductions of microalgal species from other 
regions via aquaculture, tourism and/or ballast water and range expansions of species 
already native to this area.  In the light of climate change, it is mandatory now to establish 
monitoring of planktonic and benthic species and to develop regionally useful molecular 
methods in order to provide an early warning system for the presence and distribution of 
these organisms. 
 

Introduction to Molecular Tools Suitable for the 
Detection of Toxic Microalgae in the GBR 
Prior to the development of molecular techniques, microalgae were solely identified to 
species level based on their morphological characteristics.  Morphological techniques are 
time consuming and expensive (manpower) and require considerable taxonomical expertise.  
However, misidentification of some morphologically similar species can never be completely 
excluded.  Many toxic and non-toxic species from the genus Alexandrium are 
morphologically very similar (Balech 1995).  The degree of morphological plasticity in 
response to environmental factors (Lilly et al. 2005) is also presently unknown leading to the 
debate whether Alexandrium tamarense, A. catenella and A. fundyense (the “tamarensis 
complex”) are distinct species or different strains of the same species. 
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Figure 1:  Known distributions of toxic microalgae and survey  
locations for Queensland, Australasia and New Zealand. 
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Molecular analyses of the large and small subunit ribosomal RNA genes established that 
genetic variation correlated with geographically distinct groups (Scholin & Anderson 1994, 
Scholin et al. 1994) but not with morphotypically defined species, which suggests that 
phenotypic plasticity exists.  Many Alexandrium cysts cannot be identified to species level 
based on morphology (Kamikawa et al. 2005, Kamikawa et al. 2007).  These problems 
clearly demonstrate that morphological techniques alone are ineffective to protect human 
health, unless they are supported by genetic identification of toxic microalgae. 
 
Molecular methods are fast becoming a popular tool for the rapid assessment of the 
presence of microscopic organisms.  Most detection methods include nucleic acid 
hybridization, where complementary strands of DNA or RNA bind to specific nucleotide 
sequences.  This is the basis for many methods including the polymerase chain reaction 
(PCR), fluorescent in situ hybridization (FISH), sandwich hybridization assays and many 
more.  Open access, publicly available nucleotide sequences and the ability to compare and 
align sequences has lead to the development of species-specific primers or synthetic 
oligonucleotide probes for detection.  The majority of molecular detection methods target 
nuclear and plastid ribosomal genes as sequences for many species are available and these 
genes contain conserved regions for annealing of PCR primers as well as variable regions 
for species identification (Maidak et al. 2000, Groben et al. 2004) 
 

Polymerase Chain Reaction (PCR) 
The application of PCR with species-specific primers is the most straight-forward method for 
detection of a particular strain of microalga in environmental samples.  Only samples positive 
for the target sequence produce reaction products, which are visualised by ethidium bromide 
staining and gel electrophoresis.  Godhe et al. (2001) used this method to detect two species 
of toxic dinoflagellates from within the plankton (Gymnodinium mikimotoi and Alexandrium 
minutum).  Levels of detection, however, were restricted by organismal abundance as a 
sample containing 115 cells of a target species yielded negative results.  Patil et al. (2005) 
performed a two-step nested PCR using universal primers to amplify a portion of the large 
subunit ribosomal RNA gene first, followed by species-specific primers to amplify a variable 
region within this portion.  This boosted the level of detection from environmental samples, 
giving successful readings for samples with ≥5 cells.  This method also successfully detected 
≥5 cysts from spiked ballast water samples.  The same method was also used to detect cysts 
of Scrippsiella trochoidea, Protoceratium reticulatum and Lingulodinium polyedrum in 
sediment samples (Godhe et al. 2002).  This is a good result as detection of microalgae from 
sediments often may not be as successful as from the water column due to sediments 
containing inhibitors for PCR (Kamikawa et al. 2005). 
 
Real-time polymerase chain reaction (RT-PCR) is an adaptation of PCR.  In RT-PCR the 
quantity of the sequence amplified is fluorescently measured after each cycle, not only 
allowing detection but also quantification of the target species.  As well as the two PCR 
primers, a flourogenic oligonucleotide probe, carrying a fluorescent indicator at the 5' end 
and a quencher dye at the 3' end, is used.  This hybridises with the target sequence between 
the annealing sites of the two primers.  Taq DNA polymerase with 5'- 3' exonuclease activity 
degrades the probe during the PCR, giving out a quantifiable signal (Holland et al. 1991; Lee 
et al. 1993) as the probe is degraded separating the indicator from the quencher.  This 
method has been shown to be successful at quantifying toxic dinoflagellates from the water 
column (Hosoi-Tanabe & Sako 2005).  CTAB DNA extraction (Zhou et al. 1999) in 
conjunction with RT-PCR is suitable for the quantification of harmful algal cysts from 
environmental samples (Kamikawa et al. 2005).  Kamikiwa et al. (2007) suggested that this is 
a faster and more reproducible method than the nested PCR method developed by Godhe et 
al. (2002) as it only contains one step. 
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Fluorescence in situ Hybridization (FISH) 
FISH is a method designed to detect intact microbial cells in environmental samples (Amann 
et al. 2001).  A fluorescently labelled probe is designed to detect a specific target nucleic acid 
sequence (DeLong et al. 1989).  Originally this method was designed to detect prokaryotic 
cells which could not be cultured (Amann et al. 1990).  It appears that FISH may also be a 
suitable technique for detection of some species of toxic microalgae (Tyrrell et al. 1997, Sako 
et al. 2004, Hosoi-Tanabe & Sako 2006).  FISH typically involves four steps (Amann et al. 
2001).  A sample is fixed first to preserve the cells and to increase cell wall permeability for 
probe entry (Tyrrell et al. 1997).  The probe then hybridizes with the target nucleic acid.  
Washing removes excess probe and quantification is done by epiflourescence microscopy.  
 
Generally the oligonucleotide probes are designed to target ribosomal RNA (transcribed from 
ribosomal RNA genes) as there are large numbers of copies within the cell giving a greater 
signal (Sako et al. 2004).  However, probes targeting the ribosomal RNA genes themselves 
may provide a better idea of the number of cells present in a sample as the number of these 
genes remains constant in the genome during different physiological states (DeLong et al. 
1989, Adachi et al. 1996).  Probes against ribosomal RNA were developed for Alexandrium 
tamarense and A. catenella.  These proved to be specific, rapid, cost-effective and sensitive 
enough to detect small numbers or organisms present in environmental samples (Sako et al. 
2004, Hosoi-Tanabe & Sako 2006).  Identification time of toxic marine microalgae was 
reduced to 30 min (Hosoi-Tanabe & Sako 2006) from approximately three hours (Tyrrell et al. 
1997) prior to the development of these probes.  Although this method was successful for 
identification of these species, Sako et al. (2004) suggested that it may not be suitable for 
microalgae with soft cell walls, as cells are required to remain intact throughout this process.  
As this method requires detection of ribosomal RNA, it is not likely to be suitable for 
determination of dormant cysts within the sediment, which will not contain large quantities of 
RNA. 
 

Sandwich Hybridization 
Sandwich hybridization assays require the use two of synthetic oligonucleotide probes.  The 
capture probe is biotinylated and attached to a strepavidin-coated solid support, such as the 
surface of tissue plate wells (Tyrrell et al. 2002, Jones et al. 2007, Diercks et al. in press).  
The second probe is a reporter probe which carries either a fluorescent, colourimetric or 
chemiluminescent signal (Tyrrell et al. 1997).  The capture probe immobilises the target 
nucleic acid if present in the sample and the reporter probe is added.  The latter binds to a 
different portion of the target.  Excess (unbound) reporter probe is removed by washing and 
bound (hybridised) reporter probe is detected directly by fluorescence, if the reporter probe is 
fluorescent (Ahn et al. 2006), or a substrate is added causing a colourimetric or 
chemiluminescent signal when it reacts with the enzyme-tagged reporter probe (Tyrrell et al. 
1997, Tyrrell et al. 2002, Jones et al. 2007, Diercks et al. in press).  Hence detection is only 
achieved when the nucleic acids have regions complementary to both probes (Tyrrell et al. 
1997).  
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