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Abstract

Marine protected areas (MPAs) are increasingly being advocated and implemented to protect biodiversity on coral reefs.
Networks of appropriately sized and spaced reserves can capture a high proportion of species diversity, with gene flow
among reserves presumed to promote long term resilience of populations to spatially variable threats. However,
numerically rare small range species distributed among isolated locations appear to be at particular risk of extinction and
the likely benefits of MPA networks are uncertain. Here we use mitochondrial and microsatellite data to infer evolutionary
and contemporary gene flow among isolated locations as well as levels of self-replenishment within locations of the
endemic anemonefish Amphiprion mccullochi, restricted to three MPA offshore reefs in subtropical East Australia. We infer
high levels of gene flow and genetic diversity among locations over evolutionary time, but limited contemporary gene flow
amongst locations and high levels of self-replenishment (68 to 84%) within locations over contemporary time. While long
distance dispersal explained the species’ integrity in the past, high levels of self-replenishment suggest locations are
predominantly maintained by local replenishment. Should local extinction occur, contemporary rescue effects through large
scale connectivity are unlikely. For isolated islands with large numbers of endemic species, and high local replenishment,
there is a high premium on local species-specific management actions.
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Introduction

It is widely accepted that life within the world’s oceans,

especially within highly diverse coral reefs, is under an increasing

threat in the 21st century [1]. New management strategies are

being developed in a bid to protect marine life from a range of

anthropogenic impacts [2], [3]. One of the most popular

approaches has been the establishment of no-take Marine

Protected Areas (MPAs) whose efficacy in conserving biodiversity

continues to be debated. While appropriately designed MPA

networks can encompass a high proportion of species [4] and

genetic diversity [5], the degree to which reserves contribute to the

long term persistence of locations and maintain natural evolu-

tionary processes is uncertain. A major factor that dictates how

well MPAs work, is the extent of larval connectivity among

locations [6], including links between protected and unprotected

areas and among different nodes in MPA networks [7], [8].

Historically, the pelagic larval stage of most marine species was

thought to result in broad scale larval dispersal aided by ocean

currents [9]. This holds true over evolutionary time scales where

the occasional long distance dispersal of pelagic larvae acting as

agents of gene flow, have connected distant locations [10],

maintained high levels of genetic diversity [11], [12] and thereby

helped reduce a species risk of extinction [13]. However, a

growing number of studies focusing on contemporary time scales

show high levels of self-recruitment [7], [8], [14]. Although none

of these studies show 100% self-recruitment, and the scales of

contemporary connectivity are only just beginning to be assessed

[15], this finding suggests that the appropriate scale and distance

between MPAs may indeed be smaller than previously assumed

[8], [16], [17]. Thus, connectivity operates over two time scales:

evolutionary and contemporary. Most traditional population

genetic studies infer evolutionary connectivity [18] (gene flow)

using mtDNA to capture the longer term signals of dispersal [19].

In recent years, a range of new statistical software (e.g.

STRUCTURE [20], DAPC [21], Migrate-n [22], BAYESASS

[23]) has become available and is increasingly being applied to

population genetic studies [24] to infer contemporary connectivity

using msatDNA to capture the shorter term signals of dispersal.

Sometimes there is a ’lack of congruence’ between connectivity

operating over different time scales (evolutionary and contempo-

rary). For example, coral trout (Plectropomus maculatus) and stripey
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snapper (Lutjanus carponotatus) lack spatial genetic structure along

the GBR (spanning more than 1000 km) on evolutionary time

scales using mtDNA [25], while comprehensive parentage analyses

of very large sample sizes at much smaller spatial scales using

msatDNA, identified high levels of both local- and self-recruitment

for both species [8]. The lack of spatial genetic structure in

mtDNA sequence data is not uncommon [26], [27] since only a

few recruits per generation are sufficient to maintain spatial

genetic homogeneity on evolutionary time scales [28], [29].

Together these tools and analyses (mtDNA and msatDNA) are

useful because they provide a more holistic picture of connectivity

(gene flow) and retention over a range of spatial and temporal

scales [5], [30235].

The evolution of island faunas is interesting because they are

clearly punctuated with evolutionary periods of colonization and

gene flow, evidenced by the wide distribution of the same species

across isolated locations [36], yet they have presumed low levels of

contemporary gene flow. Isolated islands are a conservation

priority due to their high level of endemism and high rates of

extinction [37]. Species endemic to isolated islands have an

increased risk of extinction because they often exhibit a number of

vulnerable biological (e.g. flightlessness) [36238], ecological (e.g.

small populations, habitat specialists) [39] and genetic traits (e.g.

low gene flow and genetic diversity) [40]. Management plans

identify endemic species as a conservation priority; however,

effective protection of vulnerable species requires estimates of gene

flow (evolutionary and contemporary) between isolated locations

and estimates of genetic diversity [41]. Likewise, effective

management strategies need to conserve both species and genetic

diversity in order to maximise ecosystem and population resilience

[42]. Conservation of genetic diversity is an IUCN priority [43] as

it provides the raw material for the maintenance of species over

evolutionary time scales and provides a basis for responses to rapid

environmental change and natural selection [42244], where a

reduced genetic diversity has been correlated with decreased

fitness [45].

In this study we examine evolutionary and contemporary levels

of gene flow in the McCulloch’s anemonefish (Amphiprion

mccullochi), an endemic to three isolated locations in the South-

West Pacific Ocean, 600 km off Australia’s east coast (Figure 1a 2

e). Due to this species being found at only three locations, we were

able to sample all known locations leaving no ’ghost’ populations

un-sampled, giving us a high level of confidence and statistical

power in our estimates of gene flow. This species is important as it

is potentially at risk of extinction because (i) its geographic range is

among the smallest for coral reef fishes (ii) it’s an extreme habitat

specialist due to its obligate relationship with only one host species

of anemone [46] and; (iii) throughout its range it has very low

abundance [47249], except for an extremely small area of habitat

at Lord Howe Island Lagoon (LHIL), which supports 92% of the

world’s A. mccullochi population [48]. Lord Howe Island is a World

Heritage Area because it accommodates significant ongoing

biological and ecological processes in the development and

evolution of coastal, terrestrial, freshwater and marine ecosystems

[50]. The island is an endemic hotspot and contains significant

habitats for in-situ conservation of biological diversity, including

threatened species of exceptional conservation value [50]. The

efficacy of reserves to reduce extinction risk will depend on

evolutionary and contemporary levels of gene low among these

isolated locations. We were particularly interested in whether the

high abundance of McCulloch’s anemonefish in the lagoon at

Lord Howe Island (LHIL) will act to export migrants and help

replenish other low abundance locations at greater risk of local

extinction.

The aims of this study are fourfold: (i) to determine the patterns

and levels of gene flow between locations over evolutionary time

scales; (ii) to determine the patterns and levels of gene flow

between locations over contemporary time scales; (iii) to infer

levels of self-replenishment (as a proxy for self-recruitment) and

recent migration (iv) to measure population genetic diversities at

all locations as an indicator of potential resilience of populations to

environmental change and extinction.

Materials and Methods

We applied a range of traditional and modern frequency and

Bayesian based molecular tools to establish evolutionary and

contemporary levels of phylogenetic and population genetic

structure. This resulted in a comprehensive understanding of gene

flow in this study system and together these molecular tools

provided a complete view of different parts of the dispersal kernel

[27]. Due to the large number of analyses, we present only

methods related to this study below, whilst general Material and

Methods such as laboratory techniques and in depth analyses are

presented in van der Meer et al. [51], [52]. While this study uses

small sample sizes at each location (25233), typical of population

genetic analyses to date [34], [53]; it has the potential to suffer

from low statistical power to infer msatDNA genetic differentiation

between locations. However, power can be increased either by (i)

having more samples, (ii) adding more loci or (iii) adding loci with

many alleles [54]. For ethical reasons, taking a larger sample size

in a rare endemic species is not sound. Thus, we used many

(n = 18) loci that had high allelic richness, to combat the low

statistical power of a small sample size and thereby, combined with

no un-sampled ’ghost’ populations, greatly increase the statistical

power to detect msatDNA genetic differentiation between

locations.

Ethics Statement
The main aim of this study was to determine the patterns and

levels of gene flow between isolated locations, using the endemic

McCulloch’s anemonefish (Amphiprion mccullochi) as a model

organism. Since this species is rare at two locations (Middleton

and Elizabeth Reefs) and all three locations are either World (LHI)

or National Heritage (MR, ER) listed, sacrificing individual fish

(particularly new recruits) at the ideal scale required for parentage

based analyses (hundreds of individuals), is not feasible. Thus a

of118 A. mccullochi fin clips were taken from four locations, MR

(n = 30) [47], ER (n = 25) [47], outside the lagoon at LHI (LHI,

n = 33) and within the LHI Lagoon (LHIL, n = 30) [48] using

clove oil and hand nets (Permit Numbers: LHIMP08/R01, 003-

RRRWN-110211-02, P11/0035-1.0; Animal ethics approval:

A1605).

Study System and Species
A. mccullochi inhabits anemones within the coral rich areas of

lagoon and seaward reefs at Elizabeth Reef (ER), Middleton Reef

(MR) and Lord Howe Island (LHI).The three sites have extensive

shallow reefs (,30 m depth) enclosed within MPAs which are

separated from each other by deep ocean (.2000 m depth).

Gene Flow between Locations - Evolutionary Time Scales
The mtDNA phylogenetic analysis. The four most com-

monly used phylogenetic analyses were performed on the

aligned mtDNA (D Loop) sequence data as described in [51],

[52] and we assigned well supported distinct phylogenetic

lineages as management units (MU) [55]. A MU is a population

that lacks reciprocal monophyly for mtDNA haplotypes, yet has

Connectivity in an Endemic Reef Fish
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divergent haplotype frequencies [55], as found here. A

Minimum Spanning Tree (MST) was generated to explicitly

identify shared haplotypes between A. mccullochi from the four

locations.

Quantifying the level of evolutionary gene

flow. Evolutionary migration rates and effective population

sizes of A. mccullochi were estimated between or within each of

the four locations using MIGRATE-n 2.4.3 (http://popgen.sc.

fsu.edu/Migrate-n.Html) [22]. Due to the previously identified

secondary contact between A. mccullochi and A. akindynos [51]

and since MU were not differentiated geographically, both the

Stepping-stone and Island-n migration models were not

appropriate as priors for the dataset; rather Migrate-n input

files had to be modified and customised. We split the mtDNA

data in three ways (i) two groups representing the two admixed

lineages: Group 1 (MU 122) and Group 2 (MU 325) to

estimate evolutionary migration between lineages; migration was

then compared within Groups (ii) between MU 1 and 2 in

Group 1 and; (iii) between MU 3, 4 and 5 in Group 2. We set

the datatype to an F84 mutation model and the migration rate

parameters for mtDNA (h and M to a maximum of 0.1 and

1000, respectively) to conduct Bayesian analysis using one long

chain that sampled every 100th of 100 k sampled trees and

applied a 20 k iteration burn-in. All parameters converged and

fell within the 90% CI yielding values for h and M (mutation-

scaled migration rate) per location.

Gene Flow between Locations - Contemporary Time
Scales

Patterns of gene flow (msatDNA). To establish spatial

population partitioning in msatDNA, we used three molecular

analytical tools: (i) discriminant analysis of principal components

(DAPC) [21] was used to discriminate between the four locations,

yielding scatterplots of discriminant functions based on the spatial

distributions of microsatellite genotypes. DAPC also provided

posterior probabilities of population assignments for each individ-

ual; (ii) a likelihood-based assignment method was used in

GeneClass2 [56258] to determine significant inter-location gene

flow and (iii) STRUCTURE V2.3 [20], [59] was used to identify

contemporary gene flow between the four locations by applying an

Admixture model for 1 M iterations with a 100 k iteration burn-

in.

Quantifying the level of contemporary gene

flow. Contemporary migration rates and effective population

sizes of A. mccullochi were estimated between each of the four

locations using MIGRATE-n 2.4.3 as above. However, we tested a

combination of various: migration priors (FST and OWN:

isolation-by-distance) and custom-migration models (Stepping-

stone, Island-n and variable Theta only); all with a constant

mutation rate over all loci. A Log Maximum-Likelihood analysis

(Ln ML) comparing all possible combinations selected: migration

prior (FST), custom-migration model (migration model with

variable Theta) and constant mutation rate over all loci.We set

Figure 1. Location maps and focal species. (A) Goole Earth image of eastern Australia showing Middleton Reef (MR), Elizabeth Reef (ER) and Lord
Howe Island (LHI) in the Southwest Pacific Ocean, to the southeast of the Great Barrier Reef. Aerial photographs of MR (B); ER (C) and LHI (D),
indicating both the outside (LHI) and Lagoon (LHIL) sample sites. (E) Amphiprion mccullochi in its host anemone Entacmaea quadricolor (Photo
courtesy of Justin Gilligan).
doi:10.1371/journal.pone.0049660.g001
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the datatype to Microsatellite (a simple electrophoretic ladder

model with stepwise mutation) and the migration rate parameters

for msatDNA (h and M were both set to a maximum of 100) to

conduct Bayesian analysis using one long chain that sampled every

100th of 100 k sampled trees and applied a 20 k iteration burn-in.

All parameters converged and fell within the 90% CI yielding

values for h and M (mutation-scaled migration rate) for each locus

per location.

Inferred Levels of Self-replenishment and Recent
Migration

This study did not sample new anemonefish recruits in order to

determine self-recruitment as in [8]. However, we used BAYE-

SASS v3 [23], a program specifically designed for population

genetic studies that estimates recent migration rates (past 223

generations) between populations (or locations); conversely, this

program also has the ability to estimate any individuals not

migrating (i.e. self-replenishing). BAYESASS accurately estimates

migration rates when the assumptions of the inference model are

not violated and genetic differentiation is not too low (Fst$0.05);

however, when the assumptions are violated, accurate estimates

are obtained only when migration rates are very low (m = 0.01) and

genetic differentiation is high (Fst$0.10) [60]. We used BAYE-

SASS v3 to estimate both self-replenishment (as a proxy for self-

recruitment) and recent migration between locations; with a

MCMC chain, consisting of a total of 11 M steps, a 2 M step burn

in and a sampling interval of 100 k, with prior values for migration

rate, allele frequency and inbreeding coefficient of 0.95, 0.95 and

0.95, respectively. These priors were selected because they gave

acceptance rates of between 20 and 40% [60]. Ten separate runs

assessed convergence of the MCMC to evaluate consistency of the

results obtained from these inferences.

Population Genetic Diversities
Molecular diversity indices for mtDNA - haplotype diversity (h);

nucleotide diversity (p) and for msatDNA - genetic diversity (gd),

were estimated in ARLEQUIN 3.5 [61]. Haplotype (h) and

nucleotide diversities (p) of the data were interpreted as either low

with specified cut-off values of h and p (%) were ,0.5 or high if

values of h and p (%) were .0.5 [62].

Results

Summary Statistics
Three hundred and twenty-two base pairs of mtDNA D-loop

were resolved for 105 Amphiprion mccullochi individuals. There were

a total of forty-six polymorphic sites, of which forty were

parsimony informative (six singletons). Allelic diversity was lowest

at LHI-L and highest at LHI, whilst FIS did not differ significantly

across the three regions surveyed (FIS = 0.07, p = 0.97; Table S1).

Elizabeth Reef had the most private alleles, 13 across 17 loci, while

the remaining three populations had 12 private alleles each across

all loci (Table S1). Of the 17 msatDNA loci: (i) significant single-

locus departures from HWE were detected in nine of sixty-eight

tests at the population level before FDR correction and two

afterwards (LHIL: Am1; ER: Am11); similarly, seven single-locus

HWE departures were detected at the regional level before FDR

and six afterwards (Table S1); (ii) null alleles were identified in ER

(Am6, Am7, Am11, Am19), MR (Am11, Am17), LHI (Am4, Am7)

and LHI-L (Am11, Am19) and (iii) of 544 locus6 locus exact tests

for linkage disequilibrium (136 per population), only 17 were

significant before FDR and one after FDR correction (Am6) [63].

Loci that were not in HWE and had null alleles (i.e. Am1, Am11,

Am14, Am17, Am19) were not used in subsequent analyses

(ARLEQUIN, STRUCTURE, and MIGRATE-n). Detailed

summary statistics, mtDNA and msatDNA AMOVA between

regions, msatDNA AMOVA by loci, pairwise population

comparisons and genetic diversity indices are presented in

Supporting Information (S1, S2, S3, S4 and S5 respectively).

Gene Flow between Locations - Evolutionary Time Scales
Synopsis. A. mccullochi mtDNA suggested the existence of two

evolutionary lineages (Groups) consisting of a total of five MU with

each location being represented in all MU (Figure 2 a, b). High

levels of evolutionary gene flow were found between spatially

intermixed MU but this was reduced between Groups 1 and 2,

which themselves were also spatially intermixed. This suggests that

evolutionary gene flow exists between all locations occupied by A.

mccullochi. The relative percentage of each geographic location

within different MU suggests geographic structure and should

guide future population monitoring and demographic studies to

better inform management.

The mtDNA phylogenetic analysis. (Figure 2a) showed two

major groups and five distinct management units (MU): MU 1

(n = 41), MU 2 (n = 15), MU 3 (n = 12), MU 4 (n = 18) and MU 5

(n = 12) with a total of 30 haplotypes (Figure 2b). All locations were

relatively evenly represented within the two groups: Group 1

(MR = 23, ER = 21, LHI = 32, LHIL = 25) and Group 2

(MR = 21, ER = 21, LHI = 29, LHIL = 29). However, some

locations had markedly different proportional representation

within some MU (in bold) compared to others: MU 1 was

relatively evenly represented by all locations (MR = 21, ER = 26,

LHI = 24, LHIL = 29), but the remaining four MU (2, 3, 4 and 5)

differed in representation of individuals from specific locations -

MU 2 was LHI dominated (MR = 27, ER = 7, LHI = 52,

LHIL = 13); MU 3 was under-represented by ER individuals

(MR = 31, ER = 7, LHI = 31, LHIL = 31); MU 4 was ER

dominated (MR = 17, ER = 50, LHI = 25, LHIL = 8) and MU 5

was LHIL dominated (MR = 18, ER = 12, LHI = 29, LHIL = 41).

This indicates that three of the MU (2, 4 and 5) are

overrepresented by three specific locations 2 LHI, ER and LHIL,

respectively. In contrast, MR individuals were relatively evenly

distributed across all five MU.

Population genetic analyses of mtDNA. based on an

AMOVA, revealed two regional partitions (ER and MR vs LHI

and LHIL) and all of the genetic variation (101.74%) was within

locations, Wst = 20.017 (p = 0.8, Table S2), however, this was not

significant. Pairwise Fst comparisons subsequently revealed no

mtDNA genetic differentiation between locations (MR, ER, LHI,

LHIL; Fst = 20.0029 to 20.008, p = 0.513 to 0.973, Table S4) and

is consistent with the phylogenetic results.

Quantifying the level of evolutionary gene flow. Bayesian

analysis, informed by the phylogenetic structure, was performed

using MIGRATE-n, because analyses based on spatial structure

failed. High levels of evolutionary gene flow were indicated within

- but less between groups: between Groups (i.e. Group 1 - Group

2) M ranged from 19 to 42 (Figure 3a). These values were 2- to 6-

fold lower than evolutionary gene flow within groups: Group 1

(MU 122) M ranged from 72 to 146 (Figure 3a) and Group 2 (MU

3, 4, 5) M ranged from 180 to 246 (Figure 3a).

Gene Flow between Locations - Contemporary Time
Scales

Synopsis. msatDNA allele frequencies, genotypic distribu-

tions in space, genotypic assignments and genotypic posterior

probability distributions suggested significant spatial partitions

between A. mccullochi from the four locations in the latter three of

the four analyses. Low levels of contemporary gene flow were

Connectivity in an Endemic Reef Fish
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detected between the four locations, consistent with the patterns of

contemporary gene flow and with the high levels of inferred self-

replenishment evident at all four locations (next section). This is in

stark contrast to the patterns and levels of evolutionary gene flow.

Population genetic analyses of msatDNA. The statistically

rigorous AMOVA found significant structure in the locus by locus

msatDNA (Wst = 20.49 to 0.056, p,0.05, Table S3) and in the

global AMOVA as a weighted average over all microsatellite loci

(Wst = 0.007, p = 0.015, Table S2), with 99.34% of the genetic

variation existing within locations. Raw msatDNA pairwise Fst

comparisons also identified significant genetic partitioning be-

tween all locations (Fst = 20.004 to 0.026, p = 0.01 to 0.03, Table

S4), but ENA corrected pairwise Fst values showed significant

differentiation only between two of the four locations, ER and LHI

(Fst = 0.014, p,0.05, Table S4). Discriminant analysis of principal

components (DAPC) partitioned A. mccullochi into four spatially

structured populations (Figure 2c). Using the four locations as a

priori population criteria, DAPC assigned 76 to 80% of all

individuals to the location from which they were sampled

(assignment per population: 76% each for ER and LHI; 80%

each for MR and LHI, Figure 4). The 95% genotypic inertia

ellipses (GIE) for ER and LHIL did not overlap, whilst the 95%

GIE for MR overlapped with all 95% GIEs from the remaining

three locations. This is consistent with some ENA corrected

pairwise Fst values and importantly, with the composition of MU

2, 4 and 5. Geographical structure in msatDNA data was also

confirmed by GeneClass2 analyses, where only 5 individuals

grouped with a location from which they were not sampled

(MR = 1, ER = 1, LHIL = 3). Similarly, four geographically

partitioned populations were identified by STRUCTURE analy-

ses, as the likelihood of the marginal posterior probability

distribution was highest when K = 4.

Quantifying the level of contemporary gene

flow. Contemporary gene flow between locations was a few

orders of magnitude lower than evolutionary gene flow between

locations using Migrate-n, with M values ranging from 2 to 5

(Figure 3b). This suggests that populations at each location are

unlikely to be sustained from distant locations in the short term.

Inferred Levels of Self-replenishment and Recent
Migration

Despite weak genetic differentiation (Fst) between locations,

both DAPC and STRUCTURE partitioned the data into 4

distinct clusters. Used together, these programs are likely to be

better than Fst values [60] at determining the appropriateness of a

dataset for BAYESASS. Demographic independence is suggested

for all location pairs except: LHIL to LHI (m = 26%), LHI to/from

ER (m = 10 and 12%, respectively) and MR to LHI (m = 16%;

Figure 2. mtDNA and msatDNA gene tic analyses for Amphiprion. mccullochi. a) A phylogram of mtDNA (D-Loop) sequences from 118 A.
mccullochi individuals from Elizabaeth Reef, Middleton Reef and Lord Howe Island. This represents the best ML tree from 10 individual analyses.
Numbers on branches indicate support for each clade, based on phylogenetic analyses. b) Haplotype minimum spanning tree (MST) with the number
of substitutions between haplotypes indicated on connectors. Different coloured fills represent each of the four populations from the three reefs as
shown on the key to the figure. c) Scatterplots of the discriminant analysis of principal components of the microsatellite data for four Amphiprion
mccullochi populations using geographic sample site as priors for genetic clusters. Individual genotypes appear as dots surrounded by 95% inertia
ellipses. Eigenvalues show the amount of genetic information contained in each successive principal component with 6and y axes constituting the
first two principle components, respectively. Boxes indicate haplotype (h), nucleotide (p) and genetic diversity (gd) indices for A. mccullochi.
doi:10.1371/journal.pone.0049660.g002

Figure 3. Migration rates among Amphiprion mccullochi locations. The thickness of the line is directly proportional to the number of migrants
(M) and the colour of lines indicate predominant direction of gene flow. Population size (h, within parentheses) is also shown for each location. a)
Migrate-n evolutionary gene flow (mtDNA), b) Migrate-n contemporary gene flow (msatDNA) and c) BAYESASS analysis of self-replenishment
(msatDNA) and recent migration shown as a percentage.
doi:10.1371/journal.pone.0049660.g003
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Figure 3c). Conversely, high levels of self-replenishment (68 to

84%) were inferred at all four locations (Figure 3c). This indicates

that each location is predominantly sustained by self-replenish-

ment in the short term, rather than replenishment from distant

locations.

Population Genetic Diversities
Amphiprion mccullochi from all four locations had high haplotype

diversity (h), nucleotide diversity (%p) and genotypic diversity (gd):

h = 0.846 to 0.939,%p= 5.03 to 7.16, gd = 0.690 to 0.736

(Figure 2c). Total haplotype, nucleotide and genotypic diversities

were also high, h = 0.897,%p= 5.70 and gd = 0.688 (Table S2) for

this species. This is high genetic diversity and is unexpected for a

low abundance endemic species, but is consistent with increased

genetic diversity expected within locations when there is evolu-

tionary connectivity between them (i.e. within location 2 high

genetic diversity; between locations 2 low genetic diversity).

Discussion

Isolated islands are global hotspots of endemicity for a range of

coral reef organisms [64], [65] and determining the level and

direction of gene flow [66] between locations is a fundamental step

in establishing MPA networks that effectively conserve unique

marine biodiversity. In this study, A. mccullochi was found to have:

(i) sufficient gene flow between locations resulting in a lack of

geographic partitioning over evolutionary time scales; (ii) genet-

ically differentiated populations at all four sampled locations, due

to low levels of contemporary gene flow between locations, despite

the evolutionary homogenisation; (iii) demographic dependence

between LHI and LHIL, LHI and ER and MR and LHI,yet high

levels of inferred self-replenishment at all four locations and; (iv)

Figure 4. Posterior probability of assignment of each individual genotype to four Amphiprion mccullochi populations as indicated by
DAPC. The names of the possible assignment populations are given on the x-axis. 118 genotypes are listed on the y-axis, along with the population
from which they were sampled. Coloured bars corresponds to a 0.2 to 0.8 probability of assignment to a given population.
doi:10.1371/journal.pone.0049660.g004
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high genetic diversity at all locations, despite high levels of inferred

self replenishment. This is consistent with inter-location gene flow

at evolutionary time scales.

Gene Flow between Locations - Evolutionary Time Scales
The identification of discrete phylogenetic lineages or manage-

ment units (MU) is critical for developing effective management

strategies [67]. MU represent populations which rely on self

regulation rather than immigration from external sources. Two

distinct lineages with a total of 5 MU were suggested for A.

mccullochi mtDNA. Despite this, the relative percentage of each

location within MU suggests geographic structure. The occurrence

of two lineages within a species has also been found for coral reef

fishes on the Great Barrier Reef (GBR). Both Plectropomus maculatus

and Lutjanus carponotatus show a lack of geographic partitioning

along the GBR, yet display two distinct lineages, suggesting

admixtures of differentiated lineages rather than stable populations

[25]. A lack of geographical structure has also been found in

endemic Hawaiian species Chaetodon multicinctus, Chaetodon miliaris,

Chaetodon fremblii [68] and Halichoeres ornatissimus [69] and in

numerous other widespread coral reef fish species including S.

frenatus [70], C. sordidus [71], Lethrinus miniatus [72], Pseudochromis

fuscus [73] and Plectropomus leopardus [74].

A. mccullochi showed high evolutionary gene flow between MU

within lineages and to a far lesser extent, between lineages. Higher

gene flow from Group 2 into Group 1 is clear, suggesting

introgression of mtDNA (shown to be a result of historical

hybridisation between A. mccullochi and its widespread sister species

A. akindynos) [51]. In a similar way, the levels of evolutionary gene

flow between three sympatric species pairs of three-spined

stickleback (Gasterosteus aculeatu) have revealed natural hybridisation

and break down of a species pair into a hybrid swarm [75]. In

addition, evolutionary gene flow between locations has also been

found in Red Sea reef fishes Larabicus quadrilineatus, Chromis viridis

and Pseudanthias squamipinnis [76], [77]. Consequently, the lack of

geographical structuring and observed spatial genetic homogeneity

identified in this study of the endemic A. mccullochi, is likely due to

high levels of evolutionary gene flow, which is sufficient for all

locations to be connected on evolutionary time scales, thereby

maintaining genetic homogeneity.

Gene Flow between Locations - Contemporary Time
Scales

A. mccullochi showed strong contemporary genetic differentiation

between locations, consistent with other coral reef fish such as the

Hawaiian endemic surgeonfish Ctenochaetus strigosus [78]. Strong

discrepancies between evolutionary and contemporary levels of

gene flow in A. mccullochi are a direct result of different spatial and

temporal time scales. Discrepancies in gene flow, between time

scales, has also been shown for Lutjanus synagris [79], Plectropomus

maculatus and Lutjanus carponotatus [8], [9].

As previously highlighted, only a few individuals are needed

over evolutionary time scales to ensure homogeneity across a

species entire geographical range [28], [29]. However, models

predict that this level of gene flow is not sufficient to sustain local

populations and as a consequence, local populations must sustain

themselves via self-recruitment or self-replenishment [40], [80].

Thus, although evolutionary gene flow is important, it is the

dispersal rate of individuals that is of immediate interest to

sustaining populations [81]. A. mccullochi showed very low levels of

gene flow at contemporary timescales which is consistent with

model prediction. The low levels of contemporary gene flow in this

system most likely result from the short pelagic larval duration of

A. mccullochi and the geographical isolation between locations

enhanced by predominant east to west oceanographic currents

limiting north-south gene flow between locations [53].

Inferred Levels of Self-replenishment and Recent
Migration

Demographic independence results from gene flow between two

locations falling below 10% [82]. Thus, the high abundance of the

McCulloch’s anemonefish residing within the LHI lagoon will not

directly sustain other locations in the short term, except outside the

lagoon at LHI. Rather LHIL will help replenish LHI, which in

turn will replenish ER, whilst both ER and MR will replenish

LHI. This complex network of gene flow highlights the need to

protect each location under one management strategy. Interest-

ingly, the levels of inferred self-replenishment found in this study

($68%) are remarkably similar to the estimated levels of self-

recruitment in other congeneric anemonefish studies in Papua

New Guinea (PNG) [83], [84]. These levels are also similar to

those found in other reef fishes inhabiting islands including

butterflyfish in PNG [85] and wrasse in the Caribbean [86], whose

estimates of self-recruitment ranged from 30 to 60%. Possibly, the

higher self-replenishment in A. mccullochi, compared to the above

studies, results from the complete sampling of all locations leaving

no ’ghost ’ populations un-sampled. However, further investiga-

tion using direct methods (e.g. by using natural or artificial otolith

tags of newly recruited juveniles [83], [84]) is necessary to validate

the inferred levels of self-replenishment in A. mccullochi. This

approach may not be appropriate for endemic species with low

abundance. Given the rarity of A. mccullochi at MR and ER,

parentage studies involving otolith tagging and the sacrificing of a

high proportion of individuals may lead to local extinction at these

sites.

Population Genetic Diversities
A. mccullochi showed high genetic diversities despite its low

abundance and high levels of inferred self replenishment. Similarly

high genetic diversities have also been found in other coral reef fish

including Plectropomus maculatus, Lutjanus carponotatus [25], Lethrinus

miniatus [87] and damselfish on the Great Barrier Reef [71]. In A.

mccullochi this higher than expected genetic diversity is most likely

driven by bi-directional hybridisation with its sister species A.

akindynos [51], a process which has also been documented in

Plectropomus leopardus [74]. While high genetic diversities may

provide some level of population resilience to environmental

change, high levels of inferred self-replenishment make popula-

tions more vulnerable to extirpation due to low levels of

replenishment from elsewhere via contemporary gene flow.

Additionally, a cautious approach is required to prevent popula-

tion losses, even those with high genetic diversity [88], as

quantitative trait loci under selection at the peripheral edge of a

species distribution range might have no genetic diversity

remaining, despite neutral markers having relatively high genetic

diversity in the same population [89]. Therefore, low levels of

contemporary gene flow, coupled with high levels of self-

replenishment have implications for the management, persistence

and effective conservation of this endemic coral reef fish species –

even if genetic diversity is high.

Threats and concerns. Conserving endemic species such as

A. mccullochi presents a unique challenge to management. Although

remote islands are largely unaffected by the pressures experienced

by coastal reefs, a variety of anthropogenic threats still exist. These

include sewage leaks and anemone bleaching due to increased

temperatures [90]. The occurrence of these events at locations

such as LHI lagoon [91] is a serious cause for concern [92] since

75% of A. mccullochi surveyed in 2009 resided in designated high-
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protection ‘sanctuary zones’ within the lagoon [48]. It follows then

that protecting critical habitat (i.e. Entacmaea quadricolor anemones)

and keeping the natural genetically distinct sub-populations (MU)

of endemic fish intact, should be a priority of management plans.

In addition, isolated locations that are predominantly dependent

on self-recruitment are unlikely to be sustained by long distance

transport over hundreds of kilometres [40], [80] and therefore

unlikely to recover fast [93], [94]. Lastly, small, isolated

populations are subject to genetic deterioration and, if habitat

fragmentation increases in the future (due to habitat loss from

climate change), gene flow may be further restricted, leading to

inbreeding and an increase in extinction risk with as much as 29%

reduced persistence times [95].

Climate change offers an additional suite of threats and

concerns. LHI, like other isolated islands, is facing an escalation

of threats (e.g. increasing intensity and frequency of cyclones,

rising sea surface temperatures, ocean acidification) [50], with

negative effects on biodiversity expected within the region. In the

case of the McCulloch’s anemonefish and Hobbs et al. [48] noted

in their surveys of LHI coral reefs that some of the host anemones

were bleached (typically a response to elevated sea temperatures)

[96]. As sea temperatures continue to increase due to global

warming, the intensity and frequency of bleaching events is likely

to increase, directly threatening the persistence of this obligate

habitat specialist and potentially other coral reef fish. High genetic

diversity is unlikely to overcome the loss of habitat in the time

frames expected, particularly if the quantitative trait associated

with specialised host use already has limited or no genetic

diversity. With the expected increase in strength of the EAC

bringing warmer waters to subtropical regions [97], these isolated

island populations may at further risk of extinction if they can not

tolerate elevated temperatures or extend their current geographic

ranges.
Conclusion. The present study highlights the importance of

estimating both evolutionary and contemporary levels of gene flow

(connectivity) due to the different spatial and temporal scales at

which these processes operate. While populations are primarily

being maintained by self replenishment, exchange among islands

over evolutionary time is critical to understanding patterns of

genetic diversity and differentiation. Locations with high levels of

self-replenishment (e.g. MR, ER, LHI) each require protection as

they receive few dispersing larvae from each other. Locations with

lower levels of self-replenishment (e.g. LHIL) are just as important

to protect as they provide a dual benefit because they are a source

for their own and other populations, aiding in rescue effects of

depleted/extinct populations and enhancing genetic diversity.

Thus both predominantly self-replenishing and predominantly

dispersing locations should ideally be protected, from activities

such as aquarium collecting, to maximise biodiversity conservation

in low abundance endemics living on isolated reefs and islands.

Although this study focused on a single coral reef species at four

locations in the South-West Pacific Ocean, the region harbours 16

other species of endemic marine fishes, as well as numerous other

endemic marine species that have similar geographic distributions

as our study species. Thus patterns of gene flow and self-

replenishment in A. mccullochi may be representative of other

endemic species.
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