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Abstract

Reproduction and recruitment are key processes that replenish marine populations. Here we use the Palau archipelago, in
the western Pacific Ocean, as a case study to examine scales of connectivity and to determine whether an oceanographic
model, incorporating the complex reef architecture, is a useful predictor of coral recruitment. We tested the hypothesis that
the reefs with the highest retention also had the highest densities of juvenile coral density from 80 field sites. Field
comparisons showed a significant correlation between the densities of juvenile Acropora colonies and total larval
recruitment derived from the model (i.e., calculated as the sum of the densities of larvae that self-seeded and recruited from
the other reefs in the archipelago). Long-distance larval imports may be too infrequent to sustain coral populations, but are
critical for recovery in times of extreme local stress.
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Introduction

Marine connectivity is defined as the sharing of a gene pool

through the process of larval dispersal and settlement. The

broadcasting of gametes and planktonic larvae are the most

common means of marine dispersal. Identifying the extent of

larval exchange among marine ecosystems is of primary impor-

tance for furthering our understanding of connectivity among

marine populations [1,2]. Early coral-reef studies suggested that

larval exchange among coral reefs occurred at large, regional

scales [3,4]. More recent oceanographic models for the Caribbean

and elsewhere have suggested that larval connectivity is unlikely,

or rare, at scales of hundreds of kilometers or more [2]. In support

of the model outputs, recent genetic studies suggest that most

larval exchange is local, at the scale of 1–10 km [5–8]. Here we

use Palau (Figure 1) as a case study to examine local scales of larval

connectivity, to determine whether coral recruitment was predict-

able, both through self-seeding and connectivity, and to discuss the

implications of the results in the context of maintaining reef

resilience.

Oceanographic studies of self-seeding and hydrodynamic

connectivity among reefs have focused on oceanic or tidal eddies,

generated by flow around bathymetric features, which trap water-

borne larvae [2,9–21]. These studies have focused on isolated

islands. Water circulation in and around the Palau archipelago is

very different, however, from circulation around an isolated island

or reef, because the mean-water circulation is steered away from

and around the archipelago by a phenomenon called the ‘sticky-

water’ effect (Figure 2) [22]. This sticky-water effect generates

slower mean currents (u3) inside the archipelago compared with

currents surrounding the archipelago (u1). The deflection of the

mean circulation around the archipelago also generates a

boundary layer where the currents are even faster than elsewhere

(u2), so that u2. u1. u3. The sticky-water effect is also enhanced

in shallow waters (depth ,20 m) by the non-linear friction-driven

interaction between the tidal currents and the mean currents [24].

In theory, the slow mean currents inside the archipelago should

enhance self-seeding within the reef complex [23], but no studies

have been carried out on the connectivity among reefs in the reef

mosaic of Palau.

To test whether coral recruitment was predictable in Palau we

developed a coral larval oceanography model for the archipelago

and the surrounding ocean (Figure 3). This model provided the

hydrodynamics data needed to track waterborne larvae using

advection-diffusion equations. The model simulated the fate of

coral larvae after a spawning event, and estimated the probabilities

of both self-seeding and connectivity among localities. These data

were then compared with coral cover and juvenile coral densities

collected in the field. We tested the hypothesis that the reefs with

the highest retention also had the highest densities of juvenile

corals. This information will be useful to establish conservation

priorities. There is a national effort in Palau to establish a

Protected Areas Network, which may provide regional resilience to

both local and global scale stressors. But currently there are limited

data to guide selection of sites for the network. Our study is an

important step toward filling this information gap.
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Figure 1. Eighty study sites surveyed in Palau, 2009. The study region was stratified into three habitats, as either inner reef bays (n = 20), patch
reefs (n = 30), or outer reefs (n = 30). Dark circles indicate seeding sites. The land is depicted in yellow.
doi:10.1371/journal.pone.0050998.g001
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Results

The altimetry-derived, long-term average, surface currents in

the ocean near Palau were from southeast to northwest, at a speed

of about 0.12 m s21. These currents also fluctuated through time,

being generally the fastest (,0.25 m s21) during La Niña years

and the slowest (, 0.05 m s21) during El Niño years (Figure 4).

Fast and slow monthly mean currents occurred as events that were

independent of the Southern Oscillation Index (SOI). Indeed,

there was no significant correlation between the SOI and the

monthly averaged currents off Palau (Figure 4). This independence

is a consequence of Palau’s location in the shear zone between the

eastward-flowing North Equatorial Counter Current, to the south

of Palau, and the westward-flowing North Equatorial Current, to

the north of Palau. The resultant surface currents around Palau

are dominated by transient, oceanic eddies [25].

The altimetry data also showed that water-borne larvae from

coral reefs around Yap could drift to Palau in about 45 days. Using

168 months of data, there were three occasions in the last decade

or more when a coral larvae ‘connection’ between Yap and Palau

was highly probable: July and August 1997, August 1999, and

August and September 2006. But coral spawning occurs twice a

year in Micronesia, in April – May and again in August-

September, over a period of 4 months [26]. In this regard, the

oceanography suggests that during the spawning seasons, the

corals on reefs around Yap could potentially seed Palau reefs 9%

of the time (i.e., 4 months out of the 42 months [168/4] or about 1

year in every 11 years).

Reef density in the northern lagoon was low, at 26%, compared

with 41% in the southern lagoon. Such differences in reef density

formed the sticky-water effect in the southern lagoon. The stick-

water effect was not apparent in the northern lagoon (Figure 5).

Figure 2. A schematic of the ‘sticky-water’ effect in a reef system under a steady current. The circles represent reefs, the thin lines
represent streamlines of the mean currents, and the thick line is the distribution of the mean currents along a transverse section, extending from the
surrounding waters in through the reefs and out to the surrounding waters. The penetration of water circulation inside the archipelago is asymmetric,
being larger on the upstream side than on the downstream side. The thin, straight vertical line is a transverse section, inserted for comparative
purposes, to show the different vectors for u1, u2, and u3. The sticky water effect generates slower mean currents (u3) inside the archipelago
compared with currents surrounding the archipelago (u1). The deflection of the mean circulation around the archipelago also generates a boundary
layer where the currents are even faster than elsewhere (u2), so that u2. u1. u3.
doi:10.1371/journal.pone.0050998.g002
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The resulting mean residence time (i.e., the time for the particle

concentration to decrease by 64%, i.e., a factor of 1/exp) was 14

days in the northern lagoon and 47 days in the southern lagoon.

The model showed that the average self-seeding potential across

Palau’s main archipelago was about 10%. Five days after

simulated spawning, retention values ranged from 0 to 66%

across all sites. The highest retention (Figures 6a and 6b) was

localized within the northern portion of the southern lagoon,

where reef density was the highest. The western side of the

archipelago also exhibited retention comparable to the northern

section of the southern lagoon. The fringing and barrier reefs on

the eastern side of the main island of Babeldaob showed relatively

high retention, with values comparable with the sites on the

western side of Babeldaob. The southern lagoon was also a high

retention area, except in the reef passages and over the reef flat,

where the flow rates were consistently high and retention was low.

The lowest retention values were evident in the northern lagoon,

where reef density was low and flow was predominantly east to

west (Figure 6).

Within the Palau archipelago, there was a significant relation-

ship between the density of self-seeding, estimated by the

oceanographic model, and the percentage of coral cover estimated

in the field (Figures 6c and 7, R
2 = 0.19, p = 0.002). There was no

significant correlation between sites that self-seeded and juvenile

Acropora colonies (p = 0.30). The lack of correlation between self-

seeding, derived from the model, and the densities of juvenile

Acropora is most likely because self-seeding and recruitment from

elsewhere were indistinguishable in the field. There was, however,

a significant correlation between the density of juvenile Acropora

colonies and the total density of larval recruits that were derived

from the model, calculated as the sum of self-seeding and larvae

from other sites (Figure 6d, rs = 0.29, p = 0.03). There were no

significant correlations with sites that primarily received larvae

from other sites and coral cover. There were also no significant

correlations between juvenile brooding corals and predicted

retention sites. The Moran’s I test for spatial autocorrelation

showed no spatial autocorrelation of juvenile Acropora colonies on

outer reefs (Moran’s I = 0.01), but, as expected, showed some

spatial autocorrelation in the lagoon (Moran’s I = 0.09).

Discussion

The hydrodynamic model showed considerable local retention

at all sites in the Palau archipelago for time scales of three days and

less. But at longer time scales, the northern reefs were well flushed

and the simulated larvae were lost, whereas the southern lagoon

retained larvae (Figures 5 and 6). Several studies have shown that

larval behavior influences recruitment [27,28], but only at the

scale of centimeters to meters. Therefore, we did not incorporate

larval behavior in our model because we were interested in the

hydrodynamics and the larval retention capacity at the scale of

kilometers. The results indicated that both self-seeding (auto-

seeding) of reefs and recruitment from other reefs (allo-seeding), by

waterborne dispersal of larvae, is common within the Palau

archipelago. The former prevails in areas of high-reef density (i.e.,

in the southern lagoon), and the latter is most common in areas of

low-reef density (i.e., in the northern lagoon).

The reefs in the eastern central lagoon near Babeldaob, which

displayed high (simulated) larval retention, were not in good

condition and supported fewer juvenile Acropora colonies than

other high-retention areas. The poor condition of reefs in the

eastern central lagoon may be related to a combination of

substrate instability [29] and considerable terrestrial discharge

onto these reefs from adjacent watersheds [30–32]. Therefore, our

study also supports the fact that coral populations are only self-

sustaining if terrestrial discharge is controlled [29,32].

The highest retention was apparent in the southern lagoon

where reef density was also high. Such high retention was not

apparent in the northern lagoon, where reef density was low.

We found a positive correlation between the observed density of

juvenile Acropora colonies and predicted larval recruitment

calculated as the sum of self-seeding and imports from other

reefs. Therefore the model was a reasonable predictor of

juvenile Acropora colonies. There was also a significant relation-

ship between the density of self-seeding predicted by the model

and the percentage of coral cover measured in the field. Coral

cover is, however, influenced by multiple variables and not just,

simply, larvae supply and local hydrodynamics. Studies using

genetic techniques to assess the relative importance of differen-

Figure 3. The model domain and the open boundary conditions in the Palau archipelago; the tides g were specified on the western
boundary (boundary 1). The north/south current U (.0 if northward, ,0 if southward) was specified both on the northern boundary (boundary 2)
and southern boundary (boundary 4).The east/west current V (.0 if eastward, ,0 if westward) was specified on the eastern boundary (boundary 3).
doi:10.1371/journal.pone.0050998.g003
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tial fragmentation are needed to provide further insight on other

processes that may also contribute to differential coral cover.

On ecological time scales, coral populations in Yap could

feasibly connect with coral populations in the Palau archipelago,

given that scleractinian coral larvae can remain competent for

over 100 days [33,34]. Although the mean oceanic currents in

the region are primarily towards the northwest, these currents

are variable and occasionally flow southwestward (Figure 8).

The altimetry data showed that water-borne larvae from coral

reefs around Yap could drift to Palau in about 45 days and

coral reefs around Yap could potentially seed Palau reefs 9% of

the time (i.e., about 1 year in every 11 years). Therefore, Palau

reefs are potentially self-sustaining, but may receive occasional

recruitment pulses from Yap on a temporal scale of once a

decade. Long-distance dispersal from Yap most likely occurred

in August 1999, one year after the thermal-stress event in 1998

caused widespread coral mortality in Palau. Notably the corals

in Yap did not undergo major thermal stress in 1998. This

long-distance dispersal event may have facilitated the re-

establishment of corals in Palau.

These general results agree with contemporary genetic studies

that suggest that most recruitment is local but there is occasional,

long-distance connectivity ensuring panmictic populations [5,6,8].

Therefore, connectivity at the scale of hundreds of kilometers (i.e.,

from Yap to the Palau archipelago) does not occur often; however

connectivity is likely at least once a decade, in view of the major

circulation patterns (Figure 3). This occasional connectivity may

be ecologically critical to enable coral populations to recover

following major mortality events, such as the large-scale coral

bleaching event that occurred during the 1998 El Niño [8,35].

In general, this study shows that recruitment was apparent at

three spatial and temporal scales: (i) local and yearly self-seeding,

which was potentially enhanced by a high-reef density, (ii)

archipelago-wide, yearly recruitment through waterborne dispers-

al of seeds originating from a high-density reef matrix, and (iii)

regional, decadal recruitment of larvae after long-distance

waterborne dispersal from reefs potentially hundreds of kilometers

away (Figures 5, 6 & 8).

This study suggests that the reefs of Palau are highly connected,

which supports the concept of establishing and strictly enforcing

networks of Marine Protected Areas that include No-Take Areas.

Figure 4. (a) Time-series stick plot of the Southern Oscillation Index (SOI) and (b) the altimetry-derived, near surface, monthly
averaged currents ,u., indicating direction and magnitude (length of vectors) in the waters off the Palau archipelago.
doi:10.1371/journal.pone.0050998.g004
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Coral populations may be maintained by a network of Marine

Protected Areas in the high density core zone, in the dispersion

zone downstream of the core zone, and also, ideally, in the long

distance source zone. Such a strategically located network is

urgently needed in Micronesia to maintain connectivity and

sustain the marine populations throughout the archipelago. Larval

‘imports’, from other nations may be too infrequent to sustain local

coral-reef systems, but those larvae are critical for recovery in

times of extreme stress [35]. Designing resilient networks of

conservation areas may be also the best defense against future

climate-change disturbances.

Materials and Methods

Ethics Statement
All research was approved by the Palau International Coral

Reef Center. The Ministry of Natural Resources, Environment,

and Tourism of the Republic of Palau provided the permit to

conduct this research.

Study Location
The Palau archipelago (07u 30’ N, 134u 30’ E) is located in

western Micronesia (Figure 1). The archipelago consists of the

volcanic island of Babeldaob (332 km2) and smaller atolls, coral

platform islands, and raised limestone islands. The archipelago is

about 700 km long and the islands are surrounded by barrier,

fringing, and patch reefs that make up a lagoon, which together

cover a surface area of approximately 1,450 km2. The archipelago

is located in a high shear zone between the westward-flowing

North Equatorial Current to the north and the eastward-flowing

North Equatorial Counter Current to the south. The field survey

sites and the virtual seeding sites were focused in the main

archipelago around Babeldaob Island and its fringing reefs to the

north and south, including the high-density reef mosaic to the

south that includes numerous reefs and raised limestone islands

known as the Rock Islands.

Field Surveys
A total of 80 sites were surveyed for coral cover and juvenile

coral density in 2009 (Figure 1). The sampling area was stratified

Figure 5. An example of virtual coral larvae dispersal plumes 0, 2, 4, 6, and 9 days after coral spawning in the Palau archipelago. The
maximum concentration was arbitrarily set at 200 for visualization purposes.
doi:10.1371/journal.pone.0050998.g005
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by habitat as: (i) bays, (ii) patch reefs, and (iii) outer reefs, using the

2005, National Oceanic and Atmospheric Administration (NOAA)

derived shallow benthic habitat maps of Palau [36]. The habitat

shapefiles were accessed using Arc9.3H from which random points

were selected, using the Hawth’s Analysis Tools for ArcGIS

(HawthsToolsH 2009), and used as sampling sites. The points were

transferred to a boat-mounted Global Positioning System (GPS)

unit, which was used to navigate to each study site. In case non-

reef sites were selected, the field team was given alternative GPS

coordinates within each habitat. More sampling effort was

allocated to patch and outer reef habitats because in terms of

reef area, there were disproportionally more patch and outer reefs

than bays (patch reefs ,53 km2, outer reefs ,31 km2, and bays

,17 km2). The final sampling effort examined 30 sites on the

outer reefs, 30 sites on patch reefs, and 20 sites in the bays.

The survey consistently targeted the shallow coral-reef assem-

blages, 2–5 m below Low Water Datum (LWD). At each site we

estimated the percentage coral cover by photographing 1561 m2

randomly placed quadrats [37]. To estimate coral cover, the

photographs were analyzed using CPCeH [38]. Ten random

points were used to determine coral cover within each quadrat.

The density of Acropora, Pocillopora, and Stylophora juveniles (,5 cm)

was also examined in each photograph (note that Acropora spp., are

broadcasters, and Pocillopora and Stylophora are brooders). The reef

density was determined by counting the total cells of the

bathymetric map that were ,5 m LWD, which were considered

reef area. The bathymetric map of the main islands of Palau was

used for the hydrodynamic model. The grid size of the

bathymetric map is 500 meters. Reef density is the fraction of

the area covered by reefs. It is a different parameter than coral

cover, which is the fraction of the reef substrate covered by live

coral. Reef density is a bathymetric parameter, whereas percent-

age coral cover is an ecological parameter.

Modeling and Data Analysis
The basis of the coral-larval oceanographic model was the finite-

difference, implicit, 2-dimensional, advection-dispersion model of

Wolanski and King [39]. The model incorporated the currents

driven by swell waves breaking on a reef flat – parameterized as in

Wolanski et al. [340]. The model domain was a rectangle 127 km

by 176 km with a grid size of 500 m, set at a maximum depth of

80 m in oceanic waters, to represent the surface-mixed layer, and

setup with 4 open boundaries in the ocean (Figure 3). To prevent

instabilities, a 10-cell wide sponge layer was added to the western

open boundary to prevent the reflection of outward-going waves

back into the model domain; the sponge absorbed high-frequency

surface waves but did not disturb the tidal and low-frequency

currents. The model also incorporated a uniform wind forcing. The

tides g were specified on the western boundary (boundary 1). The

north/south current U (.0 if northward, ,0 if southward) was

specified both on the northern boundary (boundary 2) and southern

boundary (boundary 4), and the east/west current V (.0 if

eastward, ,0 if westward) was specified on the eastern boundary

(boundary 3) (Figure 3). The open boundary conditions were set

from field observations. The tides, g, at open boundary 1 were

provided by NOAA. The currents at the three other open

boundaries were set from field data using:

U~U0zU
, ð1Þ

where Uo is the low-frequency oceanic current in the far field

upstream of Palau, and U’ is the tidal current, and similarly,

V~V0zV
, ð2Þ

In other words, the tidal current velocities were added to the far-

field low frequency current velocities.The tidal currents (U’, V’)

Figure 6. Distribution of (a) self-seeding rate (%), (b) total seeding rate (%), (c) coral cover (%) and (d) juvenile Acropora density
(m2)in the Palau archipelago.
doi:10.1371/journal.pone.0050998.g006
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were taken from current data obtained using a Sontek Acoustic

Doppler Current Profiler (ADCP) attached for a month at 20 m

depth to a Fish Aggregation Device, about 9 km offshore from

central eastern Babeldaob in 3000 m depth (Figure 1). The low-

frequency currents (Uo,Vo) were taken from altimetry data (http://

www.oscar.noaa.gov) and averaged from 1992–2009, calculated in

a 161 degree area located just to the east of Palau. To execute the

model we imposed a 1 m easterly swell, 18 km hr21 northeasterly

winds, and a 1.6 m tidal range. These conditions are based on data

from Palau’s National Weather Service station for the spawning

period in March/April, averaged over the past 3 years.

The altimetry data was also used to examine whether water-

borne larvae from coral reefs around Yap could drift to Palau, and

how long that would take. Yap is located about 400 km

‘upstream’, to the northeast, of Palau. The likely recruitment rate

during such long-distance events is much lower than that expected

from local recruitment, primarily because mixing and diffusion at

sea reduces larvae concentrations considerably. Therefore dilu-

Figure 7. (a) The relationship between self-seeding, as predicted by the oceanographic model, and coral cover that was measured
in the field. The dark line indicates the linear response following the function, y = 15.8+0.19x (R2 = 0.19), the dashed lines indicate the 95%
confidence intervals, and the dark circles represent the data. (b) The correlation between total seeding, as predicted by the oceanographic model,
and juvenile Acropora density that was measured in the field. The dark line indicates the linear relationship, the dashed lines indicate the 95%
confidence intervals, and the dark circles represent the data.
doi:10.1371/journal.pone.0050998.g007
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tions were calculated using Fischer et al. [41] 2-D Fickian diffusion

model.

The advection-dispersion model was Lagrangian and follows

Spagnol et al. [42]. The residence time of waters in the

archipelago is determined not just by the mean circulation but

also by diffusion. The model accounts for mixing at scales larger

than the grid size (500 m). Sub-grid size diffusion was parameter-

ized by an eddy diffusion coefficient of 1 m2 s21, a value

recommended by Okubo [41] for mixing of patches of that size,

and implemented numerically using a random Markov walk [40].

Fifty evenly spaced spawning sites were selected within the

model domain. Each site consisted of a square of 363 cells of the

model, which translated into a 1500 m by 1500 m area. Nine cells

was necessary to smooth over the inherent complexities of variable

velocity fields within reef systems; near stagnant cells occasionally

occur adjacent to cells with high velocity [44]. Five-thousand

larvae were released from each cell (45,000 larvae from each site)

over 30 minutes and tracked for 120 hours. We ran the model for

more than 120 hours in consideration of the , 5 day pre-

competency period of most coral larvae. These numbers were

standardized to examine local retention and dispersion patterns.

The numbers are not meant to represent larvae densities in the

field, because one large Acropora colony can release thousands of

gametes simultaneously. We calculated: (i) the self-seeding of reefs,

i.e. the percentage of larvae particles remaining in the site after

120 hours; (ii) the connectivity of reefs, i.e. the number of larvae at

each site that were derived from other release sites after 120 hours,

and (iii) the total seeding of larvae, i.e. the sum of larvae retained at

a given site and the larval imports from other release sites after 120

hours.

These data were used to calculate and plot the spatial

distribution of the self-seeding of reefs, and the total seeding of

larvae using ordinary kriging analysis on the ArcGIS platform

using Gaussian functions for best-fit modeling [45]. One of the

assumptions of kriging analysis is stationarity, or steady state of the

system. There was mass mortality of corals in Palau following the

1997–1998 El Niño, yet the coral cover recovered and reached a

steady state around 2007. Moreover, such stationarity implies that

a numerical model is justified to quantify the relationship between

sources and sinks of coral larvae in Palau at present.

We used regression analyses to compare the outputs of the

dispersal model, which included the variables: (i) the percentage of

larval retention (i.e., self-seeding), (ii) the number of larvae from

other sites, and (iii) the total number of larvae at each site. These

variables were then correlated with the percentage hard coral

cover. We also used Spearman’s rank correlation to compare the

outputs of the dispersal model with the densities of juvenile coral

colonies. To check for spatial autocorrelation problems we ran a

Figure 8. The three zones of coral larvae connectivity identified within the Palau archipelago include: (i) the large scale dispersion
zone (depicted in light blue), providing infrequent (decadal) connectivity between Yap and the Palau archipelago, (ii) the local
dispersion zone (depicted in purple), and (iii) the self-seeding core zone (depicted in red).
doi:10.1371/journal.pone.0050998.g008
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Moran’s I test in R (R Core development team, 2011, version 2.1)

on a windows platform, treating the latitude and longitude values

on a plane, rather than on a sphere, because the spatial scale of

this analysis did not extend beyond 1o in latitude.
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