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Abstract

The concept of b-diversity, defined as dissimilarity among communities, has been widely used to investigate biodiversity
patterns and community assembly rules. However, in ecosystems with high taxonomic b-diversity, due to marked
environmental gradients, the level of functional b-diversity among communities is largely overlooked while it may reveal
processes shaping community structure. Here, decomposing biodiversity indices into a (local) and c (regional) components,
we estimated taxonomic and functional b-diversity among tropical estuarine fish communities, through space and time. We
found extremely low functional b-diversity values among fish communities (,1.5%) despite high dissimilarity in species
composition and species dominance. Additionally, in contrast to the high a and c taxonomic diversities, a and c functional
diversities were very close to the minimal value. These patterns were caused by two dominant functional groups which
maintained a similar functional structure over space and time, despite the strong dissimilarity in taxonomic structure along
environmental gradients. Our findings suggest that taxonomic and functional b-diversity deserve to be quantified
simultaneously since these two facets can show contrasting patterns and the differences can in turn shed light on
community assembly rules.
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Introduction

Partitioning biological diversity across spatial scales has been

focused on in numerous ecological studies for several decades since

the pioneering works of Whittaker [1,2]. The local and regional

diversities were called a- and c-diversities, respectively, while

dissimilarity between these two scales was coined as ß-diversity

[1,3]. ß-diversity is thus a key component of biodiversity since

measuring whether communities share similar species is crucial for

understanding the driving forces underlying community structure

at multiple spatial scales [4,5,6] as well as for conservation

purposes [7,8].

In studies investigating diversity partitioning among sites,

biodiversity indices are almost exclusively based on species

composition even though the definition of biodiversity includes

various facets of the diversity of life [7,9]. Most current measures

of ß-diversity ignore what makes communities different over space

and time: species relative abundances and species biological

features. Indeed, for most ß-diversity indices (e.g. Jaccard,

Sorensen indices), the maximum value is reached when the

communities have no species in common [10]. This kind of

species-based approach is an incomplete view of community

structure. However, rapid movement has been occurring in this

field, with recent studies that start to include phylogenetic and

functional differences among species when assessing dissimilarity

between communities [5,7,11,12,13,14,15,16]. Indeed, two com-

munities can be very dissimilar in terms of species composition but

very similar in terms of biological composition regarding trophic

levels [17], morphological traits [18] or phylogenetic lineages [19].

In other words, should a set of communities with no species in

common be always assigned the highest possible ß-diversity value?

A negative answer to this question raises two often overlooked

issues. What is the level of functional ß-diversity among

communities when taxonomic ß-diversity is high? What can the

examination of taxonomic and functional ß-diversity teach us

about the ecological processes shaping community structure?

The potential of functional traits to reveal processes structuring

communities has been recently emphasized [20,21,22]. More

particularly, comparing taxonomic and functional beta-diversity

levels can disentangle community assembly rules [13,14,15,16,23].

For instance, a strong niche filtering process along an environ-

mental gradient will induce a high level of taxonomic dissimilarity

coupled to a high level of functional dissimilarity as the dominant

functional strategies will vary along the gradient [13,14,16]. In

contrast, if neutral processes are predominant, then taxonomic

and functional beta-diversity should not differ from random

association between species abundance and functional traits.

Fish communities inhabiting tropical estuaries provide a unique

opportunity to investigate functional diversity partitioning because

(i) the functional traits of the fish have already revealed
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mechanisms underlying community structure [24,25], (ii) estuarine

communities are generally species-rich [26] and such communities

are necessary to implement null models of community structure

and (iii) estuaries present high variability in environmental

conditions (mainly salinity) which often forces a high species

turnover across space and time [17,27]. Moreover, tropical

estuarine ecosystems are of primary concern for human popula-

tion welfare since they provide various services of high value

(protein source, regulation of pollution, recreational areas)

although they can be severely impacted by human activities

[28]. Fishes (teleosts and chondrichthyes) constitute a key

component of biodiversity in estuaries since they have a large

range of morphologies, life-history traits, behaviors, and diets, and

thus are central in controlling fluxes of matter and energy within

aquatic systems [29].

To contribute to the estimation of functional ß-diversity among

communities, a large dataset of estuarine fish communities was

collected and a set of functional traits related to fish diet and fish

locomotion was measured. Then, we assessed the a, c and ß

components of taxonomic and functional diversity of fish

communities using a common framework based on the concept

of equivalent number of species [12,30]. Since estuarine ecosys-

tems experience high variability in environmental conditions

across space and time [17,31] we investigated taxonomic and

functional diversity patterns spatially and temporally. We further

tested whether the level of functional ß-diversity observed among

communities is different from expectations given a random

association between functional traits and abundances. Finally,

we highlighted the role of some functional groups that stabilize the

functional structure of fish communities across space and time

despite high species turnover.

Material and Methods

Ethics Statement
The field sampling protocol received the agreement of the

Mexican National Commission for Aquaculture and Fisheries

(permit number: 070503-613-03).

The Study System
The study area was located in the south of the Gulf of Mexico

along the coast of the Campeche State (Mexico) (Figure 1). More

precisely, the survey focused on a 150-km long transect

(18u37916N–92u42928W to 18u30920N–91u28903W) of 37 stations

distributed in the south-western part of the Terminos Lagoon and

along the adjacent coast [17]. This transect crossed the discharge

of three main rivers (the Usumacinta, San Pedro y San Pablo, and

Palizada rivers) and the Carmen inlet, i.e. the exit of the Terminos

Lagoon flow [32]. Local environmental conditions were highly

variable through space and time (Table S1). For example, salinity

ranged from 0 to 42 psu (practical salinity unit), depth from 0.8 to

12 meters and transparency from 0 to 100% of the water column

depth [17]. Tide has very low amplitude (0.3 m), and thus does not

significantly affect this ecosystem [32].

Sampling Protocol
Two sampling campaigns were conducted, one from February

2003 to January 2004 and the other from February 2006 to

January 2007. No major environmental changes were noticed

between the two campaigns which were used separately to

reinforce the robustness of our findings. Each campaign

consisted of a monthly biological survey of the 37 stations

(Figure 1) localized using a Global Positioning System with a

precision of 75 m. Fish communities were sampled using a

shrimp-trawl (length: 5 m, mouth opening diameter: 2.5 m,

mesh size: 19 mm) towed for 12 minutes at a constant speed of

2.5 knots. The volume sampled was thus of 4,500 m3. This

active sampling method is well suited to fishes living in this

shallow coastal area since they are relatively small (juveniles or

sub-adults and adults of standard length,30 cm) and slow

swimmers. For each sample, all individuals were identified at

the species level and weighed to the nearest decigram.

Morphological Traits
For several decades, many studies have focused on the

assessment of fish ecological niches through morphological traits

(e.g. [25,33,34]). During the 2006–07 sampling campaign, a

maximum of 20 individuals per species were randomly selected.

On each of these individuals, 16 morphological traits were

measured to describe fish functional niche. See Text S1, Figure

S1 and Table S2 in Supporting Information for more details

about trait assessment. This set of traits aims to quantify, as well

as possible, two key functions performed by fish: food acquisition

and locomotion [35]. The correlations between the 16 traits were

globally weak (mean 6sd absolute value of Pearson coefficient

0.2660.20) which illustrate their complementarity (see Table S3).

For each species, mean trait values were finally computed from

individual measures assuming that intraspecific variations were

lower than interspecific variations [36].

In particular, ontogenic changes were not considered as the

studied species were mainly represented by juveniles and sub-

adults, thus exhibiting a relatively small size-range.

Then, for each trait, mean values were standardized so that the

mean was 0 and standard deviation was 1. Functional distances

among fish species pairs were estimated using the Euclidean

distance on standardized functional trait values. This raw

functional distance matrix was then standardized by dividing it

by its maximal value to obtain the operational distance matrix

d [12].

Partitioning Functional Diversity into a, b and c
Components

We studied functional ß-diversity among fish communities

belonging to the same stratum. These strata were defined both

through time (between months for a given site) and space (between

sites for a given month). Thus, for each of the two periods (2003–

2004 and 2006–2007), sampling points were grouped into 12

temporal strata (37 stations for each month) and 37 spatial strata

(12 months for each station). Samples with no fish were removed

prior to statistical analyses, thus some strata actually contain less

than 12 months or less than 37 sites. The two periods were used as

replicates to strengthen our conclusions.

Functional ß-diversity was estimated using the decomposition of

Rao’s quadratic entropy index [12,37]. Let us consider N local

communities with a global species richness of SG. Each local

community k has a species richness Sk. Abundance (here biomass)

of species j in community k is noted Akj. Relative abundance of

species j in community k, noted pkj, is computed as: pkj~
Akj

PSk

j~1

Akj

,

thus
PSk

j~1

pkj~1:

Our sampling protocol provides robust differences in local

abundances, thus the relative abundance of species j at the stratum

scale noted p.j, has to be computed as:

Low Functional b-Diversity among Fish Communities
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p:j~

PN
k~1

Akj

PN
k~1

PSk

j~1

Akj

~
XN

k~1

wk|pkj

� �
with wk being the weight of

community k:wk~

PSk

j~1

Akj

PN
k~1

PSk

j~1

Akj

[38].

For a community with S species, Rao’s quadratic entropy

Q~
PS
i~1

PS
j~1

dijpipj is maximal when two conditions are met: all

species present are maximally dissimilar and have equal

abundances, i.e. for all i = 1,2,…,S pi~
1

S
and for all i?j dij~1

(while as usual for all i = j dij~0). In this case, maximal quadratic

entropy is Q~
S|(S{1)

S|S
~

(S{1)

S
~1{

1

S
.

Following its definition, the equivalent number of species Q̂Q is

the number of maximally dissimilar species having equal

abundance which produces maximal entropy. Thus, by replacing

S by Q̂Q in the previous equation, we obtain Q~1{
1

Q̂Q
and

Q̂Q~
1

1{Q
[12].

Each local diversity Qk is computed following species local

relative abundances and pairwise functional distances using the

classical quadratic entropy formula: Qk~
PSk

i~1

PSk

j~1

dijpkipkj :

Then the mean local diversity Qa, is computed as

Qa~
PN

k~1

wk|Qk where the weights of the communities wk are

the same as those used for the computation of relative abundances

at the stratum scale to ensure Q concavity [12,37].

Finally, mean local diversity is transformed to its equivalent

number of species Q̂Qa~
1

1{Qa
[12].

Similarly, the equivalent number of species for stratum diversity

Q̂Qc is computed based on species relative abundances at the

stratum scale as:

Q̂Qc~
1

(1{
PSG

i~1

PSG

j~1

dijp:ip:j)

Following the multiplicative framework built on the equivalent

number of species, functional ß-diversity (b̂b) is then the ratio

between global and local diversity: b̂b~
Q̂Qc

Q̂Qa

[30,37].

By definition, functional ß-diversity is minimal when all the local

communities have identical functional structure. In this extreme

case, the functional structure of the stratum is the same as that of

local communities and thus average local diversity equals regional

diversity, i.e. Q̂Qc~Q̂Qa and consequently b̂b~1. In contrast, when

functional structures of local communities strongly diverge Q̂Qc

becomes higher than Q̂Qa and then b̂bw1. More precisely, Riccotta

and Szeidl [12] demonstrated that the b̂b index follows the

replication principle, which postulates that ‘‘when N equally

diverse, equally large, and maximally dissimilar assemblages are

pooled, the diversity of the pooled assemblage must be N times the

diversity of the individual assemblages, i.e. Q̂Qc~N|Q̂Qa’’. In other

words, the maximal possible value of the functional ß-diversity

index equals the number of communities considered (N).

Consequently, to have an index allowing comparison of functional

ß-diversity values between study cases having different numbers of

local communities, we propose a standardized measure which

ranges between 0 and 1: b̂bst~
b̂b{1

N{1
:

Functional ß-diversity based on species abundances and

functional distances (hereafter noted ßFA) was computed for each

temporal and spatial stratum using the formula detailed above. We

also measured functional ß-diversity based only on functional

composition (hereafter noted ßFC). To this aim, for each local

community, the abundance of each of the k species present was set

Figure 1. Location of the study area and of the 37 sampled stations (UTM coordinates).
doi:10.1371/journal.pone.0040679.g001
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to 1/Sk, which guarantees that all the local communities have the

same weight for a given stratum. In other words, ßFC differs from

ßFA by considering equal contribution of species to local diversity

and equal contribution of local communities to the stratum

diversity.

Measuring Taxonomic b-diversity
We measured taxonomic ß-diversity in two ways in order to

determine the relative effects of species identities and species

abundances on the level of ß-diversity observed among fish

communities.

First, we quantified the taxonomic ß-diversity including species

abundances (hereafter noted ßTA) using the framework proposed

by Jost [30]. This taxonomic ß-diversity index is based on the

concept of equivalent number of species applied to the Shannon

entropy. More specifically, Jost’s measure of relative homogeneity

was converted to a relative heterogeneity measure to be analogous

to b-diversity (bTA), bTA~1{
1
�

Db{1=Dw

1{1=Dw

, with

Dw~ exp
PN

k~1

{f:k ln (f:k)

� �
and Db~

Dc

Da
, where

Dc~ exp
PS
i~1

{pi: ln (pi:)

� �
and

Da~ exp
PN

k~1

f:k
PS
i~1

{pik ln (pik)

� �
:

bTAequals 0 when communities share the same species and

when species have the same relative abundances in all commu-

nities. It equals unity when communities have no species in

common whatever species abundances.

We also measured taxonomic ß-diversity based only on species

composition (hereafter noted ßTC) using the same decomposition

after setting all species abundances to 1/Sk.

We assessed the environmental variability in each stratum by

computing the average Euclidean distance among communities

based on standardized values of depth, transparency, salinity and

dissolved oxygen. Then, we estimated the correlation between this

environmental variability and the four metrics of ß-diversity.

Testing Assembly Rules
Observed a, c and ß values are informative per se to assess the

diversity and level of dissimilarity in the taxonomic and functional

structure of communities. To this aim, the use of taxonomic and

functional ß-diversity indices based on the same framework (i.e.

equivalent number of species) and which have the same potential

range is particularly useful.

However, one step further, it is necessary to assess whether the

measured values of ß-diversity are significantly different from those

expected under suitable ecological hypotheses [39]. Here, we

aimed to test whether spatial and temporal functional ß-diversity

observed among fish communities were due to random associa-

tions between functional identities and abundances. To address

this issue, we generated four complementary null expectations

using permutations of species abundances and functional identities

(Figure 2).

First, dissimilarity in taxonomic structure is influenced by the

level of dissimilarity in taxonomic composition as well as by the

distribution of species abundances within and between local

communities. For instance, given a high dissimilarity in taxonomic

composition (ßTC), dissimilarity in taxonomic structure (ßTA) could

be low if a few species are dominant in all local communities or in

contrast could be high if there is a strong turnover in species

dominance among local communities. Therefore, to ask whether

non-random species dominance influences ßTA beyond its influ-

ence over ßTC, we generated a null expectation for ßTA that

maintained the observed level of ßTC. The randomization

procedure shuffles abundances among species present in each

local community (Figure 2, null-model 1).

Another question is whether the diversity of functional identities

present at the stratum scale constrains the dissimilarity in

functional composition among local communities. For example,

a low dissimilarity in functional composition (ßFC) despite a high

dissimilarity in taxonomic composition (ßTC) could result from a

filtering of the diverse functional strategies present at the regional

scale and the presence of only few able to cope with conditions in

local communities. Therefore to determine whether non-random

ecological processes (e.g. niche filtering) influence ßFC beyond their

influence over ßTC, we generated null expectations for ßFC that

maintained the observed level of ßTC (null-model 2). The

randomization procedure shuffles species functional identities

among all the species present at the regional scale (Figure 2).

Note that this procedure randomizes the functional identity of

species but functional trait values were not permuted within

species to prevent producing unrealistic trait combinations.

Furthermore, the functional structure of communities is

determined by the association between species functional identities

and their abundances. For example, given a high level of

dissimilarity in taxonomic structure (ßTA), the dissimilarity in

functional structure (ßFA) would be low if the dominant species at

the stratum scale are functionally close. Therefore, we tested

whether ßFA was significantly different from the null expectation

postulating a random association between functional identities and

species abundances at the stratum scale but keeping ßTA constant.

The permutation procedure for this null model randomly shuffles

functional identity among species present at the stratum scale

(Figure 2, null-model 3).

Finally, to determine whether a non-random association

between functional strategies at the local scale influences ßFA

beyond its effect on ßFC, we generated a null expectation for ßFA

that maintained the observed level of ßFC (null-model 4). The

procedure used to generate this fourth null-expectation was the

same as that used to generate ßTA given the observed ßTC (Figure 2).

Indeed, the random permutation of abundances among species

present in each local community does not modify the functional

strategies present in each community while permuting the

association between local abundances and functional identities.

For each null-model, 999 randomizations were carried out in

each stratum. Then, observed b-diversity (functional or taxonom-

ic) values were compared to the distribution of simulated ß-

diversity values obtained under each null hypothesis to obtain p-

values [40]. Thus, considering a two-sided test with a global risk of

5%, a p-value lower than 2.5% indicated a b-diversity lower than

expected whereas a p-value higher than 97.5% indicated a b-

diversity higher than expected [40].

Functional Groups
To visualize the relative position of fish species in the functional

space, a Principal Coordinates Analysis (PCoA) was carried out on

the standardized functional distance matrix d. In addition, species

were gathered into 20 functional groups based on their pairwise

functional distances, using a ‘‘partitioning around medoids’’

algorithm (‘‘pam’’ function in R) which searches for the clustering

that minimizes the distances among species within each functional

group. Species and group dominance were explored in terms of

biomass and occurrence both at sample and stratum scales.

Low Functional b-Diversity among Fish Communities
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Calculation of indices and statistical analyses were carried out

using R statistical software [41]. The script for computing

functional b-diversity is provided as Text S2.

Results

Data Collected
A total of 46,012 and 25,639 individuals were caught in 2003–

2004 and 2006–2007 respectively for corresponding weights of

557 and 398 kg. Species richness was 87 for both periods while

total species richness was of 105 species over the two periods.

The 16 functional traits were measured on 1021 individuals

belonging to 70 species. Among these 70 species, the 16 functional

traits were estimated on 20 individuals for 40 species and on more

than 10 individuals for 50 species. Indeed, some fish species were

very rare and thus not captured in sufficient numbers during the

2006–07 campaign, preventing an estimation of their functional

traits. Consequently, the rare species were not included in our

study but their low biomass would only marginally influence the

estimations of our functional diversity components that are based

on abundances.

The 16 samples where the biomass of species functionally

characterized represented less than 80% of community biomass

were not considered in the analyses. For the remaining commu-

nities, the biomass belonging to species not functionally charac-

terized was removed before conducting analyses.

Observed Taxonomic and Functional Diversities
Species richness was relatively high with a mean of more than 7

species in each sample and a mean global richness at the stratum

scale higher than 40 for temporal strata and higher than 25 for

spatial ones (Figure 3). Taxonomic a- and c-diversity measured

Figure 2. Schematic representation of the null-models used. Matrices of species abundances in set of communities (i.e. a stratum) and of
pairwise functional distances are illustrated at the top. Note that species present at the stratum scale are a subset of the species present at the
regional scale (i.e. global area of the study) and thus some columns of the abundance matrix contain only null values. A hypothetical example is
provided on the top right, with the sum of columns (i.e. species abundances at the stratum scale) and lines (i.e. total abundances in local
communities). The first procedure consists in shuffling abundances among the species present in each local community. This generates expected
values of dissimilarity in taxonomic structure given the observed dissimilarity in taxonomic composition (null-model 1) as well as expected values of
dissimilarity in functional structure given observed dissimilarity in functional composition (null-model 4). The second procedure randomly permutes
columns of the abundance matrix at the regional scale to generate expected values of dissimilarity in functional composition without modifying the
dissimilarity in taxonomic composition (null-model 2). The third procedure is similar but columns are permuted only among species present at the
stratum scale so it produces the expected level of dissimilarity in functional structure without modifying dissimilarity in functional composition (null-
model 3). None of the three permutation processes modifies the distribution of local abundances (i.e. contribution of the local communities to the
total abundance of the stratum). For each procedure an illustration of output given the above example is provided.
doi:10.1371/journal.pone.0040679.g002

Low Functional b-Diversity among Fish Communities

PLoS ONE | www.plosone.org 5 July 2012 | Volume 7 | Issue 7 | e40679



using the Shannon diversity index and expressed as equivalent

number of species were lower than species richness but higher than

3 and 8 for temporal and spatial strata respectively.

Taxonomic ß-diversity based only on species composition (ßTC)

was high with values of around 75% (Figure 4). Similarly,

taxonomic ß-diversity accounting for species abundances (ßTA) was

.70% among temporal strata and .55% among spatial strata.

Therefore, as expected, the taxonomic structure of fish commu-

nities in the Terminos region exhibits a strong variation both

temporally and spatially.

In contrast, the two functional ß-diversities (based only on

functional composition ßFC, and on functional structure ßFA) were

both very low with values lower than 1.5% (Figure 4). These low

turnover values resulted from both low a and c-diversity, with

respective equivalent number of species close to 1 (i.e. the

minimum value possible).

Taxonomic ß-diversity based only on species composition (ßTC)

was positively correlated to environmental heterogeneity within

strata (Pearson’s correlation r = 0.43, p,0.001). In contrast,

taxonomic ß-diversity accounting for species abundance ßTA was

weakly related to environmental heterogeneity (r = 0.19, p = 0.06).

The two metrics of functional ß-diversity, ßFC and ßFA, were

negatively (r = 20.12 and 20.14, respectively), although not

significantly, related to environmental heterogeneity.

Null Models Outputs
The first null model revealed that the observed high taxonomic

ß-diversity (ßTA) is significantly lower than expected given the

strong dissimilarity in species composition (ßTC) and the local

abundance distributions among species (Table 1).

The results of the second null model showed that functional ß-

diversity based only on functional composition (ßFC) is almost

always not significantly different from those obtained with a

random assignment of functional identities, given both the

observed dissimilarity in species composition (ßTC) and the

observed distribution of functional distances among species at

the regional level (Table 1).

The two other null models aimed to test the determinants of the

observed stability in the functional structure (i.e. low functional ß-

diversity ßFA). First, when testing the assumption of a random

association between functional identities and abundance patterns

at the stratum scale (i.e. taxonomic ß-diversity ßTA kept constant),

the observed functional b-diversity was significantly lower than

expected in less than one fourth of the strata (Table 1). Similarly,

the observed low functional ß-diversity was almost always not

significantly different from those obtained under the null

expectation suggesting a random association between species

functional identities and abundance patterns at the local scale, i.e.

dissimilarity in functional composition (ßFC) remained constant

(Table 1).

Figure 3. Taxonomic and functional diversity at local and regional scale. Local (mean a) and regional (c) components are expressed as
equivalent number of species (mean6SD), of taxonomic (circles) and functional (squares) diversities computed on community composition (white) or
abundance structure (black) for temporal and spatial strata. The grey triangles represent species richness.
doi:10.1371/journal.pone.0040679.g003

Figure 4. Taxonomic and functional ß-diversity. Taxonomic
(circles) and functional (squares) ß-diversity values, based on commu-
nity composition (white) or abundance structure (black), for the two
scales of interest (mean6SE).
doi:10.1371/journal.pone.0040679.g004
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Functional Group Dominance
The PCoA summarizing the functional distances among species

(Figure 5) clearly highlights the dominance of generalist species,

i.e. species close to the centre of the functional space [42,43]. On

the contrary, the most extreme parts of the functional space

contain rare specialist species, for instance six rays (right bottom

corner), two carangids (left middle part) and four flatfishes (right

top corner).

Species were then gathered into 20 groups based on their

functional identity. The rank frequency diagrams (Figure 6) reveal

a strong dominance of two groups which are frequent and

abundant, the presence of an intermediate group often present but

not dominant, and a right-skewed tail containing many rare

groups. Among the 20 groups, the two most abundant groups

contribute, on average, to 34 and 24% respectively of the total

local biomass while they only contain 3 and 8 species (out of 70),

respectively (Figure 6). These groups also occur very frequently

(present in more than 75% of the 810 samples).

The most abundant group pools the three Ariidae sea catfish

species (the dark sea catfish Cathorops melanopus, the hardhead

Ariopsis felis and the gafftopsail sea catfish Bagre marinus). These

three sea catfishes occupy the first, fourth and fifth rank (among

the 70 species studied) in terms of mean relative biomass over all

the samples. The second group is mainly composed of Sciaenidae

species, in particular the American stardrum Stellifer lanceolatus, the

croaker Bairdiella chrysoura and the two weakers Cynoscion arenarius

and C. nothus, which are respectively the second, eighth, ninth and
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Figure 5. Principal Coordinates Analysis (PCoA) carried out on
the 70 species using standardized functional distances. The 15
dominant species are represented by circles of sizes that are
proportional to their mean relative biomass when they occur. Their
percentages of occurrence over the 810 samples are given in
parentheses. The other 55 species are plotted with grey crosses. Codes
for dominant species names are: Af = Ariopsis felis, Ar = Archosargus
rhomboidalis, Bc = Bairdiella chrysoura, Bm = Bagre marinus, Br = Bair-
diella ronchus, Ca = Cynoscion arenarius, Cf = Chaetodipteurs faber,
Cm = Cathorops melanopus, Cn = Cynoscion nothus, Ma = Menticirrhus
americanus, Mu = Micropogonias undulatus, Po = Polydactylus octone-
mus, Sl = Stellifer lanceolatus, Sp = Symphurus plagiusa, St = Sphoeroides
testudineus. Bold names are for species belonging to the sea-catfishes
group (a group on Figure 6) while names underlined or in italics
correspond to species from the two sciaenid groups (respectively b and
d groups on Figure 6). The center part of the PCoA plane is blown up in
the top left corner.
doi:10.1371/journal.pone.0040679.g005
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twelfth most abundant species locally. The third most abundant

group pools four flatfishes which are functionally different from

other fish species, including those from the two most abundant

groups (Figure 5). Even though these flatfishes occurred frequently

(525 occurrences over the 810 samples), they contributed only

moderately to the local abundances (less than 10%).

We estimated the turnover in taxonomic structure within the

two dominant functional groups in each stratum using the ßTA

index [30]. The values were consistent across strata for the two

functional groups with a mean of 0.3260.16 for the sea catfish and

of 0.4860.16 for the sciaenid group, respectively. This clearly

demonstrates that the dominance of these functional groups was

not only determined by one ultra dominant species but, instead, by

a set of species which alternatively dominate inside each group

across space and time. For instance, the most abundant of the sea

catfish species, the dark sea catfish Cathorops melanopus was present

in 423 of the 810 samples whereas the sea catfish group was

present in 593 samples. This species had the highest biomass in

217 samples whereas the sea catfish group was the most abundant

in 349 samples. The same pattern was true for the sciaenid group

which contains more species but was the dominant group in only

194 samples. Among these sciaenid species, the American

stardrum Stellifer lanceolatus was the most widespread species (529

occurrences) but was not often the most abundant (95 samples).

Discussion

The Terminos Lagoon area, like most estuarine ecosystems

[31], is marked by a high environmental variability in terms of

water salinity, depth, sediment and organic matter input [17]. We

found a high fish richness in this tropical region both at regional

(more than one hundred fish species) and local scales (Figure 3).

This high taxonomic richness is coupled with a strong (around

65%) taxonomic ß-diversity, i.e. dissimilarity in taxonomic

structure, both through space and time (Figure 4). However, a

null-model approach revealed that the observed taxonomic ß-

diversity is actually lower than expected given the high dissimi-

larity in species composition. This apparent contradiction could be

explained by the dominance of few species which occur in most

local communities where they furthermore contribute to most of

the fish biomass. Indeed, among the 12 species present in more

than one fifth of local communities, 8 contributed to more than

10% of total abundance (Figure 5).

Despite the strong taxonomic ß-diversity (including species

abundances or not), we found extremely low functional ß-diversity

values among fish communities (,1.5%), in terms of both

functional trait composition and abundance structure. Addition-

ally, in contrast to the high taxonomic diversity at local and

stratum scales, functional diversity in local communities and in

each stratum was very close to the minimal possible value. Thus, in

our study case, the observed low functional ß-diversity results from

a low functional diversity both at local (a) and stratum (c) scales

(Figure 3).

Using a null-model (Figure 2, Table 1) we demonstrate that the

low dissimilarity in functional composition is not significantly

different from a random expectation given the dissimilarity in

species composition and the functional identities present in the

regional pool of species. In other words, these results indicate that

there is no strong niche filtering from the regional to the stratum

scale. Species present in each stratum are thus a representative

subset of the regional pool of species. As most of the species

present at the regional scale are generalist species thus having

similar functional identities (as illustrated on Figure 5), global

functional diversity in each stratum (c) tends to be low. Indeed, the

Rao’s quadratic entropy index is maximal when all the species are

equally and thus maximally dissimilar to each other [12]. In our

study case most of the species were functionally close and only a

few couples of them were functionally very different. This pattern

is not due to the set of morphological traits we used as it was able

to discriminate flatfish (e.g. ‘‘Sp’’ on figure 4), bentho-pelagic sea

catfish (‘‘Af’’) and zooplanktonivorous pelagic species (‘‘Po’’). It

rather reflects the predominance of functionally close species (sea

catfish and sciaenid species). Therefore, despite the strong

turnover in species composition, the species occurring in each

local community are functionally close to each other leading to low

local functional diversity (a). The observed low dissimilarity in

functional composition thus results from the absence of niche

filtering processes and the specificity of the regional pool of species

which is dominated by generalist species.

Figure 6. Rank-frequency diagrams representing relative abundances (left) and occurrences (right) of the 20 functional groups. The
relative abundance is the mean relative biomass of the group. The percentage of occurrence is computed for each functional group over the 810
stations studied. The five most abundant groups for each function are named with letters (a-e) in the two plots. Number of species in each functional
group is reported above the bars.
doi:10.1371/journal.pone.0040679.g006
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The observed low functional b-diversity values, measured

considering abundances, result from a combination of the patterns

presented previously: a regional pool dominated by generalist

species and the consistent presence across space and time of a few

abundant species, particularly those belonging to the sea catfish

and sciaenid functional groups (Figure 5, Figure 6). Indeed, these

generalist species are functionally relatively close and at the same

time abundant in most local communities, hence they constrain a-

functional diversity to be low. Furthermore, these functional

groups do not contain an ultra-dominant species but are on the

contrary structured by several co-dominant species which replace

each other through space and time, allowing the dominance of

these groups whatever the environmental conditions and species

composition. This statement is supported by correlation results

between b-diversity components and environmental variability

suggesting that dominant species are consistently present in all

samples (ßTA weakly related to environmental heterogeneity within

strata) while rarer species occur if environmental conditions are

suitable (ßTC highly related to environmental heterogeneity). In

other words generalist species in terms of functional traits (sensu

Elton) also tend to be generalists in terms of environmental

conditions (sensu Grinnell) stabilizing the functional structure of

communities across space and time. However we recognize that

embracing the Eltonian and Grinnellian niches using a set of traits

remains challenging. Further investigations on community assem-

bly rules may include traits that are closely related to species

functions in the ecosystem and to species responses to various

environmental stressors after performing experiments if necessary

[44].

Conclusion

Diversity partitioning among scales has been investigated for

more than 40 years based on the taxonomic composition of

communities [1,2,30,45], but an increasing number of studies are

now considering biological distances between species

[5,7,11,13,16,46]. Here, using a procedure to decompose c-

functional diversity into independent a and ß-components, we

demonstrate that a low functional b-diversity occurs among

tropical estuarine fish communities (temporally and spatially)

despite high taxonomic b-diversity both in terms of species

composition and community structure.

Overall, our results suggest that the low functional ß-diversity

observed in this ecosystem is mainly attributable to the ultra

dominance of a few functionally similar species. However, going

one step further, it would be challenging to analyze the

determinants of this low proportion of specialist species in the

regional pool. This could be achieved by comparing the regional

pool of species present in the Terminos lagoon region with the

pool of species present at a larger spatial scale (e.g. southwestern

part of the Gulf of Mexico) to test whether there is a filtering

between this global pool and the regional one studied here.

Indeed, it could be argued that this estuarine ecosystem is

favorable to bentho-pelagic omnivorous species which can feed on

a large variety of prey and move across portions of the ecosystem

depending on abiotic conditions. In contrast, other functional

strategies typically dominant in seagrass meadows or reefs (e.g.

herbivorous sedentary species such as Tetraodontiformes) are

marginal as these habitats are becoming scarce in the region

studied here [35].

The functional approach, focusing on functional attributes of

species rather than only on their taxonomic identity, has the

conceptual advantage of providing ecological conclusions trans-

posable to ecosystems that host different species [22]. Therefore,

an important challenge is to test whether the stable functional

structure found across the fish communities of Terminos lagoon

still holds when considering other estuarine assemblages (tropical

or temperate) or even other aquatic ecosystems with high

taxonomic ß-diversity. Moreover, analyzing patterns of functional

ß-diversity has the potential to provide indications on the processes

that structure communities over spatial and temporal scales [47].

One step further, a challenging issue will be to link these ß-

diversity patterns to ecosystem functioning and stability.

Supporting Information

Figure S1 Morphological traits. Morphological traits mea-

sured on digital pictures (a): Bl body standard length, Bd body

depth, CPd caudal peduncle minimal depth, CFd caudal fin depth,

CFs caudal fin surface, PFi distance between the insertion of the

pectoral fin to the top of the body, PFb body depth at the level of

the pectoral fin insertion, PFl pectoral fin length, PFs pectoral fin

surface, Hd head depth along the vertical axis of the eye, Ed eye

diameter, Eh distance between the centre of the eye to the bottom

of the head, Mo distance from the top of the mouth to the bottom

of the head along the head depth axis; and with an electronic

caliper (b) : Bw body width, Md mouth depth, Mw mouth width.

(JPG)

Table S1 Environmental heterogeneity. Values are means

and standard deviations of coefficients of variation (%) in each

stratum for four main environmental variables.

(DOC)

Table S2 List of the 16 functional traits used. Codes for

morphological measures are the same as in figure S1. GRl is length

of the longest gill raker and Gl is length of the gut from the

oesophagus to the anus. The logarithm of the mass was also

considered.

(DOC)

Table S3 Pairwise Correlations (Pearson’s coefficient)
between the 16 functional traits. Traits codes are provided in

Appendix A. Values in bold are significantly different from 0 with

a p-value lower than 5%. The mean of the absolute correlations is

0.26 (sd = 0.20) and only 17 out of the 120 pairs of traits show a

correlation higher than 0.5 in absolute value.
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Text S1 Functional characterization of fishes.

(DOC)

Text S2 betaQmult: R function to compute functional
beta-diversity based on the multiplicative decomposi-
tion of the Rao’s quadratic entropy.

(TXT)
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