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RESUMO

A fase de projeto conceitual de mecanismos e manipuladores paralelos, i.e. es-
truturas cinemáticas, destina-se ao desenvolvimento da concepção da cadeia
cinemática. As etapas fundamentais para o desenvolvimento da concepção da
cadeia cinemática são sı́ntese e análise. A sı́ntese corresponde à enumeração
de concepções e a análise corresponde à seleção das concepções mais promis-
soras considerando os requisitos de projeto. O objetivo deste trabalho é
aplicar ferramentas da teoria de grupos e teoria de grafos para a enumeração
e para a análise de estruturas cinemáticas. A enumeração será desenvolvida
de forma sistemática em três nı́veis: enumeração de cadeias cinemáticas,
enumeração de mecanismos e enumeração de manipuladores paralelos. A
aplicação de ferramentas da teoria de grafos e grupos permite desenvolver
novos métodos para enumeração e, consequentemente, obter novos resulta-
dos. A análise será simplificada considerando um novo método que avalia
as simetrias das cadeias cinemáticas. Uma cadeia cinemática é representada
de forma unı́voca através de um grafo. A representação através do grafo per-
mite a manipulação computacional do problema de enumerac¸ão de cadeias
cinemáticas. A aplicação de ferramentas integradas da teoria de grafos e teo-
ria de grupos permite identificar as simetrias das cadeias cinemáticas através
do grupo de automorfismos do grafo e, assim, é possı́vel identificar quais são
as possı́veis escolhas de base para novos mecanismos e avaliar quais são as
possı́veis escolhas de base e efetuador final para manipuladores paralelos. O
primeiro nı́vel da sı́ntese corresponde à enumeração decadeias cinemáticas
com determinada mobilidade, número de elos, número de juntas que ope-
ram num determinado sistema de helicoides. O segundo nı́velda sı́ntese
corresponde à enumeração de mecanismos. Um mecanismo éuma cadeia
cinemática com um elo escolhido para ser a base. Assim, a enumeração de
mecanismos consiste em determinar todas as possı́veis escolhas de bases para
uma determinada cadeia cinemática. O principal conceito empregado neste
nı́vel é o de simetria de grafos não coloridos e órbitas dogrupo de automor-
fismos. O terceiro nı́vel da sı́ntese corresponde à enumeração de manipu-
ladores paralelos. Um manipulador paralelo é uma cadeia cinemática com
um elo escolhido para ser a base e outro para ser o efetuador final. Em outras
palavras, um manipulador paralelo é um mecanismo com um eloescolhido
para ser o efetuador final. Assim, a enumeração de manipuladores paralelos
consiste em determinar todas as possı́veis escolhas de efetuador final para um
determinado mecanismo. O principal conceito empregado neste nı́vel é o de
simetria de grafos coloridos e órbitas do grupo de automorfismos de grafos



coloridos. Na etapa de análise das concepções enumeradas serão abordadas
propriedades bem estabelecidas na literatura: mobilidade, variedade, conec-
tividade, grau de controle, redundância e simetria. Mobilidade e variedade
são propriedades globais das estruturas cinemáticas. Conectividade, grau de
controle e redundância são propriedades locais, i.e. entre dois elos da estru-
tura cinemática e são dadas por matrizesn×n, onden é o número de elos da
cadeia. A simetria pode ser considerada uma propriedade global e/ou local
da estrutura cinemática. A aplicação de ferramentas integradas da teoria de
grafos e teoria de grupos permite demonstrar que as propriedades locais são
invariantes pela ação do grupo de automorfismos do grafo, i.e. elas são pro-
priedades simétricas. Desta forma, a representação matricial é reduzida de
n×n parao×n, ondeo é o número de órbitas do grupo de automorfismos do
grafo associado à estrutura cinemática. Essa abordagem permite simplificar a
análise de estruturas cinemáticas apenas considerando as simetrias das cadeia
associadas.

Palavras-chave:Projeto conceitual. Enumeração. Análise. Cadeias cinemáti-
cas. Mecanismos. Manipuladores paralelos. Teoria de grupos. Teoria de
grafos. Teoria de helicoides. Grupo de automorfismos. Simetria. Ações.
Órbitas.



ABSTRACT

The conceptual design of mechanisms and parallel manipulators corresponds
to the enumeration of kinematic structures (synthesis) andthe selection of
the most promising solutions (analysis). In mechanisms andmachines the-
ory, the conceptual design is known by several expressions such as: structural
synthesis, Grübler synthesis, topological synthesis, etc. This thesis deals with
enumeration and analysis of kinematic structures with a number of links and
joints related by the mobility equation. A kinematic structure can be uniquely
represented by a graph whose vertices correspond to links and whose edges
correspond to joints, this approach simplify the conceptual design problem.
The enumeration will be considered into three levels: the first level corre-
sponds to the enumeration of kinematic chains, which are a set of links con-
nected by joints; the second level corresponds to the enumeration of mech-
anisms, which are kinematic chains with one link fixed on the base; and the
third level corresponds to the enumeration of parallel manipulators, which are
mechanisms with a link selected to be the end-effector. The analysis of the
kinematic structures enumerated will be simplified exploring the symmetries
of the associated graph. In this work, we apply integrated tools of the graph
theory and group theory to capture the internal symmetry of kinematic chains
and mechanisms leading, respectively, mechanisms and parallel manipula-
tors. The main concept applied is the orbits of the automorphisms group of
a graph, i.e. graph symmetry, which represents a kinematic chain. Using this
approach, it is possible to enumerate precisely all the conceptions of mech-
anisms and parallel manipulators with appropriate attributes.The application
of integrated tools of graph and group theory permits a simplification of kine-
matic analysis of kinematic structures. We prove that important properties of
kinematic structures are invariants by the action of the automorphism group
of the associated graph, i.e. they are symmetrical properties. Considering
that kinematic chains have symmetries, it is possible to apply group theory
to reduce the matrix representation of properties of the kinematic structures
(connectivity, degrees-of-control and redundancy) and consequently facilitate
the structural analysis.

Keywords: Conceptual design. Enumeration. Analysis. Kinematic chains.
Mechanisms. Parallel manipulators. Graph theory. Group theory. Screw
theory. Isomorphisms. Automorphisms. Symmetry. Actions.Orbits.
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1 INTRODUCTION

In this thesis, we study two classical problems of conceptual design
of mechanisms and parallel manipulators, kinematic structures in short: enu-
meration and analysis. Conceptual design studies play an important role in
the design of mechanisms and parallel manipulators. In the conceptual de-
sign phase, many design alternatives as possible are generated and evalu-
ated against the functional requirements and the most promising concept is
selected for design detailing (TSAI, 2001). In the conceptual design, the
characteristics of mechanisms are entirely determined by the interconnec-
tivity pattern among the links and are unaffected by changesin the metric
properties; the interconnectivity pattern includes the mobility, the number of
links, the number of joints and the order of screw system to which all the
joint screws belong (YAN, 1998; TSAI, 2001; MRUTHYUNJAYA, 2003;
SUNKARI, 2006).

The focus of this thesis are two classical problems of conceptual de-
sign phase:

• enumeration of kinematic structures: enumeration of kinematic chains
of mechanisms (selecting the base) and parallel manipulators (selecting
the base and the end-effector) satisfying the mobility criterion, and

• analysis of kinematic structures: kinematic structures generated are
analyzed to select the most promising kinematic chain for design de-
tailing.

The enumeration and analysis developed in this thesis are related with
the number synthesis which generates all the possible solutions using graph
theory and combinatorial analysis (TSAI, 2001; MRUTHYUNJAYA, 2003).

This introduction contextualizes the problem of conceptual design of
mechanisms and parallel manipulators in the literature, presents the motiva-
tion to work, the state of the art and the overview of the thesis.

1.1 LOCALIZATION AND DEFINITION OF THE PROBLEM

This section provides a brief review of the design process and a sys-
tematic methodology for creation of mechanisms and parallel manipulators.
Design is the creation of synthesized solutions in the form of products or
systems that satisfy customer’s requirements (PAHL; BEITZ, 1996; TSAI,
2001). Design is a continuous process of refining customer’srequirements
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into a final product, the process is iterative and the solutions are usually not
unique.

Firstly, the problem addressed, i.e. enumeration and analysis of mech-
anisms and parallel manipulators, will be described according to two sys-
tematic methodologies of design: Tsai’s methodology “Mechanisms Design:
Systematic Design Methodology” (TSAI, 2001), and Back et al. methodology
“Integrated Design of Products: Planning, Conception and Modelling” (BACK
et al., 2008), developed in the Center for Integrated Development of Products
(NeDIP/UFSC). These two methodologies are chosen because they are re-
cent, Tsai’s methodology is specific for mechanisms design and Back et al. meth-
odology, developed in the UFSC, is a more detailed methodology.

According to Tsai (2001), the design process can be logically divided
into three interrelated macro-phases:

• Specification and planning: in this phase the customer’s requirements
are identified and translated into engineering specifications, in terms of
the functional requirements, time and money available for the develop-
ment, and planning of design.

• Conceptual design: during this phase, as many design alternatives as
possible are generated (using graph theory and combinatorial analysis)
and evaluated against the functional requirements; the most promising
concept is selected for design detailing. A rough idea of howthe prod-
uct will function and what it will look like is developed.

• Product design: in the last phase, a design analysis and optimiza-
tion are performed, together with a simulation of the selected con-
cept. Function, shape, material, and production methods are consid-
ered. Several prototype machines are constructed and tested to demon-
strate the concept. An engineering documentation is produced and the
design goes into the production phase.

Tsai’s methodology for mechanisms design is summarized in the fol-
lowing steps (TSAI, 2001):

1 - Identify the functional requirements, based on customer’srequire-
ments, of a class of mechanisms of interest.

2 - Determine the nature of motion (i.e. planar, spherical, or spatial
mechanism), DoF, type, and complexity of the mechanisms.

3 - Identify the structural characteristics associated with some of the
functional requirements.
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4 - Enumerate all possible kinematic chains that satisfy the structural
characteristics using graph theory and combinatorial analysis.

5 - Sketch the corresponding mechanisms and evaluate each of them
qualitatively in terms of its capability in satisfying the remaining func-
tional requirements. This evaluation results in a set of feasible mecha-
nisms.

6 - Select a most promising mechanism for dimensional synthesis, de-
sign optimization, computer simulation, prototype demonstration, and
documentation.

7 - Enter the production phase.

Feedback among design phases mentioned above is usually needed to
improve the design.

Back et al. (2008) present a systematic methodology for integrated
design of products. Mechanisms and parallel manipulators design may be
regarded as a process of product design. Back et al. methodology is decom-
posed into three macro-phases which are divided in eight different phases
summarized below.

• Project planning: the first macro-phase involves the preparation of
project product plan;

1 - Project planning: it is for planning the new project by the
business strategies of the company and the organization of work
to be developed throughout the process. Identification of stake-
holders and plan for management of communications.

• Elaboration of the product design: involves the development of the
product design and manufacturing plan. It is divided into four phases
and the main results of each one are:

2 - Informational design: customer’s requirements are identi-
fied and translated into design requirements considering different
attributes: functional, ergonomic, safety, reliability,modularity,
legal aspects, and so on. The design requirements are translated
into design specifications in the form of geometry, material, color,
size, actuation, and so on.

3 - Conceptual design: as many design alternatives as possible
are generated and evaluated against the functional requirements.
Criteria are used to select the best conception.
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4 - Preliminary design: technical and economic feasibility. De-
velopment of the final layout identifying requirements of form,
material, safety, review of patents and legal aspects, and so on.
Development of virtual prototyping and optimization.

5 - Detailed design: product documentation. Approval of the
prototype, finalization of the components specifications, manu-
facturing plan.

• Pilot production : involves the execution of the manufacturing plan in
the company production and the closure of the project. It is divided
into three phases and the main results of each one are:

6 - Preparation of the production: product liberation for pilot
production and assembling validation.

7 - Product marketing: product launch on the market, guide-
lines for final updates and release of mass production.

8 - Product validation: evaluation of costumers/stakeholders
satisfaction, monitoring performance, and so on.

Figure 1 shows the correspondence between Tsai’s systematic mech-
anism design methodology and Back et al. integrated productdesign meth-
odology. The methodology most cited for conceptual design of mechanisms
and parallel manipulators is the Tsai’s methodology (TSAI,2001).

According to Tsai (2001), Back et al. (2008), and other authors, 75%
of the manufacturing cost of a typical product is committed during the first
two macro-phases. Decisions made after the conceptual design phase have
only influence of 25% on the manufacturing cost. Therefore, it is critical that
we pay sufficient attention to the product specification and conceptual design
phases (TSAI, 2001). In particular, to parallel manipulators design the cost is
high and the decisions must be the most corrects in the first phases of design.
Thus, the conceptual design phase is very important and received attention
of the academic community in recent years as indicated by Mruthyunjaya
(2003) in the 41 pages long review paper “Kinematic structure of mechanisms
revisited”.

We note that the conceptual design in the Tsai’s methodologycon-
sists of two engines: a generator and an evaluator. The focusof this the-
sis is in the use of the two engines (generator and evaluator)in the concep-
tual design phase of mechanisms and parallel manipulators which correspond
to the macro-phase two of Tsai’s methodology and to phase three of Back
et al. methodology (see Figure 1). The generator corresponds to enumera-
tion of kinematic structures, using graph theory and combinatorial analysis,
satisfying the mobility criterion (see Equation 3.1 on page37) and without
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Costumer’s
Requirements

Functional
Requirements

Other
Requirements

Generator

Structural
Characteristics

Feasible
Mechanisms

Production

Evaluator

Product Design

Project planning

Informational design

Conceptual design

Preliminary design

Detailed design

Preparation of the production
Product marketing
Product validation

Figure 1 – Correspondence between Tsai’s systematic mechanism design
methodology and Back et al. integrated product design methodology.

isomorphisms. The generator engine of Tsai’s methodology is also known
in mechanisms and machines theory as enumeration of kinematic chains,
enumeration of mechanisms, enumeration of parallel manipulators, number
synthesis, structural synthesis, synthesis of mechanisms, Grübler’s synthe-
sis, topological synthesis, and so on. In fact, the generator corresponds to
enumeration of kinematic structures and, therefore, between several denomi-
nations, we will use the term “enumeration” to describe thisproblem in this
thesis. The evaluator corresponds to select the most appropriate kinematic
structure, which satisfying the customer’s requirements,for design detailing.
Some functional requirements are translated into criteriafor structural anal-
ysis (variety, connectivity, degrees-of-control, redundancy, symmetry, and so
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on) and then, using these criteria, it is possible to select the most appropriate
kinematic structure.

1.2 THE STATE OF THE ART

This section presents the state of the art in enumeration andanalysis
of kinematic structures.

1.2.1 Enumeration of kinematic structures

The most important phase in the study of kinematic structureof mech-
anisms is the structural synthesis or classification and enumeration of kine-
matic chains with a given number of links and degree of freedom as related
by the mobility equation (MRUTHYUNJAYA, 2003).

The approaches for enumeration are mainly founded on graph theory,
group theory, Lie subgroups of displacements, screw theoryand evolution-
ary morphology as shown in Table 1. The first two approaches are known
as number synthesis and the last three approaches are known as type synthe-
sis in mechanisms and machines literature. Number synthesis is an abstract
approach and type synthesis is a geometrical approach of conceptual design.

Number synthesis is the process of finding the arrangements of a given
number of links and joints which result in kinematic chains with the desired
mobility (CROSSLEY, 1964). Number synthesis deals with thedetermination
of the number of links, type and number of joints needed to achieve a given
mobility of a desired mechanism and involves the enumeration of all feasible
kinematic chains which satisfy these requirements. A complete list of kine-
matic chains, mechanisms and parallel manipulators are enumerated without
isomorphisms based on the mobility criterion (see Equation3.1 on page 37).
In the enumeration, the joints are assumed to be 1-DoF, i.e. Por R joints. In
terms of graphs, the number synthesis correspond to enumeration of a com-
plete list of graphs that satisfy the mobility criteria, without isomorphic and
improper graphs, where the vertices correspond to links andthe edges corre-
spond to joints. Number synthesis is considered an abstractapproach and it
is used to create new concepts of mechanisms and parallel manipulators.

Several methods have been developed for enumeration of kinematic
chains (ALIZADE; BAYRAM, 2004; MRUTHYUNJAYA, 2003; TISCHLER
et al., 1995a, 1995b; TSAI, 2001; SUNKARI; SCHMIDT, 2006; SIMONI
et al., 2009, 2008). In particular, the technique presentedby Tuttle et al.
(1989b, 1989a), Tuttle (1996), Simoni (2008), Simoni et al.(2009) apply



7

Table 1 – Approaches for enumeration of kinematic structures.

Enumeration Approach References
Number
Synthesis

Graph Theory (TISCHLER et al., 1995a, 1995b; TSAI,
1998, 2001; ALIZADE; BAYRAM, 2004;
ALIZADE et al., 2007; SUNKARI;
SCHMIDT, 2006; SIMONI; MARTINS,
2007; SIMONI, 2008; SIMONI et al.,
2009)

Group theory (TUTTLE, 1996; SIMONI et al., 2009,
2008)

Type
Synthesis

Lie sub-
groups of
displacements

(HERVÉ, 1978, 1994, 1999; HERV́E;
SPARACINO, 1991; LI et al., 2004;
ANGELES, 2004; TSAI, 1998; FANG;
TSAI, 2002, 2004; FRISOLI et al., 2000;
KONG; GOSSELIN, 2005, 2004a, 2007;
HUANG; LI, 2002, 2003; LI; HUANG,
2003; CARRICATO, 2005; SIMONI;
MARTINS, 2009)

Evolutionary
morphology

(GOGU, 2008, 2009)

group theory tools to enumeration of all mechanisms that a kinematic chain
can lead. The technique presented by Simoni et al. (2008) apply group the-
ory tools, in particular the concepts of symmetry, actions and orbits of the
automorphism group of colored vertex graphs, for enumeration of parallel
manipulators. The kinematic chains, mechanisms and parallel manipulators
generated by these approaches are complex since your enumeration satisfy
the mobility equation.

Type synthesis of parallel manipulators consists in findingall the pos-
sible types of parallel manipulators generating a specifiedmotion pattern of
the moving platform (KONG; GOSSELIN, 2007). Type synthesisis based on
the selection of a particular type of mechanism (linkage, cam, gear, etc.). The
selection depends to a great extent on the functional requirements of a ma-
chine and other considerations such as materials, manufacturing processes,
and cost. In the type synthesis, a geometrical tool is introduced to define the
type of joints, even generally the proposed methods use P andR joints, need
to generate the proposed motion. These approaches consist basically of legs
enumeration and assembling of these legs to form the parallel manipulators.
The parallel manipulators generated by these technique areof base-platform
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type.
Type synthesis is generally based on Lie subgroups of displacements

and screw theory and is considered a geometrical approach. Several works
dealt with the problem of type synthesis (KONG; GOSSELIN, 2007, 2004a,
2005; FANG; TSAI, 2004, 2002; GOGU, 2008, 2009; LI et al., 2004; HUANG;
LI, 2003; SICILIANO; KHATIB, 2008).

1.2.2 Analysis of kinematic structures

The main concepts used to analyze and classify kinematic chains,
mechanisms and parallel manipulators are: mobility, variety, connectivity,
degrees-of-control, redundancy and symmetry. These concepts are well es-
tablished in mechanisms and machines literature.

Themobility(M) of a kinematic structure is the number of independent
parameters required to completely specify the configuration of the kinematic
chain in the space, with respect to one link chosen as the reference. The
mobility may be calculated by the general mobility criterion (see Section 3.3
on page 37).

Hunt (1978) introduced the concept of connectivity. Theconnectivity
(C) between two links of a kinematic structure is the relative mobility between
the two links. The importance of the connectivity is emphasized by Hunt
(1978), Tischler et al. (2001, 1995b), Liberati and Belfiore(2006), Belfiore
and Benedetto (2000), Shoham and Roth (1997) which drives the efforts to
find an algorithm for the numerical calculation of connectivity.

Tischler et al. (1995b) present the concept ofvariety(V) in kinematic
structures which has application in the selection of actuated pairs. Tischler et
al. (1995b) summarize the relationship between variety andconnectivity by
a series of conjectures and propositions proved later by Martins and Carboni
(2007). If the Variety of a kinematic structure withj joints is V = 0, the
actuated pairs may be selected at random.

Belfiore and Benedetto (2000) introduced the concept of degrees-of-
control. Thedegrees-of-control(K) between two links of a kinematic struc-
ture is the minimum number of independent actuating pairs needed to deter-
mine the relative position between the two links, possibly leaving some other
link-relative position undetermined.

Based on the concepts of degrees-of-control and connectivity we can
introduce the concept of redundancy. Theredundancy(R) between two links
of a kinematic structure is the difference between the number of degrees-of-
control and the connectivity between these links (BELFIORE; BENEDETTO,
2000; MARTINS; CARBONI, 2007).
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Symmetryis another concept used for several authors to select the
most promising kinematic structures (RAO, 2000; TISCHLER et al., 1998;
PERNETTE et al., 1997; CAMPOS et al., 2008; HUANG; LI, 2003, 2002;
HESS-COELHO, 2006). The kinematic and dynamic equations ofmotion of
any mechanism or parallel manipulator should be as simple aspossible since,
generally, positions, velocities and accelerations are calculated in real time.
Symmetric kinematic structures lead to considerable simplifications in kine-
matic and dynamic equations. Thus, it is important to identify symmetries in
the kinematic chains in early stages of design and that is possible analyzing
its associate graph.

Based on these concepts it is possible to classify the enumerated kine-
matic structures and to select the most promising for designdetailing.

1.3 THESIS CONTRIBUTION

This thesis contributes to the conceptual design of mechanisms and
parallel manipulators. We will address two steps of conceptual design, i.e. enu-
meration and analysis of mechanisms and parallel manipulators.

1.3.1 Contributions to the enumeration of mechanisms and parallel ma-
nipulators

The contribution is to develop the enumeration of kinematicchains,
mechanisms and parallel manipulators, in a systematic procedure, applying
integrated tools of graph theory, group theory and screw theory. The enumer-
ation process will be consider into three levels: kinematicchains, mechanisms
and parallel manipulators.

• Level 1: Enumeration of kinematic chains: From structural charac-
teristics (number of links, number of joints, mobility, order of screw
system) kinematic chains are enumerated. It is important toremember
that a kinematic chain is an assembly of links and joints. Theattributes
of kinematic chains in this level are: number of links (n), number of
1-DoF joints (j), mobility (M), order of screw system (λ ). The main
tools considered in this level are graph theory and screw theory.

• Level 2: Enumeration of mechanisms:Each kinematic chain orig-
inates mechanisms selecting all different bases. It is important to re-
member that a mechanism is a kinematic chain with one of its compo-
nents (links) taken as a frame (IONESCU, 2003). In terms of graph
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theory, a mechanism corresponds to a graph with one of its vertices de-
tached (colored) to represent the fixed link (SIMONI et al., 2008). The
attributes of mechanisms in this level are: number of links (n), number
of 1-DoF joints (j), mobility (M), order of screw system (λ ) and base of
mechanism. The tools considered in this level are graph theory, group
theory and screw theory; mainly the concepts of symmetry, actions and
orbits of the automorphism group of non-colored vertex graphs.

• Level 3: Enumeration of parallel manipulators: Each mechanism
originates parallel manipulators selecting different links to be the end-
effectors. It is important to remember that a parallel manipulator is a
kinematic chain with one of its components (links) taken as aframe
and the other taken as an end-effector. In terms of graph theory, a
parallel manipulator with one end-effector corresponds toa graph with
two detached vertices (colored with distinct colors), one to represent
the fixed link and another to represent the end-effector (SIMONI et al.,
2008). The attributes of parallel manipulators in this level are: number
of links (n), number of 1-DoF joints (j), mobility (M), order of screw
system (λ ), base and end-effector. The tools considered in this level
are graph theory, group theory and screw theory; mainly the concepts
of symmetry, actions and orbits of the automorphism group ofcolored
vertex graphs.

Using this systematic procedure we will enumerate all mechanisms
and parallel manipulators that a kinematic chain can originate, without iso-
morphisms. Applying integrated tools of graph and group theory and the
concept of symmetry, we will present a new method of enumeration of par-
allel manipulators and several new results. Using the concept of symmetry
we will present an improvement of the enumeration of mechanisms method
presented by Simoni (2008).

1.3.2 Contributions to the analysis of kinematic structures

The contributions to the analysis are to apply integrated tools of graph
theory and group theory to identify the symmetries of the kinematic structures
and to reduce the complexity of the matricial analysis. The analysis in the
context of this thesis is to describe the connectivity, the degrees-of-control
and redundancy matrices in a compact form and simplify the selection of the
best kinematic structure satisfying the costumer’s requirements.

The main contribution to the analysis of kinematic structures is to
prove the invariance of connectivity, degrees-of-controland redundancy by
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the action of the automorphism group of the associated graph. The connectiv-
ity, degrees-of-control and redundancy are symmetrical properties of a kine-
matic chain, i.e. links which are symmetric by the action of automorphism
group of the graph have the same properties. Considering that symmetric
links are identified by the orbits of its automorphism group of the graph we
reduce the matricial representation considering one representative element of
each orbit. Thus, the order of the matrices are reduced fromn× n to o× n
where ”n” is the number of links of the kinematic chain and ”o” is the number
of orbits of the automorphism group of the graph.

Will be evident from the examples considered in Chapter 6 that this
strategy simplifies the analysis considerably because mostof the mechanisms
and parallel manipulators have a large number of symmetries.

1.4 MOTIVATION

In the last two decades, parallel manipulators aroused attention from
researchers and industry. Conceptual design phase, in particular, is a field
which has been increasing in the parallel manipulators literature (MRUTHYUN-
JAYA, 2003). Parallel manipulators can be considered a well-established op-
tion for many different applications as shown in Section B.2.6. As opposed to
serial manipulators, in which the number of kinematic arrangements (types)
is somewhat limited, parallel manipulators can lead to a very large number
of kinematic arrangements for a given motion pattern (KONG;GOSSELIN,
2007). However, existing architectures of parallel manipulators have been
traditionally designed by the designer’s intuition, ingenuity, and experience
(TSAI, 2001; KONG; GOSSELIN, 2007).

In the last years, the research in the field of conceptual design of par-
allel manipulators increased and some books on the subject were published
addition to numerous scientific papers. The main authors andbooks are:

• Creative Design of Mechanical Devices (YAN, 1998).

• Mechanism Design: Enumeration of Kinematic Structures According
to Function (TSAI, 2001).

• Parallel Robots (MERLET, 2006).

• Type Synthesis of Parallel Mechanisms(KONG; GOSSELIN, 2007).

• Structural Synthesis of Parallel Robots: Part 1: Methodology (GOGU,
2008)
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• Structural Synthesis of Parallel Robots: Part 2: Translational Topolo-
gies with Two and Three Degrees of Freedom (GOGU, 2009).

The importance and need of conceptual design of parallel manipula-
tors is emphasized in several other works.

Mruthyunjaya (2003) in the 41 pages long review paper “Kinematic
structure of mechanisms revisited” wrote:

The most important phase in the study of kinematic structureof
mechanisms is the structural synthesis or classification and enu-
meration of kinematic chains with a given number of links and
degree of freedom as related by the Chebyshev-Gruebler equa-
tion.

Moon and Kota (2002) wrote:

conceptual design of mechanisms is still a mixture of art of sci-
ence.

It means that conceptual design of mechanisms and parallel manipulators is
still an open problem.

Torgny Brogårdh (2002) from ABB Automation Technology Prod-
ucts/Robotics, in his conference paper entitled “PKM Research - Important
Issues, presented as seen from a Product Development Perspective at ABB
Robotics” presented in the “Workshop on Fundamental Issuesand Future Re-
search Directions for Parallel Mechanisms and Manipulators”, wrote:

This paper will address some of the most important PKM re-
search issues as seen from a robot manufacturer’s point of view.
... section 3, which is the most important part of this paper,the
urgent need for a systematic topology synthesis is put forward.

Jean Pierre Merlet from INRIA Sophia Antipolis - France, author of
the first book on parallel robots, in his paper entitled “Still a long way to
go on the road for parallel mechanisms” presented in ASME 2002 DETC
Conference (MERLET, 2002), wrote:

Synthesis of parallel robot is an open field (there is a very lim-
ited number of papers addressing this issue) and, in my opinion,
one of the main issue for the development of parallel robots in
practice.

The importance of synthesis of parallel manipulators is also reiterated by Jean
Pierre Merlet in the paper “Optimal design of robots” (MERLET, 2005):
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Synthesis of robots may be decomposed into two processes: struc-
tural synthesis (determine the general arrangement of the me-
chanical structure such as the type and number of joints and the
way they will be connected) and dimensional synthesis (deter-
mine the length of the links, the axis and location of the joints,
the necessary maximal joint forces/torques). The performances
that may be obtained for a robot are drastically dependent on
both synthesis.

Clément Gosselin and Xianwen Kong in his book “Type Synthesis of
Parallel Mechanisms” (KONG; GOSSELIN, 2007), wrote:

Parallel manipulators have been largely synthesized usingintu-
ition and ingenuity. As opposed to serial kinematic chains,in
which the number of kinematic arrangements (types) is some-
what limited, parallel manipulators can lead to a very largenum-
ber of kinematic arrangements for a given motion pattern. There-
fore, a systematic approach is needed in order to reveal all types
of parallel manipulators thereby allowing the developmentof the
most promising designs. This fundamental issue, namely type
synthesis, is the focus of this book.

Grigore Gogu, in his books “Structural Synthesis of Parallel Robots:
Part 1: Methodology (GOGU, 2008)” and “Structural Synthesis of Parallel
Robots: Part 2: Translational Topologies with Two and ThreeDegrees of
Freedom (GOGU, 2009)” emphasizes the need for methodologies devoted to
the systematic design of parallel manipulators:

Structural synthesis is directly related to the conceptualphase of
robot design, and represents one of the highly challenging sub-
jects in recent robotics research. ... In general, parallelmanipu-
lators performances are highly dependent on their mechanical ar-
chitecture, so that structural synthesis becomes the central prob-
lem in the conceptual design phase, but only a few works can be
found in the literature on this topic. We note that this is thefirst
book focusing on the structural synthesis of the mechanicalar-
chitecture of parallel robots. The topic of this book addresses the
problem of structural, also called topological, synthesisof paral-
lel robotic manipulators in a systematic way. This is an urgent
need put forward by robot manufacturers and scientists.

Jean Pierre Merlet and Clément Gosselin in the Handbook of Robotics
(SICILIANO; KHATIB, 2008), wrote:
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Determining all potential mechanical architectures of parallel robots
that can produce a given motion pattern at the moving platform
is a challenging problem.

These comments motivate the research in this interdisciplinary field of
science. The early research in this field can be considered recent and little was
developed in the conceptual design of parallel manipulators. The approaches
already proposed should be improved and other tools should be explored.

Another motivation is the interest of the UFSC robotics research group
front of current challenges. New projects of the UFSC robotics laboratory
have a current trend towards parallel manipulators.

The reader is invited to read the Appendix B (page 167) which is also
part of the motivation. Appendix B presents a review of the parallel manipu-
lators implemented by laboratories of research and industry, and presents the
main applications of parallel manipulators.

1.5 THESIS ORGANIZATION

The thesis is divided into seven chapters and two appendices. The first
chapter consists of this introduction to contextualizes the problem, presents
the state of the art in the enumeration and analysis and, the motivation to
work.

The second chapter presents the mathematical tools used in conceptual
design and it is composed by four main sections: graph theory, group theory,
symmetry analysis and screw theory.

The third chapter presents the fundamentals concepts and terminology
of mechanisms and machines theory.

The fourth chapter presents a review of the main methods for enumer-
ation of kinematic structures and criteria for kinematic analysis.

The fifth presents contributions to the enumeration of kinematic struc-
tures. We will present the systematic procedure considering the three levels,
discussed in Section 1.3.

The sixty chapter presents an application of integrated tools of group
theory and graph theory for analysis of enumerated kinematic structures in
the synthesis process.

The seventh chapter presents the conclusions and perspectives to fur-
ther works.

Appendix A presents an application of enumeration techniques devel-
oped in fifth chapter for enumeration of planar metamorphic robots configu-
rations. With the development of science, technology and with space explo-
ration, hazardous environment work, production requirements of small batch,
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short run and quick change-over, the traditional concept ofmechanisms and
robot development is facing a challenge in the 21st century to adaptability and
reconfigurability. Therefore, new concepts were emerging as modular robots,
metamorphic robots and variable topology mechanisms. The group theory
tools are applied successfully to reduce the problem of enumeration of planar
metamorphic robots configurations.

Appendix B presents a review and the applications of parallel manip-
ulators.
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2 MATHEMATICAL TOOLS

As discussed in the introduction, several mathematical tools are used
in conceptual design. This chapter introduces these mathematical tools which
are used in the remainder of this work. The chapter is dividedin four main
sections:

• Group theory: This section introduces the fundamental concepts of
group theory. Group theory is important for enumeration andanalysis
of mechanisms and parallel manipulator because it capturesthe sym-
metries of the structure of the kinematic chain of parallel manipulator.
A preliminary contribution of this thesis is to apply group theory tools
to enumeration of mechanisms and parallel manipulators.

• Graph theory: This section introduces the fundamental concepts of
graph theory. Kinematic chains, mechanisms and parallel manipulators
can be represented by a graph. The graph representation permit us to
give an abstract treatment for enumeration and analysis of mechanisms
and parallel manipulators in the first phases of design.

• Symmetry analysis: This section presents a precise definition of sym-
metry in kinematic chains. Since the aim of this work is to apply sym-
metry to simplify the enumeration and analysis of mechanisms and par-
allel manipulators, which are represented in biunivocal correspondence
by graphs, it is necessary to define what is meant by kinematicchain
symmetry. It is an original contribution of this thesis.

• Screw theory: This section introduces some screw system where kine-
matic structures will work.

2.1 GROUP THEORY

Groups are abstract structures used in mathematics and science in gen-
eral to capture the internal symmetry of a structure in the form of automor-
phism group. In general, groups can be thought as sets of symmetry opera-
tions. The definition of a group is the abstraction of the properties of sym-
metry operations. Thus, group theory methods are useful whenever there are
symmetries. In the enumeration and analysis of mechanisms and parallel ma-
nipulators, the group theory can be used by identifies symmetries of kinematic
chains and mechanisms (SIMONI et al., 2008, 2009). We will beinterested
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in symmetries of kinematic structures, i.e. kinematic chains of mechanisms
and parallel manipulators.

The concepts presented in this section are essential for theapplication
proposed in this thesis. More details on group theory can be found in Alperin
and Bell (1995), Burrow (1993), Rotman (1995), Scott (1964), Selig (2005).

2.1.1 Groups and subgroups

A group is a set endowed with a binary operation· : G× G → G
satisfying certain axioms, detailed below. Thus, whenevera set has a group
structure the whole group can be described in terms of a set ofgenerators.
This follows from the fact that the equationa ·x= b always admits a unique
solutionx= a−1 ·b in G.

Definition 1 (Group). Let G be a set and· : G×G→ G. The pair (G, ·) is a
group if the following conditions are satisfied:

1. associativity: for all a, b and c in G,(a ·b) ·c= a · (b ·c).

2. identity element: there exists an element e∈ G such that for all a∈ G,
e·a= a ·e= a.

3. inverse element: for every a∈ G, there exists an element a−1 ∈ G such
that a·a−1 = a−1 ·a= e.

Definition 2 (Subgroup). A subset H⊂ G is a subgroup of a group G if the
operation induced by the operation on (G, ·) satisfies the three conditions in
Definition 1. This is equivalent to a requirement that x= h−1 ·g∈ H, for all
h,g∈ H.

Definition 3 (Group generators). A setβ = {g1, ...,gn} ⊂ G is a set of gen-
erators for a group G if any element g∈ G can be written as the product of
elements inβ . In this case, we denote G=< g1, . . . ,gn >.

Example 1(Symmetric group). Let Xn = {x1,x2, . . . ,xn} and Sn = {σ : Xn →
Xn | σ is bijective} (permutations). Consider· : Sn×Sn → Sn the operation
given by the composition lawσ · τ = σ ◦ τ : Xn → Xn. Thus, (Sn, ·) is the nth-
symmetric group. In order to describe the elements of Sn in a convenient way,
let us consider a bijectionσ : Xn → Xn;

σ =

(

1 2 · · · n
σ(1) σ(2) · · · σ(n)

)

.

For n= 2, we have2! = 2 elements
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S2 =

{(

1 2
1 2

)

,

(

1 2
2 1

)}

.

For n= 3, we have3! = 6 elements

S3 =

{(

1 2 3
1 2 3

)

,

(

1 2 3
2 1 3

)

,

(

1 2 3
1 3 2

)

,

(

1 2 3
3 2 1

)

,

(

1 2 3
2 3 1

)(

1 2 3
3 1 2

)}

The group Sn has n! elements.

Definition 4 (Isomorphism group). Consider the groups(G1, ·1) and(G2, ·2).

1. A mapφ : G1 → G2 is a homomorphism ifφ(x ·1 y) = φ(x) ·2 φ(y), for
all x,y∈ G1.

2. A homomorphismφ : G1 → G2 is an isomorphism ifφ is bijective.

An isomorphism is called an automorphism ifG1 = G2.

Definition 5 (Automorphism group). Let G be a group. An isomorphism of
G in G is called anautomorphism. The set of all automorphisms of G form a
group, which is called the automorphism group and denoted byAut(G).

2.1.2 Actions and orbits

The group structure is present in a model in the form of the group
action, also called group representation. For the sake of simplicity, from now
on let us denote the product of two group elementsg,h∈ G by gh.

Definition 6 (Left group action). A left group action of a group G on a set
X is a mapα : G×X → X, usually denoted byα(g,x) = g ·x, satisfying the
following conditions:

1. For all g,h∈ G and x∈ X, g· (h ·x) = (gh) ·x.

2. For all x∈ X, e·x= x.

Analogously, a right group action can be defined. From now on,we
use the term action for left action.
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Example 2. The symmetric group is a matrix group and the actions can be
represented by a binary matrix operation. For instance,

σ =

(

a b c
b a c

)

→





0 1 0
1 0 0
0 0 1





can be represented as (left group action)

σ =





b
a
c



=





0 1 0
1 0 0
0 0 1



 ·





a
b
c



 .

A spaceX endowed with aG-action is named aG-space.

Definition 7 (Orbits). Let X be a G-space. The orbit of a point x∈ X, by the
action of G, is the space

Ox = {g ·x | g∈ G}.

A partition of aG-spaceX is obtained by considering the space of
G-orbits. This can be seen by defining the following equivalence relation:
x ∼ y if and only if there exists an elementg ∈ G such thaty = g · x. The
equivalence classes are exactly the orbits under the G-action. Therefore, if
x ∼ y, thenOx = Oy. It is well known that the equivalent classes define a
partition.

Example 3. Consider the SO(2) group, i.e. the planar rotation group. The
action is rotation of a point in the plane about the origin by an angleθ .
The orbit of a point at distance r from the origin is the circleof radius r.
Figure 2(a) shows the orbit of point(1,0) by an angleθ = π

2 , i.e. O π
2
=

{1,ei π
2 ,eiπ ,ei 3π

2 }, where eiθ = cosθ + i sinθ . Figure 2(b) shows the orbit of

point (1,0) by an angleθ = π
6 , i.e.O π

6
= {1,ei π

6 ,ei π
3 ,ei π

2 ,ei 2π
3 ,ei 5π

6 ,eiπ ,ei 7π
6 ,

ei 4π
3 ,ei 3π

2 ,ei 5π
3 ,ei 11π

6 }.

2.2 GRAPH THEORY

In this section, some fundamental concepts of graph theory are in-
troduced. The definitions adopted in this work are obtained mainly from
Gross and Yellen (2003), Jonsson (2007), Murota (2000), Biggs (1993a), Tsai
(2001), Thomas et al. (2001).

A graph is a simple, intuitive and abstract concept used to represent
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x

y

(1,0)

(a) Orbits of point(1,0)
by an angleθ = π

2 .

x

y

(1,0)

(b) Orbits of point(1,0)
by an angleθ = π

6 .

Figure 2 – Orbits of subgroups of the planar rotation group SO(2).

the idea of some kind of relationship between objects. Configurations of
nodes and connections occur in a great diversity of applications. They can
be present in electrical circuits, roadways, organic molecules, databases, and
so on. In special, as discussed in the introduction they are essential for topo-
logical analysis and enumeration of mechanisms and parallel manipulators.
It is important to remember that the topology of a kinematic chain can be
uniquely identified by its graph representation, where links and joints of the
kinematic chain are represented, respectively, by the vertices and edges of the
graph.

2.2.1 Graphs and subgraphs

A graph X = (V,E) consists of a finite setV(X) of vertices and a
family E(X) of subsets ofV(X) of size two called edges. Usually, the pair
{x,y} denotes an edge, and the number of edges incident to a vertexv is the
degree of the vertexv (deg(v)). A vertex of zero degree is called an isolated
vertex. A vertex of degree two is called a binary vertex, a vertex of degree
three a ternary vertex, and so on. A subgraph of a graphX is a graphY such
thatV(Y) ⊆ V(H), E(Y) ⊆ E(H). A graph is dense when|E| ≪ |V|2 and
sparse when|E| ≈ |V|2.

It is important to remember that a kinematic chain can be uniquely
represented by the graph whose vertices correspond to linksand whose edges
correspond to joints of the chain (TSAI, 2001; MRUTHYUNJAYA, 2003;
DOBRJANSKYJ; FREUDENSTEIN, 1967). Figure 3 shows this correspon-
dence, Figure 3(a) shows the Stephenson kinematic chain with labeled links
and Figure 3(b) shows the corresponding graph (DOBRJANSKYJ; FREUDEN-
STEIN, 1967).
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(a) Stephenson kine-
matic chain.
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(b) Graph represen-
tation.

Figure 3 – Correspondence between graphs and kinematic chains.

Equation 2.1 shows the adjacency matrix of the graph shown inFig-
ure 3(b). Adjacency matrix is a means of representing which vertices of a
graph are adjacent to which other vertices. The adjacency matrix of X is the
n×n matrixA(X) = (ai j )n×n such thatai j = 1 if vertexi is adjacent to vertex
j, andai j = 0 otherwise (includingi = j). Other possible representations are
incidence matrix, adjacency list, graph6 and sparce6 (see graph6 and sparce6
formats in McKay (2009a)). The graph shown in Figure 3(b) is represented
by ECxo in the graph6 format and by :EkGChG˜ in the sparce6 format.

A(X) =

















1 2 3 4 5 6

1 0 0 0 1 1 0
2 0 0 0 0 1 1
3 0 0 0 0 1 1
4 1 0 0 0 0 1
5 1 1 1 0 0 0
6 0 1 1 1 0 0

















(2.1)

A path between two verticesva andvb is a sequencev0,v1,v2, ...,vk of
vertices and edges, such thatv0 = va, vk = vb and for alli ∈ [1,k], {vi−1,vi} ∈
E. The length of a path is the number of its edges. The distance between
two verticesva andvb, denoted byδ (va,vb), is the length of the shortest path
betweenva andvb. If each vertex appears once, except that the beginning and
ending vertices are the same, the path forms a circuit or loop. In the graph
shown in Figure 3(b) the sequence (1,{1,2}, 2, {2,3}, 3, {3,4}, 4) is a path
and the sequence (1,{1,2}, 2, {2,3}, 3, {3,4}, 4, {4,5}, 5, {5,1}, 1) is a
circuit.

A graphX is said to be connected if every vertex inX is connected to
every other vertex by at least one path. The minimum degree ofany vertex in
a connected graph is equal to one. A connected graph is biconnected if the
removal of any single vertex (and all edges incident on that vertex) can not
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disconnect the graph. Articulation points are vertices whose removal would
increase the number of connected components in the graph. Thus, a graph
without articulation points is biconnected. Figure 4 illustrates the articulation
points and biconnected components of a small graph.

5
9

1

3 8

6 10

4
7

2

Figure 4 – A connected graph and its biconnected components with dashed
boundaries. The vertices 3, 5 and 7 are cut vertices and belong to more than
one biconnected component.

2.2.2 Actions

Given a graphX, a bijective mapσ : V(X)→V(X) defines a permu-
tation of the elements ofV(X). AssumingV(X) hasn elements, the set of
permutations endowed with the operation of composition is the groupSn and
we can apply the definitions presented in Section 2.1.

Example 4(Actions). Figure 3(a) shows the Stephenson kinematic chain and
Figure 3(b) its graph (X). Figures 5(a) and 5(b) show the action ofσ1(X) and
σ2(X), respectively, on the labels of the Stephenson graph, where

σ1(X) =

(

1 2 3 4 5 6
3 5 4 1 6 2

)

=

(

1 3 4
3 4 1

)(

2 5 6
5 6 2

)

= (134)(256)

and
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σ2(X) =

(

1 2 3 4 5 6
4 3 2 1 6 5

)

=

(

1 4
4 1

)(

2 3
3 2

)(

5 6
6 5

)

= (14)(23)(56).

3

5

1

6 4

2

(a) σ1(X)

4

5

3

2 1

6

(b) σ2(X)

Figure 5 – Action ofσ1 andσ2 in the Stephenson graphX.

2.2.3 Isomorphisms and automorphisms

Definition 8. Two graphs X and Y are isomorphic if there is a bijectionσ :
V(X)→V(Y) such that

{xy} ∈ E(X)⇔ {σ(x)σ(y)} ∈ E(Y).

If isomorphism exists between two graphs, then the graphs are called isomor-
phic and we write X≃Y (GROSS; YELLEN, 2003).

Isomorphic graphs clearly have the same numbers of verticesand edges.
On the other hand, equality of these parameters does not guarantee isomor-
phism. In general, if two graphsX andY are isomorphic they are said to be
identical and we writtenX ≃ Y. If two graphs are identical, they can clearly
be represented by identical diagrams. For example, the graphs X andY in
Figure 6 can be represented by diagrams which look exactly the same, the
sole difference lies in the labels of their vertices.

In order to show that two graphs are isomorphic, one must indicate an
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(a) X.
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(b) Y.

Figure 6 – Isomorphic graphs.

isomorphism between them. The mapping(σ) defined by

σ :=

(

1 2 3 4 5 6
3 5 4 1 6 2

)

is an isomorphism between the graphsX andY in Figure 6.
Most isomorphism tests are based on graph invariants which preserve

the properties or parameters of graphs under isomorphism, such as degree
sequence, distance matrix, vertex ordering, etc. (KING; TZENG, 1999).

Definition 9. The automorphism of a graph is the graph’s isomorphism with
itself. The automorphism group of a graph X is denoted by Aut(X).

A labeled graph is mapped into another labeled graph when thelabels
of vertices are permuted. For some permutations, a labeled graph may map
into itself. The set of those permutations which map the graph into itself form
a group called automorphism group of a graph. This automorphism group is
said to be a vertex-induced group (TSAI, 2001). Similarly, the edges of a
graph may be labeled. We call the group of permutations that maps the graph
into itself an edge-induced automorphism group.

The automorphism group of the graph is a subgroup of the symmetric
group and contains all possible permutations of the vertices that preserve the
adjacency. The automorphism group of a graph characterizesits symmetries,
and are, therefore, quite useful for determining some of itsproperties. We
denote the set of all automorphisms of a graphX by Aut(X). It can be verified
thatAut(X) is a group under the operation of composition.

For example, the mapping

σ :=

(

1 2 3 4 5 6
4 3 2 1 6 5

)

define an automorphism between the graphsX andY in Figure 7. Note that,
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in this case, the adjacency and degree are preserved.

4

6

3

2 1

5

(a) X.

4

5

3

2 1

6

(b) Y.

Figure 7 – Automorphic graphs.

2.3 SYMMETRY ANALYSIS

Since the aim of this work is to apply symmetry to simplify thekine-
matic analysis, and, kinematic chains are represented in biunivocal correspon-
dence by graphs, it is necessary to define what is meant by graph symmetry.
This is carried out using the concept of a group defined in the previous sec-
tions. To the best of the authors’ knowledge, there are no a precisely definition
of symmetry in kinematic chains in the literature. Rao (2000) discusses sym-
metries in kinematic chains but does not presents a formal definition or a tech-
nique to obtain the symmetries of a kinematic chain. Tischler et al. (1995a)
define left and right symmetry to avoid generation of isomorphic kinematic
chains in the Farrell’s method (more details in Chapter 4).

The symmetry of a graph corresponds to an element of the automor-
phism group of the graph. According to Erdős and Rényi (1963) and Petitjean
(2007), a graph is considered to be symmetric when it has morethan one au-
tomorphism, i.e. the automorphism group has a degree greater than 1. In
the definition below we extend the concept of graph symmetry to kinematic
chains.

Definition 10 (Symmetry of a kinematic chain). The symmetry of a kine-
matic chain is the symmetry of its corresponding graph. A kinematic chain is
symmetric when it has more than one automorphism (SIMONI et al., 2010).

In the definition below we extend the concept of symmetry order,
found in Erdős and Rényi (1963) and Wright (1974), to kinematic chains.

Definition 11 (Symmetry order). We write r for the order of the automor-
phism group of the kinematic chain (X), i.e. r= |Aut(X)|, and we say that the
kinematic chain is of symmetry order r.
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A kinematic chain which is not symmetric is called asymmetric and,
for such a kinematic chain, obviouslyr = 1.

Symmetric links are identified by the orbits of the automorphism group
of the graph.

Example 5. Let X be the Stephenson graph shown in Figure 3(a) (page 22).
In this case,

Aut(X) =

{

σ1 = (1)(2)(3)(4)(5)(6), σ2 = (1)(2)(3)(4)(56),
σ3 = (14)(23)(5)(6), σ4 = (14)(23)(56)

}

.

Therefore, Stephenson graph is of symmetry order r= 4. The genera-
tor set is Aut(X) =< σ2,σ3 >. The action of the automorphism group in the
Stephenson graph is shown in Figures 8(a), 8(b), 8(c) and 8(d).
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6
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2 1

5

(a) σ1(X).

4

5
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2 1

6

(b) σ2(X).

1
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3 4

5

(c) σ3(X).

1

5

2

3 4

6

(d) σ4(X).

Figure 8 – Action of the automorphism group in the Stephensongraph.

Following the definition of group operation, we can construct a mul-
tiplication table shown in Table 2. We conclude that every product is an
element of the group; the associative law holds;σ1 is the identity element;
and every element is its own inverse. Therefore,σ1, σ2, σ3, andσ4 form a
automorphism group.

Symmetric vertices (links) are identified by orbits. The orbits are:

O = {{1,4},{2,3},{5,6}}.
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Table 2 – Group operation table for the automorphism group ofStephenson
graph.

◦ σ1 σ2 σ3 σ4

σ1 σ1 σ2 σ3 σ4

σ2 σ2 σ1 σ4 σ3

σ3 σ3 σ4 σ1 σ2

σ4 σ4 σ3 σ2 σ1

2.4 SCREW THEORY

In the mobility equation (see Equation 3.1 on page 37) we havethe
parameterλ which represent the order of screw system to which all the joint
screws belong. Therefore, this section presents the definition of a screw and
some screw systems important for enumeration of kinematic chains mecha-
nisms and parallel manipulators. More details on screw theory can be found
in (HUNT, 1978; BALL, 1998; DAVIDSON; HUNT, 2004; KONG; GOS-
SELIN, 2007; CHIRIKJIAN et al., 2001).

2.4.1 Screw systems

In screw theory (HUNT, 1978; BALL, 1998; DAVIDSON; HUNT,
2004), a unit screw $ is defined by a pair of vectors

$=

[

$F

$S

]

=























[

s
s× s0+hs

]

if h is finite

[

0
s

]

if h→ ∞

(2.2)

wheres is a unit vector along the axis of the screw $,s0 is a vector directed
from origin of the reference frame O-xyz to any point on the axis of the screw,
andh is called the pitch. There are two vector components (F-first, S-second)
or six scalar components in the above presentation of the screw.

A screw1 is a geometric element composed by a directed line (axis)
associated to a scalar parameterh denominated pitch (CAMPOS, 2004).

A screw system of orderλ (0≤ λ ≤ 6) comprises all the screws that

1Notation: $0, $h and $∞ are used to represent a screw of 0-pitch, a screw ofh-pitch and a
screw of∞-pitch respectively (HUNT, 1978; DAVIDSON; HUNT, 2004; KONG; GOSSELIN,
2007).
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Figure 9 – The geometry of a screw.

are linearly dependent onλ given linearly independent screws. A screw sys-
tem of orderλ is also called anλ -system. Any set ofλ linearly independent
screws within anλ -system forms a basis of theλ -system. There are many
types of screw systems, see for instance Hunt (1978), Davidson and Hunt
(2004), Gibson and Hunt (1990a, 1990b). For example, the canonical base
screw

$α = (1 0 0;hα 0 0), (2.3)

represent a 1-system (DAVIDSON; HUNT, 2004). There are two special
cases of note; one when the pitch ishα =0, i.e. $0=(1 0 0;0 0 0), and another
when the pitchhα = ∞, i.e. $∞ = (0 0 0;1 0 0). The mechanical generators of
this two 1-systems are respectively the R and P joints.

A geometric treatment on screw systems was presented by Kongand
Gosselin (2007). Table 3 presents eleven most important screw systems. The
description was obtained from Kong and Gosselin (2007) and the canonical
base screws from Hunt (1978), Gibson and Hunt (1990b), Davidson and Hunt
(2004).

2.5 CONCLUSIONS

This chapter presented group, graph and screw theory tools essential
for the application proposed in this thesis. Through several examples we
showed the potential of the integrated application of graphand group theory
tools.

This chapter presented a precise definition of the symmetry of a kine-
matic chain in terms of the automorphism group of the associated graph. The
definition of symmetry is an original contribution of this thesis and it will be
used in the remainder of this text. Three important applications to the sym-
metry in this thesis are: enumeration mechanisms, enumeration of parallel
manipulators and simplification to the analysis of these kinematic structures.
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Table 3 – Summary of some screw systems.

λ -system Description Canonical base screws
1-systems

1-$∞-
system

composed of all the $∞ along a same direction $α = (1 0 0;hα 0 0)
hα = ∞

1-$0-
system

composed of all the $0 along a same line $α = (1 0 0;hα 0 0)
hα = 0

1-$h-
system

is a finite screw motion about a line $α = (1 0 0;hα 0 0)
hα = const

2-systems
2-$∞-
system

composed of all the $∞ whose directions are
parallel to a same plane

$α = (1 0 0;hα 0 0)
$β = (1 0 0;0hβ 0)
hα = hβ = ∞

1-$∞-1-$0-
system

composed of all the $0 whose axes are coplanar
and parallel as well as the $∞ whose direction is
perpendicular to the axes of all the $0

$α = (1 0 0;hα 0 0)
$β = (1 0 0;0hβ 0)
hα = 0, hβ = ∞

2-$0-
system

composed of all the $0 whose axes intersect at a
common point and are coplanar. The common
point is called the center of the 2-$0-system.

$α = (1 0 0;hα 0 0)
$β = (1 0 0;0hβ 0)
hα = hβ = 0

3-systems
3-$∞-
system

composed of all the $∞ $α = (1 0 0;hα 0 0)
$β = (1 0 0;0hβ 0)
$γ = (1 0 0;0 0hγ )
hα = hβ = hγ = ∞

2-$∞-1-$0-
system

composed of all the $0 and all the $∞ whose
directions are parallel to a plane that is not per-
pendicular to the axis of the $0

$α = (1 0 0;hα 0 0)
$β = (1 0 0;0hβ 0)
$γ = (1 0 0;0 0hγ )
hα = hβ = ∞, hγ = 0

1-$∞-2-$0-
system

composed of a $∞ as well as all the $0 whose
axes are located on a plane which is perpendic-
ular to the direction of the $∞

$α = (1 0 0;hα 0 0)
$β = (1 0 0;0hβ 0)
$γ = (1 0 0;0 0hγ )
hα = hβ = 0, hγ = ∞

3-$0-
system

composed of all the $0 whose axes intersect at a
common point. The common point is called the
center of the 3-$0-system.

$α = (1 0 0;hα 0 0)
$β = (1 0 0;0hβ 0)
$γ = (1 0 0;0 0hγ )
hα = hβ = hγ = 0

4-systems
3-$∞-1-$0-
system

composed of all the $∞ and all the $0 whose
axes are all parallel to one line

$α = (1 0 0;hα 0 0)
$β = (1 0 0;0hβ 0)
$γ = (1 0 0;0 0hγ )
$ψ = (1 0 0;0 0hψ )
hα = hβ = hγ =
∞,hψ = 0
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3 MECHANISMS AND PARALLEL MANIPULATORS: A
BIBLIOGRAPHY REVIEW

This chapter introduces the basic concepts of mechanisms and ma-
chines theory. The terminology used in this chapter is established in ac-
cordance with the terminology proposed by the International Federation for
the Promotion of Mechanism and Machine Science (IFToMM), see Ionescu
(2003).

3.1 LINKS AND JOINTS

A material body is a rigid body if the distance between any twopoints
of the body remains constant. In reality, rigid bodies do notexist, since all
known materials deform under stress. However, we may consider a body as
rigid if its deformation under stress is small and can be considered negligibly.
The individual rigid bodies making up a mechanism, a machineor a parallel
manipulator are called links (TSAI, 2001). A link is called abinary link if it
is connected to only two other links, a ternary link if it is connected to three
other links, a quaternary link if it is connected to four other links, and so on.
A rigid body in space can move in various ways, in translationor rotation
motion. These are called its degrees of freedom (DoF).

The links in a mechanism, a machine or a parallel manipulatorare
connected in pairs and this connection is called a joint. A joint physically
adds some constraints to the relative motion between the twolinks. Two such
paired elements form a kinematic pair (TSAI, 2001).

Kinematic pairs (or joints) are classified according to typeof the con-
tact between the paired elements into lowers and higher pairs (REULEAUX,
1876; TSAI, 2001; IONESCU, 2003). Lower pairs have superficial contact
and higher pairs have linear or punctual contact. There are six lower pairs
as shown in Figure 10 and two higher pairs as shown in Figure 11which are
frequently used in mechanisms, machines and parallel manipulators. Figure
10(g) shows the universal joint. The universal joint is sometimes referred to
as the Hooke joint, ball-and-socket joint or Cardan joint.

Table 4 summarizes the DoF and the types of motion associatedwith
each joint.

Joints with more than 1-DoF can be replaced/obtained by combina-
tions of joints with 1-DoF, see Figure 12. The universal joint is kinematically
equivalent to two intersecting revolute joints (see Figure12(a)), therefore, it
is a 2-DoF joint. The cylindric joint is kinematically equivalent to a revolute
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(a) Revolute joint (R joint). (b) Prismatic joint (P joint).

(c) Cylindric joint (C joint). (d) Helical joint (H joint).

(e) Spherical joint (S joint). (f) Planar joint.

(g) Universal joint (U joint).

Figure 10 – Six lower kinematic pairs and universal joint formed by two rev-
olute joints (SIMONI, 2008).

joint in series with a prismatic joint with their joint axes parallel to or coin-
cident with each other (see Figure 12(b)), therefore, it is a2-DoF joint. The
spherical joint is kinematically equivalent to three intersecting revolute joints
(see Figure 12(c)), therefore, it is a 3-DoF joint. The planar joint is kine-
matically equivalent to two prismatic joints with axis parallel to plane and a
revolute joint with axis perpendicular to plane (see Figure12(d)), therefore,
it is a 3-DoF joint.

A joint is called a binary joint, if it connects only two links, and a
multiple joint, if it connects more than two links.
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(a) Gear. (b) Came.

Figure 11 – Two higher kinematic pairs (SIMONI, 2008).

Table 4 – Summary of kinematic pairs (joints) frequently used in mechanisms
and machines (TSAI, 2001).

Kinematic pair Figure Symbol DoF Rotational Translational

Lower kinematic pairs.

Revolute 10(a) R 1 1 0

Prismatic 10(b) P 1 0 1

Cylindric 10(c) C 2 1 1

Helical 10(d) H 1 1 coupled

Spherical 10(e) S 3 3 0

Planar 10(f) E 3 1 2

Very used kinematic pair based on lower kinematic pairs.

Universal 10(g) U 2 2 0

Higher kinematic pairs.

Gear 11(a) G 2 1 1

Cam 11(b) Cp 2 1 1

3.2 KINEMATIC STRUCTURES

In the standard terminology, i.e. IFToMM (IONESCU, 2003), akine-
matic chain is defined as an assembly of links and joints.

3.2.1 Kinematic chains

There are three types of kinematic chains: open-loop, closed-loop and
hybrids. An open-loop kinematic chain has every link connected to every
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(a) Universal joint
(KONG; GOSSELIN,
2007).

(b) Cylindric joint.

(c) Spherical joint (KONG; GOS-
SELIN, 2007).

(d) Planar joint.

Figure 12 – Joints obtained by combinations of 1-DoF joints.

other link by one and only one path (see Figure 13(a)). A closed-loop kine-
matic chain is a kinematic chain which each link is connectedwith at least
two other links. In other words, a closed-loop kinematic chain has every
link connected to every other link by at least two distinct paths (see Fig-
ure 13(b)). Clearly, it is possible for a kinematic chain to contain both closed-
and open-loop kinematic chain which is called a hybrid kinematic chain (see
Figure 13(c)). A kinematic chain whose joints are equivalent to lower pairs
only is called a linkage.

(a) (b) (c)

Figure 13 – Three types of kinematic chains: (a) Open-loop kinematic chain.
(b) Closed-loop kinematic chain. (c) Hybrid kinematic chain.
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3.2.2 Mechanisms

In design terms, a mechanism is kinematic chain with one of its com-
ponents (links) fixed to the ground or base (or taken as a frame) (TSAI, 2001;
IONESCU, 2003). The link that is fixed to the base is called thefixed link.
In kinematic terms, a mechanism is a system of bodies designed to convert
motions of, and forces on, one or several bodies into constrained motions of,
and forces on, other bodies (TSAI, 2001; IONESCU, 2003).

Figure 14(a) shows the Watt kinematic chain which originatetwo mech-
anisms with different characteristics of the movement relative to the base fix-
ing one of the links of the kinematic chain. Figures 14(b) and14(c) shows
these classical mechanisms, i.e. Watt I and Watt II, originated fixing different
links of the kinematic chain.

(a) Watt kinematic
chain.

(b) Watt I. (c) Watt II.

Figure 14 – Watt kinematic chain and the two classical mechanisms origi-
nated: Watt I and Watt II.

Mechanisms can be classified according to their nature of motion into
three types: planar, spherical and spatial (TSAI, 2001). A rigid body is said
to be under planar motion if the motion of all particles in therigid body are
constrained in parallel planes. A planar mechanism is a mechanism in which
all points of its links describe paths located in parallel planes. A rigid body is
said to be performing a spherical motion if the motions of allparticles in the
rigid body are confined on concentric spherical surfaces. A spherical mech-
anism is a mechanism in which all points of its links describepaths located
on concentric spheres. A rigid body is said to be undergoing aspatial motion
if its motion is not planar or spherical. A spatial mechanismis a mechanism
in which some points of some of its links describe non-planarpaths, or paths
located in non-parallel planes. In other words, a spatial mechanism cannot
be classified as planar or spherical. Figure 15 shows an example of the three
types of mechanisms according to their nature of motion.
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(a) Planar mechanism. (b) Spherical mechanism. (c) Spatial mechanism.
Bennett mechanism.

Figure 15 – Classification of mechanisms according to their nature of motion
(WANG, 2006; WANG et al., 2008).

3.2.3 Machines

By Tsai (2001), a machine is an assembly of one or more mechanisms
are assembled together with other hydraulic, pneumatic, and electrical com-
ponents such that mechanical forces of nature can be compelled to do work.
By Reuleaux (1876), a machine is a collection of mechanisms arranged to
transmit forces and do work. By IFToMM terminology (IONESCU, 2003)
a machine is a mechanical system that performs a specific task, such as the
forming of material, and the transference and transformation of motion and
force. Figures 86 and 87 (pages 176 and 177) shows two 5-axis machines
used in machine-tool.

3.2.4 Parallel manipulators

A parallel manipulator is a mechanical system under automatic con-
trol, that performs operations such as handling and locomotion, and controls
the motion of its end-effector by means of at least two kinematic chains go-
ing from the end-effector towards the frame (TSAI, 2001; MERLET, 2006;
IONESCU, 2003; KONG; GOSSELIN, 2007; GOGU, 2008). In other works,
a parallel manipulator is a kinematic chain which one of its components
(links) is fixed to the ground or base and another is chosen to be the end-
effector. Several examples of parallel manipulators are presented in Ap-
pendix B.

Basically, the difference between a machine and a parallel manipulator
is in function of the tasks developed. While a machine is designed to devel-
oped a “specific task” a parallel manipulator can develop “several tasks”.
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3.3 MOBILITY OF KINEMATIC STRUCTURES

Mobility is the main structural parameter of a mechanism anda paral-
lel manipulator, kinematic structures in short, and also one of the most funda-
mental concepts in the kinematic and the dynamic modelling of mechanisms
(GOGU, 2009).

The mobility (M) or number of degrees of freedom (DoF) of a kine-
matic chain is the number of independent parameters required to completely
specify the configuration of the kinematic chain in the space, with respect
to one link chosen as the reference (IONESCU, 2003; TSAI, 2001; GOGU,
2008).

Mobility is used to verify the existence of a kinematic structure, to
indicate the number of independent parameters in robot modelling and to de-
termine the number of actuators needed to drive the kinematic structure. The
mobility of a kinematic structure is given by

M = λ (n− j −1)+
j

∑
i=1

fi (3.1)

whereλ is the order of screw system to which all the joint screws belong (see
some screw systems in Table 3 on page 30),n is the number of links,j the
number of joints andfi are the degrees of relative motion permitted by joint
i (HUNT, 1978; TSAI, 2001; MRUTHYUNJAYA, 2003; MERLET, 2006).
As joints with more than 1-DoF can be replaced by a combination of 1-DoF
joints (see Figure 12) the mobility equation (Equation 3.1)becomes

M = λ (n− j −1)+ j (3.2)

It is also possible to establish an equation that relates thenumber of inde-
pendent loops (ν) to the number of links and number of joints in a kinematic
chain

ν = j −n+1. (3.3)

Combining Equation 3.3 with Equation 3.2 yields

M = j −λ ν. (3.4)

Equation 3.4 is known as the loop mobility criterion (TSAI, 2001).

Example 6. Figure 16 shows two representations of the classical Stewart
platform. Figure 16(a) shows the Stewart platform with fi -DoF joints, i.e. 1-
DoF joints (prismatic), 2-DoF joints (universal) and 3-DoFjoints (spheri-
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cal). In this case,λ = 6, n= 14, j = 18, f1 = 6, f2 = 6 and f3 = 6. Applying
the Equation 3.1 we have M= 6(14− 18−1)+ 36= 6, as expected. Fig-
ure 16(b) shows the Stewart platform with 1-DoF joints, i.e.fi -DoF joints are
replaced by 1-DoF joints (see Figure 12). In this case,λ = 6, n= 32 and
j = 36. Applying the Equation 3.2 we have M= 6(32−36−1)+36= 6, as
expected.

Base

Moving S-joint

P-joint

U-joint

platform

platform

(a) fi -DoF joints.

Moving
platformS

P

U
Base

platform

(b) 1-DoF joints.

Figure 16 – Representations of Stewart platform.

Equations 3.1 and 3.2 are well known in mechanisms and machines
theory and can be applied to several mechanisms and parallelmanipulators.
This equation is used for quick calculation of mobility, however, it fails in
several cases. For example, let us apply the mobility criterion to 3-PRRR
Cartesian Parallel Manipulator presented in Figure 17, which only contains R
and P joints (KIM; TSAI, 2002, 2003). In this case, we haven= 11 links and
j = 12 joints. Applying the Equation 3.1 we obtain:M = 6 (if we assumeλ =
3), M = 4 (if λ = 4), M = 2 (if λ = 5) andM = 0 (if λ = 6). However, Kim
and Tsai’s manipulator has 3-DoF, i.e.M = 3 (KIM; TSAI, 2002, 2003). That
equation is not applicable to many other types of recent parallel manipulators,
for example the Star (HERV́E; SPARACINO, 1992), H4 (PIERROT et al.,
1999), Orthoglide (WENGER; CHABLAT, 2000), Tripteron (GOSSELIN;
KONG, 2002), Isoglide family (GOGU, 2008, 2009), and others.

There are several versions of generalized equations suggested in dis-
cussions on mobility and DoF in the literature. However, mobility calcula-
tion still remains a central subject, and not solved, in the mechanisms and
machines theory and should be investigated. Equation 3.1 must be used for
a quick calculation of mobility in early stages of design. The more recent
review of mobility calculation was presented by (GOGU, 2005, 2008). Gogu
(2005) presents a critical review of several versions of generalized equations
suggested in the literature and apply the theory of linear transformations to
derive a new equation for mobility calculation of parallel manipulators.
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Figure 17 – CPM - Cartesian Parallel Manipulator (KIM; TSAI,2002;
GOGU, 2008).

3.3.1 Full mobility, partial mobility and fractionated mob ility

A kinematic chain can have the following types of mobility based in
the concept of mobility criteria (see Equation 3.1):

1. Fractionated mobility: A kinematic chain has fractionated mobility if
it has a separation link or joint, when cut into two, splits the chain
into separate (closed) kinematic chains. Hence, the graph of a non-
fractionated kinematic chain is a biconnected graph.

2. Partial mobility: A kinematic chain withM > 0 degrees of freedom, has
partial mobility if it has at least one closed subchain withM′ number
of degrees of freedom, such that 0≤ M′ < M.

3. Total mobility: A kinematic chain withM > 0 degrees of freedom, has
total mobility if all its closed subchains haveM′ ≥M number of degrees
of freedom.

3.3.2 Instantaneous versus full-cycle mobility

A parallel manipulator is said to be instantaneous if both its mobility
and corresponding properties cannot remain unchanged after an arbitrary fea-
sible finite motion (KONG; GOSSELIN, 2007). For example, if aparallel
manipulator has 3-DoF translational at a moment, and has 2-DoF transla-
tional and 1-DoF rotational at another moment, the parallelmanipulator is
instantaneous.



40

A parallel manipulator that do not change their motion pattern after a
finite motion is called full-cycle (global mobility, general mobility) parallel
manipulator (MOHAMED; DUFFY, 1985).

The mobility calculated in relation to a given configurationof the par-
allel manipulator is an instantaneous mobility which can bedifferent from
the full-cycle mobility (HUNT, 1978). The full-cycle mobility represents the
minimum value of the instantaneous mobility. For a given parallel manipu-
lator, full-cycle mobility has a unique value. It is a globalparameter char-
acterizing the parallel manipulator in all its configurations except its singular
ones.

Instantaneous parallel manipulators can be used as micro-motion par-
allel manipulators if necessary. As reviewed above, the classical Grübler or
Kutzbach mobility criterion, which is based solely on topology, fails to pro-
vide the correct mobility in many instances. Thus, the mobility obtained by
Equation 3.1 is usually instantaneous.

3.4 REPRESENTATIONS OF KINEMATIC STRUCTURES

The kinematic structure of a mechanism or a parallel manipulator con-
tains the essential information about which links are connected to which oth-
ers links and type of joints. The kinematic structure can be represented in
different ways. Basically, a mechanism or a parallel manipulator can be il-
lustrated by a functional, structural and graph representation. Table 5 shows
these three representations of parallel manipulators.

Functional schematic representation refers to the most familiar cross-
sectional drawing of a mechanism representing physical embodiments. Shafts,
gears, and other mechanical elements are drawn as such respecting the geo-
metric relations defined by the relative positions of joint axes.

Structural representation is a more coarse representation, each link of
a mechanism is denoted by a polygon whose vertices representthe joints.
Specifically, a binary link is represented by a line with two end vertices, a
ternary link is represented by a cross-hatched triangle, a quaternary link is
represented by a cross-hatched quadrilateral, and so on.

Graph representation is an abstract representation, generally used in
the initial phases of mechanisms design. A structural graphis a network of
vertices or nodes connected by edges or arcs without geometric relations.
Since a kinematic chain is defined by an assembly of links and joints, it can
be represented in a more abstract form by a graph. In a graph representation,
the vertices denote links and the edges denote joints of a mechanism.



41

Table 5 – Functional, structural and graph representationsof mechanisms and
parallel manipulators.

Functional Structural Graph
Epicyclic gear train:λ = 2.

1
2

4

5

6

3

1

2
4

5

63

1

6

4

2

3

5

Watt engine:λ = 3.

1

1

1

6

4

2
3

5

1 6

4

2

3 5

1 6

4

2

3 5

RCCC spatial four-bar mechanism:λ = 6.

R

C

C

C

1

6

4

2

3

7

5

1

6

4

2

3

7

5

Stewart platform:λ = 6.
Moving
platform

Base
platform

1

7
8

3

5

6

4
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2

9
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1718
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26
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Example 7. Consider the mechanisms and parallel manipulators presented
in Table 5. Davies (2006) showed that any gear system can be represented
by λ = 2, i.e. a 2-system. Thus, applying the Equation 3.1 in the epicyclic
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gear train we have mobility M= λ (n− j − 1)+ j = 2(6− 9− 1)+ 9 = 1.
The classical Watt engine which converts a continuous rotation of link 2 to
a reciprocating and oscillating motion of link 6, it works ina 3-system and
it has mobility M= 1, i.e. by Equation 3.1 M= λ (n− j − 1)+ j = 3(6−
1− 1) + 7 = 1. The RCCC spatial four-bar mechanism which converts a
continuous rotation of link 2 to a reciprocating and oscillating motion of link
4, it works in a 6-system and it has mobility M= 1, i.e. by Equation 3.2
M = λ (n− j − 1) +∑ j

i=1 fi = 6(4− 4− 1) + 7 = 1. The classical Stewart
platform works in a 6-system and it has mobility M= 6 (see Example 6).

3.4.1 From kinematic structures to graphs

We will develop a systematic procedure for enumeration of kinematic
structures based on group and graph theory tools, therefore, it is important to
show how to convert kinematic structures to graphs and vice versa.

Table 5 shows the graph representation of kinematic structures. As
we can see, given a kinematic structure is always possible torepresent it in
form of a graph where the links are represented by vertices and joints are
represented by edges.

The following procedure permit us to convert a kinematic structures to
a graph.

• Identify fi -DoF joints.

• Replacefi -DoF joints by f 1-DoF joints.

• Represent links by vertices and 1-DoF joints by edges.

In the example below, we apply these three steps to representthe classical
Stewart platform to a graph.

Example 8. Figure 18 shows the steps of representation from kinematic struc-
ture to graph. Figure 18(a) shows the Stewart platform. First, we iden-
tify the fi-DoF joints as indicated in Figure 18(b): we have six prismatic
joints, i.e. f1 = 6, six universal joints, i.e. f2 = 6 and six spherical joints,
i.e. f3 = 6. Second, we replace fi -DoF joints by f 1-DoF joints as indicated
in Figure 18(c) and, third, we represent links by vertices and 1-DoF joints by
edges and we have the graph representation as shown in Figure18(d).
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(c) Kinematic chain.
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(d) Graph Representation.

Figure 18 – From Stewart platform to graph.

3.4.2 From graphs to kinematic structures

The procedure to obtain kinematic structures from graphs isinverse of
the procedure to convert kinematic structures to graphs. Inthe enumeration of
kinematic structures via graphs, several graphs are enumerated and, we need
to develop kinematic structures from these graphs.

The following procedure permit us to develop all kinematic structures
from a graph.

• Identify the number of edges by leg, bek these number. Each edge
correspond to 1-DoF joint. Thus, each leg correspond to ak-edge or a
k-DoF.

• Make all combinations offi -DoF joints, i = 1,2,3, up to complete
serial-legs withk-DoF.

• Replace the graph-legs to ak-DoF serial-legs.

• Repeat the item above for all possiblek-DoF serial-legs.
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In the example below we apply these four steps to develop new kinematic
structures from a graph.

Example 9. Figure 19 shows a graph of a parallel manipulator which works
in a 6-system, i.e.λ = 6, and it has mobility M= 6. First, we built the
kinematic chain identifying the number of edges by leg, replacing by joints,
and the number of vertices, replacing by links. In this case,we have six legs
with k= 6 edges, i.e. we have legs with 6-DoF in the kinematic chain shown
in Figure 19(b). Figure 19(c) shows some of the possible combinations of
fi -DoF joints, i= 1,2,3, to form serial-legs with 6-DoF. Figure 19(d) shows
the replacement of graph-legs to serial-legs to obtain parallel manipulators.

We can apply this procedure to enumerate all kinematic structures
from a set of graphs.

3.5 ISOMORPHIC KINEMATIC STRUCTURES

Isomorphisms avoidance is a recurrent problem in mechanisms and
machines science. A major problem in the study of kinematic structures is
that of detecting a possible isomorphism (structural equivalence) between two
given kinematic chains, mechanisms and parallel manipulators.

Two kinematic chains are said to be isomorphic if they share the same
topological structure. In terms of graphs, there are an one-to-one corre-
spondence between their vertices and edges that preserve the incidence. If
there is not such correspondence the two kinematic chains are said to be non-
isomorphic.

For example, Figure 20 shows two eight-link kinematic chains which
are apparently dissimilar but are isomorphic to each other.In this example,
the correspondence between the links is given by 1⇔ 6, 2⇔ 1, 3⇔ 5, 4⇔ 2,
5⇔ 4, 6⇔ 3, 7⇔ 7, 8⇔ 8.

Earlier studies dealing with structural synthesis utilized visual inspec-
tion for solving this problem. Since diagrams of kinematic chains can be
drawn in different ways, visual detection of isomorphisms is not always easy
(see Figure 20). In view of these difficulties several attempts have been made
in literature to develop reliable and computationally efficient tests for isomor-
phisms.
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(a) Graph toλ = 6.
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(b) Kinematic chain toλ = 6.
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Figure 19 – From graph to parallel manipulators.

3.5.1 Elimination of isomorphisms

Uicker and Raicu (1975) suggested that the characteristic polynomial
could be used to test for isomorphisms. However, if two kinematic chains are
isomorphic, it is necessary, but not sufficient, that their characteristic poly-
nomials are identical as there are counter-examples where this method fails
(TISCHLER et al., 1995a; MRUTHYUNJAYA, 2003).
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Figure 20 – Isomorphism between two kinematic chains (MRUTHYUN-
JAYA, 2003).

Agrawal and Rao (1987) suggested a method of identification called
the optimum code. The method involves a technique for labeling the links
of a kinematic chain such that a binary string obtained by concatenating the
upper triangular elements of the adjacency matrix row by row, excluding the
diagonal elements, is maximized. This method is called the MAX code. We
can also search for a labeling of the chain that minimizes thebinary string of
the upper triangular elements, called the MIN code. There isa need to develop
a more efficient heuristic algorithms for determination of the optimum code
(TSAI, 2001; MRUTHYUNJAYA, 2003).

Rao and Raju (1991) present a method for detecting isomorphisms
based on Hamming numbers of the adjacency matrix. Although no counter-
examples are known, when the algorithm was applied to the detection of iso-
morphisms among the number of inversions of the planar,M = 1, ten links,
some non-isomorphic inversions were omitted (TISCHLER et al., 1995a).

Siek et al. (2002) present a test of isomorphisms detection whose
worst-case time complexity isO(|V|!), where|V| is the number of vertices.

The McKay algorithm (MCKAY, 1998, 2009b, 2007) is, to the best
of the authors’ knowledge, considered the fastest graph isomorphisms al-
gorithm available today, it is exponential timeO(e|V|) (JAIN; WYSOTZKI,
2005; FOGGIA et al., 2001; MIYAZAKI, 1997).

Köbler et al. (1993) have examined the structural complexity of the
graph isomorphisms problem and state that there is strong evidence to sug-
gest that no efficient algorithms exist for this problem, i.e. the problem of
isomorphisms is NP-hard1.

1A problem is NP-hard if an algorithm for solving it can be translated into one for solving
any NP-problem (nondeterministic polynomial time). NP-hard therefore means “at least as hard
as any NP-problem”, although it might, in fact, be harder (WEISSTEIN, 2009)
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3.6 BARRANOV TRUSSES AND ASSUR GROUPS

The Barranov truss has a close relationship with Assur groups. Assur
groups are kinematic chains in which some links contain freeor unpaired
elements such that when the group is connected to the frame through all its
free elements it becomes a structure with zero mobility (TISCHLER et al.,
1995a; MRUTHYUNJAYA, 2003). Barranov truss is a rigid structure which
is formed when a link connects to all the outside pairs of an Assur group. On
the other hand, removing any link of a Barranov truss, an Assur group will be
obtained (HAN et al., 2000).

Figure 21 shows some basic Assur groups. Figure 22 shows the Barra-
nov trusses originated from Assur groups in Figure 21. Three-link Barranov
truss shown in Figure 22(a) was originated connecting all free links of Assur
group shown in Figure 21(a) in a single link, five-link Barranov truss shown
in Figure 22(b) was originated connecting all free links of Assur group shown
in Figure 21(b) in a single link, and so on.

(a) (b) (c)

Figure 21 – Some basic Assur groups.

32

1

(a) (b) (c)

Figure 22 – Barranov trusses originated from Assur groups shown in Fig-
ure 21.
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3.7 IMPROPER KINEMATIC STRUCTURES

An improper kinematic chain is a kinematic chain withM > 0, where
at least one biconnected subchain has mobilityM′ ≤ 0. If the subchain has
mobility M = 0, them the kinematic chain has a Barranov truss as subchain.

Let the planar kinematic chains shown in Figure 23(a), the mobility
is M = 1 but, the subchain formed by links 1-2-3-4-5-6-7-8-9, has mobility
M′ = 0 and its links act as a Barranov truss. Generally, improper chains are of
no interest in pure kinematic analysis and should be discarded. Figure 23(b)
shows the elimination of Barranov truss resulting in a kinematic chain more
simple.
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(a) Twelve-link kine-
matic chain.
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(b) Elimination of Barranov truss.

Figure 23 – Improper planar kinematic chain withM = 1 because it contains
a subchain (1-2-3-4-5-6-7-8-9) withM′ = 0.

3.8 CONCLUSIONS

This chapter reviewed the main concepts used in this thesis,i.e. mo-
bility criterion, kinematic chain, mechanisms, parallel manipulators, isomor-
phisms, improper chains and Barranov trusses.

In this thesis we will develop a systematic procedure for enumeration
of kinematic structures based on group and graph theory tools, therefore, we
will describe a procedure to convert kinematic structures into graphs and vice
versa. The representation of kinematic chains by graphs is well known in the
mechanisms and machines theory.



49

4 ENUMERATION AND ANALYSIS OF KINEMATIC
STRUCTURES: A BIBLIOGRAPHY REVIEW

This chapter presents a bibliography review of enumerationof kine-
matic structures methods and criteria to analysis these kinematic structures.
First, we review the main contributions to the enumeration of kinematic struc-
tures, i.e. kinematic chains, mechanisms and parallel manipulators. Second,
we review the analysis criteria found in the literature to classify the kinematic
structures enumerated.

4.1 ENUMERATION OF KINEMATIC STRUCTURES

4.1.1 Enumeration of kinematic chains

The enumeration of kinematic chains consists of the generation of a
complete list of kinematic chains with a determined mobility without isomor-
phisms. A significant and unsolved problem in the enumeration of kinematic
chains is the precise elimination of all isomorphisms and improper chains. In
early stage of design, it is preferable the generation of duplicate (isomorphic)
chains to the omission of a potentially useful kinematic chain (TISCHLER et
al., 1995a).

It is important to remember that a kinematic chain can be uniquely
represented by the graph whose vertices correspond to linksand whose edges
correspond to joints of the chain. Figure 24 shows this correspondence,
Figure 24(a) shows the Stephenson kinematic chain with labeled links and
Figure 24(b) shows the corresponding graph (DOBRJANSKYJ; FREUDEN-
STEIN, 1967). In graph theory terms, the enumeration of kinematic chains

1

6

4

2

3

5

(a) Stephenson kinematic
chain.

4

6

3

2 1

5

(b) Graph representation.

Figure 24 – Correspondence between graphs and kinematic chains.
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corresponds to the enumeration of graphs satisfying the general mobility cri-
terion (see Equation 3.1 on page 37) and having given a numberof vertices
and edges. However, the problem of graphs enumeration that represent kine-
matic chains is a NP-Hard problem because all methods of graphs enumer-
ation generate a great amount of isomorphisms which must be eliminated
without eliminating any graph (kinematic chain) with useful potential for the
accomplishment of task.

4.1.1.1 Link assortments

The first common step in enumeration of kinematic chains is the deter-
mination of the possible assortments of binary, ternary, quaternary, etc. links
that can exist in a desired kinematic chain. These are given by the solutions
of the following equations:

n= n2+n3+n4+ · · · (4.1)

2 j = 2n2+3n3+4n4+ · · · (4.2)

whereni is the number of links withi connections each,n is the number of
links and j is the number 1-DoF joints.

The subsequent step is the formation of distinct structuralpatterns in
which polygonal links (non-binary) can be connected together. To add the
available binary links to the polygonal link patterns in allpossible ways to
produce closed-loop kinematic chains and finally discarding improper chains
and isomorphic kinematic chains to produce the set of all distinct kinematic
chains that meet the mobility criterion (see Equation 3.1 onpage 37).

For the purpose of classification, each link assortment is called apar-
tition. Algorithms for finding all the partitions are well documented in lit-
erature (JAMES; RIHA, 1976). Table 6 shows the partitions for construct-
ing ten-bar kinematic chains withλ = 3 (not necessarily planar motion) and
M = 3, where number 2 represents binary links, 3 ternary links, and so on.

4.1.1.2 Contribution of Franke

The Franke’s notation is a graphical simplification of the representa-
tion of kinematic chains (FRANKE, 1958; TISCHLER et al., 1995a). In the
Franke’s notation, each polygonal link is represented by one circle with a la-
beln inside that corresponds to number of connections of the linkand binary
links are represented by lines. Figure 25(a) shows one 12-links kinematic
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Table 6 – Partitions of the kinematic chains with ten links, with λ = 3 and
M = 3.

Partitions Classifications of links
Partition 1 3 3 3 3 2 2 2 2 2 2
Partition 2 4 3 3 2 2 2 2 2 2 2
Partition 3 4 4 2 2 2 2 2 2 2 2
Partition 4 5 3 2 2 2 2 2 2 2 2
Partition 5 6 2 2 2 2 2 2 2 2 2

chain and Figure 25(b) shows the corresponding Franke’s notation.

(a)

3 3

4 6

1 11

1

2
2

0

0

(b)

Figure 25 – Franke’s notation of a 12-links kinematic chain.

In the enumeration procedure based on Franke’s notation, wefirst con-
sider all the possible mappings of the polygonal links (non-binary) for each
possible partition. For each partition, each circle is connected by lines in all
possible ways, being the incident line number in the circle equal to label of
it. Each line receives a numberk ≥ 0, k = 0 if no binary link exists between
two polygonals (DAVIES; CROSSLEY, 1966).

Care must be taken to guarantee that improper kinematic chains con-
taining immobile sub-chains are not produced. A disadvantage of this method
is that it generates a great number of isomorphisms which must be eliminated.

4.1.1.3 Contribution of Assur

Another approach for enumeration of kinematic chains is dueto Assur
(TISCHLER et al., 1995a; MRUTHYUNJAYA, 2003). He introduced the
concept of fundamental groups, later called Assur groups. Assur groups are
kinematic chains in which some links contain free or unpaired elements such
that when the group is connected to the frame through all its free elements it
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becomes a structure with zero mobility.
Assur also proposed that kinematic chains of greater complexity (i.e.

with greater number of links) could be built up by the sequential addition of
these Assur groups to simpler kinematic chains (i.e. with fewer links). The
basis for this idea lies in the fact that addition of an Assur’s group to a link
or links of an existing kinematic chain do not modify the mobility of the
original kinematic chain. The method is based on visual inspection and does
not require determination of partitions. Improper kinematic chains do not
arise if the initial simpler kinematic chains are free from immobile sub-chains
and if the free elements of an Assur’s group are not all added to a single link.
Figure 26 shows the addition of an Assur’s group to a 4-link kinematic chain.

4-link chain

4-link Assur group

Resulting 8-link chains

Figure 26 – Aggregation of the Assur’s group to 4-link kinematic chain.

However, the method produces a large number of isomorphism.Also,
it is necessary to have available atlases of chains with mobility M and number
of links less thatn, as well as complete atlases of all Assur groups with(n−
M−1) links (MRUTHYUNJAYA, 2003).

4.1.1.4 Contribution of Farrell

Simoni and Martins (2007), Simoni (2008) implemented a modified
version of the Farrell’s method for enumeration of kinematic chains avoid-
ing to enumerate the fractionated kinematic chains. Therefore, the Farrell’s
method will be described here with more detail and our methodwill be de-
scribed in Section 4.1.1.5. The Farrell’s method imposes a tree structure in
kinematic chains generation process and is summarized in the following steps
(FARRELL, 1977; TISCHLER et al., 1995a):
Step 1: Each link in the partition is assigned by a numerical label according
to its degree. One of the links with the highest degree is given the number
”1”, while the link with the lowest degree is given the highest number. Two
links cannot be assigned by the same number. For example, thePartition 1
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in Table 6 has four ternary links, which we now labels 1, 2, 3, and 4, and
six binary links we labels 5, 6, 7, 8, 9, and 10. At this stage all links are
unconnected. See Figure 27.
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(2,3,4)

Partition 1 3 3 3 3 2 2 2 2 2 2

Figure 27 – Example Farrell’s method: possible connectionsfor link 1.

Step 2: The link with the lowest number (i.e. 1) is selected and the remaining
links, {2, 3, ... , 10} are grouped so that connecting link 1 to any member of
the group would result in an identical, partially connected, form. Here, two
distinct groups materialize, namely a group of ternary links {2, 3, 4}, and a
group of binary links{5, 6, 7, 8, 9, 10}. Connecting link 1 to any member
in the group{2, 3, 4} would result in two connected ternary links, and con-
necting link 1 to any member of{5, 6, 7, 8, 9, 10} would result a ternary link
connected to a binary link.
Step 3: The number of connectionsc needed to make the link with the lowest
number fully connected is determined. In this casec = 3, because link 1 is
ternary and no connections have yet been made. All the different ways of
selectingc= 3 links to connect to link 1 from the groups of Step 2 are found.
These are; three ternary links{2, 3, 4}, two ternary links and one binary link
{2, 3, 5}, one ternary link and two binary links{2, 5, 6}, and three binary
links {5, 6, 7}. The partial forms which result from each of these selections
are shown in Figure 27. In each case the lowest numbered link of each group
are selected first. Each of the four partial forms representsa branch on the
tree.
Step 4: Each of the branches in Step 3 are selected in turn and any links
which are fully connected are ignored; Steps 2, 3 and 4 are repeated for the
next lowest numbered link which is not fully connected. In this case the low-
est numbered link will be link 2. Steps 2, 3 and 4 are repeated until all other
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links are fully connected or it is impossible to connect the remaining links.
When either of these two situations arises the algorithm back-tracks and con-
tinues with the next unexplored branch.
Step 5: When no unexplored branch remains the next partition is selected,
and all above steps are repeated until no further partitionsremain.
Step 6: Elimination of improper kinematic chains and isomorphisms and fi-
nality list the generated kinematic chains.

One disadvantage of the method is that it generates many isomor-
phisms which must be eliminated and the elimination requires a great compu-
tational effort. Figures 28 and 29 show the exploration of the branch 2 from
the link 1.
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Figure 28 – Example Farrell’s method: exploration of the branch 2 from the
link 1.

4.1.1.5 Contribution of Simoni and Martins

Simoni and Martins (2007), Simoni (2008) presented a modification
of Farrell’s method in order to avoid the generation of fractionated kine-
matic chains. We notice that, in majority of the applications, the fraction-
ated kinematic chains are generated without necessity. We also notice that
some methods enumerate fractionated kinematic chains (LEE; YOON, 1994;
SUNKARI; SCHMIDT, 2006; TUTTLE, 1996) while others do not (HWANG;
HWANG, 1991; MRUTHYUNJAYA, 1984c, 1984b, 1984a; TISCHLER et
al., 1995a; SIMONI et al., 2009).
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Figure 29 – Example Farrell’s method: continuation of exploration of the
branch 2.

(a) (b) (c)

Figure 30 – Fractionation in kinematic chains: (a) Body-fractionation. (b)
Joint-fractionation. (c) Fractionation into hybrid chains.

A kinematic chain is classified as fractionated if the elimination of a
single element of the chain (link or joint) divides the kinematic chain into
two disconnected kinematic chains. Otherwise it is non-fractionated (TIS-
CHLER et al., 1995a). A body-fractionated kinematic chain contains a link
which divides the kinematic chain into two closed, independent, kinematic
chains, see Figure 30(a). A joint-fractionated kinematic chain contains a
joint whose re-motion (or disconnection) divides the kinematic chain into
two closed sub-chains, see Figure 30(b). Figure 30(c) showsa kinematic
chain with more complicated forms of fractionation can occur, including not
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only combinations of joint- and body-fractionation, but also fractionation into
hybrid chains.

The method was implemented in C++ using graphs as data structure.
The method imposes a tree structure in generation process similar to the Far-
rell’s method, see Figure 31. The input data of the algorithmis the number of
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Figure 31 – Structure of proposed method in tree structure implemented using
algorithms of the Boost Graph Library (SIEK et al., 2002).

vertices and the degree of each vertex. The vertices are orderly decreasing of
degree and labeled with gradual number. The graph of root of tree is formed
by a set of vertices labeled. Combinations of degrees of vertices are made and
edges are connected in accordance with the label of each vertex. The process
of adding edges is repeated to complete the degree of all the vertices.

In generation process, if a graph has a connected sub-graph with the
degrees of the vertices complete except one of them, such graph do not gener-
ate more children because in this case the children will originate fractionated
kinematic chains:

• if the sub-graph has only one vertex with degree 1 free, its children lead
to body-fractionation as shown in Figure 32(a);

• if the sub-graph has only one vertex with degree higher than 1free, its
children lead to joint-fractionation as shown in Figure 32(b).

Some fractionated chains are generated in leaves of the tree, in this
case we use the test of biconnectivity (time complexity is polynomial) of the
Boost Graph Library (SIEK et al., 2002) to exclude them . Thuswe avoid
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(a) Avoiding generate body-
fractionation.
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(b) Avoiding generate joint-
fractionation.

Figure 32 – Eliminated graph avoiding the generation of fractionated kine-
matic chains.

the generation of graphs that originate fractionated kinematic chains. In the
graphs of leaves of tree we run the isomorphisms test of BoostGraph Library
whose worst-case time complexity isO(|V|!), where|V| is the number of
vertices.

More details and the algorithm of the modification of Farrell’s method
consult Simoni and Martins (2007) and Simoni (2008).

4.1.1.6 Contribution of Sunkari and Schmidt

Recently, Sunkari and Schmidt (2006) presented a method forenumer-
ation of kinematic chains based on the group theory techniques. They uses
the McKay’s method (MCKAY, 1998, 2009b) for generation of anisomor-
phism class representative in combination with an efficientimproper testing
algorithms. According to the authors of method, the algorithm is computa-
tionally efficient and it generates 318,162 planar kinematic chains whit 14
link andM = 1 in 37.28s on Pentium III 1.7GHz with 512MB RAM. The au-
thors claims that the computational speed at which the kinematic chains are
generated depend on McKay-type algorithm that greatly minimize the explicit
isomorphism detection by using group theory techniques.

4.1.1.7 Contribution of Simoni et al.

Simoni (2008) and Simoni et al. (2009) adapt the graph generator of
McKay (2009b, 1998), freely distributed together with the packagegtools, to
use the degeneracy test that Martins and Carboni (2007) use in the algorithm
to calculate the connectivity and variety of kinematic chains.
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The degeneracy test considered by Martins and Carboni (2007) iden-
tifies improper kinematic chains that operate in any screw system, by individ-
ualizing and calculating the mobility of all the sub-chains. Using the graph
generator of McKay together with the improper kinematic chains test of Mar-
tins and Carboni (2007), we validated the kinematic chains generation method
considered in Simoni and Martins (2007) and enumerated non-fractionated
kinematic chains with mobility 1≤ M ≤ 6 for several screw systems.

More details and the algorithm of the modification of Farrell’s method
consult Simoni (2008) and Simoni et al. (2009).

4.1.1.8 Contribution of Martins et al.

Simoni (2008) and Martins et al. (2010) present a method thatgen-
erates exclusively fractionated kinematic chains, i.e. kinematic chains with
body fractionation, joint fractionation, body and joint fractionation or frac-
tionation into hybrid kinematic chains. The method is similar to the Assur
method (see Section 4.1.1.3), in the sense that, kinematic chains with greater
complexity (i.e. with a greater number of links) are generated by the aggrega-
tion of simpler kinematic chains (i.e. with fewer links). The advantage of the
method is that degenerate kinematic chains are not enumerated if the initial
simpler kinematic chains are free from immobile subchains.The number of
isomorphisms is drastically reduced by applying the symmetry concept, in-
troduced in Section 2.3, to each kinematic chain for subsequent connections.

Method description

The method consists of theaggregationof simpler kinematic chains
to form kinematic chains with greater complexity. This aggregation consists
of “welding” links of two kinematic chains (one of each kinematic chain), as
shown in Figure 33(a), to form kinematic chains with body fractionation or
“the introduction of one joint” between two bodies to form kinematic chains
with joint fractionation as shown in Figure 33(b).

A serial kinematic chain can also be introduced between the bodies
of two simpler kinematic chains forming fractionation intohybrid kinematic
chains as shown in Figure 34.

Isomorphism avoidance

To avoid the generation of isomorphic kinematic chains, we need to
avoid “welding” or “introduction of one joint” in symmetrical links of a kine-
matic chain. Thus, we consider “welding” or “introduction of one joint” only
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Chain A

Chain B

body

(a) Welding two links to generate a
body-fractionated kinematic chain.

Chain A

Chain B

joint

(b) Introduction of one joint be-
tween two links to generate joint-
fractionated kinematic chain.

Figure 33 – Aggregation of kinematic chains generating kinematic chains
with body- or joint fractionation.

Chain A

Chain B

serial chain

Figure 34 – Aggregation of kinematic chains generating fractionation into
hybrid kinematic chains.

in links representing different inversions of the kinematic chain. For example,
when we weld the serial kinematic chain shown in Figure 35 to all links of
a Stephenson kinematic chain, we generate several isomorphic fractionated
kinematic chains as shown in Figure 36.

1

6

4

2

3

5 +
7

8
9

Figure 35 – Aggregation by “welding” of a serial kinematic chain and a
Stephenson kinematic chain.

Considering the symmetries of the Stephenson kinematic chain, i.e. kine-
matic inversions or mechanisms that the Stephenson kinematic chain can as-
sume, which are known as Stephenson I (fix link 6), StephensonII (fix link 2)
and Stephenson III (fix link 1), we avoid the generation of isomorphic kine-
matic chains when we weld a link of a serial kinematic chain toa link of a
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Figure 36 – List of all possible aggregations of a serial kinematic chain to a
Stephenson kinematic chain. Note the generation of isomorphic fractionated
kinematic chains.

Stephenson kinematic chain, as shown in Figure 37. This simple example
shows that the identification of symmetries of the kinematicchains reduces
drastically (and sometimes eliminates) the number of isomorphisms on the
output list.

Using this method Martins et al. (2010) concluded that the discrepan-
cies reported in the literature were related to fractionation in kinematic chains.
More details and examples of the generation of fractionatedkinematic chains
technique consult Simoni (2008) and Martins et al. (2010).

4.1.1.9 Other contributions

Tischler et al. (1995a) proposed an improvement to the Farrell method,
called the Melbourne method, with the objective to reduce the number of iso-
morphisms in output list. The improvement consists of applying a set of four
rules with the objective of reducing the number of isomorphisms on the out-
put list. Melbourne’s method was applied to enumeration of kinematic chains
suitable for application as robot hands (TISCHLER et al., 1995b). Mruthyun-
jaya (1979) presented a method based on the transformation of binary kine-
matic chains for the structural synthesis of simple- and multiple-jointed kine-
matic chains with positive, zero or negative freedom. Davies and Crossley
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Figure 37 – List of aggregations of a serial kinematic chain in the Stephenson
kinematic chain avoiding repeating symmetries. In this case, the identification
of symmetries eliminates the generation of isomorphic fractionated kinematic
chains.

(1966) presented a method based on Franke’s notation. Tuttle and coworkers
(TUTTLE, 1996; TUTTLE et al., 1989a, 1989b) enumerated the kinematic
chains systematically which reduced the need for isomorphism testing. The
theory of symmetry groups is used successfully by Tuttle to eliminate isomor-
phic entities in the generation of bases and kinematic chains.

4.1.2 Enumeration of mechanisms

Agreement with IFToMM a mechanism is a kinematic chain with one
of its components (links) taken as a frame (IONESCU, 2003). The prob-
lem of define all distinct choices of bases of a kinematic chain, i.e. define
the possible mechanism to a given kinematic chain is known inmechanisms
and machines literature as enumeration of mechanisms, enumeration of inver-
sions, specialization, and so on (MRUTHYUNJAYA, 2003; TUTTLE, 1996;
JAMES; RIHA, 1976; WALDRON; KINZEL, 1999; YAN; HWANG, 1991;
YAN, 1998).

Figure 38(a) shows the Stephenson kinematic chain which originate
three mechanisms with different characteristics of the movement relative to
the base fixing one of the links of the kinematic chain. Figures 38(b), 38(c)
and 38(d) shows the classical mechanisms originated fixing different links of
the kinematic chain, i.e. Stephenson I, Stephenson II and Stephenson III.
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(a) Stephenson kinematic chain. (b) Stephenson I.

(c) Stephenson II. (d) Stephenson III.

Figure 38 – Stephenson kinematic chain and the three classical mechanisms
originated: Stephenson I, Stephenson II and Stephenson III.

4.1.2.1 Contribution of Tuttle et al.

Tuttle and coworkers (TUTTLE, 1996; TUTTLE et al., 1989a, 1989b)
presented a method based on the theory of finite symmetry groups to enumer-
ation of kinematic chains minimizing the use of isomorphismtesting, as part
of their method they generated information on subgroup structure of symme-
try groups of binary and polygonal links and utilized it for deriving distinct
inversions of chains. They present a table of mechanisms with up to 14 links
and possessing up to three degrees of freedom.

4.1.2.2 Contribution of Yan et al.

Yan and Hwang (1991) and Yan (1998) presented a process called
specialization which consists of assigning specific types of links and joints in
the available atlas of kinematic chains, subject to certaindesign requirements
and constraints. First, they apply the permutation group todefine the bases of
a mechanism. Second, they apply the Polya’s theory to count all specialized
mechanisms with a determined number of joints (prismatic, rotative, cam,
etc.) and a determined type of links (spring, rigid, ground,etc) (YAN, 1998).
Simoni (2008) and Simoni et al. (2009) present a method similar to that of
Yan (1998) to define the bases of a mechanism, this method willbe reviewed
in the next section.



63

4.1.2.3 Contribution of Simoni et al.

Simoni (2008) presented a method for enumeration of mechanisms
based on graph and group theory techniques, however, Simoni(2008) did not
presented a detailed description of the method. Simoni (2008) only used the
nauty to identify the orbits of the graph represents a kinematic chain. Af-
ter that work, Simoni et al. (2009) presented an improvementof the method
applying the concept of symmetry presented in Section 2.3. This improve-
ment using the concepts of symmetry, actions and orbits of the automorphism
group of the associated graph will be described in Section 5.3 and it is an
original contribution of this thesis.

4.1.2.4 Other contributions

Rao and Rao (1996) represent an inversion of a chain by a joint-joint
symmetric distance matrix in which each entry is the shortest distance, in
terms of number of links, by passing the frame link, between the correspond-
ing joints. A numerical scheme comprising of the row-sums asnumerators
and the sum total of all row-sums as the common denominator isclaimed to
be successful in distinguishing inversions of chains with 6, 8 and 10 links
(MRUTHYUNJAYA, 2003). Vijayananda (1994) successfully applied the
representation set of links to distinguish mechanisms derived from a chain
and carried out enumeration of mechanisms with up to 13 linksand possess-
ing up to seven degrees of freedom (MRUTHYUNJAYA, 2003).

4.1.3 Enumeration of parallel manipulators

Agreement with IFToMM a mechanism is a parallel manipulatoris a
kinematic chain with one of its components (links) taken as frame and the
other taken as end-effector (IONESCU, 2003).

4.1.3.1 Contribution of Tsai

Tsai (2001) presents a method of enumeration of parallel manipulators
with a single platform distributing the number of binary links between the
number of legs of the parallel manipulator. Tsai (2001) usesfour equations
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to characterize the structural topology of parallel manipulators:

M = λ (n− j −1)+
j

∑
i=1

fi (4.3)

m = M (4.4)
m

∑
k=1

Ck =
j

∑
j=1

fi (4.5)

m

∑
k=1

Ck = (λ +1)M−λ (4.6)

λ ≥ Ck ≥ M (4.7)

whereM is the mobility (see Equation 3.1 on page 37),m is the number of
limbs made up of an open-loop kinematic chain andCk is the connectivity
of a limb and it is defined as the number of degrees of freedom associated
with all the joints, including the terminal joints, in that limb. Substituting
Equation 4.4 and 4.5 into Equation 4.3, we obtain the Equation 4.6. To en-
sure proper mobility and controllability of the moving platform, Tsai uses
Equation 4.7, i.e. the connectivity of each limb should not be greater than the
motion parameter or be less than the number of degrees of freedom of the
moving platform.

Example 10. For spatial manipulators,λ = 6. Thus, Equations 4.6 and 4.7
become∑m

k=1Ck = 7M − 6 and 6 ≥ Ck ≥ M. All feasible limb connectivity
listings are shown in Table 7. After the classification presented in Table 7, the

Table 7 – Classification of Spatial Parallel Manipulators according to Tsai’s
method.

Mobility (M) Total Joint Degrees of
Freedom (∑ j

i=1 fi)
Limb Connectivity List-
ing (C1,C2, . . . ,Cm)

2 8 4, 4
5, 3
6, 2

3 15 5, 5, 5
6, 5, 4
6, 6, 3

4 22 6, 6, 5, 5
6, 6, 6, 4

5 29 6, 6, 6, 6, 5
6 36 6, 6, 6, 6, 6, 6
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method consider all possible combinations of revolute, prismatic, universal
and spherical joints for each limb connectivity listing. For example, the (5,
5, 5) connectivity listing cam be changed by RUU, UPU, RRS, RPS, PSP,
RRRU, PRRU, RRRRR, RRRRP, RPRRP, RRPRP, and so on. More details
of how to convert graphs to kinematic structures consult Sections 3.4.1 and
3.4.2 (pages 42 and 43).

4.1.3.2 Contribution of Alizade and Bayram

Alizade and Bayram (2004) present a method of enumeration ofpar-
allel manipulators with single and multiple platforms, where parallel manip-
ulators are classified according to their platform type(s) and the connections
between them. The method determines simple structural groups for a given
set of synthesis parameters and then a number of required actuators are added
to the group to form the parallel manipulator. For certain synthesis param-
eters, the Alizade and Bayram’s method finds one structure with the desired
number and type of platforms (non-binary links) and number of binary links
(ALIZADE; BAYRAM, 2004). After that, the number of binary links is dis-
tributed between the number of branches and legs originating only one paral-
lel manipulator for the specified parameters.

The procedure can be summarized, step by step, as follows (ALIZADE;
BAYRAM, 2004):

1) Select values for the number of mobile platforms,B, and the total num-
ber of joints on the platforms,jp;

2) The number of different structural groups,G, is given byG= 0.5 jp−
B+1 (the structural groups correspond to partitions discussed in Sec-
tion 4.1.1.1);

3) Select a value for the total number of connections (sum of number of
legs and branches),c, in the interval given by 1+0,5 jp ≤ c≤ 1+ jp−
B;

4) Calculate the number of branches,cb, from jp = cb+ c;

5) Calculate the number of legs,cl , from c= cb+ cl ;

6) Calculate the sum of mobility of all joints in the structural group ft
from ft = λ (c−B) = ∑ j

i=1 fi

7) Place the joints on branches and legs.
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8) Decide on the place to add the actuators. The DoF of the manipulator
is equal to the number of actuators added. Note that one may place the
actuators on legs or branches and also more than one actuatormay be
placed on the same leg or branch.

9) Using the principle of interchangeability of kinematic pairs, replace the
single mobility kinematic pairs with other kinematic pairsas desired.

Example 11. A spatial parallel manipulator with four degrees of freedom
is required, we want to use two triangular platforms (ALIZADE; BAYRAM,
2004).

1) λ = 6, M = 4, B= 2 jp = 6.

2) G= 0.5∗6−2+1= 2, we have only two different structural groups,
i.e. partitions (4 3 3) and (3 3 3).

3,4,5) c= 4 or c= 5:

• For c= 4: cb = 2 and cl = 2;

• For c= 5: cb = 1 and cl = 4.

6) • For c = 4: ft = 6(4− 2) = 12; since we have a total of four
branches and legs, it is convenient to place12/4 = 3 joints on
each leg or branch.

• For c = 5: ft = 6(5− 2) = 18; since we have a total of five
branches and limbs, it is convenient to place three joints oneach
leg or branch and place the remaining three joints on some of the
branches or legs as we like.

7) The placement of joint for c= 4 and c= 5 is given in Figures 39(a)
and 39(c);

8,9) In Figure 39(b), two actuators are placed on branches and two
actuators are placed on legs. In Figure 39(d), all actuatorsare placed
on the legs. Therefore the synthesis is concluded.

4.2 CRITERIA FOR ANALYSIS OF KINEMATIC STRUCTURES

Structural analysis is a field of kinematics that study of thenature of
connection among the members (links and joints) of a mechanism and its
mobility (TSAI, 2001). It is concerned primarily with the fundamental rela-
tionships among the mobility, the number of links, the number of joints, and
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(a) (b)

(c) (d)

Figure 39 – Two parallel manipulators obtained by Alizade’smethod (AL-
IZADE; BAYRAM, 2004).

the type of joints used in a mechanism. The structural analysis deals only
with the general functional characteristics of a mechanismand not with the
physical dimensions of the links.

As we can see in Section 4.1, in general, the number of generated
kinematic structures generated in the enumeration processis great and it is
difficult to evaluate each chain individually. Therefore, it is necessary to de-
velop a set of criteria to evaluate the merit of each chain without eliminating
a chain with possibilities to develop the desired task. For this reason, the con-
cepts of variety, connectivity, degrees-of-control, redundancy and symmetry
can be used to classify kinematic chains according to the constraints required.
They are essential for structural analysis of mechanisms and parallel manip-
ulators.

4.2.1 Mobility

Definition 12 (Mobility) . The number ofdegrees of freedom, or mobility
(M), of a kinematic chain is the number of independent parameters required
to completely specify the configuration of the kinematic chain in space, with
respect to one link chosen as the reference.

The mobility of a kinematic chain, withn links and j single degree of
freedom joints, may be calculated by the general mobility criterion (HUNT,
1978; MRUTHYUNJAYA, 2003) applied to a set ofn links and j single de-
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gree of freedom joints:

M = λ (n− j −1)+ j (4.8)

whereλ is the order of the screw system to which all the joint screws belong.
More details on mobility calculation consult Section 3.3.

Using the graph representation of a kinematic chain (see Figure 24, on
page 49), the general mobility criterion is given by

M = λ (|V|− |E|−1)+ |E| (4.9)

where|V| is the number of graph vertices (i.e. links) and|E| is the number of
graph edges (i.e. joints) (TSAI, 2001; MRUTHYUNJAYA, 2003).

4.2.2 Variety

Variety is an useful property for determining the relative connectivi-
ties within a chain and also for selecting actuated pairs. Variety may also be
used to classify kinematic chains according to the constraints required (TIS-
CHLER et al., 1995b, 2001).

A kinematic chain is of varietyV if it does not contain any loop, or
subset of loops, with a mobility of less thanM−V, but does contain at least
one loop, or subset of loops, which has a mobility ofM−V (TISCHLER et
al., 1995b).

Recently, Martins and Carboni (2007) present a new definition of va-
riety in terms of graphs.

Definition 13 (Variety). Let a kinematic chain of mobility M be represented
by a graph G, the variety of the kinematic chain is:

V = M−min{M(G′
k)∀G′

k ∈ Bs} (4.10)

where Bs is the (finite) set of all possible biconnected subgraphs G′
k of graph

G and M(G′
k) is the mobility of the k biconnected subchain/subgraph.

Classification of kinematic chains by varietyV allows generalizations
to be made about the relative connectivity of links within the kinematic chain,
therefore, if a kinematic chain with varietyV has a mobilityM greater than
the order of screw system that generally prevailsλ , i.e. if M > λ , then any
two links, separated by at leastλ −V joints, have relative connectivityC ≥
λ −V. The variety of kinematic chains also affects the choice of the joint to
be actuated. If the Variety of a kinematic chain withj joints isV = 0, the
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actuated pairs may be selected at random. Figure 40 shows three ten links
planar kinematic chains with varietyV = 2 (Figure 40a),V = 1 (Figure 40b),
V = 0 (Figure 40c).

(a) (b) (c)

Figure 40 – Planar kinematic chains: (a)V = 2, (b)V = 1 and (c)V = 0.

Tischler et al. (2001) showed that the variety can be used to select
those candidate mechanisms best suited to an intended function. An epicyclic
transmission, designed to control the finger-tip of a dextrous robot finger, was
used to demonstrate the technique. Tischler et al. (2001) identified that the
most appropriate kinematic chains to the epicyclic gear train have variety
V = 1. Among the 2271 kinematic chains withλ = 2, M = 3 andν = 5
enumerated in the set required, only 5 (five) have varietyV = 1, and the other
2266 can be discarded as completely unsuitable. This example shows the
potential of the variety to select the the most appropriate kinematic chains.

4.2.3 Connectivity

The connectivityCi j between two linksi and j of a kinematic chain
is the relative mobility between linksi and j. This concept was introduced
by Hunt (1978). The importance of the connectivity and redundancy is em-
phasized by Hunt (1978), Tischler (1995), Belfiore and Benedetto (2000),
Tischler et al. (2001), Liberati and Belfiore (2006).

Different algorithms for connectivity calculations were proposed by
Shoham and Roth (1997), Belfiore and Benedetto (2000), Liberati and Belfiore
(2006). However, all these algorithms presented some fail in connectivity
calculation. An alternative definition of connectivity anda new algorithm ca-
pable of connectivity calculation for every kinematic chain can be found in
Martins and Carboni (2007):

Definition 14 (Connectivity). In a kinematic chain represented by a graph X,
the connectivity between two links i and j is defined in Martins and Carboni
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(2007) as
Ci j = min{D[i, j],M,M′

min,λ} (4.11)

where D[i, j] is distance between vertices i and j of X, M is the mobility of
the kinematic chain considered, M′min is the minimum mobility closed-loop
biconnected subchain of X containing vertices i and j, andλ is the order of
screw system.

Example 12. The connectivity is an important criterion for selecting kine-
matic chains. For a better understanding of the importance of the connec-
tivity consider the kinematic chain shown in Figure 41. Figure 41 represents
a closed-loop kinematic chain with mobility M= 3, but the connectivity be-
tween any two links does not exceed2. From this simple example, and as
already outlined in previous works (SHOHAM; ROTH, 1997; BELFIORE;
BENEDETTO, 2000; LIBERATI; BELFIORE, 2006; CARBONI, 2008), it is
evident that connectivity, not mobility, determines the ability of an output link
to perform a task relative to a frame.

Figure 41 – Planar kinematic chain with maximum connectivity between links
of 2, i.e.Ci j ≤ 2 ∀ i, j (CARBONI, 2008). This kinematic chains will be
eliminated for the connectivity.

4.2.4 Degrees-of-control

Belfiore and Benedetto (2000) introduced the concept of degrees-of-
control. The degrees-of-controlKi j between two linksi and j of a kinematic
chain is the minimum number of independent actuating pairs needed to de-
termine the relative position between the two linksi and j, possibly leaving
some other link-relative position undetermined as whenKi j is less than the
mobility M (BELFIORE; BENEDETTO, 2000). It is an important concept to
structural analysis of kinematic chains.

Recently, Martins and Carboni (2007) present a new definition of degrees-
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of-control in terms of graphs.

Definition 15 (Degrees-of-control). In a kinematic chain represented by a
graph X, the degrees-of-control between two links i and j is

Ki j = min{D[i, j],M
′

min} (4.12)

Based on the definition of degrees-of-control and connectivity, the def-
inition of redundancy will be introduced in next section.

4.2.5 Redundancy

Redundancy is one of the most important parameters in a kinematic
chain together with connectivity and variety (MARTINS; CARBONI, 2007).
The redundancy can be used to prevent collisions in manipulators which op-
erate in confined environment (SIMAS, 2008).

Definition 16 (Redundancy). In a kinematic chain represented by a graph X,
the redundancy between two links i and j is the difference between Ki j and
Ci j

Ri j = Ki j −Ci j . (4.13)

Example 13. Consider the planar kinematic chain with 10 links and 12 joints
and its graph X shown in Figure 42. By Equation 3.1 (page 37) wehave

M = 3(10−12−1)+12= 3

the mobility is equal to three. The variety is zero, i.e.V=0 (see Section 4.2.2).
The adjacency matrix A(X) is given by:
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Figure 42 – Planar kinematic chain and graph representation.
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A(X) =

























1 2 3 4 5 6 7 8 9 10
1 0 0 1 0 1 0 0 0 0 1
2 0 0 0 0 0 0 0 0 1 1
3 1 0 0 0 0 0 0 1 0 0
4 0 0 0 0 0 0 1 0 0 1
5 1 0 0 0 0 1 0 0 0 0
6 0 0 0 0 1 0 1 0 0 0
7 0 0 0 1 0 1 0 1 0 0
8 0 0 1 0 0 0 1 0 1 0
9 0 1 0 0 0 0 0 1 0 0
10 1 1 0 1 0 0 0 0 0 0

























(4.14)

The connectivity matrix C(X) is given by:

C(X) =

























1 2 3 4 5 6 7 8 9 10
1 0 2 1 2 1 2 3 2 3 1
2 2 0 3 2 3 3 3 2 1 1
3 1 3 0 3 2 3 2 1 2 2
4 2 2 3 0 3 2 1 2 3 1
5 1 3 2 3 0 1 2 3 3 2
6 2 3 3 2 1 0 1 2 3 3
7 3 3 2 1 2 1 0 1 2 2
8 2 2 1 2 3 2 1 0 1 3
9 3 1 2 3 3 3 2 1 0 2
10 1 1 2 1 2 3 2 3 2 0

























(4.15)

In this case, the degrees-of-control matrix K(X) is equal to the con-
nectivity matrix C(X), K(X) = C(X), and the redundancy matrix is null,
R(X) = 0.

4.3 CONCLUSIONS

This chapter presented a bibliography review of the enumeration of
kinematic structures methods and the criteria for analysisof kinematic struc-
tures.

First, we presented a bibliography review of the main contributions
to the enumeration of kinematic structures. The main results of enumera-
tion of kinematic chains are found in Tischler (1995), Mruthyunjaya (2003),
Sunkari and Schmidt (2006), Simoni (2008), Simoni et al. (2009). The main
results of enumeration of mechanisms are found in Vijayananda (1994), Tuttle
(1996), Mruthyunjaya (2003), Simoni (2008), Simoni et al. (2009). Simoni
(2008) presents results of enumeration of mechanisms usinggroup and graph
theories, however, the description of the method was not clear and the con-
cepts used in his method can be improved using the definition of symmetry
presented in Section 2.3. Using the concept of symmetry, it is possible to



73

conclude that enumeration of mechanisms are related to symmetries of kine-
matic chains. The description of the enumeration of mechanisms method
using the symmetry concept will be presented in Chapter 5. The main meth-
ods for enumeration of parallel manipulators related with the two engines
(generator and evaluator) in the conceptual design phase ofmechanisms and
parallel manipulators of Tsai’s methodology were reviewed. We noted that,
for some structural parameters, Tsai’s and Alizade’s methods enumerated one
kinematic chain of the parallel manipulator. Then, using combinatorial anal-
ysis, rotative, prismatic, universal and spherical jointsare allocated in the
kinematic chain to form the kinematic structure of the parallel manipulator.
We also note that, Tsai’s method enumerates only parallel manipulators with
open-loop legs. Alizade’s method also enumerates open-loop legs, however,
he introduces more moving platforms. We will introduce a newmethod for
enumeration of all parallel manipulators that a kinematic structure can origi-
nate. Using this approach, it is possible to ensure that all kinematic structure
will be evaluated.

Second, we reviewed the main criteria used to classify the kinematic
structures enumerated. The importance of these criteria are emphasized by
several authors: Hunt (1978), Tischler (1995), Tsai (2001), Mruthyunjaya
(2003), Belfiore and Benedetto (2000), Tischler et al. (2001), Liberati and
Belfiore (2006), Shoham and Roth (1997), Martins and Carboni(2007), Car-
boni (2008), Simas (2008). Applications of these criteria will be considered
in Chapter 6. For the purposes of this thesis, the criteria will be classified into
global and local. In Chapter 6 we prove that local criteria are invariant by
the action of the automorphism group. Therefore, it is possible to reduce the
matricial representation of local criteria and to simplifythe analysis.
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5 CONTRIBUTIONS TO THE ENUMERATION OF KINEMATIC
STRUCTURES

The contribution of this work to the enumeration of kinematic struc-
tures is to develop the enumeration of kinematic chains, mechanisms and
parallel manipulators in a systematic procedure applying integrated tools of
graph theory, group theory and screw theory.

First, we present the systematic procedure which considersthe enu-
meration process into three levels: kinematic chains, mechanisms and par-
allel manipulators. Second, we present the current status of enumeration of
kinematic chains found in the literature and we will compareand discuss the
results of the methods reviewed in Section 4.1 (page 49). Third, we present an
improvement of the method of enumeration of mechanisms presented by Si-
moni (2008) using the concept of symmetry introduce in Section 2.3 (page
26). We present the current status of enumeration of mechanisms found in the
literature and we will compare and discuss these results. Fourth, we present
a new method for enumeration of all parallel manipulators that a kinematic
chain can originate.

This chapter provides original contributions to the enumeration of kine-
matic structures and it is based on the following papers:

• “Mãos Robóticas: Critérios para Sı́ntese Estrutural e Classificação” (SI-
MONI et al., 2007);

• “Criteria for Structural Synthesis and Classification of Mechanisms”
(SIMONI; MARTINS, 2007);

• “Enumeration of Kinematic Chains and Mechanisms” (SIMONI et al.,
2009),

• “Enumeration of Parallel Manipulators” (SIMONI et al., 2008) and

• “Fractionation in planar kinematic chains: Reconciling enumeration
contradictions” (MARTINS et al., 2010).

5.1 SYSTEMATIC PROCEDURE FOR ENUMERATION OF KINEMATIC
STRUCTURES

The enumeration of kinematic structures will be develop into three
levels: kinematic chains, mechanisms and parallel manipulators. Figure 43
shows the structure of the systematic procedure. We will briefly describe
below the three levels of the systematic procedure.
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Figure 43 – Three levels of the systematic procedure for enumeration mecha-
nisms and parallel manipulators. Each level has a description of the attributes
of the kinematic structure and the mathematical tools used in the design pro-
cess.
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5.1.1 Level 1: Enumeration of kinematic chains

The level 1 corresponds to the enumeration of kinematic chains. Enu-
meration of kinematic chains satisfying a set of design specifications is still
an open problem. Three difficulties are common in the enumeration process:
isomorphism (NP-hard), degeneration (NP-hard) and fractionation.

From structural characteristics (number of links, number of joints, mo-
bility, order of screw system) kinematic chains are enumerated. It is important
to remember that a kinematic chain is an assembly of links andjoints. The
attributes of kinematic chains in this level are:

• number of links (n),

• number of 1-DoF joints (j),

• mobility (M) and

• order of screw system (λ ).

The main tools considered in this level are graph theory and screw
theory and the main methods for enumeration of kinematic chains were pre-
sented in Section 4.1 (page 49). There are some discrepancies in the results
found in the literature, the results and these discrepancies will be commented
in Section 5.2.

5.1.2 Level 2: Enumeration of mechanisms

Each kinematic chain originates mechanisms selecting all different
bases. It is important to remember that a mechanism is a kinematic chain
with one of its components (links) taken as a frame (IONESCU,2003). In
terms of graph theory, a mechanism corresponds to a graph with one of its
vertices detached (colored) to represent the fixed link (SIMONI et al., 2008).

The attributes of mechanisms in this level are:

• number of links (n),

• number of 1-DoF joints (j),

• mobility (M),

• order of screw system (λ ) and

• base of the mechanism.
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The tools considered in this level are graph theory, group theory and
screw theory; mainly the concepts of symmetry, actions and orbits of the
automorphism group of non-colored vertex graphs.

In Section 5.3 we will present an improvement of the method ofenu-
meration of mechanisms presented by Simoni (2008) using theconcepts of
symmetry, actions and orbits of the automorphism group of non-colored ver-
tex graphs introduced in Section 2.3 (page 26). We will present the current
status of enumeration of mechanisms found in the literatureand we will com-
pare and discuss these results.

5.1.3 Level 3: Enumeration of parallel manipulators

Each mechanism originates parallel manipulators selecting different
links to be end-effectors. It is important to remember that aparallel manipu-
lator is a kinematic chain with one of its components (links)taken as a frame
and the other taken as an end-effector. In terms of graph theory, a parallel
manipulator with one end-effector corresponds to a graph with two detached
vertices (colored with distinct colors), one to represent the fixed link and an-
other to represent the end-effector (SIMONI et al., 2008).

The attributes of parallel manipulators in this level are:

• number of links (n),

• number of 1-DoF joints (j),

• mobility (M),

• order of screw system (λ )

• base and end-effector of the parallel manipulator.

The tools considered in this level are graph theory, group theory and
screw theory; mainly the concepts of symmetry, actions and orbits of the au-
tomorphism group of colored vertex graphs. We will present anew method
for enumeration of parallel manipulators. The method consists of enumerat-
ing all the possible parallel manipulators with one end-effector that a single
kinematic chain can originate.

Using this systematic procedure we will enumerate all mechanisms
and parallel manipulators that a kinematic chain can originate, without iso-
morphisms. It is important to remember that the isomorphismproblem is
NP-hard.
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5.2 ENUMERATION OF KINEMATIC CHAINS

This section corresponds to level 1 of the systematic procedure for
enumeration of kinematic structures proposed in Section 5.1 and shown in
Figure 43. A review of the main methods for enumeration of kinematic
chains was presented in Section 4.1 (page 49). To enumerate kinematic
chains we can use one of those methods. However, as indicatedin Sec-
tion 4.1, some methods enumerate fractionated kinematic chains while others
do not. Authors in general do not confirm the presence or absence of frac-
tionated kinematic chains in their lists. Sunkari and Schmidt (2006) present
in their Tables 1-4 a series of enumeration contradictions.Tischler et al.
(1995a) deal with the fractionation question in a greater detail. Mruthyun-
jaya (2003) comments that Tuttle and coworkers (TUTTLE, 1996; TUTTLE
et al., 1989a, 1989b) generate only non-fractionated kinematic chains. How-
ever, both papers do not identify explicitly the fractionated kinematic chains
generated nor present numerical results comparing non-fractionated and frac-
tionated kinematic chains. In view of this, we will present the current status
of enumeration of kinematic chains and we will discuss theseresults.

5.2.1 Current status of enumeration of kinematic chains

Tables 8, 9 and 10 present the current status of enumeration of kine-
matic chains. Note that, these tables present just the number of kinematic
chains, as we can see the number is large and it is impracticable to provide
all the drawings of the kinematic chains or their corresponding graphs. To
the best of the authors’ knowledge, the largest number of drawings of the
kinematic chains is the planar case (λ = 3) with mobility M = 3 and number
of loopsν = 3 listed in Tischler et al. (1995a), Mruthyunjaya (1984a) and
Martins et al. (2010).

Table 8 shows the results obtained applying the method proposed by
Martins et al. (2010), Simoni (2008) described in Section 4.1.1.8 for enumer-
ation of fractionated kinematic chains with mobility 1≤ M ≤ 6. We notice
that the table presented by Simoni (2008) has an incorrect result of 440 frac-
tionated kinematic chains for the planar case, i.e.λ = 3, mobility equal three,
i.e. M = 3, and four loops, i.e.ν = 4, the correct result is 460 as shown in
Table 8.

To the best of the authors’ knowledge, the method proposed byMar-
tins et al. (2010) and Simoni (2008) is the unique that enumerate only frac-
tionated kinematic chains. Recently, Martins et al. (2010)conclude that the
discrepancies in the results found in the literature are related with fractiona-
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Table 8 – Current status of enumeration of fractionated kinematic chains ob-
tained by Simoni (2008) andMartins et al. (2010).

λ ν Mobility
1 2 3 4 5 6

2 - 1 2 4 6 9
2 3 - 2 11 31 74 153

4 - 11 67 270 839 2239
2 - 1 2 4 6 9

3 3 - 5 24 63 142 273
4 - 86 460 1559 4222 9920

4
2 - 1 2 4 6 9
3 - 10 41 104 222 416

5
2 - 1 2 4 6 9
3 - 17 69 169 350 634

6
2 - 1 2 4 6 9
3 - 27 102 246 495 882

λ is the order of screw system to which all the joint screws belong.
ν is the number of loops of the kinematic chain.

tion in kinematic chains and they indicate that most of the results are correct
and the difference are the fractionated kinematic chains.

Table 9 shows the results of enumeration of non-fractionated kine-
matic chains. For example, withM = 1, λ = 3 andν = 2 we have2 (two)
kinematic chains, these are the classical Watt and Stephenson kinematic chains.

For non-planar case, i.e.λ = 2,4,5,6, the results are in agreement
with Martins et al. (2010) and Simoni (2008). For planar case, i.e. λ = 3,
the most results are in agreement with those of Sunkari and Schmidt (2006),
Tuttle (1996), Lee and Yoon (1994). We confirm all the results(normal font
style) in Table 9 up to four loops, i.e.ν = 4, others results (italic font style)
presented in Table 9 were obtained from Sunkari and Schmidt (2006) because
they use a technique of enumeration similar to the Martins etal. (2010) and
Simoni (2008) (see Sections 4.1.1.6 and 4.1.1.7).

In the following, we will indicate and comment all the discrepancies
on the results of Table 9 relative to results found in the literature:

• caseM = 1 andν = 6; the result of Tuttle (1996) is 318126 and the
result of Sunkari and Schmidt (2006), presented in Table 9, is 318162.
By the similarity of the numbers we believe that 318126 is a typo.

• caseM = 2 andν = 6; the result of Tuttle (1996) is 1432608 and the re-
sult of Sunkari and Schmidt (2006) and Lee and Yoon (1994), presented
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Table 9 – Current status of enumeration of non-fractionatedkinematic chains.

λ ν Mobility
1 2 3 4 5 6

2 1 2 3 4 6 7
2 3 3 9 20 40 70 121

4 13 49 160 432 1033 2241
2 2 3 5 6 8 10

3 3 16 35 74 126 212 325
4 230 753 1962 4356 8846 16649
5 6856 27496 38547 216291
6 318162 1432730 4805764 13743920
7 19819281

4
2 3 4 6 8 10 12
3 42 93 172 289 451 678

5
2 4 6 8 10 13 15
3 116 225 398 621 939 1339

6
2 5 7 10 12 15 18
3 242 454 749 1146 1661 2327

in Table 9, is 1432730. We believe that the result of Tuttle (1996) is in-
correct because two authors, i.e. Sunkari and Schmidt (2006) and Lee
and Yoon (1994), confirm the result of the Table 9.

• caseM = 3 andν = 4; the result of Simoni (2008) is 1982 and the
correct result is 1962.

• caseM = 3 andν = 6; the result of Tuttle (1996) is 4805382 and the
result of Sunkari and Schmidt (2006), presented in Table 9, is 4805764.

Table 10 gives the results of the enumeration of general kinematic
chains, i.e. fractionated and non-fractionated kinematicchains. The entries
of this table are given by summing the entries of Tables 8 and 9. For instance,
the caseλ = 3, M = 3 andν = 3 is given by 24(F) + 74(NF) = 98(G), and the
caseλ = 6,M = 6 andν = 2 is given by 882(F) + 2327(NF) = 3209(G), where
(F), (NF) and (G) represent, respectively, fractionated, non-fractionated and
general kinematic chains.

For non-planar case, i.e.λ = 2,4,5,6, the results are in agreement with
Martins et al. (2010) and Simoni (2008). For planar case, i.e. λ = 3, the most
results are in agreement with those of Tischler et al. (1995a), Mruthyunjaya
(1984a), Hwang and Hwang (1991), Mruthyunjaya (1984c, 1984b). We con-
firm all the results (normal font style) in Table 10 up to four loops, i.e.ν = 4,
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Table 10 – Current status of enumeration of general kinematic chains.

λ ν Mobility
1 2 3 4 5 6

2 1 3 5 8 12 16
2 3 3 11 31 71 144 274

4 13 60 227 702 1872 4480
2 2 4 7 10 14 19

3 3 16 40 98 189 354 598
4 230 839 2422 5915 13068 26569
5 6862 29704

4
2 3 5 8 12 16 21
3 42 103 213 393 673 1094

5
2 4 7 10 14 19 24
3 116 242 467 790 1289 1973

6
2 5 8 12 16 21 27
3 242 481 851 1392 2156 3209

others planar results (italic font style) presented in Table 10 (caseM = 1,2
andν = 5) were obtained from Hwang and Hwang (1991) and Mruthyunjaya
(2003).

In the following, we will indicate and comment all the discrepancies
on the results of Table 10 relative to results found in the literature:

• caseM = 3 andν = 4; the result of Hwang and Hwang (1991) is 2442
and the result of Simoni (2008), Martins et al. (2010) and Vijayananda
(1994), presented in Table 10, is 2422. By the similarity of the numbers
we believe that 2442 is a typo.

• caseM = 4 andν = 4; the result of Hwang and Hwang (1991) is 5951
and the result of Simoni (2008), Martins et al. (2010) and Vijayananda
(1994), presented in Table 10, is 5915. By the similarity of the numbers
we believe that 5951 is a typo.

The work initiated by Simoni (2008) and complemented by Martins et
al. (2010) solves the contradictions of the results of enumeration of kinematic
chains found in the literature since 1960. Enumeration lists of kinematic
chains are presented in the literature (SUNKARI; SCHMIDT, 2006; SIMONI
et al., 2009; TISCHLER et al., 1995a; TUTTLE, 1996; MRUTHYUNJAYA,
1984a; LEE; YOON, 1994; HWANG; HWANG, 1991; MRUTHYUNJAYA,
1984c, 1984b), but until now the contradictions of the results are not conclu-
sive. Now, with the work of Simoni (2008) and Martins et al. (2010) it is
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possible to affirm without doubt that the methods (TISCHLER et al., 1995a;
MRUTHYUNJAYA, 1984a; HWANG; HWANG, 1991; MRUTHYUNJAYA,
1984c, 1984b) enumerate general kinematic chains (fractionated and non-
fractionated) while other methods, e.g. (SUNKARI; SCHMIDT, 2006; TUT-
TLE, 1996; LEE; YOON, 1994), enumerate only non-fractionated kinematic
chains. In this section, we presented the current results ofenumeration of
kinematic chains and point out the discrepancies and incorrect results of all
methods. As noted above, most results presented in the literature are correct,
with minor disagreements (possibly caused by typos), most contradictions
are only related to the presence or not of fractionated kinematic chains in the
enumeration lists.

5.3 ENUMERATION OF MECHANISMS

This section corresponds to level 2 of the systematic procedure for
enumeration of kinematic structures proposed in Section 5.1 and shown in
Figure 43. A review of the main methods for enumeration of mechanisms
was presented in Section 4.1 (page 49).

In this section, first, we introduce a new representation of mechanisms
in terms of graph which is an useful simplification for computational imple-
mentation. Second, we present an improvement of the method of enumeration
of mechanisms proposed by Simoni et al. (2009). The improvement consists
in the application of the concept of symmetry in kinematic chains presented in
Section 2.3 (page 26). Using this method, it is possible to affirm that mecha-
nisms are related to the symmetries of the kinematic chains.Third, we present
the current status of enumeration of mechanisms found in theliterature and,
finally, we discuss these results.

5.3.1 Graph representation of mechanisms

Agreement with IFToMM (International Federation for the Promotion
of Mechanism and Machine Science) a mechanism is a kinematicchain with
one of its components (links) taken as a frame (IONESCU, 2003).

Figure 44(a) shows a kinematic chain and Figure 44(b) its graph rep-
resentation. For the purposes of this thesis, kinematic chains and mechanisms
are represented by graphs. This representation is a very useful simplification
for analyzing the possible mechanisms which a kinematic chain can originate.
A new graph representation of mechanisms was introduced by Simoni et al.
(2008) to simplify the application of group theory tools forenumeration of all
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possible mechanisms that a kinematic chains can originate.
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Figure 44 – Graph representation of kinematic chains.

A mechanism is a kinematic chain with one of its components (links)
taken as a frame (IONESCU, 2003). In terms of graph theory, a mechanism
corresponds to a graph with one of its vertices detached (colored) to represent
the fixed link (SIMONI et al., 2008). Figure 45(b) shows the graph of the
mechanism presented in Figure 45(a) where the detached vertex represents
the fixed, i.e. link 1.
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Figure 45 – Graph representation of mechanisms (SIMONI et al., 2008).

5.3.2 Improvement of the method proposed by Simoni (2008)

The improvement of the method proposed by Simoni (2008) consist
into apply the concept of symmetry presented in Section 2.3 (page 26). Mech-
anisms are related to the symmetries of the kinematic chain (SIMONI et
al., 2009). Ignoring dimensions, symmetrical links in the kinematic chain,
when fixed, yield mechanisms with the same kinematic characteristics. For
instance, any of the binary links of the Watt kinematic chain, due to the sym-
metry of the chain, yield the same Watt I mechanism (see Figure 14 in Sec-
tion 3.2).
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From the biunivocal correspondence between graphs and kinematic
chains, the symmetry of a kinematic chain can be analyzed through the sym-
metry of its correspondent graph. As discussed in Section 2.1, using group
theory, the symmetry of a graph can be identified by its automorphisms group.
A kinematic chain is symmetric when it has more than one automorphism, see
Definition 10 of Simoni et al. (2010). Thus, once identified symmetries in the
kinematic chain we can use the graph symmetry to enumerationof mecha-
nisms. As shown in Example of the Watt mechanisms (Figure 14,page 35),
symmetric links yield the same mechanisms, i.e. Watt I and Watt II. However,
mechanisms are related to the symmetries of the links of the kinematic chain
and symmetric links are identified by orbits of the automorphism group of the
graph associated to kinematic chain. The orbits of the automorphism group
provides the sets of vertices (links) that are in the same equivalence classes,
i.e. they possess the same properties of symmetry. Therefore, a mechanism
may be enumerated by choosing one representative from each orbit of the au-
tomorphism group of graph that represents the kinematic chain. The number
of orbits of the automorphism group induced by the graph vertices is equal to
the number of mechanisms that the graph can originate. In order to determine
the possible choices of the fixed link, only one representative of each orbit
needs to be selected.

Figure 46 illustrates the applied techniques step by step toenumeration
of mechanisms. First, given a graph, we need to identify symmetries. McKay
(2009b, 1998) implemented the programnauty(No AUTomorphisms, Yes?)
which is a set of very efficient C language procedures for determining the
automorphism group of a graph with colored vertices. It provides this infor-
mation in the form of a set of generators, the size of the group, and the orbits
of the group. We can use nauty, without colored vertices, to determining the
automorphism group of a kinematic chain using its associategraph. Second,
the internal symmetry of the graph is represented in the formof an automor-
phism group and their orbits provide the equivalence classes under the action
of the automorphism group. Symmetric links are grouped in distinct orbits
because the orbits form a partition of the vertex set. Third,to enumerate
all mechanisms of a kinematic chain can originate is only needed to choose
one representative from each equivalence classes, i.e. from each orbit, be-
cause these equivalence classes provides links with the same characteristics
of symmetry inside of the kinematic chain. Finally, since there is a biunivo-
cal correspondence between graphs, kinematic chains and mechanisms, see
Section 5.3.1, we obtain all possible choices of base in eachkinematic chain
originating all possible mechanisms that a kinematic chaincan originate.
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Figure 46 – Flowchart of the proposed method outlining the role of the group
theory tools for enumeration of mechanisms.

Algorithm 1 shows the pseudocode of the improvement of the method
of method of enumeration of mechanisms using the nauty program.

In the following, we will apply the technique to enumerationof Watt
and Stephenson mechanisms, two examples well known in mechanisms and
machines literature. These didactic example are chosen because the results
are well established and it is easy to understand the application of the method.

Example 14.Watt kinematic chain shown in Figure 47(a) is well known in the
literature of mechanisms, we know that it originate two distinct mechanisms,
i.e. Watt I and Watt II. Watt kinematic chain is represented by the labeled
graph X shown in Figure 47(b). The automorphism group of the Watt graph
possesses four elements:

• σ1 = (1)(2)(3)(4)(5)(6),

• σ2 = (12)(34)(56),

• σ3 = (15)(26)(3)(4) and
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Algorithm 1 Pseudocode of the improvement of the method of enumeration
of mechanisms of Simoni (2008).

1 - Input:

• A non-colored vertex graph, which represents a kinematic chain.

2 - Run the nauty program:

• Determines the automorphism group of the graph.

• nauty output: Elements of the automorphism group.

3 - Post-processing:
Determines the number of symmetries of the non-colored vertex graph.
IF {non-colored vertex graph is symmetric, i.e.r 6= 1 (see Definition 11

on page 26 )}
THEN

• Identify equivalence classes of vertices of the non-colored vertex
graph.

• These equivalence classes are grouped into orbits of the automor-
phism group.

• Select one representative element of each orbit of the non-colored
vertex graph, i.e. a vertex, to represent a new mechanism.

• The number of orbits of the automorphism group of the non-colored
vertex graph is equal to the number of possible choices of bases,
i.e. the number of mechanisms that the associate kinematic chain
can originate.

• Use the graph representation of mechanisms (see Section 5.3.1) to
identify the new mechanisms.

ELSE

• All links, when fixed, originate distinct mechanisms.

4 - Output:

• Number mechanisms.
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• σ4 = (16)(25)(34).

The generator set is Aut(X) =< σ2, σ3 >. As Aut(X) has four elements
the Watt kinematic chain is symmetric, therefore, we can apply the method
described above. The action of the automorphism group of theWatt graph is
shown in Figures 48(a), 48(b), 48(c) and 48(d), respectively. The orbit of
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1 5
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4 6
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1 5

(b)

Figure 47 – Watt kinematic chain and graph representation.
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(c) σ3(X) action.
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(d) σ4(X) action.

Figure 48 – Image of automorphism group action in the Watt graph.

vertex 1 is equal to the orbit of vertices 2, 5, and 6 of the graph, i.e.O1 =
O2 = O5 = O6 = {1,2,5,6}, and the orbit of vertex 3 is equal to the orbit
of vertex 4 of the graph, i.e.O3 = O4 = {3,4}. Therefore, the orbits of the
automorphism group are:

• OWattaI = {1,2,5,6} and

• OWattaII = {3,4}.
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Note that it is possible to identify the orbits by analyzing Aut(X)=<σ2, σ3>.
For the Watt kinematic chain, the automorphism group possesses two orbits;
therefore, the number of mechanisms for the Watt chain is twoand the rep-
resentatives can be, for example, 1 and 3. Fixing link 1, we generate the
classical Watt I mechanism. Similarly, fixing link 3 we generate the Watt II
mechanism. Any choice from the orbit of link 1 (i.e. 1, 2, 5, or6) originates
Watt I mechanism, and any choice in the orbit of link 3 (i.e. 3 or 4) originates
Watt II mechanism.

Example 15. Stephenson graph (X), shown in Figure 49, has four elements
in the automorphism group:

• σ1 = (1)(2)(3)(4)(5)(6),

• σ2 = (1)(2)(3)(4)(56),

• σ3 = (14)(23)(5)(6) and

• σ4 = (14)(23)(56).

As Aut(X) has four elements the Stephenson kinematic chain is symmetric,
therefore, we can apply the method described above. The action of auto-
morphism group of the Stephenson graph (Figure 49(b)) is shown in Fig-
ures 50(a), 50(b), 50(c) and 50(d),respectively. The orbitof vertex 1 is

1

6

4

2

3

5

(a) Stephenson kinematic chain.

4

6

3

2 1

5

(b) Graph representation.

Figure 49 – Correspondence between graphs and kinematic chains.

equal to the orbit of vertices 4 of the graph, i.e.O1 = O4 = {1,4}, the orbit
of vertex 2 is equal to the orbit of vertex 3 of the graph, i.e.O2 =O3 = {2,3},
and the orbit of vertex 5 is equal to the orbit of vertex 6 of thegraph, i.e.O5 =
O6 = {5,6}. Therefore, the orbits of the automorphism group are:

• OStephensonaIII = {1,4},

• OStephensonaII = {2,3} and

• OStephensonaI = {5,6}.
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(a) σ1(X) action.
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(b) σ2(X) action.
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(c) σ3(X) action.
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(d) σ4(X) action.

Figure 50 – Image of automorphism group action in the Stephenson graph.

For the Stephenson kinematic chain, the automorphism grouppossesses three
orbits originating three distinct mechanisms and the representatives can be
1, 2 and 5. These choices of fixed links originate, respectively, the classical
Stephenson III, II and I mechanisms. Fixing links 4, 3 and 6 would generate
the same Stephenson III, II and I mechanisms because they are, respectively,
in the same orbits.

5.3.3 Current status of enumeration of mechanisms

This section presents the current results of enumeration ofmechanisms
found in the literature. Each kinematic chain originate your own mechanisms,
therefore, we can enumerate the mechanisms originated by fractionated kine-
matic chains, non-fractionated kinematic chains and by general kinematic
chains (see Tables 8, 9 and 10). Tables 11, 12 and 13 present the current
results of enumeration of mechanisms. Note that, the tablespresent just the
number of mechanisms, as we can see the number is large and it is impracti-
cable to provide all the drawings of the mechanisms that a kinematic chains
can originate.

Following the results of enumeration of kinematic chains, we initiate
with Table 11 that presents the list of fractionated mechanisms, these mech-
anisms are originated from kinematic chains shown in Table 8(page 80). To
the best of the authors’ knowledge, the method proposed by Martins et al.
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(2010) is the unique that enumerate only fractionated kinematic chains. We
confirm all the results of Table 11.

Table 11 – Current status of enumeration of fractionated mechanisms ob-
tained by Martins et al. (2010).

λ ν Mobility
1 2 3 4 5 6

2 - 2 6 15 27 47
2 3 - 4 49 171 471 1103

4 - 49 380 1793 6430 19323
2 - 3 8 19 33 56

3 3 - 34 167 508 1244 2645
4 - 742 4388 16349 48166 122411

4
2 - 3 9 21 37 62
3 - 82 367 1043 2414 4894

5
2 - 4 11 25 43 71
3 - 193 799 2138 4684 9068

6
2 - 4 12 27 47 77
3 - 353 1410 3649 7757 14608

λ is the order of screw system to which all the joint screws belong.
ν is the number of loops of the kinematic chain.

Table 12 shows the current results of enumeration of non-fractionated
mechanisms, i.e. mechanisms originated from kinematic chains shown in Ta-
ble 9 (page 81). For example, withM = 1, λ = 3 andν = 2 we have5 (five)
mechanisms, these are the classical Watt I, Watt II, Stephenson I, Stephen-
son II and Stephenson III mechanisms originated from Watt and Stephenson
kinematic chains.

For non-planar case, i.e.λ = 2,4,5,6, the results are in agreement
with Simoni (2008), Simoni et al. (2009). For planar case, i.e. λ = 3, the
results are in agreement with those of Tuttle (1996) and Simoni et al. (2009).
We confirm all the results (normal font style) in Table 9 up to four loops,
i.e.ν = 4, others results (italic font style) presented in Table 9 were obtained
from Tuttle (1996).

Table 13 shows the current results of enumeration of generalmecha-
nisms, i.e. mechanisms originated from kinematic chains shown in Table 10
(page 82). For non-planar case, i.e.λ = 2,4,5,6, the results are in agreement
with Simoni (2008). For planar case, i.e.λ = 3, we confirm all the results
in Table 13, some results are in agreement with those of Vijayananda (1994).
The discrepancies occur in the following cases:
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Table 12 – Current status of enumeration of non-fractionated mechanisms.

λ ν Mobility
1 2 3 4 5 6

2 2 5 9 15 23 33
2 3 8 35 91 217 463 897

4 45 255 1014 3248 8924 21911
2 5 11 18 28 39 55

3 3 71 220 517 1056 1955 3387
4 1834 7156 20737 51245 113387 231664
5 75397 335398 1105923
6 4274142 20736427 74387903

4
2 10 18 29 43 59 79
3 324 832 1749 3245 5581 9042

5
2 17 31 45 65 86 113
3 1196 2704 5136 8849 14256 21894

6
2 27 44 65 89 117 150
3 3331 6813 12126 19792 30538 45118

• caseM = 6 andν = 2; the result of Vijayananda (1994) is 110 and our
result is 111.

• caseM = 3 andν = 3; the result of Vijayananda (1994) is 648 and our
result is 684. By the similarity of the numbers we believe that 648 is a
typo.

• caseM = 3 andν = 4; the result of Vijayananda (1994) is 25124 and
our result is 25125.

• caseM = 4 andν = 4; the result of Vijayananda (1994) is 67591 and
our result is 67594.

As we can see, the discrepancies are very similar, the maximal discrepancy
is four mechanisms in the last case. Notes that, in all cases,our method
enumerate more mechanisms than Vijayananda (1994). It is anindication that
the method of Vijayananda (1994) can be discarding any feasible solution.

To the best of the authors’ knowledge, Tables 11, 12 and 13 shown the
most complete result of enumeration of mechanisms.
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Table 13 – Current status of enumeration of general mechanisms.

λ ν Mobility
1 2 3 4 5 6

2 2 7 15 30 50 80
2 3 8 39 140 388 934 2000

4 45 304 1394 5041 15354 41234
2 5 14 26 47 72 111

3 3 71 254 684 1564 3199 6032
4 1834 7898 25125 67594 161553 354075

4
2 10 21 38 64 96 141
3 324 914 2116 4288 7995 13936

5
2 17 35 56 90 129 184
3 1196 2897 5935 10987 18940 30962

6
2 27 48 77 116 164 227
3 3331 7166 13536 23441 38295 59726

5.4 ENUMERATION OF PARALLEL MANIPULATORS

This section corresponds to level 3 of the systematic procedure for
enumeration of kinematic structures proposed in Section 5.1 and shown in
Figure 43. This section provides an original contribution to the enumeration
of parallel manipulators with one end-effector and is basedon the following
paper:

• “Enumeration of parallel manipulators” (SIMONI et al., 2008).

A review of the main methods for enumeration of parallel manipu-
lators was presented in Section 4.1 (page 49). As pointed by Simoni et al.
(2008), the method that we will present here is the only one that enumerates
all possible parallel manipulators of a kinematic chain. The results presented
in this section are new and therefore we do not have references for compari-
son. The advantage of this approach is that all parallel manipulators will be
evaluated and the most promising will be chosen by design detailing.

In this section, first, we introduce a new representation of parallel ma-
nipulators in terms of graph which is an useful simplification for computa-
tional implementation. Second, we describe the method which uses the group
theory tools (see Section 2.1), specially, we apply the concepts of symme-
try, actions and orbits of the automorphism group of a colored vertex graph.
The method consists of enumerating all the possible parallel manipulators
with one end-effector that a single kinematic chain can originate. Third, we
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present some applications of the method and, finally, we discuss the results.

5.4.1 Graph representation of parallel manipulators

In this section we explore the number of parallel manipulators with
one end-effector which a kinematic chain can originate. Theexploration is
carried out using graph and group theory. The representation of a parallel
manipulator by a graph is a very useful simplification for analyzing all the
possible parallel manipulators which the kinematic chain can originate. A
new graph representation of mechanisms and parallel manipulators was intro-
duced by Simoni et al. (2008) to simplify the application of group theory tools
for enumeration of all possible parallel manipulators withone end-effector
that a kinematic chains can originate.

To a better understanding of representation of a parallel manipula-
tors by a graph, the representation of kinematic chains and mechanisms will
be briefly presented below. Figure 51(a) shows a kinematic chain and Fig-
ure 51(b) its graph representation. Figure 52(a) shows a mechanism and
Fig 52(b) shows their graph representation. In terms of graph theory a mech-
anism corresponds to a graph with one of its vertices detached (colored) to
represent the fixed link (SIMONI et al., 2008).
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(a) Kinematic chain.
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(b) Graph representation.

Figure 51 – Graph representation of kinematic chains.
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(a) Mechanism.

4

7 6

3

1

0 2

5

(b) Graph representation.

Figure 52 – Graph representation of mechanisms (SIMONI et al., 2008).
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A parallel manipulator is a kinematic chain with one of its components
(links) taken as frame and the other taken as end-effector (IONESCU, 2003).
In terms of graph theory, a parallel manipulator with one end-effector corre-
sponds to a graph with two detached vertices (colored with distinct colors),
one to represent the fixed link and the other to represent the end-effector (SI-
MONI et al., 2008).

Figure 53(b) shows the graph of the parallel manipulator shown in
Figure 53(a), where one of the detached links represents thebase and the
other represents the end-effector. If the parallel manipulator possess more
than one end-effector, more graph vertices must be detachedto represent it.
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(a) Parallel Manipulator.
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(b) Graph representation of parallel ma-
nipulator.

Figure 53 – Graph representation of parallel manipulators with one end-
effector.

Simoni et al. (2008) used the concept of orbits of the automorphism
group of non-colored vertex graphs, of group theory, to enumerate all the
possible mechanisms of a single kinematic chain.

In this section, we present an extension of the enumeration of mecha-
nism method for enumeration of parallel manipulators with one end-effector.
Thus, we will represent parallel manipulators by graphs with two of their ver-
tices colored (detached), one to represent the base and the other to represent
the end-effector, and use tools from group theory for enumeration of all the
possible parallel manipulators with one end-effector thata single kinematic
chain can originate.

5.4.2 New method for enumeration of parallel manipulators

Our method for the enumeration of parallel manipulators consists of
calculating orbits of the automorphism group of colored vertex graphs and
selecting all the possible distinct label listing of vertices (one to represent
the base and other to represent the end-effector) which can originate distinct
parallel manipulators. Firstly, the base of the parallel manipulators are enu-
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merated using the concepts of symmetry, action and orbits ofthe automor-
phism group. Second, the links defined as base of the parallelmanipulators
are colored and the automorphism group is obtained again. The symmetries
are discarded and only original configurations are obtained.

5.4.2.1 Orbits of non-colored vertex graphs and corresponding bases

The method of enumeration of bases is the same of enumerationof
mechanisms presented in Section 5.3. We use the same method because it is
shown in Section 5.3.3 that the results obtained by the method of enumeration
of mechanisms are effective and all possible choices of bases are enumerated.
For completeness of the enumeration of parallel manipulators method we will
present another example of enumeration of bases, i.e. mechanisms. Using the
tools of group theory presented in Section 2.1 we can obtain all possible bases
of a kinematic chain choosing a representative of each orbitof the automor-
phism group of a non-colored vertex graph, i.e. discarding symmetric links.
The number of orbits of a non-colored vertex graph which represent the kine-
matic chain is equal to the number of bases that the graph (i.e. kinematic
chain) can originate. To ascertain which are the possible choices for the fixed
link there only needs to be chosen a representative of each orbit (SIMONI
et al., 2008), this procedure guarantees that symmetric links are discarded
originating only the distinct choices of base.

Example 16. Figure 54(a) shows a planar kinematic chain with mobility
three (M= 3) and two loops, the kinematic chain is represented by a la-
beled non-colored graph (without vertices detached) as shown in Figure 54(b)
which will be called X. The automorphism group of graph X possesses four
elements:

• σ1 = (0)(1)(2)(3)(4)(5)(6)(7),

• σ2 = (23)(45)(67),

• σ3 = (01)(24)(35) and

• σ4 = (01)(25)(34)(67).

The action of the automorphism group on the graph X is shown inFig-
ures 55(a), 55(b), 55(c), and 55(d), respectively.

The orbit of vertex 0 is equal to the orbit of vertex 1, i.e.O0 = O1 =
{0,1}, the orbit of vertex 2 is equal to the orbit of vertices 3, 4 and5,
i.e. O2 = O3 = O4 = O5 = {2,3,4,5}, and the orbit of vertex 6 is equal to
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Figure 54 – Graph representation of kinematic chain.
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(d) σ4(X) action.

Figure 55 – Actions of automorphism group on the graph.

the orbit of vertex 7, i.e.O6 = O7 = {6,7}. Therefore, the three orbits of the
automorphism group are:

• OBase1 = {0,1},

• OBase2 = {2,3,4,5} and

• OBase3 = {6,7}.

The possible choices of base for the kinematic chain shown inFig-
ure 54(a) are obtained by choosing a representative of each orbit of the au-
tomorphism group induced by associated non-colored graph vertices, for ex-
ample 0, 2 and 6.

The number of orbits of the automorphism group (i.e. 3) is equal to the
number of all possible bases of the parallel manipulator that the kinematic
chain can originate. The links that are in the same orbit originate identical
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bases, i.e. the changing of a fixed link does not cause different characteristic
in the movement of the mechanism in relation to the fixed link.The changing
of a fixed link, for links that are in different orbits, leads to different char-
acteristic in the movement of the mechanism originating distinct mechanisms
for the kinematic chain.

5.4.2.2 Orbits of colored vertex graphs and corresponding end-effectors

For enumeration of all possible parallel manipulators withone end-
effector for a given kinematic chain we use colored vertex graphs.

The method of enumeration of all the possible parallel manipulators
with one end-effector for a kinematic chain is similar of themethod of enu-
meration of mechanisms and it consists of identify symmetries of the kine-
matic chain with one link selected as base. The symmetries are identified by
orbits of the automorphism group of colored vertex graphs, the colored vertex
represent the base and is obtained by method presented in Section 5.4.2.1. To
enumerate all the possible parallel manipulators with one end-effector which
can be originated by a single kinematic chain we only need to enumerate all
the possible choices of the end-effector for each base. The simplest way of
enumerate all possible choices of end-effector is to color one vertex (which
originates the base) of each time and identify the symmetries calculating the
orbits of the automorphism group of the colored vertex graph(with the vertex
that originates the base colored). The parallel manipulator (base and end-
effector) is obtained choosing a representative element ofeach orbit of the
colored graph to represent the end-effector.

Figure 56 shows a flowchart of the method, step by step, outlining the
role of the group theory tools for enumeration of parallel manipulators.

With this technique all the parallel manipulators with one end-effector
that the kinematic chain can originate are enumerated. Having established the
possible choices of a base, for each colored base (colored graph vertex) the
automorphism group of colored vertex graph captures the internal symmetries
of graph and supplies the information through the orbits of the automorphism
group. In the case of colored graphs, the automorphism groupcaptures equiv-
alence between graph vertices in relation to the colored vertices. The vertices
that are in the same orbit originate identical parallel manipulators with one
end-effector. Now we present some examples of the new method.
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Figure 56 – Flowchart of the proposed method outlining the role of the group
theory tools for enumeration of parallel manipulators.
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Example 17. Enumeration of planar parallel manipulators with one end-
effector: In Example 16, we enumerated all possible choices of base ofthe
kinematic chain in Figure 54(a), i.e.0, 2 and 6. Now, we will enumerate
all the possible parallel manipulators with one end-effector for the kinematic
chain in Figure 54(a).

First, we consider the base0. The graph vertex of label0 in Fig-
ure 54(b) is colored as shown in Figure 57(a) and the orbits ofthe automor-
phism group of the colored graph are calculated. The automorphism group
of the graph with vertex0 colored possesses two elements:

• σ1 = (0)(1)(2)(3)(4)(5)(6)(7) and

• σ2 = (23)(45)(67).

Therefore, the orbits of the automorphism group are:

• O0 = {0},

• OPM1 = {1}, (PM - parallel manipulator)

• OPM2 = {2,3},

• OPM3 = {4,5} and

• OPM4 = {6,7}.
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(a) Vertex 0 colored.
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(b) Vertex 2 colored.
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(c) Vertex 6 colored.

Figure 57 – Graph representation of the enumeration of planar parallel manip-
ulators with one end-effector calculating orbits of the automorphism group of
colored vertex graphs which represent the mechanism.

Second, we consider the base2. The vertex of label2 in Figure 54(b)
is then colored as show in Figure 57(b). In this case the automorphism group
of the graph with vertex2 colored possesses only one element, i.e. the identity

• σ1 = (0)(1)(2)(3)(4)(5)(6)(7).

Thus, the number of orbits is equal to the number of vertices,i.e.
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• OPM5 = {0},

• OPM6 = {1},

• O2 = {2},

• OPM7 = {3},

• OPM8 = {4},

• OPM9 = {5},

• OPM10 = {6} and

• OPM11 = {7}.

Third, we consider the base6. The vertex of label6 in Figure 54(b) is
colored as shown Figure 57(c). In this case the automorphismgroup of the
graph with vertex6 colored possesses two elements

• σ1 = (0)(1)(2)(3)(4)(5)(6)(7) and

• σ2 = (01)(24)(35).

Orbits are;

• OPM12 = {0,1},

• OPM13 = {2,4},

• OPM14 = {3,5},

• O6 = {6} and

• OPM15 = {7}.

With this technique, we enumerate all the possible string listings of
vertices that can originate distinct parallel manipulators selecting the colored
vertex (base) and a vertex of each orbit of the automorphism group of the
graph with colored vertices, where the string listings x|y represent the two
colored vertices of the graph, i.e. one parallel manipulator where x is the
fixed link and y is the end-effector.

Table 14 shows the list of all parallel manipulators with oneend-
effector that the kinematic chain in Figure 54(a) can originate. Column
1 shows the orbits of the non-colored graph, column 2 shows the possi-
ble choices of base (i.e. one representative of each orbit ofthe non-colored
graph), column 3 shows the orbits of the colored graph where the colored
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Table 14 – Results of the enumeration of parallel manipulators for the kine-
matic chain shown in Figure 54(a).

1 2 3 4
Orbits of non-
colored graph

Base Orbits of col-
ored graph

End-effector

0, 1 0

0 -
1 0|1
2, 3 0|2
4, 5 0|4
6, 7 0|6

2, 3, 4, 5 2

0 2|0
1 2|1
2 -
3 2|3
4 2|4
5 2|5
6 2|6
7 2|7

6, 7 6

0, 1 6|0
2, 4 6|2
3, 5 6|3
6 -
7 6|7

Total number of parallel manipulators Σ = 15

vertex is the vertex that originates the bases shown in column 2 and the col-
umn 4 shows the possible choices of end-effector for the kinematic chain in
Figure 54(a). In column 4, the parallel manipulator with oneend-effector
is originated from one representative of each orbit of the non-colored graph
to be the base and one representative of each orbit of the colored graph to
be the end-effector. Using this technique, we enumerate 15 distinct parallel
manipulators with one end-effector that the kinematic chain in Figure 54(a)
can originate.

Figure 58 shows some results of Table 14 in the three levels ofthe sys-
tematic procedure to enumeration of kinematic structures proposed in Sec-
tion 5.1 and shown in Figure 43. Figure 58 shows the kinematicchain in
Figure 54(a) on the first level, the mechanisms derived from this kinematic
chain (i.e. ,0, 2 and6) on the second level and the parallel manipulators with
one end-effector for the first choice of base (base0), i.e.0|1, 0|2, 0|4 and0|6,
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on the third level.
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LEVEL 1: Enumeration of
Kinematic chains
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Number of links;
Number of 1DoF joints;
Mobility;
Order  of screw system.

Number of links;
Number of 1DoF joints;
Mobility;
Order  of screw system;
Base.

Number of links;
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Order of screw system;
Base;
End-effector.
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Mechanisms
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Parallel Manipulators
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Figure 58 – Enumeration of parallel manipulators method forthe results of
Table 14. The systematic procedure is completed into three levels as dis-
cussed in Section 5.1 and shown in Figure 43.

We choose always the vertex of the lowest label in each orbit to rep-
resent the bases and/or the end-effectors, but the choice could be another.
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Therefore, if the vertices are in the same orbit they have exactly the same
kinematic and structural characteristics as mechanism or parallel manipula-
tor. For example, in line 1 of Table 14, we choose the vertex oflabel 0 (see
column 2) to represent the base but we could choose the vertexof label 1.
The orbits of the colored graph with one of these two verticescolored (i.e. 0
or 1) will be the same as those shown in the column 3 and, consequently,
the parallel manipulators indicated in the column 4 will have the same kine-
matic characteristics. The parallel manipulator 0|6 shown in Figure 59(a) is
the same as 1|7.
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(a) Base 0, end-effector 6.
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(b) Base 6, end-effector 0.

Figure 59 – Parallel manipulators with totally different kinematic and struc-
tural characteristics changing the base from 0 to 6 and from 6to 0 and the
end-effector from 6 to 0 and from 0 to 6, respectively.

Note that the vertices that are in the same orbit on the automorphism
group of the non-colored vertex graph only originate one parallel manipula-
tor with one end-effector because the base-end-effector change does not cause
alterations in the kinematic and structural characteristics of the parallel ma-
nipulator. Therefore, the parallel manipulator only appears once in Table 14,
for example 0|1. The vertices that are in the same orbits on the automorphism
group of different non-colored vertex graphs appear twice on the list of par-
allel manipulators. For example 0|6 and 6|0 (see Figures 59(a) and 59(b)),
they possess totally different kinematic and structural characteristics. Often
the parallel manipulators originated by the same two vertices appear camou-
flaged, as is the case of 2|7 and 6|3.

If the vertices are in different orbits on the automorphism group of a
non-colored vertex graph then the base-end-effector change does not originate
parallel manipulators with different structural characteristics and therefore
they appear twice on the list of parallel manipulators.

The results presented in Table 14 are new and therefore we do not have
references for comparison.

We should emphasize that, using this method, we enumerated all pos-
sible parallel manipulators that a kinematic chain can originate without iso-
morphisms which is a NP-hard problem. This contribution waspossible
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through the integrated application of the graph and group theory tools pre-
sented in Chapter 2.

Example 18. Enumeration of planar parallel manipulators with one end-
effector: Figure 60 shows a planar kinematic chain with mobility three (i.e. M=
3), ten links (i.e. n= 10) and variety zero (i.e. V= 0) and its graph.
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(b) Graph representation.

Figure 60 – Planar kinematic chain and graph representation.

The orbits of the automorphism group of non-colored vertex graph
are:

• OBase1 = {1,7,8,10},

• OBase2 = {2,5,6,9} and

• OBase3 = {3,4}

which originates three possible choices of base, i.e. 1, 2 and 3. Applying our
method, coloring the vertex that originates distinct basesand calculating the
orbits of the automorphism group of the colored vertex graphwe have:

• for vertex 1 colored, the orbits are:O1 = {1}, OPM1 = {2}, OPM2 =
{3}, OPM3 = {4}, OPM4 = {5}, OPM5 = {6}, OPM6 = {7}, OPM7 = {8},
OPM8 = {9}, OPM9 = {10},

• for vertex 2 colored, the orbits are:OPM10 = {1}, O2 = {2}, OPM11 =
{3}, OPM12 = {4}, OPM13 = {5}, OPM14 = {6}, OPM15 = {7}, OPM16 =
{8}, OPM17 = {9}, OPM18 = {10}, and

• for vertex 3 colored, the orbits are:OPM19 = {1,8}, OPM20 = {2,6},
O3 = {3}, OPM21 = {4}, OPM22 = {5,9}, OPM23 = {7,10}.

Table 15 shows the possible parallel manipulators with one end-effector for
the kinematic kinematic chain shown in Figure 60.



106

Table 15 – Results of the enumeration of planar parallel manipulators with
one end-effector.

Bases Parallel Manipulators Total number

1 1|2; 1|3; 1|4; 1|5; 1|6; 1|7; 1|8; 1|9; 1|10; 9

2 2|1; 2|3; 2|4; 2|5; 2|6; 2|7; 2|8; 2|9; 2|10; 9

3 3|1; 3|2; 3|4; 3|5; 3|10; 5

Total number of parallel manipulators Σ = 23

Example 19. Enumeration of spatial parallel manipulators with one end-
effector: Figure 61(a) shows a spatial kinematic chain with M= 6 and n=
14 enumerated by Tischler (1995) and Simoni et al. (2007) as oneof the
most promising candidates for the design of robotic fingers.The graph of the
kinematic chain is shown in Figure 61(b).
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Figure 61 – Kinematic chain and graph representation.

The orbits of the automorphism group of a non-colored vertexgraph
are:

• OBase1 = {0,1},

• OBase2 = {2,5,6,9,10,13} and

• OBase3 = {3,4,7,8,11,12}.

which originates three distinct choices of base, i.e. 0, 2 and 3. Applying our
method, coloring the vertex that originates distinct basesand calculating the
orbits of the automorphism group of the colored vertex graphwe have:

• for vertex 0 colored, the orbits are:O0 = {0}, OPM1 = {1}, OPM2 =
{2,6,10}, OPM3 = {3,7,11}, OPM4 = {4,8,12}, OPM5 = {5,9,13},



107

• for vertex 2 colored, the orbits are:OPM6 = {0}, OPM7 = {1}, O2 =
{2}, OPM8 = {3},OPM9 = {4}, OPM10 = {5}, OPM11 = {6,10},OPM12 =
{7,11}, OPM13 = {8,12}, OPM14 = {9,13} and

• for vertex 3 colored, the orbits are:OPM15 = {0},OPM16 = {1}, OPM17 =
{2}, O3 = {3}, OPM18 = {4}, OPM19 = {5}, OPM20 = {6,10}, OPM21 =
{7,11}, OPM22 = {8,12}, OPM23 = {9,13}.

Table 16 shows the possible parallel manipulators with one end-effector for
the kinematic chain in Figure 61(a).

Table 16 – Results of the enumeration of spatial parallel manipulators with
one end-effector.

Bases Parallel Manipulators Total number

0 0|1; 0|2; 0|3; 0|4; 0|5 5

2 2|0; 2|1; 2|3; 2|4; 2|5; 2|6; 2|7; 2|8; 2|9 9

3 3|0; 3|1; 3|2; 3|4; 3|5; 3|6; 3|7; 3|8; 3|9 9

Total number of parallel manipulators Σ = 23

5.4.3 Advantages of using symmetry

Example 18 presents the enumeration of all non-isomorphic parallel
manipulators of the kinematic chain shown in Figure 60.

Using our method which analyzes the symmetries of the kinematic
chain, we enumerated 23 non-isomorphic parallel manipulators shown in Ta-
ble 15.

Without symmetry analysis, all possible choices of base andend-effector
need to be evaluated because, in early stage of design, it is preferable the
generation of duplicate (isomorphic) kinematic structures to the omission of
a potentially useful solution (TISCHLER et al., 1995a). Therefore, for the
kinematic chain shown in Figure 60 we have 90 possibilities of choices of
base and end-effector. We have 10 links and we need to select 2links at
a time, one to be the base and another to be the end-effector. The number
of arrangements that are possible when a subset of 2 items (base and end-
effector) is taken from a set of 10 distinct items (links) is a“permutation of
10 objects taken 2 at a time” which can be written asP10

2 and is equal to

P10
2 =

10!
(10−2)!

= 90.
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For example, using symmetry analysis we identify only five (5) pos-
sibilities considering the link 3 as base, i.e. 3|1, 3|2, 3|4, 3|5, 3|10 (see Ta-
ble 15), however, without symmetry analysis we have nine (9)possibilities,
i.e. 3|1, 3|2, 3|4, 3|5, 3|6, 3|7, 3|8, 3|9, 3|10. As the links 1, 7, 8, 10 are
symmetric, using symmetry analysis we identify only nine (9) possibilities
considering ternary base, i.e. 1|2, 1|3, 1|4, 1|5, 1|6, 1|7, 1|8, 1|9, 1|10 (see
Table 15), however, without symmetry analysis we have thirty-six (36) pos-
sibilities, i.e. 1|2, . . . 1|10, 7|1, . . . 7|6, 7|8, 7|9, 7|10, 8|1, . . . 8|7, 8|9, 8|10,
9|1, . . . 9|8, 9|10.

This simple example shows the potential of the proposed method. Us-
ing symmetry analysis we identify all non-isomorphic parallel manipulators
and without symmetry analysis we enumerate several duplicated (isomorphic)
parallel manipulators. We simplify the next step of the design, i.e. design de-
tailing, from 90 parallel manipulators to 23 parallel manipulators. In the next
chapter we will apply symmetry and use well established criteria to classify
and select the most promising of these 23 parallel manipulators.

5.5 CONCLUSIONS

This chapter is based on the following papers:

• “Mãos Robóticas: Critérios para Sı́ntese Estrutural e Classificação” (SI-
MONI et al., 2007);

• “Criteria for Structural Synthesis and Classification of Mechanisms”
(SIMONI; MARTINS, 2007);

• “Enumeration of Kinematic Chains and Mechanisms” (SIMONI et al.,
2009),

• “Enumeration of Parallel Manipulators” (SIMONI et al., 2008) and

• “Fractionation in planar kinematic chains: Reconciling enumeration
contradictions” (MARTINS et al., 2010).

This chapter presented a systematic procedure for enumeration of kine-
matic structures, applying integrated tools of graph and group theory, into
three levels: kinematic chains, mechanisms and parallel manipulators.

First, we described each level of the systematic procedure and the
methods and tools used in each level.

Second, we presented and discussed the current status of enumera-
tion of kinematic chains and indicated the discrepancies oftheses results. As
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pointed by Martins et al. (2010) the most discrepancies are related to frac-
tionation in kinematic chains and some incorrect results are indicated in Sec-
tion 5.2.1.

Third, we presented an improvement of the method description of enu-
meration of mechanisms presented by Simoni (2008) using theconcept of
symmetry introduced in Section 2.3 (page 26). Also, we presented the cur-
rent status of enumeration of mechanisms found in the literature, we com-
pared and discussed the results.

Fourth, we presented a new method for enumeration of all parallel
manipulators with one end-effector that a kinematic chain can originate. The
method uses the concepts of symmetries, actions of orbits ofthe automor-
phism group of colored vertex graphs. To the best of the authors’ knowledge,
this is the first method for enumeration of all possible parallel manipulators
which a kinematic chain can originate. The results presented in Section 5.4
are new and therefore we do not have references for comparison. We should
emphasize that, using this method, we enumerated all possible parallel ma-
nipulators that a kinematic chain can originate without isomorphisms which
is a NP-hard problem.

The next step is the systematization of the criteria of variety, symme-
try, connectivity, degree-of-control and redundancy (MARTINS; CARBONI,
2007; BELFIORE; BENEDETTO, 2000; TISCHLER et al., 2001), that are
well established concepts for kinematic analysis of the enumerated parallel
manipulators. The number of parallel manipulators which each kinematic
chain can originate is generally very great and it is difficult to analyze the
individual merits of each parallel manipulator and we need an effective tech-
nique to the analysis of enumerated kinematic structures.

The techniques of enumeration introduced in this chapter are not only
applicable for enumeration of mechanisms and parallel manipulators. Ap-
pendix A presents an application of these techniques for enumeration of pla-
nar metamorphic robots configurations. The results of Appendix A were
presented in the 1st ASME/IFToMM International Conference on Reconfig-
urable Mechanisms and Robots (ReMAR 2009) and received the best award
paper on reconfigurable robots for the application of group and graph the-
ory tools to solve the problem of enumeration of planar metamorphic robots
configurations (MARTINS; SIMONI, 2009a).
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6 CONTRIBUTIONS TO THE ANALYSIS OF KINEMATIC
STRUCTURES

As we can see in Chapter 5, in general, the number of kinematicstruc-
tures generated in the enumeration process is great and it isdifficult to eval-
uate each kinematic structure individually. Therefore, itis necessary to use
a set of criteria to evaluate the merits of each kinematic strucutre without
eliminating a chain with possibilities to develop the desired task. For this rea-
son, the concepts of variety, connectivity, degrees-of-control, redundancy and
symmetry can be used to classify kinematic structures according to the con-
straints required (see Section 4.2). They are essential forstructural analysis
of mechanisms and parallel manipulators.

The contribution to the analysis is to classify the criteriato the kine-
matic analysis, reviewed in Section 4.2, into global and local criteria and
to prove that local criteria are invariants by the action of the automorphism
group of the associated graph. Global criteria are properties of the kine-
matic structure and local criteria are properties between members (links) of
the kinematic structure.

First, we present the classification of the criteria, into global and local,
and we present an example of the proposed classification of those criteria.
Second, we apply integrated tools of graph and group theory to prove some
lemmas and theorems about invariance by the action of the automorphism
group of local criteria. The application of these lemmas andtheorems results
in the reduction of the matricial representation of local criteria and, conse-
quently, in the simplification of the analysis of kinematic structures.

This chapter provides original contributions to the analysis of kine-
matic structures and it is based on the following papers:

• “Criteria for Structural Synthesis and Classification of Mechanisms”
(SIMONI; MARTINS, 2007) and

• “Group and Graph Theories Applied to the Analysis of Mechanisms
and Parallel Robots” (SIMONI et al., 2010).

6.1 CRITERIA CLASSIFICATION

Section 4.2 (page 66) presents a review of the main criteria to kine-
matic analysis, i.e. mobility, variety, connectivity, degrees-of-control, redun-
dancy and symmetry. As we can see in Section 4.2, mobility andvariety
are properties of the kinematic structure. Already, connectivity, degrees-of-
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control and redundancy are properties between two links of the kinematic
structure, it is evident from the Definitions 4.11, 4.12 and 4.13. Symmetry is
a property of the kinematic structure, in the sense of the kinematic structure
be symmetrical or asymmetrical. Also, the symmetry is a property between
two links of the kinematic structure. If the kinematic structure is symmet-
rical, than, it is possible to explore symmetries between links or top/bottom
and left/right symmetries. Thus, based on the criteria definitions reviewed in
Section 4.2, we can classify the criteria into:

• Global criteria - properties of the kinematic structure:

– mobility;

– variety and

– symmetry.

• Local criteria - properties between two links of the kinematic structure:

– connectivity;

– degrees-of-control;

– redundancy and

– symmetry.

Global criteria of the kinematic structures are represented by a number,
M of mobility, V of variety andr of symmetry (symmetrical ifr 6= 1 and
asymmetrical ifr = 1, see Definition 11 on page 26). Local criteria of the
kinematic structures are represented by matrices of ordern×n, wheren is the
number of links of the kinematic structure. Therefore, the symmetry of the
links is represented by a string of links labels.

Example 20. Figure 62(a) shows a planar kinematic chain with mobility
three (M= 3), ten links (n= 10) and variety zero (V= 0). The graph of the
kinematic chain is shown in Figure 62(b).

In this case,

Aut(X) =















σ1 = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)
σ2 = (1 7)(2 9)(3 4)(5 6)(8 10)
σ3 = (1 8)(2 6)(5 9)(7 10)
σ4 = (1 10)(2 5)(3 4)(6 9)(7 8)















. (6.1)

As Aut(X) has four elements the kinematic chain is of symmetry order r=
|Aut(X)| = 4. Equation 4.15 (page 72) shows the connectivity matrix which
is equal to the degrees-of-control matrix. Redundancy matrix is equal a null
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Figure 62 – Kinematic chain and graph representation.

matrix. As the kinematic chain is symmetrical we can identify the symmetries
between the links of the kinematic chain. The orbits are:

O = {{1,7,8,10};{2,5,6,9};{3,4}}.

Therefore, the symmetric links are:{1,7,8,10}, {2,5,6,9} and{3,4}.

6.2 CRITERIA INVARIANCE BY AUTOMORPHISM GROUP

This section considers the application of integrated toolsof graph and
group theory to simplify the kinematic analysis. First, we will prove the
invariance of degrees-of-control, connectivity and redundancy of kinematic
chains by the action of its automorphism group of the associated graph. With
the definition of the symmetry of kinematic chains, see Definition 10 (page 26),
we will develop a method to reduce the matricial representation of the degrees-
of-control, connectivity and redundancy matrices simplifying the kinematic
analysis of kinematic structures.

Herein, we use some results for invariants of isomorphism and au-
tomorphism groups of graphs found in the literature (SORLIN; SOLNON,
2008; GODSIL; ROYLE, 2001; BIGGS, 1993b; LAURI; SCAPELLATO,
2003; HELL; NĚSETŘIL, 2004; GROSS; TUCKER, 2001; MCKAY, 2009b).
These results, summarized below, are important to prove theTheorems 1
and 2 below.

Remark 1. Let X be a graph, Y a subgraph of X andσ an element of Aut(X).

1. Degree invariance: deg(σ(x)) = deg(x), for all x∈V(X);

2. Distance invariance: δ (σ(x),σ(y)) = δ (x,y), for all x,y∈ V(X);

3. Subgraph invariance: σ(y)≃ y, i.e. they are isomorphic.
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The proofs of these invariants are found in Sorlin and Solnon(2008),
Godsil and Royle (2001).

To prove the Theorems 1 and 2 below we need another results which
will be proved in the following lemmas.

Lemma 1(Mobility invariance). The mobility M of a graph (kinematic chain)
is invariant by the action of the automorphism group of the graph.

Proof: The proof follows from Definition 8. An automorphism of a graph
is an isomorphism with itself and thus, the graph structure is preserved. As
we can see in Example 5, the automorphism group of the graph results in the
relabeling of the graph vertices and consequently the number of vertices|V|,
the number of edges|E| and the order of the screw systemλ remain the same.
Consequently, the mobility (Equation 4.9) is invariant.

Lemma 2 (Subgraph mobility invariance). The mobility M of a subgraph
(subchain) is invariant by the action of the automorphism group of the graph.

Proof: The proof follows from Remark 1 and Lemma 1. Remark 1 proves that
a subgraph is invariant by the action of its automorphism group and thus, the
structure of the subgraph (|V|, |E|, λ ) remains the same. Lemma 1 proves that
the mobility is invariant. Consequently, the subgraph mobility is invariant.

Theorem 1 (Degrees-of-control invariance). Let X be a graph (kinematic
chain) and Aut(X) its automorphism group. The degrees-of-control matrix
K(X) of the kinematic chain is invariant by the action of the automorphism
group of the graph.

Proof: The degrees-of-control is given byKi j =min{D[i, j],M
′

min}, see Equa-
tion 4.12. To prove this theorem, it is necessary to show thatD[i, j] matrix
andM

′

min are invariant by the action of the automorphism group. According
to Remark 1 the distance of any pair of vertices is invariant by the action of
the automorphism group of the graph, i.e.D[i, j] = D[σ(i),σ( j)]. Therefore,
theD[i, j] matrix is invariant by the action of the automorphism group of the
graph. According to Remark 1 any subgraph is invariant by theaction of the
automorphism group of the graph, therefore,M

′

min is also invariant.

Theorem 2 (Connectivity invariance). Let X be a graph (kinematic chain)
and Aut(X) its automorphism group. The connectivity matrix C(X) of the
kinematic chain is invariant by the action of the automorphism group of the
graph.

Proof: The proof follows from Theorem 1. The connectivity is given by
Ci j =min{Ki j ,λ}, see Equation 4.11.Ki j is invariant according to Theorem 1
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andλ is a property of the kinematic chain (it is not dependent on the graph)
and therefore it is constant.

Corollary 1 (Redundancy invariance). Let X be a graph (kinematic chain)
and Aut(X) its automorphism group. The redundancy matrix R(X) of the
kinematic chain is invariant by the action of the automorphism group of the
graph.

Proof: The proof follows straightforwardly from Theorems 1 and 2. The
redundancy is given byRi j (x) = Ki j (x)−Ci j (x) (see Equation 4.13).Ki j (x)
andCi j (x) are invariants according to Theorems 1 and 2, consequently,Ri j (x)
is invariant.

Theorems 1 and 2 and Corollary 1 state that the connectivity,degrees-
of-control and redundancy are symmetric properties of a kinematic chain,
i.e. elements which are symmetric by the action of the automorphism group
of the graph have the same properties. Considering that symmetric links are
identified by the orbits of the automorphism group of the graph, it is possible
to reduce the matricial representation considering one representative element
of each orbit.

6.3 APPLICATIONS

To show the potentialities of the results proved in Section 6.2 we will
present a reduction in the matricial representation of local criteria. We have
selected examples of mechanisms and parallel manipulatorsfound in the lit-
erature where the connectivity, degrees-of-control and redundancy matrices
are presented. First, we introduce the notation of the matricial representation
in its reduced form.

Notation 1 (Reduced representation). The action of the automorphism group
of the graph allows a reduced matricial representation. This reduced matri-
cial representation has a subindex r as follows:

1. Ar(x) is the reduced adjacency matrix;

2. Kr(x) is the reduced degrees-of-control matrix;

3. Cr(x) is the reduced connectivity matrix;

4. Rr(x) is the reduced redundancy matrix.

The reduced matrix corresponds to the original matrix but with rows
eliminated, the elimination will be clearly shown in the following examples.
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6.3.1 Example 1: Planar parallel mechanisms

This section presents the application of the method of enumeration
of parallel manipulators (see Section 5.4) and the techniques to simplify the
analysis (using connectivity) presented above. First, we will apply the The-
orem 2 to reduce the size of the connectivity matrix. Second,using the re-
sults of the enumeration of parallel manipulators method and the reduced
connectivity matrix, we will select the most promising parallel manipulators
to design detailing. Third, we will present a comparison of the results using
symmetry analysis and without symmetry analysis.

6.3.1.1 Reduced connectivity matrix

Let X be the kinematic chain of the parallel mechanism shown in Fig-
ure 62(a), its graph is shown in Figure 62(b). The automorphism group is

Aut(X) =















σ1 = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)
σ2 = (1 7)(2 9)(3 4)(5 6)(8 10)
σ3 = (1 8)(2 6)(5 9)(7 10)
σ4 = (1 10)(2 5)(3 4)(6 9)(7 8)















. (6.2)

The generator set isAut(X) =< σ2, σ3 >. The orbits are:

O = {{1 7 8 10};{2 5 6 9};{3 4}}

where

• O1 = {1 7 8 10},

• O2 = {2 5 6 9} and

• O3 = {3 4}.

Using a representative element of each orbit of the automorphism
group (1, 2 and 3) the adjacency matrix presented in Equation4.14 is reduced
to:

Ar(X) =





1 2 3 4 5 6 7 8 9 10

O1 0 0 1 0 1 0 0 0 0 1
O2 0 0 0 0 0 0 0 0 1 1
O3 1 0 0 0 0 0 0 1 0 0



. (6.3)
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According to Theorem 2 we can reduce the connectivity matrixus-
ing a representative element of each orbit of the automorphism group. The
connectivity matrix presented in Equation 4.15 is reduced to:

Cr(X) =





1 2 3 4 5 6 7 8 9 10

O1 0 2 1 2 1 2 3 2 3 1
O2 2 0 3 2 3 3 3 2 1 1
O3 1 3 0 3 2 3 2 1 2 2



 (6.4)

where we chose as representative elements of each orbit the elements (links)
1, 2 and 3.

Note that the matrices are reduced from 10×10 to 3×10.
With the reduced adjacency and connectivity matrices shownin Equa-

tions 6.3 and 6.4 and the automorphism group shown in Equation 6.2, it is
possible to rebuild the original matrices shown in Equations 4.14 and 4.15,
respectively, just considering the action of the automorphism group elements
on the rows of the reduced matrices. Note that it is necessaryto rebuild rows
4, 5 . . ., 10. Observe the action of each element ofAut(X): Tables 17 and
18 show the actions which should be applied to rebuild the original matrices
A(X) andC(X), respectively, where the first column shows the row to be re-
built (R). To rebuild row 4 we need to choose an element of the automorphism
group whose action changes a determined labelx to 4. For example the action
of (1 7)(2 9)(3 4)(5 6)(8 10) change the labelx = 3 to 4 and, thus, it can be
used to rebuild row 4 from row 3. Note that the way to rebuild the matrices is
not unique, i.e. to rebuild row 10 we can use the elements(1 10)(2 5)(3 4)(6
9)(7 8), (1 8)(2 6)(5 9)(7 10)and (1 7)(2 9)(3 4)(5 6)(8 10).

Table 17 – Actions of the elements of the automorphism group of the graph
on the rows of the reduced adjacency matrixAr(X) for reconstruction of the
original adjacency matrixA(X).

R Applied element ofAut(X) Row ofAr(X) Row ofA(X)
4 (1 7)(2 9)(3 4)(5 6)(8 10) 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1
5 (1 10)(2 5)(3 4)(6 9)(7 8) 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0
6 (1 8)(2 6)(5 9)(7 10) 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0
7 (1 7)(2 9)(3 4)(5 6)(8 10) 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0
8 (1 8)(2 6)(5 9)(7 10) 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0
9 (1 7)(2 9)(3 4)(5 6)(8 10) 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0
10 (1 10)(2 5)(3 4)(6 9)(7 8) 0 0 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0

Note also that the matrix representationsAr(X) andCr(X) are more
compact than the originalA(X) andC(X) matrices. The more symmetric the
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Table 18 – Actions of the elements of automorphism group of the graph on
the rows of reduced connectivity matrixCr(X) for reconstruction of original
connectivity matrixC(X).

R Applied element ofAut(X) Row ofCr(X) Row ofC(X)
4 (1 7)(2 9)(3 4)(5 6)(8 10) 1 3 0 3 2 3 2 1 2 2 2 2 3 0 3 2 1 2 3 1
5 (1 10)(2 5)(3 4)(6 9)(7 8) 2 0 3 2 3 3 3 2 1 1 1 3 2 3 0 1 2 3 3 2
6 (1 8)(2 6)(5 9)(7 10) 2 0 3 2 3 3 3 2 1 1 2 3 3 2 1 0 1 2 3 3
7 (1 7)(2 9)(3 4)(5 6)(8 10) 0 2 1 2 1 2 3 2 3 1 3 3 2 1 2 1 0 1 2 2
8 (1 8)(2 6)(5 9)(7 10) 0 2 1 2 1 2 3 2 3 1 2 2 1 2 3 2 1 0 1 3
9 (1 7)(2 9)(3 4)(5 6)(8 10) 2 0 3 2 3 3 3 2 1 1 3 1 2 3 3 3 2 1 0 2
10 (1 10)(2 5)(3 4)(6 9)(7 8) 0 2 1 2 1 2 3 2 3 1 1 1 2 1 2 3 2 3 2 0

kinematic chain the smaller is its representation. As most parallel mecha-
nisms found in the literature are symmetric, this representation is particularly
advantageous.

6.3.1.2 Selection according to connectivity

This section presents the analysis of all possible parallelmanipulators
that the kinematic chain shown in Figure 62 can originate andwe will classify
those parallel manipulators according to connectivity. Inthe Example 18
(page 105) we enumerated all parallel manipulators with oneend-effector,
the number of parallel manipulators is shown in Table 15. We will repeat
the Table 15 below, i.e. Table 19, to consider the analysis ofthose parallel
manipulators.

Table 19 – Number of planar parallel manipulators with one end-effector.

Bases Parallel Manipulators Total number

1 1|2; 1|3; 1|4; 1|5; 1|6; 1|7; 1|8; 1|9; 1|10; 9

2 2|1; 2|3; 2|4; 2|5; 2|6; 2|7; 2|8; 2|9; 2|10; 9

3 3|1; 3|2; 3|4; 3|5; 3|10; 5

Total number of parallel manipulators Σ = 23

Equation 6.4 shows the reduced connectivity matrix. If we want con-
nectivity between base and end-effector equal to three, i.e.Cbase,end−e f f ector=
3, we have nine possible choices as indicated in boldface in Equation 6.5.
Note that, the number of choices are drastically reduced when compared with
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original matrix shown in Equation 4.15.

Cr(X) =





1 2 3 4 5 6 7 8 9 10

O1 0 2 1 2 1 2 3 2 3 1
O2 2 0 3 2 3 3 3 2 1 1
O3 1 3 0 3 2 3 2 1 2 2



 (6.5)

Furthermore, we can use the parallel manipulators enumerated by our
method of enumeration of parallel manipulators, proposed in Section 5.4, pre-
sented in Table 19. Table 20 shows only the parallel manipulators of Table 19
with connectivity equal three.

Note that, analyzing the reduced matrix we indicate nine possible
choices of parallel manipulators with connectivity equal three, however, when
we analyze the number of parallel manipulators obtained by our method we
discard one of them which is isomorphic to one presented in Table 20. In fact,
the parallel manipulator 3|6 is isomorphic to parallel manipulator 3|2 and it
should be discarded.

Table 20 – Number of planar parallel manipulators with one end-effector and
connectivity equal three.

Bases Parallel Manipulators Total number

1 1|7;1|9 2

2 2|3; 2|5; 2|6; 2|7 4

3 3|2; 3|4 2

Total number of parallel manipulatorsΣ = 8

Using the results of Table 20 and the kinematic chain shown inFig-
ure 62, it is possible to incorporate “other requirements”,as indicated by
Tsai’s methodology (see Figure 1, page 5), to evaluate the most adequate par-
allel manipulators for design detailing. For example, we have three possible
choices of the base, i.e. 1, 2 or 3, if we identify that the baseneed to be a
ternary link we have just two possible parallel manipulators as indicated by
line 1 of Table 20, i.e. 1|7 and 1|9. Other two choices of base are binary: the
base 2 is connect to one ternary link and one binary link and the base 3 is
connected to two ternary links.

According to Tsai (2001), if a parallel manipulator has the number of
limbs equal to the number of degrees of freedom (mobility) ofthe moving
platform such that each limb is controlled by one actuator and all actuators
are mounted on or near the fixed base, the parallel manipulator will have the
advantages of low inertia, high stiffness, and large payload capacity. Thus,
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as the parallel manipulator has mobility equal to three, themost promising
choice to the fixed link is a ternary link. As discussed in Section 4.2.3 (Ex-
ample 12 on page 70) the connectivity is an important criterion for selecting
the most promising parallel manipulator because the connectivity determines
the ability of the moving platform to perform a determined task. Thus, for
the planar kinematic chain shown in Figure 62(a) (λ = 3 andM = 3), the
most promising choice to the connectivity between base and end-effector is
Cbase,end−e f f ector= 3, i.e. the relative mobility between base and end-effector
is equal to three. Therefore, we have only two possibilitiesof selection of
the base and end-effector for the kinematic chain shown in Figure 62, i.e. 1|7
and 1|9. Only these two parallel manipulators have ternary base (according
to Tsai (2001)) and connectivity equal to three (according to Hunt (1978),
Liberati and Belfiore (2006), Martins and Carboni (2007)). Therefore, only
these two parallel manipulators will be considered in the design detailing.

6.3.1.3 Comparison of the analysis of the enumerated parallel manipulators

This section presents a comparison of the results of application of the
techniques presented in Chapters 5 and 6 with a general enumeration as dis-
cussed in Section 5.4.3.

Table 21 shows the comparison of the results using symmetry analysis
(applying our methods) and without symmetry analysis (see Section 5.4.3).
Column four of Table 21 shows the number of isomorphisms avoided apply-
ing our techniques.

Table 21 – Comparison of the analysis of kinematic structures.

Total number of parallel
manipulators

Using sym-
metry anal-
ysis

Without sym-
metry analy-
sis

Isomorphisms
avoided

Ci, j = 1,2,3 23 90 67
Ternary base 9 36 27
Ci, j = 3 8 30 22
Ternary base andCi, j = 3 2 8 6
Ci, j =Cbase,end−e f f ector

The first line of Table 21 shows a comparison between the totalnum-
ber of parallel manipulators. Using symmetry analysis, as presented in Ta-
ble 19, we have 23 parallel manipulators. Without symmetry analysis, as
indicated in Section 5.4.3, we have 90 parallel manipulators. The number of
isomorphic parallel manipulators enumerated unnecessarily when the sym-
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metry is not used is shown in the fourth column of Table 21.
The second line of Table 21 shows a comparison between the total

number of parallel manipulators with ternary base. Using symmetry analysis,
and the results of the first line of Table 20 we have 9 parallel manipulators
and, without symmetry analysis, we have 36 parallel manipulators (see Sec-
tion 5.4.3).

The third line of Table 21 shows a comparison between the total num-
ber of parallel manipulators withCi, j = 3. Using symmetry analysis and the
results of Table 20 we have only 8 parallel manipulators. Without symme-
try analysis, all possible choices of base and end-effectorwith connectivity
Ci, j = 3 need to be evaluated. Using the connectivity matrix presented in
Equation 4.15 (page 72) we identify 30 possibilities of choices withCi, j = 3.
The number of isomorphic parallel manipulators enumeratedunnecessarily
when the symmetry is not used is shown in the fourth column of Table 21.

The fourth line of Table 21 shows a comparison between the total num-
ber of parallel manipulators withCi, j = 3 and ternary base. Using symmetry
analysis, and the results of the first line of Table 20 we have only 2 parallel
manipulators. Without symmetry analysis, all possible choices of base and
end-effector with connectivityCi, j = 3 and ternary base need to be evaluated.
Using the connectivity matrix presented in Equation 4.15 (page 72) and the
kinematic chain shown in Figure 62 (page 113), we identify 8 possibilities
of choices withCi, j = 3 and ternary base because we have four ternary links,
i.e. links 1, 7, 8 and 10.

If the functional requirements of the parallel manipulatorare ternary
base and connectivity equal to three (as discussed in Section 6.3.1.2), then
only two parallel manipulators originated of kinematic chain shown in Fig-
ure 62 will be considered in the design detailing, i.e. 1|7 and 1|9 (see Sec-
tion 6.3.1.2). Figure 63 shows these two parallel manipulators. As we can see,
the techniques developed in this thesis permit us to select the most promis-
ing parallel manipulators to design detailing, the number of possible parallel
manipulators is reduced from 90 to 2 (see Table 21).

This simple example shows the potential of the techniques introduced
in this thesis. As we can see, the methods presented in this thesis enumerate
all possible parallel manipulators and avoids isomorphisms which is a NP-
hard1 problem.

Below, we present two other examples just to show the potential of the
theorems proved in this chapter. From the reduced matrix representation it is
clear that the analysis will be simplified.

1A problem is NP-hard if an algorithm for solving it can be translated into one for solving
any NP-problem (nondeterministic polynomial time). NP-hard therefore means “at least as hard
as any NP-problem”, although it might, in fact, be harder (WEISSTEIN, 2009)
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Figure 63 – The only two possible parallel manipulators, originated from
kinematic chain shown in Figure 62, selected to design detailing.

6.3.2 Example 2: Hybrid 6-DoF Mechanisms

Let X be the kinematic chain of the hybrid 6-DoF manipulator pre-
sented in Figure 11 of Belfiore and Benedetto (2000) and shownin Figure 64.

In this case,Aut(X) in terms of the generator set is given by:

Aut(X) =

〈

σ1 = (7 11)(8 12)(9 13)(10 14)
σ2 = (20 24)(21 25)(22 26)(23 27)
σ3 = (15 20)(16 21)(17 22)(18 23)
σ4 = (2 7)(3 8)(4 9)(5 10)
σ5 = (1 19)(2 18)(3 17)(4 16)(5 15)(7 23)(8 22)
σ5 = (9 21)(10 20)(11 27)(12 26)(13 25)(14 24)

〉

The orbits are:

O = {{1 19};{2 7 11 18 23 27};{3 8 12 17 22 26};
O = {4 9 13 16 21 25};{5 10 14 15 20 24};{6}}

Using the Theorem 2 we can reduce the connectivity matrix using a
representative element of each orbit of the automorphism group. Following
the same procedure applied in the example above, the connectivity matrix
C(X) presented in Appendix B of Belfiore and Benedetto (2000), which is
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Figure 64 – Hybrid 6-DoF manipulator (BELFIORE; BENEDETTO,2000;
LIBERATI; BELFIORE, 2006).

27×27, is reduced to:

Cr (X) =















1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

O1 0 1 2 3 3 3 1 2 3 3 1 2 3 3 4 5 6 6 6 4 5 6 6 4 5 6 6
O2 1 0 1 2 3 3 2 3 3 3 2 3 3 3 4 5 6 6 6 4 5 6 6 4 5 6 6
O3 2 1 0 1 2 3 3 3 3 3 3 3 3 3 4 5 6 6 6 4 5 6 6 4 5 6 6
O4 3 2 1 0 1 2 3 3 3 3 3 3 3 3 3 4 5 5 5 3 4 5 5 3 4 5 5
O5 3 3 2 1 0 1 3 3 3 2 3 3 3 2 2 3 4 4 4 2 3 4 4 2 3 4 4
O6 3 3 3 2 1 0 3 3 2 1 3 3 2 1 1 2 3 3 3 1 2 3 3 1 2 3 3















where we chose as representative elements of each orbit the elements (links)
1, 2, 3, 4, 5, and 6.

In this case the connectivity matrix is reduced from 27×27 to 6×27.
Other properties represented by matrices, such as degrees-of-control, redun-
dancy and adjacency, also are reduced from 27×27 to 6×27.

6.3.3 Example 3: Redundant Mechanism Employed in Space Missions

Let X be the kinematic chain of a multiple-arm robot employed in
space missions presented by Belfiore and Benedetto (2000) and shown in
Figure 65.

In this case,Aut(X) in terms of the generator set is given by:

Aut(X)=

〈

σ1 = (1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 24)
σ2 = (8 16)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)

〉

The orbits are:

O = {{1 30};{2 29};{3 28};{4 27};{5 26};{6 25};{7 24};{8 16};
O = {9 17},{10 18};{11 19};{12 20};{13 21};{14 22};{15 23};{31}}
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Figure 65 – Redundant Mechanism Employed in Space Mis-
sions (BELFIORE; BENEDETTO, 2000; LIBERATI; BELFIORE, 2006).

Using the Corollary 1 we can reduce the connectivity matrix using a
representative element of each orbit of the automorphism group. Following
the same procedure applied in the examples above, the redundancy matrix
R(X) presented in Appendix B of Belfiore and Benedetto (2000) is reduced
to:

Rr (X) =























































1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3031

O1 0 0 0 0 0 0 0 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 1
O2 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 0
O3 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 0
O4 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 0 0 1 2 3 4 5 6 0 0 1 2 3 4 5 0
O5 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 0
O6 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 0 0 0 0 1 2 3 4 0 0 0 0 1 2 3 0
O7 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 0 0 0 0 0 1 2 3 0 0 0 0 0 1 2 0
O8 2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 2 3 0 0 0 0 0 1 2 0
O9 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 0 0 0 0 1 2 3 0
O10 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 0
O11 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 0 0 1 2 3 4 5 0
O12 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 0
O13 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 0
O14 8 7 6 5 4 3 2 0 0 0 0 0 0 0 0 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 1
O15 9 8 7 6 5 4 3 1 0 0 0 0 0 0 0 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 2
O16 2 1 0 0 0 0 0 0 0 0 0 0 1 2 3 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 0























































where we chose as representative elements of each orbit the elements (links)
1, 2, 3, ..., 15 and 16.

In this case the redundancy matrix is reduced from 31×31 to 16×31.

6.4 CONCLUSIONS

This chapter is based on the following papers:

• “Criteria for Structural Synthesis and Classification of Mechanisms”
(SIMONI; MARTINS, 2007) and

• “Group and Graph Theories Applied to the Analysis of Mechanisms
and Parallel Robots” (SIMONI et al., 2010).
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In this chapter we classified the criteria to kinematic analysis, i.e. mo-
bility, variety, connectivity, degrees-of-control, redundancy and symmetry,
into global and local criteria. Global criteria are properties of the kinematic
structure and local criteria are properties between members (links) of the
kinematic structure.

The main contribution of this chapter is to prove the invariance of
connectivity, degrees-of-control and redundancy, i.e. local criteria, by the ac-
tion of the automorphism group of the graph. The connectivity, degrees-
of-control and redundancy are symmetric properties of a kinematic chain,
i.e. links which are symmetric by the action of the automorphism group of
the graph have the same properties. Considering that symmetric links are
identified by the orbits of the automorphism group of the graph, we reduce
the matricial representation considering one representative element of each
orbit. Thus, the order of the matrices is reduced fromn× n to o× n where
n is the number of links of the kinematic chain ando is the number of or-
bits of the automorphism group of the graph. As shown in Section 6.3 the
reduced representation simplify the analysis of kinematicstructures. The re-
duced representation presented is a minimal representation of the properties
of kinematic chains in terms of symmetry.

Considering that the majority of parallel manipulators in the litera-
ture have symmetric kinematic chains (FANG; TSAI, 2002; LI et al., 2004;
HUANG; LI, 2003; KONG; GOSSELIN, 2007, 2005, 2004b; GOGU, 2008,
2009), the reduced representation offers considerable advantages. As shown
in the examples, if a kinematic chain has symmetry, it is possible to obtain
a gain in terms of the storage of matrices, and in the simplicity of the kine-
matic analysis. These techniques can also be applied to kinematic chains of
serial and hybrid manipulators. The only cases for which thetheory presented
herein is not advantageous is when the graph is fully asymmetric, i.e. in rare
practical cases.
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7 CONCLUSIONS AND FURTHER WORKS

This is the first thesis that considers the problems of enumeration and
analysis of kinematic structures developed in the Mechanical Engineering
Postgraduate Program of The Federal University of Santa Catarina. It is a
broad work involving the phases of synthesis and analysis, i.e. generator and
evaluator of Tsai’s methodology shown in Figure 1 (page 5), and it opens a
large field of research. The main focus of this work is to applyintegrated
tools of group and graph theory for enumeration and analysisof kinematic
structures.

This work is the interest of the UFSC robotics research groupfront
of current challenges. New projects of the UFSC robotics laboratory have a
current trend towards mechanisms and parallel manipulators.

7.1 CONCLUSIONS

We improved graph and group theory tools for the applicationcon-
sidered in this thesis and we presented bibliography reviews of mechanisms
and machines concepts, enumeration of kinematic structures and criteria of
analysis. Using integrated tools of graph and group theory,we presented a
precise definition of symmetry in kinematic structures using the concepts of
symmetry, actions and orbits of the automorphism group of graphs (see Sec-
tion 2.3 on page 26). Symmetry is successfully applied in theenumeration
and analysis of kinematic structures.

We presented a systematic procedure for enumeration of kinematic
structures into three levels (see Figure 43 on page 76):

• Level 1 - Enumeration of kinematic chains (Section 5.2):From
structural characteristics (number of links, number of joints, mobility,
order of screw system) kinematic chains are enumerated. Theattributes
of kinematic chains are: number of links (n), number of 1-DoF joints
( j), mobility (M) and order of screw system (λ ). The main tools used
in this level are: graph theory and screw theory.

• Level 2 - Enumeration of mechanisms (Section 5.3):Each kine-
matic chain originates mechanisms selecting all differentbases. The
attributes of mechanisms are: number of links (n), number of 1-DoF
joints (j), mobility (M) and order of screw system (λ ) and base of
mechanism. The tools used in this level are: graph theory, group theory
and screw theory; mainly the concepts of symmetry, actions and orbits
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of the automorphism group of non-colored vertex graphs.

• Level 3 - Enumeration of parallel manipulators (Section 5.4): Each
mechanism originates parallel manipulators selecting different links to
be end-effectors. The attributes of parallel manipulatorsare: number
of links (n), number of 1-DoF joints (j), mobility (M) and order of
screw system (λ ) and base and end-effector of parallel manipulator.
The tools used in this level are: graph theory, group theory and screw
theory; mainly the concepts of symmetry, actions and orbitsof the au-
tomorphism group of colored vertex graphs.

The main contributions of each level are summarized below:

• Level 1 - Enumeration of kinematic chains:

– We presented the current status of enumeration of kinematicchains
(see Tables 8, 9 and 10 on pages 80, 81 and 82, respectively).

– Based on previous work of the authors, we solved the discrepan-
cies of the results found in the literature, see Martins et al. (2010).

– We discussed the results that are still not in compliance andwe
concluded that are strong evidence of typos in view of the simi-
larities between the numbers.

• Level 2 - Enumeration of mechanisms:

– We introduced a new notation of mechanisms in terms of graphs
(see Section 5.3.1 on page 83).

– We presented an improvement of the method of enumeration of
mechanisms proposed by Simoni (2008) using the concepts of
symmetry, actions and orbits of automorphism group of the graph
associated to mechanism (see Section 5.3 on page 83).

– We presented the current status of enumeration of mechanisms
and we confirmed the results found in the literature (see Tables 11, 12
and 13 on pages 91, 92 and 93, respectively).

– We indicated and discussed all the discrepancies of the results
found in the literature and we indicated incorrect results by Si-
moni (2008).

• Level 3 - Enumeration of parallel manipulators:

– We introduced a new notation of parallel manipulators in terms of
graphs (see Section 5.4.1 on page 94).
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– We presented a new method for enumeration of parallel manipu-
lators using the concepts of symmetry, actions and orbits ofau-
tomorphism group of the colored graph associated to the parallel
manipulator (see Section 5.4.2 on page 95).

– We presented several new results of parallel manipulators (see
Examples 17, 18 and 19 on pages 100, 105 and 106, respectively).

The graph representation of mechanisms and parallel manipulators introduced,
respectively, in Sections 5.3.1 and 5.4.1 is effective and some properties of the
representation are:

• Completeness: A graph represents all relationship in the kinematic
structures;

• Uniqueness: Each graph represents an unique kinematic structure un-
less relabeling of vertices/links (automorphisms);

• Non-redundancy: The graph provides the essential information of a
kinematic structures;

• Comprehensiveness: The representation is easy to understand.

The techniques of enumeration introduced in the systematicprocedure
described above are not only applicable for enumeration of mechanisms and
parallel manipulators. Appendix A presented an application of these tech-
niques to enumeration of planar metamorphic robots configurations. The re-
sults of Appendix A were presented in the 1st ASME/IFToMM International
Conference on Reconfigurable Mechanisms and Robots (ReMAR 2009) and
received the best award paper on reconfigurable robots for the application of
group and graph theories tools to solve the problem of enumeration of planar
metamorphic robots configurations (MARTINS; SIMONI, 2009a).

In Chapter 6, we presented a new approach for structural analysis of
kinematic structures using integrated tools of group and graph theory. First,
we reviewed the main criteria used to classify the kinematicstructure enu-
merated and, then, these criteria are classified into globaland local crite-
ria. Global criteria are properties of the kinematic structure and local criteria
are properties between members (links) of the kinematic structure. Second,
we proved the invariance of local criteria by the action of the automorphism
group associated with the graph of the kinematic structure:invariance of mo-
bility, invariance of connectivity, invariance of degrees-of-control and invari-
ance of redundancy. By exploring the symmetries of the kinematic structure,
we developed a technique to reduce the size of matricial representation of
connectivity, degrees-of-control and redundancy fromn×n to o×n, whereo
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is the number of orbits by the action of the automorphism group of the asso-
ciated graph. The reduced representation simplify the analysis of kinematic
structures. An example is presented to show the potential ofthe technique.

Combining the techniques presented in this thesis, we avoidthe iso-
morphism problem which is a NP-hard problem.

7.2 RELATED PAPERS

This work yielded several papers for journals and conferences:

• Mãos robóticas: Critérios para sı́ntese estrutural e classificação (SI-
MONI et al., 2007);

• Criteria for structural synthesis and classification of mechanism (SI-
MONI et al., 2007);

• Enumeration of kinematic chains and mechanisms (SIMONI et al.,
2009);

• Enumeration of parallel manipulators (SIMONI et al., 2008);

• Group and Graph Theories Applied to the Analysis of Mechanisms and
Parallel Robots (SIMONI et al., 2010);

• Fractionation in planar kinematic chains: Reconciling enumeration con-
tradictions (MARTINS et al., 2010);

• Enumeration of planar metamorphic robots configurations (MARTINS;
SIMONI, 2009a);

• Metamorphic robots: Enumeration of configurations and motion plan-
ning (MARTINS; SIMONI, 2009b);

• Type synthesis of low-DoF parallel robots based on screw theory (MAR-
TINS; SIMONI, 2009a);

• Progressive dynamic analysis of serial robots based on screw theory
(LAUS et al., 2009);

• Progressive dynamic analysis of serial robots based on screw theory:
An extension to the theory (LAUS et al., 2010).
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7.3 FURTHER WORKS

It is a broad work involving the problems of enumeration and analysis
of kinematic structures and it opens a larger field of research. Some interest-
ing fields are presented below:

• Enumeration of fractionated kinematic chains to design hybrid manip-
ulators.

• The specialization of mechanisms in the sense of to enumerate special-
ized mechanisms with a determined number and type of joints,i.e. ro-
tative, prismatic, spherical, and so on (see Sections 3.4.1and 3.4.2).

• To extend the method of enumeration of parallel manipulators from
one end-effector ton end-effectors. A work in the line of research of
Alizade and Bayram (2004).

• Type synthesis of kinematic structures obtained in the number synthesis
process.

• Classification of symmetries of kinematic chains using automorphism
group of the associated graph, girth and distance.

• Exploring symmetries in the growing field of reconfigurable robots
(modular and metamorphic robots) (MARTINS; SIMONI, 2009a,2009b).

• Synthesis of protein using group theory and graph symmetries.

• To analyze the optimal number of legs (or loops) of a mechanism and
a parallel manipulator for each screw system. To analyze theinfluence
of each leg on the complexity of kinematic and dynamic equations, to
investigate the influence of each leg in the workspace, to investigate
the influence of each leg to load capacity. The results of thisanalysis
conduce to another important criteria,loops or number of legs, to select
the best mechanism for each screw system.
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ALIZADE, R.; BAYRAM, Ç. Structural synthesis of parallel manipulators.
Mechanism and Machine Theory, Elsevier, v. 39, n. 8, p. 857–870, 2004.

ALIZADE, R.; BAYRAM, C.; GEZGIN, E. Structural synthesis ofserial
platform manipulators.Mechanism and Machine Theory, v. 42, n. 5, p.
580–599, 2007.

ALPERIN, J.; BELL, R.Groups and Representations. New York: Springer,
1995.

ANGELES, J. The qualitative synthesis of parallel manipulators.Journal of
Mechanical Design, v. 126, n. 4, p. 617–625, 2004.

BACK, N. et al.Projeto Integrado de Produtos - Planejamento, Concepção
e Modelagem. São Paulo: Monole Editora Ltda, 2008.

BALL, R. A Treatise on the Theory of Screws. New York: Cambridge
University Press, 1998.

BELFIORE, N. P.; BENEDETTO, A. D. Connectivity and redundancy in
spatial robots.The International Journal of Robotics Research, v. 19, n. 12,
p. 1245–1261, 2000.

BI, Z.; GRUVER, W.; ZHANG, W. Adaptability of reconfigurablerobotic
systems. In:IEEE International Conference on Robotics and Automation,
2003. Proceedings. ICRA’03. [S.l.: s.n.], 2003. v. 2, n. 1, p. 2317–2322.



134

BIGGS, N.Algebraic graph theory. New York: Cambridge University Press,
1993a.

BIGGS, N.Algebraic graph theory. [S.l.]: Cambridge University Press,
1993b.

BONEV, I. The true origins of parallel robots, parallemic
online review. 2001. Accessed 29-Abr-2009. Disponı́vel em:
<http://www.parallemic.org/Reviews/Review007.html>.

BONEV, I. What’s going on with parallel robots. 2002. Robotics on line.
Disponı́vel em:<http://www.roboticsonline.com>.

BONEV, I. Gallery of Existing Parallel Mecha-
nisms. 2009a. Accessed 25-Jun-2009. Disponı́vel em:
<http://www.parallemic.org/WhosWho/Gallery.html>.

BONEV, I. Parallemic. 2009b. Accessed 20-Jun-2009. Disponı́vel em:
<http://www.parallemic.org/>.

BRANDT, G. et al. Crigos: a compact robot for image-guided orthopedic
surgery.IEEE transactions on information technology in biomedicine, v. 3,
n. 4, p. 252–260, 1999.

BROGARDH, T. PKM research-important issues, as seen from a product
development perspective at ABB robotics. In:Proceedings of the
WORKSHOP on Fundamental Issues and Future Research Directions for
Parallel Mechanisms and Manipulators. Quebec City, Quebec, Canada:
[s.n.], 2002.

BURROW, M.Representation theory of finite groups. New York: Academic
Press, 1993.
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para sı́ntese estrutural e classificação. In: . XV Jornadas de Jóvenes
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This appendix presents an original application of the techniques of
enumeration presented in Chapter 5. This appendix presentsthe applica-
tion of group and graph theory tools presented in Chapter 2 isin the field
of metamorphic robotic systems. A metamorphic robotic system is a col-
lection of mechatronic modules that can dynamically self-reconfigure in a
variety of configurations, i.e. kinematic chains, to meet different or changing
task requirements (CHIRIKJIAN, 1994). The contribution ofthis appendix
to enumeration of planar metamorphic robots configurationsis based on the
following paper

•“Enumeration of planar metamorphic robots configurations”(MAR-
TINS; SIMONI, 2009a).

This paper was presented in the 1st ASME/IFToMM International Conference
on Reconfigurable Mechanisms and Robots (ReMAR 2009) and received the
best award on reconfigurable robots for the application of group and graph
theory tools to solve the problem of enumeration of metamorphic robots con-
figurations

This appendix shows how to enumerate all the non-isomorphiccon-
figurations of a planar metamorphic robotic system. Due to typical symme-
tries in module design, different assemblies may generate isomorphic robotic
structures. A very useful simplification for metamorphic robotic systems is
their representation through graphs. In this way, it is possible to apply the
group theory tools discussed in Section 2.1 for the identification of symme-
tries of these metamorphic robotic systems. In particular,we define the con-
cept of binary orbits of the automorphism group of graphs associated with the
metamorphic robot configurations.

A.1 INTRODUCTION

A metamorphic robotic system is a collection of mechatronicmodules
that can dynamically self-reconfigure (CHIRIKJIAN, 1994).A change in
the macroscopic morphology results from the locomotion of each module
over its neighbors. Potential applications of metamorphicsystems composed
of a large number of modules include (CHIRIKJIAN, 1994; CHIRIKJIAN;
PAMECHA, 1996; CHIANG; CHIRIKJIAN, 2001):

•obstacle avoidance in highly constrained and unstructuredenvironments;

•“growing” structures composed of modules to form bridges, buttresses,
and other civil structures in times of emergency;

•envelopment of objects, such as recovering satellites fromspace.
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One application in particular, civil structures in times ofemergency, evince
the importance of previously knowing all the possible configurations that a
predetermined finite number of modules can assume.

There some enticing questions in the literature of modular and meta-
morphic which are sometimes implicit in the context:

1.How to enumerate all possible configurations that a metamorphic robotic
system can assume (CHEN; BURDICK, 1998);

2.How to find the optimal configuration for a predetermined task (CHEN;
BURDICK, 1995; BI et al., 2003);

3.How to plan the movement of a metamorphic robot system, i.e. how
to determine a sequence of module movements required to go from a
given initial position to a desired goal configuration (PAMECHA et al.,
1997; CHIANG; CHIRIKJIAN, 2001).

Questions 2 and 3 are relatively frequent in the metamorphicrobot
literature. Chen and Burdick (1995) consider the problem offinding an op-
timal module assembly configuration for a specific task. Their solution was
formulated as a discrete optimization procedure. Bi et al. (2003) define the
configuration space as the set of all feasible configuration variations of the
robotic system and evaluate system adaptability for reconfigurable robotic
systems with large variations in configurations. They also described how to
achieve task-oriented configuration design of reconfigurable robotic systems.

Chirikjian and Pamecha (1996) proposed lower and upper bounds to
the number of moves needed to change such systems from any initial to any
final specified configuration. Pamecha et al. (1997) introduced the concept of
distance between metamorphic robot configurations and demonstrate that this
distance satisfies the formal properties of a metric. These metrics are applied
to the automatic self-reconfiguration of metamorphic systems for computing
the optimal sequence of movements required to reconfiguration. Dumitrescu
et al. (2004) present a number of fast formations for both rectangular and
hexagonal systems, and presented lower and upper bounds on the speed of
locomotion. Kamimura et al. (2003) propose an offline methodto generate a
locomotion pattern automatically for a modular robot in an arbitrary module
configuration.

Question 1, the problem of enumerating the set of kinematically dis-
tinct modular robot assembly configurations from a given setof modules, was
addressed by Chen and Burdick (1998). They introduced a representation of
a modular robot assembly configuration as an assembly incidence matrix and
defined equivalence relations based on symmetries in modulegeometry and
graph isomorphisms on the assembly incidence matrix. They also presented
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an algorithm to identify the kinematically equivalent robots. Chitta and Os-
trowski (2006) also focused on enumeration of distinct configurations of a
modular robot.

Common planar module designs are square (PAMECHA et al., 1996;
DUMITRESCU et al., 2002; CHIANG; CHIRIKJIAN, 2001) and hexagonal
(PAMECHA et al., 1996; ABRAMS; GHRIST, 2004; WALTER et al., 2004;
DUMITRESCU et al., 2002; WALTER et al., 2002). For spatial metamor-
phic systems there are cubic (RUS; VONA, 2001; YOSHIDA et al., 1998)
and dodecahedral (YIM et al., 1997, 2001) modules. Due to theinherent
symmetries of these modules design, different assemblies of these modules
may lead to several kinematically isomorphic robotic structures. To identify
these symmetries, hence eliminating isomorphisms, in metamorphic robotic
systems we use group theory, in particular the concept of orbits of automor-
phism group. This concept was previously applied to identify all mechanisms
and parallel manipulators of a kinematic chains by Simoni etal. (2009, 2008).
This tool helps avoiding isomorphisms in enumeration of planar metamorphic
robots configurations; therefore, all non-isomorphic configurations are enu-
merated.

A.2 MODELLING OF METAMORPHIC ROBOTS

A metamorphic robot system can be modeled by a graph and the group
theory tools presented in Section 2.1 can be applied to identify the symmetries
of modules configurations and so it is possible enumerate allconfigurations
that a set o modules can assume.

A.2.1 Graph representation

Figure 66(a) shows the metamorphic robot with two hexagonalmod-
ules presented by Pamecha et al. (1996). Figure 66(b) shows the kinematic
chain of this metamorphic robot configuration and Figure 66(c) its graph rep-
resentation (X).

A.2.2 Actions of automorphism group and orbits

The automorphisms group of the metamorphic robot presentedin Fig.
66(a) is composed by eight elements. The generators of the automorphism
group are:σ1=(1 7)(8 10), σ2=(2 6)(3 5) andσ3 =(1 2 6 7)(3 10 5 8)(4 9),
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(a)

(b) (c)

Figure 66 – (a) metamorphic robot with two hexagonal modules(Figure 4 of
Pamecha et al. (1996)); (b) kinematic chain and (c) Graph representation.

and the group is composed byσ1,σ2,σ3,σ4 = σ1 ◦ σ2,σ5 = σ1 ◦ σ3,σ6 =
σ2 ◦σ3,σ7 = σ1 ◦σ2 ◦σ3,σ8 = e, wheree is the identity element. Figures
67(a), 67(b), 67(c) and 67(d) shows the actions ofσ1, σ2, σ3 and ,σ4 in G,
respectively, on the labels of the metamorphic robot configuration.

For the metamorphic robot or graph shown in Figure 66 the orbits are:

•O1 = {1,2,6,7};

•O2 = {3,5,8,10};

•O3 = {4,9} and

•O4 = {11}.

A.3 STANDARD MODULES AND BINARY ORBITS

In this section, we present the standard modules of metamorphic robots
and discuss the symmetries of these modules. We also introduce the fun-
damental concepts of our technique of enumeration of planarmetamorphic
robots configurations: binary inversions and binary orbits.
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(a) σ1(X) (b) σ2(X)

(c) σ3(X) (d) σ4(X)

Figure 67 – Actions ofσ1, σ2, σ3 and ,σ4 in the graph of metamorphic robot
with two hexagonal modules shown in Figure 66(c).

As discussed in Section A.1, two standard modules applied toplanar
metamorphic robots are:

•square modules (PAMECHA et al., 1996; DUMITRESCU et al., 2002;
CHIANG; CHIRIKJIAN, 2001), see Figure 68(a), and

•hexagonal modules (PAMECHA et al., 1996; ABRAMS; GHRIST,
2004; WALTER et al., 2004; DUMITRESCU et al., 2002; WALTER
et al., 2002), see Figure 68(b).

A metamorphic robot system with square modules are represented by
a four-bar kinematic chain as shown in Figure 68(c). Similarly, the hexag-
onal module is represent by a six-bar kinematic chain as shown in Figure
68(d). Other issues of the metamorphic robot design, such asthe polarity
(PAMECHA et al., 1996), were not considered during the enumeration of
metamorphic robot configurations.

Figures 68(c) and 68(d) shows the internal symmetries of these mod-
ules. These symmetries may be identified by the orbits of automorphisms
group. In these modules, all links (edges) have the same properties; there-
fore, there is a single orbit for each module:
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(a) (b)

(c) (d)

Figure 68 – Standard modules of metamorphic robots: (a) Square module
(CHIANG; CHIRIKJIAN, 2001). (b) Hexagonal module (PAMECHAet al.,
1996). (c) Graph representation of square module. (d) Graphrepresentation
of hexagonal module.

•square module:O1 = {1,2,3,4} and

•hexagonal module:O1 = {1,2,3,4,5,6}.

A general metamorphic robot have multiple orbits. For example, the
metamorphic robot shown in Figure 69 has the following symmetries identi-
fied by the orbits of automorphism group:

•O1 = {1,6,10,15};

•O2 = {2,5,11,14};

•O3 = {3,4,12,13};

•O4 = {22,24};

•O5 = {7,9,16,18};

•O6 = {8,17} and

•O7 = {19,30,21,23}.
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Figure 69 – Configuration of hexagonal metamorphic robot.

In kinematic terms, there are two types of links in the metamorphic
robot system shown in Figure 69: binary and quaternary. Binary links 1-18
are connected to two other links while the quaternary links 19-24 are con-
nected to four other links. Thus, the orbitsO1, O2, O3 andO5 are composed
by binary links andO4, O6 andO7 are composed by quaternary links.

Planar metamorphic robots may have other types of links, butthey
must have a subset of binary links since all “external” linksare binary. These
binary provide means for the movement of the metamorphic robot. Hence, all
links of a metamorphic robot may be divided into two sets: binary and non-
binary links. Another detail is that the joints are all equals in the modules, or
they are R joints as shown in Figure 68(b) or they are P joints as shown in
Figure 68(a). So, fixing one link we have an inversion1 and we define:

Definition 17 (Binary inversions). Binary inversions are inversions com-
posed only by binary links.

Definition 18 (Binary orbits). Binary orbits are orbits composed only by bi-
nary inversions.

A property derived from the concept of binary orbits and directly de-
rived from the Definition 7 page 20 is:

Lemma 3 (Element of binary orbits). Every binary link is an element of a
binary orbit.

Therefore, binary links can be classified into binary orbits. Links in
the same binary orbit have identical symmetry properties inthe metamorphic
robot configuration. Whenever a new module is connected to two or more of

1Inversions are related with enumeration of mechanisms (seeSection 4.1.2)



158

the binary links from a same orbit, the resulting kinematic chains are isomor-
phic. For planar metamorphic robots, a new module can only beconnected
to links that belong to binary orbits. The binary orbits for the configuration
shown in Figure 69 areO1, O2, O3 andO5 and they will be called, respec-
tively, OC1, OC2, OC3 andOC4 where “C” means connection. Each binary
orbit results in a new connection and an element of each binary orbit should
be chosen to represent this connection.

In Section A.4, the configurations of metamorphic robot with“n+1”
modules generated by configurations of metamorphic robot with “n” modules
are explored.

A.4 ENUMERATION OF PLANAR METAMORPHIC ROBOTS CONFIG-
URATIONS

The enumeration process follows a tree structure. In root ofthe tree,
a first module is placed. The following modules are added, oneat a time,
selecting just one representative for each binary orbit. See Definition 18 in
Section A.3.

As orbits are equivalence classes and capture the internal symmetry of
a structure (metamorphic robot); modules elements (links)in the same orbit
when connected to other module elements result in isomorphic configura-
tions. For example, Figure 70 shows a metamorphic robot withtwo square
modules and another square module will be connected.

Figure 70 – Metamorphic robot with two square modules and another module
for connection.

The orbits of automorphism group of metamorphic robot with two
square modules are:

•O1 = {1,4};

•O2 = {2,3,5,6} and

•O3 = {7}.
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Since link 7 is quaternary, there are just two binary orbits

•OC1 = {1,4}

•OC2 = {2,3,5,6}.

The connection of a new module with links from a same orbit results
in kinematically isomorphic configurations as shown in Figures 71 and 72.
Figure 71 shows that the connection of a new module to the configuration of
metamorphic robot on elements from the orbitOC1 = {1,4} results in iso-
morphic configurations. Similarly, Figure 72 shows that theconnection of
a new module with elements from the orbitOC2 = {2,3,5,6} also results in
isomorphic configurations.

Figure 71 – Kinematically isomorphic configurations, obtained from Fig-
ure 70, by connecting another module in orbitOC1 = {1,4}.

Figure 72 – Kinematically isomorphic configurations, obtained from Fig-
ure 70, by connecting another module in orbitOC2 = {2,3,5,6}.

Summing up, there are only two ways of connecting the new module
to the current configuration, as shown in Figure 73.

Figure 73 – Kinematically distinct (non-isomorphic) configurations of a meta-
morphic robot with three square modules identified by the orbits of automor-
phism group.
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A.4.1 Metamorphic robot configurations with square modules

The technique will be presented by an example using square modules
to facilitate the understanding of how the tools are applied. In Section A.4.2,
we present metamorphic robot configurations with hexagonalmodules.

Without loss of generality, for identification of symmetries of meta-
morphic robot system with square modules by group theory, werepresent
this module by a four-bar kinematic chain as shown in Figure 68(c).

Consider an example with a set of five square modules as shown in
Figure 74. We start with a module in root of the tree (level 1) and identify all
the ways to connect another module, for this we enumerate thebinary orbits
through the group theory tools. In example there are only onebinary orbit.
Figure 74 marks one representative from each binary orbit with small inclined
parallel lines.

The next step is to enumerate configurations of metamorphic robots
with three square modules adding another module from the second level of the
tree. For this, we enumerate the binary orbits of configuration metamorphic
robot of the root. In this case are two as was illustrated in Figures 71, 72
and 73. The configurations metamorphic robot with three square modules are
obtained in the third level of the tree (see Figure 74).

The configurations metamorphic robot with four square modules are
obtained in the fourth level of the tree. In this level, thereare two isomorphic
configurations to be eliminated. This isomorphisms elimination is applied in
every level of the tree (see Figure 74).

Finally, to enumerate the configurations of metamorphic robot with
five square modules, all non-isomorphic configurations of metamorphic robot
with four square modules generated in the fourth level of thetree become
roots for the fifth level. The process repeats: identification of the binary
orbits, connection of a new module to single representativefrom each bi-
nary orbit, and elimination of the isomorphic configurations. At the end, of
the process, all non-isomorphic metamorphic robot configurations with five
square modules are obtained in the fifth level of the tree.

The numbers of all non-isomorphic planar metamorphic robotconfig-
urations with up to five square modules are (see Figure 74):

•1: with a single module (level 1);

•1: with two modules (level 2);

•2: with three modules (level 3);

•5: with four modules (level 4);
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•12: with five modules (level 5).

Figure 74 – Enumeration of all non-isomorphic metamorphic robot configu-
rations (bold lines) with up to five square modules. Configurations with thin
lines are those discarded due to isomorphism with previously generated kine-
matic chains.

A.4.1.1 Procedure in algorithmic form

In algorithm form, the procedure is summarized as:

Step 1Calculate the binary orbits of the metamorphic robot configuration of
the root.

Step 2Assemble a new module with one element from each binary orbit, iden-
tified in the previous step, of the current metamorphic robotconfigura-
tion.
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Step 3Run an (efficient) isomorphism test to eliminate the possible isomor-
phic configurations in each level of the tree.

Figure 75 illustrates the algorithm.

metamorphic robot configurations
with “n” modules

graph

orbit
“1”

orbit
“2”

vertex
link
“x”

biunivocal correspondence
links - vertices; joints - edges

the automorphisms group identify
the internal symmetries of the graph;
orbits provide elements from each
equivalence class .

......

......

orbits or equivalence classes

select one element from
each binary orbit;

orbit
“n”

vertex
link
“y”

vertex
link
“k”

config.
“x”

config.
“y”

...... config.
“k”

teste of isomorphisms

set of metamorphic robot confi-
gurations with “n+1” modules

biunivocal correspondence
links - vertices; joints - edges

possible connections with the next
module results in a new configura-
tion with “n+1” modules

Figure 75 – Flowchart of the proposed technique outlining the role of the
group theory tools for enumeration planar metamorphic robot configurations.

Group theory allows reducing the number of isomorphisms drastically
by preventing symmetries during the assembling procedure.However, as the
number of modules increases, the number of isomorphisms increases almost
combinatorially and the process becomes computationally expensive. Hence,
there is still a need of a more efficient isomorphism detection.

A.4.2 Metamorphic robot configurations with hexagonal modules

Let the enumeration of all non-isomorphic planar metamorphic robot
configurations with up to four hexagonal modules. The procedure is pre-
sented in Figure 76. Besides each arrow is located the numberof binary
orbits. The module of the first level of the tree has only one binary orbit. The
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metamorphic robot in second level has three binary orbits. The third level,
from left to right, has 2, 7 and 4 binary orbits, respectively.

The numbers of all non-isomorphic planar metamorphic robotconfig-
urations with up to four hexagonal modules are (see Figure 76):

•1: with a single module (level 1);

•1: with two modules (level 2);

•3: with three modules (level 3);

•8: with four modules (level 4);

Figure 76 – Enumeration of all non-isomorphic metamorphic robot configu-
rations (bold lines) with up to four hexagonal modules. Configurations with
thin lines are those discarded due to isomorphism with previously generated
kinematic chains.teste

A.5 CONCLUSIONS

This appendix introduced a technique for enumeration of allnon-isomorphic
planar metamorphic robot configurations. This technique was applied to
the most common planar metamorphic robots, namely square and hexago-
nal modules. However, the technique may be easily extended to enumerate
non-planar metamorphic robot configurations based on othertypes modules
with only minor changes.

This appendix shows the effectivenees of the enumeration techniques
presented in Chaper 5.
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The enumeration consider in this appendix provide a first answer to
Question 1 in Section A.1:how many possible configurations a finite set of
metamorphic robotic system can assume?

Another related research topic is on planning the movement of a meta-
morphic robot system, i.e. how to determine a sequence of module move-
ments required to go from a given initial configuration to a desired goal con-
figuration.

Future work will be carried out to extend the method to enumeration
spatial metamorphic robots configurations whit cube, dodecaedral and so on,
in view of that the modules are symmetric.

Another future work is automatic configuration recognition. Auto-
matic configuration recognition is the process by which a modular system can
determine its own configuration without having it explicitly programmed.



APPENDIX B -- Parallel Manipulators
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A robot manipulator is a mechanical system under automatic control
that performs operations such as handling and locomotion (IONESCU, 2003).
The mechanical system of a robot manipulator consists of a sequence of rigid
bodies (links) interconnected by articulations (joints).From a topological
viewpoint, this mechanical system formed by links and joints is known as
kinematic chain. There are two fundamental structures of robots manipulators
from mechanical point of view: the serial and parallel manipulators. A serial
manipulator is formed by an open-loop kinematic chain: a kinematic chain
is termed open-loop if every link in a kinematic chain is connected to every
other link by one and only one path. A parallel manipulator isformed by a
closed-loop kinematic chain; a kinematic chain is termed closed-loop if every
link is connected to every other link by at least two distinctpaths.

An intrinsic property of a robot kinematic chain is the mobility, i.e. the
degrees of freedom (DoF). The DoF are distributed in the kinematic chain in
order to have a sufficient number to execute a given task. For example, to
develop a task in the plane 3-DoF are required (two for positioning a point
on the object and one for orienting the object with respect toa reference
coordinate frame) and to develop a task in three-dimensional space 6-DoF
are required (three for positioning and three for orienting). If more DoF than
task variables are available, the manipulator is said to be redundant from a
kinematic viewpoint (SICILIANO et al., 2009).

The space in which a robot can operate is its work envelope, which
encloses its workspace (SICILIANO; KHATIB, 2008). The workspace rep-
resents the portion of the environment that manipulator’s end-effector can
access. Its shape and volume depend on the manipulator structure as well as
on the presence of mechanical joint limits (SICILIANO et al., 2009).

The last few years have witnessed an important development in the use
of robots on the industrial world mainly due to their flexibility. Serial manip-
ulators are by far the most common industrial robots (MERLET, 2006). Ac-
cording to the International Federation of Robotics (IFR),up to 2005, 59% of
installed robot manipulators worldwide has anthropomorphic geometry, 20%
has Cartesian geometry, 12% has cylindrical geometry, and 8% has SCARA
geometry (LITZENBERGER, 2009; SICILIANO et al., 2009). Their main
advantage is its large workspace with respect to its own volume and occu-
pied floor space. However, several disadvantages are surrounding this type of
robots:

•the low stiffness inherent to an open-loop kinematic structure;

•the low load/weight ratio;

•the errors are accumulated and amplified from link to link;
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•they have to carry the weight of the actuators.

Thus, we see that serial manipulators are inappropriate fortasks requiring
either the handling of heavy loads, an adequate level of positioning accuracy,
or the ability to move fast (DOMBRE; KHALIL, 2007; MERLET, 2006).

On the other hand, the parallel manipulators are attractinginterest
from research and industry (MERLET; DANEY, 2008), several interesting
parallel manipulators are appearing in university laboratories and some are
already on the market. A recent report of the International Federation of
Robotics already present statistics on parallel manipulators (LITZENBERGER,
2009). The interest of research on parallel manipulators isbecause current
applications require high stiffness, high accuracy positioning, high speed and
ability to manipulate large loads. These are the main advantages of parallel
manipulators and their disadvantages are:

•limited workspace;

•singularities inside the workspace, where the manipulatorbecomes un-
controllable;

•complex design and control.

As opposed to serial manipulators, in which the number of kinematic
arrangements (types) is somewhat limited, parallel manipulators can lead to
a very large number of kinematic arrangements for a given DoFor motion
pattern. Therefore, a systematic approach is needed in order to determine all
types of parallel manipulators thereby allowing the development of the most
promising designs. This fundamental issue, conceptual design of parallel ma-
nipulators, is the main focus of this work.

Parallel manipulators can be found today in the manufacturing in-
dustry, agricultural, military and domestic applications, space exploration,
medicine, education, information and communication technologies, enter-
tainment, etc.

B.1 SERIAL MANIPULATORS

Currently, the most common robot architecture is undoubtedly serial.
Serial manipulators are constituted of a succession of rigid bodies linked to its
predecessor and its successor by a 1- joint, from base to end-effector. As ex-
ample we have the Scara which has 4-DoF as shown in Figure 77(a), the scara
motion is also known in literature as Schoenflies motion. Another example of
a serial manipulator with 6-DoF is shown in Figure 77(b). This design offers
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numerous advantages, the Figure 77 illustrate well the mainadvantage of this
type of manipulator; its large workspace with respect to itsown volume and
occupied floor space. The popularity of this architecture inthe industry is a
clear indication of its ability to fulfill a broad variety of needs.

(a) Scara robot. (b) Anthropomorphic robot.

Figure 77 – Serial manipulators and their workspace (SICILIANO et al.,
2009).

In agreement with Merlet (2006) and Dombre and Khalil (2007), the
low transportable payload and poor accuracy are both inherent in the serial
manipulators; the links are submitted to high forces and moments requiring
them to be very rigid, and consequently very heavy (which is detrimental to
fast motion), the errors of the internal sensors on the manipulator travel in an
amplified manner to the end-effector. Merlet (2006, Table 1.1 and 1.2) shows
that Scara type manipulators, that have a good ratio load/mass because they
are direct-drive robots (without a reduction gear between the motors and the
joints), the ratio load/weight is always less than 0.25 for heavy loads. For ex-
ample, for a load capacity of 500 kg the robots mass of the Scara type will be
at least 2000 kg. In another structures, such spherical and anthropomorphic,
this ratio is worse (see Merlet (2006, Table 2)). For the positioning accuracy
there are two concepts to analyze: absolute accuracy, defined as the distance
between the desired and the actual position of the end-effector, and repeatabil-
ity, which is the maximum distance between two positions of the end-effector
reached for the same desired pose from different starting positions. Merlet
(2006, Table 1.1 and 1.2) shows that the repeatability may beinsufficient for
certain tasks and in most cases the absolute accuracy of a serial manipulator
is poor.

In summary, the serial manipulators are inappropriate for tasks requir-
ing either the manipulation of heavy loads, or a good positioning accuracy, or
to work at different scales, or the ability to move fast (DOMBRE; KHALIL,
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2007; MERLET, 2006).
One alternative to avoid these problems is to use the so-called parallel

manipulators, also known as parallel robots or parallel mechanisms.

B.2 PARALLEL MANIPULATORS AND THEIR APPLICATIONS

A generalized parallel manipulator is a closed-loop kinematic chain
mechanism whose end-effector (mobile platform) is linked to the base (fixed
platform) by at least two independent kinematic chains called limbs (MER-
LET, 2006; GOGU, 2008). The mobile platform can achieve between one to
three independent translations and one to three independent rotations (DoF).

Parallel manipulators are usually faster than traditionalserial manip-
ulators, since the motors can be mounted on the base, consequently saving
weight. They are also stronger than serial manipulators because of the closed-
loop kinematic chain and the load/weight ratio is considered very good. An-
other benefit is that the errors of the end-effector is less than the errors of
serial manipulators since the errors are divided between all legs (as opposed
to being additive as in serial manipulators). However, parallel manipulators
have usually a more limited workspace; for instance, they generally cannot
reach around obstacles because the legs can collide and, in addition, each
leg has passive joints and each one has its own mechanical limits (BONEV,
2002). Another drawback of parallel manipulators is that they lose stiffness
in singular positions. In these positions, the parallel manipulator gains finite
or infinite degrees of freedom which are uncontrollable; it becomes shaky or
mobile. Also, the freedom of motion on the end-effector are usually coupled
together due to the multi-loop kinematic structure of the parallel manipulator
(GOGU, 2008). Hence, motion planning and control usually become com-
plicated. The advantages and current requirements in complex applications
(e.g. medical applications) continue to motivate the development of parallel
manipulators.

The development of parallel manipulators (PMs) can be datedback to
the early 1960s when Gough and Whitehall first devised a six-linear jack sys-
tem for use as a universal tire testing machine (TSAI, 1999; KONG; GOS-
SELIN, 2007) shown in Figure 78(a). Later, Stewart developed a platform
manipulator for use as a flight simulator, (see Figure 78(b))(TSAI, 1999).

Since 1980, there has been an increasing interest in the development
of parallel manipulators. Early research on parallel manipulators have con-
centrated primarily on 6-DoF Gough-Stewart-type parallelmanipulators. In
the last decade, parallel manipulators with fewer than 6-DoF attracted indus-
try’s and researcher’s attention. For some industrial applications, a parallel
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(a) (b)

Figure 78 – Gough-Stewart platforms: (a) Gough’s original tire testing ma-
chine (SICILIANO; KHATIB, 2008). (b) Schematic of the Stewart platform
(BONEV, 2001).

manipulator with fewer than 6-DoF, called a low-DoF parallel manipulator,
is sufficient. Indeed, the study of this type of parallel manipulators is very
important. Kong and Gosselin (2007) question the need of low-DoF paral-
lel manipulators because a 6-DoF parallel manipulator could be used in all
applications. However, a low-DoF parallel manipulator exhibit interesting
features if compared to 6-DoF parallel manipulators; it hasthe advantages of
simpler mechanical design, lower manufacturing and operating cost, larger
workspace (reducing the legs interference and increase themaximum motion
range of the remaining DoF), and simpler control (FANG; TSAI, 2002; TSAI,
2001; MERLET, 2006). Therefore, the study of low-DoF parallel manipula-
tors recently become a main focus among the robotics research community.

B.2.1 1-DoF and 2-DoF parallel manipulators

Devices originated from closed-loop kinematic chains with1-DoF and
2-DoF normally are not called parallel manipulators and yesmechanisms due
to their low mobility. These mechanisms are used to convert motions of,
and forces on, one or several bodies into constrained motions of, and forces
on, other bodies and not to manipulate objects, this is the main reason for
not calling them parallel manipulators. Figure 79(a) showsa slider-crank
mechanism which has 1-DoF and Figure 79(b) shows a 2-DoF mechanism
used by NASA as a flight simulator for the Apollo missions (NASA, 2009).
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(a) (b)

Figure 79 – 1-DoF and 2-DoF mechanisms: (a) Schematic of slider-crank
mechanism. (b) 2-DoF mechanisms used by NASA as a flight simulator for
the Apollo missions (NASA, 2009).

B.2.2 3-DoF parallel manipulators

Parallel manipulators with 3-DoF in translation prove extremely inter-
esting for pick-and-place and machining operations.

Professor Clément Gosselin from Laval University Robotics Labora-
tory, proposed parallel manipulators with 3-DoF; 3-RRR spherical and 3-DoF
3-PRRR translational (GOSSELIN, 2009; GOSSELIN; KONG, 2002). Fig-
ure 80(a) shows the Laval University Agile Eye with three spherical DoF
and the Figure 80(b) shows the Tripteron with three translational DoF (GOS-
SELIN; KONG, 2002).

(a) (b)

Figure 80 – 3-DoF parallel manipulators: (a) Laval University Agile Eye. (b)
Tripteron (GOSSELIN, 2009; GOSSELIN; KONG, 2002).
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Figure 81 shows the Tricept manipulator proposed by Neumannwhich
has 3-DoF translational (NEUMANN, 1988). The Tricept was implemented
as a 6-DoF parallel manipulator by ABB Robotics and PKMtricept SL; 3-DoF
translational original from Tricept and 3-DoF spherical from a serial chain on
the moving platform (see Figure 81(b)).

(a) (b)

Figure 81 – Tricept parallel manipulator: (a) Schematic of the Tricept ma-
nipulator (NEUMANN, 1988). (b) Tricept T606 from PKMtricept SL (PKM
Tricept SL, 2009).

B.2.3 4-DoF parallel manipulators

Parallel manipulators with 4-DoF are of great interest in industrial ap-
plications (pick-and-place, electronic industry, food industry, and so on) and
they shows great advantage in medical applications and as flight simulators.

Clavel (1990), professor atÉcole Polytechnique Fédérale de Lausanne,
proposed the Delta manipulator, a parallel manipulator with 3-DoF transla-
tional and 1-DoF rotational. Figure 82(a) shows the original schematic of
the Delta parallel manipulator (CLAVEL, 1990). The Delta manipulator has
several applications since food industry until medical surgery. The Delta ma-
nipulator is extremely light and is said to be the fastest parallel manipula-
tor yet made; its workspace is favorable too (DAVIDSON; HUNT, 2004).
Figures 82(b) and 83(b) shows the ABB industrial Delta underthe name
IRB 340 FlexPicker and a medical application of a Delta, respectively. The
ISIS/SurgiScope system from ISIS Robotics (PRIQUEL, 2009)using a Delta
as microscope stand. Dr. Tim Lueth from MIMED (LUETH, 2009) realized
the world’s first head surgery (see Figure 83(b)).

Figure 83(a) shows the Adept Quattro s650H produced by ADEPT
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(a) (b)

Figure 82 – Delta: (a) Schematic of the Delta (CLAVEL, 1990).(b) ABB in-
dustrial Delta under the name IRB 340 FlexPicker (ABB ROBOTICS, 2009).

ROBOTICS (2009). The Adept Quattro s650H have Delta-type architecture
with four legs.

(a) (b)

Figure 83 – Delta-type robot: (a) Adept Quattro s650H (ADEPTROBOTICS,
2009). (b) World’s first Craniomaxillofacial surgery usinga Delta (LUETH,
2009).

François Pierrot and co-workers proposed the H4 and I4 family of par-
allel manipulators, in partnership with Toyota (PIERROT, 2009). These par-
allel manipulators uses various clever configurations of the moving platform
to get 4-DoF, three translations and one rotation, with a design that allows
for large rotation ability (PIERROT et al., 1999; KRUT et al., 2003; COM-
PANY et al., 2003; MERLET, 2006). I4 is an evolution of H4 architecture
(see Figure 84).
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(a) (b)

(c)

Figure 84 – H4 and I4 4-DoF parallel manipulators: (a) H4 parallel manipula-
tor. (b) I4 parallel manipulator. (c) Clever configurationsof the platforms. On
the left detail of H4 platform and on the right detail of I4 platform (PIERROT
et al., 2006).

B.2.4 5-DoF parallel manipulators

Parallel manipulators with 5-DoF are of great interest in the machine-
tool domain, so called five-axis machining (REFAAT et al., 2006; MERLET;
DANEY, 2008; MERLET, 2006). For example, in milling operation on the
machine tool domain, the rotation of the platform around itsnormal is not
needed, as the spindle will manage this DoF, hence only 5-DoFare needed.
Some 5-DoF parallel manipulators have been proposed, but few parallel ma-
nipulators were implemented (KONG; GOSSELIN, 2005; LI et al., 2004;
GAO et al., 2002; FANG; TSAI, 2002).

Figure 85 shows two 5-DoF parallel manipulator with identical limb
structures proposed by Fang and Tsai (2002).

Figure 86 shows the 5-axis machine P800/P2000 of Metrom; this ma-
chine has a clever head mechanism that allows it to use only 5 legs (MERLET,
2006). Figure 86(b) shows details of his platform (head). Figure 87 shows
the Okuma Cosmo Center PM-600 5-axis milling machine and detail of its
platform (head).
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(b)

Figure 85 – 5-DoF parallel manipulator proposed by Fang and Tsai (FANG;
TSAI, 2002): (a) 5-RRRRR. (b) 5-RPUR.

(a) (b)

Figure 86 – 5-axis machine: (a) The 5-axis P800 machine-toolfrom Metrom
(MERLET, 2006; BONEV, 2009a). (b) The head mechanism with 3 legs
attached to revolute joints sharing the same axis allows it to use only 5 legs
(BONEV, 2009a).

B.2.5 6-DoF parallel manipulators

Figure 88 shows the Hexaglide parallel manipulator fromÉcole Poly-
technique Fédérale of Zürich. The Hexaglide is actuatedby six linear ac-
tuators as shown in Figure 88(a). Figure 89(a) shows the Hexa710-6 from
Servos & Simulation (SERVOS AND SIMULATIONS, 2009), which is actu-
ated by six rotational actuators as shown in Figure 89(a). Figure 89(b) shows
an application of the Hexa for an entertainment simulator motion.

Another interesting parallel manipulator is the Eclipse, which has been
conceived and designed at the Robotics Laboratory of National Seoul Univer-
sity, Korea (ROBOTICS LABORATORY SEUL UNIVERSITY, 1995; RYU
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(a) (b)

Figure 87 – 5-axis machine: (a) Okuma Cosmo Center PM-600 (GMBH,
2009; BONEV, 2009a). (b) detail of its platform (BONEV, 2009a).

(a) (b)

Figure 88 – Hexaglide manipulator froḿEcole Polytechnique Fédérale of
Zürich: (a) Schematic of the Hexaglide (MERLET, 2006). (b)Its implemen-
tation as a machine-tool (MERLET, 2006).

(a) (b)

Figure 89 – Hexa 710-6 from Servos & Simulation (SERVOS AND SIMU-
LATIONS, 2009): (a) Detail of actuation. (b) An applicationof the Hexa as
an entertainment simulator motion base.
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et al., 1998). Eclipse has seven actuators as shown in Figure90, three car-
riages supporting legs on a circular rail, and on the legs arethree linear ac-
tuators supporting three revolute joints connected to fixedlength links, one
of which is actuated (MERLET, 2006). The other ends of the links are con-
nected to the moving platform through ball-and-socket joints. An evolution
of Eclipse was proposed by Kim et al. (2002), named Eclipse II(see Figure
91(b)). The Eclipse II is not redundant (see Schematic in Figure 91(a)) and
use circular railways to allow 360 degrees of rotation of theplatform.

(a) (b)

Figure 90 – Eclipse: (a) Schematic of the Eclipse (MERLET, 2006). (b)
First prototype of milling machine based on the Eclipse concept (ROBOTICS
LABORATORY SEUL UNIVERSITY, 1995).

(a) (b)

Figure 91 – Eclipse II: (a) Schematic of the Eclipse II (KIM etal., 2002). (b)
First prototype of Eclipse II motion simulator (ROBOTICS LABORATORY
SEUL UNIVERSITY, 1995).

Kohli et al. (1988) suggested a parallel manipulator with three legs and
uses double actuators which are either linear and rotary, see schematic of the
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parallel manipulator in Figure 92(a). Figure 92(b) shows a variant of Kohli’s
parallel manipulator proposed by Yang et al. (2003), Chen (2009) using three
RPRS legs.

(a) (b)

Figure 92 – Three leg 6-DoF manipulator: (a) Schematic of theKohli’s ma-
nipulator (MERLET, 2006). (b) A variant of Kohli’s manipulators using
RPRS legs (CHEN, 2009).

A more detailed review of parallel manipulators can be foundin Merlet
(2006) and Bonev (2009b). While several parallel manipulators have been
proposed there is still a large field of research in conceptual design of parallel
manipulators.

B.2.6 Applications of parallel manipulators

Some applications of parallel manipulators already have been discussed
in the text above. Parallel manipulators have been successfully used in many
applications and the variety of applications in which parallel manipulators
are used is constantly expanding (MERLET, 2006; BONEV, 2009b; KONG;
GOSSELIN, 2007; GOGU, 2008).

The applications of parallel manipulators are the most variates:

•Motion simulators and test systems; all flight simulators (MERLET,
2006; SICILIANO; KHATIB, 2008), vibrations, and so on.

•Industrial manipulators; food, electronic, ultra-accurate positioning de-
vices, pick-and-place, fast packaging, and so on.
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•Spatial applications; pointing device for telescopes (allrecent land-
based telescopes use parallel manipulators, either as a secondary mirror
alignment system or as a primary mirror pointing device (MERLET,
2006)), simulator for the study of robotized assembly in thespace,
satellite instrumentation, and so on.

•Medical research; the accuracy of parallel manipulators and the fact
that they are more easily “miniaturizable” than serial manipulators has
led to certain research in the medical domain. Parallel manipulators are
used in the medical domain for:

–endoscopy heads (WENDLANDT; SASTRY, 1994);

–brain surgery to position a microscope at the Necker Hospital
(DOMBRE; KHALIL, 2007);

–orthopedic surgery (BRANDT et al., 1999);

–ophthalmic surgery (GRACE et al., 1993);

–neurosurgery, such as the manipulator developed by the Fraun-
hofer Institute in Stuttgart (MCBETH et al., 2004);

–Hepatic devices (DAVIES, 2000);

–precise positioning, either as permanent devices such as the Delta
manipulator (DAVIES, 2000).

–ISIS/SurgiScope system from ISIS Robotics (PRIQUEL, 2009)
using a Delta as microscope stand.

–Dr. Tim Lueth from MIMED (LUETH, 2009) realized the world’s
first head surgery (see Figure 83(b)).

•Miscellaneous; entertainment as tour simulator, elevatorof Hydro-Gerätbau
which is used for the installation of the main landing gear ofthe Airbus
A380 (HYDRO SYSTEMS, 2007; MERLET, 2006).

•Machine-tool; in industry, numerous machine tools based onparallel
structures have been designed, see for example two 5-axis machines in
Figures 86 and 87.

•nanotechnologyand micro-electromechanical systems; nano-manipulators
and micro-manipulators were recently developed based on parallel ma-
nipulators (KONG; GOSSELIN, 2007).

For an updated comprehensive list of parallel manipulatorsand applications,
see (MERLET, 2006; BONEV, 2009b; KONG; GOSSELIN, 2007).
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Torgny Brogårdh (2002) from ABB Automation Technology Prod-
ucts/Robotics, in his paper entitled “PKM Research - Important Issues, pre-
sented as seen from a Product Development Perspective at ABBRobotics”
presented in the “Workshop on Fundamental Issues and FutureResearch Di-
rections for Parallel Mechanisms and Manipulators”, showsa diagram ex-
emplifying the relations between potential performance features of a parallel
manipulators and the industrial applications (see Figure 93).
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Figure 93 – Diagram exemplifying the relations between potential perfor-
mance features of a parallel manipulators and the applications and industries
needing this performance for improved flexible automation (BROGARDH,
2002).

The potential applications of parallel manipulators continues to moti-
vate their design. However, the difficulties of design must still be overcome
and this subject is the main objective of this thesis, to contribute to the con-
ceptual design of mechanisms and parallel manipulators.


