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[1] Approximation surrogates are used to substitute the numerical simulation model within
optimization algorithms in order to reduce the computational burden on the coupled
simulation-optimization methodology. Practical utility of the surrogate-based simulation-
optimization have been limited mainly due to the uncertainty in surrogate model simulations.
We develop a surrogate-based coupled simulation-optimization methodology for deriving
optimal extraction strategies for coastal aquifer management considering the predictive
uncertainty of the surrogate model. Optimization models considering two conflicting
objectives are solved using a multiobjective genetic algorithm. Objectives of maximizing the
pumping from production wells and minimizing the barrier well pumping for hydraulic
control of saltwater intrusion are considered. Density-dependent flow and transport
simulation model FEMWATER is used to generate input-output patterns of groundwater
extraction rates and resulting salinity levels. The nonparametric bootstrap method is used to
generate different realizations of this data set. These realizations are used to train different
surrogate models using genetic programming for predicting the salinity intrusion in coastal
aquifers. The predictive uncertainty of these surrogate models is quantified and ensemble of
surrogate models is used in the multiple-realization optimization model to derive the optimal
extraction strategies. The multiple realizations refer to the salinity predictions using different
surrogate models in the ensemble. Optimal solutions are obtained for different reliability
levels of the surrogate models. The solutions are compared against the solutions obtained
using a chance-constrained optimization formulation and single-surrogate-based model. The
ensemble-based approach is found to provide reliable solutions for coastal aquifer
management while retaining the advantage of surrogate models in reducing computational
burden.
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1. Introduction
[2] Coupled simulation-optimization models are increas-

ingly used as decision models to find optimal solutions to
groundwater management problems like optimal ground-
water remediation design, optimal extraction of groundwater
from coastal aquifers, and wetland management [Gorelick,
1983; Gorelick et al., 1984; Ahlfeld and Heidari, 1994;
Hallaji and Yazicigil, 1996; Emch and Yeh, 1998; Wang
and Zheng, 1998; Das and Datta, 1999a, 1999b, 2000;
Cheng et al., 2000; Mantoglou, 2003; Mantoglou et al.,
2004; Katsifarakis and Petala, 2006; Ayvaz and Karahan,
2008; Datta et al. 2009]. One of the major disadvantages of
using the coupled simulation-optimization model is the huge

computational burden involved due to multiple calls of the
simulation model by the optimization algorithm. Recent
studies have used nontraditional optimization techniques for
solving groundwater management problems. This includes
genetic algorithm [Aly and Peralta, 1999; Cheng et al.,
2000; Qahman et al., 2005; Bhattacharjya and Datta,
2005], evolutionary algorithm [Mantoglou et al., 2004],
simulated annealing [Rao et al., 2004], and differential
evolution [Karterakis et al., 2007]. Population-based opti-
mization algorithms like genetic algorithms can be effec-
tively used to solve optimization problems considering
multiple objectives at a time in which the entire nondomi-
nated front of solutions can be obtained in a single run of the
optimization model. However, with the use of population-
based optimization algorithms like genetic algorithm, sev-
eral thousands of evaluations of the simulation model may
be required before an optimal solution is obtained. One
possible approach to reducing the computational burden is
to substitute the simulation model using approximate surro-
gate models for simulation. In spite of the wide use
of surrogate models in coupled simulation-optimization
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approaches, they are rarely accepted as reliable models for
simulating groundwater flow and transport, in practical
applications. These models are most often disfavored
because of the inherently uncertain nature of these ‘‘black
box’’ models.

[3] Use of the surrogate models adds an uncertainty
component to the simulation-optimization framework. Pre-
dictive uncertainty of the surrogate models may have am-
biguous effects on the optimality or even the feasibility of
the obtained solutions. In the present study, we develop a
coupled simulation-optimization model based on an ensem-
ble of surrogate models for optimal management of coastal
aquifers under the predictive uncertainty of the surrogate
models. The model determines optimal extraction strategies
for management. The ensemble of surrogate models is uti-
lized to quantify the predictive uncertainty. The ensemble
is then used with stochastic-optimization models to derive
optimal extraction strategies.

[4] Previously, a number of different approaches have
been used to solve the problem of optimal and sustainable
extraction of groundwater from coastal aquifers. The differ-
ent approaches use either sharp interface or diffuse inter-
face modeling of saltwater intrusion processes within a
simulation-optimization framework. Analytical solutions
exist for the sharp interface modeling approach and are
comparatively easy to use in a simulation-optimization
framework [Iribar et al., 1997; Dagan and Zeitoun, 1998;
Mantoglou, 2003; Park and Aral 2004; Mantoglou and
Papantoniou, 2008]. The diffuse modeling approach con-
siders the flow and transport equations which are linked
together by the density dependence and needs to be simul-
taneously solved. The coupled flow and transport equations
are highly nonlinear and complex. Linking a numerical
model which solves these equations with an optimization
algorithm involves huge computational burden [Das and
Datta, 1999a, 1999b; Dhar and Datta, 2009].

[5] In the past few years surrogate models have been
used as substitutes for the numerical simulation model
within the optimization algorithm. A wide range of approx-
imation surrogates have been used in different studies. Arti-
ficial Neural Networks (ANN) have been widely used as
approximation surrogates for groundwater models [Ranji-
than et al., 1993; Rogers et al., 1995; Aly and Peralta,
1999]. Neural network-based approximation surrogates
were developed by Bhattacharjya and Datta [2005, 2009],
Yan and Minsker [2006], Kourakos and Mantoglou [2009],
and Dhar and Datta [2009] for use in simulation-optimiza-
tion models. McPhee and Yeh [2006] used ordinary differ-
ential equation surrogates to replace the partial differential
equations of groundwater flow and transport.

[6] Most of these surrogate modeling approaches assume
a fixed surrogate model structure and optimize the surro-
gate model parameters to obtain the best fit between the ex-
planatory and response variables. Even the most popularly
used neural network surrogate modeling approach deter-
mines the optimal model architecture by trial and error
[Bhattacharjya and Datta, 2005; Rao et al., 2004].

[7] In spite of the method used, developing surrogate
models from numerical simulation models results in a cer-
tain amount of uncertainty in the predicted variable. This is
due to the uncertainty in the structure and parameters of
the surrogate model. When used in a coupled simulation-

optimization framework to derive optimal groundwater
management strategies, the uncertainties in the surrogate
model predictions affect the optimality of the resulting
solution. Thus, while achieving computational efficiency,
increased mathematical uncertainty resulting from the
residuals is introduced into the simulation-optimization
framework by the surrogate model. Depending on the
amount of uncertainty, the derived optimal solution may be
rendered suboptimal or even infeasible. Hence, it is impor-
tant to quantify the uncertainty in the surrogate model pre-
dictions and reformulate the optimization problem to
address this uncertainty.

[8] In our study, an ensemble-based surrogate modeling
approach based on genetic programming is used to predict
the salinity intrusion into coastal aquifers resulting from
groundwater extraction. Genetic programming (GP) has
been used in hydrological applications in a few recent stud-
ies [Dorado et al., 2002; Makkeasorn et al., 2008; Para-
suraman and Elshorbagy, 2008; Wang et al., 2009]. GP
has been used to develop prediction models for runoff, river
stage and real-time wave forecasting [Babovic and Keijzer,
2002; Sheta and Mahmoud, 2001; Gaur and Deo, 2008].
Zechman et al. [2005] developed a GP-based surrogate
model for use in a groundwater pollutant source identifica-
tion problem. An ensemble-based GP framework is able to
quantify the uncertainty in both the model structure and pa-
rameters. Parasuraman and Elshorbagy [2008] illustrated
the use of ensemble-based genetic programming frame-
work in the quantification of uncertainty in hydrological
prediction. Sreekanth and Datta [2010] used genetic pro-
gramming to develop surrogate models for coastal aquifer
management and compared it with modular neural net-
work-based surrogate models. Genetic programming-based
surrogate models have the advantage that the surrogate
model structure need not be fixed prior to the model devel-
opment. Instead, the optimum model structure is evolved
by the self-organizing ability of genetic programming algo-
rithm. It was found that GP-based surrogate modeling can
develop simpler and effective surrogate models with model
parameters as few as 30 against 1155 weights used in the
neural network model. Also, it was demonstrated that the
evolution of surrogate model structures by GP and its parsi-
mony in identifying the input variables makes it more
effective than the ANN model structure determined by trial
and error and arbitrary selection of variables. In the present
work we make use of GP to develop an ensemble of surro-
gate models which are different from each other and use it
for more reliable predictions of coastal aquifer processes
for use in management model.

[9] Different stochastic optimization techniques have
been used in the past for optimal decision making under
uncertainty [Wagner and Gorelick, 1987; Tiedeman and
Gorelick, 1993; McPhee and Yeh, 2006]. Chance-
constrained programming had been used in groundwater
management by Wagner and Gorelick [1987, 1989], Mor-
gan et al. [1993], and Datta and Dhiman [1996]. Another
method for stochastic simulation optimization is the multiple-
realization approach [Wagner and Gorelick, 1989; Morgan
et al., 1993; Chan, 1993; Feyen and Gorelick, 2004]. In this
method, numerous realizations of uncertain model parameters
are considered simultaneously in an optimization formula-
tion. He et al. [2010] used a set of proxy simulators, in a
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coupled simulation-optimization model for groundwater
remediation design under parameter uncertainty of the proxy
simulators. The proxy simulators were based on a stepwise
response surface analysis. The residuals in the prediction
were treated as stochastic variables and their deterministic
equivalent was incorporated into the optimization model.

[10] Most of the real world groundwater management
problems are multiobjective in nature, i.e., they involve
more than one objective which are conflicting to each
other. The solution to such problems is an entire nondomi-
nated front of solutions which gives a trade-off between the
different objectives considered. Population-based nontradi-
tional optimization algorithms like genetic algorithms are
ideal to solve such problems as different members of the
population can converge to different parts of the nondomi-
nated front, thus deriving the entire Pareto-optimal front in
a single run of the optimization algorithm. Multiobjective
genetic algorithm NSGA-II [Deb, 2001] is used in this
study to solve the multiobjective optimal coastal aquifer
management problem.

[11] In this work our main objective is to develop an en-
semble of surrogate models for predicting the saltwater
intrusion process in coastal aquifers. The ensemble of sur-
rogate models is used in a stochastic multiobjective opti-
mization using multiple-realization approach to derive
robust optimal extraction strategies which are less sensi-
tive to the uncertainties in the surrogate model predictions.
This study considers the uncertainties of the surrogate
models alone and the numerical model is assumed to be
certain. Two objectives of management are considered
subject to the constraint of controlling saltwater intrusion.
The first objective is to maximize the total pumping from
the production wells tapping the aquifer. The second
objective is to minimize the total pumping from a set of
barrier wells which are used to hydraulically control salt-
water intrusion. The salinity levels resulting from pumping
is simulated using the surrogate simulation model. A
chance-constrained optimization model is also developed
for coastal aquifer management, taking into consideration
the cumulative distribution function of the error residuals
of surrogate model predictions. The optimal solutions
obtained using these two methods is compared with the so-
lution obtained using only a single-surrogate model in the
coupled simulation-optimization model.

[12] The remaining part of this paper is structured as
follows. Section 2 describes the framework of the coastal
aquifer management model. Section 3 describes the devel-
opment of the ensemble of surrogate models. Section 4
describes the formulation and implementation of optimiza-
tion models using multiobjective genetic algorithms. Sec-
tion 5 illustrates the application of the methodology using a
case study. Section 6 summarizes and concludes the paper.

2. Outline of the Coastal Aquifer Management
Methodology

[13] The proposed coastal aquifer management method-
ology using coupled simulation optimization has essentially
two components. The first one is the ensemble of surrogate
models for simulating the physical process under considera-
tion. In this work we consider the saltwater intrusion in
coastal aquifers as a function of the groundwater extractions

from the aquifer. The second component is an optimization
model used to optimize the groundwater extraction strat-
egies such that the resulting salinity levels are maintained
within prespecified limits. The genetic programming-based
surrogate models are trained using randomly generated
input-output patterns of extraction rates and resulting salin-
ity levels. The input-output patterns are generated using a
three-dimensional simulation model for simulating coupled
flow and transport called FEMWATER [Lin et al., 1997].
Nonparametric bootstrap method [Efron and Tibshirani,
1993] is used together with genetic programming to con-
struct the ensemble of surrogate models. The ensemble
models are then linked to a multiobjective genetic algorithm
to obtain the optimal groundwater extraction rates. The dif-
ferent elements of the proposed methodology for develop-
ing optimal coastal aquifer management strategies are
described in detail in sections 3 and 4.

3. Ensemble of Surrogate Models
[14] The following procedure was adopted to develop

the ensemble of surrogate models.

3.1. Design of Experiments
[15] The design of experiments is the first step required

for training the GP-based surrogate models. Developing a
surrogate model based on genetic programming involves
learning from input-output patterns. In the case of the
coastal aquifer management problem, the inputs are the
rates of groundwater abstractions from different potential
locations within the aquifer and outputs are the resulting sa-
linity concentrations. The decision space for the problem
under consideration is a multidimensional space represent-
ing the combinations of groundwater abstraction rates from
different locations at various time periods. For the surro-
gate models to perform satisfactorily, the training patterns
should be representative of the entire decision space. Uni-
formly distributed Latin hypercube samples (LHS) of input
patterns are generated from the decision space to train the
genetic programming-based surrogate models.

[16] LHS, a stratified-random procedure, provides an ef-
ficient way of sampling variables from their distributions
[Iman and Conover, 1982]. The LHS involves sampling ns
values from the prescribed distribution of each of k varia-
bles X1, X2, . . . , Xk. The cumulative distribution for each
variable is divided into N equiprobable intervals. A value is
selected randomly from each interval The N values
obtained for each variable are paired randomly with the
other variables.

3.2. Numerical Simulation Model
[17] Once the input patterns of groundwater abstractions

are generated, the resulting salinity levels corresponding to
each pattern are computed. The numerical simulation model
FEMWATER [Lin et al., 1997] is used for this. FEM-
WATER is a finite element-based 3-D coupled flow and
transport simulation model. The density dependent flow and
transport equations used in FEMWATER are given as fol-
lows [Lin et al., 1997; Sreekanth and Datta 2010]:

�

�o
F
@h
@t
¼ r � K � rhþ �

�o
rz
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þ ��
�o

q ; ð1Þ

W04516 SREEKANTH AND DATTA: ENSEMBLE SURROGATES FOR OPTIMAL COASTAL AQUIFERS W04516

3 of 17



F ¼ �0 �
n
þ �0�þ n

dS
dh

; ð2Þ

K ¼ �g
�

k ¼
�=�o

� �
�=�o

� � �og
�o

kskr ¼
�=�o
�=�o

Ksokr ; ð3Þ

�

�o
¼ a1 þ a2C ; ð4Þ

�
@C
@t
þ �b

@Sa

@t
þ V � rC �r � �D � rCð Þ

¼ � �0
@h
@t
þ �

� �
�C þ �bSað Þ � �KwC þ �bKsS

að Þ

þ m� ��
�

qC þ F
@h
@t
þ �o

�
V � r �

�o

� �
� @�
@t

� �
C

ð5Þ

D ¼ aT jVj� þ aL � aTð ÞVV
jVj þ am�	d ; ð6Þ

where F is storage coefficient, h is pressure head, t is time,
K is hydraulic conductivity tensor, z is potential head, q is
source and/or sink, � is water density at the chemical con-
centration C, �o is referenced water density at zero chemi-
cal concentration, �� is density of either the injection fluid
or the withdrawn water, � is moisture content, �0 is modi-
fied compressibility of water, n is porosity of the medium,
S is saturation, � is dynamic viscosity of water at chemical
concentration C, �o is referenced dynamic viscosity of
water at zero chemical concentration, k is permeability ten-
sor, ks is relative permeability or relative hydraulic conduc-
tivity, Kso is referenced saturated hydraulic conductivity
tensor, a1 and a2 are the parameters used to define concen-
tration dependence of water density and C is the chemical
concentration, �b is bulk density of medium, C is material
concentration in aqueous phase, Sa is material concentra-
tion in adsorbed phase, t is time, V is discharge, r is del
operator, D is dispersion coefficient tensor, �0 is compressi-
bility of the medium, h is pressure head, � is decay con-
stant, m is qCin (artificial mass rate), q is source rate of
water, Cin is material concentration in the source, Kw is first
order biodegradation rate constant through dissolved phase,
Ks is first order biodegradation rate through adsorbed phase,
F is storage coefficient, jVj is magnitude of V, d is Kro-
necker delta tensor, aT is lateral dispersivity, aL is longitu-
dinal dispersivity, am is molecular diffusion coefficient, and
	 is tortuosity.

3.3. Genetic Programming
[18] Genetic programming [Koza, 1994] is used in this

study to evolve surrogate models for modeling the salinity
intrusion in the coastal aquifers resulting from groundwater
abstraction. Genetic programming is an evolutionary algo-
rithm similar to genetic algorithm in that it uses the concepts
of natural selection and genetics in evolutionary computa-
tion. For a given model structure and predefined parameter
space, the genetic algorithm optimizes the parameter values.
Genetic programming has an additional degree of freedom
which allows an optimum model structure to evolve parallel

to optimizing the parameter values. Thus, genetic program-
ming identifies the best model structure for simulating the
process under consideration while simultaneously estimat-
ing the optimal parameter values. Genetic programming
learns from examples. The major inputs for the genetic pro-
gramming model are (1) patterns for learning, (2) fitness
function (e.g., minimizing the squared error term), (3) func-
tional and terminal set, and (4) parameters for the genetic
operators like the crossover and mutation probabilities.

[19] The functional set consists of the basic mathemati-
cal operators and basic functions like addition, subtraction,
multiplication, division, trigonometric functions, etc. The
choice of the functional set determines the complexity of
the model. For example, a functional set with only addition
and subtraction results in a linear model structure, whereas
a functional set which includes trigonometric functions
result in highly nonlinear model structures. The terminal
set consists of constants and variables of the model. The
total number of parameters used can be limited to a prespe-
cified number in order to prevent overfitting of the model.
By using functional and terminal sets, valid syntactically
correct programs can be developed. Parse tree notation of
two such programs are illustrated in Figure 1. Two parent
genetic programs are shown in Figures 1a and 1b. The par-
ent programs are crossed over at the dashed sections and
mutation operator changes the value of the constant 2 to 6
to generate two new offspring genetic programs shown in
Figures 1c and 1d.

[20] In the present work, the operators addition, subtrac-
tion, and multiplication are considered in the initial func-
tional set. Later, other functions were added into the
functional set one by one in the order of their increasing
complexity and nonlinearity. For example, an addition or
subtraction operation is considered in the functional set
before multiplication is considered. However, considering
the nonlinear nature of the saltwater intrusion process, mul-
tiplication and division are considered in the initial func-
tional set itself. The additional function or operator is
accepted upon an improvement in the fitness measure
because of this addition.

[21] GP starts with a set of randomly generated syntacti-
cally correct programs. Each program is evaluated by test-
ing the programs in N number of instances, where N is the
number of patterns in the training data set generated using
Latin hypercube sampling and the numerical simulation
model. The input-output data set is split into halves. One
half is used to train the GP models and the other half is
used to test the developed genetic programs. Testing refers
to the validation of the model. The testing data set is not
used in the fitness function evaluation; instead it is used to
evaluate how the model performs for a new set of data.
Also, the evaluations based on the testing data set are used
to pick the best programs from the population.

[22] By comparing the outcome of the program on each
of these patterns with the actual outcome, the fitness value
is assigned. The fitness function is usually the root mean
square error (RMSE). The programs are ranked based on
the fitness value and new programs are created using the
crossover and mutation operators. This process of evolving
new programs by means of genetic operators, and subse-
quent fitness evaluation, are performed for a specified num-
ber of generations to obtain the best fit genetic program.
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3.4. Nonparametric Bootstrap Method
[23] The nonparametric bootstrap method is used to gen-

erate different realizations of the actual input-output patterns
of groundwater abstractions and salinity concentrations.
Each realization of the data set is then used to train a sepa-
rate surrogate model. An ensemble of surrogate models for
the prediction of salinity levels could be obtained using this
procedure. Each surrogate model is distinctly different from
the rest in the ensemble because of the difference in the
training data set and the population based-optimization lead-
ing to identification of multiple optima by the search algo-
rithm. The distinction in the model structure and parameters
among the different surrogate models is a manifestation of
the uncertainty in the model structure and parameters itself.
A methodology used by Parasuraman and Elshorbagy
[2008] is followed to accomplish nonparametric bootstrap
sampling. The data set obtained using Latin hypercube sam-
pling and using the numerical simulation model is assumed
to be a representative set of input-output values from the
entire population in the decision space. A training data set T
of size N is generated using Latin hypercube sampling and
the numerical simulation model. Different realizations of
this data set are obtained using the nonparametric bootstrap
method. For this a bootstrap size of B is chosen. Then B dif-
ferent data sets each of size N is obtained by repeated ran-
dom sampling with replacement from the set T. Thus each
bootstrap sample-set TB has different input-output patterns
from the training data set T repeated many times. The boot-
strap sample sets TB differ from each other only in terms of
the repetition of some patterns and elimination of some from
the original data set. The repetition of patterns in the boot-
strap causes differential weighting of these patterns. This
results in development of the models which are different in
their predictive capability in different regions of the decision
space of the prediction model. This also triggers the conver-
gence to multiple optimal solutions while training the predic-

tion model. Thus each surrogate model is an optimal model
for the prediction, however different in their predictive capa-
bility in different regions of the decision space, depending
on the weights assigned to patterns from each region.

[24] The performance of each of the surrogate models is
determined by evaluating the root mean square error on the
testing data set. After computing the root mean square errors
for each of the surrogate model in the ensemble, the standard
deviation and coefficient of variation of these errors are
computed. The coefficient of variation of these errors is a
measure of the predictive uncertainty of the models. The
number of surrogate models in the ensemble is determined
by performing an incremental statistical analysis on the en-
semble performance, i.e., surrogate models are sequentially
added in to the ensemble and the resulting uncertainty is
evaluated. Also, the RMSE of the resulting ensemble is also
computed after the addition of each surrogate model. RMSE
is computed on the testing data considering the testing data
sets of all the surrogates in the ensemble taken together at
each stage of addition. The optimum number of surrogate
models in the ensemble is determined as follows. An ensem-
ble with 10 surrogate models is considered initially. The root
mean square error of the salinity concentration predictions
by each surrogate model is computed. The coefficient of var-
iation of these root mean square errors are computed and is
considered as the measure of uncertainty in the ensemble of
models. Then, new surrogate models are added into the en-
semble one at a time and the resulting RMSE and uncer-
tainty are computed. This procedure is repeated until there is
no significant change in the uncertainty of the ensemble with
further addition of surrogate models. The number of surro-
gate models in the ensemble at this stage is the ensemble
size. The number of models in the ensemble at which further
addition of models into the ensemble do not produce signifi-
cant change in the uncertainty is considered as the optimum
number of surrogate models in the ensemble.

Figure 1. Crossover and mutation in genetic programming.
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4. Optimization Models
[25] The main objective of this study is to develop a

coastal aquifer management model which uses an ensemble
of surrogate models to simulate the saltwater intrusion pro-
cess. Two approaches of optimization addressing the uncer-
tainty in surrogate model predictions are used in this study.
The first one is based on a stochastic simulation-optimization
method called multiple realization or stacking approach
[Wagner and Gorelick, 1989; Morgan et al., 1993; Chan,
1993; Feyen and Gorelick, 2005]. The second approach
uses a chance-constrained optimization model [Morgan
et al., 1993; Datta and Dhiman, 1996].

[26] The stochastic optimization accounts for the uncer-
tainty in the surrogate model structures and parameters. In
the multiple-realization approach all the surrogate models
in the ensemble are independently linked to the optimiza-
tion model, i.e., if the ensemble consists of 10 different sur-
rogate models then the optimization formulation has a
stack of 10 constraints representing the surrogate models.
Thus the optimal solution will be subject to satisfying each
of these constraints representing the different surrogate
models which differ from each other due to the model
structure and parameter uncertainty.

4.1. Multiobjective Optimization Using a Multiple-
Realization Approach

[27] Two conflicting objectives are considered in this
study. The first one is the maximization of total beneficial
pumping from the aquifer and the second one is minimiza-
tion of the total pumping from the barrier wells which are
used to hydraulically control saltwater intrusion. Limiting
the salinity concentrations, resulting from the groundwater
extraction, to specified limits are the constraints. The math-
ematical formulation of this multiobjective optimization
problem using multiple-realization approach is as follows:

Maximize; f1ðQÞ ¼
XN

n¼1

XT

t¼1

Qt
n ; ð7Þ

Minimize; f2ðQÞ ¼
XM
m¼1

XT

t¼1

qt
m ; ð8Þ

s:t: cr
i
¼ 
r

i
ðQ; qÞ 8i; r; ð9Þ

cr
i
� cmax8i; r ; ð10Þ

Qmin � Qt
n � Qmax ð11Þ

qmin � qt
m � qmax ; ð12Þ

where Qt
n is the pumping from the nth production well dur-

ing the tth time period, qt
m is the pumping from the mth bar-

rier well during the tth time period, and cr
i

is the rth
realization of concentration in the ith location at the end of
the management time horizon. This is obtained from the rth
surrogate model for the salinity at the ith location using the
surrogate model given by 
r

i ( ). M, N, and T are, respec-
tively, the total number of production wells, total number
of barrier wells, and total number of time steps in the man-

agement model. Constraint (10) imposes the maximum per-
missible salt concentration in the monitoring well
locations. Constraints (11) and (12) define lower and upper
bounds of the pumping from production wells and barrier
wells, respectively.

[28] With the multiple-realization approach, optimal sol-
utions with different reliability values can be obtained.
The reliability value is the fraction of surrogate models in
the entire ensemble whose salinity predictions satisfy the
imposed constraints of maximum salinity levels in the
optimization model. For example, if there are N different
surrogate models in the ensemble, it is possible to obtain an
optimal solution with a reliability of n=N by constraining
the optimization model to satisfy constraints imposed by
at least n surrogate models. Reliability of the optimal solu-
tion is close to 1 when the constraints imposed by all N
surrogate models are satisfied. However, this reliability per-
tains to the uncertainty in the ensemble of surrogate models
only.

4.2. Chance-Constrained Approach
[29] The optimal solutions obtained by the multiple-

realization approach for different reliabilities are compared
to the solutions obtained using a chance-constrained opti-
mization formulation. The chance-constrained formulation
uses the same objective functions and constraints as in (7)
and (8) and (11) and (12). The constraint given by (10) and
(11) are replaced as follows:

ci ¼ 
�i ðQ; qÞ þ "i ; ð13Þ

Rel½ciðQ; q; "iÞ � cmax� � � ; ð14Þ

where ci is the salinity concentration at the ith location at
the end of the management time horizon, "i is the error in
the salinity concentration prediction for the ith location,
and 
�

i
ðQ; qÞ is the average of the salinities at the ith loca-

tion predicted by the ensemble of surrogate models. Rel is
the reliability level of the ensemble prediction that the pre-
dicted concentration is less than cmax. This reliability is
based on the cumulative distribution function of the error
residuals in the salinity level prediction by the surrogate
models. The reliability is constrained to be greater than or
equal to �. The probabilistic constraint in (14) is converted
into its deterministic equivalent as follows:


�i ðQ; q; "iÞ þ �i
�1 �ð Þ � cmax ; ð15Þ

where �i
�1 is the inverse cumulative distribution function

for the residuals in salinity prediction at the ith location
and �i

�1 �ð Þ gives the prediction error corresponding to a
reliability �.

[30] A coupled simulation-optimization model with a
single-surrogate model predicting the salinity levels at each
monitoring location is also developed for comparative eval-
uation. The same optimization formulation as in (7) – (12)
is used for this purpose except that salinity prediction by
the ensemble represented by (9) is replaced as follows:

ci ¼ 
b
i
ðQ; qÞ ; ð16Þ
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where 
b
i represents the best surrogate model, in terms of

the least value of the objective function obtained in the GP
model, for predicting the salinity at the ith location. The
original data set is used to develop this surrogate model
instead of the bootstrap sample.

4.3. Multiobjective Genetic Algorithm
[31] A multiobjective genetic algorithm NSGA-II [Deb,

2001] is used to solve the multiobjective coastal aquifer
management problem. Similar to GA, NSGA-II uses a pop-
ulation of candidate solutions together with the GA opera-
tors cross-over, mutation and selection to evolve improves
solutions to the optimization problem over a number of
generations. In addition to this, NSGA-II organizes the
members of the population into nondominated fronts after
each generation, based on the conflicting objectives of opti-
mization. Thus, in a single run, NSGA-II is able to generate
the entire Pareto-optimal set of solutions at the end of the
specified number of generations.

4.4. Ensemble-Based Coupled Simulation-
Optimization Model

[32] The coastal aquifer management model makes use
of a coupled simulation-optimization framework to derive
the optimal groundwater extraction strategies for coastal
aquifers. The ensembles of the surrogate model for simulat-
ing the aquifer responses in terms of salinity concentrations
are coupled with the optimization model by linking each
surrogate model separately with the optimization algorithm.
The multiobjective genetic algorithm randomly generates
candidate solutions which are the groundwater extraction
rates for the different time periods within the management
horizon. The aquifer responses corresponding to each of
these patterns of extraction are obtained from the ensemble
of surrogate models. All generated candidate solutions are
evaluated for feasibility and fitness. New candidate solu-
tions are generated using the genetic algorithm operators.
The procedure is repeated for a number of generations, until
the termination criteria are satisfied. The solutions are pro-
gressively improved to converge to the final Pareto-optimal
front. A schematic representation of the ensemble-based
simulation-optimization model is shown in Figure 2.

4.5. Validation
[33] Once the optimal solution is obtained, its validity is

checked by simulating the aquifer processes by using the

optimal pumping values in the actual numerical simulation
model FEMWATER. The residual in the salinity predic-
tion, i.e., the difference between the surrogate-predicted
value and the numerically simulated value, is evaluated for
five optimal solutions in different regions of the Pareto-
optimal front. This is performed for the optimal solutions
obtained using the three optimization models, namely,
single-surrogate model, ensemble-based model, and the
chance-constrained model.

5. Case Study
[34] In order to illustrate the application of the proposed

methodology, it is applied to derive optimal extraction
strategies for an illustrative coastal aquifer system. The aq-
uifer is 2.52 km2 in aerial extent with eight potential loca-
tions for groundwater extraction for beneficial use, and
three potential barrier well locations for hydraulic control
of salinity intrusion. The aquifer considered is single lay-
ered with an average depth of 60 m. The boundaries of the
study area are all no-flow boundaries, except for the sea-
ward side boundary which is a constant head and constant
concentration boundary with a concentration value of 35
kg/m3. The aquifer system is illustrated in Figure 3. The
eight potential locations for beneficial groundwater extrac-
tion are shown as PW1 –PW8. The barrier well locations
for hydraulic control of saltwater intrusion are shown as
BW1 –BW3. The salinity concentrations were monitored at
three locations, C1, C2, and C3, at the end of the manage-
ment time horizon.

[35] The time horizon for the management model was
fixed as 3 years with the extraction rates in each manage-
ment period of 1 year considered as uniform. The ground-
water recharge is specified as a constant rate of 0.00054 m/d,
respectively. The lower and upper limits on groundwater
abstractions for both beneficial and barrier wells are 0 and
1300 m3/d. Total number of decision variables in the optimi-
zation model is 33, corresponding to pumping from 11 wells
for three time periods. The management model specifies a
maximum permissible salt concentration limit of 0.5, 0.6,
and 0.6 kg/m3 at these locations, respectively. The parame-
ters used for the FEMWATER model are given in Table 1.

[36] A three-dimensional coupled flow and transport
simulation model was used to simulate the aquifer pro-
cesses resulting in salinity intrusion due to groundwater

Figure 2. Schematic representation of the ensemble-based coupled simulation-optimization method.
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abstraction in this study area. Different groundwater extrac-
tion scenarios were generated using Latin hypercube sam-
pling. The salinity concentrations resulting from each of
these pumping patterns are simulated using FEMWATER.
The simulated salinity level and the corresponding pump-
ing rates form the input-output pattern. Altogether 230
extraction patterns are used in this study. Different realiza-
tions of this input-output data set were generated using the
nonparametric bootstrap method. Each of these data sets
was used to build surrogate models to create the ensemble
of surrogate models. Each data set was split into halves for
training and testing the GP models. The input-output pat-
terns were then used to train the genetic programming-
based surrogate models. Adaptive training [Sreekanth and
Datta, 2010] was performed to reduce the number of pat-
terns required for training.

[37] Surrogates were developed for predicting salinity at
three different locations. For each location 30 models in the
ensemble was found to be sufficient to characterize the
uncertainty. All the genetic programming surrogate models
used a population size of 500, mutation frequency of 95,
and crossover frequency of 50. A commercial genetic pro-
gramming software Discipulus was used to develop the sur-
rogate models. The parameters values, as per the guidelines
after performing a sensitivity analysis, were used in the de-
velopment of the model. The functional set in the developed
GP models contained the operations addition, subtraction,
multiplication, division, comparison, and data transfer. The
maximum number of surrogate model parameters used was
limited to 30 to prevent overfitting of the model. Squared
deviation from the actual value was used as the fitness func-
tion. At the end of model training and testing source codes

of the model in C language were generated using the inter-
active evaluator of the software and are then coupled with
the multiobjective optimization algorithm NSGA II.

6. Results and Discussion
6.1. Uncertainty in Surrogate Models

[38] The uncertainty in the surrogate models were quanti-
fied using the coefficient of variation of the root mean square
errors of the individual surrogate models. The root mean
square errors of individual surrogate model salinity predic-
tions C1, C2, and C3 are shown in Figures 4, 5, and 6. The
RMSEs are computed over the testing data set used for eval-
uating the genetic programming-based surrogate models. It
could be observed that for different realizations of the same
data set, the root mean square errors are different for differ-
ent surrogate models. This is due to the predictive uncer-
tainty of the surrogate models. The root mean square errors
for the ensemble of models predicting salinity C1 are plotted
against the number of surrogate models in the ensemble
starting from an initial ensemble size of 10 in Figure 7. As
the number of models in the ensemble increases, RMSE of
the ensemble prediction decreases, at least in this example.

[39] The coefficient of variation of the RMSEs, as a mea-
sure of uncertainty in prediction of salinity, is plotted
against the number of surrogate models in the ensemble for
each ensemble predicting C1, C2, and C3. The plots are
shown in Figures 8, 9, and 10. Uncertainty of the ensemble
model has a definite decreasing trend with the increasing
number of models in the ensemble. For each of the salinity
concentrations C1, C2, and C3 the uncertainty in the en-
semble of surrogate model decreases with the number of
models in the ensemble and reaches a constant value when
the number of models in the ensemble is around 30. Hence
the optimum number of models in the ensemble for coupled
simulation optimization is chosen as 30. The optimum
number of surrogate models depends on the uncertainty
level in the model structure and parameters. For more com-
plex systems the uncertainty in the model structure and pa-
rameters of surrogate models will be larger and hence more
number of surrogate models will be required in the ensem-
ble. The sensitivity of the derived Pareto-optimal solutions
to the number of surrogate models in the ensemble is ana-
lyzed in section 6.4.

Table 1. Parameters for Aquifer Simulation

Parameter Value

Hydraulic conductivity in x direction 25 m/d
Hydraulic conductivity in y direction 25 m/d
Hydraulic conductivity in z direction 0.25 m/d
Longitudinal dispersivity 80 m/d
Lateral dispersivity 35 m/d
Molecular diffusion coefficient 0.69 m2/d
Soil porosity 0.2
Density reference ratio 7.14 � 10�7

Figure 3. Three-dimensional aquifer system illustrating the well and monitoring locations.
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Figure 5. RMSE for individual surrogate models simulating salinity C2.

Figure 4. RMSE for individual surrogate models simulating salinity C1.

Figure 6. RMSE for individual surrogate models simulating salinity C3.
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6.2. Multiobjective Optimization
[40] The multiobjective optimization algorithm NSGA-II

was used to solve the optimization formulations of both
multiple-realization and chance-constrained approaches.
Similar to an ordinary genetic algorithm, NSGA-II has a
population-based approach for deriving the optimal solu-
tions. The population size used in this study is 200. NSGA-II
was run for 750 generations to obtain the optimal solution.
Thus a total of 200 � 750 evaluations of the aquifer response
to specific groundwater extraction patterns would be
required before obtaining the solutions. The NSGA-II pa-
rameters used were crossover probability 0.9 and mutation
probability 0.02. The sensitivity of the optimal solution to
population size, number of generations, and NSGA-II pa-
rameters were evaluated by conducting a number of numeri-
cal experiments by running the NSGA-II model with
different combinations of the parameters. It was found that
for the number of generations less than 750 and population
size less than 200, convergence to the Pareto-optimal front is
not achieved. However, convergence is obtained for a
smaller population size of a larger number of generations. It
is noted that reducing the population size affects the spread
of solutions in the Pareto-optimal front. Some regions of the
Pareto-optimal front get eliminated as a result of reduction
in the population size. The optimization problems have 33
variables which are the pumping rates from 11 locations for
three time periods. The optimization by multiple-realization
approach has 90 constraints, corresponding to three ensem-
bles with 30 surrogate models each predicting the salinity
levels C1, C2, and C3.

6.3. Pareto-Optimal Front
[41] Pareto-optimal solutions refer to a nondominated

front of solutions obtained for the coastal aquifer manage-
ment problem. On the Pareto-optimal front any improve-
ment in one objective function requires a corresponding
decline in the other objective function. These sets of
solutions are obtained for the coastal aquifer management
problem using multiobjective optimization for both multiple-
realization and chance-constrained approaches. All the solu-
tions on the front are nondominated and the water managers

can choose a prescribed solution to implement a specific
pumping pattern so as to maximize the benefits and simulta-
neously limiting the aquifer contamination.

[42] The Pareto-optimal solutions for different reliabilities
obtained by the multiple-realization and chance-constrained
methods are compared in Figures 11–13. Figure 11 illus-
trates the Pareto-optimal front for a reliability of 0.99. In the
multiple-realization approach this set of solutions satisfy the
constraints imposed by all the surrogate models linked with
the optimization model. In the chance-constrained formula-
tion this set of solutions corresponds to an error in prediction
corresponding to a reliability of 0.99. Similarly Figures 12,
13, and 14 illustrate the fronts corresponding to reliability
levels of 0.8, 0.66, and 0.5. Figure 14 also compares the
fronts of reliability level 0.5 to the Pareto-optimal front
obtained using single-surrogate model in optimization.

[43] For the multiple-realization approach the reliability
refers to the percent of surrogate models in the ensemble,
the imposed constraints of which are satisfied in the optimi-
zation. For the chance-constrained method the reliability is
obtained from the inverse cumulative distribution function
of the residuals in the salinity prediction by the ensemble
of surrogate models for salinities C1, C2, and C3. The cu-
mulative distribution functions corresponding to C1, C2,
and C3 are shown in Figures 15, 16, and 17. The errors are
more or less symmetrically distributed with a probability of
0.5 for zero residual in all three cases.

[44] It can be noted that Pareto-optimal solutions with a
higher reliability level appears to be inferior to those with a
lower reliability level. The plausible reason is that, as reli-
ability decreases, the probability of these solutions violating
the constraints increases. Therefore, the apparently better
solutions may not be feasible. In Figure 14 the Pareto-
optimal front obtained for a reliability level of 0.5 are com-
pared against the Pareto-optimal front obtained using only
the best surrogate model in the coupled simulation optimiza-
tion. It could be observed that the front obtained using the sin-
gle-surrogate model is very close to and slightly better than
the fronts obtained for a reliability level of 0.5 using multiple-
realization and chance-constrained methods. In accordance
with the general trend of variation of the Pareto-optimal front

Figure 7. RMSE of the ensemble simulating salinity C1.
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Figure 8. Uncertainty levels for increasing ensemble size for salinity C1.

Figure 9. Uncertainty levels for increasing ensemble size for salinity C2.

Figure 10. Uncertainty levels for increasing ensemble size for salinity C3.
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with the reliability, it could be deduced that the reliability
level of the solutions obtained using a single-surrogate model
linked with the optimization algorithm is less than 0.5. In
using a single best surrogate model in the coupled simulation
optimization it is assumed that the surrogate model prediction
has a 0 residual, i.e., the surrogate model simulation is equiv-
alent to the numerical model simulation. However, it can be
observed from the cumulative distribution functions that the
probability of zero residual is 0.5. Since most of the optimal
solutions are limit state designs, i.e., optimal solution lying on
the constraint bounds, the uncertainty in the surrogate model
structure often causes the optimal solution to move into the
infeasible region.

[45] Salinity levels corresponding to five different opti-
mal solutions in the Pareto-optimal front, obtained using the

best surrogate model in the coupled simulation-optimization
model, are shown in Table 2. It could be observed that, in
the optimal solutions, the salinity levels C1 and C3 con-
verge to the permissible maximum concentration and hence
the solutions are on the constraint boundaries. Hence, a
small error in the surrogate model prediction can move
these solutions into the infeasible zone. The salinity levels
corresponding to these solutions is simulated using the
actual simulation model and is compared with the values
obtained using the surrogate model. It could be observed
that some of the actual salinity levels obtained from the nu-
merical simulation model violate the constraints, thus forc-
ing the derived optimal solutions into the infeasible zone.
The errors in the predicted salinity level for the optimal
solutions are given in Tables 3 and 4. Tables 3 and 4

Figure 11. Pareto-optimal fronts with reliability 0.99.

Figure 12. Pareto-optimal fronts with reliability 0.8.

W04516 SREEKANTH AND DATTA: ENSEMBLE SURROGATES FOR OPTIMAL COASTAL AQUIFERS W04516

12 of 17



correspond to multiple-realization and chance-constrained
approaches, respectively. The errors refer to the difference
in the salinity levels obtained using the actual numerical
simulation model and the surrogate model. In both the
cases, it is evident that the errors are less when the reliabil-
ity level is high.

[46] The ensemble-based surrogate modeling approach
quantifies the uncertainties in the model structure and pa-
rameters. Reliable optimal solutions for coastal aquifer
management were obtained using the ensemble surrogate
models with the stochastic multiple-realization and chance-
constrained optimization models.

6.4. Sensitivity Analysis
[47] Comparison of Pareto-optimal fronts for different

reliabilities show that for 30 surrogate models in the en-
semble, the multiple-realization approach identifies the

same front as the chance-constrained optimization
approach for identical reliability levels. This implies that
the constraints imposed by stochastic optimization using
multiple realization is as rigid as the chance constraints
when the number of surrogate models in the ensemble is
large enough to quantify the uncertainty in the model struc-
tures and parameters.

[48] In order to investigate the effect of the number of
surrogate models in the ensemble, numerical experiments
were performed with 15, 10, and 5 models in the ensemble
for the multiple-realization optimization approach for each
reliability level. The corresponding Pareto-optimal fronts
for reliability level 0.99 are compared with the fronts
obtained using 30 models and the chance-constrained
model is shown in Figure 18. As the size of the ensemble
decreases, the fronts move further to find seemingly better
solutions, which actually may be infeasible solutions.

Figure 13. Pareto-optimal fronts with reliability 0.66.

Figure 14. Pareto-optimal front for single-surrogate model compared with fronts with reliability 0.5.
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Figure 16. Cumulative distribution functions for the residuals in the ensemble predictions of salinity C2.

Figure 17. Cumulative distribution functions for the residuals in the ensemble predictions of salinity C3.

Figure 15. Cumulative distribution functions for the residuals in the ensemble predictions of salinity C1.
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Table 2. Salinity Levels Corresponding to Five Optimal Solutions From Single-Surrogate Model-Based Optimizationa

Solution Number

C1 � 0.5 kg/m3 C2 � 0.6 kg/m3 C3 � 0.6 kg/m3

SM � 10�3 kg/m3 NM � 10�3 kg/m3 SM � 10�3 kg/m3 NM � 10�3 kg/m3 SM � 10�3 kg/m3 NM � 10�3 kg/m3

1 500.00 483.04 563.39 561.45 599.99 622.05
2 500.00 515.33 583.13 575.97 599.99 623.52
3 500.00 510.34 582.39 573.16 599.99 599.76
4 500.00 483.00 574.68 548.73 599.99 624.23
5 500.00 498.25 574.48 563.57 599.99 618.35

aSM ¼ surrogate model, NM ¼ numerical model.

Table 3. Residuals in Salinity Prediction for Five Optimal Solutions Obtained by Multiple-Realization Optimization

Reliability
Solution Number

0.99 0.8 0.66 0.5

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

1 3.16 0.61 �4.24 1.83 12.09 8.21 �9.89 1.77 �14.08 30.92 28.19 8.20
2 6.14 �0.29 5.21 �4.19 3.55 �4.12 17.09 �0.92 �21.90 �8.53 �19.43 �2.82
3 4.93 0.01 4.89 �6.00 12.66 12.57 �2.58 0.00 6.98 27.14 �22.50 6.96
4 �0.05 0.44 5.27 �4.52 �2.50 �12.39 �5.22 0.07 1.05 �18.52 �28.29 17.87
5 2.27 �0.36 �0.04 �5.60 7.70 6.02 8.76 0.39 5.73 �10.23 30.06 �9.14

Table 4. Residuals in Salinity Prediction for Five Optimal Solutions Obtained by Chance-Constrained Optimization

Reliability
Solution Number

0.99 0.8 0.66 0.5

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

1 �3.09 0.49 4.55 1.85 6.28 �1.64 9.64 �1.78 �13.98 �20.64 7.34 14.19
2 �1.13 0.27 �3.47 �6.64 9.14 �6.60 �12.30 0.89 �20.85 �27.10 �8.90 �0.63
3 2.97 0.24 �5.75 1.93 �6.43 4.79 �9.13 1.99 �12.67 21.80 30.68 �23.04
4 �0.62 �0.46 5.10 �2.79 �0.60 �10.08 6.86 2.11 �3.32 �12.16 �27.14 �26.31
5 �3.44 �0.54 �0.76 0.78 6.06 �9.87 �22.46 1.09 �17.28 28.64 �16.12 5.16

Figure 18. Sensitivity of the solutions to the ensemble size.
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Similar results were obtained for other reliability levels
also. Hence, it can be inferred that the size of the ensemble
has an effect on the stochastic optimization using multiple
realizations. With a sufficiently large number of models in
the ensemble, the multiple-realization approach performs
similar to the chance-constrained optimization approach.

7. Summary and Conclusions
[49] Surrogate models are widely used in research to sub-

stitute complex numerical simulations models in solving
groundwater management problems using coupled simula-
tion-optimization. However, their practical applications
have been limited primarily due to the reliability of the sur-
rogate model predictions. The reliability of surrogate model
predictions is dependent on the uncertainties in the model
structure and parameters. The uncertain surrogate models
when used in a coupled simulation-optimization framework
affects the quality as well as reliability of the optimal solu-
tions obtained. Because most optimal design solutions are
limit state in nature, the error in the surrogate model predic-
tions could make the derived optimal solutions even infeasi-
ble. In order to address these issues, and as a possible
remedy, this study proposed and evaluated the performance
of an ensemble of surrogate models based on a simulation-
optimization model. The ensemble of surrogate models is
also used to quantify the uncertainty in the surrogate model
structure and parameters. Salinity prediction by each surro-
gate model in the ensemble differs from others due to the
model structure and parameter uncertainty. Two different
optimization formulations were used to derive the optimal
abstraction rates. In the first method, each surrogate model
in the ensemble was independently linked to the multiobjec-
tive genetic algorithm NSGA II, using the multiple-realiza-
tion formulation. In the second method, the error in salinity
predictions were quantified using the ensemble of models
and the cumulative distribution function of the errors was
obtained. Based on the cumulative distribution function, the
chance-constrained optimization problem was formulated
and solved using the multiobjective genetic algorithm
NSGA II. The reliability of the chance-constrained model is
analogous to the reliability obtained using the ensemble
surrogate model approach, as the management model is con-
strained by the permissible maximum limits on salinity con-
centrations. The Pareto-optimal sets of solutions obtained
using the two methods for different reliability levels were
compared. Also, these fronts were compared with the
Pareto-optimal set obtained using the best surrogate model
in the coupled simulation optimization. It was observed that
the front obtained using the single-surrogate model in the
optimization was close to the front corresponding to a speci-
fied reliability of 0.5. It could be argued that the reliability
of the optimal solution obtained using a single-surrogate
model in the linked simulation-optimization model for
coastal aquifer management roughly corresponds to 0.5.
However, using ensemble of surrogate models with stochas-
tic optimization helps improve the reliability of the salinity
predictions and subsequent optimal solutions.

[50] Ensemble-based surrogate modeling in couple-
simulation optimization has significant advantages over the
single-surrogate modeling approach. The single-surrogate
modeling approach does not take into consideration the pre-

dictive uncertainty and assume that the surrogate model pre-
diction is equivalent to numerical simulation. The ensemble-
based methodology is able to quantify the predictive
uncertainty and use it in a stochastic optimization model.
Thus the ensemble-based approach accounts for the error in
surrogate model prediction due to predictive uncertainty
which is difficult to accomplish using the single-surrogate
model. The ensemble-based approach is found to derive
more reliable optimal solutions while retaining the computa-
tional advantages of the surrogate modeling approach.

[51] It should be possible to use ensemble surrogate mod-
els in coupled simulation-optimization groundwater manage-
ment studies considering the uncertainty in the groundwater
parameters. Ensemble of surrogate models could be used to
substitute groundwater models with different hydraulic con-
ductivities and other uncertain parameters. For this, each
member of the ensemble has to be trained using a different
data set obtained by using a particular realization of the
uncertain groundwater parameters in the numerical simula-
tion model. The ensemble can be then used in a stochastic-
optimization framework to derive groundwater management
strategies under groundwater parameter uncertainty.
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