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ABSTRACT

The use of forage legumes in tropical regions to improve the efficiency of animal 

production from grazing has been limited, largely because of the lack of economic 

incentives. There is a clear need, therefore, to investigate the existing gene pool of 

tropical forage plants to assess their potential for pasture improvement. Therefore, 

the present study evaluated the agronomic and ecological aspects of plant 

development in a set of genotypes of the genus Desmanthus and their relationships 

with the components of the surrounding environment, at different stages of growth, 

in a series of laboratory and field experiments. 

Accessions of the genus Desmanthus formed permanent soil seed banks that ranged 

from 281 to 1303 seeds/m2, with a large variation between genotypes, in experiments 

on a duplex soil on the Douglas Campus of James Cook University, Townsville. 

Genotypes originally collected in Argentina had larger seed banks than those of other 

tested genotypes, but a small number of surviving plants. 

Fire increased seedling recruitment in almost all observed genotypes. Temperatures 

observed during controlled grass-fires reached a maximum of 300 ºC at the soil 

surface, 80 ºC at 10 mm depth, and around 30 ºC at 30 mm depth suggesting that all 

seeds located at soil surface were killed, those at 10 mm depth were probably 

softened, and those at 30 mm or more in soil had no alteration in their seed-coat 

permeability. 

Changes in strophiolar structure and germination, in response to the variation of oven 

temperatures ranging from 25 ºC to 120 ºC were observed in seeds of nine genotypes 

of Desmanthus. There were two groups with different patterns of responses: 

genotypes in which strophiolar structures were not significantly affected by 

temperatures below 80 ºC; and genotypes with significant changes in the strophiolar 

structures when temperature rose to 60 ºC. 

Seedlings of 8 accessions of the Desmanthus complex, growing directly under trees 

in open savanna woodland had higher values of means for number of leaves/plant, 

height of plant, and number of plants surviving than seedlings growing between 

trees. Three years after sowing, all plants from the between-canopy environment had 

died, while many plants of accessions TQ88, CPI 79653, and CPI 91162 were 

thriving under the tree canopy. 



v

Plants of D. virgatus CPI 78382 and D. leptophyllus TQ 88 growing in soils 

collected from under and between canopies had significantly increased their seedling 

emergence, by increasing shade levels and watering frequency. A low number of 

seedlings died in both genotypes, growing in soil from under the canopy but, plant 

deaths drastically increased in seedlings grown in soil from between the canopy. 

Growing in soil collected from under-canopies, plants allocated most of their dry 

matter to the production of aerial, rather than the underground parts, however, when 

grown in soil from between-canopies environment the largest proportion of the total 

dry matter was diverted to the underground parts. This diversified behaviour of 

biomass allocation for shoot and root in the two soils is thought to be controlled by 

the contents of nutrients in soil. 

Seven accessions of the Desmanthus complex, sown into a pasture as seeds or 

seedlings, under two levels of competition with the natural vegetation, showed to 

have differentiated behaviour according the different treatments. Plant establishment 

and dry matter yields of plants sown by seed into unaltered vegetation were 

significantly reduced by competition. 

The effect on liveweight changes and wool growth of Merino sheep of 200 g hay of 

four different forms of the Desmanthus complex included as a supplement to a diet 

of 600 g Mitchell grass (Astrebla spp.) was compared with 200 g hay of Stylosanthes 

hamata cv. Verano. Verano and D. virgatus CPI 79653 supplemented diets had the 

highest dry matter digestibility (46.52% and 44.94% respectively). All the legume-

supplemented diets produced significantly more wool than the control. Clean wool 

growth  was  significantly  correlated  with  nutritional  parameters.  The  levels  of 

nitrogen and sulphur present in some Desmanthus genotypes shows the potential of 

these plants in promoting wool growth.
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Glossary of Terms

Abscission scar or hilum. The scar at the point of attachment of the seed to a funicle 

(Cutler 1978; Raven et al. 1985).  

Acid detergent fibre. The insoluble residue left from boiling a substance in a 

solution of acid detergent for 1 hour and filtering. Consists mainly of cellulose, 

lignin, and silica (Lassiter and Edwards 1982); the cellular wall components of 

forages (cellulose, lignin, and minerals) not soluble in acid detergent (Silva and 

Queiroz 2002).   

Ad libitum. Applied to feeding animals meaning allowed feed in accordance with 

desire (Lassiter and Edwards 1982).

After-ripening.  It is a process necessary for the completion of certain metabolic 

changes in seeds before germination is possible (Debenham 1971, Murdoch and Ellis 

1992). It depends upon the environment and is usually accelerated at high temperatures 

(Gardener 1975).

Agroforestry system. It is a farming system that integrates crops and/or livestock 

with trees and shrubs (Sanchez 1999; Beetz 2002).

Alley-crop. It is a method of growing perennial species, usually shrub or tree 

legumes, together with annual crops (Stirzaker and Bunn 1996).

Bipinnate. Is said of a compound leaf when secondary leaflets (pinnules) arising 

along a secondary rachis (rachilla), the primary (compound) leaflets being termed 

pinnae (Debenhan 1971). 

Boss. See Strophiole. 

Brigalow. Country where brigalow, a species of acacia (Acacia harpophylla), is the 

main vegetation. “Extensive stands of Brigalow forests occurred on clay soils of 
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South West and Central West Queensland. Now mostly cleared for agriculture” 

(Griffith University 2005).

Browsing. When animals such as deer or goats browse, they feed on plants, 

especially on their young twigs or leaves, in an unhurried way (Sinclair 1988). 

Caatinga. It is a type of Brazilian Northeast forest which is deciduous during the hot 

and dry season and includes a number of thorny species (Sinclair 1988).

Caudex, or flange. The perennial base of an otherwise herbaceous plant (Swartz 

1971).

Cerrados. Is the name given to the Brazilian savanna. Around 85% of the large 

plateau of Brazilian central region was originally dominated by cerrados landscape, 

representing some thing like 1.5 to 2 millions of km2, or 25% of the country surface 

(Pivello 2005).

Chartaceous. Of parchment or paper-like texture, usually devoid of green 

(Debenham 1971).

Clean wool. Processed wool, free of grease, soil particles, and vegetable matter (DPI 

2004).

Cohabitant species. Mixtures of different plant species growing on the same patch 

of land (Happer 1977d).

Coated seed. Seed having an integument cover composed of layers (Swartz 1971).

Crown. The persistent base of a tufted grass (Swartz 1971).

Cuticle.  A fatty and fat-derived layer of cutin in the seed outer wall, serving as a 

barrier to water and gas exchange but permeable to the diffusion of aqueous solutions 

through cracks and ridges to a limited degree (Debenham 1971, Cutler 1978); layer 

of wax or fat covering the external wall of epidermal cells (Raven et al. 1985).   
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Dorsi-ventrally flattened. Flat at both dorsal and ventral sides (Debenham 1971).

Endosperm. The multicellular food-storing tissue consisting chiefly of starches and 

oils, providing nutrient for the developing embryo formed inside a seed of flowering 

plants, following the double fertilization of the embryo-sac by the second sperm 

nucleus (Debenham 1971, Swartz 1971); a nutrient tissue formed within the embryo-

sac of the spermatophyta (Cutler 1978).

Epidermal, Prism, or Malpighian cells. The outermost cells layer of primary 

tissues of the plant, sometimes comprising more than one layer (Cutler 1978). In the 

seed coats of certain plants (specifically in the legumes) a layer of radially elongated 

cells, which are palisade-like but devoid of intercellular spaces, may be present. 

These cells have been termed Malpighian cells after the investigator who first 

described them (Fahn 1974).   

Evapotranspiration. The loss to the atmosphere of moisture from both the soil 

(evaporation) and its vegetative cover (transpiration) (Answer.com 2005) (Physical 

Geography 2004).

Falcate. With the shape of a lamina when flat and curved (like a reaper’s hook, or 

sickle) (Debenham 1971). 

Fire-recruitment syndrome or refractory seed syndrome. The condition by which 

certain seeds require the occurrence of a fire, for germination from the soil seed bank 

(Kelley 1991).

Flange. A projecting edge on an object used for strengthening it or for attaching it to 

another object (Sinclair 1988). 

Forbs. Herbs others than grasses or sedges (Debenham 1971, Swartz 1971).  

Funiculus. The stalk attaching an ovule to the placenta (Cutler 1978).

Greasy wool. Wool as it is shorn before washing or sorting (Wimburne 1982). 
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Hardseededness or seed-coat dormancy. The condition of having a sed coat that is 

impermeable to water (Fahn 1974). 

Hilum, or abscssion scar. The scar at the point of attachment of the seed to a funicle 

(Cutler 1978; Raven et al. 1985). 

Hour-glass cells. A single layer of cells forms the hypodermis, which is also, called 

hourglass cells, pillar cells, osteosclereids or lagenosclereids, depending on their 

pattern of cell wall thickness and shape. They are usually larger than adjacent cell 

layers and are separated by wide intercellular spaces, except under the hilum cleft 

where they are absent (Souza and Marcos Filho 2001).
 

Hypocotyl. The short stem of an embryo seed plant, the portion of the axis of the 

embryo seedling between the attachment of the cotyledons and the radicle (Swartz 

1971); the part of the axis marking the transition of root and stem development 

(Raven et al. 1985).

Innate dormancy, or primary dormancy. The physiological inhibiting mechanism of 

germination in the embryo; physiological dormancy (El-Keblawy 2006). The process of 

growth of an embryo to a stage fit for the germination process to occur,  has not been 

completed while the embryo was still born on the parent plant (Haper 1977b)

 

In vivo dry matter digestibility. The apparent digestibility of the dry matter in 

animal fodder. The difference between the dry matter intake and its faecal excretion 

(Lassiter and Edwards 1982).

Lens, boss, or strophiole. See strophiole. 

Llanos. Spanish American term for prairies, specifically those of the Orinoco River 

basin of North South America, in Venezuela and East Colombia. The llanos of the 

Orinoco are a vast, hot region of rolling savanna broken by low-lying mesas, scrub 

forest, and scattered palms. Elevation above sea level never reaches more than a few 

hundred feet. During the dry season (November to April) the land is sear, the grass 
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brown, brittle, and inedible; during the rainy season much of the area is inundated 

(Answers.com 2005). 

Malpighian cells, palisade macrosclerid cells, epidermal, or prism.  Plant cell on 

the surface of a leaf or other young plant tissue, where bark is absent. The exposed 

surface is covered with a layer of cutin (Biology Dictionary – Biology on Line 2005).

   

Metabolizable energy. The gross energy value of a food from which energy losses 

in faeces, urine, and gaseous products of digestion have been subtracted (Lassiter and 

Edwards 1982). 

Micropyle. It is a structure located close to the hilum and represents the former 

passage for the pollen tube through the integument of the ovule (Tran and Cavanagh 

1984); a small opening between the integuments at the free end of an ovule (Cutler 

1978).

Mulga. A vegetation community of wide occurrence in the arid parts of Australia in 

which the shrub mulga (Acacia aneura) usually is a dominant (Debenham 1971).

Neutral detergent fibre. The cellular wall components of forages (cellulose, hemi-

cellulose, lignin, protein, and minerals) not soluble in neutral detergents (Silva and 

Queiroz 2002); the part of a feed that is not soluble in boiling neutral detergent 

solution (3% sodium laurel sulfate); mostly cellulose, lignin, silica, and 

hemicellulose on the cell walls (Lessiter and Edwards 1982).   

Obligate seeder. Group of plants that can regenerate only by the recruitment of 

seedlings from the soil seed bank (Bell 1985; 1994; Pate et al. 1990).

Palisade macro-sclereid cells. A layer of elongated cells in plant seeds set at right 

angles to the surface of the seed (Swartz 1971); because the shape and the thickness 

of the Malpighian cells they are also termed macrosclereids (Fahn 1974).  

Papillate. Surface with superficial protuberances (Swartz 1971).

http://www.biology-online.org/dictionary/plant
http://www.biology-online.org/dictionary/cutin
http://www.biology-online.org/dictionary/a_layer
http://www.biology-online.org/dictionary/absent
http://www.biology-online.org/dictionary/bark
http://www.biology-online.org/dictionary/tissue
http://www.biology-online.org/dictionary/young
http://www.biology-online.org/dictionary/leaf
http://www.biology-online.org/dictionary/surface
http://www.biology-online.org/dictionary/cell
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Parenchyma sclereid layer. A layer of tissue composed by cells with lignified, 

thick and pitted walls, involving the cotyledons of legume seeds (Swartz 1971; Van 

Staden et al. 1989). 

Paripinnate. Is said of a pinnate leaf when there is no terminal leaflet of the rhachis, 

i.e. the rachis ends in a leaflet-pair (Debenhan 1971).

Plant plasticity. The potential of plants to adapt to a large array of growth 

conditions and even to temporarily suspend active metabolism in order to withstand 

environmental conditions, not suitable for 'normal life'. The responsive adaptations of 

plant species to their environments lead to differences in growth rate and 

productivity and to differences in water or nitrogen use efficiency ('plant plasticity'). 

Ultimately adaptation will result in increased survival and reproduction 

(Experimental Plant Science 2005). 

Pleurogram. A seed structure often present and complete in the Mimosaceae, rarely 

present and open in the Caesalpinaceae. It is visible in immature seeds as a localized 

area where the epidermal cells are shorter than the cells from other areas, and the 

area at the base of the shorter cells is filled in by parenchyma cells derived from 

periclinal division in the young hypodermal cells. In the mature seeds the pleurogram 

is visible as a fissure extending completely through the epidermis (Van Staden et al. 

1989). 

Prism, palisade macrosclerid cells, epidermal, or Malpighian cells.  Plant cell on 

the surface of a leaf or other young plant tissue, where bark is absent. The exposed 

surface is covered with a layer of cutin (Biology Dictionary – Biology on Line 2005).

Residual hardseededness. Amount of hard seeds remaining after 21 days of 

germination test  (the author).

  

Resprouters. Group of plants that regenerates from buds located in underground 

organs (Bell 1985; 1994; Pate et al. 1990).

http://www.biology-online.org/dictionary/cutin
http://www.biology-online.org/dictionary/a_layer
http://www.biology-online.org/dictionary/absent
http://www.biology-online.org/dictionary/bark
http://www.biology-online.org/dictionary/tissue
http://www.biology-online.org/dictionary/young
http://www.biology-online.org/dictionary/leaf
http://www.biology-online.org/dictionary/surface
http://www.biology-online.org/dictionary/cell
http://www.biology-online.org/dictionary/plant
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Rugulate. With a wrinkled surface, marked by irregular raised or depressed lines 

(Debenham 1971, Swartz 1971). 

Rugulate-papillate. Wrinkled surface with superficial protuberances (Swartz 1971). 

Sclerid or sclereid. A unit of sclerenchyma, a cell with a lignified, thick and pitted wall 

and usually devoid of, or with very little protoplasm (Debenhan 1971). A sclerotic or 

stone cell, a sclereid (FAO 2006) 
Glossary www-ididas.iaea.org/IDIDAS/w3.exe$GloSearch?ID=15462

Seed imbibition. The first step in seed germination is imbibition. In this process, 

water penetrates the seed coat and begins to soften the hard, dry tissues inside. The 

water uptake causes the grain to swell up. The seed/fruit coat usually splits open 

allowing water to enter even faster. The water begins to activate the biochemistry of 

the dormant embryo (Koning 1994).  

Seed softening. Natural or enforced breakdown of seed-coat dormancy in legume 

seeds (Mott et al. 1981).

Seed-coat dormancy, or hardseededness. See hardseededness.

Seedling recruitment. Emergence of seedling from seeds stored on a soil seed bank, 

normally occurred after a fire event (Bebawi and Campbell 2002). 

Sessile. Is said of a structure when borne without a supporting part, e.g. the petiole of 

a leaf, the filament of an anther, the pedicel of a flower (Debenhan 1971).

Shade tolerance. Plant adaptation to reduced levels of incident sunlight (Benjamin 

et al. 2005) http://www.aciar.gov.au/web.nsf/att/JFRN-

6BN8Y2/$file/pr32chapter16.pdf  
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Silvipastoral system. A class of agroforestry system characterized by the presence 

of animals grazing between or under the canopies (Sanchéz 1999).  

Soil saturation. Wet soil in which all the pores are filled with water (Foth 1990). 

Soil seed bank. Pool of seeds that, having some type of dormancy after release from 

the plant are incorporated into the soil and stay stored for undetermined periods 

(Grime 1979). 

Strophiole, Boss, or Lens. An excrescence or appendage at or about the hilum of a 

seed, the caruncle (Swartz 1971); after the fertilization of the ovule, growths termed 

arils, develop on the surface of the seeds of certain plants. These growths, when they 

occur on the funiculus (e.g. Euonymus and Acacia spp.), are often termed strophioles 

and when occurring around the micropyle (e.g. Ricinus), are called caruncles (Fahn 

1974). 

Subcuticle. Under the cuticle, epidermis, or outer skin (Suartz 1971; Holmes 1985).

Suberecte.  Almost erect, slightly erect or somewhat erect (Botanical Glossary 

2005).

Suffruticose. The same as suffrutescent, slightly shrubby (Swartz 1971; Holmes 

1985).

Tap-root. The primary persistent root typical of dicots and gymnosperms from 

which lateral roots are developed in acropetal succession (Debenham 1971); a water 

storage structure known as a 'xyllopode' (Burkart 1952; Carvalho and Mattos 1974). 

Thermocouple. Thermocouples are pairs of dissimilar metal wires joined at least at 

one end, which generate a net thermoelectric voltage between the open pair 

according to the size of the temperature difference between the ends, the relative 

Seebeck coefficient of the wire pair and the uniformity of the wire-pair relative 

Seebeck coefficient (Temperature.com 2006). www.temperatures.com/tcs.html.

http://www.kamous.com/translator/s.asp?l=729


xxx

Testa or seed-coat. Represents the hardened integuments of the ovule. In seeds of 

the legumes it is covered by a very thick cuticle. This and another layer of the testa 

may prevent the passage of water and air as long as it is undamaged (Fahn 1974). 

Water use efficiency. It is the relationship between plant production and water plant 

water uptake from soil below. Can be expressed as the ratio of plant dry matter yield 

and the plant water uptake in weight (Durr and Rangel 2003).  

Xylopode. A more or less stony, hard, tuberous thickening of the roots and 

underground parts of shrubs in steppe regions in Brazil (Swartz 1971).
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