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The recent resurgence of interest in positron transport in gases has been driven both by new
fundamental positron-atom/molecule cross scattering sections [1, 2], and by the richness and nov-
elty of the associated transport phenomena [3, 4]. In particular the phenomenon of negative differ-
ential conductivity (NDC) induced by positronium formation continues to be a focus of attention
of kinetic theorists and modellers [5, 6], and there are other interesting effects yet to be explained.
Although this work in gaseous systems is largely motivated by intrinsic physical interest, there are
a number of important technological and medical applications (e.g. PET scans) which provide an
additional imperative for such studies and in particular their extension to dense systems (liquid
and soft-condensed), the subject of this presentation. Investigations of positron transport in dense
systems so far have been very limited [7]. One can draw to some extent on the extensive trans-
port theory literature for electrons in dense gases and liquids [8], and both electrons and positrons
in gases , but there is no straightforward way of directly adapting this existing transport theory:
A new theory is needed, in which the effects of both non-reactive coherent scattering by many
atoms in the dense gaseous and liquid phases, and reactive collisions are accounted for, through a
dynamic structure factor S(K, Q) and the positronium formation at cross section respectively.

In a nutshell, the broad aim is to outline a general kinetic theoretical framework for calcula-
tion of positron transport coefficients in dense system gaseous systems and liquids. The procedure
is as follows: Firstly, we write down a kinetic equation for a structure medium, incorporating both
coherent elastic scattering, exitation, ionization and positronium formation effects; and secondly,
the experience gained over the past thirty years or so in gaseous electronics is brought to bear on
solving this kinetic equation, in particular:

1. With regard to the quantities to be calculated from the kinetic equation for purposes of com-
parison with experiment, it has been established for transport in gaseous media that reactive
collisions generally produce two distinct families of transport properties, so-called “bulk”
and “flux” coefficients, defined via the diffusion equation and the flux-gradient equation
(Fick’s law) respectively respectively. Generally speaking, the former are measurable and
the latter are not, and the differences can be substantial, both qualitatively and quantitatively
speaking. A similar duality carries over to dense gaseous systems and liquids.

2. With regard to the solution of the kinetic equation, it is now firmly established in the liter-
ature [9] that any assumption of near-isotropy of the charged particle (electron or positron)
distribution function f(c) with respect to velocities ¢ may lead to inaccuracies in trans-
port coefficients. In particular, one should avoid the limitations imposed by the “two-term”
spherical harmonic Y,Ll] (¢) representation of f(c) and seek a “multiterm” (arbitrary number
of spherical harmonics) solution of the kinetic equation. In this regard, it is important to note
that in general two angles ¢ = (8,¢) and an expansion in spherical harmonics are required
to specify f(c) = f(c,0, @) in velocity space. Representation of f(c) in terms of one angle
via and expansion Legendre polynomials P;(8) is valid if and only if the problem at hand is
axially symmetric.
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We begin with a benchmark system considering the non-equilibrium transport of electrons
in a gas of hard spheres. The structure of the medium in this case can be described by the well
known analytic Percus-Yevick relation and is a function of the volume fraction of particles to space
¢ for a given physical cross-section. There are a number of interesting properties that emerge
in the transport coefficients from the inclusion of coherent scattering from a structured medium.
These include the phenomena of structure-induced negative differential conductivity and structure-
induced anisotropic diffusion. That latter is displayed in Figure 1.
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Fig. 1: Impact of the volume fraction ¢ on the anisotropic nature of diffusion for electrons in a gas
of hard spheres.

Also, we will consider the non-equilibrium transport of positrons in liquid argon not only
because this is of interest in its own right, but also because the results are very different from
the much-studied case of electrons in liquid argon [8]. It is also interesting to compare with
recent results reported for positrons in dilute gaseous argon [5], and in particular to see the way
in which liquid structure influences the onset of Ps-induced negative differential conductivity and
the anisotropic nature of diffusion.
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