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Resumo

Nos dias de hoje, observa-se que os sistemas de comunicações móveis são muito solicitados.

Novos serviços como transmissão de dados e v́ıdeo precisam de ritmos elevados para que se

garanta o rendimento desejado pelos utilizadores. As técnicas de transmissão por blocos são

frequentemente usadas para estes sistemas, visto que preenchem a maior parte dos seus requi-

sitos. Dentro destas técnicas, esquemas como o Orthogonal Frequency Division Multiplexing

(OFDM) são bastante utilizados, pois conseguem lidar com canais fortemente seletivos na

frequência e atingir uma elevada eficiência espectral. Contudo, os sinais OFDM são muito

senśıveis aos efeitos não lineares devido às suas elevadas flutuações de envolvente. Foram

propostas várias técnicas para reduzir de forma eficiente estas flutuações. A que apresenta re-

sultados mais promissores consiste em aplicar uma operação não linear para remover os picos

de amplitude, seguida de uma operação de filtragem no domı́nio da frequência para eliminar

a radiação fora da banda.

Nas implementações convencionais do OFDM, o termo de distorção linear é visto como rúıdo

que leva a uma degradação na desempenho. Nestas condições, para atingir o melhor desem-

penho deve-se usar um receptor de máxima verosimilhança, pois este tem em conta toda a

informação associada aos sinais com distorção não linear. Esta tese foca-se no estudo de

receptores de máxima verosimilhana para sinais OFDM com fortes efeitos não lineares. É

demonstrado que, ao contrário do que se poderia esperar, a existência de distorção não linear

não implica que haja uma degradação na desempenho, pois o rácio distância Euclideana/en-

ergia de bit será maior do que sem a existência de efeitos não lineares. De facto, verifica-se

que o desempenho do receptor óptimo que lida com sinais não linearmente distorcidos pode

mesmo ser melhor que a desempenho do OFDM convencional com transmissores lineares.

Para provar isto, o desempenho assintótica do receptor óptimo é obtida por simulação e teori-

camente. Além disso, devido à grande complexidade que este receptor apresenta, quatro

receptores sub-ótimos e menos complexos são propostos e avaliados, sendo também estudado

o efeito do uso de técnicas iterativas de clipping e filtragem e uso de esquemas de diversidade

no seu desempenho.

Palavras chave: Sinais OFDM , efeitos de distorção não linear, deteção de máxima verosim-

ilhança, avaliação de desempenho, diversidade
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Abstract

Nowadays, the wireless communication systems are in great demand. New multimedia services

such as data and video need reliable high-speed data rates to guarantee the desired throughput

to the mobile users. The block transmission techniques are commonly used in these systems

since they fulfil the most part of the requirements. Among these techniques, multicarrier

schemes like Orthogonal Frequency Division Multiplexing (OFDM) are widely used since they

can deal with strong frequency selective channels and also present high spectral efficiency.

However, OFDM signals are very prone to nonlinear distortion effects due to their high en-

velope fluctuations. Therefore, several techniques were proposed to efficiently reduce these

fluctuations. The most promising technique is employing a nonlinear operation to reduce the

amplitude peaks followed by a frequency-domain filtering operation to reduce the spectral

broadening. In typical OFDM implementations, the resulting nonlinear distortion component

is treated as a noise-like term that leads to performance degradation. Under these conditions,

to achieve optimum performance should be employed a ML (Maximum Likelihood) receiver

that considers all the information associated to nonlinear components.

This thesis focus on the study of maximum likelihood receivers for OFDM signals with strong

nonlinear distortion effects. It is shown that, contrarily to the one could expect, the nonlinear

distortion does not necessary imply a performance degradation because the ratio minimum

distance between bit energy of nonlinearly distorted signals is higher than without nonlinear

distortion. In fact, the performance of the optimum receiver can be better than with conven-

tional linear transmitters. To prove this, the asymptotic performance of the optimum receiver

is evaluated both theoretically and by simulation. In addition, since the optimum receiver

presents very high complexity, four less complex sub-optimal receivers are proposed and eval-

uated, being also studied the impact of employing iterative clipping and filtering techniques

and diversity schemes in their BER performance.

Keywords: OFDM signals, nonlinear distortion effects, maximum likelihood detection, per-

formance evaluation, diversity
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Chapter 1

Introduction

1.1 Context

Wireless communications are today widely used due to the growing demand for users mobility.

Nevertheless, these kind of communications continue to be a challenging area due to the

constant demand of higher data rates and spectral efficiencies. Moreover, it is desired that

wireless devices have long battery life (i.e., low power consumption) as well as low complexity

for ease manufacture.

To achieve high-speed data transmission in wireless environments it is necessary to develop

techniques that overcome the radio channel problems as frequency and time selectivity, the

multipath propagation or the Doppler Effect. Orthogonal Frequency Division Multiplexing

(OFDM) [1][2] based schemes are excellent candidates for broadband wireless communications

mainly due to their good performance over severely time-dispersive channels without the need

for complex receiver implementations. However, this multicarrier scheme has a key issue:

presents high sensitivity to nonlinear distortion effects.

In time-domain, OFDM signals are characterized by high envelope fluctuations, which make

them susceptible to nonlinear distortion effects. Both the transmitter and receiver, have stages

that don’t present a completely linear behaviour, however the main source of nonlinear distor-

tion is usually the high power amplifier (HPA), specially a high power efficiency is desired in

the radio frequency (RF) amplification. To avoid nonlinear distortion in signals with large dy-

namic range (DR), the HPA should be overdimensioned to assure an operation far away from

1



2 CHAPTER 1. INTRODUCTION

the saturation point. In the uplink direction this is a severe issue, since it is intended that

the mobile terminals (MT) have low power consumption for a longer battery life. Therefore,

many methods to reduce the envelope fluctuations by means of signal processing have been

proposed. These methods can work both in frequency and time-domain. In the frequency-

domain, a reasonable amount of redundancy can be used to avoid high amplitude peaks [3].

However, there is an issue associated with this method since when the number of subcarriers

is high, the code rate of the required frequency-domain codes becomes also very low (i.e. the

redundant information is very high). Another technique implemented in the frequency-domain

is the use of multiple symbol representations [4][5]. The main problem of this technique is the

very high computational complexity. Other methods are defined in the time-domain, such

as those that consider a nonlinear operation to avoid amplitude peaks [6][7]. A new class of

promising low complexity and spectrally efficient schemes combine a nonlinear operation in the

time-domain, for example a clipping operation, with a frequency-domain filtering operation

to remove the out-of-band radiation associated to the intermodulation products [9][8][10][11].

Although the significant reduction on the envelope fluctuations of OFDM achieved by the

clipping technique, it is still need to employ quasi-linear amplifiers. On the other hand, it

would be desirable to employ nonlinear amplifiers since they are simpler, cheaper, have higher

output power and higher amplification efficiency. A promising technique that allows the use

of nonlinear amplifiers is the two-branch LInear amplification with Nonlinear Components

(LINC) [12][13][14]. In addition, the LINC and clipping techniques can be used in another

multicarrier schemes or with other nonlinear devices [15][16][17][18].

This work focuses on the study of nonlinear OFDM schemes, with special focus on the study

of optimal and suboptimal receivers that use the distortion components to improve the per-

formance.

According to the central limit theorem [19], when the number of subcarriers is high, an OFDM

signal can be modelled by a complex Gaussian process which allows the decomposition of

the transmitted nonlinearly signal as the sum of two uncorrelated components: an useful

component that is proportional to the original signal and a distortion component [21].

In conventional receiver implementations the distortion component is regarded as an additional

noise-like term that can lead to performance degradation. In that sense, several techniques

were proposed to improve the performance of nonlinear OFDM transmissions. One of them
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employs iterative receivers that try to estimate and cancellate the nonlinear distortion com-

ponent [22][23]. Nevertheless, the estimation of this component is not easy and, in fact, for

low values of signal-to-noise ratio (SNR) the performance of these receivers can even be worse

than the conventional OFDM receivers. Moreover, the distortion component has information

about the transmitted signal that can be used to improve the performance [24] which suggests

the use of an optimum receiver. The optimum receiver is a maximum likelihood (ML) receiver

that compares the Euclidean distance between the received signal and all the possible trans-

mitted signals selecting the estimated data that have smaller distance relative to the received

signal. It is clear that the ML receiver takes into account not only the useful component but

also the information inherent to the nonlinear component. The main problem associated to an

ML receiver relies in its complexity that grows exponentially with the number of subcarriers.

However, it is possible to develop suboptimal ML receivers that have good performance and

present less complexity [25] [26]. This thesis focuses on the study of optimal and suboptimal

ML-based receivers that deal with nonlinear distorted signals. Besides the characterization

of the performance of these receivers both by simulation and theoretically, it is also shown

that, the optimum ML and the sub-optimum performance of nonlinearly distorted OFDM

can be better than considering conventional OFDM that deals with linear transmitters. As

consequence, the proposed receivers are specially adequate for wireless systems that face prop-

agation problems or underwater communications [27], due to the lower requirements for the

data rates.

Conventions

Bold letters denote matrices or vectors and italic letters denote scalars. Capital letters are

associated to the frequency-domain and small letters are associated to the time-domain. [X]i,j

denotes the (i, j)th element of X, i.e., the element at the ith line and the jth column of the

matrix X and [X]i denotes the ith element of the vector X. diag(X) denotes a diagonal matrix

with (i, i)th element equal to [X]i and ||X|| denotes the Euclidean norm of the vector X. IN is

the N ×N identity matrix. (·)T and (·)H denote the transpose and Hermitian (i.e., complex

conjugate of the transpose) operators, respectively. The PDF of the random variable x, px(x),

is simply denoted by p(x) when there is no risk of ambiguity.
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1.2 Organization

After the introduction made before in this chapter, this thesis is organized as follows: in

Chapter 2 is made an analytical characterization of OFDM signals in time and frequency-

domains. The transmitter and receiver structures that are commonly used are also described.

In the last section of the chapter, based on a statistical approach, we present a theoretical

characterization of the nonlinear effects. Chapter 3 concerns about the potential performance

of an ideal ML receiver that deals with nonlinearly distorted signals. Here, the achievable

gains are analysed analytically and by simulation, and both results are compared. Chapter 4

presents several suboptimal ML-based receivers as well as their performance results. Finally,

Chapter 5 resumes this thesis and presents perspectives for future work.

1.3 Major Contributions

The major contribution of this thesis is to present a new vision for systems that lead with

nonlinearly distorted OFDM signals. It is shown that the performance of the ML and ML-based

receivers can be improved even in the presence of nonlinear distortion. The achievable gains are

analysed and quantified both by simulation and theoretically. Additionally, a closed expression

for the Euclidean distance between two distorted signals that are behind the achievable gain

of nonlinear OFDM is derived.

Meantime, several papers have resulted from the developed research work:

Accepted:

• João Guerreiro, Rui Dinis and Paulo Montezuma, ”Approaching the Maximum Likeli-

hood Performance with Nonlinearly Distorted OFDM Signals, published in IEEE VTC2012

(Spring), Yokohama, May 2012.

• João Guerreiro, Rui Dinis and Paulo Montezuma, ”Optimum and Sub-Optimum Re-

ceivers for OFDM Signals with Iterative Clipping and Filtering”, to be presented at

IEEE VTC2012 (Fall), Quebec City, Canada, Sep. 2012.
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• João Guerreiro, Rui Dinis and Paulo Montezuma, ”ML-Based Receivers for Underwa-

ter Networks Using OFDM Signals with Strong Nonlinear Distortion Effects”, to be

presented at MILCOM 2012, Florida, USA, Oct. 2012.

Submitted:

• João Guerreiro, Rui Dinis and Paulo Montezuma, ”Optimum and Sub-Optimum Re-

ceivers for OFDM Signals with Strong Nonlinear Distortion Effects”, submitted to IEEE

Transactions on Communications.



6 CHAPTER 1. INTRODUCTION



Chapter 2

OFDM Schemes

The multi-carrier (MC) modulation OFDM was selected for several systems, such as Digital

Video Broadcasting (DVB) [28], wireless broadband access technologies IEEE 802.16a/d/e

[29, 30] and fourth generation networks as the Long Term Evolution (LTE) [31].

In this chapter, a brief introduction to OFDM signals is carried out. This introduction includes

the characterization of the signals both in time and frequency-domain as well as the definition

of the transmitter and receiver structure suitable for these signals. As these signals are very

prone to nonlinear distortion effects due to their high envelope fluctuations, the nonlinear

effects associated to polar memoryless nonlinearities are also studied.

This chapter is organized as follows: in Section 2.1 is presented an characterization of OFDM

signals and its key properties. Section 2.2 characterizes the transmitter and receiver structure

that are typically used in OFDM schemes. Finally, in Section 2.3 is made a theoretical analysis

of the nonlinear effects in OFDM signals based on a Gaussian approximation. This theoret-

ical analysis includes the signal characterization at the nonlinearity output both in time and

frequency-domain.

2.1 Signal Characterization

The main concept of MC schemes is to split the available bandwidth B into N smaller sub-

channels spaced at F . In other words, the initial frequency selective wideband channel is

divided in smaller and approximately flat frequency sub-channels, mitigating the need to

perform a complex equalization. The main data stream is also divided into N individually low

7
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rate streams that will be transmitted in parallel on the different subcarriers. Since OFDM’s

subcarriers are orthogonal, thus, it is possible to recover the data even if their spectrum

overlap. When compared with other FDM schemes, the overlapping of the subcarriers is a

key advantage, because it allows a compression of the spectrum. The complex envelope of an

OFDM signal can be expressed as a sum of data bursts spaced at TB,

s(t) =
∑
m

sm(t−mTB), (2.1)

where TB is the burst duration and sm(t) denotes the mth burst that is defined as

sm(t) =
N−1∑
k=0

|Sk,m| cos (2π(f0 + kF )t+ arg {Sk,m})w(t), (2.2)

with Sk,m = |Sk,m| exp (arg {Sk,m}) denoting the complex symbol selected from a given con-

stellation (e.g. Quadrature Amplitude Modulation (QAM)) that modulate the kth subcarrier

of the mth burst, F representing the subcarrier spacing, f0 denoting the central frequency

and w(t) representing the support pulse. Note that the time-domain signal sm(t) can also be

written as

sm(t) = <{sm(t) exp (j2πf0t)} , (2.3)

with

˜sm(t) =

N−1∑
k=0

Sk,m exp (j2πkFt)w(t), (2.4)

Applying the Fourier Transform (FT) (denoted by F(·) operator) to both sides of (2.4) and

using the modulation property of the referred transform, we get

Sm(f) =

N−1∑
k=0

Sk,mW (f − kF ), (2.5)

where W (f) = F {w(t)}. Therefore, we note that the spectrum of an OFDM signal is defined

by the complex symbols that are transmitted sequentially and individually in the frequency

domain during the time interval T . To ensure an Inter Symbol Interference (ISI) free transmis-

sion, the Fourier transform of the support pulse w(t) must verify the orthogonality condition

+∞∫
−∞

W (f − kF )W ∗(f − k′F ) df = 0, k 6= k′, (2.6)
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where (·)∗ denotes complex conjugate. Using Parseval theorem we can rewrite (2.6) as

+∞∫
−∞

|w(t)|2 exp
(
−j2π(k − k′)Ft

)
dt = 0, k 6= k′. (2.7)

The transmitted pulse associated to conventional OFDM schemes w(t) is

w(t) =

 1, 0 ≤ t ≤ T

0, otherwise,
(2.8)

and, although the condition (2.6) is not verified by the support pulse defined in (2.8), the

subcarriers can be assumed to be orthogonal in the interval [0,T ]. Using (2.7) and (2.8) we

may write

+∞∫
−∞

|w(t)|2 exp
(
−j2π(k − k′)Ft

)
dt = (2.9)

=

 T, k = k′

0, k 6= k′.
(2.10)

Note that considering the support pulse defined in (2.8), we can write (2.5) as

Sm(f) =

N−1∑
k=0

Sk,msinc(f − kF ), (2.11)

where sinc(a) = sin(πa)
πa . Therefore, it can be shown that the Power Spectral Density (PSD) of

the OFDM signal is proportional to
N−1∑
k=0

|sinc(f − kF )|2 as depicted in the Figure 2.1.
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Figure 2.1: PSD of the OFDM complex envelope considering N=16 subcarriers.

In time dispersive channels, the OFDM bursts can overlap leading to existence of Inter Block

Interference (IBI). To solve this problem, a guard interval between adjacent blocks can be

used. If this interval is bigger than the channel impulse response (CIR) (i.e., the delay of last

multipath ray), all the copies of the original transmitted block that arrive at the receiver will

fall into this interval. Note that this interval can be achieved by extending each OFDM burst

with a fixed sequence, for example, a cyclic prefix (CP) or a zero-padding (ZP) sequence. In

this work, it is considered the first case, being the overall pulse duration defined as TB = TG+T ,

where TG is the duration of CP and T is the useful part of the block. A typical value for TG is

0.2T , however, is important to mention that there is not an optimal duration for CP, since it

depends directly on the channel impulsive response CIR, i.e., varies from channel to channel.

It is also important to point out that the use of this technique has also some drawbacks: since

the CP is an overhead, each burst will have redundant information which can compromise the

service bit rate and the power efficiency. Moreover, as CP will occupy some subcarriers, the

spectral efficiency is lower, which is a relevant issue since the band is a limited and expensive

resource.

2.2 Transmitter and Receiver Structure

Let us now consider the transmitter structure for OFDM signals. The first task performed by

the receiver is to split the high data rate input stream in N lower data rate streams through
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a serial-to-parallel (SP) converter. Subsequently, the data bits are mapped into the complex

symbols {Sk; k = 0, 1, . . . , N −1}, according to the adopted constellation. The next procedure

consists in multiplying the complex data symbols by the generated subcarriers and sum all

the resultant signals to build the data block s(P )(t) defined as

s(P )(t) =

N−1∑
k=0

Sk,m exp (j2πkFt). (2.12)

Note that (2.4) can also be written as

sm(t) = s(P )(t)w(t). (2.13)

Since s(P )(t) is a periodic function in t, with period T = 1/F , i.e.,

s(P )(t+ T ) =

N−1∑
k=0

Sk,m exp (j2πkF (t+ T )) =

N−1∑
k=0

Sk,m exp (j2πkFt) exp (j2πk)︸ ︷︷ ︸
1 ∀ k

, (2.14)

we can say that the complex envelope of the OFDM block during TG (i.e., during the CP) is

a repetition of the last part of the transmitted block, i.e.,

sm(t) = sm(t+ T ), −TG ≤ t ≤ 0, (2.15)

as illustrated in the Figure 2.2.

Cyclic 

Prefix

T

BT

GT

Figure 2.2: OFDM block structure with the Cyclic Prefix

Applying the FT to both sides of (2.12) we obtain

S(P )(f) =

N−1∑
k=0

Sk,mδ(f − kF ), (2.16)
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where δ(f) = F {1} represents the Delta dirac function. Summing all the spectral components

it is clear that the bandwidth occupied by S(P )(f) is NF = N/T . According to the sampling

theorem and assuming that the maximum frequency is N/2T , the signal can be recovered

when sampled at a rate of 2N/2T = N/T in the interval [0,T ]. The resultant samples can be

written as

s(P )
n (t) = s(P )(t)|t=nT

N
=

N−1∑
k=0

Sk,m exp
(
j2πk

n

N

)
, n = 0, 1, ..., N − 1. (2.17)

Looking at (2.17), are obvious the similarities with the inverse discrete Fourier transform

(IDFT). This operation transforms the frequency-domain block {Xk; k = 0, 1, . . . , N − 1} into

the time-domain samples {xn;n = 0, 1, . . . , N − 1}, with

xn =
1√
N

N−1∑
k=0

Xk exp
(
j2πk

n

N

)
, (2.18)

where N is the size of the considered data block. If we define sn as

sn =
1√
N
s(P )
n (t), (2.19)

it is clear that the block of time domain samples {sn;n = 0, 1, . . . , N − 1} is the IDFT of the

frequency domain block {Sk; k = 0, 1, . . . , N − 1} , i.e.,

sn = IDFT {Sk} . (2.20)

This means that a sampled version of s(P )(t) on the interval T can be obtained through the

IDFT of the block of transmitted symbols, which can be efficiently implemented using the

Fast Fourier Transform (FFT). This algorithm reduces the required operations to compute

the IDFT from N2 to N log2(N) (N must be a power of 2) [32]. In addition, with an N -point

FFT, the complexity of transmitter is reduced, since N multipliers and oscillators that would

be necessary to generate the multicarrier signal are avoided. At the FFT’s output, a CP of

NG samples is added at the beginning of each N -size OFDM block. In order to obtain s(t),

the time-domain samples sn must be multiplied by the samples of the support pulse. The

resultant samples are then converted into an analog signal that will be sent through the RF

link. To do that conversion, the time-domain samples are submitted to a Digital to Analog
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Converter (DAC). The DAC is followed by a reconstruction filter, to suppress the spectral

replicas at its output. The reconstructed complex envelope, s(t), can be written as

s(t) =

(
+∞∑

n=−∞
sn wnδ

(
t− nT

N

))
∗ hT (t) (2.21)

=
+∞∑

n=−∞
sn wnhT

(
t− nT

N

)
,

where hT (t) is the impulsive response of the reconstruction filter that has a bandwidth of

N ′

2T (1 + ρ), with ρ being the roll-off factor that varies from 0 to 1.

If a sampling rate of N/T is used, the spectrum of the sampled signal is free of aliasing ef-

fects. However, after the sampling operation, it is desired that the baseband spectrum is far

away from its first spectral replica, allowing the realization of a smooth filter to recover the

baseband signal. For this purpose, the signal s(P )(t) is usually sampled at a rate greater than

N/T (the Nyquist rate), which increases the bandwidth of the sampled signal. Therefore, the

complexity of the reconstruction filter can be reduced since it can have a lower order.

Note that the augmented sampling rate can be MN
T ≥ N

T , with M representing the oversam-

pling factor that is greater than one and not necessarily integer. In fact, the oversampling

operation can be performed by the addition of (M − 1)N idle subcarriers to the original data

block {Sk; k = 0, 1, . . . , N − 1}, half of them in the beginning and the other half in the end.

This operation also ensures the desired space between the original spectrum and the first

replica. Note that the block will have a total of MN subcarriers, however, only N of them

are useful subcarriers. The corresponding time-domain samples are given by

sMn (t) = s(P )(t)|t= nT
NM

=
N−1∑
k=0

Sk,m exp
(
j2πk

n

NM

)
, n = 0, 1, ..., NM − 1. (2.22)

The complex envelope of the oversampled analog signal is

s(t) =

+∞∑
n=−∞

sn wnhT

(
t− nT

N ′

)
. (2.23)

It should be mentioned that this signal doesn’t represent exactly the original OFDM analog

signal expressed in (2.13). However, the difference is small, specially for a large number of

subcarriers and/or a high oversampling factor (i.e., when M →∞). To reduce the out-of-band

radiation levels, it is common to use a square-root raised-cosine window for w(t), instead of
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a rectangular one [11]. This type of windowing makes the amplitude go smoothly to zero

at the symbol boundaries, allowing a compression of the spectrum and increases the spectral

efficiency. The considered window is obtained through the convolution with shaping filter

hW (t), i.e.,

w(t) = w′(t) ∗ hW (t), (2.24)

where

hW (t) =
π

2TW
cos

(
πt

TW

)
rect

(
t

TW

)
, (2.25)

and w′(t) is a rectangular window with duration TB = T + TG + TW . The result of the

convolution operation, w(t), is a square-root raised-cosine pulse with duration TB + TW . The

transmitter structure is shown in the Figure 2.3.
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Figure 2.3: OFDM transmitter structure

Let us now consider the receiver. The first thing that the receiver does is the RF down

conversion, obtaining the baseband signal through an orthogonal demodulator. Since OFDM

schemes are multicarrier modulations, they are more sensitive to the Doppler effect and, thus,

an accurate frequency synchronization and estimation is required. After the down conversion,

the signal is multiplied by the reception filter HR(f), that has a bandwidth of NM
2T (1 + ρ),

where ρ represents the roll-off factor, i.e., the excess bandwidth of the filter. If the CIR is

characterized by h(τ, t) and the noise is modelled by n(t) then the output y(t) at the receiver



2.2. TRANSMITTER AND RECEIVER STRUCTURE 15

can be written as

y(t) =

+∞∫
−∞

s(t− τ)h(τ, t) dτ + n(t). (2.26)

This signal is sampled with the same oversampling factor used in the transmitter (i.e., the

sampling rate is NM/T ) and submitted to an analog to digital (ADC) converter. The ADC

output are the time-domain samples {yn;n = −NG, 0, 1, . . . , NM − 1}.

As well as the signal generation can be performed using a IDFT, the signal processing scheme

on the receiver side can be implemented using a discrete Fourier transform (DFT). Before

applying the DFT operation, the NG samples that belong to CP are removed to avoid the

overlapping of consecutive bursts (that is restricted to the guard interval TG). Consequently,

the null IBI is achieved, since all the corrupted samples are ignored by the receiver. Without

the CP, the DFT input is {yn;n = 0, 1, . . . , NM−1} and the frequency-domain signal {Yk; k =

0, 1, . . . , NM − 1} at the DFT output is given by

Yk =
NM−1∑
n=0

yn exp
(
−j2πk n

NM

)
, k = 0, 1, ..., NM − 1. (2.27)

Also due to CP usage, the output Yk can be seen as the result of a circular discrete convolution

instead of a linear discrete convolution, due to the periodicity introduced by the CP in the

OFDM block. As result, (2.27) can be also written as

Yk = SkHk +Nk, (2.28)

where Hk and Nk represent the channel frequency response and the noise for the kth subcarrier,

respectively. It is assumed that the samples Nk are assumed to be independent and Gaussian

distributed on both the in-phase and quadrature components.

In Figure 2.4 it is shown the frequency response for a frequency selective channel considering

N = 64 useful subcarriers and an oversampling factor of M = 4. Looking at (2.28), we note

that each subcarrier can be treated individually in the frequency-domain which suggests that

the equalization process can also be done in frequency-domain. Under these conditions, the

equalization performed by the receiver is a simple multiplication of the received signal by the

factor Fk defined as follows

Fk =
1

Ĥk

=
Ĥk
∗

|Ĥk|2
, k = 0, 1, ..., N − 1, (2.29)



16 CHAPTER 2. OFDM SCHEMES

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−20

−15

−10

−5

0

5

k/N

1
0
lo
g(
|H

k
|2 )

: Channel frequency response

Figure 2.4: Channel frequency response

where Ĥk is the estimated frequency response of the channel for the kth subcarrier. The

resultant equalized sequence can be expressed as

S̃k = SkHkFk + FkNk, k = 0, 1, ..., N − 1. (2.30)

After the equalization process, the equalized signal {S̃k; k = 0, 1, . . . , N − 1} is submitted to

the decision device that will estimate the transmitted symbols {Ŝk; k = 0, 1, . . . , N − 1}. The

receiver structure is depicted in Figure 2.5. (S/H - Sample and Hold, S/P - Serial to Parallel,

CP Rem - CP removal)
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2.3 Nonlinear effects in OFDM signals

The OFDM complex envelope results from a sum of N subcarriers, each one modulated by

independent data symbols as is expressed in (2.12). Therefore, the resultant signal has high

envelope fluctuations even when each sub channel uses a low envelope modulation. This

behaviour is evident in Figure 2.6, where it is shown the absolute value of the time-domain

samples of an OFDM signal with N = 64 in-band subcarriers, an oversampling factor of M = 4

and a QPSK constellation.
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Figure 2.6: Amplitude of the time-domain samples of and OFDM signal with N = 64 and M = 4.

From the figure it is clear that in the time-domain, the OFDM signal present an high dynamic

range even for small constellations, which can lead to amplification difficulties. One of the

most promising solution for this issue is to clip the signal, however, this can bring severe non-

linear distortion effects.

From the point of view of signal processing schemes, it would be appreciated that the nonlin-

early distorted signals could be characterized in a theoretical way. In fact, for a high number

of subcarriers, the central limit theorem [19] states that the OFDM complex envelope can

be assumed to be a stationary complex Gaussian process. Therefore, a Gaussian approxima-

tion can be employed for performance evaluation of the nonlinearly distorted OFDM signals

[11, 17], substituting the usually used Monte Carlo simulations that require large times of

computation.
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In this section, we will focus on the study of polar memoryless nonlinearities (i.e. the ones

whose output for the instant t depends only on the input at the same instant) and it will be

shown how we can obtain the statistical characterization of the signals that are passed through

these type of nonlinearities. The expressions for the power and the PSD associated with the

useful component and the distortion component of the nonlinearly distorted OFDM signal are

presented. The analytical characterization includes also the out-of-band radiation due to the

existence of intermodulation products (IMP).

Let us start by verifying the accuracy of the Gaussian approximation for the OFDM complex

envelope that is assumed in the following theoretical analysis. In Figure 2.7 it is shown the

PDF of the imaginary part of the OFDM time-domain samples, i.e., =(sn), for different values

of N and an oversampling factor of M = 4. From the figure, its clear that even for a moderate

values of N , the distribution of the imaginary part of the samples tends to the normal distri-

bution with zero mean and σ2 = 0.5, which leads us to conclude that, this approximation is

accurate in almost all of the cases. Of course, the same result is obtained for the real part of

the samples, <(sn).
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Figure 2.7: PDF of the =(sn) with different values of N and M = 4.

As the OFDM complex envelope is defined as

R = |sn| =
√
<(sn)2 + =(sn)2, (2.31)
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we can expect a Rayleigh distribution for R, since both the in-phase and quadrature samples

are assumed to be normal distributed.

In Figure 2.8 it is shown the PDF of the OFDM complex envelope samples considering different

values of in-band subcarriers and an oversampling factor of M = 4. As it can be seen in figure,

the distribution of the complex envelope samples is almost equal to the Rayleigh distribution

with σ2 = 1, even with N = 16. For this reason, in this work, the OFDM complex envelope is

often modelled by a Rayleigh distribution.
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Figure 2.8: PDF for OFDM complex envelope samples with different values of N and M = 4.

Let us consider a bandpass signal described by

xBP (t) = Re {x(t) exp (2πfct)} , (2.32)

where fc is the frequency of the carrier wave and x(t) is the complex envelope defined in the

polar form as

x(t) = R(t) exp (ϕ(t)), (2.33)
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where R(t) denotes the absolute value and ϕ(t) represents the argument of x(t). Replacing

(2.33) in (2.32), we have

xBP (t) = Re {R(t) exp (ϕ(t)) exp (2πfct)}

= Re {R(t) exp (ψ(t))}

= R(t) cos (ψ(t)) , (2.34)

with

ψ(t) = ϕ(t) + 2πfct. (2.35)

If the bandpass signal, R(t) expψ(t), is submitted to the nonlinear device depicted in Fig-

ure 2.9, which models a polar memoryless nonlinearity, the output y(t) is given by

y(t) = gI (R(t) cos (ψ(t)))− gQ (R(t) sin (ψ(t))) , (2.36)

where gI(·) and gQ(·) are odd real functions. It is important to note that since y(t) is a

 ).( g I

+

-

+

+

t))R(t)cos(ψ(

t))R(t)sin(ψ(

y(t)

 ).( gQ

 ).( g I

 ).( g Q

Figure 2.9: Memoryless nonlinearity model with a bandpass input.

periodic function of ψ = ψ(t) it can be expanded in Fourier series as

y(t) =

+∞∑
l=−∞

cl (R (t)) exp (jlψ), (2.37)
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with cl denoting the complex Fourier coefficient defined as

cl =
1

2π

2π∫
0

gI (R(t) cos (ψ))− gQ (R(t) cos (ψ)) exp (−jlψ) dψ (2.38)

= al + jbl,

where,

al = Re(cl) =
1

2π

2π∫
0

gI (R cos (ψ)) cos (lψ) dψ, (2.39)

and

bl = Im(cl) =
1

2π

2π∫
0

gQ (R cos (ψ)) sin (lψ) dψ. (2.40)

The signal xBP (t) has typically a much smaller bandwidth than the carrier frequency fc.

However, the nonlinearity output will have spectral components centred at ±lfc. To remove

all these components except the one at the carrier frequency, a filter must be used. The filtered

output is written as

yf (t) = g (R) exp (jψ) = f(R) exp (jψ), (2.41)

i.e., the nonlinear effect depends only on the absolute value of the input signal R = R(t) =

|x(t)| and f(R) = AI(R) + j AQ(R), with

AQ(R) = 2 Re(cl) =
1

π

2π∫
0

gI (R cos (ψ)) cos (ψ) dψ, (2.42)

and

AI(R) = 2 Im(cl) =
1

π

2π∫
0

gQ (R cos (ψ)) sin (ψ) dψ. (2.43)

The nonlinear characteristic f(R) is modelled as

f(R) = A(R) exp (jΘ(R)), (2.44)

with A(R) being the AM/AM conversion characteristic, that represents the effect on the output

amplitude as a function of the input amplitude and Θ(R) denoting the AM/PM characteristic

curve, that represents the effect on the output phase caused by the input amplitude. Replacing
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(2.44) in (2.41) we may write

y(t) = A(R) exp (j (Θ(R) + ψ)), (2.45)

Clearly, the effect of the memoryless nonlinearity on the input x(t), corresponds, together

with the referred filter, to the effect on xBP (t) when it is submitted to a polar memoryless

nonlinearity described by its AM/AM and AM/PM conversion functions as depicted in the

Figure 2.10.

 

Polar Memoryless

Nonlinearity

)(R )(RA

jRe =x(t) )(R)j( A(R)e=y(t) 

Figure 2.10: Memoryless polar nonlinearity model

An example of a bandpass memoryless nonlinearity is an Solid State Power Amplifier (SSPA)

that can be modelled with Θ(R) ≈ 0 and A(R) defined in [20] as

A(R) = AM

R
sM

2p

√
1 +

(
R
sM

)2p
, (2.46)

where AM
sM

is the small signal gain (i.e., lim
R→0

A(R)
R = AM

sM
) and AM is the saturation value

(i.e., lim
R→+∞

A(R) = AM ). In Figure 2.11 we have the AM/AM characteristic function for this

amplifier, considering several values of p, AM = 4 and sM = 5. As we can see, the transition

between the linear region and the saturation tends to be smoother for low values of p. In the

limit, i.e., p = +∞, the SSPA is equivalent to a clipping device.
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Figure 2.11: AM/AM characteristic of a SSPA

Note that this device limits the output to be AM from a certain value of R, leading to an

existence of severe nonlinear distortion effects. Another example of a polar memoryless non-

linearity is the Travelling Wave Tube Amplifier (TWTA), characterized by the AM/AM and

AM/PM functions defined in [20] as

A(R) = 2
AM

(
R
sM

)
1 +

(
R
sM

)2 , (2.47)

and

Θ(R) = 2
θM

(
R
sM

)2

1 +
(
R
sM

)2 . (2.48)

As verified before, when the number of subcarriers is high, we can make a Gaussian approxi-

mation for the OFDM signal. Using the Bussgang theorem [21], that can also be obtained as

a variation of the Price theorem [33], it can be shown that the nonlinear distorted signal that

results from a Gaussian input, is decomposable as the sum of two uncorrelated components: an

useful component that is proportional to the input signal and a distortion component. Thus,

for the input x(t) we may write

y(t) = αx(t) + d(t), (2.49)

where α is a scaling factor, d(t) denotes the self-interference component and y(t) represents

the output of the polar memoryless nonlinearity.
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Let us assume that R = R(t) represent a realization of a random process that models the

absolute value of the OFDM complex envelope, i.e., is associated to |x(t)|. Note that this

realization is composed by a set of samples that are associated with a Rayleigh distribution

as seen in Figure 2.8, since the magnitude of the real and imaginary parts of each sample

are uncorrelated and normally distributed with the same variance, σ2. Moreover, since it is

assumed a stationary complex Gaussian process, the PDF of the sample at t1 is the same

for the sample at t1 + τ , resulting that the scaling factor α is time independent. As the two

components are uncorrelated, we have E[x(t)d(t)] = 0 (where E[·] is the expectation operator).

Therefore, using the expectation operator properties we can write

E[y(t)x(t)] = E[(αx(t) + d(t))x(t)] (2.50)

= E[αx2(t)] + E[x(t)d(t)]

= αE[x2(t)].

Solving in order to α, we may write

α=
E[y(t)x∗(t)]

E[x(t)x∗(t)]
(2.51)

=
E[A(R) exp (jΘ(R)) exp (jϕ)R exp (−jϕ)]

E[R2]

=
E[RA(R) exp (jΘ(R))]

E[R2]

=
E[Rf(R)]

E[R2]
,

Recalling that the PDF of Rayleigh distribution is given by

p(R) =
R

σ2
exp

(
− R

2

2σ2

)
, R > 0, (2.52)

the expected value of R is

E[R] =

+∞∫
−∞

R
R

σ2
exp

(
− R

2

2σ2

)
dR, (2.53)
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or, more generally, the expected value of an arbitrary function of R, say φ(R), is

E[φ(R)] =

+∞∫
−∞

φ (R)
R

σ2
exp

(
− R

2

2σ2

)
dR. (2.54)

Using (2.54), equation (2.51) can be rewritten as

α=
E[RA(R) exp (jΘ(R))]

E[R2]
(2.55)

=

+∞∫
−∞

RA(R) exp (jΘ(R)) p(R) dR

+∞∫
0

R2 p(R) dR

(2.56)

=
1

2σ2

+∞∫
0

RA(R) exp (jΘ(R)) p(R) dR (2.57)

=
1

2σ4

+∞∫
0

RA(R) exp (jΘ(R)) R exp

(
− R

2

2σ2

)
dR, (2.58)

but, since E[R2] can also be written as

E[R2] = E [R exp (jϕ(t))R exp (−jϕ(t))] = E [x(t)x∗(t− τ)]

∣∣∣∣
τ=0

= Rx(τ)

∣∣∣∣
τ=0

, (2.59)

and the autocorrelation Rx(τ) forms a Fourier pair with the PSD of x(t), i.e.,

Rx(τ) =

+∞∫
−∞

Gx(f) exp (j2πfτ)df, (2.60)

we can note that

Rx(τ)

∣∣∣∣
τ=0

=

+∞∫
−∞

Gx(f) df, (2.61)

which is equal to the power of the input signal, 2σ2, that appears in the denominator of (2.55).

Looking at (2.49), we note that the average power of the useful component, S, is given by

S = 2|α|2σ2, (2.62)
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on the other hand, the total average power at the output of the nonlinearity is

Pout = E[|f2(R)|] =
1

2σ2

+∞∫
0

A2(R) R exp

(
− R

2

2σ2

)
dR. (2.63)

Using (2.62) and (2.63) we can define the average power of the self-interference component as

I = Pout − S (2.64)

To characterize in the frequency-domain the nonlinear effects at the PSD of the nonlinearity

output, Gy(f), we can find the output autocorrelation Ry(τ) since, as mentioned before, they

form a Fourier pair. In Appendix A it is shown that the autocorrelation of the output y(t) is

given by (A.38)

Ry(τ) = 2

+∞∑
γ=0

P2γ+1
Rx(τ)γ+1R∗x(τ)γ

Rx(0)2γ+1
, (2.65)

with P2γ+1 denoting the total power associated to the IMP of order 2γ + 1, which can be

obtained with (A.36)

P2γ+1 =
1

4σ6(γ + 1)

∣∣∣∣∣∣
+∞∫
0

R2f(R) exp

(
− R

2

2σ2

)
L(1)
γ

(
R2

2σ2

)
dR

∣∣∣∣∣∣
2

, (2.66)

where L
(1)
γ denotes the generalized Laguerre polynomial of order γ, defined as

L(1)
γ (x) =

1

γ!
x−1 exp (x)

dγ

dxγ
(
exp (−x)xγ+1

)
. (2.67)

Using (2.66) for γ = 0 we get P1 = |α|2σ2 (which is the useful power of the output, expressed

in (2.62)). Thus, the first IMP is proportional to the input signal and we conclude that the

IMP from order γ = 1 to +∞ are the responsible for the power of the distortion component I.

In addition, since the useful and self-interference components are uncorrelated, we can write

Ry(τ) = |α|2Rx(τ) +Rd(τ), (2.68)

with Rd(τ) denoting the PSD of the distortion component, which is given by

Rd(τ) = E[d(t)d∗(t− τ)] = 2
+∞∑
γ=1

P2γ+1
Rx(τ)γ+1R∗x(τ)γ

Rx(0)2γ+1
, (2.69)
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and

I = Rd(τ)

∣∣∣∣
τ=0

= 2
+∞∑
γ=1

P2γ+1. (2.70)

The power spectral density of y(t) is simply obtained by calculating the Fourier Transform of

(2.65) , i.e.,

Gy(f) =F {Ry(τ)} (2.71)

= 2
+∞∑
γ=0

P2γ+1

Rx(0)2γ+1
Gx(f) ∗ · · · ∗Gx(f)︸ ︷︷ ︸

γ+1

Gx(−f) ∗ · · · ∗Gx(−f)︸ ︷︷ ︸
γ

,

recalling that F {a(t)× b(t)} = A(f) ∗ B(f) and F {a∗(t)} = A(−f). Once again, we can

decompose the PSD of the nonlinearity output in two components, i.e.,

Gy(f) = |α|2Gx(f) +Gd(f), (2.72)

with Gd(f) denoting the PSD of the self-interference component, defined as

Gd(f) =F {Rd(τ)} (2.73)

= 2
+∞∑
γ=1

P2γ+1

Rx(0)2γ+1
Gx(f) ∗ · · · ∗Gx(f)︸ ︷︷ ︸

γ+1

Gx(−f) ∗ · · · ∗Gx(−f)︸ ︷︷ ︸
γ

.

Looking at (2.71) it is easy to understand that the nonlinearity will cause a spectral outgrowth,

since the expression contains several convolutions between the PSD of the input signal. More

concretely, if the PSD of the input signal has bandwidth B, Gy(f) will have a bandwidth of

(2γ + 1) B. The spectral outgrowth is justified by the existence of IMP that appears when

signals with different frequencies are passed through a nonlinear device. Clearly, the existence

of an undesired out-of-band radiation can lead to interferences with neighbouring communi-

cation systems, which is a relevant problem. However, this radiation can be attenuated using

an adequate frequency filtering operation.



Chapter 3

Maximum-Likelihood Receivers for

nonlinearly distorted OFDM signals

In previous chapter, it was verified that in OFDM schemes the received signal is equalized in

the frequency-domain, which allows the realization of simple receivers. In this chapter, we will

study the last and the most important task performed by the receiver - the data detection.

After the equalization procedure, the receiver must estimate the data that, even with a per-

fect equalization, is still corrupted by noise (otherwise stated, we will assume that the channel

corrupts the transmitted signal with Additive White Gaussian Noise (AWGN)) and nonlinear

distortion.

There are a large variety of techniques for doing data detection. One of them consists in ap-

plying a simple hard-detection, according to the decision threshold of the complex symbols in

the adopted constellation. Although this technique brings very low complexity, it also has low

performance, i.e., high BER values, specially for signals with high nonlinear distortion effects

(which are the main target of this work). To have an optimal performance, it is necessary to

employ an ideal Maximum Likelihood ML receiver. This receiver tries to minimize the error

probability by selecting the data estimate with smallest Euclidean distance relatively to the

received signal. As will be seen later, these receivers consider the overall nonlinear distorted

signal, taking advantage of the information that is present in the distortion component, instead

of regarding it as a noise-like term.

This chapter is organized as follows: in Section 3.1 are presented the reasons behind the

29
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DISTORTED OFDM SIGNALS

improvements in nonlinear OFDM. In Section 3.2 the main principle of ML detection is ex-

plained. Section 3.3 characterizes analytically the ML receivers and it is also derived a closed

expression for the Euclidean distance between two nonlinearly distorted signals. Finally, in

Section 3.4 it is presented the achievable performance of ML receivers dealing with nonlinear

OFDM signals.

3.1 Achievable gain for nonlinear OFDM

To understand how the nonlinear distortion can improve the performance, let us consider an

OFDM signal with N = 64 data symbols selected from a QPSK constellation. The data

blocks are represented by X = [X0X1 ... XNM−1]T ∈ CNM , i.e., in addition to the data

symbols, the block also contains a set of (M − 1)N zeros. As seen before in Section 2.2,

adding these zeros is formally equivalent to add (M − 1)N/2 idle subcarriers (i.e. subcarriers

that don’t carry any data) at each edge of the band. This means that the time-domain block

x = [x0 x1 ... xNM−1]T ∈ CNM can be regarded as an oversampled version of the original

OFDM block with an oversampling factor M (in this case, it is considered an oversampling

factor of M = 4 that is enough to avoid aliasing effects in the nonlinearly distorted signal). In

Figure 3.1 it is shown the considered scenario.

n

DFT

XFx -1

X

f(x)y  yFY z

IDFT NL Channel

NHGYFz 

G

IDFT DFT

Frequency-domain 

filtering

Figure 3.1: Signal processing scheme associated to the considered scenario

At the transmitter, the input time-domain signal x = [x0 x1 ... xNM−1]T ∈ CNM is distorted

by the memoryless nonlinearity f(.) which corresponds to a clipping device characterized by

the normalized clipping level sM/σ = 0.5. Note that this function distorts the magnitude but
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not the phase of the elements of x (i.e., it is assumed a null AM/PM conversion characteristic).

Its AM/AM conversion is given by

f(R) =

 R, R ≤ sM
sM , R > sM ,

(3.1)

where R = |x| = [R0R1 ... RNM−1]T ∈ CNM is a vector composed by Rayleigh distributed

random variables that models the absolute value of time-domain samples that are obtained

through an IDFT. This operation is considered as a matrix multiplication, with FNM being a

unitary matrix that denotes the NM -size DFT and whose the element of the ith line and jth

column is defined as

[FNM ]i,l =
1√
NM

exp

(
−j2πil
NM

)
. (3.2)

The IDFT operation is represented as a multiplication by the matrix F−1
NM = FH (since F is

unitary, its inverse is equal to the conjugate transpose). The signal x is hence given by F−1
NMX

(in the following it will be simply used F−1 and F when there is no risk of ambiguity). The

nonlinearly distorted signal is represented by y = f(x) = [y0 y1 ... yNM−1]T ∈ CNM and, in the

frequency-domain, we have

Y = F
(
f
(
F−1X

))
. (3.3)

It is assumed that the samples of x have a Gaussian nature and, according to (2.49), the

nonlinearity output Y can be decomposed in two uncorrelated components as

Y = Fy

= F (αx + d)

= αX + D, (3.4)

where α is the scaling factor defined in (2.51) and D = [D0D1 ... DNM−1]T ∈ CNM is the

frequency-domain version of the distortion component. After appending an appropriate cyclic

prefix to the time-domain block F−1GY, the resulting samples are transmitted through the

wireless channel. At the receiver, the cyclic prefix is removed, leading to the time-domain block

z = [z0 z1 ... zNM−1]T ∈ CNM (without loss of generality we assume the same oversampling
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factor at the transmitter and the receiver). The block Z ∈ CNM represents the frequency-

domain version of the received signal that can be defined using (3.3) and (3.4) as

Z = Fz (3.5)

= HGY + N

= HGFf(F−1X) + N

= αHGX + HGD + N,

where N = [N0 N1 ... NMN−1]T ∈ CNM represents the noise vector, with [N]k denoting the

kth frequency-domain noise component, and H represents the channel response defined as

H = diag
(
[H0 H1 ... HMN−1]T

)
, (3.6)

where [H]k,k is the channel frequency response for the kth subcarrier.

We shall now consider two nonlinearly distorted sequences Y(1) and Y(2) that are generated

by passing the time-domain version of X(1) and X(2) through a clipping device. In addition, let

us consider that the data block X(2) differs from X(1) in only one bit at the middle subcarrier

of the spectrum. In the Figure 3.2 is shown the magnitude of the two sequences Y(1) and

Y(2) and the absolute value of the difference between them. It is clear that this difference has

energy in the entire band (in-band and out-of-band part of the spectrum) and not only in the

subcarrier where the bit was modified.



3.1. ACHIEVABLE GAIN FOR NONLINEAR OFDM 33

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

k/N
|Y

(1
) |

A

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

|Y
(2

) |

k/N

B

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

|Y
(1

) −
Y

(2
) |

k/N

C

Figure 3.2: Absolute value of the transmitted frequency-domain signal for two OFDM data blocks
differing in a single bit that are submitted to an envelope clipping with clipping level sM/σ = 0.5

((A) and (B)) and the absolute value of the difference between them (C).

It is important to note that the scaling factor of 1√
NM

in the definition of the DFT in (3.2),

makes this transform unitary. This implies that the energy is preserved, i.e.,

NM−1∑
k=0

∣∣∣∣ [X]k

∣∣∣∣2 =
NM−1∑
i=0

∣∣∣∣ [x]n

∣∣∣∣2, (3.7)

therefore, the energy is the same in the time-domain and frequency-domain (or, in other words,

the same in the input and output of the DFT). If we take advantage of this DFT definition, the

average bit energy that is typically defined using the time-domain samples can also be defined

in the frequency-domain. In addition, the SNR, the ratio between the average bit energy, the

squared Euclidean distances and other related parameters defined in frequency-domain are

identical to the ones defined in time-domain.

Let us now focus our analysis in the frequency-domain samples. Using (3.4), we can define

the average bit energy for a nonlinear transmitter as

Eb =
1

2N

NM−1∑
k=0

E[|[Y]k|2] (3.8)

=
1

2N

NM−1∑
k=0

(|αE[[X]k] + E[[D]k|)2 .
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Another way to obtain the average bit energy is to consider the output power of the nonlinearity

as in (2.63). For example, using the clipping function defined in (3.1), we have

Eb = A2E[f(R)2]

E[R2]

= A2

+∞∫
−∞

f(R)2 R

σ2
exp

(
− R

2

2σ2

)
dR

+∞∫
0

R2 R

σ2
exp

(
− R

2

2σ2

)
dR

=
A2

σ2

(
1− exp

(
− s

2
M

2σ2

))
. (3.9)

Figure 3.3 shows the average bit energy computed from (3.9) as a function of the normalized

clipping level sM/σ, considering A = 1 (A is the amplitude of the symbols in the QPSK

constellation) and σ2 = 1. Its clear that Eb � A2, especially for lower values of sM/σ.
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Figure 3.3: Evolution of average bit energy considering different values for the normalized clip-
ping level sM/σ.

When higher values clipping levels are considered, Eb gets closer to A2 (the value for linear

transmitters), which means very low distortion levels. Still in the frequency-domain, as the

Euclidean distance between two nonlinearly signals is given by the squared euclidean norm
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between them, we have

D2 =

∣∣∣∣∣∣∣∣Y(1) −Y(2)

∣∣∣∣∣∣∣∣2
=

NM−1∑
k=0

∣∣∣∣[Y]
(1)
k − [Y]

(2)
k

∣∣∣∣2

=
NM−1∑
k=0

∣∣∣∣α[X]
(1)
k + [D]

(1)
k − α[X]

(2)
k − [D]

(2)
k

∣∣∣∣2. (3.10)

Considering Figure 3.2 and using (3.10), the Euclidean distance between the sequences Y(2)

and Y(1) is

D2 =

∣∣∣∣∣∣∣∣Y(2) −Y(1)

∣∣∣∣∣∣∣∣2 ≈ 7.7Eb

which means that the quantity D2/Eb between the two signals that are submitted to this

clipping device is greater than without this nonlinear distortion effect (for a linear transmitter

is D2/Eb = 4). Since the asymptotic behaviour of the BER performance is closely related to

the ratio D2/Eb (where D2 is the minimum distance between any two signals that belong to

transmitted signals set) and we note that Euclidean distance is many times greater than Eb,

an improvement can be achieved. It is important to point out that (3.10) takes into account

the M(N − 1) out-of-band subcarriers. However, the radiation associated to them must not

overlap with neighbours spectra and, thus, must be removed. As in [11], to eliminate the

out-of-band radiation, a subsequent frequency-domain filtering operation can be performed.

In the considered signal processing scheme, the frequency domain filter (FDF) is represented

by the diagonal matrix G ∈ CNM which is defined as

G = diag

 0.....0︸ ︷︷ ︸
(M−1)N/2

1.....1︸ ︷︷ ︸
N

0.....0︸ ︷︷ ︸
(M−1)N/2

 . (3.11)

This filter removes the (M−1)N subcarriers that not belong to the in-band spectrum weighing

them by 0. However, the N in-band subcarriers will remain unchanged after this operation.

Naturally, if no frequency-domain filter is employed, the matrix G is defined as

G = INM . (3.12)

It should be pointed out that using a FDF leads to a reduction in the Euclidean distance

between the signals (since a lower number of subcarriers are considered in (3.10)). Therefore,
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since the ratio D2/Eb will be smaller, there is a reduction in the achievable gain.

Let us now quantify the asymptotic gain defined as

G =
D2

4Eb
. (3.13)

It is expected that the asymptotic gain G is almost always higher than one (the value for the

linear transmitter), especially in the presence of strong nonlinear distortion effects. This is

explained as follows: since for lower values of sM/σ, Eb also assumes very low values as shown

in Figure 3.3, D2 will be higher than 4Eb, which makes the gain higher than one as depicted

in Figure 3.4. In this figure it is considered an OFDM signal with N = 64 and data sequences

that differ in only one bit. From the figure, its clear that when lower values of sM/σ are

adopted, the asymptotic gain G assume values greater than one. This behaviour is justified

because the higher D2/Eb that results from consider strong nonlinear distortion effects.

0.5 1 1.5 2 2.5
0.9

1

1.1

1.2

1.3

1.4

1.5

sM/σ

D
2
/
4
E

b

: Asymptotic gain

Figure 3.4: Evolution of G for different values of the normalized clipping level sM/σ.

3.2 Maximum-Likelihood Detection

It is well known that the asymptotic performance on communication systems is closely related

to the minimum distance between any two transmitted signals. Intuitively, if the signals are

well spaced, it is easier for the receiver to perform the data detection a lower number of errors
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and, consequently, lower BER values. As referred previously, the distance between the nonlin-

early distorted signals is many times higher than the average bit energy when comparing to the

linear case, which seems to justify the improvements in the performance of nonlinear OFDM

schemes. Moreover, it was shown that the nonlinearly distorted signals have information along

all the subcarriers. This can be used to achieve a better detection since the receiver will have

more information to compare the signals. The optimum receiver, i.e., the ML receiver, is a

suitable candidate under these conditions because takes into account the overall distance be-

tween two signals, i.e., considers all the subcarriers and, consequently, takes advantage of the

nonlinear distortion component. Therefore, this section is dedicated to explaining the basis

principle of this type of detection.

In the scenario represented in Figure 3.1, the last block of the figure is the DFT whose output

is Z = [Z0 Z1 ... ZNM−1]T ∈ CNM . Let us now focus in the data estimation process. This

task consists in estimating the data sequence X̂ = [X̂0 X̂0 ... ˆXNM−1]T ∈ CNM from the noisy

received signal Z as depicted in Figure 3.5.

Z

^

X
Decision 

Device

Figure 3.5: Decision input/output model

Let us consider that the decision device selects the data vector X that maximizes the proba-

bility of X given Z , i.e., selects the data vector whose probability of having been sent, given

Z, is the largest. Note that Z and X are modelled by random variables. In addition, since the

Bayes Theorem may be derived from the definition of conditional density, one can write

p (X|Z) =
p (Z|X) p (X)

p (Z)
, (3.14)

since p (Z) is uniform, maximizing (3.14) is formally equivalent to the Maximum A Posteriori

(MAP) criterion, where

X̂ = arg max
X

(p (Z|X) p (X)) . (3.15)
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However, if we assume an uniform a priori distribution for p(X), i.e., all possible transmitted

data sequences are equally probable a priori, then the MAP criterion reduces to the ML

criterion, i.e.,

X̂ = arg max
X

(p (Z|X)) , (3.16)

Let us now assume that Z is a function of X and N. In fact, the signal Z can be seen as the

sum of the transmitted signal plus a noise factor and, thus, can be defined as

Z = X + N, (3.17)

with [N]k ∼ N (0, σ2
k), i.e,

pN ([N]k) =
1√

2πσ2
k

exp

(
− [N]2k

2σ2
k

)
. (3.18)

On the other hand, using (3.17) we can write

pZ|X([Z|X]k) = pN ([Z]k − [X]k), (3.19)

and, consequently the PDF of each element is

p([Z|X]k) =
1√

2πσ2
k

exp

(
−([Z]k − [X]k)

2

2σ2
k

)
. (3.20)

Note that we are interested in maximize p (Z|X), thus, the multivariate normal distribution

Z/X must be evaluated. Being independent the elements [Z|X]k, the PDF of the entire vector

is given by the product of the PDF of each element represented in (3.20) and we have

p (Z/X) =
NM−1∏
k=0

p ([Z|X]k) , (3.21)

substituting (3.20) in (3.21) we get

p (Z|X) =
1(√

2π
)NM−1

NM−1∏
k=0

1√
σ2
k

NM−1∏
k=0

exp

(
−([Z]k − [X]k)

2

2σ2
k

)

=
1(√

2π
)NM−1

NM−1∏
i=0

1√
σ2
k

 exp

(
−
NM−1∑
k=0

([Z]k − [X]k)
2

2σ2
k

)
, (3.22)
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and (3.16) becomes

X̂ = arg max
X

 1(√
2π
)NM−1

NM−1∏
k=0

1√
σ2
k

 exp

(
−
NM−1∑
k=0

([Z]k − [X]k)
2

2σ2
k

) . (3.23)

Since the constant components do not affect the maximization, they can be removed from

(3.23). We also note that maximize the inverse of an exponential is equivalent to minimize its

argument, i.e.,

X̂ = min
X

(
NM−1∑
k=0

(|[Z]|k − |[X]|k)2

2σ2
k

)
. (3.24)

Moreover, if σ2
k = σ2 ∀ k, (3.24) reduces to the following optimization problem

X̂ = min
X∈S

(
NM−1∑
k=0

(|[Z]k| − |[X]|k)2

)
= min

X

(∣∣∣∣∣∣∣∣Z−X

∣∣∣∣∣∣∣∣2
)
, (3.25)

which, in fact, is formally equivalent to select the data sequence X that minimizes the Eu-

clidean distance relatively to the received signal Z or, in other words, minimizes the Least

Square (LS) error between these two data sequences. However, to minimize the differences

relative to the received signal, the receiver must process the data sequence X as in the trans-

mitter (see Figure 3.1 and (3.5)). Therefore, the expression (3.25) must consider the Euclidean

distance between Z and HGY, i.e.,

X̂ = min
X

(∣∣∣∣∣∣∣∣Z−HGY

∣∣∣∣∣∣∣∣2
)

(3.26)

= min
X

(∣∣∣∣∣∣∣∣Z−HGFf(F−1X)

∣∣∣∣∣∣∣∣2
)
.

Although optimal performance is achieved, this type of detection implies a high computational

cost. Considering an OFDM signal with N in-band subcarriers and an adopted constellation

with M points, we note that a change in one of the N(log2M) bits will lead to another

possible transmitted data sequence, thus, with a full ML behaviour, the receiver must perform

2(log2M)N comparisons to allow the decision device to select the data estimate that has the

minimum Euclidean distance relative to the received signal. This is a severe drawback for the

ML detection and can jeopardize its use in some applications, namely, those that require high

data rates that cannot be obtained with heavy and slow signal processing schemes.
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3.3 Asymptotic Minimum Euclidean Distance

As seen before, the ML detection makes its decision based on the minimum Euclidean Distance,

D2, between the received signal and a possible transmitted signal that is subject to opera-

tions that were performed at the receiver. Thus, it would be desirable to characterize this

distance in a theoretically way. For this purpose, this section presents an analytical method

for obtaining the Euclidean distance between two nonlinearly distorted signals. Moreover,

since it is expected the association of the minimum Euclidean Distance to data sequences that

differ in a single bit, the considered nonlinearly sequences are associated to data sequences

under these conditions. Note that this analytical method will allow to quantify the achievable

asymptotic gain of the nonlinear OFDM since the ratio D2/Eb can be evaluated. In Figure 3.6

it is depicted a simplified transmission scenario of the version shown in Figure 3.1, where the

frequency-domain filtering after the clipping operation is not considered (i.e., G is defined

as in (3.12)). The frequency-domain data symbol X = [X0X1 ... XNM−1]T ∈ CNM has N

useful subcarriers plus (M − 1)N idle subcarriers to perform the oversampling operation. The

time-domain signal x = [x0 x1 ... xNM−1]T ∈ CNM is obtained through an IDFT and then is

submitted to a nonlinear memoryless function characterized by f(x). The channel effect is rep-

resented by (3.6). The noise is represented by N = [N0 N1 ... NNM−1]T ∈ CNM , with [N]k de-

noting the kth frequency-domain noise component. The vector Z = [Z0 Z1 ... ZNM−1]T ∈ CNM

represents the received signal assuming a perfect channel estimation.

N

DFT

XFx -1

X

f(x)y yFY HY

ZIDFT NL Channel

Figure 3.6: Signal processing scheme for the considered scenario.

In order to compute the Euclidean distance between two nonlinearly distorted signals, let us

consider the frequency-domain data block, X(2) = [X0X1 ... XNM−1]T ∈ CNM , that differs
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from X(1) = [X0X1 ... XNM−1]T ∈ CNM in only µ = 1 bits at the kth0 subcarrier, i.e.,

X(2) = X(1) + E, (3.27)

where the vector E = [E0E1 ... ENM−1]T ∈ CNM can be regarded as an error array defined in

the frequency-domain. Considering that the N in-band subcarriers use QPSK constellations

where the complex symbols are defined as [X]k = ±A± jA we have

[E]k =

 ±2A or 2jA k = k0

0 k 6= k0.
(3.28)

The time-domain version of this error array ε ∈ CNM is computed through the IDFT operation,

i.e., ε = [ε0 ε1 ... εNM−1]T = F−1E and, considering (3.2), we can write

[ε]n =

NM−1∑
k=0

[F−1]n,k[E]k, n = 0...NM − 1, (3.29)

but, from (3.28), it is clear that [E]k = 0 for all subcarriers except at k = k0, which allows us

to write

[ε]n =
2A√
NM

exp

(
j2πnk0

NM
+ j arg([E]k0)

)
= ∆ exp(j[φ]n), n = 0, 1, NM − 1, (3.30)

with ∆ = 2A/
√
NM . As mentioned before, the OFDM time-domain samples can be modelled

by a complex stationary Gaussian process. Therefore, each element of x(1) = F−1X(1) is

modelled as a random variable with absolute value R and phase θ (for the sake of simplicity

we drop the dependence with n). Moreover, it was seen in the Section 2.3, that the random

variable R =
√
<(x)2 + =(x)2 has Rayleigh distribution, i.e., its PDF is defined by (2.52).

The variable θ has uniform distribution in [0,2π], i.e.,

p(θ) =
1

2π
, θ ∈ [0, 2π]. (3.31)

From (3.30), since k0 can be any subcarrier of the N in-band subcarriers (i.e., the modified

bit is anywhere along the data block), we can assume that φ is also modelled by a random
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process where each sample is uniformly distributed in the interval [0, 2π]. Using (3.30) and

focusing on the time-domain we may write

x(2) = x(1) + ε, (3.32)

which means that

R′ exp(jθ′) = R exp(jθ) + ∆ exp(jφ), (3.33)

where R′ and θ′ are the random variables that model the absolute value and the phase of the

samples of x(2). In Figure 3.7 is depicted the vectorial representation of x(1) and x(2).

(1)x

(2)x

ε

'θ

Re

Im


'R

R

θ

Figure 3.7: Vectorial representation of x(1) and x(2).

Without loss of generality, due to the circular nature of x(1) and ε we can assume that θ = 0

as depicted in Figure 3.8.

(2)x

ε

'θ

Re

Im



'R

R (1)x

Figure 3.8: Vectorial representation of x(1) and x(2) when θ = 0.
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In this case, (3.33) can be rewritten as

R′ exp jθ′ = R+ ∆ exp (jφ) (3.34)

= (R+ ∆ cos(φ)) + j∆ sin(φ).

Let us define the angle between the two time-domain sequences as Ψ = θ′ − θ (in this case

Ψ = θ)

Ψ = arg (R+ ∆ exp (jφ)) (3.35)

= arctan

(
∆ sin(φ)

R+ ∆ cos(φ)

)
.

The absolute value of x(2) is defined as

R′ = |R+ ∆ exp (jφ)| (3.36)

=
√

(R+ ∆ cos(φ))2 + (∆ sin(φ))2

=

√
R2 + 2R∆ cos(φ) + ∆2 cos2(φ) + ∆2 sin2(φ)

=
√
R2 + 2R∆ cos(φ) + ∆2

(
cos2(φ) + sin2(φ)

)
=

√
R2 + 2R∆ cos(φ) + ∆2

= R

√
1 +

2∆ cos(φ)

R
+

(
∆

R

)2

,

which also can be written as

R′
(a)
≈ R

√
1 +

2∆ cos(φ)

R
, (3.37)

where the approximation (a) is valid for ∆� R.

With the purpose of finding more approximations for (3.37), let us now consider the Taylor

Series that allows to expand a general function f(x) into a power series by knowing the function

and the function derivatives at a certain point x = h. We can express this series as

f(x) = f(h)+f ′(h)(x−h)+f ′′(h)
(x− h)2

2!
+f ′′′(h)

(x− h)3

3!
+· · · =

∞∑
k=0

f (k)(h)

k!
(x−h)k, (3.38)
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where f (0)(h) = f(h) and f (k)(h) is the kth derivative of f(x) evaluated at x = h (i.e., dk(f)
dxk

(h)).

Let us consider only the first order approximation. In this case, only the terms corresponding

to k = 0 and k = 1 are taken into account and the function f(x) around h is approximated by

f(x) ≈ f(h) +
df

dx
(h) (x− h). (3.39)

If we apply (3.39) to the function f(x) =
√

1 + 2x, around h = 0, results

√
1 + 2x ≈

√
1 + x

df

dx

(√
1 + 2x

) ∣∣∣∣
x=0

(3.40)

= 1 + x

(
1

1 + 2x

) ∣∣∣∣
x=0

= 1 + x.

Using this result in (3.40) and considering 2∆ cos(φ)
R � 1, the definition of R′ in (3.37) can be

approximated by

R′ ≈ R

(
1 +

∆ cos(φ)

R

)
(3.41)

= R+ ∆ cos(φ).

Considering again (3.39), we can approximate (3.35) (that defines the angle between x(1) and

x(2)) around h = 0, as

arctan(x) ≈ arctan(0) + x

(
df

dx
(arctan(x))

) ∣∣∣∣
x=0

(3.42)

= x

(
1

1 + x2

) ∣∣∣∣
x=0

= x.
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Using (3.42) and considering ∆ sin(φ)
R+∆ cos(φ) � 1 we can rewrite (3.35) as

Ψ = arctan

(
∆ sin(φ)

R+ ∆ cos(φ)

)
(3.43)

≈
(

∆ sin(φ)

R+ ∆ cos(φ)

)
=

∆ sin(φ)

R

(
1

1 + ∆
R cosφ

)
,

but, using (3.39) to approximate f(x) = 1
1+x around h = 0, we get

1

1 + x
≈ 1 + x

df

dx

(
1

1 + x

) ∣∣∣∣
x=0

(3.44)

= 1 + x

(
− 1

(1 + x)2

) ∣∣∣∣
x=0

= 1− x,

which makes possible to approximate (3.43) another time, resulting

Ψ ≈ ∆ sin(φ)

R

(
1

1 + ∆
R cosφ

)
(3.45)

≈ ∆ sin(φ)

R

(
1− ∆

R
cosφ

)
≈ ∆ sin(φ)

R
.

After all the considered approximations, we can write that

x(2) ≈ (R+ ∆ cos(φ)) exp

(
j

∆ sin(φ)

R

)
. (3.46)

As shown in Chapter 2, in (2.45), the effect of polar memoryless nonlinearity can be written

as a function of the input absolute value. Considering that the input is x(2), we may model

the nonlinear effect as

f(R′) = A(R′) exp
(
jΘ(R′)

)
. (3.47)

Assuming that the AM-PM characteristic is 0 (i.e., Θ(R′) = 0), we have,

f(R′) = A(R′). (3.48)
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Now let us consider that y(1) and y(2) designate both the nonlinearity outputs and the random

variables associated to them. For y(2), we have

y(2) = f (R+ ∆ cos(φ)) exp j
(
θ′
)

(3.49)

= f (R+ ∆ cos(φ)) exp (j (θ + Ψ)).

Moreover, by making the first order Taylor approximation of f(·) around R, we can write

f (R+ ∆ cos(φ)) ≈ f(R) + f
′
(R)∆ cos(φ), (3.50)

and the nonlinearity output y(2) can be approximated by

y(2) ≈
(
f(R) + f

′
(R)∆ cos(φ)

)
exp (j (θ + Ψ)), (3.51)

with nonlinear output for the input x(1) given by

y(1) = f (R) exp (jθ). (3.52)

As we are interested in computing the Euclidean distance between y(1) and y(2), we have

∣∣∣∣y(2) − y(1)

∣∣∣∣2 =

∣∣∣∣ (f(R) + f
′
(R)∆ cos(φ)

)
exp (j (θ + Ψ))− f(R) exp (jθ)

∣∣∣∣2 (3.53)

=

∣∣∣∣ ((f(R) + f
′
(R)∆ cos(φ)

)
exp (jΨ)− f(R)

)
exp (jθ)

∣∣∣∣2
=

∣∣∣∣ (f(R) + f
′
(R)∆ cos(φ)

)
− f(R) exp (−jΨ)

∣∣∣∣2
=

(
f(R) + f

′
(R)∆ cos(φ)− f(R) cos(Ψ)

)2
+ (f(R) sin(Ψ))2 .

Furthermore, knowing that |Ψ| � 1 and using (3.39) to approximate sin(Ψ) and cos(Ψ) around

0, we get

sin(Ψ) ≈ sin(0) + Ψ

(
d

dΨ
(sin(Ψ))

) ∣∣∣∣
Ψ=0

(3.54)

= Ψ (cos(Ψ))

∣∣∣∣
Ψ=0

= Ψ.



3.3. ASYMPTOTIC MINIMUM EUCLIDEAN DISTANCE 47

and,

cos(Ψ) ≈ cos(0) + Ψ

(
d

dΨ
(cos(Ψ))

) ∣∣∣∣
Ψ=0

(3.55)

= 1 + Ψ (− sin(Ψ))

∣∣∣∣
Ψ=0

= 1.

Applying these approximations in (3.53), we get

∣∣∣∣y(2) − y(1)

∣∣∣∣2 =
(
f(R) + f

′
(R)∆ cos(φ)− f(R) cos(Ψ)

)2
+ (f(R) sin(Ψ))2 (3.56)

=

∣∣∣∣f(R)

∣∣∣∣2
((

1 +
f
′
(R)

f(R)
∆ cos(φ)− cos(Ψ)

)
+ sin2(Ψ)

)

≈
∣∣∣∣f(R)

∣∣∣∣2
(f ′(R)

f(R)
∆ cos(φ)

)2

+ Ψ2


=

∣∣∣∣f(R)

∣∣∣∣2
(f ′(R)

f(R)
∆ cos(φ)

)2

+

(
∆ sin(φ)

R

)2


=
(
f
′
(R)∆ cos(φ)

)2
+

(
f(R)∆ sin(φ)

R

)2

= ∆2

((
f
′
(R) cos(φ)

)2
+

(
f(R) sin(φ)

R

)2
)
.

Finally, using (3.10) and (2.54), the Euclidean distance between y(1) and y(2) can be written

as

D2 =

∣∣∣∣∣∣∣∣y(2) − y(1)

∣∣∣∣∣∣∣∣2 (3.57)

(b)
≈ NME

[∣∣∣∣y(2) − y(1)

∣∣∣∣2
]

= NM∆2

∞∫
0

2π∫
0

((
f
′
(R) cos(φ)

)2
+

(
f(R) sin(φ)

R

)2
)
p(R)p(φ)dR dφ

= NM∆2

∞∫
0

2π∫
0

((
f
′
(R) cos(φ)

)2
+

(
f(R) sin(φ)

R

)2
)
R

σ2
exp

(
− R

2

2σ2

)
1

2π
dR dφ,

where the approximation (b) is valid for N � 1. From (3.57) becomes obvious that for

quantifying the Euclidean Distance between two nonlinearly distorted signals we only need

to know the AM/AM characteristic responsible for that distortion. If we consider a linear
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transmitter (i.e., a transmitter that does not affect the signals with nonlinear effects), its

AM-PM characteristic is null (i.e., Θ(R) = 0) and the AM-AM characteristic is defined as

f(R) = R, (3.58)

thus, the first order derivative is

df(R)

dR
= 1. (3.59)

Replacing these values in equation (3.57) and considering σ2 = 1, we get

D2 =
NM−1∑
n=0

∣∣∣∣y(2) − y(1)

∣∣∣∣2 ≈ NME

[∣∣∣∣y(2) − y(1)

∣∣∣∣2
]

(3.60)

= NM∆2

∞∫
0

2π∫
0

(
cos2(φ) + sin2(φ)

) R
2π

exp

(
−R

2

2

)
dR dφ

= NM∆2

∞∫
0

R exp

(
−R

2

2

)
dR dφ

= NM∆2

= NM

(
2A√
NM

)2

= 2A2

= 4Eb.

This is the well-known distance between two signals for the case of a linear transmitter.

Considering now a nonlinear transmitter that has a clipping device with Θ(R) = 0 and AM-

AM conversion characteristic defined as (3.1), we have

df(R)

dR
=

 1, 0 ≤ R ≤ sM
0, R > sM .

(3.61)
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Substituting these values in equation (3.57), results

D2 = NM∆2

sM∫
0

2π∫
0

(
cos2(φ) + sin2(φ)

) p(R)

2π
dR dφ+NM∆2

+∞∫
sM

2π∫
0

s2
M

R2
sin2(φ)

p(R)

2π
dR dφ

= NM∆2

 sM∫
0

p(R)dR+

+∞∫
sM

2π∫
0

s2
M

1− cos(2φ)

2

p(R)

2πR2
dR dφ

 (3.62)

= NM∆2

 sM∫
0

R exp

(
− R

2

2σ2

)
dR+

+∞∫
sM

s2
M

2Rσ2
exp

(
− R

2

2σ2

)
dR


= NM∆2

[exp

(
− R

2

2σ2

)]sM
0

+

+∞∫
sM

s2
M

2Rσ2
exp

(
− R

2

2σ2

)
dR


= NM∆2

(1− exp

(
− s

2
M

2σ2

))
+

+∞∫
sM

s2
M

2Rσ2
exp

(
− R

2

2σ2

)
dR

 .

Using the definition of the asymptotic gain for nonlinear OFDM given by (3.13), (3.9) and

(3.62), we have

G =
D2

4Eb
≈

NM∆2

(1− exp
(
− s2M

2σ2

))
+

+∞∫
sM

s2
M

2Rσ2
exp

(
− R

2

2σ2

)
dR


4A2

(
1− exp

(
− s2M

2σ2

)) . (3.63)

In Figure 3.9 it is shown the Euclidean Distance between two nonlinearly sequences obtained

both by simulation and analytically (considering (3.62)), with a variable number of in-band

subcarriersN and different values of sM/σ. As we can see, the analytical expression is accurate,

especially for large values of N , since some approximations for obtaining this expression were

made under the assumption of N � 1.
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Figure 3.9: Evolution of the minimum Euclidean distance between two nonlinearly sequences
that differ in µ = 1 bits and are distorted with a normalized clipping level of sM/σ.

3.4 Asymptotic Performance

Taking into account what has been seen, is expected that nonlinear OFDM schemes that

use ML receivers can outperform conventional OFDM receivers (i.e., the ones that assume a

linear transmitter), due to the higher minimum Euclidean distances between the nonlinearly

distorted signals when comparing to the average bit energy Eb. It should be mentioned that

the minimum Euclidean distance given by (3.62) represents a benchmark for the asymptotic

performance of the optimum receiver for nonlinear OFDM schemes when its assumed an high

number of in-band subcarriers. Yet, when the number of in-band subcarriers N is reduced,

the expression (3.62) loses accuracy. In fact, there are fluctuations on the minimum Euclidean

distance for different data sequences that this benchmark does not have into account. More-

over, the impact of an FDF after the clipping operation on the minimum Euclidean distance

is not easily derived and has not been taken into account.

In this section the asymptotic performance results for nonlinear OFDM schemes with ML

receivers are presented. To avoid the computational effort associated the full ML behaviour

(i.e. the high number of comparisons), let us start the study of the achievable gains by ob-

taining the PDF associated to the minimum Euclidean distance between two nonlinearly data

sequences.
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The first of the considered sequences is a random data sequence represented by X(1) ∈ CNM .

The second is one of the 2N variations of X(1) with µ = 1 bits modified, represented by

X(2) ∈ CNM . The two signals are passed through a nonlinear operation as in (3.3) and the

sequences Y(1) and Y(2) are obtained. After that, the Euclidean distance between them are

computed. The minimum distance is selected from the distance set that has 2N distances,

since there are 2N possible data sequences X(2)

D2 = min
{
D2

1,2

}
(3.64)

where, D2
1,2 is the Euclidean distance between Y(1) and Y(2) defined according to (3.10).

In Figure 3.10 it is shown the PDF of the asymptotic gain of an ML receiver that is defined

using (3.13) and (3.9). As expected, this is slightly higher than one, which confirms the

improvement in the performance when is used a ML receiver that deals with nonlinearly

distorted signals. In the same figure, we also can see that when a frequency-domain filtering

operation is employed, it is less probable that the gain exceeds the unity, since a lower number

of subcarriers contribute for Euclidean distance between two data sequences.
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Figure 3.10: PDF of G = D2/4Eb for filtered and non-filtered sequences with N = 64 subcarriers
that are submitted to a clipping device with normalized clipping level sM/σ = 1.0.

Figure 3.11 shows the impact of the number of data subcarriers N on the PDF of G =

D2/(4Eb). From the results, it is clear that the fluctuations of G relative to its average value
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decrease as N increases. Note that if we consider N → +∞ we are in the conditions of the

expression (3.63); other lower values of N confirm the loss of accuracy of the expression due

to the fluctuations on the minimum Euclidean Distance.
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Figure 3.11: Impact of the number of in-band subcarriers N on the PDF of G = D2/(4Eb).

It should be stressed that when the signal has stronger nonlinear effects (for example, when

the clipping device works with a small clipping level) the achievable gain is higher, as one can

see in Figure 3.12. In this case, the clipping device operates with a normalized clipping level

of sM/σ = 0.5. Consequently, if we increase the number of modified bits, µ, it is expected

an increase on gain, since the distance between two data sequences will be higher. In the

Figure 3.13 it is shown the PDF of the gain with a variable number of modified bits. More

concretely, all possible variations of µ = 1, µ = 2 or µ = 3 relatively to each data sequence

were considered in the computation of each PDF. Clearly, the minimum distance is almost

associated to the sequences that differ in a single bit (µ = 1) (it should be noted that with

a higher µ, the distribution of the gain tends to broad). Consequently, as the area under

the PDF equals unity, the PDF will have less concentrated values or, in other words, there

are more fluctuations on the minimum Euclidean Distance. The achievable gains represented

in the above figures, will represent an asymptotic improvement in the BER performance.

Provided that the Euclidean Distance between two nonlinearly distorted signals associated to

data sequences that differ in µ = 2 and µ = 3 is much bigger than for sequences that differ
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Figure 3.12: PDF of G = D2/4Eb for filtered and non-filtered sequences with N = 64 subcarriers
that are submitted to a clipping device with normalized clipping level sM/σ = 0.5.
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Figure 3.13: PDF of G = D2/4Eb for non-filtered sequences with N = 64 that are submitted to
a clipping device with normalized clipping level sM/σ = 0.5 considering different values of µ.

in only one bit, the BER performance (conditioned by D2/Eb) for an ML receiver that deals

with nonlinear OFDM signals in an AWGN channel can be approximated by

Pb ≈ E{X(1)}

 1

2N

∑
{X(2)}∈Φ1({X(1)})

Q

√D2
1,2/2

N0

 , (3.65)
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where Φ1({X(1)}) denotes the set of data sequences that differ from X(1) in a single bit, N0 is

the PSD of the channel noise and the function Q(b) is defined as

Q(b) =
1

2
erfc

(
b√
2

)
, (3.66)

where erfc(a), the complementary error function, is expressed as

erfc(a) =

(
1√
2π

) ∞∫
a

exp(−t2)dt. (3.67)

For conventional OFDM transmitters we have D2 = 4Eb for all the sequences that differ from

X(1) in only 1 bit. Thus, (3.65) reduces to the well-known result

Pb ≈ Q
(√

2Eb
N0

)
, (3.68)

which is the BER for a linear transmitter considering an QPSK constellation.

Let us now consider a scenario where N = 64, sM/σ = 0.5 and FDF was not considered

(G is defined as in (3.12)). In Figure 3.14 is shown the approximate ML BER under these

conditions and assuming an AWGN channel. We also assume perfect synchronization and

channel estimation at the receiver. In red the BER for each realization is shown, in blue it

is represented the mean value of all the realizations as in (3.65). The ideal performance of

conventional linear OFDM schemes was included for the sake of comparisons. As expected,

due to the increased value of D2 over Eb, the BER performance for OFDM dealing with

nonlinearly distorted signals is improved with the use of the ML receiver. For the considered

clipping level, a gain between 1 and 2 dB can be obtained. As mentioned before, the harder

the nonlinear distortion effects the higher the gains as we can see in Figure 3.15 where the

BER performance is depicted considering different values of sM/σ.



3.4. ASYMPTOTIC PERFORMANCE 55

0 2 4 6 8 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E
R

Eb/N0(dB)

− − − : Linear OFDM

: Clipped OFDM (Mean)

· · · · · : Clipped OFDM

Figure 3.14: BER for non-filtered sequences with N = 64 that are submitted to a clipping device
with normalized clipping level sM/σ = 1.0 considering an ideal AWGN channel.
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Figure 3.15: BER for non-filtered sequences with N = 64 that are submitted to a clipping device
with different values of normalized clipping level sM/σ considering an ideal AWGN channel.

From the above figure, it is clear that for higher values of normalized clipping level (say sM/σ =

2.0), the signal presents less nonlinear distortion effects, since a lower number of amplitudes

associated to the time-domain OFDM block will be clipped. Thus, there is an increased average

bit energy which will make the BER performance closer to the conventional linear case. Of

course, if sM/σ =∞ (the nonlinear distortion effect is null), the two curves will be identical.
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As seen before, the use of the FDF (G is defined as in (3.11)) will reduce the achievable gains.

We can see this effect directly on the BER performance shown in Figure 3.16. From the results,

we note that for sM/σ = 0.5, the gain is reduced in approximately 1dB. However, even with

the filtering operation the gains are still considerable (especially for severe nonlinear effects).

When a higher normalized clipping level is considered, the difference between the filtered and

the non-filtered BER curve is smaller. This happens because for lower values of sM/σ, there

are strong nonlinear distortion effects (and, consequently, a higher D2/Eb), hence, a filtering

operation will be noticeable. On the other hand, when sM/σ assumes higher values, the

distortion component of the nonlinear signal will have less amplitude along the subcarriers the

OFDM block. Therefore, the filtering operation employed by the transmitter can be almost

neglected as is depicted in Figure 3.16. When the FDF is employed after the clipping operation,

the resultant time-domain signal has some regrowth in the envelope fluctuations, which goes

against the purpose of this technique. A simple way to overcome this problem is by repeating

the clipping and filtering procedures L times [11]. In fact, by repeating the clipping and

filtering just 2 to 4 times the regrowth in the envelope fluctuations can be reduced significantly

despite of maintaining the bandwidth of conventional, linear OFDM signals. In Figure 3.17 it

is shown the complementary cumulative density function (CCDF) for the absolute values of

the transmitted signal.
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Figure 3.16: BER for an OFDM signal with N = 64 with and without frequency-domain filtering,
considering different values of sM/σ and an ideal AWGN channel.
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Figure 3.17: CCDF for the absolute value of the transmitted OFDM signal for different values
of sM/σ.

Clearly, the higher the number of the clipping and filtering iterations L, the smaller the prob-

ability of exceeding the clipping level. From the figure, we can see that when L = 1 (i.e., the

signal is filtered only one time) the regrowth of the complex envelope is very high and, in fact,

the time-domain filtered signal is not limited by sM/σ but approximately by sM/σ + 0.5. On

the other hand, with L = 4 the complex envelope is practically limited by the adopted sM/σ.

It should be pointed out that the overall nonlinear distortion effects increase with the number

of clipping and filtering iterations and, consequently, the gains will be affected. The BER for

signals with L clipping and filtering iterations is depicted in Figure 3.18. It is clear that for

high values of L, the performance is better. This was an expected result since the signal is

clipped and filtered several times, which leads to the existence of higher nonlinear distortion

effects and, consequently, higher gains.

In all BER curves presented before, we consider an ideal AWGN channel. Let us now focus

in another scenario, where the transmission is made under a frequency-selective channel char-

acterized by the channel frequency response H = diag
(
[H0H1 ... HNM−1]T

)
. In this case, we

need to define the equivalent Euclidean Distance between two received signals associated to

the data sequences X(1) and X(2) as

D2
Eq1,2(H) =

NM−1∑
k=0

∣∣∣∣[H]k

∣∣∣∣2∣∣∣∣α[X]
(1)
k + [D]

(k)
k − α[X]

(2)
k − [D]

(2)
k

∣∣∣∣2. (3.69)
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Figure 3.18: BER for an OFDM signal with N = 64 and L clipping and filtering iterations
considering sM/σ = 1.0 and an ideal AWGN channel.

The BER associated to the channel realization H will be given by

Pb(H) ≈ 1

2N

∑
X(2)∈Φ1(X(1))

Q

√D2
Eq1,2

(H)/2

N0

 , (3.70)

and the average BER can be defined through the following multiple integral

Pb ≈
∫
Pb(H)p(H)dH, (3.71)

where p(H) denotes the joint probability density function of the overall channel frequency

response H. Note that this integral is difficult to evaluate. Its value can be estimated by

averaging over a large number of independent channel realizations. Let us now consider an

XTAP channel that has 32 symbol-spaced multipath components with uncorrelated Rayleigh

fading. In Figure 3.19 are shown the BER results for nonlinearly distorted OFDM signals under

these conditions. It is clear that the achievable gains of an ideal ML receiver are even higher

for frequency-selective channels than the ones with an ideal AWGN channel. This additional

gain is associated to the diversity effects in the transmitted signals that are inherent to the

nonlinear distortion. It is important to remark that the results that are presented in this

section consider the transmission of ”typical” sequences. The conclusions can be substantially

different, for instance, for sequences where all the subcarriers carry the same symbol. However,
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these sequences are very rare. In fact, they can be avoided in practice through the use of

scrambling procedures and, thus, its effect on the overall performance can be neglected.
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Figure 3.19: BER for a non-filtered OFDM signal with N = 64 subcarriers considering an
frequency-selective channel.
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Chapter 4

Maximum-Likelihood Based

Receivers

In the previous chapter it was shown that using an optimum receiver, the nonlinear OFDM

has better performance than the conventional linear scheme. However, it is well known that

the main drawback of the ML detection is the corresponding complexity. As mentioned be-

fore, given an OFDM signal with N subcarriers and aM-QAM constellation, the ML receiver

must select the data sequence that has minimum Euclidean Distance relative to the received

signal, which implies testing over 2(log2M)N possible data sequences. Therefore, the complex-

ity of this type of receivers can be prohibitively high, even considering a small number of

subcarriers. To avoid this problem, several ML based receivers are presented and evaluated

in this chapter. These sub-optimal receivers allow notable performance improvements, being

able to reduce significantly the gap between the optimum performance and the performance

of conventional OFDM receivers. The motivation behind these techniques is that usually the

optimal sequence differs from the hard decision sequence in a small number of bits. Therefore,

only a small fraction of all possible sequences must be tested, while still having high chances

that the optimal sequence is among them and, consequently, achieve both a close-to-optimum

performance and a reduction in the computational load.

All presented sub-optimal receivers work similarly for an ideal AWGN channel as well as for a

frequency-selective channel. The only required modification in the second scenario is that in

the Euclidean distances between candidate signals, the channel frequency response should be

61
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taken into account (i.e., the set H) as in (3.69).

This chapter is organized as follows: in Section 4.1 several sub-optimal receivers are described

and their algorithms are presented. Section 4.2 presents a method to obtain the approximated

performance of the optimum receivers. Finally, in Section 4.3, some BER performance results

of the previously described sub-optimal receivers are presented and discussed. The impact of

using clipping and filtering, diversity schemes and higher constellations is also studied in this

section.

4.1 Sub-Optimal receivers

As seen before, in typical OFDM implementations, the receiver does not take advantage of the

information that is present in the nonlinear distortion component. Therefore, the performance

drops with the increase of distortion level as depicted in Figure 4.1. From the BER results,

becomes clear that for very high values of sM/σ the BER curve tends to be flat, assuming a

fixed value even for high values of Eb/N0.

−5 0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

B
E
R

Eb/N0(dB)

· − ·− : Hard decision
− − − : Linear OFDM

( o) : sM/σ = 1.5
( ∗) : sM/σ = 1
(∆) : sM/σ = 0.5

Figure 4.1: BER for nonlinear OFDM signal with N = 64 data subcarriers, considering typical
receivers.

In this section, four sub optimum receivers are presented. Each sub-optimal receiver starts

with the acquisition of the estimated signal associated to a conventional OFDM receiver (which

will be denoted ”hard decision sequence” in the remaining of this work). After that, each
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receiver performs variations in the bits of this sequence, obtains the corresponding nonlinear

signal to be transmitted (i.e., the modified hard decision sequence is submitted to the clipping

operation and subsequent frequency-domain filtering that were employed in the transmitter),

then computes the corresponding Euclidean distance relative to the received sequence and

chooses the sequence among the original hard decision sequence and all variations of it that

were tested that have smaller Euclidean distance to the received signal. If the hard decision

sequence modification is denoted as Xmod, the sub-optimal receiver will make its decision

according to (3.26), i.e.,

X̂ = min
Xmod

(∣∣∣∣∣∣∣∣Z−HGFf(F−1Xmod)

∣∣∣∣∣∣∣∣2
)
. (4.1)

Of course, due to the noise in the transmission path, the sequence Xmod that has the mini-

mum Euclidean Distance relative to Z, can still have errors when compared to the transmitted

data sequence X, that will vary according to the SNR. Let us now consider the sub-optimal

methods that were developed.

Starting with the hard decision sequence the sub-optimal receiver I selects the Lb bits with

smaller reliability (i.e., the bits where the corresponding signal is closer to the decision thresh-

old) and performs all 2Lb possible variations among those bits, saving the euclidean distance

between each variation and the hard decision sequence. After this process, selects the varia-

tion of the hard decision sequence that has smaller Euclidean Distance relative to the received

signal. The corresponding algorithm can be resumed as follows:
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Sub-Optimal Receiver I

Z← received signal {the nonlinearly signal given by (3.5)}

Zbits ← get hard decision bits (Z) {1× log2(M)N row matrix with hard decision}

J← get less reliable bits (Zbits) {1×Lb row matrix with weaker bits indexes}

T← 0log2(M)N×2Lb {log2(M)N × 2Lb matrix with all tested sequences}

D2
Array ← 01×2Lb {1× 2Lb matrix with Euclidean Distances}

C← get binary combinations(Lb) {Lb × 2Lb matrix with all 2Lb bit combinations}

for k = 1→ 2Lb do

Zmod
bits ← Zbits

for i = 1→ Lb do

[Zmod
bits ][J]i ← [C]k,i

end for

[D2
Array]k ← get euclidean distance (Zmod

bits ,Zbits)

[T];k ← Zmod
bits

end for

D2 ← min(D2
Array) {index for the minimum euclidean distance}

X̂← [T];D2 {sequence with the minimum euclidean distance}

Total of sequences analysed by the method : 2Lb .

On the other hand, the sub-optimal receiver II switches each one of the 2N bits of the hard

decision sequence to obtain 2N variations of it and then chooses the closer variation in terms

of Euclidean distance relative to the received signal.
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Sub-Optimal Receiver II

Z← received signal {the nonlinearly signal given by (3.5)}

Zbits ← get hard decision bits (Z) {1× log2(M)NN row matrix with hard decision}

D2
Array ← 01×log2(M)N {1× log2(M)N matrix with Euclidean Distances}

for k = 1→ log2(M)N do

Zmod
bits ← Zbits

[Zmod
bits ]k ← not [Zbits]k

end for

[D2
Array]k ← get euclidean distance (Zmod

bits ,Zbits)

D2 ← min(D2
Array) {index for the minimum euclidean distance}

[Zbits]D2 ← not [Zbits]D2

X̂← [Zbits] {sequence with the minimum euclidean distance}

Total of sequences analysed by the method : log2(M)N .

The sub-optimal receiver III starts with the hard decision sequence and switches the first bit.

If the Euclidean distance relative to the received sequence improves the bit remains changed, if

not we return to the original bit. After that, switch to the second bit and does the same. This

procedure is repeated until the last bit is reached. At this time, the receiver has a sequence

whose Euclidean distance relative to the received sequence is smaller (or at least equal) to the

distance from the hard decision sequence to the received signal. In addition, since some of the

bits might be changed with this procedure, the receiver can restart changing the first bit and

repeat the procedure K times. Therefore, in a schematic way, the algorithm has the following

steps:
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Sub-Optimal Receiver III

Z← received signal {the nonlinearly signal given by (3.5)}

Zbits ← get hard decision bits (Z) {1× log2(M)NN row matrix with hard decision}

D2
min ← get euclidean distance (Zbits) {save the starting euclidean distance}

Zactual
bits ← Zbits {save the starting sequence}

for n = 1→ K do

for i = 1→ log2(M)N do

[Zactual
bits ]k ← not [Zactual

bits ]k

D2 ← get euclidean distance (Zactual
bits ,Zbits)

if D2 ≤ D2
min) then

D2
min ← D2

else

[Zactual
bits ]k ← not [Zactual

bits ]k

end if

end for

end for

X̂← Zactual
bits {sequence with the minimum euclidean distance}

Total of sequences analysed by the method : log2(M)NK.

The sub-optimal receiver IV is a variant of the sub-optimal receiver III where, instead of

modifying all transmitted bits, only the P bits with smaller reliability are modified. This

reduces the receiver complexity, since the number of bit modifications per iteration is reduced

from 2N to P . As with sub optimal receiver III, this receiver can repeat the procedure K

times, since the bit modifications are maintained if they lead to improved Euclidean distances.

The steps for this algorithm are:
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Sub-Optimal Receiver IV

Z← received signal {the nonlinearly signal given by (3.5)}

Zbits ← get hard decision bits (Z) {1× log2(M)NN row matrix with hard decision}

J← get P less reliable bits (Zbits) {1×P row matrix with weaker bits indexes}

D2
min ← get euclidean distance (Zbits) {save the starting euclidean distance}

Zactual
bits ← Zbits {save the starting sequence}

for n = 1→ K do

for i = 1→ P do

[Zactual
bits ][J]k ← not [Zactual

bits ][J]k

D2 ← get euclidean distance (Zactual
bits ,Zbits)

if D2 ≤ D2
min) then

D2
min ← D2

else

[Zactual
bits ]k ← not [Zactual

bits ]k

end if

end for

end for

X̂← Zactual
bits {sequence with the minimum euclidean distance}

Total of sequences analysed by the method : PK.

It should be pointed out that these receivers allow a severe reduction of the complexity when

compared with the optimum receiver. In the Table 4.1 are presented the number of comparisons

that each receiver does before take a decision, considering a QPSK constellation (i.e. M = 4).

Opt Receiver Sub-Opt I Sub-Opt II Sub-Opt III Sub-Opt IV

Lb = N/8 K = 2 K = 2, P = N/2

Iterations 2log2(M)N 2Lb log2(M)N log2(M)NK PK

N = 16 4,2950E+09 4 32 64 16

N = 64 3,4028E+38 256 128 256 64

N = 128 1,1579E+77 65536 256 512 128

N = 256 1,3408E+154 4,2950e+09 512 1024 256

Table 4.1: Complexity comparison
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From the values shown in Table 4.1, it becomes obvious that the complexity of the optimum re-

ceiver is prohibitively high, even considering a small number of subcarriers, which compromises

its practical implementation. Let us now focus on the proposed sub-optimal receivers. For

example, considering an OFDM signal with N = 64 in-band subcarriers and the sub-optimal

method II, it is possible to analyse only 256 of 3,4028E+38 distances, i.e., only 7,5232E-35%

of the distances when comparing with the full ML behaviour, which represents a substantial

reduction in the computational load. Moreover, contrary to the optimum receiver, it is clear

that the computational complexities associated to the sub-optimal methods II, III and IV,

do not grow exponentially with the number of the in-band subcarriers. Instead of this, they

present a linear behaviour, having a slope that depends on M, K and P .

4.2 Approximate Optimum Performance

To evaluate the developed sub-optimal receivers, it would be desirable to compare their per-

formance with the real performance of an optimum receiver. Unfortunately, as seen in the

last section, such receiver has large computational requirements which make its simulation

inviable, unless the number of subcarriers is very low. In addition, although the BER com-

putation method defined in (3.65) is suitable for obtaining the asymptotic BER performance,

it looses accuracy in the working regions of common wireless communication systems where

moderate BER values predominate. However, it is possible to obtain an approximation of

the optimum performance by assuming that the optimum estimate is likely to be one of the

following sequences:

• The hard decision sequence or one of its variations (that could be obtained as described

in the previous section).

• The transmitted sequence or one of its variations. Note that these variations can also be

calculated using a procedure similar to the one described in Section 4.1, but instead of

considering the starting sequence as the hard decision sequence, it should be considered

the transmitted sequence (that under the simulation environment is known at the receiver

side).
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In that sense, the optimum estimate is defined as the sequence that has the minimum euclidean

distance relative to the received signal, among the sequences presented in these two previous

items. In Figure 4.2 it is shown the approximate optimum performance when is adopted

the sub-optimal receiver III to make the variations of the two starting sequences. It was

also considered an OFDM signal with N = 64 subcarriers, a normalized clipping level of

sM/σ = 1.0 and an ideal AWGN channel. From the results, we note that the approximate

optimum performance is better than the one obtained by the conventional and linear OFDM

schemes even for only K = 1 iterations. As expected this performance presents a very high

improvement when compared to the hard-decision that does not take into account the nonlinear

distortion effects for detection purposes. Moreover, it is expected that this performance is a

bound for the performance of the proposed sub-optimal receivers.
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Figure 4.2: BER for the approximate ML receiver considering N = 64 subcarriers, a normalized
clipping level of sM/σ = 1.0 and an ideal AWGN channel

The approximate optimum performance under the same conditions but considering a trans-

mission over a XTAP channel is presented in Figure 4.3. Again, we have substantial improve-

ments relative to the linear case and the hard detection, with gains even higher than in the

case where an ideal AWGN is considered. The cause for that relies in the diversity associated

to the nonlinear distortion component.
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Figure 4.3: BER for the approximate ML receiver considering N = 64 subcarriers, a normalized
clipping level of sM/σ = 1.0 and an frequency- selective channel

4.3 Performance results

In this section, several BER performance results for the sub-optimal receivers described in

Section 4.1 are presented and discussed. In the subsection 4.3.2, the impact of iterative

clipping and filtering procedures in the BER performance of these receivers is shown. The

impact of using diversity schemes is analysed in subsection 4.3.3. Lastly, in subsection 4.3.4,

it is studied the performance of the proposed receivers considering high order constellations.

4.3.1 Sub-optimal receivers performance

To quantify the improvements of the proposed sub-optimal receivers, we consider OFDM

signal that, unless otherwise stated, have N = 64 useful subcarriers with QPSK constellations

(i.e., M = 4) and an oversampling factor M = 4. The QPSK symbols are selected from

the data signal using a Gray mapping rule. The nonlinear device corresponds to an ideal

envelope clipping with a normalized clipping level sM/σ (unless otherwise stated, we assume

sM/σ = 1.0). We consider both an ideal AWGN channel and a frequency-selective channel that

has 32 symbol-spaced multipath components with uncorrelated Rayleigh fading. In both cases,

it is assumed perfect synchronization and channel estimation at the receiver. For the sake of
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comparisons, some figures include the approximate optimum performance (being denoted as

”ML performance”), which was obtained as described in the previous section. In addition, all

the figures contain the BER for linear OFDM schemes that, considering QPSK constellations,

can be approximated by (3.68). The BER for linear OFDM schemes considering a Rayleigh

fading channel is given by (see [38], Equation(14-3-7)),

Pb ≈
1

2

(
1−

√
Eb/N0

1 + Eb/N0

)
. (4.2)

Let us start by considering an ideal AWGN channel. Figure 4.4 shows the BER for sub-optimal

receiver I with different values of Lb. From this figure, it is clear that the performance relative

to conventional OFDM schemes can be improved substantially, especially for larger values of

Lb (i.e., when a larger number of weaker bits are selected to be changed). For example, when

Lb = 2, this method achieves a BER of 10−3 with an Eb/N0 of 9.2 dB, which means that there

is a gain of 3.2 dB when comparing with the hard decision (that needs an Eb/N0 of 12.5 dB for

the same BER value). For a higher value of Lb, let us say Lb = 8, we can expect a gain around

5.3 dB. However, it is important to note that for small values of Lb that lead to practical

implementations, the performance of this receiver is always worse than the performance with

a linear transmitter. Therefore, although this sub-optimal receiver has significant gains with

a relative small value of Lb, its performance degrades substantially for a larger number of

subcarriers N , i.e., it is conditioned by the relation Lb/2N .
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Figure 4.4: BER of Sub-optimal receiver I for an OFDM signal with N = 64 data subcarriers,
considering different values of Lb and an ideal AWGN channel.

To illustrate this dependence, let us look at Figure 4.5 where the OFDM have N = 256

subcarriers and the same values of Lb were considered. From the figure, when considering

Lb = 8, we note that this method needs 9.2 dB to achieve a BER value of 10−3 (more 2 dB

than with N = 64). Consequently, when the number of subcarriers is very high the only way

to maintain the performance is increasing the value of Lb.
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Figure 4.5: BER of Sub-optimal receiver I for an OFDM signal with N = 256 data subcarriers,
considering different values of Lb and an ideal AWGN channel.
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Let us now change the simulation environment and consider a more realistic OFDM scenario

where the channel presents frequency selective fading. The considered channel has 32 symbol-

spaced rays. Figure 4.6 presents the BER of the sub-optimal receiver I for different values

of Lb and a normalized clipping level sM/σ = 1. As expected, the gains of this sub-optimal

receiver are higher than the ones in an ideal AWGN channel. This is a consequence of the

fact that the sub-optimal receivers take advantage of the implicit diversity effects inherent to

the nonlinear distortion. Namely, for every value of Lb that was considered in the simulation,

the performance of this sub-optimal receiver is always better than the performance of the

conventional OFDM schemes (which does not happen even for Lb = 8 in the AWGN case).

For instance, even when only two bits are modified in the OFDM block and, consequently,

only 2/64 (3, 13%) of the total number of bits are changed, the performance is still better

when compared with the linear OFDM. Therefore, lower values of Lb (i.e., lower value of the

relation Lb/2N) can be used, which means low complexity, despite of maintaining excellent

performances.
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Figure 4.6: BER of Sub-optimal receiver I for an OFDM signal with N = 64 data subcarriers,
considering different values of Lb and an frequency selective channel.

Let us consider now the sub-optimal receiver II. In Figure 4.7, it is shown the BER for this

receiver considering an ideal AWGN channel. From the results, it is clear that this method

has improvements when compared to the hard-decision performance. However, the gains are

lower relatively to those obtained by the sub-optimal receiver I (when higher values of Lb are
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considered.). The main reason of these lower gains is that this method does not has an high

capacity of modifying the hard decision sequence, since it only can modify one bit in the entire

data block. Thus, if the optimum estimate differs from the hard decision sequence in a higher

number of bits, it can not be found by this receiver. However, the complexity is reduced by

half relative to I (considering Lb = 8 as in Table 4.1). Another important property is that

since this method modifies all the bits in the OFDM signal, its complexity is only related with

the number of in-band subcarriers and the number of points in the adopted constellation, thus,

there are not any parameters to be adjusted as in the other proposed sub-optimal receivers.
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Figure 4.7: BER of Sub-optimal receiver II for an OFDM signal with N = 64 data subcarriers,
considering an ideal AWGN channel

Let us now consider the performance of the sub-optimal receiver II when the transmission

is made in a frequency-selective channel. Figure 4.8, refers the BER under these conditions.

Again, the gains are higher when the channel has selectivity in frequency. The performance

of this method is considerably better than conventional linear OFDM schemes. For example,

to achieve a BER of 10−3 it needs an Eb/N0 around 20 dB which means a power gain of 7 dB

relative to the linear case and 4 dB relative to hard-decision.
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Figure 4.8: BER of Sub-optimal receiver II for an OFDM signal with N = 64 data subcarriers,
considering a frequency-selective channel

Let us focus now on the sub-optimal receiver III. This receiver has one parameter that can

be adjusted: the number of times K that main cycle of bit modifications is repeated. In

Figure 4.9, it is shown the BER when the parameter K assumes different values. For the

sake of comparisons, the approximate optimum performance was also included. This method

also allows remarkable gains when comparing to linear OFDM. From the figure, we note that

for K = 2 cycles the achievable performance is better than for K = 1, with gains around

1 dB and close to the approximate optimum performance. However, larger values of K (i.e.

K ≥ 2) should not be considered, since the complexity increases and only marginal gains can

be achieved.
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Figure 4.9: BER of Sub-optimal receiver III for an OFDM signal with N = 64 data subcarriers,
with different values of K and considering an ideal AWGN channel

Let us now see what happens when the channel presents frequency selective fading. For the

mentioned reasons, the receiver works with K = 2. In Figure 4.10 it is shown the BER under

these conditions.
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Figure 4.10: BER of Sub-optimal receiver III for an OFDM signal with N = 64 data subcarriers,
considering K = 2 and a frequency selective channel

Despite being the most complex sub-optimal method, is the best in terms of performance.



4.3. PERFORMANCE RESULTS 77

From the analysis of previous figure, it is clear that this receiver provides substantial gains.

These very high gains are supported by its behaviour but also due to the diversity that is

inherent to the nonlinear distortion effect which can be utilized in fading channels. To achieve

a BER of 10−3 this receiver needs an Eb/N0 equal to 11.3 dB, i.e., less than a half of the

required on conventional OFDM schemes.

Let us now take into account the sub-optimal receiver IV. As seen before, the complexity using

this receiver can be reduced when comparing to the sub-optimal receiver III since only P ≤ 2N

weaker bits are modified. In Figure 4.11 it is shown the BER considering different values of

P . As we can see the higher the P better will be the performance. Since the complexity is

reduced by a factor of 4, a value of N/2 practically yields the same performance of the one

achieved with the sub-optimal receiver III (i.e., when P = N/2).
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Figure 4.11: BER of Sub-optimal receiver IV for an OFDM signal with N = 64 data subcarriers,
with different values of P and considering an ideal AWGN channel

Let us now consider the BER for these values of P but, considering a frequency selective channel

as the one represented in the Figure 4.12. Again, the larger the P the better the performance.

However, it is important to note that in the case of a frequency selective channel, the receiver

must perform the P = 2N modifications since, contrarily to the ideal AWGN case, there is a

significant difference relative to P = N/2. It is also important to point out that when P = 2N

the performance is very close to the approximate ML performance obtained as was explained
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in Section 4.2. This is a remarkable result since, even with an accentuated reduction on the

complexity, is still possible a performance that is close to the one of the optimum receiver.
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Figure 4.12: BER of Sub-optimal receiver IV for an OFDM signal with N = 64 data subcarriers,
with different values of P and considering a frequency selective channel

In Figure 4.13 and Figure 4.14 the performance of all suboptimum receivers were included for

the sake of comparisons.
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Figure 4.13: BER of all Suboptimal receivers for an OFDM signal with N = 64 data subcarriers
considering an ideal AWGN channel
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Figure 4.14: BER of all Suboptimal receivers for an OFDM signal with N = 64 data subcarriers
considering a frequency selective channel

4.3.2 Impact of iterative clipping and filtering

As seen in Section 3.1 the use of the iterative clipping and filtering procedures can reduce

significantly the envelope fluctuations of the OFDM signals while maintain the bandwidth of

the conventional schemes. It must be recalled that a second clipping procedure is realised

to suppress the regrowth in the envelope fluctuations due to the filtering procedure and so

forth. It is also important to remark that clipping and filtering operations are done in different

domains. While the clipping is realised in time-domain, the filtering is realised in frequency-

domain to eliminate the out-of-band radiation.

Another interesting analysis done in this subsection concerns how these techniques affect the

BER performance Fof the proposed sub-optimal receivers. Since the best receiver in terms of

performance is the sub-optimal receiver III, it is the chosen for these simulations. In Figure 4.15

it is shown the BER considering L number of clipping and filtering iterations and a frequency

selective channel. From the figure and taking into account the hard decision, it is clear that the

larger the value of L, the higher the nonlinear distortion effects and, consequently, the lower

the performance. If we focus on the performance of the sub-optimal receiver, we have the same

behaviour. The larger the L, the lower the performance. However, this is not expected since,

higher nonlinear distortion effects should provide bigger gains due to the increased minimum
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euclidean distances over the average bit energy. The reason for this is mainly in the sub-

optimal receiver nature, i.e., it does not test all the possible data sequences but only the most

likely candidates. As expected, if we consider the approximate optimum performance (that is

closer to the optimum receiver behaviour), the performance increases with the enhancement

of nonlinear effects.
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Figure 4.15: BER of Sub-optimal receiver III for an OFDM signal with N = 64 data subcarriers,
with different values of L and considering a frequency selective channel

In Figure 4.16 it is shown the impact in the suboptimal receiver III considering a ideal AWGN.

From the depicted results, it is clear the worse performance for higher values of P the worse

the performance as in the frequency selective channel. Again, the cause for this relies on

the semi-optimum behaviour of the receiver that does not test all the possible transmitted

sequences. Consequently, higher nonlinear distortion effects do not mean better performances.
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Figure 4.16: BER of Sub-optimal receiver III for an OFDM signal with N = 64 data subcarriers,
with different values of L and considering a ideal AWGN channel

4.3.3 Impact of diversity

It is well known that diversity schemes can be used to increase the capacity of the wireless

communication systems both in terms of the radio link quality and data rates. The main reason

behind these improvements is that the errors typically occur when the channel is in a deep

fade. Therefore, if the receiver is supplied by several replicas of the data signal transmitted

over independent fading channels, the probability of occurring a deep fade simultaneously in all

replicas becomes substantially reduced. In this subsection is considered a single input multiple

output (SIMO) scheme of NRx order (i.e., NRx represents the number of receiver antennas)

and it is evaluated the respective impact in performance. Note that, with diversity, the BER

for the linear OFDM considering an ideal AWGN can be approximated by

Pb ≈ Q
(√

2NRxEb
N0

)
, (4.3)

where it is clear that the asymptotic behaviour is conditioned by the number of antennas.

Therefore, it can be expected a performance improvement for larger values of NRx . This

behaviour is confirmed with the results of Figure 4.17, where is represented the BER for the
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sub-optimal receiver II considering different values for NRx and a subsequent frequency-domain

filtering operation.
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Figure 4.17: BER of Sub-optimal receiver II for an filtered OFDM signal with N = 64 data
subcarriers, with different values of NRx and considering an ideal AWGN channel

Clearly, for larger values of NRx the performance of the sub-optimal receiver II is better.

However, since there are gains in all performances, the relative gains (i.e., the proposed receiver

versus the linear OFDM) are approximately constant for all considered values of NRx.

When a frequency-selective channel is considered the BER for linear OFDM is approximated

by (see [38], Equation(14-4-15))

Pb ≈
(

1

2

(
1−

√
Eb/N0

1 + Eb/N0

))NRx NRx−1∑
l=0

(
NRx − 1 + l

l

)(
1

2

(
1 +

√
Eb/N0

1 + Eb/N0

))l .
(4.4)

In Figure 4.18 is represented the BER for the sub-optimal receiver IV considering different

values of P , two antennas at the receiver (i.e., NRx = 2) and a frequency-selective channel.

As we can see, this diversity scheme provide substantial improvements in the performance.

For instance, considering P = 2N , this sub-optimal receiver only needs Eb/N0 = 8.4 dB to

achieve BER of 10−4. However, when the hard decision is considered, it should be pointed out

that this BER value is unachievable even with very high values of Eb/N0, since the BER has
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a lower limit smaller than 10−4. From the comparison with the conventional linear OFDM

schemes, this receiver achieves a gain near 7.8 dB.
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Figure 4.18: BER of Sub-optimal receiver IV for an OFDM signal with N = 64 data subcarriers,
with NRx = 2 and considering a frequency selective channel.

We shall now consider the Figure 4.19 where is shown the BER for the sub-optimal receiver

IV considering a SIMO scheme of fourth order and different values of P . As expected, when

the number of receiver antennas NRx increase, the performance also increase. For achieving a

BER of 10−4 only an Eb/N0 around 3.5 dB is required, which is a very low value. Althoug,

from the same figure can be seen that the BER does not have a threshold value due to the

nonlinear distortion.
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Figure 4.19: BER of Sub-optimal receiver IV for an OFDM signal with N = 64 data subcarriers,
with NRx

= 4 and considering a frequency selective channel.

4.3.4 Impact of higher constellations

Here in it is analysed the impact of higher constellations (i.e.,M > 2) in the BER performance

of the proposed sub-optimal receivers. More concretely, it is adopted an 16-QAM constellation.

In this case, M = 4, leading to the existence 4N bits per transmitted data block. Note that

with bigger constellations the adopted clipping level must be higher since, the amplitude of

the complex data symbols is also higher. In addition, the performance of conventional linear

OFDM is worse since more bits are transmitted for the same power levels.

In Figure 4.20 is depicted the BER for the sub-optimal receiver IV considering different values

of P and sM/σ = 1.6 in an frequency selective channel. It is obvious that the gains obtained

with QPSK constellations can also be obtained with bigger constellations. However, contrary

to the QPSK case, only considering values of P > 2N , i.e., when at least half of the bits in the

block are modified, make the performance of this sub-optimal receiver better than the hard

decision.
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Figure 4.20: BER of Sub-optimal receiver IV for an OFDM signal with N = 64 data subcarriers,
considering a 16-QAM constellation and a frequency selective channel.

Note also that the complexity reduction is also assured since the performance is almost the

same for P = N/2 or P = N . When P = 4N , which means that all the bits are modified,

the performance is better than in the linear OFDM case and, in addition, the performance is

very close to the one obtained by the approximated optimum receiver. Let us now see what

happens when an ideal AWGN channel is considered. Note that the BER for the linear OFDM

case in an ideal AWGN is, considering (3.65), approximated by

Pb ≈
3

4
Q

(√
4Eb
5N0

)
. (4.5)
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Figure 4.21: BER of Sub-optimal receiver IV for an OFDM signal with N = 64 data subcarriers,
considering a 16-QAM constellation and an ideal AWGN channel

Although the gains are lower when comparing to the ones obtained with QPSK they continue

to be substantial. As in the fading channel, the performance of the sub-optimal receiver is

only better than the linear OFDM for P = 4N (which, in fact, corresponds to the behaviour

of the sub-optimal receiver III).



Chapter 5

Conclusions and future work

5.1 Conclusions

This work was intended to demonstrate the achievable performance of maximum likelihood

detection for OFDM signals with strong nonlinear effects that are traditionally regarded as

undesirable distortion.

In Chapter 2 is presented a brief introduction to OFDM signals, being identified that the

reasons besides the adoption of this multicarrier scheme in several broadband communication

systems are the high spectral efficiency, which is very important since the frequency spectrum

is expensive and limited, and the facility to deal with frequency-selective channels through the

use of simple frequency-domain equalizers. It has been also verified that due to its multicarrier

nature, the OFDM signals present high sensitivity to nonlinear distortion effects. The most

promising technique to reduce the envelope fluctuations is based on a clipping in the time-

domain followed by a filtering operation in the frequency-domain. This operation causes the

transmitted signals to have nonlinear distortion effects. To study this effects, it was shown

that the OFDM complex envelope can be modelled by a Gaussian random process, which allow

the theoretical characterization of the nonlinearly distorted signals. In this analysis it was

presented the expression for the PSD of the nonlinearly signal and as expected, it was verified

that nonlinear effect brings a spectral broadening due to the existence of intermodulation

products.
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In Chapter 3 it was studied the main reason behind the performances of ML detection for

OFDM signals with nonlinear effects and it was shown that contrary to what one could expect,

the performance of nonlinear OFDM can be better than the linear case. It is shown that when

in the presence of this distortion, the Euclidean Distance between two signals have energy in

the entire transmission bandwidth which, together with reduction in the average bit energy,

i.e., higher D2/Eb, can explain the asymptotic gain of this scenario. In the third chapter it is

also verified that the optimum performance is obtained with an ML receiver, being analysed

the basis of its behaviour. Since the achievable performance of nonlinear OFDM is conditioned

by the ratio D2/Eb, an closed-expression for the minimum Euclidean distance between two

nonlinear distorted signals was presented. This expression allows a quantification of the gains

with an accuracy that are dependent on the number of the in-band subcarriers which can be

explained due to the approximations that were made based on the assumption of N � 1.

Although the ML detection brings the optimal performance its complexity is too high. In the

Chapter 4 were presented four sub-optimal methods that have substantially low complexity

when compared to the full ML receiver. Despite of that, they present excellent performances

which can be explained mainly since the optimal sequence differs in a small amount of bits when

compared to the hard-decision sequence. Still in this chapter, the BER performance of the sub-

optimum receivers were presented and compared to an approximate optimum performance. It

was seen that the achievable gains can reach values around 5 dB but are higher when frequency-

selective channels are considered, which can be explained due to the inherent diversity effects

of the nonlinearly distorted signals. It was verified that when are employed iterative clipping

and filtering operations the achievable performances can be even better since there are higher

nonlinear distortion effects. It was also shown that use of diversity schemes also improves the

performance of the proposed sub-optimal receivers. The impact of use bigger constellations,

namely a 16-QAM constellation, is studied and it is shown that substantial gains are also

achieved.
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5.2 Future work

In this thesis it was studied the performance of OFDM signals that are passed trough a clipping

operation. However, other type of nonlinearities can be studied in future research activities.

The theoretical expression that evaluates the minimum Euclidean Distance between to non-

linearly signals was developed under some approximations. An extensive theoretical analysis

can be made to achieve more accuracy. In addition, considering a more realistic scenario, a

subsequent filtering operation can be used to remove the out-of-band radiation. A theoretical

expression that takes into account this filtering operation can be developed as well as one that

covers the iterative clipping and filtering case, which will allow a theoretical quantification of

the filtered nonlinear OFDM signal.

The sub-optimal methods presented here approach the optimum performance. However they

still are complex to be applied in a realistic scenario. For this reason, less complex methods

can be developed and evaluated in future works.
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Appendix A - Output

Autocorrelation for Polar

Memoryless Non-linearities with

Gaussian Inputs

Let us consider a bandpass signal with real part (2.32), where its complex envelope is given

by

x(t) = R(t)ejϕ(t) = xI(t) + jxQ(t), (A.1)

where R = R(t) = |x(t)| is assumed to be a complex Gaussian process with equally distributed,

zero mean real and imaginary components. The autocorrelation of x(t) is given by

Rx(τ) = E[x(t)x∗(t− τ)] = E [(xI(t) + jxQ(t)) (xI(t)− jxQ(t))] , (A.2)

but, recalling that, E[A(t)±B(t)] = E[A(t)]± E[B(t)], we can write

Rx(τ) = RII(τ) +RQQ(τ) + j (RQI(τ)−RIQ(τ)) , (A.3)
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with

RII(τ) = E[xI(t)xI(t− τ)] (A.4)

RQQ(τ) = E[xQ(t)xQ(t− τ)] = RII(τ) (A.5)

RQI(τ) = E[xQ(t)xI(t− τ)] (A.6)

RIQ(τ) = E[xI(t)xQ(t− τ)]−RQI(τ) (A.7)

Noting that Rx(0) = E[x2(t)] = 2RII(0) = 2σ2, since RII(0) = RQQ(0) = σ and RIQ(0) =

RQI(0) = 0, we also may write

Rx(τ) = 2(RII(τ) + jRQI(τ)), (A.8)

In the section 2.3 we saw that the complex envelope of the non-linearity output can be written

as

y(t) = g (x(t)) = g
(
R(t)ejϕ(t)

)
= f(R)ejϕ, (A.9)

with f(R) = A(R)ejΘ(R) representing the function that characterizes the polar memoryless

non-linearity. The autocorrelation of the output is

Ry(τ) =E[y(t)y∗(t− τ)] (A.10)

=E[g(x1)g∗(x2)]

=E[g(x1I + jx1Q)g(x2I − jx2Q)]

=

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

g(x1I + jx1Q)g(x2I − jx2Q)p(x1I , x1Q, x2I , x2Q)dx1Idx1Qdx2Idx2Q,

with x1 = x(t) = x1I + jx1Q and x2 = x(t − τ) = x2I + jx2Q. Let us consider the vector

w = [x1I x1Q x2I x2Q]T , where the superscript T denotes transposition. Since we are assuming

that E[x1I ] = E[x1Q] = E[x2I ] = E[x2Q] = 0, the covariance of w is the matrix W that is
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written as

W =E[wwT ] (A.11)

=



E[x1Ix1I ] E[x1Ix1Q] E[x1Ix2I ] E[x1Ix2Q]

E[x1Qx1I ]E[x1Qx1Q]E[x1Qx2I ]E[x1Qx2Q]

E[x2Ix1I ] E[x2Ix1Q] E[x2Ix2I ] E[x2Ix2Q]

E[x2Qx1I ]E[x2Qx1Q]E[x2Qx2I ]E[x2Qx2Q]



=



σ2 0 RII(τ) −RQI(τ)

0 σ2 RQI(τ) RII(τ)

RII(τ) −RQI(τ) σ2 0

RQI(τ) RII(τ) 0 σ2


with its determinant defined as

det(W) = σ8

(
1−

R2
II(τ) +R2

QI(τ)

σ4

)2

= σ8

(
1− |Rx(τ)|2

4σ4

)2

= σ8
(
1− ρ2

)2
, (A.12)

where ρ denotes the correlation coefficient (i.e., the normalized autocorrelation of the output)

defined as

ρ =
|Rx(τ)|
Rx(0)

=
|Rx(τ)|

2σ2
(A.13)

Since det(W) is non-zero, we can compute the inverse of W, resulting

W−1 =



σ2 0 −RII(τ) RQI(τ)

0 σ2 −RQI(τ)−RII(τ)

−RII(τ) RQI(τ) σ2 0

−RQI(τ)−RII(τ) 0 σ2


(A.14)

The joint PDF of the vector w is given by [34]

p(w) =
1

(2π)2
√

det(W)
e−

1
2
wTW−1w =

1

4π2σ4 (1− ρ2)2 e
A (A.15)
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with

A=−
σ2
(
x2

1I + x2
2I + x2

1Q + x2
2Q

)
− 2RII(τ) (x1Ix2I + x1Qx2Q)− 2RQI (τ) (x1Ix2Q − x1Qx2I)

2
√

det(W)

=−σ
2
(
|x1|2 + |x2|2

)
− Re {Rx(τ)x1x

∗
2}

2σ4(1− ρ2)
(A.16)

Let us now consider polar coordinates, i.e., x1 = R1e
jϕ1 and x2 = R2e

jϕ2 . In this case, we

can write (A.16) as [35]

A=−σ
2
(
R2

1 +R2
2

)
− |Rx(τ)|R1R2 cos (ϕ1 − ϕ2 + arg {Rx(τ)})

2σ4(1− ρ2)

=−R
2
1 +R2

2 − 2ρR1R2 cos (ϕ1 − ϕ2 + φ)

ρ0
, (A.17)

with φ = arg {Rx(τ)} and ρ0 = 2σ2(1− ρ2). Using (A.15) and (A.17) in (A.10) and applying

the considered polar coordinate transform, we have

Ry(τ) =
1

2π2σ2ρ0

+∞∫
0

+∞∫
0

2π∫
0

2π∫
0

f(R1)f∗(R2)ej(ϕ1−ϕ2)e
−R

2
1+R

2
2−2ρR1R2 cos(ϕ1−ϕ2+φ)

ρ0

R1R2dR1dR2dϕ1dϕ2 (A.18)

And, with some manipulations, we may write

Ry(τ) =
1

2π2σ2ρ0

+∞∫
0

+∞∫
0

2π∫
0

2π∫
0

f(R1)f∗(R2)R1R2e
−R

2
1+R

2
2

ρ0

 2π∫
0

2π∫
0

ej(ϕ1−ϕ2+φ−φ)e
2ρR1R2 cos(ϕ1−ϕ2+φ)

ρ0 dϕ1dϕ2

 dR1dR2

=
e−jφ

2π2σ2ρ0

+∞∫
0

+∞∫
0

2π∫
0

2π∫
0

f(R1)f∗(R2)R1R2e
−R

2
1+R

2
2

ρ0

 2π∫
0

2π∫
0

ej(ϕ1−ϕ2+φ)e
2ρR1R2 cos(ϕ1−ϕ2+φ)

ρ0 dϕ1dϕ2

 dR1dR2

(A.19)
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Let us now consider the modified Bessel function of first kind , In(z), that can be written as

(see [36], Equation(9.6.19))

In(z) =
1

π

π∫
0

cos(nθ)ez cos(θ)dθ (A.20)

considering n = 1, z = 2ρR1R2

ρ0
and θ = ϕ1 − ϕ2 + φ we have

I1

(
2ρR1R2

ρ0

)
=

1

π

π∫
0

cos(θ)e
2ρR1R2
ρ0

cos(θ)
dθ (A.21)

since the integrand is a periodic function, we also may write

1

π

2π∫
0

ejθez cos(θ)dθ =
1

π

2π∫
0

(cos(θ) + j sin(θ)) ez cos(θ)dθ (A.22)

and the double integral in (A.19) can be written as

2π∫
0

2π∫
0

cos(ϕ1 − ϕ2 + φ)e
2ρR1R2 cos(ϕ1−ϕ2+φ)

ρ0 dϕ1dϕ2 = 4π2I1

(
2ρR1R2

ρ0

)
(A.23)

thus, (A.19) becomes

Ry(τ) =
2e−jφ

σ2ρ0

+∞∫
0

+∞∫
0

f(R1)f∗(R2)R1R2e
−R

2
1+R

2
2

ρ0 I1

(
2ρR1R2

ρ0

)
dR1dR2 (A.24)

Using the Laguerre polynomial series expansion (see [37], Equation (5.11.3.7)), we can write

+∞∑
γ=0

γ

(α+ 1)γ
tγL(α)

γ (x)L(α+n)
γ (y) = (A.25)

Γ(α+ 1)(1− t)−n−1(txy)−
α
2 e

x+y
t−1

t

n∑
γ=0

(−1)γ
(
n

γ

)(
tx

y

) γ
2

Iγ+α

(
2
√
txy

1− t

)
(A.26)

considering n = 0, α = 1, and

(A)k =
Γ(A+ k)

Γ(A)
, (A.27)
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where, Γ(A) is the Gamma function that is defined as

Γ(A) = (A− 1)! (A.28)

we note that

(α+ 1)γ = 2γ =
Γ(2 + γ)

Γ(2)
=

(γ + 1)!

1!
= (γ + 1)! (A.29)

and (A.25) becomes

+∞∑
γ=0

1

γ + 1
tγL(1)

γ (x)L(1)
γ (y) =

1

(1− t)√txy e
x+y
t−1

tI1

(
2
√
txy

1− t

)
(A.30)

making t = ρ2, x =
R2

1
2σ2 and y =

R2
2

2σ2 , we can write (A.30) as

+∞∑
γ=0

1

γ + 1
ρ2γL(1)

γ

(
R2

1

2σ2

)
L(1)
γ

(
R2

2

2σ2

)
=

1

(1− ρ2)

√
ρ2 R

2
1

2σ2

R2
2

2σ2

e

R2
1

2σ2
+
R2
2

2σ2

ρ2−1
ρ2
I1

2

√
ρ2 R

2
1

2σ2

R2
2

2σ2

1− ρ2


=

2σ2

(1− ρ2)ρR1R2
e
−R

2
1+R

2
2

ρ0
ρ2
I1

(
2ρR1R2

ρ0

)
(A.31)

where L
(1)
γ denotes the generalized Laguerre polynomial of order γ, defined as

L(1)
γ (x) =

1

γ!
x−1ex

dγ

dxγ
(
e−xxγ+1

)
(A.32)
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Replacing (A.31) in (A.24) we get

Ry(τ) =
2e−jφ

σ2ρ0

ρ(1− ρ2)

2σ2

+∞∫
0

+∞∫
0

f(R1)f∗(R2)R2
1R

2
2e
−R

2
1+R

2
2

ρ0 e
−R

2
1+R

2
2

ρ0
ρ2

· 2σ2

(1− ρ2)ρR1R2
e
−R

2
1+R

2
2

ρ0
ρ2
I1

(
2ρR1R2

ρ0

)
dR1dR2

=
ρ

2σ6
e−jφ

+∞∫
0

+∞∫
0

f(R1)f∗(R2)R2
1R

2
2e
−(1−ρ2)(R2

1+R
2
2)

2σ2(1−ρ2)

· 2σ2

(1− ρ2)ρR1R2
e
−R

2
1+R

2
2

ρ0
ρ2
I1

(
2ρR1R2

ρ0

)
dR1dR2

=
1

2σ6
e−jφ

+∞∫
0

+∞∫
0

f(R1)f∗(R2)R2
1R

2
2e

R2
1+R

2
2

2σ2

·

+∞∑
γ=0

1

γ + 1
ρ2γ+1L(1)

γ

(
R2

1

2σ2

)
L(1)
γ

(
R2

2

2σ2

)dR1dR2

(A.33)

Since the double integral in (A.33) is separable in two equal integrals in respect to R1 and

R2, we can write

Ry(τ) =
1

2σ6
e−jφ

+∞∑
γ=0

1

γ + 1
ρ2γ+1

∣∣∣∣∣∣
+∞∫
0

R2f(R)e−
R2

2σ2L(1)
γ

(
R2

2σ2

)
dR

∣∣∣∣∣∣
2

(A.34)

or,

Ry(τ) = 2

+∞∑
γ=0

P2γ+1ρ
2γ+1e−jφ, (A.35)

where P2γ+1 given by

P2γ+1 =
1

4σ6(γ + 1)

∣∣∣∣∣∣
+∞∫
0

R2f(R)e−
R2

2σ2L(1)
γ

(
R2

2σ2

)
dR

∣∣∣∣∣∣
2

(A.36)

These coefficients represents the total power associated to IMP of order 2γ + 1. Since

ρ2γ+1e−jφ =
Rx(τ)γ+1R∗x(τ)γ

Rx(0)2γ+1
, (A.37)
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we can finally define the autocorrelation of the nonlinearity output as

Ry(τ) = 2
+∞∑
γ=0

P2γ+1
Rx(τ)γ+1R∗x(τ)γ

Rx(0)2γ+1
(A.38)
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