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In this paper we start with general fluid equations for both ions and electrons in neutral gases, obtained as velocity moments of
Boltzmann's equation. Two distinct approximations are required for these exact equations to be of any practical use:

L. 'The collision transfer terms (right hand side of the fluid equations) must be approximatcd, and

I1. Some closure ansatz (hypothesis) is required for the "streaming terms" (left hand side of the fluid equations), to ensure that

the number of equations corresponds to the number of unknowns.

For step I, swarm (free diffusion) limit results using, e.g., momentum transfer theory, may be taken over directly to low
temperature plasmas, but step 1l remains problematic, with little guide from swarm physics, and serious doubts about existing
assumptions in the plasma literature. We focus on electron fluid equations with closure at the level of momentum and energy
balance, which requires an accurate heat {lux ansaiz in order to produce physically meaningful results. The crucial nature of
this ansatz is illustrated using a simple benchmark calculation for infinite plane parallel geometry, where we show for the first
time how periodic spatial structures (Franck-Hertz oscillations) may be generated from fluid equations.

1. Introduction: Kinetic modelling

The Boltzmann kinetic equation for each charged
component s of a weakly ionised gas can be written as:
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where ™ (r,c1) is the phase space distribution function
of species 5, a® =¢/m® (E + ¢ x B) is the external
force per unit mass, and JG®, £@) and J¢®, £¢7)
denote the collision terms for charge particle-neutral
molecule collisions, and charged particle—charged
particle interactions respectively. Put in a nutshell, the
problem of kinetic theory is to solve equations of the
form (1) for ™ with appropriate boundary and initial
conditions. Then we obtain the physical quantities of
interest as velocity “moments”, starting with the number
density,
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followed by higher order quantities,
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with ¢(¢) =me,ame® ... furnishing the mean

velocity v, mean energy £ , and so on.

The current state of affairs in electron and ion kinetic
theory has been reviewed by White er o/’ and
Viehland® respectively, for the free diffusion or
“swarm” limit, while Winkler ® has reviewed electron
kinetics from the perspective of low temperature plasma
physics.
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Note that f° @ the neutral molecule distribution function,
is often assumed to be a Maxwellian, but in general it too
will be prescribed by the solution of an additional
kinetic equation coupled to the hierarchy (1).

For swarms, there is generally only one charged
component, the fields are externally prescribed and the
non-linear term J(*®, £®) is neglected. A hydrodynamic
situation usually prevails, and space and time are usually
projected out through a density gradient expansion”.

On the other hand, for low temperature plasmas, the
fields are determined self-consistently through
Maxwell’s equations, e.g., Poisson’s equation:

V.E = z n(r,0)q" / g, 1G]

while boundaries and sources usually result in non-
hydrodynamic behaviour. This by itself means that the
plasma problem is at least an order of magnitude more
difficult than the swarm problem from a computational
point of view, even when the non-linear terms in Eq. (1)
are neglected. When the latter are included, the
calculation assumes even more formidable proportions.

It is therefore not surprising that alternative approaches
such PIC and Monte Carlo simulations™ and fluid
modelling ®” | are favoured. Fluid models are
particularly attractive as they offer both computational
economy and physical insight, but accuracy and ad hoc
closure assumptions can be issues™, In this paper, we
outline what we believe are the key factors for successful
fluid modelling.

2. Fluid modelling

In the fluid approach one aims at obtaining the physical
quantities of interest directly, rather than via the
distribution function as in Egs. (1) and (3). A low order
set of moment equations, typically the continuity,
momentum balance, and energy balance equations, can
be found by taking velocity moment equations of Eq. (1)



with respect to the quantities ¢(c)=1,mc, A mc

together with some ansatz or postulate to close the set.
The generic form of the fluid equations thus obtained is

Bn+V.-mv=C, (5a)
nm(d, +v -V +V - P—ng(E +vxB)=C, (5b)
n(B, +v-V){e~1/2mv*)+V.q+P:Vv=C, (5¢)

where the collision transfer terms C; account for all
processes: elastic and inelastic collisions, ionisation and

attachment, ion-molecule reactions, recombination, and
so on. The explicit form depends upon the choice of
collision ansatz, as explained below. For plasmas, Egs.
(5) are to be solved for each species, in conjunction with
Maxwell’s equations, for given initial and boundary
conditions. For swarms, the fields are externally
prescribed. However, the collision terms C; are the same
for both cases. Figure 1 shows the steps involved in
constructing fluid equations for both swarms and low
temperature plasmas.

Exact moment
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Figure 1. A schematic portrayal of the way in which fluid equations are generated for both
plasmas and swarms from their common source, the kinetic equation (1). In the swarm
limit S, densities are so low that charge particle interactions are negligible.

Starting from the common kinetic equation for each of
the ion and electron species, one proceeds through a
common set of approximations for the collision terms
and closure. In this picture, the resulting plasma fluid
equations are consistent with the established results of
swarm analysis. In addition, it is legitimate in this
scheme to employ measured or theoretically calculated
swarm transport coefficients to replace approximate
terms in either the swarm or plasma fluid equations,
thereby considerably enhancing computational accuracy.
On the other hand, purely empirical plasma fluid models
generally reproduce neither the swarm fluid equations
nor the associated benchmark results and formulas
established in the literature over many years.
Furthermore, it may be neither logical nor legitimate to
try to insert swarm transport coefficients into the
empirical fluid equations.

Whichever way one proceeds, the basic difficulty in the
fluid approach is that there are always more unknowns
than equations, and thus there is a fundamental closure
problem. There are a number of issues to be addressed:

(i) The collision terms C; generally involves an infinite
number of moments, and must be approximated in some

way in order to close the equations. Wannier®
suggested approximating the collision terms by
expressions of the same mathematical form as for the
constant collision frequency model, effectively
eliminating the troublesome unknowns. This procedure,
which has come to be known as “momentum transfer
theory”, has proved very successful in swarm transport
theory, where it has been tested and benchmarked for
accuracy. It has even been applied recently to unfold
cross sections from swarm data — see Fig. 2. It should
prove equally successful for low temperature plasmas —
after all, collision dynamics is not influenced by either
fields or the spatial-temporal behaviour of the system. In
the absence of charge-charge interactions, the C; are
defined by the right side of Egs, (7)-(9) of Ref. 5.

(ii) Both the momentum and energy balance equations
(5b,c) contain the pressure tensor

=nm< (c-v)(c-v)>, which has to be found from a
higher order moment equation, which in turn contains
further unknowns. For light particles such as electrons,
however, the tensor can be taken as a scalar at the fluid
level of approximation®, i.e., P= 2/3 ne I, and there is
no closure problem. For heavy particles, however, a



closure ansatz will have to be made, using a procedure
similar to that for the heat flux vector, described below.
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Figure 2. Momentum transfer cross sections for
electrons in sodium vapour at T = 803° K, as calculated
(a) theoretically from the Fano profile formula (solid
curve) and (b) by inverting swarm data using momentum
transfer theory (dashed curve) (P. Nicoletopoulos,
http://arxiv.org/abs/physics/0307081, 2003). The arrow
indicates the thermal energy 3kT/2 = 0.1 eV.

(iii) The energy balance equation (5¢) also contains the
heat flux term, g = %nm<(c-v)’(c-v)> , which must be
expressed in terms of lower moments n, v, ¢ if the fluid
equations are to be closed. As Surendra and Davie®®

pointed out some time ago, it is unsatisfactory to either
neglect ¢, or to use a Fourier type of ansaiz, g =-K Ve

where X is some constant, and yet this is precisely what
continues to be done in the fluid modelling literature!'”.
Correct representation of the heat flux is known to be
important for analysis of transport properties® », and
thus we have devoted a significant part of our work to
addressing this issue. Our strategy has been to aim to
find a simple collision model where one can write down
an exact expression for the heat flux, represented here in
functional form as

1

q=0(nv,) (6)

and then use this as an ansatz for other, more general
situations. An explicit form of (6) is given in Eq. (20) of
Ref. 5.

The integrity of the fluid equations closed as above can

be tested by:

¢  Ensuring that they reproduce all the well known
formulas in the swarm limit: Wannier’s energy
equation, Tonks’ theorem, generalised Einstein
relations, and so on

* Benchmarking against exact solutions of the
Boltzmann equation for models in simple infinite

plane — parallel geometry; including a prototype
Franck-Hertz experiment!'”

3. A benchmark model: Franck-Hertz
oscillations

We now consider electrons emitted at a steady rate from
a source into a neutral gas in the inherently non-
hydrodynamic benchmark model of Fig. 3, and use Eq.
(20) of Ref. 5 for the heat flux ansatz, which contains an
adjustable parameter . In the asymptotic region far
downstream from the source, the fluid equations can be
linearised and solved analytically (see Section B of Ref.
5). Here the space-dependence of all quantities is
governed by a single exponential ¢ , in which the
“wave number” K may be complex when inelastic
collisions are significant. This leads to periodic
structures which are characteristic of the Franck-Hertz
experiment. In the initial study reported here, there is no
magnetic field"? and for simplicity z, = 0.
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Figure 3. The benchmark plane-parallel geometry
model, in which electrons are emitted at a steady rate
into a gas.

The cross section model is the one used by Li and
collaborators”'" to furnish accurate benchmark solutions
of Boltzmann’s equation, namely a constant elastic
momentum transfer cross section o,, = 6 A2, a constant
inelastic cross section ;= 0.1 A% above threshold £,;= 2
eV, a cold gas with atomic mass M =4 a.m.u.

The starting point of our investigation is Eq. (38) of Ref.
5, a cubic equation for K. The solutions shown in Fig. 4
are in reasonable semi-quantitative agreement with the
results of precise numerical solution of Boltzmann’s
equation (see Fig. 4 of Ref [ 1). It is clear that in the
“window™ of reduced fields, roughly 0.5 Td < E/N < 10
Td, the real part of X is small, and the imaginary part
rises monotonically, implying that periodic structures
persist to very large distances downstream from the
source, as shown in Fig. 5. Such oscillatory behaviour
has been widely studied in the literature in recent times
through solutions of the Boltzmann equation®'"'?, but
this is the first time that such behaviour has been
produced using a fluid model.

As expected, the heat flux ansatz turns out to be crucial ,
both qualitatively and quantitatively speaking. To repeat,
a Fourier type of ansatz, which was already shown to be



inadequate for even the simplest clastic collision model®
produces no oscillations whatever, and is obviously
totally unphysical. Even for the ansatz suggested in
Ref.5, which is quite adequate for describing elastic
collisions, extreme care needs to taken with specification
of the parameter o when inelastic collisions are
important, as is the case above. Details will be reported
in a forthcoming publication (Nicoletopoulos and
Robson, in preparation).
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Figure 4. Real (solid line) and imaginary (dashed line)
parts of the (normalised) wave number K*=K A4, where
A= (\12 N cro)", op=1A% and 1 Td = 1 townsend =
102V m?,
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Figure 5. Mean energy at E/N=6.5 Td as a function of

normalized distance downstream from the source

4. Concluding remarks and acknowledgment
We have discussed key factors in fluid modelling of
swarms and plasmas, both generally and in the context of
a deceptively simple-looking benchmark model. We

strongly recommend that fluid modellers use collision
transfer terms as furnished by momentum transfer theory
©3419 or some other systematic method®, Particular
care needs to be taken with closure through specification
of the heat flux, a point which is still not always
recognised M We also suggest that any plasma fluid
model must yield established swarm results in the
appropriate limit of low charge densities. After all, ifa
model cannot reproduce the simplest of -V
characteristics, what hope has it of getting things right in
the more complex plasma situation?

Finally, there is a separate set of issues regarding the use
of swarm hydrodynamic transport coefficients in plasma
fluid models®, particularly in non-hydrodynamic, space-
time varying circumstances, and allowing for the
subtleties of non-conservative collisions.

One of us (RER) gratefully acknowledges the support of
the Australian Academy of Science, and the hospitality
of members of the Université Libre de Bruxelles in the
summer of 2006.
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