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RESUMO 

 

Streptococcus pyogenes é uma bactéria patogénica do Homem associada a uma 

variedade de infecções e doença, desde a pouco grave mas altamente prevalente faringite até a 

infecções extremamente severas, tais como a fasceíte necrosante e o síndroma do choque tóxico 

estreptocócico.  

Este trabalho teve como objectivo o estudo de aspectos importantes e não explorados da 

epidemiologia, transmissão e evolução de S. pyogenes causadores de colonização e doença. 

A amostra em estudo incluiu 1629 isolados de S. pyogenes associados a colonização e 

infecções. Destes 1629 isolados, 1026 foram recolhidos de 10578 exsudados da orofaringe de 

populações assintomáticas (crianças e adultos) durante 2000-2007 e 603 isolados foram 

provenientes de pacientes diagnosticados com infecções: 487 com amigdalite/faringite em 2000-

2006, 72 com infecções de pele/tecidos moles em 1999-2005 e 44 com infecções invasivas em 

1999-2005. 

 Este estudo revelou que os portadores saudáveis foram colonizados por uma população 

muito heterogénea de S. pyogenes. A taxa de colonização média foi maior entre as crianças em 

idade pré-escolar (0-6 anos) do que entre crianças com idade escolar (7-16 anos) e a frequência 

de colonização foi superior durante os períodos de inverno, o que sugere que o contacto entre 

crianças nas creches poderá favorecer o aumento de colonização por S. pyogenes em crianças 

saudáveis do pré-escolar.  

 Foi ainda observada uma elevada diversidade de estirpes de S. pyogenes associada a 

colonização de longo prazo e detectada co-colonização por várias estirpes de S. pyogenes. 

 Neste trabalho foi reportada, em portadores, a persistência de longo prazo da linhagem 

emm28/ST52, com reduzida resistência à bacitracina, a qual é prevalente na Europa. 

Adicionalmente, foi reportada pela primeira vez, a elevada resistência à bacitracina associada à 

linhagem emm74/ST120, a qual não era conhecida por incluir isolados resistentes à bacitracina. 

 Neste estudo foram reportadas, também pela primeira vez, inversões temporais de 

fenótipos de resistência a macrólidos em isolados de colonização, reforçando a importância da 

vigilância de portadores, pois estes podem ser indicadores do conjunto de isolados presentes na 

comunidade e que podem causar infecções. A elevada prevalência (>20%) dos genes de 

virulência speC, prtF1 e ssa foi causada provavelmente por disseminação clonal (speC) ou por 

eventos de transferência génica horizontal (prtF1 e ssa). 

 Neste trabalho foi observado que a taxa de susceptibilidade reduzida à ciprofloxacina foi 

ligeiramente inferior em isolados de colonização (4.3%) do que em isolados clínicos (6.0%). À 

excepção de um isolado, nos restantes foram identificadas mutações em parC-QRDR, 

originando as substituições amino-acídicas S79A (n=63) e D83G (n=2); a substituição D83G foi 

descrita pela primeira vez neste estudo e a associação entre isolados emm1 e reduzida 
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susceptibilidade a fluoroquinolonas foi também detectada pela primeira vez neste trabalho. 

Foi observada uma maior frequência de genes de virulência em isolados associados a 

doença estreptocócica, tais como amigdalite/faringite, infecções de pele/tecidos moles ou 

doença invasiva, do que em colonização. Este estudo, em particular, contribuiu para um maior 

conhecimento dos factores de virulência de S. pyogenes que circulam neste país. 

 De entre os 1629 isolados, foram descobertos novos genótipos, tais como os subtipos 

emm 6.63, 28.9, 53.10, st4040.0 e stMrp6.0, assim como as sequências tipo ST380, ST397, 

ST398, ST401, ST402, ST427, ST428, ST429, ST430, ST431 e ST581. 

Em conclusão, os resultados desta dissertação ampliam o nosso conhecimento sobre o 

estado de portador de S. pyogenes, a susceptibilidade a agentes antimicrobianos, epidemiologia 

molecular e virulência de isolados de S. pyogenes provenientes de colonização orofaríngica e 

infecções sintomáticas. 
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ABSTRACT 

 

Streptococcus pyogenes is one pathogenic bacterium of humans and is associated with a 

wide variety of infections and disease states, ranging from uncomplicated but highly prevalent 

pharyngitis to extremely severe infections, such as necrotizing fasciitis and streptococcal toxic 

shock syndrome. 

This work aimed to study important and unexplored aspects of the epidemiology, 

transmission and evolution of S. pyogenes causing colonization and a wide range of diseases. 

Our sample included 1,629 nonduplicated S. pyogenes isolates associated with 

colonization and infections. Out of the 1,629 isolates, 1,026 were recovered from 10,578 throat 

swabs of asymptomatic populations (children and adults) during 2000-2007 and 603 isolates 

were from patients diagnosed with clinical infections: 487 with tonsillitis/pharyngitis in 2000-

2006, 72 with skin/soft tissue infections in 1999-2005, and 44 with invasive diseases in 1999-

2005. 

This study demonstrated that a very heterogeneous population of S. pyogenes colonized 

healthy carriers. The mean carrier rate was higher among pre-school children (0-6 years) than 

among school-aged children (7-16 years) and colonization frequency was higher during Winter 

periods, which suggests that the crowding of children in day-care centers may possibly increase 

the carrier rate in healthy pre-school children.  

Moreover, it was also found that a high diversity of S. pyogenes strains was associated 

with long-term colonization, and it was detected co-colonization of the oropharynx by multiple 

S. pyogenes strains. 

 In this work, it was reported the long term persistence among carriers of the low-level 

bacitracin-resistant emm28/ST52 lineage, which is prevalent in Europe. It was also reported for 

the first time a high-level bacitracin-resistant isolate of the emm74/ST120 lineage, which was 

not previously known to include bacitracin-resistant isolates.  

In this study were also reported for the first time temporal inversions of macrolide 

resistance phenotypes among colonization isolates, reinforcing the importance of surveillance of 

carriers, as they may be indicators of the pool of isolates circulating in the community that may 

cause infections. The high prevalence (>20%) of virulence genes speC, prtF1 and ssa was 

probably caused either by clonal dissemination (speC), or to horizontal gene transfer events 

(prtF1 and ssa).  

In this work it was observed that ciprofloxacin-nonsusceptibility rate was slightly lower 

among colonization isolates (4.3%) than among the clinical isolates (6.0%). All but one 

ciprofloxacin-nonsusceptible isolates had parC-QRDR mutations generating the aminoacid 

substitutions S79A (n=63) and D83G (n=2); the ParC-D83G substitution was found for the first 
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time in this study and emm1 association with fluoroquinolone-nonsusceptibility was also first 

detected in this work.  

It was observed a higher frequency of virulence genes among isolates from disease, 

such as tonsillitis/pharyngitis, skin/soft tissue infections or invasive disease, than among 

colonization. In particular, this study contributed to a better knowledge of S. pyogenes virulence 

factors that circulate in this country. 

Among the 1,629 isolates, novel genotypes were discovered, such as emm-subtypes 

6.63, 28.9, 53.10, st4040.0 and stMrp6.0, as well as sequence types ST380, ST397, ST398, 

ST401, ST402, ST427, ST428, ST429, ST430, ST431 and ST581. 

In conclusion, the results from this dissertation extend our knowledge about the carrier 

state, the susceptibility to antimicrobial agents, molecular epidemiology and virulence of S. 

pyogenes isolates from oropharyngeal colonization and symptomatic infections.  
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THESIS OUTLINE 

 

 The studies presented in this Doctoral Thesis focused on the antimicrobial susceptibility 

patterns, molecular epidemiology and virulence profiling of both colonizing- and infection-

derived Streptococcus pyogenes isolates. 

 The order of presentation of each chapter in the present Doctoral Thesis does not 

necessarily reflect a chronological order, since some of the works described below were done 

simultaneously and the results obtained during one particular work would influence the progress 

of the other and vice-versa. 

 

Chapter I consists of a general introduction and briefly describes the current state of the art of 

S. pyogenes species. Special attention was given to the general characteristics of the species, the 

carrier state and symptomatic infections, the most common virulence factors reported in this 

species, the resistance that antimicrobials confer to, the molecular tools used in S. pyogenes 

epidemiological studies, the S. pyogenes genome and vaccine candidates. 

 

Chapter II reports important features of S. pyogenes oropharyngeal colonization, such as the 

clonal structure of sporadic and persistent strains, the long-term colonization status and the 

occurrence of co-colonization of the oropharynx by multiple strains. 

 

Chapter III   describes the molecular epidemiology, macrolide susceptibility and virulence 

profiles of S. pyogenes from healthy carriers. 

 

Chapter IV presents the description of ciprofloxacin-nonsusceptible S. pyogenes isolates 

recovered from colonized and infected children, as well as the characterization of the associated 

clones and resistance mechanisms. 

 

Chapter V describes the characterization of bacitracin-resistant S. pyogenes collected from 

oropharyngeal carriers and patients with diagnosed infections by the assessment of the putative 

variability of genetic backgrounds and of virulence genotypes of the isolates. 

 

Chapter VI reports the screening for the presence of virulence genes in isolates from 

oropharyngeal colonization and symptomatic infections and the study of gene expression in 

selected isolates.  

 

Chapter VII presents the major findings of this Thesis, which are highlighted and discussed. 

Also, future directions are suggested in this chapter. 
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Chapter I 

3 

 

1. Streptococcus pyogenes or Group A Streptococcus (GAS) 

 

1.1. General features 

 

  In this section we describe the general characteristics of the species, an overview of the 

identification methods used for differentiation of S. pyogenes, the niche of this pathogen and its 

host. 

 S. pyogenes is also known as beta-hemolytic Group A Streptococcus or Lancefield’s 

Group A strep (GAS) (Facklam, 2002). It is a facultative anaerobic microorganism, catalase and 

oxidase negative, and its metabolism is fermentative. Individual cells have spherical shape and 

no motion. Colonies produce streptolysin-O, lysing completely the erythrocytes and forming 

large zones of beta-hemolysis (two or four times the diameter of the colony), when cultured on 

blood agar plate after 18 to 24 hours of incubation at 37ºC (see Figure 1.1) (Facklam, 2002). 

The cell wall of S. pyogenes contains an antigenic polysaccharide composed of N-

acetilglucosamine linked to a rhamnose polimer backbone, whose serologic reactivity allows 

identifying primarily this species as Lancefield Group A (Cunningham, 2000). The true 

incidence of non-S. pyogenes GAS strains found in human infections, such as S. dysgalactiae 

subsp. equisimilis and S. anginosus group, is unknown, but from the information available at the 

Centers for Disease Control and Prevention (CDC) Streptococcus laboratory, these strains are 

not common (Facklam, 2002). Presumptive identification can also be made by bacitracin 

susceptibility or by the ability to enzymatically hydrolyse PYR (L-pyrrolidonil--

naphthylamide). S. pyogenes strains are the only beta-hemolytic streptococci that are positive in 

both of these tests (Facklam, 2002). Other techniques have been used for S. pyogenes 

identification, including 16S rRNA sequencing and assessment of phenotypic characteristics by 

biochemical tests (Facklam, 2002), as well as fluorescent in situ hybridization (FISH) 

(Tajbakhsh et al., 2011). Usually, S. pyogenes is a free-living organism; however, its ecological 

niche appears to be quite narrow, being limited to upper-respiratory tract mucosa, as well as 

skin. The only known natural reservoir of this pathogen is the human (Bessen and Hollingshead, 

2000).  

As it was referred to above, susceptibility to bacitracin remains to be used as a criterion 

for presumptive identification of S. pyogenes. However, resistance to this antimicrobial agent in 

S. pyogenes was previously described (Facklam and Washington II, 1991), raising questions 

concerning the reliability of this criterion. Resistance to bacitracin in S. pyogenes has been also 

frequently associated to constitutive resistance to macrolides, lincosamides and streptogramin B 

(cMLSB phenotype) (Malhotra-Kumar et al., 2003; Mihaila-Amrouche et al., 2004; Pérez-

Trallero et al., 2004; Pires et al., 2009). 
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Figure 1.1. Streptococcus pyogenes strains grown on a blood agar plate with observation of 

beta-hemolysis (This study). 

 

1.2. S. pyogenes carrier state: meaning and clinical relevance 

 

Although it not be considered normal flora, S. pyogenes can colonize oropharyngeal 

respiratory tract without manifestation of clinical infection symptoms by the host (Cunningham, 

2000). Colonization is also considered an infection; however the association between the 

microorganism and the host is commensal (Berkovitch et al., 2002). The S. pyogenes carrier is 

an asymptomatic individual with a positive oropharyngeal swab culture and without serological 

response, or with a positive culture after completing the appropriate treatment with 

antimicrobial agents (Martin et al., 2004). Pichichero and Casey (2003) showed that 7% of 140 

children were S. pyogenes carriers after 10 to 21 days of treatment with an antimicrobial from 

macrolide class. These studies indicated that, although the disappearance (or attenuation) of the 

symptoms, the microorganism was not eradicated after the treatment with several antimicrobial 

classes (Martin et al., 2004). Nguyen et al. (1997) demonstrated that asymptomatic individuals 

previously exposed to treatments for streptococcal infection can be colonized by new S. 

pyogenes strains (new clones). S. pyogenes can be spontaneously eradicated from asymptomatic 

individuals without antimicrobial therapy, suggesting that active immunization can eliminate 

bacteria from oropharyngeal flora. The re-emergence can arise from family contacts that coexist 

with sick individuals. 

The S. pyogenes prevalence in the throat is known to be more common in school-aged 

children (5-21%) (Gunnarsson et al., 1997). The carrier state has an important role in the 

dissemination of this bacterium via aerosol, especially among children at schools, day-care 

centers and at home. Since carriers could be the source of infection, the study of the prevalence 

of healthy S. pyogenes carriers and the molecular epidemiology of the isolates may improve 

understanding about the origin and spread of this pathogen, allowing for more successful 
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control measures (Kim, 2000; Durmaz et al., 2003; Fazeli et al., 2003). The genotypic 

comparison of S. pyogenes strains from asymptomatic carriers and from individuals with disease 

symptoms is also crucial for the understanding of global epidemiology of this pathogenic agent 

and from factors (from the host or from the bacterium) that control the development and 

severity of the disease (Efstratiou, 2000; Kim, 2000; Hoe et al., 2002; Blandino et al., 2011). An 

increase of epidemicity in an evolutive perspective can result from the acquisition of virulence 

or of antibiotic resistance genes by some strains, which could have selective advantage on 

others. On the other hand, the knowledge of hosts’ population is important because 

susceptibility to disease can vary among individuals. 

 

1.3. S. pyogenes symptomatic infections 

 

S. pyogenes is considered to be the most pathogenic bacterium in the genus 

Streptococcus. The reason why this microorganism is a major public health concern is because 

is one of the most versatile and common human pathogens, causing a wide spectrum of 

diseases, ranging from mild infections to life-threatening systemic diseases (Facklam, 2002). 

Infections typically begin in the throat (examples are tonsillitis/pharyngitis or scarlet fever) or 

skin (impetigo). S. pyogenes may also cause disease in the form of nonsuppurative sequelae. 

These complications follow a small percentage of infections and include rheumatic fever, acute 

poststreptococcal glomerulonephritis and PANDAS (from “pediatric autoimmune 

neuropsychiatric disorders associated with streptococcal infections”). Rheumatic fever is 

characterized by inflammation of the joints and/or heart following an episode of streptococcal 

pharyngitis. Acute glomerulonephritis, which is inflammation of the renal glomerulus, can 

follow streptococcal pharyngitis or skin infection (Efstratiou, 2000). PANDAS is characterized 

by the presentation of exacerbated neuropsychiatric symptoms following oropharyngeal 

infections caused by S. pyogenes. Among the invasive diseases caused by this pathogen, 

erysipelas and cellulitis are characterized by multiplication and lateral spread of S. pyogenes in 

deep layers of the skin. S. pyogenes invasion and multiplication in the fascia can lead to 

necrotizing fasciitis, a potentially life-threatening condition requiring surgical treatment. It can 

also lead to streptococcal toxic shock syndrome (STSS) (Cunningham, 2000). Although 

invasive diseases cause high morbidity and mortality (19-44%), its frequency of occurrence in 

Europe is very low (3/100,000) (Lamagni et al., 2008). According to estimates, about 600 

million cases of pharyngitis, 1.8 million new cases of severe disease, and 500,000 deaths occur 

each year worldwide (Carapetis et al., 2005). 
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1.4. Virulence factors 

 

The wide variety of disease syndromes caused by S. pyogenes is probably in part a 

reflection of the virulence gene products that are either secreted into the environment or 

localized on cell surface (Cunningham, 2000; Efstratiou, 2000). S. pyogenes utilises its many 

cell surface structures to adhere, internalise, and move across epithelia (Cunningham, 2000). A 

carbohydrate capsule composed of hyaluronic acid surrounds the bacterium, protecting it from 

phagocytosis by neutrophils. In addition, the capsule and several factors embedded in the cell 

wall, including M protein, lipoteichoic acid, and protein F (PrtF1/SfbI) facilitate attachment to 

various host cells (Figure 1.2.). 

 

Figure 1.2. The basic outer cell antigenic structure of S. pyogenes (adapted from Steer et al., 

2007). 

 

1.4.1. M protein and M-like proteins 

 

The major virulence factor associated with S. pyogenes is the M-protein antigen. This 

surface antigen acts as an adhesin; promotes inflammation; impedes phagocytosis by binding 

complement control factors, fibrinogen, kininogen and also plasminogen; mediate the invasion 

of the cells and thus, surviving in the human host. The hypervariable N-terminal portion of this 

protein (see Figure 1.3) dictates the specific type of each antigen. M proteins are unique to each 

strain, and identification can be used clinically to confirm the strain causing an infection 

(Facklam, 2002). Strong sequence similarities to the C repeats (Figure 1.3) are found in Arp 

polypeptides (M-like proteins), but the so-called B repeats in Arp are not similar to those of 

several M serotypes (Nobbs et al., 2009). 
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1.4.2. Superantigens 

 

The superantigen (SAg) family can induce massive secretion of inflammatory 

cytokines, such as gamma interferon (IFN-γ), interleukin-1 (IL-1), and tumor necrosis factor-α. 

These molecules are stimulated by large numbers of T cells by the SAg cross-linking major 

histocompability complex (MHC) class II antigens and T-cell receptors (TCR) (Cunningham, 

2000). Overproduction of these cytokines can lead to hypotension, fever, tissue damage, organ 

failure, and shock (Kotb, 1995). The discovery of novel SAg has accelerated with the 

completion of several genome sequencing projects and the total number now stands at 11: SPE-

A, SPE-C, SPE-G, SPE-H, SPE-I, SPE-J, SPE-K, SPE-L, SPE-M, SSA, and the highly 

polymorphic SME-Z (Sriskandan et al., 2007; Fraser and Proft, 2008). 

 

Figure 1.3. Diagrammatic representation of the M protein molecule on the cell surface of Group 

A streptococci (Adapted from Bisno et al., 2003). 

 

In the later 1990s, four novel SAg genes were identified, by mining the S. pyogenes M1 

genomic database, at the University of Oklahoma. The genes for speG, speH, speI, and speJ 

were cloned and expressed in Escherichia coli, and the purified recombinant proteins showed 

the typical SAg features (Proft et al., 1999; Proft et al., 2001). The S. pyogenes genome project 

was completed in 2000, and since then three more SAg genes were discovered (Ferretti et al., 
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2001; Proft et al., 2003). One it is named speK, which is a pseudogene with an incomplete open 

reading frame (ORF) (Ferretti et al., 2001). The other two are speL and speM genes and they are 

located on a mobile element (ΦspeL/M) that enables gene transfer between individual isolates 

and between streptococci from different Lancefield groups (Proft et al., 2003; Commons et al., 

2008). 

SPE-A and SPE-C have been epidemiologically associated with the development of 

severe invasive diseases like STSS, or nonsuppurative sequelae such as rheumatic fever 

(McCormick and Schlievert, 2000). However, the speA gene was detected with comparable 

incidence among throat isolates and in invasive cases; in contrast, speC incidence was 

surprisingly higher among throat of paediatric populations than in invasive isolates (Creti et al., 

2005).  

Most SAg-encoding genes are associated with bacteriophages, except for speG, speJ 

and smeZ, which are believed to be chromosomally encoded (Commons et al., 2008). The gene 

distribution of superantigens has been used as an epidemiologic tool to explore genomic 

heterogeneity and the possible correlation between SAg gene content and clinical manifestation 

(Rivera et al., 2006; Chang et al., 2011). 

The chromosomally encoded superantigens speG and smeZ have been described as the 

most prevalent, ranging from 84% to 100% of infection isolates (Proft et al., 2000, 2003; Rivera 

et al., 2006; Commons et al., 2008). Isolates in which these superantigens were not detected 

were found to be restricted to certain emm types, e.g. speG was absent from emm4 isolates, 

suggesting that these isolates may contain an allele with mutations in the primer-binding sites 

(Commons et al., 2008). The use of PCR with internal primers or DNA-DNA hybridization 

experiments could confirm the presence or absence of speG among isolates of emm4 type. 

Streptococcal superantigen (SSA) is a toxin that has high similarity in sequence to SPE-

A and is also phage-encoded. The toxin is usually produced by isolates of streptococci of the M 

protein capsular type M3 associated with STSS and by other M types of streptococci, but rarely 

by M1 isolates (McCormick and Schlievert, 2000; Commons et al., 2008). 

 

1.4.3. Streptococcal phospholipase A2 (SlaA) and streptococcal phage DNase 1 (Spd1) 

 

The slaA and spd1 genes are virulence factors also associated to phages: slaA is present 

in prophage Φ6180.2, being contiguous of speK gene; spd1 is contiguous of speC gene in 

prophage Φ6180.1 (Green et al., 2005b). The slaA gene encodes for an enzyme that hydrolyzes 

ester bonds of phospholipids (Nagiec et al., 2004). The extracellular proteins encoded by spd1 

gene are involved in DNA destruction, however the role of these DNases was not be totally 

elucidated (Broudy et al., 2002; Green et al., 2005a). 
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1.4.4. Protein F1 (PrtF1) and other fibronectin-binding proteins 

 

The fibronectin-binding proteins attach bacteria to the extracellular matrix, which acts 

as a bridge between streptococci and host cells. There are at least 11 fibronectin-binding 

proteins in S. pyogenes, including PrtF1, protein F2 (PrtF2), serum opacity factor (SOF), FbaA, 

and several M proteins (Nobbs et al., 2009). 

PrtF1, also known as SfbI (streptococcal fibronectin binding protein I), facilitates 

adherence to respiratory epithelial cells (Hanski and Caparon, 1992; Bisno et al., 2003). 

Although M protein is known to mediate S. pyogenes adherence to skin keratinocytes, 

PrtF1/SfbI plays a major role in S. pyogenes adherence to cutaneous Langerhans cells (Okada et 

al., 1994; Bisno et al., 2003). Expression of PrtF1 is enhanced in an O2-rich environment while 

that of M protein is greater at higher partial pressures of CO2 (Caparon et al., 1992; Bisno et al., 

2003). Thus, it was postulated that the organism displays PrtF1 on its surface when it wishes to 

adhere to the cutaneous surface but expresses M protein in deeper tissues where it is more likely 

to encounter phagocytic cells (Bisno et al., 2003). 

 

1.4.5. Pili 

 

              Pili are structures that extend 1 to 3 µm from the bacterial cell surface (Nobbs et al., 

2009). They are heteropolymeric structures consisting of a backbone protein (BP) and either 1 

or 2 ancillary proteins (AP1 and AP2) covalently assembled and linked to the cell wall by a 

series of sortase-mediated transpeptidase reactions (Falugi et al., 2008). In S. pyogenes, there 

are nine pilus islands so far reported that are inserted exclusively into a single highly variable 

genetic locus known as the fibronectin-binding, collagen-binding, T antigen (FCT) region 

(Falugi et al., 2008) that forms part of the Lancefield T-serotyping system (Nobbs et al., 2009). 

Pili play an important role in bacterial interaction with the human host. Streptococcal pili have 

recently been associated with the capacity to adhere to human epithelial cells and form biofilm, 

a process believed to be important in pathogenesis. For this reason, and because of their 

expression on the bacterial surface, pili have attracted interest as potential components of 

vaccines (Falugi et al., 2008).    

 

1.5. Antimicrobial therapy 

 

Diverse classes of antimicrobials are used for the treatment of infections caused by S. 

pyogenes, such as streptococcal pharyngitis. Despite this microorganism is the most common 

cause of acute pharyngitis, only a small percentage of patients with these symptoms are infected 

with S. pyogenes. In this way, the prescription of antibiotics for the treatment of acute 
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pharyngitis must be done when is guaranteed that pharyngitis has bacterial origin, usually 

attributed to S. pyogenes, especially because the signs and symptoms of bacterial and viral 

pharyngitis are frequently overlapped (Bisno et al., 2002).  

The evaluation of antimicrobial susceptibility of all pathogenic microorganisms for 

infection treatment, S. pyogenes in particular, is crucial so that the therapy is appropriate, 

especially because it has been observed that antibiotics’ consumption can be associated with the 

emergence of resistance in several countries (Bingen et al., 2002; Bergman et al., 2004).  

The β-lactamic antibiotics are the most diversified and most frequently used 

antimicrobial class (Fluit et al., 2001). This class includes penicillins (benzylpenicillin, 

amoxicillin, ampicillin, methicillin), cephalosporins (ceflacor, cefotaxime) and carbapenems 

(biapenem, ertapenem). These antibiotics act at penicillin-binding proteins (PBPs), which are 

involved in the bacterial cell wall synthesis. Bacterial resistance, in the most part of the cases, is 

due to the presence of β-lactamases (Fluit et al., 2001), however in Streptococcus pneumoniae 

and in other streptococci, the emergence of resistance to β-lactamic antibiotics among natural 

populations is associated to the genesis of mosaic genes (Ferretti et al., 2001), when segments 

of PBPs-encoding genes from susceptible strains are replaced by homologous blocks from 

resistant strains. These transfers are mediated by natural transformation with exogenous DNA 

and can cross the species boundary (Ferretti et al., 2001). However, in the case of S. pyogenes, it 

was revealed the existence of two genes that encode for PBPs, both with low affinity and 

without homology comparing with other streptococcal corresponding genes (Ferretti et al., 

2001). By this way, acquisition of β-lactams resistance by homologous recombination with 

genetic material of other streptococcal species is unlikely. Besides that, and taking into account 

that there is no evidence that S. pyogenes is naturally competent for transformation, it is possible 

that β-lactams resistance in this bacteria has to appear de novo (Ferretti et al., 2001). At the 

moment, it was not found any S. pyogenes strain that was resistant in vitro to β-lactams 

antibiotics, namely to penicillin (Ferretti et al., 2001; Bingen et al., 2004; Pires et al., 2005), 

possibly due to the reasons referred to above and suggested by Ferretti and collaborators (2001). 

Other possible explanations for this remarkable state of continued susceptibility to penicillin are 

that β-lactamases may not be expressed or may be toxic to the organism and/or that low-affinity 

PBPs either are not expressed or render organisms nonviable (Horn et al., 1998). In the last 50 

years, penicillin is the most recommended antibiotic for the treatment of infections originated 

by S. pyogenes, due to its proven effectiveness, safety, short activity spectrum and low cost 

(Bisno et al., 2002). However, penicillin treatment can fail in some cases, possibly due to the 

production of β-lactamases by other microorganisms from oral flora; so, a good choice for the 

empirical treatment of S. pyogenes will be the use of combination amoxicillin/clavulanic acid 

(Gerber et al., 1999; Cunningham, 2000). In patients who are allergic to penicillins, macrolides 

(including erythromycin, azithromycin and clarithromycin) and lincosamides (including 
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clindamycin) seem to be adequate choices for the treatment of streptococcal infections (Bisno et 

al., 2002). 

 

1.5.1. Macrolides, lincosamides and streptogramins 

 

1.5.1.1. Structure and mechanisms of action 

 

The macrolides are a group of antibiotics that have a large lactone ring structure. These 

may be 14- (like erythromycin, see Fig. 1.4A, and clarithromycin), 15- (like azithromycin, see 

Fig. 1.4B) or 16-membered (like josamycin, see Fig. 1.4C) rings. These are relatively nontoxic 

antibiotics, most active against Gram-positive bacteria (Roberts et al., 1999). Macrolides inhibit 

protein synthesis by stimulating dissociation of the peptidyl-tRNA molecule from the ribosomes 

during elongation (Weisblum, 1995). This results in chain termination and a reversible stoppage 

of protein synthesis (Roberts et al., 1999). The lincosamide antibiotic lincomycin and its semi-

synthetic derivative clindamycin (see Fig. 1.4D) have a similar mode of action.   

The streptogramins fall into two groups, A and B. Streptogramin belonging to Group A 

has a large nonpeptide ring, which is polyunsaturated. Streptogramins related to 

streptogramin B are cyclic peptides (see Fig. 1.4E). They differ in their modes of action 

although both inhibit bacterial protein synthesis. Group A streptogramins distort the ribosome to 

prevent binding of the tRNA; Group B streptogramins are thought to block translocation of the 

growing peptide. 

 

1.5.1.2. Resistance mechanisms 

 

Resistance to macrolides in S. pyogenes can be mediated by three different mechanisms: 

target site modification, active efflux and rRNA 23S or ribosomal proteins mutations. The 

modification of the target site is based in dimethylation N
6
 of an adenine residue of rRNA 23S 

through the action of an enzyme family encoded by erm (“erythromycin ribosome methylation”) 

genes class. The methylation seems to induce a conformational alteration among 50S subunit of 

the ribosome, leading to a reduced affinity and to co-resistance to macrolides, lincosamides and 

streptogramin B (MLSB antibiotics), whose binding sites probably overlap. The MLSB 

resistance can be expressed constitutively (cMLSB phenotype) or can be induced (iMLSB 

phenotype) and it is mediated by two classes of methylase-encoding genes, the erm(B) and 

erm(A) [which includes the erm(TR) subclass)]. The induction is stimulated by 14- and 15-

membered macrolides that are efficient inducers of methylase synthesis (Leclercq and 

Courvalin, 1991; Sutcliffe et al., 1996; Giovanetti et al., 2002).  
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Figure 1.4. Examples of macrolides, lincosamides and streptogramins chemical structures: A- 

Erythromycin (14-membered macrolide); B- Azithromycin (15-membered macrolide); C- 

Josamycin (16-membered macrolide); D- Clindamycin (lincosamide); E- Streptogramin B. 

Adapted from http://www.bmb.leeds.ac.uk/mbiology/ug/ugteach/icu8/antibiotics/protein.html, 

http://www.antibioticslist.com/azithromycin.htm, http://www.antibioticslist.com/josamycin.htm 

and http://www.antibioticslist.com/clindamycin.htm.  

 

The active efflux of antibiotic is mediated by hydrophobic membrane proteins, encoded 

by mef(A) (“macrolide efflux”) resistance gene. A small portion of strains carry different mef 

subclasses, such as mef(E) and mef(I) (Del Grosso et al., 2011). These proteins use the proton 

energy in order to pump out the antibiotic, maintaining its intracellular concentration low and 

consequently, the ribosome free of its activity. The mechanism occurs without antibiotic and its 

target modification and became the strains resistant to 14- and 15-membered macrolides, but 

susceptible to 16-membered macrolides, to lincosamides and to streptogramin B (Roberts et al, 

1999). This resistance phenotype is named M phenotype.  

The third resistance mechanism was described for S. pyogenes by Malbruny et al. 

(2002), and it was previously observed among Streptococcus pneumoniae as associated to a 

mutation in V domain of rRNA 23S. In a certain strain, this mutation originated cross-resistance 

to azithromycin, clindamycin and streptogramin B (MLSB resistance), however the strain 

remained susceptible to erythromycin. The same authors observed the occurrence of a mutation 

among ribosomal protein L4 among one strain that was resistant to azithromycin and susceptible 
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to erythromycin, clindamycin and streptogramin B (M phenotype). Mutations in the gene that 

encodes this protein had been previously detected in S. pyogenes by Bingen et al. (2002). It was 

also described by Jalava et al. (2004) one S. pyogenes strain that was resistant to macrolides, 

lincosamides and streptogramin B, but did not present any macrolide resistance gene, but had a 

mutation in rRNA 23S in a different location as that described by Malbruny et al. (2002). This 

strain presented the cMLSB phenotype, similarly with strains that constitutively expressed the 

erm(B) genes. 

  

1.5.2. Fluoroquinolones 

 

1.5.2.1. Structure 

 

The fluoroquinolones are synthetic antibiotics that belong to quinolones family. They 

are modified molecules that contain one or more fluorine atoms as well as other chemical 

alterations (Ball, 2000) (see Figure 1.5). Differences in the in vitro activity of the quinolones 

primarily form the basis of their classification in four generations, and these differences are 

based on antibacterial activity and potency against pneumococci and anaerobic organisms 

(Andriole, 2005). The first generation quinolones (nalidixic acid, oxolinic acid, cinoxacin, 

piramidic acid, pipemidic acid, and flumequine) exhibit an excellent activity against aerobic and 

Gram-negative bacteria. The second generation quinolones include norfloxacin, ciprofloxacin, 

ofloxacin, levofloxacin, enoxacin, flexacin, lomefloxacin, pefloxacin, and rufloxacin (Andriole, 

2005). They were introduced when norfloxacin was synthesized by adding a fluorine atom in C-

6 carbon and a cyclic piperazine diamine in C-7 carbon (Andriole, 2005). These changes added 

antimicrobial activity against aerobic Gram-positive bacteria and improved activity against 

Gram-negative bacteria, when compared with first generation quinolones. The third generation 

fluoroquinolones, such as grepafloxacin, gatifloxacin, sparfloxacin, temafloxacin, tosufloxacin, 

or pazufloxacin, are very efficient against Gram-positive bacteria, in particular against 

pneumococci, and they also had good activity against anaerobic bacteria. The fourth generation 

fluoroquinolones (trovafloxacin, clinafloxacin, sitafloxacin, moxifloxacin, and gemifloxacin) 

had potent activity against anaerobic bacteria and increased activity against pneumococci 

(Andriole, 2005). 

 

1.5.2.2. Use of fluoroquinolones 

 

Fluoroquinolones are used for the treatment of diverse infections in adults, namely 

urinary tract infections, skin infections, sexually transmissible infections, and lower respiratory 
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tract infections (Andriole, 2005). These antibiotics are not recommended for the treatment of 

infections among children because of high risk of tendon damage (Gendrel et al., 2003). 

  

Figure 1.5. Molecular structures of quinolones: A- Nalidixic acid (first generation quinolone); 

B- Ciprofloxacin (second generation quinolone); C- Gatifloxacin (third generation quinolone); 

D- Moxifloxacin (fourth generation quinolone).  

Adapted from http://www.bmb.leeds.ac.uk/mbiology/ug/ugteach/icu8/antibiotics/dna.html, 

http://www.chemicalbook.com/ProductChemicalPropertiesCB8227559_EN.htm and 

http://www.antibioticslist.com/moxifloxacin.html. 

 

1.5.2.3. Mechanisms of action 

 

The bactericidal power of fluoroquinolones is originated by inhibition of DNA 

replication and transcription, targeting two cellular enzymes: DNA gyrase and topoisomerase 

IV. The DNA gyrase, that originates DNA’s negative supercoiling, is constituted by two GyrA 

and two GyrB subunits, which are encoded by gyrA and gyrB genes, respectively, the preferable 

target of fluoroquinolones in Gram-negative bacteria. Topoisomerase IV separates DNA chains 

during replication and cell division, and is constituted by ParC and ParE subunits, which are 

encoded by parC and parE genes, respectively, the preferable target among Gram-positive 

bacteria (Perichon et al., 1997; Alonso et al., 2002; Jacoby, 2005).  

 

1.5.2.4. Resistance mechanisms 

 

Fluoroquinolone resistance is mainly caused by point mutations in the target-encoding 

genes (gyrA, gyrB, parC and parE). Mutations tend to cluster in a defined region of these genes 

called the quinolone resistance-determining region (QRDR). Fluoroquinolone resistance appears 

to occur stepwise, with moderate levels of resistance arising from a single mutation in the 

primary target of the drug (topoisomerase IV, parC gene) (Alonso et al., 2005; Orscheln et al., 

2005; Pires et al., 2010). A higher level of resistance is reached by the accumulation of 
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additional mutations in the secondary target (DNA gyrase, gyrA gene) (Orscheln et al., 2005). 

The mutations occur most frequently in codons S79 for ParC and S81 for GyrA (Yan et al., 

2000; Richter et al., 2003). Recently, mutations in codons D83 for ParC (Pires et al., 2010) and 

E85 for GyrA (Arai et al., 2011) were described. Fluoroquinolone efflux by a reserpine-

sensitive pump is also a common resistance mechanism to fluoroquinolones in Streptococcus 

pneumoniae (Brenwald et al., 1998) and viridans group streptococci (Ferrándiz et al., 1999), 

although this mechanism still remains to be demonstrated for S. pyogenes.   

  

1.5.3. Tetracycline 

 

Tetracycline is not recommended for therapy of upper respiratory tract infections 

originated by S. pyogenes. However, the selective pressure derived from its use in the treatment 

of other human and animal infections can have contributed for the worldwide emergence of 

resistance to this antibiotic among isolates of S. pyogenes (de Melo et al., 2003). The transfer of 

genes from animals to humans through food is a possible explanation for the emergence of 

resistance (Nielsen et al., 2004). Tetracycline resistance levels among enterococci are high in 

both humans and their feeding animals. As the horizontal transfer of tetracycline resistance 

genes from enterococci to streptococci has been demonstrated (Nielsen et al., 2004), this 

transfer mediated by transposons is a real possibility in the oral cavity. In the transfer of 

tetracycline resistance genes from enterococci, the oral flora can also be used as a transition 

state because both tet(M) and tet(O) genes have been found in several bacterial species from 

oral flora (Nielsen et al., 2004). The existence of S. pyogenes strains resistant to tetracycline 

contributes to the importance of including this antibiotic in antibiotyping studies. 

Tetracycline is included in a group of antiobiotics with wide spectrum of activity and 

low toxicity. These antibiotics penetrate the bacterial cells by passive diffusion and bind to the 

30S subunit of the ribosome, inhibiting the protein synthesis by blocking the connection 

between the aminoacil-tRNA and the ribosome A place. Several tetracycline resistance genes 

are described for S. pyogenes, such as tet(K), tet(L), tet(O) and tet(T), being prevalent the tet(M) 

gene (Shlaes, 2006). Some of these genes are often associated to conjugative transposons, which 

in part can explain their wide distribution among bacterial species, as well as their association 

with other antibiotic resistance genes, particularly the association between tet(M) and erm(B) 

genes (Fluit et al., 2001). There are three known tetracycline resistance mechanisms: enzymatic 

inactivation of the antibiotic, antibiotic efflux by protons antiporte [tet(K) and tet(L)], and 

protection of the ribosomes by the production of one protein which interacts with the ribosome 

allowing the protein synthesis autonomy in the presence of the antibiotic [tet(M) and tet(O)] 

(Clermont et al., 1997; Fluit et al., 2001).  
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1.6. Epidemiology of S. pyogenes  

 

In this topic the most common methods used in epidemiological studies of S. pyogenes 

will be presented: M-typing, T-typing, emm-typing, sof-typing, multilocus sequence typing 

(MLST) and pulsed-field gel electrophoresis (PFGE). It is important to refer that most studies 

on the epidemiology of S. pyogenes are based on the analysis of antimicrobial resistance 

patterns (Cocuzza et al., 1997; Descheemaeker et al., 2000; Cresti et al., 2002), T-typing (Beall 

et al., 1997; De Azavedo et al., 1999; Melo-Cristino et al., 1999; Bingen et al., 2000, Pires et 

al., 2005), and emm-typing (Tyrrell et al., 2010; Bahnan et al., 2011; Chen et al., 2011), 

although resistance frequencies and phenotypes vary geographically.  

M-typing - In 1928, Rebecca Lancefield published a method for serotyping S. pyogenes 

based on its M protein (Facklam, 2002). M type-specific antisera are used in a precipitin 

reaction against S. pyogenes acid extracts. Currently, there are approximately 90 validated and 

specific M types.  There are some problems associated with M serotyping such as limited 

availability of M typing sera, the production of M sera is laborious, expensive, and only 

available to a few centers, difficulty in interpretation, newly encountered M types overtime and 

an increased frequency of nontypeable isolates (Neal et al., 2007). In the United States and 

Europe, it was found a high prevalence of M1 and M3 serotypes among invasive disease 

(Efstratiou, 2000). Type M28 strains also are common causes of invasive infections, as well as 

pharyngitis in many countries (Green et al., 2005b). 

T-typing - In 1946, Rebecca Lancefield described the serologic classification of S. 

pyogenes isolates based on their surface T antigen. Typing of the T protein uses polyvalent 

pooled and monovalent antisera in a slide agglutination test. In S. pyogenes, type-specific T-

protein antigens are basic markers for typing and can be divided into approximately 30 different 

T-types. Like M serotyping, T-serotyping have the same associated problems and a careful 

interpretation by experienced staff is needed. A high number of nontypeable isolates have been 

reported (Neal et al., 2007).  The T-protein serotyping and its comparison with emm types 

provide additional information for strain identification (Johnson et al., 2006).  

emm-typing - In recent years, an alternative system called emm-typing has been 

developed, which uses the sequence of the hypervariable region of the gene that encodes the M-

protein (Beall et al.,1996). The method and a public database are of public access at The 

Centers for Disease Control and Prevention (CDC), Streptococcus Laboratory 

(http://www.cdc.gov/ncidod/biotech/strep/strepindex.htm). The definition of an emm-type 

sequence is based upon the identity of 180 bases at the 5’ terminal end of the hypervariable 

portion of the emm gene (see Fig. 1.3). Determination of the emm gene sequence has become a 

widely used alternative to M typing for GAS characterization, and there are currently 124 

officially designated emm types (emm1 through emm124) (Last update: September 15, 2011). 
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The emm-types are further divided into subtypes that are explicitly based on minor sequence 

variation within the type specific hypervariable region of the gene. The website curator 

maintains the S. pyogenes emm sequence database with of all validated M and emm types, as 

well as provisional types and subtypes yet to be officially designated. In most cases the emm 

type reflects the M-protein serologic type (Facklam, 2002). Some restricted emm-types, such as 

emm1 and emm3, were more representative in invasive strains (Creti et al., 2005), whereas 

emm12 was more common among asymptomatic carriers (Blandino et al., 2011). 

sof sequence typing - S. pyogenes sof (serum opacity factor) is approximately a 1000 

residue cell-surface-bound apoproteinase named for its property of rendering various opaque 

sera. sof is a virulence factor since it has fibronectin-binding activity that resides in a relatively 

short C-proximal domain. sof gene detection and sequencing are based upon PCR and sequence 

analysis of a variable-length 450-650 bp PCR fragment using methods and primers decribed in 

Beall et al., 2000. T-pattern and sof information about a S. pyogenes strain, especially when 

combined with knowledge of M or emm-type, provides an important link to information from 

studies published over many decades, when the serological methods were primary available 

tools (Johnson et al., 2006). 

Multilocus sequence typing (MLST) is a method based on nucleotide sequence of 

internal fragments of seven housekeeping genes (highly conserved genes) that are assumed to be 

neutral in their genetic variation (www.mlst.net). This allelic profile (a sequence of 7 numbers – 

one number for each allele and in a specific order: gki, gtr, murI, mutS, recP, xpt and yqiL) 

defines the sequence type (ST). The STs provide unambiguous results that are easily portable 

and a central database (http://spyogenes.mlst.net/) allows for comparison of results obtained in 

different laboratories (Enright et al., 2001; Doktor et al., 2005).  Until September 15, 2011, a 

total of 624 STs were published at the international database. Also, it is considered to be the 

method of choice for global epidemiological studies and to evaluate the bacterial population 

structure and evolution by identifying lineages and clonal complexes.  

Pulsed-field gel electrophoresis (PFGE) has been the gold standard method used to 

assess strain similarity in epidemiologic studies (Tenover et al., 1995; Cocuzza et al., 1997; 

Haukness et al., 2002). However, it is a method particularly useful for short-term 

epidemiological studies or outbreak situations and not for global epidemiological studies. 

Several authors also consider that PFGE, like other methods based on DNA-band analysis, is 

not reproducible among different laboratories and band-patterns are difficult to interpret. 

Although the advantages of sequence-based methods, S. pyogenes virulence has been 

related to the presence of phages and to horizontal transfer. This highlights the notion 

documented by several authors that PFGE may be more discriminatory than sequence-based 

methods (Bahnan et al., 2011), since phage insertions can alter band positions in an agarose gel 

and, consequently, create more diversity within PFGE types (Carriço et al., 2006).  
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1.7. S. pyogenes genome 

 

 To date, the genome sequences of 15 strains of S. pyogenes have been determined, 

including strains that were associated with various clinical conditions and representatives of the 

following ten serotypes: M1, M2, M3, M4, M5, M6, M12, M18, M28 and M49; the genomes of 

two separate strain isolates have been determined for serotypes M1, M3, M12 and M49. The 

genome is a circular chromosome between 1,3 and 1,9 Mb (Table 1.1). The genomes share 1.7 

Mb of closely related genetic material (Beres et al., 2002; Nakagawa et al., 2003; McShan et 

al., 2008), and phages, phage-like elements, and insertion sequences are the major sources of 

variation between the genomes (Smoot et al., 2002). Genetic variation is essential to survival for 

all organisms (McShan et al., 2008). These sequenced strains have genes encoding a novel array 

of prophage virulence factors, cell-surface proteins, and other molecules likely to contribute to 

host-pathogen interactions. Genetic relationship between strains causing invasive disease 

episodes to strains of the same serotype recovered from asymptomatic carriers was not 

examined yet. Importantly, it is not known whether strains cultured from asymptomatic carriers 

differ in virulence compared to invasive isolates (Beres et al., 2006). 

 

Table 1.1. List of sequenced S. pyogenes strains.  

Strain Size (bp) M type No. of 

prophages 

Accession no. Reference 

SF370 1,852,441 1 4 AE004092 Ferretti et al., 2001 

MGAS5005 1,838,554 1 3 CP000017 Scott et al., 2008 

MGAS10270 1,928,252 2 5 CP000260 Beres et al., 2006 

MGAS315 1,900,521 3 6 AE14074 Beres et al., 2002 

SSI-1 1,894,275 3 6 BA000034 Nakagawa et al., 2003 

MGAS10750 1,937,111 4 4 CP000262 Beres et al., 2006 

Manfredo 1,841,271 5 5 AM295007 Holden et al., 2007 

MGAS10394 1,899,877 6 8 CP000003 Banks et al., 2004 

MGAS2096 1,860,355 12 2 CP000261 Beres et al., 2006 

MGAS9429 1,836,467 12 3 CP000259 Beres et al., 2006 

MGAS8232 1,895,017 18 5 AE009949 Smoot et al., 2002 

MGAS6180 1,897,573 28 4 CP000056 Green et al., 2005b 

NZ131 1,815,783 49 3 CP000829 McShan et al., 2008 

M49 591 1,327,684 49 na AAFV01000000 Unpublished 

ATCC 10782 1,839,847 na 
a
 na AEEO01000000 Unpublished 

Legend: 
a
 – not available. 
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1.8. Vaccine candidates 

 

Because of the high colonization rates (for example 32%, Martin et al., 2004) and 

increased frequency in some countries of severe infections rates caused by this pathogen, and 

concerning that penicillin-resistant strains may emerge, there is a strong incentive to develop a 

safe and effective vaccine against S. pyogenes. One of the benefits of a successful vaccination 

scheme would be the reduction of streptococcal colonization in general, thus reducing the total 

number of these pathogens in the population. Since the main reservoir for S. pyogenes for most 

streptococci-related illness is the human oropharynx, reducing the carriage could have a 

profound impact on the dissemination of streptococci in the environment and thus a significant 

reduction in streptococcal disease in general.  

The M protein has been a prime vaccine candidate to prevent Group A streptococcal 

infections since Lancefield showed clearly that M protein-specific human and animal antibodies 

have the capacity to opsonize streptococci in preparation for phagocytic clearance. A type-

specific vaccine necessary to protect against a streptococcal infection would require a 

multivalent antigen corresponding to stable immunodeterminants on serotypes that together 

account for the majority of the isolates prevalent within the population at a given time 

(Fischetti, 2000). Attempts to develop an M protein-based vaccine have been hindered by the 

fact that some M proteins elicit both protective antibodies and antibodies that cross-react with 

human tissues. New molecular techniques have allowed the previous obstacles to be largely 

overcome. A 26-valent vaccine has successfully completed a phase I/II clinical trial involving 

adults and was proposed, suggesting that it could have significant impact on the overall burden 

of streptococcal disease (McNeil et al., 2005).  

Although promising, these multivalent M protein vaccines will not provide immunity 

against infections caused by strains of all M serotypes because of the variable nature of this 

protein. As consequence of these considerations, eight non-M protein vaccines has been in 

development, such as Group-A carbohydrate, C5a peptidase (ScpA), cysteine protease (SpeB), 

binding proteins like fibronectin, opacity factor, lipoproteins, Spes (superantigens) and 

streptococcal pili (Guilherme et al., 2009). However, no vaccines containing these antigens have 

reached clinical trials (Steer et al., 2009). 

 

1.9. Objectives of the research 

 

 This Thesis was designed to study important and unexplored aspects of the 

epidemiology, transmission and evolution of Streptococcus pyogenes causing colonization and a 

wide range of disease syndromes.  
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ABSTRACT 

 

During 16 periods in 2000-2007, oropharyngeal samples were taken from different 

populations: 6,965 from children (0-6 yrs) in day-care centers (DCCs), 2,337 from school-aged 

children (7-16 yrs) and 1,276 from adults (1,169 school staff and 107 family members). 

Between 2000 and 2004, 7,894 oropharyngeal samples were taken during 12 sampling periods 

in October, February and May of each year from 3,900 healthy individuals. Bacterial 

identification was carried out by standard methods. The total number of isolates from the 

longitudinal colonization study was 772 (carriage rate 9.8%) out of which 243 (31.5%) were 

from 113 (2.9%) recurrent carriers - defined as colonized more than once during 2 to 12 

sampling periods. All beta-hemolytic colonies identified as S. pyogenes that were picked from 

each of the primary plates containing the swabs of 23 participants, out of 865 (2.7%) persons 

sampled in one sampling period, were considered as causing co-colonization or 

multicolonization of the same niche. Resistance to macrolides and clindamycin was evaluated 

by disk diffusion and minimal inhibitory concentrations using E-tests. Clones of all resistant and 

a subset of susceptible isolates were defined by pulsed-field gel electrophoresis (PFGE) and 

further characterized by serotyping for T antigen (T-typing), and by sequencing for assignment 

of emm-types and multilocus sequence types (ST). A total of 1,026 GAS were isolated (9.7%) 

from the point prevalence study. Oropharyngeal colonization (OC) in younger children was 

higher (11.6%) than among older than 6 years (7.8%), and in adults was higher among family 

members (8.4%) than among school staff (2.6%). OC rates varied with DCC (min. 0%; max. 

49%). Higher OC rates (>10%) were usually detected during winter periods (17% in 2001, 13% 

in 2002/03, 12% in 2007), and occasionally, during autumn of 2001-2003 (11%-15%) and 

spring of 2001 and 2004 (15% and 18%, respectively). Resistance to macrolides was 10% in 

2000-02, 28% in 2003, 20% in 2004, 3% in 2005, 14% in 2006 and 10% in 2007. Clindamycin 

resistance was lower than 10%, except in 2006 (14%). Eight out of 112 PFGE types accounted 

for 54,9% of isolates studied (n=476/867) which were included in six STs or lineages: ST36 

(T12/emm12/PFGE.AB;PFGE.AP;others) (n=243, mainly susceptible to macrolides); ST28 

(T1/emm1/PFGE.X;PFGE.CX;others) (n=125, mainly susceptible to macrolides); ST150 

(T8.25.Imp19/emm75/PFGE.EF;others) (n=55, mainly susceptible to macrolides); ST406 

(T3.13.B3264/emm3/PFGE.BG) (n=53, all susceptible to macrolides); ST382 

(T6/emm6/PFGE.AD;others) (n=42, all susceptible to macrolides); and ST38/ST39 (T4/emm4; 

emmstMrp6/PFGE.CZ;others) (n=37, all resistant to macrolides). Of the 113 recurrent carriers, 

111 were colonized in 2 or 3 sampling periods and two were colonized in four sampling periods. 

In the majority of the recurrent carriers (n=88, 77.9%), two to four strains were sampled along 

the study period. The remaining 25 (22.1%) persons were carriers of a same strain. Also, out of 

the 113 persons, 54 (47.8%) were carriers at least once of emm12 strains. Of the 23 participants 
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of the multicolonization study, four (17.4%) were colonized by strains of different PFGE types 

and of a same emm-type. An example was one individual that carried two emm75 strains 

(PFGE.CY and PFGE.FO types). The S. pyogenes carrier state was seasonal and variable with 

age and DCC attendance. A very heterogeneous population colonized healthy carriers during 

2000-2007. However, some lineages/clones either resistant or susceptible to macrolides were 

identified as putative poor colonizers and others as widely disseminated and persistent overtime. 

A replacement of S. pyogenes strains was frequently found among recurrent carriers and co-

colonization of the oropharynx by multiple strains was detected.  
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INTRODUCTION 

 

Group A streptococci (GAS) (Streptococcus pyogenes) is one of the most versatile and 

common human pathogens, causing a wide spectrum of diseases ranging from uncomplicated 

but highly prevalent pharyngitis, to extremely severe infections, such as necrotizing fasciitis and 

streptococcal toxic shock syndrome (Cunningham, 2000). The carrier state may be clinically 

important because colonization may provide useful information about the prevalent phenotypes 

and clones within the community, as they may be present among infections (Durmaz et al., 

2003; Fazeli et al., 2003; Hoe et al., 2003; Pires et al., 2005). However, reports on the 

characterization of GAS from colonization isolates are very insufficient and are useful to assess 

the role of carriers in the dissemination of GAS and to provide information about the global 

epidemiology of GAS.  

In this study, our aims were to evaluate the trends of oropharyngeal colonization by 

GAS during 2000 to 2007, to assess the clonal structure of sporadic and persistent strains, to 

examine the long-term asymptomatic oropharyngeal colonization status and if co-colonization 

of the oropharynx by multiple strains occurs among asymptomatic persons. 
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MATERIALS AND METHODS 

 

A– Oropharyngeal colonization (2000-2007) 

 

Study population 

The collection of oropharyngeal samples from children attending day-care centers 

(DCCs) (0-6 yrs), children and adolescents attending schools (7-16 yrs), and close contacts 

(family and school staff from all institutions) was carried out since 2000 to 2007 throughout a 

surveillance study in Lisbon area, Portugal. In this study, exclusion criteria for healthy 

individuals consisted of infection of the upper respiratory tract, febrile disease or antimicrobial 

usage one-week prior to sampling, and symptoms as fever, throat inflammation and common 

cold. Other clinical data were obtained prior to sampling through questionnaires given to 

parents or guardians of all participants to obtain information on recent and past antibiotic usage 

and associated diseases. 

 

Statistical analysis 

 Chi-squared test was used to test significance of the observed differences in the 

standardized frequency of colonization by age group along the study period. 

 

Bacterial identification was carried out by standard methods (Pires et al., 2009). A 

total of 1,026 GAS were studied, collected from 10,578 throat swab cultures of healthy carriers 

(9.7%) attending 15 DCCs and five schools during 2000 to 2007: 6,965 throat swabs were from 

children (0-6 yrs), 2,337 from school-aged children (7-16 yrs) and 1,276 from adults (1,169 

from DCC and school staff and 107 from family members). 

 

Macrolide susceptibility testing 

All isolates were tested for susceptibility to macrolides (erythromycin, azithromycin, 

clarithromycin) and lincosamides (clindamycin) by disk diffusion (Oxoid Ltd., Basingstoke, 

UK), according to the guidelines from the Clinical and Laboratory Standards Institute (CLSI, 

2008). The MICs to erythromycin and clindamycin were evaluated by E-test (AB Biodisk
®
, 

Solna, Sweden), according to the manufacturer’s instructions.  

 

Pulsed-field gel electrophoresis (PFGE) 

Macrolide-resistant isolates (n=164) and a subset of macrolide-susceptible isolates 

(n=703) were characterized according to SmaI or Cfr9I restriction profiles. Chromosomal DNA 

preparation and DNA digestion with SmaI (New England Biolabs
®
, Beverly, USA) were 

performed as previously described (Pires et al., 2009). All M phenotype isolates were analysed 
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by Cfr9I-restriction patterns (Cfr9I was from Fermentas, Vilnius, Lithuania), a SmaI 

isoschizomer, since these strains were shown to be uncut by SmaI (Cresti et al., 2002; Silva-

Costa et al., 2006). The PFGE was run in a CHEF-DRIII apparatus (BioRad, Hercules, USA). 

The analysis of chromosomal DNA band patterns was performed by visual inspection (Tenover 

et al., 1995), being a single band difference used as a criterion to define a different pattern, since 

some patterns presented less than ten bands. 

 

T-typing 

Serotyping was carried out by slide agglutination using 5 polyvalent and 21 monovalent 

anti-T-agglutination sera (Sevapharma, Czech Republic), as described (Pires et al., 2005).  

 

emm-typing 

emm gene PCR amplification and assignment of emm gene sequence types were carried 

out as described (www.cdc.gov/ncidod/biotech/strep/protocols.htm).  

 

Multilocus sequence typing (MLST) 

PCR amplification of internal fragments of the seven housekeeping genes and 

assignment of sequence types (ST) were performed as described (http://spyogenes.mlst.net). 

 

B– Longitudinal colonization (2000-2004) and multicolonization (2003) 

 

Study population 

The collection of oropharyngeal samples from children attending DCCs (0-6 yrs), 

children and adolescents attending schools (7-16 yrs), and close contacts (family and school 

staff from all institutions) was carried out since 2000 to 2004 throughout a surveillance study in 

Lisbon area, Portugal. The eight participating DCCs and five schools were chosen in 

collaboration with the School Health and Public Health teams of Centro de Saúde de Oeiras, 

Oeiras. In this study, exclusion criteria for healthy individuals consisted of infection of the 

upper respiratory tract, febrile disease or antimicrobial usage one-week prior to sampling, and 

symptoms as fever, throat inflammation and common cold. Other clinical data were obtained 

prior to sampling through questionnaires given to parents or guardians of all participants to 

obtain information on recent and past antibiotic usage and associate diseases. 

 

Sampling 

During 12 sampling periods (October, February and May of each school year), a total of 

7,894 oropharyngeal samples were taken from 3,900 healthy individuals. For the detection of 

recurrent carriers - defined as colonized by S. pyogenes more than once during two to 12 
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sampling periods - a total of 1,729 healthy individuals who were sampled more than once were 

considered for the study (5,723 oropharyngeal samples). 

 

Bacterial identification was carried out by standard methods (Pires et al., 2009). The 

total number of S. pyogenes isolates was 772 (carriage rate 9.8%). A total of 625 isolates were 

recovered from the 1,729 individuals who were sampled more than once, out of which 243 

(38.9%) were from 113 (6.5%) recurrent carriers. These isolates were considered as associated 

with long-term or longitudinal colonization. During May, 2003, all beta-hemolytic colonies 

identified as S. pyogenes that were picked from each of the primary plates containing the swabs 

of 23 participants (2.7%) out of 865 persons sampled were considered as causing co-

colonization or multicolonization of the same niche.  

 

Molecular typing 

Isolates of both groups - 243 causing longitudinal colonization and 74 isolates causing 

multicolonizaton - were typed by PFGE (Pires et al., 2009) for strain definition and by 

sequencing part of the emm gene encoding the M surface protein as described by the 

Streptococcus laboratory from the Centers for Disease Control and Prevention 

(http:/www.cdc.gov/ncidod/biotech/strep/protocols.htm). 
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RESULTS 

 

A– Oropharyngeal colonization (2000-2007) 

 

Frequency of S. pyogenes oropharyngeal colonization 

According to the age group, variable frequencies of oropharyngeal colonization were 

observed (Fig. 2.1). The mean carrier rate of the children aged 0-6 years was higher (11.6%; 

p<0.05) than of the children aged 7-16 years (7.8%; p<0.05). GAS carriers aged 0-16 years were 

10.6% (n=990/9,302). Among adults, children’s family members exhibited a higher frequency 

of S. pyogenes colonization (8.4%, p<0.05) when compared with DCC/school staff (2.6%, 

p>0.05).  
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Figure 2.1. Frequency of S. pyogenes oropharyngeal colonization by age group of the surveyed 

individuals. 

 

According to the school period, peaks of high colonization rates (>10%) were observed 

during the three periods (Fig. 2.2): Winter (February) of 2001-2003 and 2007, Spring (May) of 

2001 and 2004, and Autumn (October) of 2001-2003. The frequency of colonization in 

February was higher when compared with October and May (2000 to 2004), except in the 

2003/2004 period, when the higher value of colonization was observed in May (18%), 

compared with February (8%). 

We also observed variable frequencies of colonization with institution and overtime. 

Among the five DCCs participating along the study period (n=5, codes 1, 3, 5, 7, 8), 

colonization varied from a minimum of 0% to a maximum of 49% (Fig. 2.3) whereas among the 

schools (n=5, codes A, B, C, D, E), colonization rates were between 4% and 16% (Fig 2.4). 
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Figure 2.2. Frequency of S. pyogenes oropharyngeal colonization by school period. 
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Figure 2.3. Variation of colonization rates among DCCs that participated along the 

study period (2000-2007). 
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Figure 2.4. Variation of colonization rates among schools. 

 

Resistance to macrolides and clindamycin 

Globally, resistance to macrolides was 16.0% (n=164/1,026) and to clindamycin was 

4.2% (n=43/1,026). Resistance to macrolides was stable (approximately 10%) during 2000-2002 

and reached the higher value (28%) in 2003 (Fig. 2.5); then, a decrease was observed in 2004-

2005 (20% and 3%, respectively); in 2006 the resistance rate increased again (14%), and in 

2007 presented a slight decrease (10%). Resistance to clindamycin was lower than 10% among 

all years, except in 2006 (14%). 
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Figure 2.5. Resistance to macrolides and clindamycin along the study period (2000-

2007). 
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Clonality and major lineages 

A total of 112 different SmaI/Cfr9I PFGE patterns were found among 867 isolates tested 

and 57 of them included single isolates. Eight major patterns included 54,9% (n=476/867) of the 

isolates and were grouped into six lineages (Fig. 2.6): PFGE.AB/PFGE.AP/others (n=243, 

mainly macrolide-susceptible isolates) – mainly T12, emm12, ST36; PFGE.X/PFGE.CX/others 

(n=125, mainly macrolide-susceptible isolates) – mainly T1, emm1, ST28 ; PFGE.EF/others 

(n=55, mainly macrolide-susceptible isolates) – mainly T8.25.Imp19, emm75, ST150; 

PFGE.BG (n=53 macrolide-susceptible isolates) – mainly T3.13.B3264, emm3, ST406 ; 

PFGE.AD/others (n=42 macrolide-susceptible isolates) – mainly T6, emm6, ST382; and 

PFGE.CZ/others (n=37 macrolide-resistant isolates) – T4, emm4/emmstMrp6, ST39/ST38. The 

replacement and fluctuation of the six major lineages were observed along the study period. 

Lineage ST28 prevailed in 2000 with a frequency of 10.2% (5 isolates), was replaced by lineage 

ST406 with a prevalence of 23.8% (34 isolates) in 2001, which was also replaced by lineage 

ST36 with a major frequency of 38.3% and 36.4% (44 and 87 isolates, respectively) in 2002 and 

2003. In 2004, lineages ST28 and ST36 were dominant with prevalences of 26.5% and 25.9% 

(43 and 42 isolates, respectively), in 2005 ST36 was the major lineage (45.6%, 26 isolates) and, 

in 2006 ST150 and ST36 prevailed with frequencies of 29.2% and 26.2% (19 and 17 isolates, 

respectively). Finally, in 2007 ST36 (PFGE.AB; PFGE.AP) was dominant again with 

prevalence of 48.6% (18 isolates). 
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Figure 2.6. Evolution of frequencies of the six major clonal lineages from oropharyngeal 

colonization. 

 

Minor lineages 

Out of ten minor lineages, four were predominant during the study period (Fig. 2.7): ST55 

(mainly T2.28, emm2, PFGE.BH/others) in 2000 (n=15 macrolide-susceptible isolates); ST15 

(mainly T3.13.B3264, emm3, PFGE.BM/other) in 2001 (n=13 macrolide-susceptible isolates); 

ST52 (mainly T28, emm28, PFGE.F/PFGE.AK/others) in 2006 (n=12 macrolide-resistant 



Chapter II 

33 

 

isolates); and ST408 (mainly T3.13.B3264, emm3, PFGE.AJ) in 2006 (n=12 macrolide-

susceptible isolates). 
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Figure 2.7. Evolution of frequencies of the ten minor clonal lineages from oropharyngeal 

colonization. 

 

GenBank accession number 

 The sequence of the new emm-type st4050.0 was submitted to GenBank database under 

the accession number FJ711065. 

 

B– Longitudinal colonization (2000-2004) and multicolonization (2003) 

 

Longitudinal colonization 

The mean number of samples per individual was 2.0 (7,894/3,900), ranging for a minimum 

of 1 to a maximum of 12. Of the 113 recurrent carriers, 98, 13 and two individuals were 

colonized in two, three and four sampling periods, respectively. By age group, a total of 83 

(73.4%) individuals were distributed in the group 0 to six years-old, 29 (25.7%) among seven to 

16 years-old and one individual (0.9%) was an adult. 

 

emm-types and PFGE patterns 

A total of 20 emm-types were detected in isolates from recurrent carriers, and seven 

included the vast majority of isolates (n=201, 82.7%): emm12 (n=72, 29.6%), emm1 (n=37, 

15.2%), emm4 (n=23, 9.5%), emm3 (n=21, 8.6%), emm89 (n=18, 7.4%), emm2 (n=16, 6.6%) 

and emm75 (n=14, 5.8%). Other emm-types found in this study were: emm6 (n=8), emm77 

(n=7), emm48 (n=6), emm11 (n=4), emm87 (n=4), emm29 (n=3), emm28 (n=2), emm58 (n=2), 

emmstMrp6 (n=2), emm44 (n=1), emm78 (n=1), emm88 (n=1) and emm102 (n=1). 

A total of 48 PFGE patterns were identified and six accounted for the majority of isolates 

(n=128, 53%) and were usually associated with one emm type (Fig. 2.8). The PFGE types most 
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found among the 113 recurrent carriers were: PFGE.AB (n=31 carriers, 27.4%), PFGE.X (n=26, 

23.0%) and PFGE.AP (n=23, 20.4%). 

Other strains

- 42 PFGE types

(115; 47%)

BE/emm 89

(10; 4%) AO/emm 4;other

(10; 4%)

BG/emm 3

(16; 7%)

X/emm 1

(28; 12%)

AP/emm 12

(30; 12%)

AB/emm12

(34; 14%)

 Figure 2.8. Distribution of PFGE types and associated emm types among isolates from 

recurrent carriers. 

 

Patterns of streptococcal colonization 

Among most of the recurrent carriers (n=88, 77.9%), two to four strains were isolated along 

the study period; strain replacement occurred among 49 of those recurrent carriers (55.7%): 

common replacements were PFGE.AB/emm12 by PFGE.BG/emm3 and PFGE.CN/emm89 by 

PFGE.X/emm1 (n=3 carriers, each). The remaining 25 (22.1%) persons were carriers without 

strain replacement. Also, out of the 113 persons, 54 (47.8%) were carriers at least once of 

emm12 strains.  

 

Multicolonization 

Of the 23 participants of the multicolonization study, only four (17.4%) were colonized 

by multiple strains of different PFGE types and of a same emm type: individual XIV carried two 

emm12 strains (PFGE.AP and PFGE.FQ types); individual XV carried two emm22 strains 

(PFGE.A and PFGE.B); individual XVI carried two emm75 strains (PFGE.FO and PFGE.CY); 

and individual XX carried two emm9 strains (PFGE.FB and PFGE.FM) (Table 2.1). 
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Table 2.1. Characteristics of S. pyogenes isolates recovered from individuals included in the 

multicolonization study. 

Individual 
S. pyogenes isolates 

Total number PFGE/emm-types 

I 3 PFGE.BE/emm89 (n=3) 

II 3 PFGE.BE/emm89 (n=3) 

III 4 PFGE.BE/emm89 (n=4) 

IV 4 PFGE.AP/emm12 (n=4) 

V 2 PFGE.AP/emm12 (n=2) 

VI 2 PFGE.AP/emm12 (n=2) 

VII 3 PFGE.FP/emm11 (n=3) 

VIII 5 PFGE.BK/emm12 (n=5) 

IX 2 PFGE.BK/emm12 (n=2) 

X 3 PFGE.AB/emm12 (n=3) 

XI 3 PFGE.FE/emm11 (n=3) 

XII 2 PFGE.AO/emm4 (n=2) 

XIII 3 PFGE.FE/emm11 (n=3) 

XIV 4 
PFGE.AP/emm12 (n=3) 

PFGE.FQ/emm12 (n=1) 

XV 3 
PFGE.B/emm22 (n=2) 

PFGE.A/emm22 (n=1) 

XVI 5 
PFGE.FO/emm75 (n=3) 

PFGE.CY/emm75 (n=2) 

XVII 5 PFGE.AO/emm4 (n=5) 

XVIII 4 PFGE.F/emm28 (n=4) 

XIX 3 PFGE.AW/emm42 (n=3) 

XX 2 
PFGE.FB/emm9 (n=1) 

PFGE.FM/emm9 (n=1) 

XXI 3 PFGE.AL/emm9 (n=3) 

XXII 2 PFGE.CY/emm75 (n=2) 

XXIII 4 PFGE.DM/emm12 (n=4) 
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DISCUSSION 

 

A– Oropharyngeal colonization (2000-2007) 

 

The asymptomatic carrier state presents some important aspects. Carriers should infect 

other individuals from close contacts. However, the frequency of bacterial transmission seems 

to be lower when compared with an infected individual with manifestations of symptoms 

(Pichichero and Casey, 2003). On the other hand, studies performed by Pichichero and Casey 

(2003) showed that the incidence of clinical disease among individuals infected by one carrier 

of S. pyogenes could vary between 4% and 89%. So, the study of carriers could help to 

understand the global epidemiology of this pathogen and the factors (of both host and bacteria) 

that control the development of disease, as well as its degree of severity. 

The S. pyogenes carrier state was seasonal and variable with age and DCC attendance. 

The global prevalence of healthy S. pyogenes carriers aged 0-16 years was 10.6%, which was 

higher than some previous findings (2.5-6.8%) (Pichichero et al., 1999; González-Lama et al., 

2000; Herruzo et al., 2002), although smaller than others (14.3-32%) (Durmaz et al., 2003; 

Martin et al., 2004). The prevalence of S. pyogenes in healthy individuals was described as 

being low before the age of three years (1.9%-7.1%) and in adults ≥16 years (2.4%-3.7%) and 

highest in the age group 3-15 years (5.0%-21.2%) (Gunnarsson et al., 1997). It is also 

documented that the peak of incidence of infections caused by S. pyogenes occurs among school 

children (5-15 years) (Cunningham, 2000; Martin et al., 2004). In the present study, the mean 

carrier rate among pre-school children (0-6 years) was higher (11.5%) than among school-aged 

children (7-16 years), although both mean frequencies were included in the range published by 

Gunnarsson and colleagues (1997) for the age group 3-15 years. The crowding of children in 

day-care centers may possibly increase the carrier rate in healthy pre-school children and a 

mechanism whereby children gradually acquire immunity to the prevalent serologic types of 

GAS has been documented (Quinn, 1980). The results described in the present study partially 

confirmed what was reported by these authors; however it was observed a higher colonization 

frequency among pre-school children than among school children. These results reinforce the 

notion that the exposition to this pathogen along the years leads to the production of antibodies, 

becoming the individuals gradually immune to S. pyogenes. Therefore, continuous 

epidemiological surveillance in the community is crucial to assess the role of carriers as 

potential transmission vectors of specific strains associated with streptococcal disease. Besides, 

carriage isolates can be used as controls as they do not cause disease.  

A total of 164 S. pyogenes macrolide-resistant isolates were identified during 2000 to 

2007 among the 1,026 studied isolates (16.0%). This rate, even being high, was lower when 

compared with those from clinical S. pyogenes isolates from various origins (strains associated 
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with invasive and noninvasive disease) documented in Portugal: 35.8% in 1998-1999 (Melo-

Cristino and Fernandes, 1999), 26.6% between 1998 and 2003 (Silva-Costa et al., 2005) and 

27.4% in 1999-2002 (Pires et al., 2005). The PROTEKT multicentric study reported 24% of 

macrolide resistance among clinical isolates from respiratory infections in Portugal (Cantón et 

al., 2002). This latter study also reported high frequencies of macrolide resistance among 

isolates from Poland, Hong-Kong, Italy and Spain, in contrast with Indonesia, Austria, Belgium, 

Netherlands and United Kingdom, where resistance to macrolides was absent. Resistance to 

macrolides in the United States has been variable, ranging high values in specific populations 

(48%) (Hasenbein et al., 2004). In a study from 2000 to 2001 (Green et al., 2004), a low level of 

resistance during the first seven months of the study was observed (3.7%), contrasting with the 

last two months, when resistance increased to 35%. It is important to notice that the values 

published by these authors are related with S. pyogenes isolates from individuals presenting 

symptoms of respiratory infection. Resistance to macrolides in S. pyogenes from asymptomatic 

carriers was documented as variable in other countries: in 2001-2002 was 32.9% in Republic of 

Korea (Kim and Uh, 2004), a value higher than the reported in the present study; in contrast, 

between 1995 and 2001 in Bulgaria, it was detected a frequency of macrolides resistance of 

2.1% (Detcheva et al., 2002) among isolates from colonization but also among symptomatic 

individuals, and in Turkey, no macrolides resistance was detected (Durmaz et al., 2003). The 

values reported by these two authors are very lower compared with those described in our study. 

Several factors can be related with the different macrolides resistance rates in S. pyogenes from 

different countries. One could be the cross-transmission of resistant strains and other could be 

the horizontal transfer of resistance genes from resistant to susceptible strains. The selective 

pressure caused by the inappropriate use of antibiotics (e.g. macrolides) seems to be the most 

important factor, could helping the dissemination of resistance determinants among S. pyogenes 

population. 

A very heterogeneous population of S. pyogenes colonized healthy carriers. However, 

some lineages/clones either resistant or susceptible to macrolides were identified as widely 

disseminated and persistent overtime: ST28, ST36, ST38/39, ST150, ST382 and ST406. ST382 

and ST406 were detected before in several European countries, whereas ST28, ST36, ST38/39 

and ST150 were found in several European countries and also in American and Asian countries, 

associated both with noninvasive or invasive disease and, as reported here, also associated with 

asymptomatic oropharyngeal carriage in Portugal (http://spyogenes.mlst.net, last search at 

September 15, 2011). These observations confirm that the same clones that can cause 

noninvasive or invasive disease may also include isolates colonizing the throat of individuals 

without any symptoms of clinical illness. Hence, it is important to understand the specific strain, 

host, and environmental factors that contribute to the prevalence of a S. pyogenes clone in 

pharyngitis cases, invasive disease or asymptomatic carriers. It is tempting to assume that host 
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factors may play an important role in the development of disease, and in fact the role of host 

genetic factors in determining susceptibility to streptococcal infections has been studied (Kotb 

et al., 2003).  

 

B– Longitudinal colonization (2000-2004) and multicolonization (2003) 

 

To the best of our knowledge, this study represents the largest longitudinal study carried out 

in several DCCs and schools that has used PFGE and emm-typing techniques to characterize all 

S. pyogenes isolates. 

In previous longitudinal studies, carriage rates were reported to be extremely high (up to 

25%) (Quinn and Federspiel, 1973; Quinn, 1980), which are in contrast with the rate found in 

our study (9.8%). We found that a high diversity of S. pyogenes strains was associated with 

long-term colonization: they were from 48 PFGE patterns and from 20 emm-types. This 

diversity of emm-types was higher than the observed in other four-year longitudinal study 

(Martin et al., 2004), where 13 different emm-types circulated in that period.  

A replacement of S. pyogenes strains was frequently found among recurrent carriers and co-

colonization of the oropharynx by multiple S. pyogenes strains was detected. emm12 isolates 

seem to be successful colonizers as they were identified as widely disseminated among carriers 

and were persistent overtime. It may have clinical relevance since association between emm12 

and S. pyogenes pharyngitis or paediatric invasive S. pyogenes infections has been reported in 

Portugal (Friães et al., 2007; Silva-Costa et al., 2008) 
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ABSTRACT 

 

The asymptomatic oropharyngeal colonization rate by Streptococcus pyogenes was 

10.7% in children (901 among 8,405 children 0-16 years-old) and 3,3% in adults (37 among 

1,126 households of children) in the Lisbon area during 2000-2006. Macrolide-resistant S. 

pyogenes from children (n=149) was variable with time: 9.8%-10.7% in 2000-2002, 28.1% in 

2003, 19.6%-2.7% in 2004-2005 and 14.6% in 2006. Eight lineages (97.3% of isolates) were 

identified based on at least 80% similarity of PFGE patterns, T-types, emm-types and multilocus 

sequence types (ST). The elevated frequency of macrolide resistance was associated with M 

phenotype lineages I (emm12/ST36) and V (emm4, emm75/ST39 and a novel emmstMrp6 type) 

and with one cMLSB lineage IV (emm28/ST52) known as associated with upper respiratory tract 

and invasive infections. Significant associations (p<0.05) between emm type/virulence genotype 

were found, such as emm1/speA+ssa-
, emm4/ssa+prtF1+

, emm12/speA-ssa-
. The high prevalence 

(>20%) of speC, prtF1 or ssa was probably caused either by clonal dissemination (speC), or to 

horizontal gene transfer events (prtF1 and ssa). This report contributes to a better understanding 

of the molecular epidemiology and evolution of macrolide-resistant S. pyogenes causing 

symptom-free oropharyngeal colonization. These colonizing strains carry macrolide resistance 

and virulence genes capable of being transferred to other bacterial species sharing the same 

niche. 
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INTRODUCTION 

 

           Streptococcus pyogenes (or Group A Streptococcus - GAS) is strictly a human pathogen, 

which is able to cause several disease manifestations, including mild infections, like pharyngitis 

or impetigo, severe systemic diseases, such as necrotizing fasciitis or streptococcal toxic shock 

syndrome (STSS), as well as post infection complications (Cunningham, 2000). Asymptomatic 

carriers of S. pyogenes harbour the organism in the nose or throat and display no symptoms of 

acute infection (Pichichero et al., 1999). Because the carriage state can persist for months, the 

organism remains capable of transmission to a new host, what makes crowded institutions, like 

day-care centers, propitious for its spread (Fazeli et al., 2003; Aguero et al., 2008). 

S. pyogenes is uniformly susceptible to penicillin and this is the universal recommended 

treatment for S. pyogenes infections. However, macrolides represent an alternative in patients 

who are allergic to penicillin (Bisno et al., 2002), and consequently increased frequency of 

macrolide-resistant S. pyogenes from infection sites has been reported in different countries 

(Felmingham et al., 2004) including from asymptomatic oropharyngeal colonization (Creti et 

al., 2005; Pires et al., 2005; Chang et al., 2010). 

Macrolide resistance in S. pyogenes can be caused by an efflux system that is encoded 

by the mef(A) gene. This mechanism is responsible for cross resistance to 14- and 15-membered 

macrolides, but does not affect the activity of 16-membered macrolides and lincosamides 

(Sutcliffe et al., 1996). Another mechanism, which involves the erythromycin ribosome 

methylation (erm genes), leads to resistance to all classes of macrolides, lincosamides and 

streptogramins B (Seppälä et al., 1998). This may have impact on treatment of severe diseases 

where clindamycin has a major role. 

The variety of diseases caused by GAS is most probably due to the diversity of 

virulence gene products (Cunningham, 2000) mainly encoded by mobile genetic elements, such 

as prophages. Streptococcal pyrogenic exotoxins (SpeA or SpeC) and streptococcal 

superantigen (Ssa) are bacteriophage-encoded virulence factors and are associated with the 

development of invasive diseases (McCormick et al., 2000), whereas streptococcal invasin 

PrtF1 mediates adherence and subsequent internalization to host epithelial cells (Talay et al., 

1992). 

This work aimed to describe the frequency of macrolide-resistant S. pyogenes recovered 

in Lisbon area, Portugal, from healthy carriers during 2000 to 2006 and to assess the capacity of 

asymptomatic carriers as reservoirs of macrolide-resistant and potential virulent clones capable 

of causing a wide spectrum of infections. 
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MATERIALS AND METHODS 

 

Study population 

A total of 9,531 oropharyngeal samples were taken from children attending day-care 

centers (DCCs) (0-6 yrs) (n=6,240), children and adolescents attending schools (7-16 yrs) 

(n=2,165), and close contacts (family and school staff from all institutions) (n=1,126), during a 

surveillance study in the Lisbon area from 2000 to 2006 that aimed to evaluate the colonization 

rates along the time, the antimicrobial resistance patterns and the clonal structure of the isolates. 

Fifteen DCCs and five schools were enrolled in the study and were chosen in collaboration with 

the School Health and Public Health teams of a Primary Care Centre (Centro de Saúde de 

Oeiras, Oeiras - CSO). Authorization for collecting the samples was obtained by the health 

teams of CSO. Informed consent was obtained prior to sampling given by the parents or 

guardians of the children. Demographic, family data and clinical history such as past episodes 

of tonsillitis, pharyngitis and scarlet fever, recent and past antibiotic usage of both the children 

and household members were obtained prior to sampling through questionnaires filled by 

parents or guardians of children and by the adult participants. Participants were volunteers and 

sampling was random. In this study design, exclusion criteria for healthy individuals consisted 

of presentation of clinical manifestations, such as fever, throat inflammation or common cold, 

and associate diseases.  

 

Identification of the S. pyogenes isolates 

A total of 938 (9.8%) single isolates were collected: 901 were from children and 37 

were from adults (colonization rates of 10.7% and 3.3%, respectively). Isolates were identified 

by standards methods, as previously described (Pires et al., 2009).  

 

Susceptibility testing and macrolide resistance phenotypes 

Susceptibility to erythromycin, clarithromycin, azithromycin and clindamycin was 

tested by disk diffusion (Oxoid, Basingstoke, UK), according to the guidelines from the Clinical 

and Laboratory Standards Institute (CLSI, 2006) and the macrolide resistance phenotypes were 

determined by a double-disk test, as previously described (Seppälä et al., 1993). 

 

Minimum inhibitory concentrations (MIC) 

MIC to erythromycin and clindamycin were performed to all macrolide-resistant 

isolates by E-Test (AB Biodisk, Solna, Sweden) according to the manufacturer’s instructions. 
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Pulsed-field gel electrophoresis (PFGE) and dendrogram construction 

Chromosomal DNA preparation and digestion with SmaI (New England Biolabs
®
, 

Beverly, USA) or Cfr9I (Fermentas, Vilnius, Lithuania) were performed as previously described 

(Pires et al., 2009). The analysis of chromosomal DNA band patterns was first performed by 

visual inspection, and since the number of DNA fragments was frequently less than 10, a single 

band difference was used as a criterion to define a different pattern, as suggested (Tenover et 

al., 1995). The relationship among all patterns was assessed in a dendrogram generated by the 

software package BioNumerics
® 

version 4.61 (Applied Maths, Sint-Martens-Latem, Belgium): 

resemblance was computed with Dice coefficient and agglomerative clustering was performed 

with the unweighted pair-group method with arithmetic mean (UPGMA), with optimization and 

tolerance values of 1% and 1.5%, respectively.  

 

Polymerase chain reaction (PCR) 

Template DNAs were isolated as described (Klugman et al., 1998). a) Detection of 

macrolide resistance genes. All macrolide-resistant isolates were analysed for the presence of 

mef(A), erm(A) and erm(B) genes, as previously described (Figueira-Coelho et al., 2004). b) 

Detection of virulence genes. All macrolide-resistant isolates were analysed for detection of 

speA and speC genes, encoding streptococcal pyrogenic exotoxins, the ssa gene, encoding a 

superantigen, and the prtF1 gene, encoding a fibronectin-binding protein (Pires et al., 2009).  

 

T-typing 

All macrolide-resistant isolates were analysed for assignment of T capsular serotypes 

(T-types). The method was performed by slide agglutination using 5-polyvalent and 21-

monovalent anti-T-agglutination sera (Sevapharma, Prague, The Czech Republic). 

 

Sequence-based typing methods 

a) emm-typing. All macrolide-resistant isolates were analyzed for assignment of emm 

types as described by the Streptococcus laboratory from the Centers for Disease Control and 

Prevention (http://www.cdc.gov/ncidod/biotech/strep/protocols.htm). b) Multilocus sequence 

typing (MLST). Representative isolates of major clonal groups (with more than three isolates) 

were selected for assignment of sequence types (ST) according to the S. pyogenes MLST 

method and database (http://spyogenes.mlst.net/).  

 

Statistical analysis 

The χ
2
 test was used when appropriate. Differences were considered significant at 

p<0.05. 
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RESULTS 

 

Total and annual macrolide resistance rates 

The frequency of macrolide-resistant isolates among all the populations during the 

seven-year study was 16.5% (155/938). Macrolide resistance was higher among 0-6 years-old 

children (n=136/747, 18.2%) and among adults (n=6/37, 16.2%) comparing with 7-16 years-old 

children (n=13/154, 8.4%) (p<0.05). The frequency of macrolide resistance among children 

changed along the study period: it was stable during 2000-2002 (9.3% to 11.3%), reached the 

higher value during 2003 (28.0%), decreased in 2004 and 2005 (19.8% and 2.6%, respectively) 

and increased in 2006 (13.6%) (Fig. 3.1). 
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Figure 3.1. Temporal evolution of macrolide resistance frequency and phenotypes among S. 

pyogenes colonization isolates in children from Lisbon area (2000-2006).  

Legend: M phenotype – resistance to 14- and 15-membered macrolides and susceptibility to lincosamides 

and streptogramin B; cMLSB phenotype – resistance to macrolides, lincosamides and streptogramin B. 

 

Usage of antimicrobials by surveyed individuals 

Out of the 901 positive throat swabs of children, six (0.7%) were obtained from 

individuals who were taking antimicrobial(s) at the time of sampling (Table 3.1), but only one 

individual reported consumption of macrolide (clarithromycin); out of these six positive 

samples, one macrolide-resistant isolate was recovered, and it was from the individual who 

undertook the clarithromycin therapy. The information regarding antimicrobial consumption 

prior to sampling is included in Table 3.1. 
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Macrolide resistance phenotypes and genotypes 

Totally, among the 149 macrolide-resistant isolates from children, 76.5% were of M 

phenotype (n=114) and 23.5% were of the constitutive MLSB phenotype (cMLSB) (n=35). The 

M phenotype isolates were low-level resistant to erythromycin (MIC 1-18 µg/mL), susceptible 

to clindamycin (MIC 0.016-0.125 µg/mL), and only carried the mef(A) gene. The cMLSB 

phenotype isolates were high-level resistant to erythromycin and clindamycin (MIC>256 

µg/mL) and only carried the erm(B) gene. None of macrolide-resistant isolates carried the 

erm(A) gene. The distribution of both macrolide-resistant phenotypes was variable along the 

years (Fig. 3.1). The M phenotype isolates increased from 3.9% in 2000 to 24.0% in 2003 and 

were not found during years 2005-2006. The increased prevalence of the M phenotype in 2003-

2004 was statistically significant (p<0.05) when compared with the prevalence observed in 

2000-2002. The cMLSB phenotype isolates were prevalent in 2000 and later in 2005-2006. The 

increased frequency of the cMLSB phenotype in 2006 was statistically significant (p<0.05) 

when compared with the frequencies observed prior 2005.  

 

Virulence genes 

The frequency of virulence genes under study among the children isolates was not 

similar: the prtF1 gene was the most frequent one (43%), followed by ssa (38%), speC (23%) 

and speA (13%). Six emm types were associated with particular virulence profiles in a majority 

of isolates (p<0.05) (Table 3.2): emm12 (speA-
, ssa-

,
 prtF1-

), emm4 (speA-
, ssa+

, prtF1+
), emm28 

(ssa-
, prtF1-

), emm75 (speC-
,
 ssa+

, prtF1+
), emm1 (speA+

, speC-
, ssa-

, prtF1-
) and emm22 

(speC+
, ssa+

, prtF1+
).  

 

Clonal lineages 

The dendrogram of all the Cfr9I and SmaI patterns of the M and cMLSB phenotype 

children isolates is shown in Figure 3.2. Considering a cut-off of 80% similarity, eight PFGE 

clonal groups or lineages were identified, which included 97.3% of the isolates (n=145). The 

remaining isolates (n=4) were included in minor lineages. Table 3.3 shows the genotypic 

characteristics of the isolates and their distribution over time.  Lineage I included 44 isolates 

(29.5%) of M phenotype and emm12 of which a large proportion were T12 (47.7%, n=21) and 

nontypeable (50%, n=22). The five isolates of this lineage tested by MLST were ST36. Lineage 

V included 40 isolates (26.8%) of M phenotype, emm4 (95.0%; n=38), emm75 (n=1) or 

emmstMrp6 (n=1). The six isolates tested by MLST were ST39 (n=5) and ST38 (n=1), which 

are single locus variants (SLV). The emmstMrp6 type was found in this study (GenBank under



 

 

Table 3.1.  Antimicrobial consumption among children carriers of macrolide-resistant and -susceptible S. pyogenes isolates at sampling period, 30 days and 2-

6 months before sampling, during 2000-2006 in Lisbon area, Portugal.  

Legend: 
a
 Individuals who took antimicrobials (in brackets, individuals who took macrolides),

 b
 Individuals who did not take antimicrobials, 

c
 Individuals who did not know or 

did not answer to the questionnaire.

S. pyogenes collection 

(no. of isolates) 

No. of sampled individuals with antibiotherapy 

At day of sampling  30 days before sampling 2-6 months before sampling 

Yes (macrolides)
 a
 No

 b
 NK/NA

 c
 Yes (macrolides)

 a
 No

 b
 NK/NA

 c
 Yes (macrolides)

 a
 No

 b
 NK/NA

 c
 

Macrolide-resistant 

(n=149) 
1 (1) 139 9 13 (0) 129 7 41 (3) 99 9 

Macrolide-susceptible 

(n=752) 
5 (0) 690 57 83 (5) 608 61 209 (11) 461 82 

Total (n=901) 6 (1) 829 66 96 (5) 737 68 250 (14) 560 91 
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Table 3.2.  Distribution of virulence genes among emm types of macrolide-resistant S. pyogenes 

from oropharyngeal colonization in children (2000-2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: 
a 

Pos – no. of isolates that presented the virulence gene; Neg – no. of isolates that did not carry 

the virulence gene; in bold are indicated the statistically significant differences between presence and 

absence of virulence genes. 

 

accession no. FJ711062). Lineage IV (n=20, 13.4%) was of cMLSB  phenotype, emm28, T28 

and ST52 (n=5 isolates tested). Lineage VIII (n=14; 9.4%) was of M phenotype, emm1, T1 and 

ST28 (n=2 isolates tested). The remaining four lineages (VII, III, VI and II) were less prevalent 

(< 10 isolates). 

  

Temporal evolution of macrolide-resistant isolates 

In 2000, no prevalent lineages were found (Table 3.3). During 2001-2004, when M 

phenotype was dominant (see Fig. 3.1), clonal variations were observed. For instance, lineage 

VIII (n=14 isolates, emm1/ST28/M phenotype) was predominant in 2001 (n=11), lineage I 

(n=44 isolates, emm12/ST36/M phenotype) was prevalent in 2002 (n=10) and in 2003 (n=27). 

In 2003, when macrolide resistance was higher (28.1%) (see Fig. 3.1), lineage V (n=40 isolates, 

emm variable/ST39) was also frequent (n=20) and it remained frequent in 2004 (n=19).  In the 

2005-2006 period, all macrolide-resistant isolates (n=14) were of the cMLSB phenotype of 

lineage II (n=2, emm11/ST403) in 2005, and of lineage IV (n=12, emm28/ST52) in 2006. 

emm type 

(no. of tested 

isolates) 

Virulence genes 
a
 

speA speC ssa prtF1 

pos neg pos neg pos neg pos neg 

12 (45) 2 43 13 32 0 45 9 36 

4 (38) 1 37 6 32 35 3 31 7 

28 (20) 0 20 6 14 0 20 5 15 

75 (17) 0 17 0 17 13 4 9 8 

1 (14) 14 0 0 14 0 14 1 13 

22 (8) 1 7 5 3 7 1 7 1 

11 (4) 0 4 1 3 0 4 1 3 

6 (1) 0 1 1 0 0 1 0 1 

44 (1) 1 0 1 0 0 1 1 0 

stMrp6 (1) 0 1 1 0 1 0 0 1 

Total (149) 19 130 34 115 56 93 64 85 
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Figure 3.2. Dendrogram of the PFGE profiles of macrolide-resistant S. pyogenes from 

asymptomatic oropharyngeal colonization (2000-2006) in children. Dice coefficients are 

represented above the dendrogram. Major clonal lineages are indicated in bold romanic 

numerals.



 

 

Table 3.3.  Characteristics of macrolide-resistant S. pyogenes isolates from oropharyngeal colonization (2000-2006) in children and distribution of clonal 

lineages by year of study. 

Clonal lineage 
No. of isolates 

(%) 
Phenotype 

T-types 

(no. of isolates) 

emm types 

(no. of isolates) 

ST  

(no. of isolates) 

Year (no. of isolates) 

2000 2001 2002 2003 2004 2005 2006 

I 44 (29.5%) M 
12 (21), 5/11/12/27/44 (1); 

NT (22) 
12 (44) 36 (5) 0 0 10 27 7 0 0 

V 40 (26.8%) M 
4 (27), 8/25/Imp19 (1); 

NT (12) 

4 (38), 75 (1), 

stMrp6 (1) 
39(5), 38 (1)  0 1 0 20 19 0 0 

IV 20 (13.4%) cMLSB 28 (20) 28 (20) 52 (5) 1 0 1 4 2 0 12 

VIII 14 (9.4%) M 1 (14) 1 (14) 28 (2) 2 11 1 0 0 0 0 

VII 9 (6.0%) M 
8/25/Imp19 (5), 13 (1); NT 

(3) 
75 (9) 150 (2) 0 0 0 6 3 0 0 

III 7 (4.7%) cMLSB 12 (7) 22 (7) 46 (5) 1 0 0 6 0 0 0 

VI 7 (4.7%) M 8/25/Imp19 (6); NT (1) 75 (7) 150 (3) 0 0 1 6 0 0 0 

II 4 (2.7%) cMLSB 11 (3); NT (1) 11 (4) 403 (2) 0 0 0 0 2 2 0 

Other 4 (2.7%) cMLSB 12 (2), 6 (1); NT (1) 
6 (1), 12 (1), 

22 (1), 44 (1) 
nd 1 1 0 0 2 0 0 

Legend: NT – T nontypeable; nd – not done. 
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DISCUSSION 

 

In this study we report the epidemiological and genotypic traits of macrolide-resistant S. 

pyogenes associated with asymptomatic oropharyngeal colonization during 2000 to 2006 in 

Lisbon area. 

Our results showed that the frequency of resistance to macrolides among healthy 

pharyngeal carriers was variable along the seven-year study period (2000 to 2006), ranging from 

a maximum in 2003 (28%) to a minimum in 2005 (3%). Macrolide resistance among 

colonization isolates was also reported as variable in a few countries, ranging from very low (0-

2%), such as in Japan (Iimura et al., 2006) and Brazil (De Melo et al., 2003), to very high in 

China (95%) (Chang et al., 2010) and Italy (38%) (Creti et al., 2005). In our study, the high 

macrolide resistance rates that we observed in 2003/2004 was paralleled by the rapid expansion 

of M phenotype isolates replacing the cMLSB phenotype isolates, which in turn replaced the M 

phenotype isolates in 2005, although with a low frequency.  In 2005/2006, all the macrolide-

resistant isolates associated with asymptomatic colonization were of the cMLSB phenotype. 

Temporal inversions of macrolide resistance phenotypes among colonization isolates were not 

reported previously and reinforce the importance of surveillance of carriers, as they may be 

indicators of the pool of isolates circulating in the community that may cause infections. 

In fact, inversions of macrolide resistance phenotypes were detected among clinical 

isolates causing tonsillitis/pharyngitis in Portugal during the 2000-2006 period (Silva-Costa et 

al., 2008). Interestingly, comparing both studies, we observed that the rise of the M phenotype 

was first detected in colonization isolates (in 2001; this study), and later in tonsillitis/pharyngitis 

isolates (in 2002) (Silva-Costa et al., 2008). During these shifts, either in colonization (this 

study) or in tonsillitis/pharyngitis (Silva-Costa et al., 2008) it was observed the prevalence of 

lineage emm1/ST28, which is not exclusively, although usually associated with severe S. 

pyogenes disease (Baldassarri et al., 2007; Creti et al., 2007; Friães et al., 2007). Nevertheless, 

this lineage is frequently reported as being macrolide susceptible among patients with severe 

disease (Traverso et al., 2010). On the contrary in 2005, when the cMLSB phenotype was 

dominant, the colonization isolates were emm11/ST403 (this study) whereas the 

tonsillitis/pharyngitis isolates were emm28/ST52 (Silva-Costa et al., 2008). In 2006, the 

emm28/ST52 lineage was also dominant among the colonization cMLSB isolates. Studies 

including both colonization and infection isolates from comparable geographic locations and 

expanded time of isolation are therefore informative for global epidemiological analysis. 

Our data showed that the macrolide-resistant isolates belonged to eight major lineages, 

defined by PFGE cluster/emm-type/ST. A strong association was found between PFGE and 

macrolide resistance phenotypes. Also, among the macrolide-resistant isolates, a strong 
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association was found between major PFGE clusters and prevalent T/emm/ST, despite the 

observed diversity of T/emm-types. 

The fluctuation of macrolide resistance observed in the study period of 2000-2004 

paralleled the fluctuation of M phenotype lineages, here defined as lineage I (emm12/ST36), 

VIII (emm1/ST28) – both homogeneous in terms of PFGE, emm type and ST –, and lineage V 

of one PFGE cluster and more than one emm type and ST (emm4, emm75/ST39; 

emmstMrp6/ST38), suggesting more than one strain in lineage V. 

Each one of these lineages was detected during at least two consecutive years, 

indicating persistence among the total S. pyogenes population. S. pyogenes population of these 

sequence types, ST36, ST39 and ST28, has been described as associated with the upper 

respiratory tract and invasive infections in several European countries (Reinert et al., 2004a; 

McGregor and Spratt, 2005; Aguero et al., 2008; Silva-Costa et al., 2008). It is unclear at this 

point whether these resistant strains are spreading worldwide or whether this represents multiple 

acquisitions of resistance genes by the prevalent emm/STs.  

Among the cMLSB phenotype isolates, three lineages were found, all homogenous in 

terms of emm-types and ST: the most populated lineage IV (emm28/ST52), lineage II 

(emm11/ST403) and lineage III (emm22/ST46). The cMLSB phenotype isolates of lineage IV 

were resistant to bacitracin (Pires et al., 2009). cMLSB isolates genetically related with the ones 

found in our study were already detected associated with oropharyngeal colonization in China 

(Chang et al., 2010), as well as with pharyngitis in Europe (Mihaila-Amrouche et al., 2004; 

Littauer et al., 2006; Silva-Costa et al., 2006; Ardanuy et al., 2010), and also described as 

dominant among invasive isolates in Portugal (Friães et al., 2005) and other countries 

(Malhotra-Kumar et al., 2003; Grivea et al., 2006). emm11/ST403 isolates (lineage II) were 

described for the first time among tonsillitis isolates in Spain (Ardanuy et al., 2010) and in the 

present study was found for the first time among colonization isolates. emm22/ST46 isolates 

(lineage III) has already been described among oropharyngeal colonization elsewhere (Chang et 

al., 2010) and in tonsillitis episodes from Portugal (Silva-Costa et al., 2006) and Norway 

(Littauer et al., 2006). 

Regarding the virulence genotypes of the colonization isolates we have observed few 

statistically significant associations. Examples are emm1 (speA
+
, ssa-

), emm4 (ssa+
, prtF1+

) or 

emm12 (speA-
, ssa-

). The high prevalence (>20%) of speC, prtF1 and ssa, in our study, was in 

most cases possibly due to lateral gene transfer events, i.e. the presence of a given gene was 

associated with more than one emm-type (or strain). 

In particular, the prtF1 gene was detected in 43% of the tested isolates, reinforcing the 

notion that strains carrying prtF1 remain in the oropharynx of the host causing a carrier state 

(Molinari et al., 1997). Moreover, it was suggested that M phenotype isolates that do not carry 
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prtF1 are poorly equipped to enter cells and may use the biofilm formation to escape 

antimicrobial treatments and surviving within the host (Baldassarri et al., 2007). 

As referred to above, high frequencies of macrolide resistance were observed in two 

distinct time periods, first associated with the presence of three M phenotype lineages, and 

thereafter due exclusively to a cMLSB multiresistant lineage. The reasons behind these major 

epidemiologic shifts remain to be clarified and whether or not they are related to selective 

pressure due to macrolide usage are also unclear. In fact, considering the data of antimicrobial 

consumption prior to sampling reported by our study population (see Table 3.1) we observed 

that macrolide consumption was not very high (0.7%). However, according to the European 

Surveillance of Antimicrobial Consumption project (ESAC), the consumption of macrolides, in 

particular, in Portugal has increased in 2000-2006 from 3.652 to 3.980 DID 

(http://www.esac.ua.ac.be/). Also, it was reported that the overall macrolide consumption 

fluctuated slightly over time, but a tendency to increase from 3.06 DID in 1997 to 3.81 DID in 

2003 was noticed (Coenen et al., 2006). Moreover, from 1997 to 2003, a gradual decrease in  

short-acting macrolides use from 1.26 DID to 0.29 DID in parallel with an increase in 

intermediate- and long-acting macrolides use from 1.35 DID to 2.14 DID and from 0.45 DID to 

1.47 DID, respectively, was documented (Coenen et al., 2006). This increase of macrolide 

consumption, specially of long-acting macrolides (like azithromycin), was probably the main 

cause for the rise in erythromycin resistance detected from 2000 to 2003, since compared with 

short- (like erythromycin) or intermediate-acting macrolides (like clarithromycin), long-acting 

macrolides may cause an enhanced resistance selection, because they selected quantitatively 

more resistant organisms in the early post-therapy phases, as suggested (Malhotra-Kumar et al., 

2007). However, it is not clear how the consumption of macrolides, in particular short-acting 

and long-acting macrolides could have influenced the fluctuation in resistance, hence in the 

phenotypes. 

In conclusion, the genotypic properties of S. pyogenes from asymptomatic colonization 

described here contributes to a better understanding of the molecular epidemiology and 

evolution of specific strains and allowed to address the role of the pharyngeal carriers as 

potential vectors in the dissemination of clones into the community and also as reservoirs of 

macrolide resistance and virulence genes capable of being transferred to other commensal 

species sharing the same niche that cause associated diseases. 
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ABSTRACT 

 

We describe 66 ciprofloxacin-nonsusceptible Streptococcus pyogenes isolates recovered 

from colonized and infected children. The ParC-S79A substitution was frequent and associated 

with emm6/ST382 lineage. The ParC-D83G substitution was detected in two isolates 

(emm5/ST99 and emm28/ST52 lineages). One isolate (emm89/ST101) had no QRDRs codon 

substitutions or other resistance mechanisms. Five of 66 isolates were levofloxacin-resistant. 

Although fluoroquinolones are not used in children, they may be putative disseminators of 

fluoroquinolone-nonsusceptible strains in the community. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: Ciprofloxacin-nonsusceptibility, Streptococcus pyogenes, colonization, infection, 

lineages 
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TEXT 

 

S. pyogenes clinical isolates with reduced susceptibility to fluoroquinolones (Albertí et 

al., 2005; Alonso et al., 2005; Malhotra-Kumar et al., 2005; Orscheln et al., 2005; Doloy et al., 

2008; Yan et al., 2008; Smeesters et al., 2009; Montes et al., 2010) or with high-level resistance 

(Yan et al., 2000; Richter et al., 2003; Reinert et al., 2004b; Rivera et al., 2005; Malhotra-

Kumar et al., 2009; Montes et al., 2010) have been described and the reduced susceptibility to 

fluoroquinolones is mediated by point mutations in the quinolone resistance-determining region 

(QRDR) of parC gene (Alonso et al., 2005; Orscheln et al., 2005; Montes et al., 2010), whereas 

high-level resistance has been associated with mutations in the QRDRs of both parC and gyrA 

genes (Yan et al., 2000; Reinert et al., 2004b). To the best of our knowledge, there are no 

reports documenting the prevalence and characterization of fluoroquinolone-nonsusceptible S. 

pyogenes associated with asymptomatic colonization. Since 1999/2000, we have been collecting 

pediatric S. pyogenes isolates from different clinical origins and from carriers for the 

surveillance of antimicrobial susceptibility and for the epidemiological characterization of the 

isolates. This study aimed to describe the prevalence of ciprofloxacin-nonsusceptible S. 

pyogenes from colonized and infected Portuguese children from 1999 to 2006, and to 

characterize the associated clones and resistance mechanisms. 

 

Strains and antibiotic susceptibility. A total of 1,354 nonduplicated S. pyogenes 

isolates were collected from children in Lisbon area, Portugal: 901 were associated with 

asymptomatic colonization during 2000-2006; 399 associated with tonsillitis/pharyngitis (2000-

2006), 48 with skin/soft tissue infections (1999-2005), and six isolates were from invasive 

diseases (1999-2005). Identification was performed by standard methods (Pires et al., 2005).  

Susceptibility testing to ciprofloxacin was done to all isolates by disk diffusion (CLSI, 

2008) using previously described breakpoints (Yan et al., 2000). Figure 4.1 shows the strategy 

followed for the detection of ciprofloxacin-nonsusceptible isolates. MIC to ciprofloxacin was 

tested by agar dilution method (CLSI, 2008) (Fig. 4.1).  MICs to other antimicrobial agents 

(Table 4.1) were determined by microdilution (CLSI, 2008), except for tigecycline (E-test strips 

were used).  

Sixty-six out of the 1,354 isolates (4.9%) were considered as putative ciprofloxacin-

nonsusceptible (MIC ≥2 μg/mL; range 2-8 µg/mL) (Fig. 4.1 and Table 4.1). Comparing by 

origin, ciprofloxacin nonsusceptibility was higher among clinical isolates (6.0%, n=27/453) than 

among carriage isolates (4.3%, n=39/901) (p=0.001). Similar rates were found among skin/soft 

tissue infection (6.3%, n=3/48) and tonsillitis/pharyngitis (6.0%, n=29/487) isolates (p=0.004), 

and no ciprofloxacin-nonsusceptible invasive disease isolates were detected (n=0/6) (p=0.13). 

To the best of our knowledge, this is the first study describing the incidence of ciprofloxacin-
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nonsusceptibility among S. pyogenes collected from oropharyngeal colonization during a seven-

year period (2000 to 2006). The rate of ciprofloxacin nonsusceptibility among our sample of 

clinical isolates was comparable to those previously reported among pediatric patients in Brazil, 

Belgium and USA (6% to 9%) (Yan et al., 2008; Malhotra-Kumar et al., 2009; Smeesters et al., 

2009) however it was slightly lower comparing with a study from Spain (13.6%) (Montes et al., 

2010) and much lower than the one found in Brussels (22.5%) (Smeesters et al., 2009). 

 

 

Figure 4.1. Diagram representing the methodologies used for the selection and characterization 

of ciprofloxacin-nonsusceptible S. pyogenes.  

Legend: CIP, ciprofloxacin; NOR, norfloxacin. 
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Table 4.1. MICs to ciprofloxacin and 12 other antimicrobial agents and susceptibility rates 

among 66 ciprofloxacin-nonsusceptible S. pyogenes isolates collected from different origins in 

Portugal (1999-2006)
a
. 

Antimicrobial 

agent(s) 

MIC50 

(μg/mL) 

MIC90 

(μg/mL) 

MIC range 

(μg/mL) 

%S
 

%IR
 

%R
 

Ciprofloxacin 2 4 2 - 8 – 
b 

–
 

–
 

Levofloxacin 2 2 2 - 4 92.4 7.6 0 

Moxifloxacin 0.5 0.5 ≤0.25 - 1 – – – 

Erythromycin ≤0.25 ≤0.25 ≤0.25 - >32 98.5 0 1.5 

Clindamycin ≤0.25 ≤0.25 ≤0.25 - >5 98.5 0 1.5 

Penicillin ≤0.03 ≤0.03 ≤0.03 100 0 0 

Ampicillin ≤0.25 ≤0.25 ≤0.25 100 0 0 

Cefotaxime ≤0.06 ≤0.06 ≤0.06 100
 

0 0 

Vancomycin 0.5 0.5 ≤0.25 - 0.5 100 0 0 

Teicoplanin ≤0.25 ≤0.25 ≤0.25 100 0 0 

Quinupristin/dalfopristin ≤1 ≤1 ≤1 100 0 0 

Tetracycline ≤2 ≤2 ≤2 - >4 98.5 0 1.5 

Tigecycline 0.047 0.064 0.025 - 0.064 – – – 

Legend: 
a 

Susceptibility breakpoints according to CLSI interpretative criteria (CLSI, 2008). S, 

susceptible; IR, intermediate resistant; R, resistant. 
b
 –, No interpretative criteria. 

 

Overall, ciprofloxacin-nonsusceptible isolates (n=66) presented high rates of 

susceptibility (>90%) to other antimicrobial agents (Table 4.1). Nonsusceptibility to 

levofloxacin was 7.6% (n=5/66). One isolate was resistant to both erythromycin and 

clindamycin and presented the cMLSB-macrolide resistance phenotype and erm(B) genotype, 

detected by PCR (Pires et al., 2005). Another isolate was tetracycline-resistant carrying tet(M) 

and tet(T) and not tet(K), tet(L), tet(O), tet(Q), tet(S), or tet(W) genes, according to PCR 

screening assays (Pires et al., 2005; Rato et al., 2010). 

Molecular typing. The relationship among all the ciprofloxacin-nonsusceptible isolates 

was assessed by PFGE (Pires et al., 2009). Detection of emm-types was carried out as described 

(http://www.cdc.gov/ncidod/biotech/strep/strepindex.htm) and representative isolates of 

different PFGE pattern/emm-type associations (n=9) were analyzed by MLST 

(http://spyogenes.mlst.net). 

The 66 ciprofloxacin-nonsusceptible isolates were included in seven different PFGE 

patterns, arbitrarily named with capital letter codes (Table 4.2).  



 

  

Table 4.2.  Genotypes, phenotypes and origins of the 66 ciprofloxacin-nonsusceptible S. pyogenes isolates collected in Portugal (1999-2006). 

PFGE pattern
 

(No. isolates) 

emm-type 

(No. isolates) 

Sequence 

type 
a
 

MIC range (µg/mL)
 b
 CIP and LVX 

co-resistance 

(No. isolates) 

Aminoacid change 

in ParC
 c
 

Origin 
e
  

(No. isolates) 

CIP  LVX  MXF S79 D83 

AD (58) emm6 (52) ST382 2-8  2-4  ≤0.25-0.5 2 A  -
 d
 OC (30), T/P (20), S/STI (2) 

emm1 (5) ST382 2-4  2-4  0.5 1 
A 

- OC (2), T/P (3) 

emm89 (1) ST382 4  4  1 1 A - OC (1) 

DX (2) emm6 (2) ST382 2-4  2  0.5 0 A - OC (2) 

DY (2) emm6 (2) ST382 4  2-4  0.5-1 1 A - OC (2) 

AM (1) emm6 (1) ST382 2  2  0.5 0 A - OC (1) 

BT (1) emm28 (1) ST52 2  2  ≤0.25 0 - G S/STI (1) 

CJ (1) emm89 (1) ST101 2  2  0.5 0 -
 
 -

 
 T/P (1) 

K (1) emm5 (1) ST99 2  2  0.5 0 - G OC (1) 

Legend: 
a 

Only one isolate of each PFGE/emm association was analyzed by MLST.
 b

 CIP – ciprofloxacin, LVX – levofloxacin, MXF – moxifloxacin. 
c 
The parC gene was 

sequenced in selected isolates (n=9). The remaining isolates had mutation detected by PCR-RFLP. The emm89/ST101 isolate presented the triple substitution 

D91N/S107L/S140P and did not present any gyrA, gyrB or parE mutation (see the text).
 d 

no change. 
e
 OC – oropharyngeal colonization; T/P – tonsillitis/pharyngitis; S/STI – 

skin/soft tissue infection. 
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PFGE pattern AD was observed in 87.9% of the isolates (n=58/66), which were mainly 

emm6 (n=52). Three other PFGE patterns (DX, DY and AM) also included emm6/ST382 

isolates (n=5). PFGE-AD, PFGE-DX, PFGE-DY and PFGE-AM were grouped into the same 

lineage – ST382 – which included 95.5% of the ciprofloxacin-nonsusceptible isolates 

(n=63/66). The remaining three PFGE patterns included single isolates: PFGE-BT 

(emm28/ST52 lineage), PFGE-CJ (emm89/ST101 lineage) and PFGE-K (emm5/ST99 lineage). 

The origins of the isolates are shown in Table 4.2.  

 

GenBank accession number 

 The sequence of the new emm-subtype 6.63 was submitted to GenBank database under 

the accession number FJ711064. 

 

Quinolone resistance characterization. Detection of point mutations in the parC 

quinolone resistance-determining region (QRDR) was performed by PCR (Rivera et al., 2005; 

Biedenbach et al., 2006) and by restriction fragment length polymorphism (RFLP) (Alonso et 

al., 2004) (Figure 4.1).  

All but one ciprofloxacin-nonsusceptible isolates had parC-QRDR mutations generating 

the amino acid substitutions S79A (n=63) and D83G (n=2).  

The ParC-S79A substitution was found among clinical and colonization ciprofloxacin-

nonsusceptible isolates of emm6 (n=57), emm1 (n=5) and emm89 (n=1) of the major lineage 

ST382 (see Table 4.2). 

Substitutions in codon S79 of ParC QRDR have been found as prevalent in emm6 

fluoroquinolone-resistant S. pyogenes isolates (Albertí et al., 2005; Alonso et al., 2005; 

Malhotra-Kumar et al., 2005; Orscheln et al., 2005; Yan et al., 2008; Montes et al., 2010) and 

considered to be intrinsic (Orscheln et al., 2005) and not related with selective pressure by 

antibiotic usage.  

While emm89 was previously found among sporadic ciprofloxacin-nonsusceptible 

strains (Reinert et al., 2004b; Doloy et al., 2008), emm1 was associated for the first time in this 

study with fluoroquinolone nonsusceptibility. 

The ParC-D83G substitution was also found for the first time in this study, particularly 

among isolates of lineages emm28/ST52 (n=1) and emm5/ST99 (n=1) and was previously 

described in S. pneumoniae (Pletz et al., 2006). 

We also detected these two latter ciprofloxacin-nonsusceptible lineages, together with 

lineage emm22/ST46 with D83G/Y substitutions, among infection products from adults (data 

not shown). This D83Y codon replacement was previously associated with nonsusceptibility to 

fluoroquinolones among other streptococci (Biedenbach et al., 2006; de la Campa et al., 2009). 
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No ParC substitutions at S79 or D83 codons were detected in the emm89/ST101 isolate 

but instead replacements were observed at D91, S107 and S140 codons (Table 4.2). This isolate 

was also investigated for the presence of mutations in the QRDRs of gyrA, gyrB and parE, as 

described (Biedenbach et al., 2006; Rivera et al., 2005), and no mutations were found. 

Moreover, plasmid encoded specific genes qnrA, qnrB, qnrC nor aac(6’)-Ib-cr that confer 

resistance to fluoroquinolones in Enterobacteriaceae were not detected after PCR screening 

assays (Brisse and Verhoef, 2001; Lévesque et al., 2005). Also, MIC of ciprofloxacin, 

levofloxacin and moxifloxacin did not decreased after the addition of 10 µg/mL of reserpine, 

which is an efflux pump inhibitor (Ferrándiz et al., 1999). Substitutions at D91 and S140 

positions are most likely not involved in fluoroquinolone resistance because they can be found 

in both susceptible and resistant isolates (Duesberg et al., 2008). Similarly, the substitution at 

S107 position, which was not previously reported in S. pyogenes, may also not be involved in 

fluoroquinolone resistance because it was detected in one ciprofloxacin-susceptible isolate of 

our study (data not shown).  

Fluoroquinolones have been widely used in Portugal for many years (Ferech et al., 

2006) and continuous use has been implicated in selection for resistance (Malhotra-Kumar et 

al., 2005). Particularly, older fluoroquinolones, like ciprofloxacin, were previously suggested to 

promote dissemination of fluoroquinolone nonsusceptibility among different S. pyogenes clones 

(Albertí et al., 2005; Malhotra-Kumar et al., 2005). On the other hand, horizontal genetic 

exchange by interspecies recombination has also been reported as leading to quinolone 

resistance in S. pyogenes (Duesberg et al., 2008).  

The finding of a few ciprofloxacin nonsusceptible strains, other than emm6, may 

suggest the occurrence of horizontal gene transfer involving the parC-QRDR region. The 

recognition of ciprofloxacin nonsusceptibility among isolates colonizing healthy children 

attending day-care centers and schools highlights their possible role as disseminators of 

ciprofloxacin-nonsusceptible strains, as it has been recognized for other bacteria (Sá-Leão et al., 

2008).  

In conclusion, our study demonstrated that in Portugal fluoroquinolone resistance in 

pediatric S. pyogenes is mediated by both clonal dissemination and unrelated events of 

development of resistance. Whether or not high and sustained fluoroquinolone consumption in 

Portugal has been implicated in selection for resistance in S. pyogenes, the recognition of 

colonization and clinical isolates nonsusceptible to ciprofloxacin, particularly in adult 

populations should be a cause of concern and may compromise the therapeutic importance of 

these antimicrobials. A continuous surveillance of fluoroquinolone resistance is important to 

monitor the evolution of nonsusceptible S. pyogenes isolates. 
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RESISTANCE TO BACITRACIN IN STREPTOCOCCUS PYOGENES FROM 

OROPHARYNGEAL COLONIZATION AND NONINVASIVE INFECTIONS IN 

PORTUGAL WAS CAUSED BY TWO CLONES OF DISTINCT VIRULENCE 

GENOTYPES 

 

These results were published in: 

Pires, R., D. Rolo, R. Mato, J. F. de Almeida, C. Johansson, B. Henriques-Normark, A. Morais, A. Brito-

Avô, J. Gonçalo-Marques, and I. Santos-Sanches. 2009. FEMS Microbiology Letters 296(2):235-240. 

With kind permission from John Wiley & Sons Ltd. 

 



 

 

 



Chapter V 

69 

 

ABSTRACT 

 

During 2000-2007 in Lisbon, we identified 45 bacitracin-resistant Streptococcus 

pyogenes isolates among 1,629 isolates: 24 from oropharyngeal healthy carriers (out of 1,026), 

21 from patients with noninvasive infections (out of 559) and zero from invasive infections (out 

of 44). Forty-four of those isolates, mainly of colonization, are low-level bacitracin-resistant and 

members of the cMLSB-macrolide-resistant and tetracycline-susceptible emm28/ST52 clone, 

previously detected in Europe but only among clinical samples. One high-level bacitracin 

resistant isolate, associated with a tonsillitis/pharyngitis episode, is cMLSB-macrolide-resistant 

and tetracycline-resistant and a member of the emm74/ST120 lineage, which was not previously 

known to include bacitracin-resistant isolates. The bcrABDR operon encoding an ATP-binding 

cassette (ABC) transporter in Enterococcus faecalis was not detected among these bacitracin-

resistant S. pyogenes strains. Virulence profiling indicated that genes coding for exotoxins and 

superantigens seem to be clone specific. This study provides an increased knowledge about 

specific bacitracin-resistant S. pyogenes strains which may be useful in future investigations 

aiming to understand the mechanism(s) leading to bacitracin resistance and the cause(s) for 

differences in colonization and/or dissemination potential. 
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INTRODUCTION 

 

Streptococcus pyogenes (Group A Streptococcus – GAS) are among the most common 

pathogenic bacteria that infect children and adolescents and are associated with a wide variety 

of infections and disease states, ranging from uncomplicated but highly prevalent pharyngitis to 

extremely severe infections, such as necrotizing fasciitis and streptococcal toxic shock 

syndrome (Cunningham, 2000).  

One of the presumptive tests for S. pyogenes identification is the susceptibility to 

bacitracin, which provides the differentiation from other beta-hemolytic streptococci of human 

origin (Facklam, 2002). However, clinical isolates resistant to bacitracin have been documented 

in the literature (Pérez-Trallero et al., 2007). 

Bacitracin is involved in both binding and sequestering of the undecaprenol 

pyrophosphate (UPP), the precursor of undecaprenol monophosphate (UP), a lipid carrier 

involved in cell wall synthesis. Usually, ATP-binding cassette (ABC) transporters that mediate 

active efflux of bacitracin confer high-level resistance to. Among the bacitracin-producing 

strains of Bacillus licheniformis, this ABC transporter is encoded by bcrABC genes (Podelsek et 

al., 1995). A homologue of this transporter, encoded by mbrABCD genes, was also found 

among the intrinsic bacitracin-resistant species Streptococcus mutans (Tsuda et al., 2002). A 

putative homodimeric ABC transporter encoded by the bcrABD genes was found to confer 

resistance to bacitracin in Enterococcus faecalis (Manson et al., 2004). Overexpression of the 

bacA gene, which leads to the overproduction of undecaprenol kinase, seem to increase the 

cellular amount of the lipid carrier, and consequently to increase the resistance of the organism 

to bacitracin (Cain et al., 1993). Also, allelic replacement mutagenesis of bacA gene of strains 

of other Gram positive bacteria caused an increased susceptibility to bacitracin, further 

suggesting that the bacA gene product is essential for the resistance to this antibiotic (Chalker et 

al., 2000).  

In this study we aimed to select and further characterize bacitracin-resistant S. pyogenes 

collected from oropharyngeal carriers and patients with diagnosed infections, during 2000 to 

2007 in Portugal, to know the prevalence of bacitracin resistance among isolates from 

colonization and disease, to evaluate if the bacitracin resistance mechanism in S. pyogenes was 

similar to the one described in E. faecalis, to assess the putative variability of genetic 

backgrounds and to provide new data concerning virulence genotypes of the isolates, in 

particular genes coding for exotoxins, superantigens and invasins. 
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MATERIALS AND METHODS 

 

Origin of the S. pyogenes isolates 

A total of 1,629 nonduplicated S. pyogenes isolates associated with colonization and 

symptomatic infections were collected from children and adults in 20 educational and eight 

health-care institutions (15 day-care centers and five schools; five ambulatories and three 

hospitals) located in Lisbon area, Portugal, during a surveillance study carried out from 2000 to 

2007, for comparison of S. pyogenes from colonization and disease (Pires et al., 2005; Santos-

Sanches et al., unpublished). Out of the 1,629 isolates, 1,026 were recovered from 10,578 throat 

swabs of asymptomatic populations (children and adults) during 2000-2007 (average 

colonization rate of 9.7%) and 603 isolates were from patients diagnosed with clinical 

infections: 487 with tonsillitis/pharyngitis in 2000-2006, 72 with skin/soft tissue infections in 

1999-2005, and 44 with invasive diseases (all isolates from usually sterile sites) in 1999-2005. 

The isolates were identified by beta-hemolysis and colony morphology on sheep-blood agar, 

agglutination with group A-specific antiserum (Slidex Strepto, bioMérieux, Marcy l'Etoile, 

France) and detection of PYR (L-pyrrolidonil--naphthylamide - DrySlide, Becton 

Dickinson, Le Pont de Claix, France).  

 

Selection of bacitracin-resistant isolates and searching for resistance genotypes 

Susceptibility to bacitracin was carried out by disk diffusion, using a 0.04 U bacitracin-

containing disk (BBL, Becton Dickinson, Le Pont de Claix, France). The isolates with no 

inhibition zone around the bacitracin disk were interpreted as bacitracin-resistant (Pérez-

Trallero et al., 2004) and were selected for this study. Minimum inhibitory concentrations 

(MIC) were evaluated by agar dilution on Mueller-Hinton agar supplemented with 5% sheep 

blood, with the following concentrations of bacitracin: 0.5, 1, 2, 4, 8, 16, 32, 64 and 256 mg L
-1

. 

The control strains used were the Escherichia coli DH5-α carrying the p2H7 plasmid containing 

bcrABDR operon of E. faecalis (provided by M. F. Lopes), which confers resistance to 

bacitracin, and two S. pyogenes isolates identified as bacitracin-susceptible by disk diffusion. 

Isolates were tested for the presence of bcrABDR operon by PCR, using E. coli DH5-α carrying 

p2H7 plasmid as positive control. Briefly, template DNAs were obtained as described 

(http://www.cdc.gov/ncidod/biotech/strep/strepindex.htm). The primers used were as described 

(Matos et al., 2009). Expected sizes for bcrABDR PCR products were 584, 489, 482 and 461 bp, 

respectively. The amplification PCR reactions (50 µl) included 1 µl of template DNA, 1 U of 

Taq DNA Polymerase (Invitrogen, Carslbad, USA), 1× Reaction Buffer, 3 mM MgCl2, 200 µM 

deoxynucleotides and 0.2 µM of each primer. Amplifications were carried out in a temperature-

gradient thermocycler (T Gradient, Biometra
®
, Goettingen, Germany), with the following 

conditions: initial denaturation at 95ºC (5 min); 30 cycles of denaturation at 95ºC (30 s), 
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annealing at 51ºC (45 s) and polymerization at 72ºC (30 s); final polymerization at 72ºC (5 min) 

(Matos et al., 2009).  

 

Comparison of bacitracin resistance frequency among S. pyogenes isolates from 

colonization and symptomatic infections 

Chi-square test was used to test significance of the observed differences in the 

standardized frequency of resistance to bacitracin among isolates from colonization and of the 

different clinical origins. 

 

Macrolide, lincosamide and tetracycline phenotypes and genotypes 

All bacitracin-resistant isolates were tested for susceptibility to macrolides 

(erythromycin, azithromycin, clarithromycin), lincosamides (clindamycin) and tetracycline by 

disk diffusion (Oxoid Ltd., Basingstoke, UK), according to the guidelines from the Clinical and 

Laboratory Standards Institute (CLSI, 2008). The MICs to erythromycin, clindamycin and 

tetracycline were evaluated by E-test (AB Biodisk
®
, Solna, Sweden), according to the 

manufacturer’s instructions. Resistance to 14- and 15- membered macrolides (M phenotype) or 

to macrolides, lincosamides and streptogramin B, either inducible (iMLSB) or constitutive 

(cMLSB), were determined by the double-disk test with erythromycin and clindamycin (Seppälä 

et al., 1993). The macrolide resistance genes mef(A), erm(A) and erm(B), and the tetracycline 

resistance gene tet(M) were searched for by PCR as described (Pires et al., 2005). 

 

Pulsed-field gel electrophoresis (PFGE) 

The relationship among all the bacitracin-resistant isolates was assessed by PFGE. 

Chromosomal DNA preparation and DNA digestion with SmaI (New England Biolabs
®
, 

Beverly, USA) was performed essentially as described previously (Chung et al., 2000), except 

the composition of the lysis buffer which consisted of 50 μg of RNase I, 1 mg of lysozyme, and 

5 U of mutanolysin in 1 mL of lysis buffer (6 mM Tris, pH 8, 1 M NaCl, 0.1 M EDTA, pH 8, 

0.2% deoxycholate, 0.5% sarkosyl, 0.5% Brij 58). Running was performed in a contour-

clamped homogeneous electric field system (CHEF-DRIII; Bio-Rad, Hemel Hempstead, UK). 

The running parameters were as described (Chung et al., 2000).  DNA-band analysis was 

performed by visual inspection. Since the number of DNA fragments was frequently less than 

10, a single band difference was used as a criterion to define a different pattern, as suggested 

(Tenover et al., 1995). The relationship among all patterns was assessed in a dendrogram 

generated by the BioNumerics
®
 software version 4.61 (Applied Maths, Sint-Martens-Latem, 

Belgium). Resemblance was computed with Dice similarity coefficient and agglomerative 

clustering was performed with the unweighted pair group method with arithmetic mean 

(UPGMA), with optimization and tolerance values of 1% and 1.5%, respectively. 



Chapter V 

73 

 

 

T-serotyping, emm-typing and multilocus sequence typing (MLST) 

A subset of isolates representatives of different PFGE patterns was selected for 

assignment of T capsular serotypes (T-types) (n=29 isolates), emm gene sequence types (emm-

types) (n=22) and sequence types (ST) (n=8) by MLST.    

T-types were determined by slide agglutination using 5-polyvalent and 21-monovalent 

anti-T-agglutination sera (Sevapharma, Prague, The Czech Republic) and emm-types were 

identified by emm-typing, as described by the Streptococcus laboratory from the Centers for 

Disease Control and Prevention (http://www.cdc.gov/ncidod/biotech/strep/strepindex.htm). 

Internal fragments of seven housekeeping alleles (gki, gtr, murI, mutS, recP, xpt and yqiL) were 

used for identification of ST, as described at S. pyogenes MLST database 

(http://spyogenes.mlst.net/). 

 

Virulence genotyping 

Virulence profiles were determined after PCR detection of the speA, speC, speF, speG, 

speH genes, encoding streptococcal pyrogenic exotoxins, the ssa gene, encoding a superantigen, 

and the prtF1 gene, encoding a fibronectin-binding protein (Jasir et al., 2001; Schmitz et al., 

2003). The chromosomal speF and speG genes were used as positive controls. Negative results 

were consistent in three independent PCR assays using the appropriate controls. 
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RESULTS AND DISCUSSION 

 

Bacitracin resistance in S. pyogenes  

Forty-five out of 1,629 isolates (2.8%) were resistant to bacitracin. Forty-four of those 

isolates had a MIC of 16 mg L
-1

 and were considered as low-level bacitracin-resistant; the 

remaining isolate was highly resistant to bacitracin with a MIC of 256 mg L
-
. The MIC of the 

bacitracin-resistant control strain was higher than 256 mg L
-1

 and of the two bacitracin-

susceptible control strains was 1 mg L
-1

. We found that the isolates, either high-level or low-

level resistant to bacitracin, did not carry the bcrABDR operon, encoding an ABC transporter 

that was considered to confer high-level bacitracin resistance in E. faecalis (Manson et al., 

2004).  

 

Frequency of bacitracin resistance in different origins  

The proportion of bacitracin-resistant isolates in relation to origin was not significantly 

different (p>0.05): 24 out of 1,026 isolates from colonization (2.3%), 17 out of 487 from 

tonsillitis/pharyngitis (3.5%) and 4 out of 72 from skin/soft tissue infection (5.6%). No 

bacitracin-resistant isolates were identified among the 44 invasive isolates. Previous studies that 

documented antimicrobial resistance patterns of clinical isolates of S. pyogenes have also 

included data of bacitracin resistance (York et al., 1999; Malhotra-Kumar et al., 2003; Mihaila-

Amrouche et al., 2004; Pérez-Trallero et al., 2004, 2007; Silva-Costa et al., 2006). However, no 

data was previously published regarding bacitracin resistance among S. pyogenes colonization 

isolates. Also, to our best knowledge, only one study referred to bacitracin resistance in invasive 

isolates (7%, n=11/157 isolates); this study included isolates mainly collected in health 

institutions from San Francisco Bay Area, USA (York et al., 1999). Among noninvasive isolates 

(mostly tonsillitis/pharyngitis), the highest frequency of bacitracin resistance was found in 

France (12%) (Mihaila-Amrouche et al., 2004). In contrast, and comparing with our study, 

slightly lower rates have been reported in Europe: Belgium (1.3%, n=16/1,229) (Malhotra-

Kumar et al., 2003) and Spain (0.7%, n=115/17,232) (Pérez-Trallero et al., 2007).  

 

Resistance to macrolides, lincosamides and tetracycline 

All bacitracin-resistant isolates were resistant to macrolides of the cMLSB phenotype. 

The erythromycin and clindamycin MICs were higher than 256 mg L
-1

. All isolates carry the 

erm(B) gene and lack erm(A); one isolate carries in addition mef(A). The isolate with high-level 

bacitracin resistance was also resistant to tetracycline (MIC=64 mg L
-1

) and was the unique 

tet(M)-positive. Resistance to bacitracin associated with macrolide resistance of the cMLSB 

phenotype was first reported in the USA, among isolates also resistant to tetracycline, collected 

during 1994-1995, but the genotypes of those isolates were not described (York et al., 1999). In 
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Europe, bacitracin resistance has been described as associated with the cMLSB phenotype-

erm(B) genotype (Malhotra-Kumar et al., 2003; Mihaila-Amrouche et al., 2004; Pérez-Trallero 

et al., 2004, 2007; Silva-Costa et al., 2006) but the isolates were susceptible to tetracycline 

(Mihaila-Amrouche et al., 2004; Pérez-Trallero et al., 2004, 2007). The reason why bacitracin 

resistance is only found among specific macrolide-resistant S. pyogenes of cMLSB phenotype 

rather than among macrolide-resistant isolates of M phenotype remains unclear.  

 

Genomic backgrounds and genetic lineages 

The 45 bacitracin-resistant isolates of the three origins were of six different PFGE 

patterns, arbitrarily named with capital letter codes (F, AK, AC, Q, BT and BU) (Figs. 5.1 and 

5.2).  

 

Figure 5.1. Annual distribution of PFGE patterns of the 45 bacitracin-resistant S. pyogenes 

isolates.  

Capital letters are arbitrary denominations of PFGE-SmaI-macrorestriction patterns. 

 

PFGE pattern F was persistent in the study period (n=25 isolates, 55.6%). PFGE-AK (n=10 

isolates; 22.2%) and PFGE-AC (n=7; 15.6%) were less common, however PFGE-AK prevailed 

during 2006, and PFGE-AC accounted for all bacitracin-resistant isolates collected in 2007. 

PFGE-Q, PFGE-BU and PFGE-BT were unique patterns. Five of the six PFGE patterns (F, AK, 

AC, Q and BT) were considered related (>80% similarity) and of a single clonal group, whereas 

PFGE-BU was considered as distinct (30% similarity) and of another clonal group (Fig. 5.2). In 

most cases, the related isolates (>80% similarity) were T28 [except one T nontypeable (NT) 

isolate of PFGE-BT], emm28 and ST52. The 44 T28 or NT/emm28/ST52 isolates were also 

tetracycline-susceptible and low-level bacitracin-resistant. The isolate with the distinct pattern, 

PFGE-BU, of lineage NT/emm74/ST120 was tetracycline-resistant and high-level bacitracin-

resistant.  
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Figure 5.2. Properties of the bacitracin-resistant S. pyogenes from asymptomatic oropharyngeal 

colonization and infection sites in Portugal (2000-2007).  

Dendrogram of the pulsed-field gel electrophoresis (PFGE) profiles using Dice coefficient and 

unweighted pair-group method with arithmetic mean clustering (BioNumerics software). Dice 

coefficients are represented above the dendrogram. Capital letters, PFGE-SmaI-macrorestriction patterns. 
a
 Origin of the isolates is indicated in parentheses:

 
C, colonization; T/P, tonsillitis/pharyngitis; S/STI, 

skin/soft-tissue infections. 
b
 cMLSB: constitutive resistance to macrolide-lincosamide-streptogramin B; 

TE:  resistance to tetracycline. 
c
 T capsular type (T-type); emm gene sequence type (emm-type); sequence 

type (ST) by MLST; nd: not done; NT, nontypeable by anti-T-agglutination sera. 
d 

– negative by PCR; + 

positive by PCR. 
e
 One isolate lacks the prtF1 gene. 

f
 One isolate carries the prtF1 gene. 

 

Infection isolates of T28/emm28 types, of the cMLSB phenotype and resistant to 

bacitracin were also found in France, associated with pharyngitis (2000-2001) and invasive 

infections (2000-2003) (Mihaila-Amrouche et al., 2004), and in Belgium, associated only with 

pharyngitis (Malhotra-Kumar et al., 2003). No MLST data were reported in those studies. 

Noninvasive isolates with the cMLSB phenotype, resistant to bacitracin and sharing the same 

properties (T28/emm28/ST52) with the isolates described here, were reported in Spain (1999-

2005) (Pérez-Trallero et al., 2004; 2007) and in Portugal (1999-2003) (Silva-Costa et al., 2006). 

This T28/emm28/ST52 lineage is known to include bacitracin-resistant and bacitracin-

susceptible isolates (Pérez-Trallero et al., 2007), and isolates from diverse infection sites 

(throat, skin, blood) of different geographic locations (Europe, USA, Canada, South Korea) 

(http://spyogenes.mlst.net, last search at April 23, 2009).  

The persistence of the T28/emm28/ST52 bacitracin-resistant lineage among 

oropharyngeal carriers during six years (2000, 2002-2004, 2006, 2007), as described in the 

present work, indicate that carriers are reservoirs of this particular clone of high epidemic 

potential and capable of a wide geographic dissemination. In contrast, the second bacitracin-

resistant lineage, NT/emm74/ST120, was not detected among carriers in our study and 

according to the S. pyogenes MLST database, this lineage seem to have a limited geographic 

distribution (Australia, Nepal, India) (http://spyogenes.mlst.net, last search at April 23, 2009).  

 

GenBank accession number 

 The sequence of the new emm-subtype 28.9 was submitted to GenBank database under 

the accession number FJ711061. 
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Virulence genotypes 

Virulence profiles for exotoxins and superantigens seem to correlate with emm-type/ST 

but, in contrast, variable results were observed for the prtF1 invasin gene (Fig. 5.2). The cMLSB 

isolates of emm28/ST52 carried speC gene. The presence of this particular gene has been 

reported as frequent among emm28 isolates from both noninvasive (86%) and invasive disease 

(75%) (Ekelund et al., 2005), however no information regarding antimicrobial susceptibility 

patterns was referred to in that study. The cMLSB isolate of emm74/ST120 lineage did not 

carried speC but instead carried the speH and ssa genes. All the isolates of the two cMLSB 

bacitracin-resistant lineages lack speA, a gene frequently found among macrolide-resistant 

isolates of M phenotype (Creti et al., 2007). Both speC and speA genes encoding the SpeC and 

SpeA pyrogenic exotoxins are located on genetic mobile elements and strains carrying these 

virulence determinants are usually associated with rheumatic fever episodes (Sriskandan, 2007); 

interestingly, the speC-positive isolates from our study were from diverse origins: colonization, 

throat infections and skin/soft-tissue infections. Few reports have documented the virulence 

traits of macrolide-resistant/emm28 isolates (Creti et al., 2007) or of isolates of the ST52 lineage 

(Friães et al., 2007), although in these reports no information is available regarding bacitracin 

resistance.  
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CONCLUSION 

 

Altogether these data reinforce the limited accuracy of the bacitracin susceptibility test 

for S. pyogenes identification at the clinical setting. However, identification of these isolates is 

not useless as it allows monitoring specific epidemic clones and putative novel emergent clones. 

We report for the first time the long term persistence among carriers of the bacitracin-resistant 

emm28/ST52 lineage, which is prevalent in Europe. We also report for the first time a high-level 

bacitracin resistant isolate of the emm74/ST120 lineage, which was not previously known to 

include bacitracin-resistant isolates. We also show that the ABC transporter encoded by the 

bcrABDR operon may not be associated with bacitracin resistance among S. pyogenes. Further 

investigation will contribute to elucidate the cause(s) for the emergence, persistence and 

differences in colonization potential of bacitracin-resistant isolates and to ascertain the genetic 

basis for bacitracin resistance, particularly in the emm28/ST52 and emm74/ST120 strains 

described here.  
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ABSTRACT 

 

 Streptococcus pyogenes or Group A Streptococcus (GAS) is a Gram positive bacterium 

that can cause human diseases ranging from mild throat and skin infections to life-threatening 

diseases, such as toxic shock syndrome and necrotizing fasciitis (Cunningham, 2000). 

Asymptomatic carriers harbour the organism mainly in the throat or nose and display no 

symptoms of acute infection (Pichichero et al., 1999). GAS produces a variety of extracellular 

products that are involved in the pathogenesis of various human infections (Cunningham, 2000). 

Previous studies have been carried out by our group using GAS from oropharyngeal 

colonization and from diverse infections, particularly for comparison of clones and 

antimicrobial resistance (Pires et al., 2005; Pires et al., 2009; Pires et al., 2010; Pires et al., 

2011). The aim of this work was to compare GAS isolates from healthy carriers and patients 

with noninvasive and invasive infections regarding the presence and expression of selected 

virulence-related determinants. A total of 208 GAS [93 from oropharyngeal colonization (OC), 

103 from noninvasive tonsillitis/pharyngitis (T/P; n=72) and skin/soft tissue infections (S/STI; 

n=31) and 12 invasive disease isolates (ID)] were typed by PFGE and emm-typing and screened 

for the presence of 12 virulence genes (speA, speC, speH, speI, speJ, speK, speL, speM, prtF1, 

spd1, slaA, ssa). Expression of four genes (speA, ssa, slaA and spd1) was studied among 20 

strains, chosen based on the association of same PFGE pattern/different clinical origins, using 

reverse transcriptase-PCR (RT-PCR) and cultures at late log phase in 2YT and BHI media. All 

genes were detected in OC isolates ranging from 5% for speH to 41% for spd1. However, all the 

genes were significantly (p<0.05) more frequent in ID isolates (min. 25% for speA, max. 83% 

for speI), except ssa that was infrequent in ID isolates (8%) and not in OC (32%). speC, speM, 

speI and speL were significantly (p<0.05) more frequent (30-80%) in noninvasive and ID 

isolates. The frequency of speH was significantly (p<0.05) higher in T/P (18%) and ID (25%). 

The prtF1 gene was comparable in T/P (43%) and ID (41%) as well as in OC (30%) and S/STI 

(26%) isolates. In vitro expression of ssa was observed in a T/P isolate and not in OC and S/STI 

isolates. On the contrary, spd1 was expressed in OC isolates and not in the S/STI isolate. speA 

and slaA were not expressed in any of the strains either from OC or infection origins. Several 

virulence genes were found in higher percentages among isolates from infection, particularly 

ID, than among colonization isolates. However, no consistent results were found regarding their 

expression, still raising the question of which factors may contribute to GAS infections. 

 

 

 

 

Keywords: Streptococcus pyogenes, virulence factors, colonization, infection. 
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INTRODUCTION 

 

 Group A Streptococcus (GAS) (Streptococcus pyogenes) is among the most ubiquitous 

and versatile of human bacterial pathogens. It causes common clinical infections as pharyngitis, 

impetigo, cellulitis and scarlet fever. However, it may also cause acute and life-threatening 

diseases such as puerperal sepsis, necrotising fasciitis and streptococcal toxic shock syndrome 

(STSS) (Cunningham, 2000; Bisno et al., 2003). 

 Over the past 20 years, there has been a significant increase in the incidence of invasive 

disease caused by S. pyogenes (Stevens et al., 1989; Johnson et al., 1992). Superantigens are 

believed to be important virulence factors of this pathogen (Commons et al., 2008). They can 

induce massive secretion of inflammatory cytokines, such as gamma interferon, interleukin-1, 

and tumor necrosis factor-α. Overproduction of these cytokines can lead to tissue damage, organ 

failure, and shock (Chatellier et al., 2000).  

Currently, eight superantigen-encoding genes are known to be phage-encoded: speA, 

speC, speH, speI, speK, speL, speM (streptococcal pyrogenic exotoxins), and ssa (streptococcal 

superantigen) (Lintges et al., 2010). Streptococcal phospholipase A2 (slaA) and streptococcal 

phage DNase 1 (spd1) are also known as virulence factors associated to phages (Green et al., 

2005a). The prtF1 gene that codifies to one fibronectin-binding protein (protein F1), is an 

important virulence factor because this surface protein is associated with adherence and 

invasion of epithelial cells (Bisno et al., 2003). 

In the present study, 208 S. pyogenes isolates from four different origins were analysed, 

such as oropharyngeal colonization, tonsillitis/pharyngitis, skin/soft tissue infections and 

invasive disease. Our aim was to observe if there are any differences in the distribution of 

virulence determinants, namely speA, speC, speH, speI, speJ, speK, speL, speM, ssa, prtF1, 

spd1 and slaA among the isolates of the different origins. 
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MATERIALS AND METHODS 

 

Collection characterization  

From a total of 1,541 isolates, 208 isolates were selected for this study. The 208 isolates 

were associated to four different clinical origins (98 from oropharyngeal colonization, 72 from 

tonsillitis/pharyngitis, 31 from skin/soft tissue infections and 12 from invasive disease).  

The criteria for the selection of the 208 isolates were the following: same pulsed-field 

gel electrophoresis (PFGE) pattern/different origin; for each association PFGE pattern/different 

origin a maximum of two isolates sharing a same emm-type were chosen.  

 

Media, bacterial growth and storage conditions 

The growth medium generally used for the routine growth of cultures for colony 

isolation was Tryptic Soy Agar (TSA, Difco, Sparks, USA) supplemented with 5% sheep blood 

(Probiológica, Belas, Portugal). Cultures were incubated at 37ºC during 14-16 h and were stored 

at -80ºC in Brain Heart Infusion liquid medium (BHI, Biokar Diagnostics, Brookline, USA) 

with 20% glycerol. 

.  

Presence or absence of virulence genes  

DNA isolation 

The strains stored at -80ºC were thawed and streaked onto plates of TSA with 5% sheep 

blood. They were incubated during 14-16 h at 37 ºC. After growth, cells were collected with a 

full loop and resuspended in 250 μl of TE (100mM Tris; 10mM EDTA) with lysozyme (10 

mg/L) and incubated during 1 h at 37ºC. Total DNA was isolated following the guanidium 

thiocyanate method (Pitcher et al., 1989). 

  

PCR assays  

In this study the presence of the following virulence genes was searched for: speA, 

speC, speH, speJ, speI, speK, speL and speM, prtF1, spd1, slaA and ssa, according to the 

description in Table 6.1. 

The χ
2
 analysis of contingency tables was used to determine the statistical independence 

between presence of virulence genes and origin of the isolates (Zar, 1996).  

The boolean data matrix was introduced in BioNumerics
®
 software (version 4.61; 

Applied Maths, Sint-Martens-Latem, Belgium) for construction of a dendrogram with the aim 

of selection of 20 isolates (10% of total collection) for gene expression analysis. Resemblance 

was computed with the simple matching coefficient and the unweighted pair-group method with 

arithmetic mean (UPGMA). The 20 isolates were selected using the following criteria: 
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resemblance level higher than 70%, different PFGE patterns but the most common among the 

total sample, higher quantity of genes and different origins. 

 

Analysis of gene expression: preliminary studies  

Growth assays  

The growth assays were performed using the equipment Microbiology Workstation 

Bioscreen C
®
 (ThermoLabSystems). This device monitors the optical density (OD) during the 

assay, generating growth curves and automatic calculation of growth parameters (e.g. generation 

time and maximum growth rate) (Carlos et al., 2010).  

The 20 selected strains were incubated at 37ºC during 14-16 h in 2YT medium [2× 

yeast tryptone – 1,6% (w/v) tryptone, 1,0% (w/v) yeast extract and 0,5% (w/v) NaCl] pH 7, in 

order to guarantee that cultures were in an active phase. Therefore, OD was measured for the 

collection of approximately 10
9
 CFU (colony-forming units). The pellets obtained through 

centrifugation were resuspended in 100 μl of 10 mM phosphate buffer (PBS) pH 7. The 2YT 

medium, which is the control, and BHI medium, simulate infection conditions and were 

distributed in one Bioscreen C
®
 microwell plate (each plate contains 100 wells and each well 

was filled with 300 μl of medium). Then, each well was inoculated with 3 μl of cell suspension. 

The plates were incubated into the equipment at 37ºC (24 h). OD readings were perfomed each 

30 min, with prior agitation of 30 s. The wide band filter was used, which includes the 

wavelengths of 420 nm until 580 nm in order to minimize the influence of medium color 

changes during the assay (Carlos et al., 2010). The assay was done in triplicate. 

 

Collection of cells in specific points of the growth curve  

After the Bioscreen C
®
 assay, the number of hours that each isolate lasts to reach the 

stationary phase was determined for each culture medium. The following figure (Fig. 6.1) 

illustrates a typical bacterial growth curve, where the lag phase corresponds to adaptation of 

microrganisms to the medium, the exponential phase to a high duplication rate, the stationary 

phase to the reduction of nutrients and decline phase to the end of nutrients and consequent 

decrease of bacterial growth. The T1 and T2 points indicated in Fig. 6.1. correspond to the end 

of exponential phase and 2 h later, respectively, and represent the moments when culture 

samples were collected for further analysis. 

So, initially the cultures grew during 16 h in 2YT medium, pH 7, at 37ºC, and ODs 

were measured as described above in order to the number of cells to be collected was identical 

(10
9
 CFU). The cells were collected by centrifugation, washed with 500 μl of PBS and 

resuspended in 100 μl of the same buffer. Therefore, 10 ml of each of the selected media (2YT e 

BHI) was inoculated with 100 μl of bacterial suspension. The inocula grew at 37ºC, during the 
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number of hours determined for each isolate, in order to reach the T1 and T2 points, previously 

selected for cells collection. 

 

Table 6.1. Primers and associated controls used in PCR reactions. 

  Gene Primer sequence (5'→ 3') 
Amplicon size 

(bp) 

Positive 

control 
Reference 

m
u
lt

ip
le

x
 1

 

speA 
F:TAAGAACCAAGAGATGG 

248 S69* 

Schmitz et al., 2003 

R:ATTCTTGAGCAGTTACC 

speC 
F:GATTTCTACTTATTTCACC 

584 S69* 
R:AAATATCTGATCTAGTCCC 

speH 
F:AGATTGGATATCACAGG 

416 1002* 
R:CTATTCTCTCGTTATTGG 

speJ 
F:ATCTTTCATGGGTACG 

535 S69* 
R:TTTCATGTTTATTGCC 

m
u
lt

ip
le

x
 2

 

     

speI 
F:AAGGAAAAATAAATGAAGGTCCGCCAT 

217 GAP 65§ 

Lintges et al., 2007 
R:TCGCTTAAAGTAATACCTCCATATGAATTCTTT 

speM 
F:CCAATATGAAGATAACAAAGAAAATTGGCACCC 

600 VSD7§ 
R:CAAAGTGACTTACTTTACTCATATCAATCGTTTC 

m
u
lt

ip
le

x
 3

 

     

speK 
F:TACAAATGATGTTAGAAATCCAAGGAACATATATGCT 

656 VSD1§ 

Lintges et al., 2007 
R: CAAAGTGACTTACTTTACTCATATCAATCGTTTC 

speL 
F:GGACGCAAGTTATTATGGATGCTCA 

460 GAP 17§ 
R:TTAAATAAGTCAGCACCTTCCTCTTTCTC 

 

     

 
prtF1 

F:TATCAAAATCTTCTAAGTGCTGAG 
780 - 1200 DSMZ2071£ Talay et al., 1994 

 R:AATGGAACACTAACTTCGGACGGG 

      

 
spd1 

F:CCCTTCAGGATTGCTGTCAT 
400 GAP 17§ Green et al., 2005a 

 R:ACTGTTGACGCAGCTAGGG 

      

 
slaA 

F:CTCTAATAGCATCGGCTACGA 
440 GAP 106§ Green et al., 2005a 

 R:AATGGAAAATGGCACTGAAAG 

      

 
ssa 

F:AGTCAGCCTGACCCTAC 
691 8563* Reda et al., 1994 

 R:TAAGGTGAACCTCTAT  

      

 
rRNA16S 

F - AGAGTTTGATCCTGGCTCAG 
907  

Massol-Deya et 

al.,1995   R - CCGTCAATTCMTTTRAGTTT  

Legend: * S. pyogenes strain provided by Birgitta Henriques-Normark; 
§  

Bovine Streptococcus 

dysgalactiae, subsp. dysgalactiae (VSD1, VSD7) and S. pyogenes (GAP 65, GAP 17, GAP 106) strains 

from our laboratory collection (Head: Ilda Santos-Sanches); 
£  

Reference strain from DSMZ (Deutsche 

Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Alemanha). 
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Figure 6.1. Typical growth pattern of a microbial culture.  

Legend: T1 and T2 correspond to the two moments of cell collection. T1 represents the end of 

exponential phase and corresponds to the first collection point (approximately 330 min in this graphic) 

and T2 correspond to the second point, which is 2h after T1. 

 

RNA isolation  

In T1 and T2 points, cells were collected by centrifugation and resuspended in 1 ml of 

TE. RNA isolation was performed using the Trizol
®
 (Invitrogen, Life Technologies, Carlsbad, 

USA) method. For confirmation of RNA quality/quantity, 5 μl of the sample was observed after 

electrophoresis in 1% of agarose in 0,5X TBE buffer at a voltage of 95V during 90 min. 

Therefore, it was performed the treatment with DNase I (Invitrogen, Life Technologies, 

Carlsbad, USA), in order to remove residual DNA. Each 1 μg of RNA was treated with 1 U of 

DNase I and incubated at 37ºC during 45 min. Then, 1 μl of 25 mM EDTA was added and 

incubated at 65ºC during 15 min (Carlos et al., 2010). The efficiency of the treatment was 

confirmed by amplification of rRNA 16S housekeeping gene. The absence of amplification 

among RNA samples and amplification among DNA sample (positive control) confirmed the 

efficiency of the treatment. 

 

Reverse transcriptase PCR (RT-PCR) technique  

For the synthesis of cDNA, 100 ng of total RNA treated with DNase was added, as well 

as 1 μl of 300 ng/μl random primers, 1 μl of 10 mM deoxynucleotide triphosphates (dNTPs) and 

sterile water treated with diethylpyrocarbonate (DEPC) to a final volume of 13 μl. The mixture 

was heated at 65ºC during 5 min and rapidly incubated on ice during 1 min. Therefore, 4 μl of 

5X First-Strand Buffer, 1,5 μl of 0,1 M dithiothreitol (DTT), 1 μl of 40 U/μl RNaseOUT
™

 

Recombinant RNase Inhibitor and 0,5 μl of 200 U/μl SuperScript
™

 III RT were added (final 
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volume 20 μl). The solution was mixed, kept at 25ºC during 10 min, incubated at 50ºC for 1 h 

and heated for enzyme inactivation at 70ºC during 15 min (Carlos et al., 2010). 

 

PCR assay  

The cDNAs obtained were used for amplification of speA, ssa, slaA and spd1 genes. 

The rRNA 16S housekeeping gene was used as control. The mix was prepared with the 

following reagents: 2,5 μl of 10X PCR buffer, 1,5 μl of 50 mM MgCl2, 0,5 μl of 10 mM dNTPs, 

0,5 μmol of each primer, 0,2 μl of 5 U/μl Taq DNA polymerase and 1 μl of cDNA. PCR 

reactions were performed as described in Table 6.2. For confirmation of PCR amplification, 5 μl 

of the sample was observed after electrophoresis in 1% of agarose gel in 0,5X TBE buffer at a 

voltage of 95V during 90 min. 

 

Data analysis  

The captured gel images were analyzed by software ImageJ 1.40g (National Institute of Health, 

USA). The integrated density was calculated through the selection of the entire area of each 

amplicon. To compare the influence of different media on the expression of virulence genes, 

each integrated density value was normalized to the housekeeping gene rRNA 16S, according to 

equation 1, to obtain its corresponding expression level (EL) (Carlos et al., 2010):  

 

 

Table 6.2. Primers used in PCR reactions. 

Gene Sequence of primer (5'→ 3') 
Length of 

amplicon 
Reference 

speA 
F: 5' TAA GAA CCA AGA GAT GG 

248 bp Schmitz et al., 2003 
R: 5' ATT CTT GAG CAG TTA CC 

ssa 
F: 5' AGT CAG CCT GAC CCT AC 

691 bp Reda et al., 1994 
R: 5' TAA GGT GAA CCT CTA T 

slaA 

F: 5'CTC TAA TAG CAT CGG CTA 

CGA 
440 bp Green et al., 2005a 

R: 5' AAT GGA AAA TGG CAC TGA 

AAG 

spd1 

F:5' CCC TTC AGG ATT GCT GTC AT 

400 bp Green et al., 2005a 
R: 5' ACT GTT GAC GCA GCT AGG G 
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RESULTS 

 

Presence or absence of virulence genes  

A total of 12 virulence genes (speA, speC, speH, speJ, speI, speK, speL, speM, prtF1, 

spd1, slaA and ssa) were searched for among 208 selected isolates from four different origins: 

oropharyngeal colonization (93 isolates), tonsillitis/pharyngitis (72 isolates), skin/soft tissue 

infections (31 isolates) and invasive disease (12 isolates). This analysis was performed in order 

to found if there were significant differences related with the genes detected among isolates 

from different origins. Figure 6.2. indicates the presence of virulence genes by origin. 

 

 

Figure 6.2. Presence of virulence genes among different origins.  

The percentages are related to the total number of isolates by each origin included in this study. 

 

As we can observe in Fig. 6.2, for the majority of genes invasive disease presents a 

higher incidence, in contrast with colonization isolates which, with the exception of ssa (32%), 

always presented low percentages. Percentages of presence of virulence genes varied in 

colonization between 5% (speH) to 41% (spd1), in tonsillitis/pharyngitis between 11% (speJ) to 

58% (spd1), in skin/soft tissue infections between 3% (speJ) and 62% (speI) and in invasive 

disease among 8% (ssa) to 83% (speI). 

Relatively to spe genes, all but speL, slaA and spd1 were found as more common among 

isolates from invasive disease, comparing with isolates of the other three origins. Among the 

isolates from colonization, the percentages were the lowest among five of the eight spe genes. 

The prtF1 gene was found in similar percentages among isolates of two origins: 

tonsillitis/pharyngitis (43%) and invasive disease (41%). The percentages for the other two 

origins were also similar (about 26%). 
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Figure 6.3.A. Representative dendrogram of virulence genes searched for among 208 GAS 

isolates.  

Resemblance was calculated with the simple matching coefficient and agglomerative method UPGMA.  
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Cluster A (1 to 4 virulence genes/isolate)

Colonization Tonsillitis/pharyngitis Skin/soft tissue Invasive disease Total

17 7 3 - 27

Cluster B (1 to 3 virulence genes/isolate)

Colonization Tonsillitis/pharyngitis Skin/soft tissue Invasive disease Total

41 21 12 2 76

Cluster C (4 to 5 virulence genes/isolate)

Colonization Tonsillitis/pharyngitis Skin/soft tissue Invasive disease Total

1 2 - - 3

Cluster D (2 to 7 virulence genes/isolate)

Colonization Tonsillitis/pharyngitis Skin/soft tissue Invasive disease Total

11 9 3 - 23

Cluster E (4 to 6 virulence genes/isolate)

Colonization Tonsillitis/pharyngitis Skin/soft tissue Invasive disease Total

1 2 - - 3

Cluster F (4 to 6 virulence genes/isolate)

Colonization Tonsillitis/pharyngitis Skin/soft tissue Invasive disease Total

6 2 - - 8

Cluster G (4 to 5 virulence genes/isolate)

Colonization Tonsillitis/pharyngitis Skin/soft tissue Invasive disease Total

- 3 - 1 4

Cluster H (4 to 9 virulence genes/isolate)

Colonization Tonsillitis/pharyngitis Skin/soft tissue Invasive disease Total

3 16 7 3 29

Cluster I (4 to 6 virulence genes/isolate)

Colonization Tonsillitis/pharyngitis Skin/soft tissue Invasive disease Total

- 2 1 - 3

Cluster J (5 to 6 virulence genes/isolate)

Colonization Tonsillitis/pharyngitis Skin/soft tissue Invasive disease Total

1 1 - - 2

Cluster K (3 to 5 virulence genes/isolate)

Colonization Tonsillitis/pharyngitis Skin/soft tissue Invasive disease Total

1 1 1 - 3

Cluster L (4 to 7 virulence genes/isolate)

Colonization Tonsillitis/pharyngitis Skin/soft tissue Invasive disease Total

7 3 2 3 15

Cluster M (6 virulence genes/isolate)

Colonization Tonsillitis/pharyngitis Skin/soft tissue Invasive disease Total

- - - 1 1

Cluster N (3 to 7 virulence genes/isolate)

Colonization Tonsillitis/pharyngitis Skin/soft tissue Invasive disease Total

2 3 2 2 9

Cluster O (6 to 7 virulence genes/isolate)

Colonization Tonsillitis/pharyngitis Skin/soft tissue Invasive disease Total

2 - - - 2

 

Figure 6.3.B. Distribution by clinical origin of the 208 GAS isolates of clusters A-O.  

Among each cluster is indicated the number of associated isolates and their distribution among the four 

origins.  

 



Chapter VI 

93 

 

The slaA and spd1, both phage-encoded genes, were distributed in higher percentages 

among isolates from invasive disease (33% and 66%, respectively), comparing with isolates of 

other origins. 

The χ
2
 analysis applied to the presence/absence of virulence genes revealed that speC, 

speH, speI, speM and speL presented statistically significant differences (p<0.05) relatively to 

their origins. The statistical analysis showed that the same virulence genes presented statistically 

significant differences (p<0.05) taking into account the origin colonization, and speH gene also 

presented statistically significant differences to the same origin, as well as to the origin skin/soft 

tissue infections. Relatively to the remaining virulence genes, it was not observed any 

statistically significant difference when their presence was analyzed among the isolates of all 

origins. 

For a more detailed analysis of genes distribution among the four origins, one table of 

boolean data was introduced in BioNumerics
®
 software for the construction of a dendrogram 

(Fig. 6.3.). Considering a resemblance of 70%, we can observe 15 clusters represented by letters 

(A-O). With this dendrogram, and taking into account resemblance values higher than 70%, it 

was possible to select 20 strains for the gene expression study using the following criteria: 

different PFGE types but the most common among the collection, higher quantity of genes and 

different origins. 

With the analysis of the dendrogram, clusters A and B represented about 50% of the 

total sample of isolates. Among these two clusters, the quantity of virulence genes by isolate 

varied between zero and four, whereas in the remaining clusters varied between two and nine. 

Clusters A and B contained about 62% of the isolates from colonization, 38% from 

tonsillitis/pharyngitis, 48% from skin/soft tissue infections and 16% of invasive disease. These 

results could confirm that the isolates from colonization contain less virulence genes comparing 

with the isolates from the remaining origins. 

The most frequent emm-types found were emm4 (12%), emm1 (9%) and emm28 (7%). 

The virulence genes found in more than a half of the emm4 isolates isolates were ssa (88%), 

spd1 (67%) and prtF1 (54%). Among the emm1 isolates, the 12 virulence genes were present in 

less than 50% of the isolates. Among emm28 isolates, the most common virulence genes found 

were spd1 (100%), prtF1 (79%), speC (64%) and speI (57%).  

Besides these emm-types referred to above, 20 other emm-types already known were 

identified among the 208 isolates. One new emm-subtype 53.10 was found  (GenBank accession 

number FJ711063). 
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Gene expression analysis: preliminary studies 

 The growth assays at Microbiology Workstation Bioscreen C
®
 generated 60 growth 

curves (3 curves by isolate) for the control medium (2YT) and for the medium used to simulate 

infection conditions (BHI). To determine T1 and T2 for cells collection, the average of the three 

growth curves for each isolate and culture medium was calculated. The results are showed in 

Table 6.3. 

 

Table 6.3. Average hours for the collection of cells of 20 selected strains for gene expression 

analysis. 

Isolate 
2YT BHI 

T1(h) T2(h) T1(h) T2(h) 

GAP 38 6:00 8:00 6:00 8:00 

GAP 83 6:00 8:00 7:00 9:00 

GAP 106 7:30 9:30 8:30 10:30 

GAP 111 4:42 6:42 6:00 8:00 

GAP 115 5:30 7:30 6:00 8:00 

GAP 124 6:00 8:00 5:18 7:18 

GAP 132 4:00 6:00 6:00 8:00 

GAP 152 5:00 7:00 5:18 7:18 

GAP 174 4:00 6:00 4:30 6:30 

GAP 279 5:00 7:00 7:00 9:00 

GAP 308 6:00 8:00 7:48 9:48 

GAP 426 4:30 6:30 5:30 7:30 

GAP 511 4:12 6:12 6:00 8:00 

GAP 679 6:42 8:42 6:00 8:00 

GAP 711 7:48 9:48 6:00 8:00 

GAP 801 7:00 9:00 7:18 9:18 

GAP 823 5:12 7:12 6:00 8:00 

GAP 847 4:30 6:30 3:42 5:42 

GAP 1006 7:00 9:00 5:30 7:30 

GAP 1106 6:42 8:42 5:30 7:30 

 

By analysis of Table 6.3. and by the observation of the graphics presented in Figure 

6.4., the isolates were maintained  during more time in exponential phase and reached higher 

ODs in BHI culture medium as expected because this medium has more nutrients. 
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The gene expression analysis was performed for the 20 selected strains using the 

following genes: speA, ssa, slaA and spd1. We only observed expression for ssa and spd1 genes, 

demonstrating that speA and slaA genes are not being expressed in the analyzed culture media 

and /or during the selected times of collection.  

The Figure 6.5 shows the results of gene expression analysis. Out of nine isolates that 

presented expression, four were from colonization, three were from skin/soft tissue infections 

and two were from tonsillitis/pharyngitis and invasive disease. The expression levels higher 

than the observed for the housekeeping gene rRNA 16S were found only among two isolates: 

spd1 in one colonization isolate; ssa in one tonsillitis/pharyngitis isolate. The same EL was 

found for ssa in one skin/soft tissue infection isolate. For the remaining isolates, where it was 

observed a lower expression level of spd1 and ssa comparing with the housekeeping gene 

(EL<1), the genes analyzed were sub-expressed in comparison with rRNA 16S. speA and slaA 

were not expressed in any of the strains either from colonization or infection origin. 

 

 

Figure 6.4. Growth curves in 2YT and BHI media.  

The x axe represents the time (h) and y axe represents the OD. Isolate GAP 111 (from invasive disease) in 

2YT (A) and BHI (B) culture media. Isolate GAP 426 (from skin/soft tissue infection) in 2YT (C) and 

BHI (D) culture media. Each graphic presents three replicates by isolate. 
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DISCUSSION 

 

 In the present study, the searching of virulence genes among S. pyogenes isolated from 

four different origins was performed in order to verify if there were differences in the presence 

of the referred genes among the origin of the isolate. After analysis of the results, we concluded 

that virulence genes are found in higher percentages among isolates from disease, mostly from 

invasive disease. Previous studies from other countries, where search of virulence genes was 

also performed, have similar conclusions (McMillan et al., 2006; Rivera et al., 2006; Commons 

et al., 2008; Maripuu et al., 2008). 

Despite the study of searching for virulence genes is necessary, it becames insufficient, 

being important to complete it with gene expression analysis. In the present study, such analysis 

was not conclusive because it was not possible to search for the 12 virulence genes among the 

total number of isolates, and also because S. pyogenes is a β-hemolytic species and is expected 

that it express more virulence genes when it is found in infection situations, so it would be 

mandatory the usage of a culture medium which simulates infection conditions, such as animal 

serum. 

In the future, with the purpose of obtaining better results, the reverse transcriptase 

method should be changed by real-time PCR technique or, ideally, by microarrays. Real-time 

PCR is a quantitative PCR that can be used to analyze isolates from colonization and infection, 

giving information about expression in different media, in real time, having the advantage of 

being a less expensive technique. On the other hand, the expression analysis using microarrays 

technique for bacteria cultured in vivo seems to be a good choice to verify gene expression 

adjusted to all factors involved, because the current knowledge about bacterial gene expression 

is based mostly in studies performed under controlled lab conditions, where typically only one 

variable is tested each time. Despite this approach contributes for virulence studies, it is not able 

to simulate all host factors where the pathogen develops (Beyer-Sehlmeyer et al., 2005; Graham 

et al., 2006; Rosey et al., 2007; Lee et al., 2008; Curran et al., 2010). 

 The genetic properties of S. pyogenes strains vary according the geographic region, 

being also important the role of population density and climatic conditions. In Portugal, there 

was not any study on the presence of all virulence genes included in this study. So, this work 

contributes to a better knowledge of S. pyogenes virulence factors in this country, and 

completed previous studies and could relate the searched virulence genes with other aspects, 

such as resistance factors and emm-type. 
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Figure 6.5. Graphic showing the expression levels for the selected strains.  

Only the isolates with gene expression in 2YT and BHI media, for T1 and T2 times, were represented. 

The dashed line represents expression level equal to the housekeeping gene 16S rRNA. OC – 

oropharyngeal colonization; S/STI – skin/soft tissue infection; T/P – tonsillitis/pharyngitis; ID – invasive 

disease. 
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S. pyogenes is considered to be the most pathogenic bacterium in the genus 

Streptococcus. The reason why this microorganism is a major public health concern is 

because is one of the most versatile and common human pathogens, causing a wide spectrum 

of diseases, ranging from mild infections to life-threatening systemic diseases (Facklam, 

2002). Although it not be considered normal flora, S. pyogenes can colonize oropharyngeal 

respiratory tract without manifestation of clinical infection symptoms by the host 

(Cunningham, 2000). Colonization is also considered an infection; however the association 

between the microorganism and the host is commensal (Berkovitch et al., 2002).  

At the beginning of these doctoral studies, in 2007, some of the fundamental questions 

concerning the antimicrobial susceptibility, molecular epidemiology and virulence profiling of 

S. pyogenes colonization isolates remained unanswered. On the other hand, reports on the 

comparison of genotypes of isolates from symptomatic and asymptomatic infections were 

scarce. 

The work presented in this Thesis shed light into these two subjects: the molecular 

characterization of isolates from oropharyngeal colonization and their comparison with 

isolates from symptomatic infections. 

 

Insights into the carrier state 

 

 The S. pyogenes carrier is an asymptomatic individual with a positive oropharyngeal 

swab culture and without serological response, or with a positive culture after completing the 

appropriate treatment with antimicrobial agents (Martin et al., 2004). The carrier state may be 

clinically important because colonization may provide useful information about the prevalent 

phenotypes and clones within the community, as they may be present among infections 

(Durmaz et al., 2003; Fazeli et al., 2003; Hoe et al., 2003; Pires et al., 2005). 

In order to evaluate the trends of oropharyngeal colonization, in Chapter II, a collection 

of S. pyogenes isolates from several DCCs and schools was fully characterized in terms of their 

PFGE patterns and emm-types.  

 Before this study, the S. pyogenes carrier state in Portugal was not known. The results 

presented in Chapter II of this Thesis provided evidence that the mean carrier rate among pre-

school children (0-6 years) was higher (11.5%) than among school-aged children (7-16 years) 

(7.8%) and that colonization was higher during winter periods, which suggests that the 

crowding of children in DCCs may possibly increase the carrier rate in healthy pre-school 

children. It was demonstrated that a very heterogeneous population of S. pyogenes colonized 

healthy carriers. Moreover, it was also found that a high diversity of S. pyogenes strains was 

associated with long-term colonization. Also, a replacement of S. pyogenes strains was 
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frequently found among recurrent carriers and co-colonization of the oropharynx by S. pyogenes 

strains was detected. 

 Future analyses will be needed for the comparison of major and minor clones that are 

able to cause asymptomatic colonization, e. g. the determination of virulence profiles in these 

two sets of isolates.  

 

Bacitracin resistance in S. pyogenes from colonization and disease 

 

 One of the presumptive tests for S. pyogenes identification is the susceptibility to 

bacitracin, which provides the differentiation from other beta-hemolytic streptococci of human 

origin (Facklam, 2002). However, resistance to this antimicrobial agent in S. pyogenes was 

previously described (Facklam and Washington II, 1991), raising questions concerning the 

reliability of this criterion. Resistance to bacitracin in S. pyogenes has been also frequently 

associated to constitutive resistance to macrolides, lincosamides and streptogramins B (cMLSB 

phenotype) (Malhotra-Kumar et al., 2003; Mihaila-Amrouche et al., 2004; Pérez-Trallero et al., 

2004; Pires et al., 2009).  
In order to assess the putative variability of genetic backgrounds, as well as to evaluate 

the bacitracin resistance mechanism in S. pyogenes from colonization and disease in 2000-2007, 

a collection of 45 S. pyogenes isolates was fully characterized. 

According to literature, no data was previously published regarding bacitracin resistance 

among S. pyogenes colonization isolates. In this work (see Chapter V), we reported the long-

term persistence among carriers of the low-level bacitracin-resistant emm28/ST52 lineage, 

which is prevalent in Europe. We also reported for the first time a high-level bacitracin-resistant 

isolate of the emm74/ST120 lineage, which was not previously known to include bacitracin-

resistant isolates. However, bacitracin resistance mechanism(s) in those isolates remain 

unknown, so further investigation will contribute to ascertain the genetic basis for bacitracin 

resistance. It would be interesting to test if bacA gene is overexpressed in emm28/ST52 and 

emm74/ST120 lineages and/or if the ABC transporter encoded by mbrABCD genes in S. mutans 

(Tsuda et al., 2002) is present among these two lineages.  

 

Resistance to macrolides among healthy children 

 

S. pyogenes is uniformly susceptible to penicillin and this is the universal recommended 

treatment for S. pyogenes infections. However, macrolides represent an alternative in patients 

who are allergic to penicillin (Bisno et al., 2002), and consequently increased frequency of 

macrolide-resistant S. pyogenes from infection sites has been reported in different countries 

(Felmingham et al., 2004) including from asymptomatic oropharyngeal colonization (Creti et 
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al., 2005; Pires et al., 2005; Chang et al., 2010). In Portugal, it was unknown the role of healthy 

carriers as disseminators of macrolide-resistant S. pyogenes isolates, in contrast with patients 

with tonsillo-pharyngitis (Silva-Costa et al., 2006;  Silva-Costa et al., 2008). 

Chapter III described the frequency of macrolide-resistant S. pyogenes recovered in 

Lisbon area, Portugal, from healthy children during 2000 to 2006, as well as the capacity of 

asymptomatic carriers as reservoirs of macrolide-resistant and potential virulent clones capable 

of causing a wide spectrum of infections. 

Temporal inversions of macrolide resistance phenotypes among colonization isolates 

were first reported and described in Chapter III, reinforcing the importance of surveillance of 

carriers, as they may be indicators of the pool of isolates circulating in the community that may 

cause infections. The elevated frequency of macrolide resistance was associated with M 

phenotype lineages emm12/ST36 and emm4/ST39, and with one cMLSB lineage emm28/ST52, 

known as associated with upper respiratory tract and invasive infections. The cMLSB lineage 

emm11/ST403 was found in this study for the first time among colonization isolates. The high 

prevalence (>20%) of virulence genes speC, prtF1 and ssa was probably caused either by clonal 

dissemination (speC), or to horizontal gene transfer events (prtF1 and ssa). This study 

contributed to a better understanding of the molecular epidemiology and evolution of 

macrolide-resistant S. pyogenes causing asymptomatic oropharyngeal colonization. These 

colonizing strains carry macrolide resistance and virulence genes capable of being transferred to 

other bacterial species sharing the same niche. 

 

Ciprofloxacin nonsusceptibility in healthy children and pediatric patients 

 

 The widely use of fluoroquinolones has led to the emergence of S. pyogenes isolates 

with reduced susceptibility to these antimicrobial agents (Orscheln et al., 2005; Yan et al., 

2008; Smeesters et al., 2009; Montes et al., 2010) or with high-level resistance (Yan et al., 

2000; Malhotra-Kumar et al., 2009; Montes et al., 2010). Nonsusceptibility to fluoroquinolones 

in S. pyogenes from infections has been reported worldwide, ranging from 3.2% in Spain 

(Rivera et al., 2005) to 22.5% in Belgium (Smeesters et al., 2009), however few surveys 

included isolates exclusively derived from pediatric patient populations (Albertí et al., 2005; 

Yan et al., 2008; Smeesters et al., 2009). Moreover, to the best of our knowledge, there are no 

reports documenting the prevalence and characterization of fluoroquinolone-nonsusceptible S. 

pyogenes from asymptomatic colonization.  

 In Chapter IV, the prevalence of ciprofloxacin-nonsusceptible S. pyogenes from 

colonized and infected Portuguese children from 1999 to 2006 was described and the associated 

clones and resistance mechanisms were characterized. 
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 The data presented in Chapter IV demonstrated that ciprofloxacin nonsusceptibility rate 

was slightly lower among colonization isolates (4.3%) than among the clinical isolates (6.0%). 

The ciprofloxacin MIC≥2 µg/mL was a valuable breakpoint for the detection of 66 

ciprofloxacin-nonsusceptible isolates; all but one ciprofloxacin-nonsusceptible isolates had 

parC-QRDR mutations generating the aminoacid substitutions S79A (n=63) and D83G (n=2); 

the ParC-D83G substitution was found for the first time in this study and emm1 association with 

fluoroquinolone-nonsusceptibility was also first detected in this work. One isolate 

(emm89/ST101) had no parC-, parE-, gyrA- and gyrB-QRDRs codon substitutions, nor 

plasmid-encoded qnrA, qnrB, qnrC and aac(6’)-Ib-cr genes, nor reserpine-sensitive efflux 

pump. In this isolate, it would be interesting the searching for the presence of a fluoroquinolone 

efflux pump using other efflux pump inhibitors, e. g. thioridazine and verapamil. 

In this study it was demonstrated that in Portugal fluoroquinolone resistance in pediatric 

S. pyogenes is mediated by both clonal dissemination and by the putative occurrence of 

horizontal gene transfer involving the parC-QRDR region. 

 

Virulence factors in S. pyogenes from colonization and disease 

 

Currently, eight superantigen-encoding genes are known to be phage-encoded: speA, 

speC, speH, speI, speK, speL, speM (streptococcal pyrogenic exotoxins), and ssa (streptococcal 

superantigen) (Lintges et al., 2010). Streptococcal phospholipase A2 (slaA) and streptococcal 

phage DNase 1 (spd1) are also known as virulence factors associated to phages (Green et al., 

2005b). The prtF1 gene that codifies to one fibronectin-binding protein (protein F1), is an 

important virulence factor because this surface protein is associated with adherence and 

invasion of epithelial cells (Bisno et al., 2003). 

In order to know if the presence of streptococcal virulence factors is associated with the 

origin of the isolates, we performed a screening for the presence of virulence genes (speA, speC, 

speH, speI, speJ, speK, speL, speM, prtF1, spd1, slaA, ssa) in 208 isolates of S. pyogenes from 

four distinct origins: oropharyngeal colonization (OC), tonsillitis/pharyngitis (T/P), skin/soft 

tissues infections (S/STI) and invasive disease (ID). In order to complement the previous 

analysis, we selected four virulence genes (speA, ssa, slaA and spd1) and studied their gene 

expression in 20 isolates selected from the initial sample, after growth in two media, BHI and 

2YT.  

In Chapter VI, after the analysis of the results, we concluded that virulence genes are 

found in higher percentages among isolates from disease, such as T/P, S/STI or ID. In the 

present study, gene expression analysis was not conclusive because it was not possible to search 

for the 12 virulence genes among the total number of isolates, and it would be useful the usage 

of a culture medium which simulates infection conditions, such as animal serum. In Portugal, 
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there was not any study on the presence of all virulence genes included in this study. So, this 

work contributed to a better knowledge of S. pyogenes virulence factors in this country. In the 

future, the phage-encoded virulence genes included in this study will be used for a primary 

detection of prophages and to evaluate the polylysogenic nature of both colonizing and infection 

strains. So, lytic induction of prophages will be carried out after treatment with mitomycin C. 

 

In conclusion, the work presented in this Thesis provided new insights into 

antimicrobial susceptibility, molecular epidemiology and virulence profiling of S. pyogenes 

isolates from oropharyngeal colonization and symptomatic infections. As it was described 

above, isolates from colonization and infection can share the same genetic backgrounds (i.e. the 

same PFGE pattern and/or emm-type), however infection isolates presented higher percentages 

of virulence genes, which could have an impact in their pathogenesis. Nevertheless, some 

questions arose from this work that remain to be clarified and would constitute an interesting 

subject for future investigations. 
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