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DISSERTATION OUTLINE 

xxv 

 

This dissertation is divided into seven chapters. 

 

In the first chapter is an introduction about several of the aspects that may 

concern the study of BolA. This introduction incorporates all of the aspects 

already known about BolA. 

 

The second chapter shows that overproduction of BolA affects bacterial growth 

differently depending on whether the cells are inoculated directly from plate or 

from overnight batch cultures. It furthermore demonstrates that BolA is a 

transcriptional regulator of the dacA and dacC genes, thus regulating both DD-

carboxypeptidases PBP5 and PBP6. It is shown that some BolA cellular effects 

depend on PBP5 or PBP6. 

 

In the third chapter we have evaluated BolA as a putative persistence protein, 

inducing a decline in the multiplication potential but increasing toleration against 

different stresses imposed. 

 

In the fourth chapter the BolA homologue protein YrbA (renamed as IbaG) was 

studied as a possible BolA protein homologue. Although these two proteins did 

not induce similar phenotypes, they both induced a decrease in growth and 

viability when overexpressed, and increased ODs and cell counts in the respective 

deletion strains. IbaG did not change the morphologies of cells in any of the 

conditions tested. This gene is in an operon with the essential murA gene. IbaG is 

induced in acid stress conditions, and therefore was renamed as induced by acid 

gene. It has furthermore conferred advantages for growth upon mild acid 

challenge. 
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In the fifth chapter a General Discussion puts in perspective the new information 

presented throughout the above chapters. 

In the sixth chapter perspectives are provided regarding the future work on BolA, 

taking into account several other mechanisms that BolA might interfere with. 

General perspectives give suggestions that can be developed by other lab 

colleagues currently working on BolA. 

 

The seventh chapter is an appendix presenting some preliminary work related to 

BolA, that has been started but is still incomplete. In Appendix I the role of Hfq 

and glucose are evaluated in bolA regulation. In Appendix II we have developed 

tools to evaluate E. coli bolA in pathogenic species belonging to the Burkholderia 

cenocepacia complex. 

 

A lot more work needs to be implemented into true knowledge about BolA; it is 

my conviction that this molecule has still a lot to offer. But, like a precious 

untouched diamond, it needs a gigantic amount of ability, work and most of all 

patience to set it free. 

 

Good journey! 
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BolA is a protein that is able to change bacterial shape, confer resistance against 

large antibiotic molecules and detergents, reduce permeability, change the 

equilibrium of the outer membrane porins, and it is even involved in biofilm 

formation. This protein has such pleiotropic effects, that its function has been 

very difficult to unravel. This was the starting point for the work of this 

dissertation. If bolA is responsible for global cellular changes that confer resistance 

to a multitude of stresses, it is imperative to obtain more molecular insights to 

increase the understanding of the role of BolA in cell physiology and survival. 

 

The first aim of this Doctoral work was to further investigate the relation of BolA 

with cell wall protein intervenients and cytosqueletal elements. The fact that the 

levels of BolA in cells can change considerably and the inexistence of proper 

antibodies for its quantification was an obstacle. Another difficulty was that PBP5 

and PBP6 share characteristics: they are quite similar in aminoacidic composition, 

molecular weight and even isoelectric point. Therefore, there are substancial 

methodological constraints to separate and evaluate their levels. However we 

could establish that at least one of them is required for the effectiveness of BolA in 

cells. In fact, the double deletion mutant for PBP5 and PBP6 was the only strain in 

which the overexpression of BolA did not lead to the occurrence of spheres. 

Additionally it was possible to ascertain, by Surface Plasmon Resonance analysis, 

that BolA is a transcriptional regulator that negatively affects mreB and positively 

affects dacA and dacC. Although interaction occurs preferentially in the promoter 

region of these genes (where transcriptional regulation actually takes place) it was 

reported to occur as well (to a lesser extent) in the Open Reading Frame regions 

of these genes.  

 

A second objective of this dissertation work was to understand the effects of the 

expression of BolA on cells growth, morphologies and viabilities. Since BolA is 



ABSTRACT 

4 

 

increasingly expressed along the growth curve, starting the growth at different 

time points/ODs was expected to correspond to starting growth with different 

intracellular BolA levels. A work plan was established where starting from 

OD620nm=0 (directly from colonies), a series of ODs were defined after the first 

liquid cultures to initiate growth in fresh media. BolA is important enough to be 

maintained in genomes throughout the living world, nevertheless, when it is 

present in high levels, it prevents cultures from growing and dividing, strongly 

reducing their viabilities. This work led to some unexpected results. Even when 

overexpressed, the BolA-induced slowing of division rate does not seem to 

represent a killing program or senescence process, given that the strong viability 

reduction is not progressive along time. Even though BolA seems to prevent 

division, when bolA overexpressing cultures are started with the inoculi at lag or 

early exponential phase they grow even better than wild type ones. In this way it 

seems that BolA creates an enhanced growth potential, released upon its 

clearance from the system. That could be an important mechanism to deal with 

stress imposition, reducing short term growth but favoring long term resistance 

and maintenance. This lead us to evaluate BolA potential as a persistence protein, 

in the way those proteins have been recently studied. 

 

A third objective came after genome wide sequence/structure prediction analysis 

detected a protein homologous to BolA in E. coli. The possibility of a functional 

substitution by a similar protein projected that a double bolA/yrbA deletion would 

not be viable but this work has refuted this idea. In fact, not only the single yrbA 

deletion presents a better growth and viabilities than the wild type, but the 

double deletion mutant could be constructed and grows even better than the 

single deletant. Conversely, an increase in the amounts of yrbA (as tested through 

the construction of pBGA01, pBr325 derived plasmid overexpressing yrbA) 

reduced both growth curves and cell counts. The overexpression of yrbA did not 
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have effects on cells morphologies, again differently of BolA. The mRNA 

expression pattern was quite low without overexpression but in the presence of 

the pBGA01 plasmid it could be seen that this transcript is much more present in 

mid exponential phase than in lag or stationary phase. The response of yrbA to 

stress was studied by Northern Analysis. It was shown that yrbA was induced in 

acid stress conditions. Furthermore the overexpression of yrbA led to increased 

growth upon acid challenge, therefore we named this gene ibaG, for induced by 

acid gene. In comparison with the wild type, the ibaG deletant strain grew the 

best in neutral medium but the worst in acid. The ibaG overexpressing strain 

grew worst in pH7 but was the strain which grew the best in pH5. The possibility 

of ibaG levels being controlled by BolA was tested by Surface Plasmon Resonance 

analysis of interaction, and by transcriptional analysis using GFP protein as 

signal. Both these methods ruled out of direct interference although it seemed 

that a minimal bolA expression was necessary for proper yrbA transcription. 

 

 

This work proved to be enlightening in the evaluation of BolA as a transcriptional 

factor, and involved in persistence mechanisms: reduction of metabolism, 

division, stress protection and boost in growth potential after system clearance. 

Furthermore, the discovery of IbaG, a BolA related protein, that facilitates 

survival under acid stress, is quite significant and it opens new perspectives for 

the understanding of the “BolA family” of genes. 
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A proteína BolA Escherichia coli induz a alteração da forma de bacillus a coccus, 

confere resistência a detergentes e antibióticos de elevado peso molecular, reduz a 

permeabilidade, altera o equilíbrio de porinas da membrana externa e ainda 

induz o desenvolvimento de biofilmes. Apresentando efeitos tão abrangentes e 

induzindo resistência a uma multitude de stresses, o estudo da função do 

gene/proteína BolA constituiu o objectivo geral do trabalho que conduziu a esta 

Dissertação.  É imperativo obter conhecimentos de nível fundamental sobre a 

biologia molecular de BolA, seus alvos, formas de regulação e consequências 

globais na fisiologia e sobrevivência celulares.  

 

O primeiro objectivo deste trabalho de Doutoramento foi investigar uma eventual 

relação de BolA com proteínas de membrana e elementos do citosqueleto. A 

inexistência de bons anticorpos anti-BolA constituiu um obstáculo. Outra 

dificuldade deveu-se à similitude das proteínas PBP5 e PBP6 - em sequência de 

aminoácidos, peso molecular e até de ponto isoeléctrico – impossibilitando a 

determinação dos seus níveis isoladamente. No entanto, foi possivel verificar que 

os efeitos da presença excessiva de BolA só ocorrem na presença de pelo menos 

uma das duas DD-carboxipeptidases. De facto, apenas no delectante duplo 

PBP5/PBP6 com sobreexpressão de bolA se conseguiram obter curvas e 

morfologias semelhantes às das estirpes não transformadas com pMAK580. Além 

disto, foi possível verificar por Surface Plasmon Resonance que o BolA é um 

regulador transcricional, , actuando como activador para com os genes dacA e 

dacC, e como repressor para com mreB. Muito embora as interacções tenham sido 

preferenciais com a região promotora dos genes que regula, verificou-se também 

interação (menor) com as grelhas abertas de leitura respectivas.  

 

O segundo objectivo desta tese, propôs-se a avaliar as consequências fisiológicas 

de diferentes níveis de BolA no pré-inóculo de culturas de E. coli, procurando 
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aprofundar os resultados do primeiro estudo, obtidos para crescimentos de 

estirpes com sobreexpressão de bolA. Tendo em conta que ainda não é possível 

quantificar os níveis proteicos de BolA, e sabendo-se que a expressão deste é 

aumentada progressivamente com a curva de crescimento, desenvolveu-se um 

plano de trabalho em que a estirpe com sobreexpressão de bolA, CMA10, seria 

avaliada quanto ao crescimento, viabilidades e morfologias, quando iniciada a 

partir de diferentes densidades ópticas (ODs). O crescimento líquido desta estirpe 

seria iniciado a partir de placa (OD620nm=0) e à medida que a cultura atingisse as 

diferentes ODs predefinidas (0.5, 1.5, 3 e 6) seria utilizada sucessivamente como 

pré-inóculo para lançamento de novas culturas. Verificou-se que quando em 

níveis elevados o gene bolA dificulta o crescimento das culturas e reduz o número 

de células viáveis. Ainda assim, este decréscimo de viabilidades não corresponde 

a um processo de senescência ou morte, tendo em conta que ao longo do tempo as 

unidades formadoras de colónias não diminuem. Outro resultado surpreendente 

foi o facto de as mesmas culturas iniciadas após um pré-inóculo em fase lag ou 

início de exponencial crescerem ainda melhor que as selvagens. A presença de 

BolA aparenta originar uma repressão temporária de crescimento celular, mas 

simultaneamente um potencial de crescimento rápido despoletado com o seu 

desaparecimento do sistema. Esta redução de crescimento a curto prazo e 

favorecimento a sobrevivência a longo prazo levou-nos também a avaliar o 

potencial do BolA enquanto hipotética proteína de persistência. 

 

O terceiro objectivo surgiu por análise informática na qual se detectou em E. coli 

uma hipotética proteína homóloga a BolA, designada por YrbA. A possibilidade 

de substituição funcional do BolA pelo YrbA postulava que o delectante duplo 

bolA/yrbA não seria viável, o que foi refutado no âmbito deste trabalho. O 

delectante simples yrbA tem melhor crescimento e viabilidades associadas que a 

estirpe selvagem. Foi também possível construir o delectante duplo  bolA/yrbA 
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que ainda apresenta melhores resultados que o delectante simples. Em 

conformidade com estes resultados, a expressão aumentada de yrbA (testada 

através de construção de pBGA01, um plasmídeo derivado de pBr325, 

sobreexpressando o yrbA) originou um decréscimo tanto nas curvas de 

crescimento, como nas viabilidades. A expressão de yrbA aumentada não 

originou alterações de morfologia às células em qualquer das condições testadas. 

A expressão endógena de mRNA mostrou-se demasiado fraca para ser detectada, 

mas na presença de pBGA01 foi possivel verificar que o transcrito é muito mais 

expresso a meio da fase exponencial que em fase lag ou estacionária. A resposta 

do yrbA ao stress também foi avaliada por Northern Blot e verificou-se que este é 

induzido em pH ácido, pelo que foi designado de ibaG, traduzindo, gene 

induzido por ácido. Confirmou-se por SPR e fluorescência (análise transcricional 

usando a Green Fluorescent Protein como sinal) que o BolA não interage com a 

região promotora do gene em estudo, muito embora a sua presença interfira 

positivamente para a transcrição do yrbA. 

 

O trabalho aqui descrito demonstrou o cumprimento dos objectivos propostos. 

Comprovou-se a função da proteína BolA como regulador transcricional e a sua 

importância nos mecanismos de persistência, nomeadamente a redução do 

metabolismo e da velocidade de multiplicação celular, promoção da tolerância e 

protecção contra stresses variados e criação de um potencial de crescimento 

aumentado após o seu desaparecimento do sistema (o que ocorre 

simultaneamente com o desaparecimento das condições adversas). A 

caracterização da proteína IbaG homóloga do BolA, a qual se mostrou favorecer a 

sobrevivência em condições de stress acídico, é muito importante e abre novas 

portas para a compreensão da “família de genes bolA”. 
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ABSTRACT  

 

Microorganisms have continuously evolved to divide and persist in harsh 

conditions. Bacteria deal with external stresses on a regular basis, many times 

through major restructuration such as biofilms formation. The adaptation 

mechanisms usually imply changes in cell shape, roughness, dimensions, protein 

content, as well as alterations of cell wall structure, thickness and permeability. 

The E. coli morphogene bolA is mainly expressed in stress conditions and when 

overexpressed induces rod bacteria to become spherical. Moreover, BolA is able 

to induce biofilm formation and to make changes in the outer membrane, which 

gets less permeable to detrimental agents. Although there is some understanding 

about the activity of BolA there is no real comprehension of its function on global 

cell physiology. Does it actually protect from stress? Is that achieved by 

regulation of other genes? Does it happen in complement with BolA homologues? 

BolA family of proteins are found throughout the living world with the 

remarkable exception of the Gram-positive bacteria. This may be due to structural 

differences in their cell walls (absence of outer membrane, thicker murein layer, 

presence of teichoic acids), or be somehow related to their exclusive ability to 

resist stresses through differentiation of spores. Several new questions arise as 

investigation proceeds into more profound understanding of this interesting 

family of proteins. 
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BRIEF BOLA OVERVIEW 

 

Bacteria are able to activate several adaptive responses when facing any form of 

stress. Alterations of cellular morphology and membrane characteristics are 

important to regulate the internal exchanges with the environment. Plastic 

membrane configuration, structure and regulation are beneficial to facilitate 

solutes and proteins interchange, thus maximizing environmental interactions in 

optimal growth conditions, and on the other hand promote a differentiation into a 

more rigid structure, with less porins to ensure permeability reduction, under 

unfavourable conditions. The gene bolA was first described as a stationary phase 

gene (Aldea et al., 1990; Aldea et al., 1989). Accordingly, the expression of bolA is 

growth phase-regulated and controlled by the sigma factor S (rpoS gene) (Lange 

and Hengge-Aronis, 1991). However, bolA has also been established as a general 

stress response gene induced during early logarithmic growth in response to 

several stresses, in a partially S-independent manner (Santos et al., 1999). Greater 

amounts of bolA mRNA and a rounder cell morphology were found after 

application of different sources of stress, such as carbon starvation, osmotic stress, 

heat shock, acidic stress and oxidative stress (Santos et al., 1999). The bolA gene is 

therefore an E. coli morphogene whose product induces spherical shape of the 

cells when overexpressed, leading to a reduction of the exposed surface (Aldea et 

al., 1988). This effect of bolA on cell morphology is mediated both by the induction 

of PBP5 and PBP6 D,D-carboxypeptidases (Aldea et al., 1988; Guinote et al., 2010; 

Santos et al., 2002) and the repression of the expression of MreB (Freire et al., 

2009), a bacterial homologue of actin responsible of the formation of an helical 

cytosqueleton structure required for rod shape configuration in E. coli 

(Carballido-Lopez, 2006). Escherichia coli 13.5 kDa BolA protein contains one 

defined BolA/YrbA domain, essentially formed by a helix-turn-helix (HTH) motif 

and has recently been confirmed to be a DNA-binding regulator (Aldea et al., 
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1989; Freire et al., 2009; Guinote et al., 2010) (Fig.1). It was proven that BolA 

efficiently binds to the mreB, dacA and dacC promoter regions. It downregulates 

mreB and upregulates dacA and dacC promoters, expanding its potential as a 

transcriptional regulator, with repressor and activator abilities. Moreover, the 

increased expression of the bolA gene was shown to be an important inducer of 

biofilm formation (Vieira et al., 2004) and to modulate cell permeability (Freire et 

al., 2006b). As a result, BolA constitutes a privileged target to study molecular 

mechanisms of adaptation of Escherichia coli when facing adverse growth 

conditions.  

 

GRAM-NEGATIVE SURVIVAL UNDER STRESS CONDITIONS 

Cellular and physiological responses to stress 

E. coli cells possess several other mechanisms to cope with nutritional or toxic 

stresses, besides the abilities to grow in aerobic conditions, perform anaerobic 

fermentation and even respirate in the absence of oxygen. While many Gram-

positive bacteria differentiate long-lasting highly resistant spores, Gram-negative 

bacteria survive for prolonged periods of starvation or multiple stresses through 

physiological state adaptations designated as stationary phase. Challenged cells 

show a variety of adaptations in cellular structure, morphology and physiology, 

like flagella, pilli or fimbriae development, variations in diameter of the pores of its 

outer membrane to accommodate larger molecules (nutrients) or to exclude 

inhibitory substances, synthesizing enzymes to metabolize available compounds 

or either expel or degrade toxic ones (Halsey et al., 2004). The enhanced stress 

resistance exhibited by starved bacteria represents a central feature of virulence, 

since nutrient depletion is regularly encountered by pathogens in their natural in 

vivo and ex vivo environments (Frenkiel-Krispin et al., 2001).  

Upon sensing an impending saturation level of their population density, 

Escherichia coli cells enter into stationary phase, structurally and functionally 
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modulating the nucleoid, the transcription apparatus, the translation and 

proteolytic machinery. Their cytoplasm is condensed and storage compounds and 

protective substances are synthesized such as glycogen, polyphosphate or 

trehalose. The volume of the periplasm increases, changes in peptidoglycan 

composition and structure occur, that result in a higher resistance to autolysis 

induced by penicillin or chaotropic agents. Cells tend to become smaller, develop 

an ellipsoid to spherical rather than a rod morphology, and have an increased 

tendency to form aggregates (Hengge-Aronis, 1999; Hengge-Aronis, 2002). The 

major DNA-binding proteins, Fis, HU and Hfq, in the exponential-phase nucleoid 

are replaced by a single stationary-phase protein Dps, and cellular content of the 

histone-like protein H-NS increases, thereby compacting the nucleoid and 

ultimately leading to silencing of the DNA functions (Ali Azam et al., 1999) 

(Ishihama, 1999). The transcription apparatus is modified by replacing the major 

promoter recognition subunit σ70 by σS factor in RNA polymerase complex. Hfq 

becomes mainly accumulated at the cytoplasm, dynamically shifting the 

transcripts’ stabilities. The translation machinery is also modulated by the 

stationary-phase RMF (Ribosome Modulation Factor) that mediates direct 30S 

dimer contacts between 70S ribosome monomers at the P site (Azam et al., 2000) 

(Ishihama, 1999). Those translationaly incompetent 100S ribosomes may consist of 

inactive storage structures that remain available for future fast resumption of 

growth, once conditions change to favourable – ribosomal “hibernation” stage 

(Yoshida et al., 2002). Proteolysis by the ClpXP and ClpAP complexes appears to 

be mandatory to extended stationary-phase bacterial cultures viability, 

controlling the levels of growth–phase regulated proteins (Weichart et al., 2003). 

 

The universal stress response regulator σS sigma-factor  

Transition into stationary phase induces the formation of a core set of several 

proteins, members of specific stress-inducible regulons, elucidating why 
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stationary-phase cells are more resistant to several stresses (heat shock, H2O2, 

NaCl, alkylating agents, ethanol, acetone, toluene, deoxycholate, acidic or basic 

pH). Among those is the σS subunit of RNA polymerase, a major regulator of 

many stationary-phase-inducible genes, that controls several morphological and 

physiological processes in survival to prolonged starvation periods (Hengge-

Aronis, 1996) (Loewen et al., 1998). A reduced growth rate results in increased 

rpoS transcription whereas high osmolarity, low temperature, acidic pH, and 

some late log-phase signals stimulate the translation of already present rpoS 

mRNA. In addition, carbon starvation, high osmolarity, acidic pH, and high 

temperature result in stabilization of σS protein, which otherwise is degraded 

(Hengge-Aronis, 2002) (Hengge-Aronis, 1996).  Important cis-regulatory 

determinants as well as trans-acting regulatory factors involved at all levels of σS 

regulation have been identified: rpoS mRNA stability and translation are 

controlled by several proteins (Hfq, H-NS, HU, LeuO, CspC, CspE, cAMP-CRP 

complex and even DnaK) and by small regulatory RNAs (dsrA RNA and OxyR 

RNA). The  molecular mechanisms of signal transduction that trigger  the  

stationary-phase response and the induction of σS have yet to be completely 

elucidated, but seem to involve molecular  signals as ppGpp, UDP-glucose, and 

homoserine lactone. Polyadenylation decreases the recognition of σS specific by 

the specific factor RssB (also designated by SprE (Carabetta et al., 2009)), essential 

for σS proteolysis by ClpXP protease. After translation, sigma S activity is still 

positively modulated by trehalose and glutamate (Phadtare and Inouye, 2001) 

(Hengge-Aronis, 1996) (Hengge-Aronis, 2002) (Loewen et al., 1998). 

Sigma S controls the expression of genes that respond to general stresses, usually 

involved in the uptake and metabolism of aminoacids, sugars, iron and 

production of indole, among others. It also regulates several regulatory proteins, 

as ribosome associated protein RpsV (sra), the initiation factor IF-1 (infA) (Lacour 
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and Landini, 2004), the Dps protein (DNA-binding protein) and CsgD, 

homologous to the DNA binding domains of the LuxR family; and BolA.  

 

FINELY TUNNED REGULATION OF bolA 

bolA has been described as an ftsZ dependent gene, which is required to produce 

bolA-mediated round cells. By analysis of bolA open reading frame (ORF), it was 

showed that it encodes a protein with a predicted molecular weight of 13.5 kDa, 

transcribed in a clockwise direction on the E. coli chromosome. This gene is 

regulated by two different promoters, a P1 promoter, under the control of σS and 

an upstream P2 promoter, controlled by σD (Fig. 2). Moreover, bolA mRNA 

initiated by P2 is always detected along bacterial growth, in low amounts, being 

classified as a weak and constitutive promoter (Aldea et al., 1989; Lange and 

Hengge-Aronis, 1991). However, transcripts originated by P1 promoter are 

primarily detected when cells enter late-exponential phase of growth, beginning 

of stationary phase or upon imposition of stress conditions with a concomitant 

decrease of bolAp2 mRNA levels (Aldea et al., 1989). This observation gave rise to 

an hypothesis of promoter occlusion, stating that the physical interaction of the 

transcription machinery by σS at the bolA1p promoter, could interfere with the 

ability of RNA polymerase to either interact or proceed from bolA2p (Santos et al., 

1999).   

 

 

 

 

 

 

 

 

Figure 1. BolA protein structure. 

2DHM PDB was taken from 

http://www.pdb.org/ and the 

cartoon picture created using pymol 

evaluation software.  

http://www.pdb.org/


CHAPTER 1 

24 

 

 

 

 

 

 

 

 

 

Figure 2. bolA1p (P1) promoter is mainly regulated by the S transcription factor and induced in 

stationary phase and stress conditions. bolA2p (P2) promoter is 70-dependent and is constitutively 

expressed. OmpR, H-NS, and CRP-cAMP downregulate while ppGpp upregultes bolA transcription. 

Both ribonuclease III and Hfq stabilize bolA1p transcript. Question marks indicate regions of 

interaction or cut yet to be confirmed. 
 

P1 promoter is growth phase and growth rate regulated and contains a gearbox 

element characteristic of several other structural genes, some of which are also 

induced in stationary phase. These type of promoters are induced inversely to the 

growth rate (Aldea et al., 1989). Additionally, it was also observed that the bolA 

P1 promoter, similarly to rpoS (encoding σS) can be downregulated by cAMP 

levels (Lange and Hengge-Aronis, 1991). At the transcriptional level, ribonuclease 

III has also an important role in the regulation of the expression of the bolA gene 

(Freire et al., 2006a; Santos et al., 1997). RNase III is a double-stranded 

endoribonuclease widely distributed among prokaryotic and eukaryotic 

organisms. Moreover, it is encoded by the rnc gene, and is active as a 52 kDa 

homodimer (Arraiano et al., 2010). RNase III is described as responsible for rpoS 

mRNA regulation, acting as modulator of S levels in glucose starvation, ensuring 

σS normal levels of expression (Freire et al., 2006a; Santos et al., 1997). Since 

RNase III regulates σS levels, it indirectly regulates the levels of bolA mRNA. 

Another factor controlling bolA mRNA is polyadenylation, which inversely 

correlates with bacterial growth rate (Jasiecki and Wegrzyn, 2003), and reduces 
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RssB-mediated ClpXP σS proteolysis, increasing RpoS protein levels, thus 

contributing for the transcription of σS dependent genes like bolA (Santos et al., 

2006). Additionally, Yamamoto and co-workers, saw that bolA1p is negatively 

regulated in vitro by phosphor-OmpR (Yamamoto, 2000). 

At the post-transcriptional level, under carbon starvation, RNase III is also 

involved in the bolA1p stability. The bolA1p mRNA is induced nine fold in a wt 

strain while in an rnc mutant strain is fourfold induced, showing a decrease in 

bolA1p RNA in the absence of RNase III (Freire et al., 2006a). It has been shown 

that the stationary phase messengers such as rpoS and bolA are polyadenylated 

(Cao and Sarkar, 1997). Therefore, polyadenylation probably interferes in their 

post-transcriptional control. 

 

BolA, a stress response effector protein 

Similarly to rpoS, bolA induced gene expression occurs at the transition to 

stationary phase related to the decrease in cells growth rate, but also in 

exponential phase after imposition of virtually any stress condition (Aldea et al., 

1989; Lange and Hengge-Aronis, 1991; Santos et al., 1999). 

In all stress trials developed, BolA was overexpressed and its cellular effects were 

noticeable, in spite of some differences. Sudden carbon starvation and increased 

osmolarity, respectively, resulted in about 17-fold and 22-fold increase in mRNA 

levels derived from bolA1p 1 h after stress imposition on exponential phase of 

growth (more than three and fourfold of what happened in stationary phase). A 

threefold increase of bolA1p mRNA levels is registered in response to both heat 

shock and acidic stress. Heat shock induction of bolA1p is immediate (maximum 

after 15 min), and mRNA levels reduction along time relate to significant increase 

in optical densities and moderate recovery in viabilities (possibly due to favoring 

elongation to division). The acid induction of bolA1p expression is more gradual, 

and while cells are able to divide, their growth rate never resumes the initial. In 
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contrast, the bolA1p mRNA gradual increase, up to eight times, 2 hours after the 

onset of H2O2 oxidative stress, and inhibits both growth and viabilities (Santos et 

al., 1999). bolA1p stress induction overrides the normal regulation imposed by 

growth rate, which is strictly the result of σS-directed transcription. In fact, there 

is differential dependence on σS for induction of bolA1p mRNA levels under 

different stress conditions, and certain basal stress response operate in the 

absence of σS. The stress-dependent activation of bolA1p should confer E. coli 

Gram-negative bacteria protection against a variety of stresses, based on the 

reduction of surface area exposed to damaging agents while decreasing the 

surface to volume ratio and promoting biofilm formation (Santos et al., 1999). 

 

BolA “MORPHOGENETIC DETERMINISM”  

BolA effects are pleiotropic, but a special interest goes to cell wall related 

mechanisms (Fig. 3), since bacteria morphology is profoundly affected by an 

increase in bolA levels (Fig. 4).  

BolA can act over elongation, peptidoglycan synthesis and maturation or cell 

division mechanisms, or even regulating cytosqueletal elements. 

 

 

 

 

 

 

 

   

 

 

 

Figure 3. Gram-negative bacteria membrane and cell wall organization with particular incidence on 

the sacculus polymerization (right) taken from http://classes.midlandstech.edu/.  

http://classes.midlandstech.edu/
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Peptidoglycan synthesis and properties  

Peptidoglycan is a vital bacterial macromolecule, around 6 nm thick (Matias et al., 

2003), that provides a structure that maintains cell shape, mediating interactions 

and regulating exchanges between the internal cellular media and their 

environment (Hughes et al., 1975; Vollmer et al., 2008). It constitutes the sacculus, 

that presents a flexibility due to the ability of changing cell length while 

maintaining  the diameter virtually unaltered (van den Bogaart et al., 2007). Even 

though murein contains and maintains bacterial size and shape, those are not 

merely determined based on the chemical composition or structure of the 

peptidoglycan polymer, but depends also on cellular morphogenetic apparatus 

since restoration of murein in spheroplasts leads to the formation of round sacculi 

(Schwarz and Leutgeb, 1971; Weidel et al., 1960). Polar murein is not differentially 

composed from the lateral one, even though it is metabolically inert and 

significantly less deformable, eventually due to predominant alignment of the 

(more flexible) peptides in the direction of the long axis with the (more rigid) 

glycan strands perpendicularly arranged (Boulbitch et al., 2000). When septation 

was prevented, patches of stable murein were also observed at regular intervals, 

corresponding to future poles of filaments (Rothfield, 2003). Polar inert 

peptidoglycan influences outer membrane proteins mobility, the free movement 

of non-reacting protein species, and secretion generating asymmetries (den 

Blaauwen et al., 2008).  

Figure 4. Escherichia coli bolA 

overexpression strain (MG1655 

derived with pMAK580) 

morphologies due to increasing 

intracellular levels of BolA 

protein. Initially BolA induces 

regular sized sphericall shapes, 

which enlarge as levels increase. 

The dark bars represent 5 µm. 
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During exponential growth, there is a fast and progressive enrichment of the 

murein sacculus in newly synthesized trimers and dimers of lipoprotein-bound 

muropeptides at the expense of the respective monomers, at the tetra to tripeptide 

side chains and not at the oligosaccharide glycan chains of the peptidoglycan 

precursors (Burman and Park, 1983). Particularly in resting cells, and 

progressively when cultures are reaching stationary phase, murein globally 

changes its structure becoming hypercross-linked and richer in covalently bound 

lipoprotein, while reducing the mean length of the glycan chains. These 

modifications may provide extra resistance, hardening the damaging agents 

entering into cells, and the eventual peptidoglycan hydrolysis, although they 

might also complicate the cell wall metabolism and thus require structural 

changes to occur when in transition to active growth (Pisabarro et al., 1985). 

Duplication of bacterial cells is quite demanding in terms of processes that need 

to occur in synchrony. Before septation, cells seem to require a minimum of 

previous lateral elongation, a process which demands not only membrane and 

cytosqueleton expansion and rearrangements, but also extension of the murein 

sacculus (den Blaauwen et al., 2008; Donachie and Begg, 1989; Grover et al., 1977). 

In fact, when rod cells are imposed spherical forms (using rodA or pbpA sensitive 

mutants) they maintain cell length and the ratio of DNA/mass, in a way that cocci 

increase both their volume and DNA contents four to six times, thus suggesting a 

minimum cell length for nucleoid separation (Donachie and Begg, 1989). The 

peptidoglycan extension occurs by addition and polymerization, into the pre-

existent sacculus, of new alternating N-acetylglucosamine (GlcNAc) and N-

acetylmuramic acid (MurNAc) nucleotide sugar-linked – 

disaccharidepentapeptide units - precursor strands, that later on become 

interconnected by tetrapeptides (through β-14 bonds) derived from the 

MurNAc residues (Fig.3).  
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Polymerization of the peptidoglycan precursors is operated by transglycosylases 

– the High Molecular Weight (HMW) PBPs PBP1a, PBP1b, PBP1c, PBP2 and PBP3 

- and cross-linking is catalysed by transpeptidases (Ghuysen, 1991; Holtje, 1998; 

Sauvage et al., 2008). At least the remodelling of the murein sacullus is mediated 

by carboxypeptidases (which remove the terminal D-ala residues from the 

pentapeptide) and endopeptidases (which hydrolyse the glycan chains’ cross-

links) and eventually hydrolases like amidases and LD-carboxypeptidases 

(Holtje, 1998; Nicholas et al., 2003; Priyadarshini et al., 2007; Templin, 2004). 

 

Cell wall elongation progress 

Bacterial elongation occurs by simultaneous incorporation of precursors in small 

number - since some of the components of the elongation machinery are scarce 

(20 to 40 molecules of PBP2 per cell) (Den Blaauwen et al., 2003; Spratt, 1975; 

Spratt, 1977). They locate along MreB filaments (interacting with MreC and D 

(Dye et al., 2005; Figge et al., 2004)) and FtsZ spirals (Daniel and Errington, 2003; 

den Blaauwen et al., 2008). Synthesis occurs by insertion of cross-linked glycan 

strands (Bertsche et al., 2005; Born et al., 2006; den Blaauwen et al., 2008) thus 

creating “mosaic structures made up of (…) all-new and all-old peptidoglycan” 

with fast turn-over (De Pedro et al., 2003a; den Blaauwen et al., 2008; Koch and 

De Pedro, 2006). Elongation may either be a continuous process along cell cycle or 

stall while PBP2 is relocated to the constriction site helping in the septation 

process, in a way that cell poles would be synthesized both by lateral and septal 

mode, given that its blockage inhibits peptidoglycan synthesis in a constant value 

(60%). Blocking PBP3 in turn reflects accordingly to the constriction processes: 

about 35%, periodically (Thibessard et al., 2002; Wientjes and Nanninga, 1991; 

Zapun et al., 2008). 

 

 



CHAPTER 1 

30 

 

The hierarchical, highly regulated and time controlled divisional process 

Upon polymerization of the Z-ring (see below “The bacterial cytosqueleton”), 

several other proteins concur to the midcell contributing to the septation process. 

This is a very well defined hierarchic, constitutionally interdependent and time 

controlled event (Fig. 5).  

Initially FtsZ filaments interact with FtsA (47KDa) in a short conserved C-

terminal end site that overlaps the one of ZipA where they both modulate the 

protofilaments stability by tethering them to the membrane (Addinall and 

Lutkenhaus, 1996; den Blaauwen et al., 2008; Hale and de Boer, 1999; Lowe et al., 

2004; Pichoff and Lutkenhaus, 2007). ZapA or YshA is other 10KDa non-essential 

protein that interacts with FtsZ rendering the filaments more stable and 

enhancing bundle (Gueiros-Filho and Losick, 2002). Specifically in high 

osmolarity conditions FtsZ-ring requires the interaction with the ABC transporter 

FtsE/X to be assembled (Corbin et al., 2007; Schmidt et al., 2004). S-

adenosylmethionine transferase (SAM) is also essential to the divisome assembly, 

eventually due to the inability of FtsQ, W, I and/or N to locate properly at the Z-

ring (Wang et al., 2005). FtsK is the first enzyme to be recruited, after the FtsZ ring 

is polymerized. It is a multifunctional and multidomain protein whose 

cytoplasmic C-terminal domain is involved in DNA segregation and N-terminal 

transmembrane domain is responsible for cell division (Bigot et al., 2007; Dorazi 

and Dewar, 2000). Although ftsK null mutants are compensated when FtsA or 

FtsQ are overexpressed, they tend to generate multiseptated filament cells 

suggesting an additional role in final closure of the newly formed poles (Geissler 

and Margolin, 2005). In addition, the deletion of dacA which encodes for PBP5 can 

also reverse to rods the filaments formed due to a single mutation in one of the 

transmembrane helices of  ftsK44, while its increase induces the formation of oval 

structures sequencially contricted along the filament cells (Begg et al., 1995). 
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Figure 5. Schematic representation of the assembly of the components of the divisome. The boxed 

proteins represent subcomplexes: (a) the Z-ring with FtsZ-FtsA-ZipA-ZapA, which interacts with 

FtsE/X; (b) the subcomplex FtsQLB, which contains a heterodimer of FtsL and FtsB; (c) the subcomplex 

FtsW-PBP3; (d) PBP1B and FtsN interact with PBP3 and could be part of the subcomplex FtsW-PBP3. 

MurG, PBP2 and PBP5, AmiC and EnvC are located at the division and are part of the cell division 

machinery. Dashed lines: interaction detected using a two-hybrid system; Solid lines: interactions 

detected using different techniques. Copied from (den Blaauwen et al., 2008) by courtesy of Benoît 

Wolff. 

FtsQ, L and B are membrane proteins bearing a small N-terminal intracellular 

region connected to the C-terminal periplasmic domain through a 

transmembrane helix (Chen et al., 2002; D'Ulisse et al., 2007; Scheffers et al., 2007; 

van den Ent et al., 2008). FtsQ interacts with PBP3, FtsW and FtsN (D'Ulisse et al., 

2007; Di Lallo et al., 2003; Karimova et al., 2005) and is furthermore able to back 

recruit FtsK, making it a good candidate for the regulation of new pole synthesis 

(Goehring et al., 2005). FtsL and B complex is enough to recruit FtsW and PBP3 to 

the septasome. It thus seems that later division proteins group into complexes 

previously to their final arrangement, perhaps allowing to overcome eventual 

flaws and ensuring survival (Goehring et al., 2006). Similarly to the elongation 

machinery, these complexes are limited in numbers- there are about 20-40 FtsQ 

and 100 PBP3 molecules per cell (den Blaauwen et al., 2008). 
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PBP3 is targeted to the septa by its first 56 N-terminal amino acid residues shown 

to interact with FtsW, the first 70 with FtsQ, the periplasmic non-catalitic module 

with FtsL, apart from the C-terminal penicillin-binding transpeptidase activity 

module (Adam et al., 1997; Karimova et al., 2005; Piette et al., 2004). This protein 

is additionally responsible for the localization of PBP1b at the division site 

independently of its activity and the complex interacts with FtsN (Derouaux et 

al., 2008; Karimova et al., 2005). PBP1c then interacts with PBP3 and PBP1b, which 

also interacts with FtsW (Derouaux et al., 2008; Schiffer and Holtje, 1999). Finally, 

MipA, a structural scaffolding protein for murein, interacts with PBP1b and MltA, 

an outer membrane lipoprotein and lytic transglycosylase that hydrolyses murein 

(Lommatzsch et al., 1997); and MgtA, a monofunctional peptidoglycan 

glycosyltransferase that catalyzes glycan chain elongation of the bacterial cell 

wall, interacts with PBP3, FtsW, and FtsN (Derouaux et al., 2008). In terms of 

localization, all the PBP1 bifunctional transglycosylase-transpeptidase family of 

proteins seem to participate indifferently in the lateral and septal murein 

synthesis (Bertsche et al., 2006).  

AmiC, a periplasmic N-acetylmuramyl-L-alanine amidase, and EnvC, a murein 

hydrolase, which locate at the Z-ring during constriction, are suggested to be 

responsible for final cleavage of the septal peptidoglycan, consequentially 

separating the daughter cells. At least AmiC requires FtsN for proper localization 

and the enzymatic performance (Bernhardt and de Boer, 2004); (Bernhardt and de 

Boer, 2003; Heidrich et al., 2001).  

The peptidoglycan and some of the respective division machinery seem to be 

essential for bacterial cell growth even in cells known to have no cell wall like L-

form-like E. coli and Chlamidial species (Joseleau-Petit et al., 2007; McCoy and 

Maurelli, 2006). Cell division is truly inseparable of cell wall synthesis at mid-

cell/future poles (Joseleau-Petit et al., 2007). Besides the peptidoglycan and 

membrane, the outer membrane is also required to constrict and separate in order 
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to finalize the division from mother to daughter cells. For that to occur all five of 

the Tol-Pal system proteins concur, transiently accumulating from dispersed to 

the mid-cell during constriction, requiring FtsN for such location (Gerding et al., 

2007). 

 

Cell wall maturation/plasticity/protection by Low Molecular Weight PBPs 

The probable trigger for the septation mode of peptidoglycan synthesis is the 

increase in the amount of tripeptides in the sacculus, through an increase of DD-

carboxypeptidation by PBP5 and/or PBP6. Spherical cells may arise from this 

increase simply due to the weakening of the structure in a way that the cell 

cannot endure a rod shape. Supporting this is the fluctuation of the levels of 

carboxypeptidase activity, preakly increasing at the constriction period of the cell 

cycle. An increase in carboxypeptidase activities and decrease in pentapeptide 

precursor levels of murein could stimulate cross-linking by PBP3 instead of PBP2 

as seen immediately before and during cell division (Mirelman et al., 1977; 

Mirelman et al., 1978). Indeed, deletion of PBP5 produces the accumulation of 

muropeptides with pentapeptide side-chains; and neither BolA absence or 

overexpression show changes in murein ultrastructure from the parental strains 

(Santos et al., 2002). On another hand, increased levels of PBP5 or PBP6 leads to 

similar phenotype as increased amount of tripeptides through addition of D-

cycloserine. Actually, the overexpression of either PBP5 or PBP6, but not PBP4, 

can reverse the effects of a specific temperature-sensitive allele of PBP3 (Begg et 

al., 1990), and PBP5 overexpression converts rods into spheres (Markiewicz et al., 

1982). In fact, the location of inert murein to the polar caps seems to be dependent 

on PBP5. Upon blocking cell division, dacA defective Escherichia coli strains exhibit 

a branching phenotype where peptidoglycan regions of constrained synthesis, 

turnover, and protein mobility appear throughout the side-walls of the cells, and 

the poles often split in half due to the emergence of active synthesis at the pole 
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sites (de Pedro et al., 2003b). Additionally, the loss of PBP5, similarly to the 

increase in β–lactamases expression, creates defects in biofilm formation and 

bacterial adhesion properties (Gallant et al., 2005). 

 Although a lot of studies have been done, the low molecular weight (LMW) PBPs 

remain a mystery. They are in highest cellular copy number PBPs (Dougherty et 

al., 1996), nevertheless single or global deletion leads to viable similarly growing 

cultures and only PBP5 of all eight LMW PBPs has a visible phenotype (Denome 

et al., 1999). PBP4 seems to act as a limited substrate endopeptidase (Korat et al., 

1991; Meberg et al., 2004; Mottl and Keck, 1991) and its overexpression induces 

AmpC (Mottl et al., 1992) 

 

BolA regulation over the DD-carboxypeptidases PBP5 and PBP6 

PBP5 and PBP6 share 65% identity and the peptidoglycan remodeling type of 

activity, although the second presents about 4 times less specific activity 

(Amanuma and Strominger, 1980). In addition, overexpression of either of them 

can reverse the effects of a specific temperature-sensitive allele of PBP3, again 

showing to perform similar functions in vivo (Begg et al., 1990). However, this two 

proteins do not functionally overlap on the basis of their carboxypeptidase 

activities, or on their penicillin binding abilities (Ghosh and Young, 2003); and 

overexpression of one or the other leads to completely different results: high 

levels of PBP5 originate spheres out of rods (Markiewicz et al., 1982) and the same 

is not seen for PBP6 (van der Linden et al., 1992). On the other hand, the latter 

was suggested to stabilize by cross-linking (van der Linden et al., 1992) the 

peptidoglycan of nongrowing cells (Glauner and Holtje, 1990) and aminoacid 

starved cells (Goodell and Tomasz, 1980), in analogy to the Bacillus subtilis 

sporulation-specific PBP5a (PBP5*) (Buchanan and Ling, 1992; Todd et al., 1985). 

An increase of the dacA (PBP5) and dacC (PBP6) mRNA levels has been 

established when bolA levels are increased(Santos et al., 2002) and a strain where 
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bolA gene was deleted seemed to show a decrease in PBP5 or PBP6 protein levels 

(Aldea et al., 1989).  

 

The bacterial cytosqueleton 

Even though bacteria lack organelles, the bacterial cytosqueleton emerges as an 

absolute necessity, since all functions have to be performed in a limited and 

accelerated time scale. Basic cellular functions are ensured efficiently by gathering 

enzymes that participate in specific traits, in a way that mimics 

compartmentalization, thus enhancing products formation (Moller-Jensen and 

Lowe, 2005). Cytosqueleton molecules and fibres are thus not only essential for 

conferring cells the mechanical support and resistance, create orientation/polar 

discrimination and determine and maintain their shape, but also may be the 

means to locate and connect different molecules in their functional dynamics. The 

most obvious processes in which cytosqueleton elements are tightly implicated 

are DNA segregation and cell division. The cytosqueleton molecules that have 

been described so far, are being unravelled to present a flexible, highly dynamical 

helical pattern of polymerization, when not limited by space constraints (Moller-

Jensen and Lowe, 2005).  

FtsZ is a 37-43 kDa protein and has around 5000 copies per cell (Pla et al., 1991). It 

is a microtubule-like protein forming essential filaments for cell division, 

localizing at the midcell for the cytokinetic Z-ring formation during septation 

where 30-40% of this molecules form straight filaments hydrolysing GTP. They 

can also form lesser pronounced curved helical protofilaments hydrolysing GDP 

(Lu et al., 2000). In fact, FtsZ polymer is highly dynamic presenting a turn-over 

time constant of about 30 sec and an exchange rate between the membrane 

polymerized form and the cytoplasmic pool of 8-10 sec (Stricker et al., 2002) 

(Anderson et al., 2004). A conformational change model has been proposed by 

Erickson, 1997 according to which GTP hydrolysis of the FtsZ filaments to the 
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GDP form and the consequent transition from straight to curved structures would 

induce the polymer to bend and thus constrict together with the bound 

membrane (Erickson, 1997). The FtsZ-ring assembles from about 30 

protofilaments subunits overlapped in ~120 nm fibre structures (Chen and 

Erickson, 2005; Li et al., 2007) and is responsible for membrane constriction when 

cells are dividing and as a trigger for division proteins assembly orderly: FtsZ, 

FtsA/ZipA, FtsK, FtsQ, FtsL, FtsB, FtsW, FtsI (PBP3), and FtsN into the septasome 

or divisome (den Blaauwen et al., 2008). This sequential and interdependent 

process is also negatively regulated by several different elements such as the 19 

kDa SulA protein that responds to DNA damage binding the T7-loop catalytic 

pocket preventing polymerization until all DNA is repaired; Min CDE(or DivIVA 

in Bacillus subtilis) system that oscillates from pole to pole, every 20-50 sec, thus 

preventing septation to occur at the poles (Corbin et al., 2002; Raskin and de Boer, 

1999); nucleoid occlusion by Noc non-specific DNA binding protein that prevents 

septation to cut DNA; and the Bacillus subtilis non-essential inner-membrane 

62kDa protein EzrA that inhibits aberrant ring formation (Levin et al., 1999; 

Moller-Jensen and Lowe, 2005).  

In E. coli, the mreB gene is in an operon composed by 3 genes: mreB, mreC and 

mreD. This operon is expressed as monocistronic mreB and polycistronic mreBCD 

mRNA (Freire et al., 2009; Wachi et al., 2006). E.coli MreB, as Baccilus subtilis Mbl 

demonstrated to have a turn-over rate of 8 min (Carballido-Lopez and Errington, 

2003); MreB and ParM form the actin-like cytosqueleton in bacteria. The first two 

molecules develop into 51/55 Aº spaced protofilaments that distort into non-polar 

helices spiralling in networks inside the cells, immediately below the membranes 

(Jones et al., 2001; Lowe et al., 2004). These molecules would be enough to confer 

the shape, determine the dimensions, and promote the rigidity of the respective 

cells, by their own resistance and/or continuous assembly against the membranes 

(Erickson, 2001; M Doi, 1988 ). Even though in B. sutilis Mlc and MreB 
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complement to control width and linear axis dimensions respectively, MreB is 

alone in its task to maintain cell shape determination in E. coli (Jones et al., 2001). 

MreB protein requires the membrane and periplasmic dimer MreC, the integral 

membrane MreD and RodA proteins (but not PBP2) to localize correctly (Esue et 

al., 2005; Karczmarek et al., 2007; Kruse et al., 2005; van den Ent et al., 2001; van 

den Ent et al., 2006).  Moreover  MreB as Mlc actively segregate the chromosomes 

(Kruse et al., 2003), eventually through the interaction with SetB (a sugar 

membrane transport protein) (Espeli et al., 2003; Liu JY, 1999), localizing origins 

of replication towards opposite cell halves (Gitai Z, 2004 ; Soufo and Graumann, 

2003) [like ParM which requires ATP and is regulated by ParR (Moller-Jensen et 

al., 2002; Moller-Jensen et al., 2003)] and generate cell polarity by spacially 

arranging polar proteins (Gitai Z, 2004 ). MreB seems to achieve equal cell 

partition by duplication and segregation to opposite poles of a doublet ring 

structure formed in both halves of dividing cells in a previous and independent 

even of cytokinesis(Vats and Rothfield, 2007). MreB seems to be recruited to 

induce proper placement of the murein biosynthetic machinery and may be 

transiently assembled or work as a permanent scaffold for elongation (Osborn 

and Rothfield, 2007). Finally, crescentin is a recently studied intermediate 

filaments-like bacterial protein that polymerizes into 10nm thick filaments, 

specifically localizes in the concave faced cytoplasm of Caulobacter (Ausmees, 

2006). 

Apart from the commonly considered cytosqueleton elements, another class has 

been determined of “cytomotive elements” designated by WACA filaments – 

Walker A cytosqueletal ATPases – proteins that self-polymerize but 

simultaneously adhere to membrane surfaces or DNA, hydrolyzing ATP, and 

promoting cellular positioning (Lowe and Amos, 2009). MinD binds and 

polymerizes on membranes aided by the MinE activator to increase the MinC 

inhibitor in the poles; ParABS is a type I plasmid partitioning system similar to 
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the actin-like type II, ParMRC for which ParA is represents the WACA; Soj is the 

chromosomal version of ParA binding unspecifically to DNA, moving from the 

condensed part of the nucleoid to the opposite side, aided by the activator Spo0J; 

ParF forms filaments in the absence of surfaces together with the adaptor ParG 

(Lowe and Amos, 2009). 

 

BolA and the cytosqueleton elements  

As mentioned above, to produce round cells when overexpressed, bolA requires 

the presence of an active ftsZ gene product (Aldea et al., 1988). A second 

important factor in E. coli cell division and shape determination is MreB. MreB 

forms helical structures underneath the cytoplasmic membranes responsible for 

maintaining the typical rod shape of E. coli  (Doi et al., 1988). A defect in mreB 

gene causes a partially similar phenotype to bolA overexpression, round cells. The 

similar phenotype caused by bolA lead to a recent study where it was showed that 

bolA acts as a regulator of mreB (Freire et al., 2009). Strong evidences were 

observed regarding bolA preventing cellular elongation when certain key factors 

were inhibited, like the PBP2. MreB polymers forming the cytosqueleton are 

visible when bolA is present at basal levels in the cell. However, when bolA is 

overexpressed, the filaments are detected but spread in the round shape cell, 

showing the effect of bolA in the filaments spatial organization. That may be the 

means by which BolA induces the loss of E. coli rod shape to sphere (Fig. 6). 

Moreover, bolA was proven to be a transcription factor directly interacting with 

mreBCD promoters. Upon bolA overexpression mreBCD operon transcription 

shifts to about 64% of its normal expression (Freire et al., 2009). 
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Figure 6. Schematic representation of the shape change induced by BolA along the cultures growth. In 

the transition to stationary phase BolA levels increase significantly and mreB is decreased in turn. As 

both of this protein levels are modulated rod cells become spherical.  

 

PERMEABILITY MODULATION AND BIOFILM DEVELOPMENT AS 

STRESS ADAPTATION MECHANISMS 

Biofilms consist of complex highly organized and dynamic bacterial communities 

composed of specialized individuals even when issued from a single colony. This 

explains why they sometimes show altruistic behaviour that would not be 

expected in single cell individuals (Bayles, 2007). When facing challenges, 

damaged cells induce autolysis [a bacterial analogue mechanism to the 

Programmed Cell Death in eukaryotes (Lewis, 2000)] thus eliminating 

competitors for nutrient availability and releasing their intracellular contents, 

providing a new pool of macromolecules to their surroundings. Apart from the 

importance of DNA in creating the adherent structure that characterizes biofilms 

(Whitchurch et al., 2002), it was acknowledged to be orderly positioned  within 

those structures revealing an organization in the bacterial death (again similarly 

to the apoptosis in eukaryotes) within those communities (Allesen-Holm et al., 

2006). A minimum amount of cell death (less than 1% within the first 24 hours) 

provides the necessary amount of nucleic acids for the population stabilization 

(Rice et al., 2007). 

Biofilm development is a phenomena with major medical and economic 

consequences (Bayles, 2007). Biofilm formation is usually associated with altered 

environments, increasing the resistance of cells to extreme conditions, thus 

enduring toxic substances, like antibiotics and host immune defence products 
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(Vieira 2004). As stated above, bolA is a stress induced gene in E. coli, changing 

the morphology to shorter and rounder cells (Freire et al., 2009; Lange and 

Hengge-Aronis, 1991). Surprisingly, when biofilm formation was analysed in a 

bolA mutant strain, it was observed a decrease in biofilm formation during stress 

conditions. Moreover, particularly in nutrient limitation conditions, and oxidative 

stress, the presence of bolA increased biofilm thickness around fivefold compared 

to the bolA mutant strain (Fig. 7), strengthening the role of bolA in the cell defence 

mechanisms against stress (Vieira 2004). 

The bacteria outer membrane (OM) is a very important barrier against mechanical 

or chemical stresses and external factors that bacteria are exposed to. The Gram-

negative OM is composed by lipid bilayers with little permeability for 

hydrophilic solutes. In its composition, there are channel forming proteins 

allowing the passage of nutrients and expulsion of waste. OmpF and OmpC are 

the two major constituents of E. coli OM, being OmpF a more permeable porin 

than OmpC. When facing hostile conditions, bacteria produce more OmpC and 

repress OmpF expression (Freire et al., 2006b; Nikaido et al., 1983). This difference 

in the balance of expression of the different OM channels can be related to BolA. 

When bolA is highly expressed, cells are more resistant to detergents and 

antibiotics, process which relates to the composition of the OM. This may help to 

explain how bolA potentially contributes to the protection against external injuries 

and relates to its induction of biofilm formation (Freire et al., 2006b).  

 

 

 

 

 

 

Figure 7. Biofilm induction by BolA overexpression (Vieira et al., 2004).  
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SYNOPSIS AND FUTURE PERSPECTIVES 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. BolA molecular interaction synopsis board. Continuous arrows indicate published results; 

dashed lines purpose regulatory effects not yet evaluated but inferred by related effects. Most “BolA 

effectors” relate to cell wall metabolism/maintenance/control systems. 

 

BolA homologues  

BolA-like proteins are widely conserved from prokaryotes to eukaryotes (Huynen 

et al., 2005). They seem to be involved in cell proliferation or cell-cycle regulation, 

but their molecular function is still unknown. The overall topology of a mouse 

BolA-like protein is similar to the class II KH fold, except for the absence of the 

usually well conserved GXXG loop (Kasai et al., 2004). NMR structures have been 

made public in the NCBI site for PDBs. Interestingly, all the conserved residues in 

the BolA-like proteins are assembled on the one side of the protein (Kasai et al., 

2004). The three-dimensional structures of BolA-like proteins from Mus musculus 

and Xanthomonas campestris pv. campestris show similarities to nucleic acid-

binding proteins (Chin et al., 2005; Kasai et al., 2004). Escherichia coli protein also 

exhibits a helix-turn-helix motif that should correspond to the DNA-binding 
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domain, through which it interacts and transcriptionally regulates different genes 

(Aldea et al., 1989; Freire et al., 2009; Guinote et al., 2010). It can already be found 

described amongst several other transcriptional factors and sigma-factors 

networks of interaction in E. coli and even other non-redundant bacterial genomes 

(Martinez-Antonio et al., 2008) (Fig. 8).  

This E. coli 13.5 kDa morphogene protein, encoded from the 10 min region of the 

genetic map, induces size reduction and spherical morphology on rod shaped 

bacteria. Expressed under stress conditions, reducing surface area of cells, 

inducing biofilm formation, changing the outer membrane properties, 

accessibility and sensitivity towards detergents and antibiotics and modulating 

permeability, eventually through modulation of OmpF/OmpC balance (Aldea et 

al., 1989) (Vieira et al., 2004) (Freire et al., 2006b), bolA is suggested to be involved 

in protection and resistance mechanisms promotion. 

This nucleic acid binding transcriptional regulator protein, seems to be implicated 

in the switching between cell elongation and septation during the cell cycle. This 

action seems to occur at least through the transcriptional activation of cell wall 

hydrolytic DD-carboxypeptidases Penicillin-Binding Proteins PBP5 and PBP6 and 

possibly AmpC, concerted with the downregulation of the mreB cytosqueleton 

element (Freire et al., 2009; Santos et al., 2002).  

The Schizosaccharomyces pombe UV-inducible uvi31+ gene which encodes a 12 kDa 

protein with 57% amino acid sequence similarity to Escherichia coli BolA protein, 

has its expression cell cycle–regulated and growth phase–dependent (Kim et al., 

1997). Furthermore, the bolA yeast homologue uvi31+ who accelerates spore 

germination, decreases proliferation rate, enhances cell size in vegetative growth, 

controls the correct septum formation and cytokinesis, confers UV resistance and 

is eventually responsible for the control of cell division, especially on resumption 

from cell cycle arrest (Kim et al., 2002). Interestingly, while the deletion mutant 

exhibited various anomalies in septation and cytokinesis the overexpression of  
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Figure 8. Core transcriptional regulatory network of E. coli. Blue and pink nodes represent genes 

encoding for TFs and sigma factors, respectively; each node label is accompanied with its connectivity 

showing the number of regulatory targets. Edges represent cross-regulatory interactions (green for 

activation, red for repression, blue for dual interactions and yellow for sigma transcription), whereas 

loops represent transcriptional autoregulations. Specific subnetworks, such as the one associated with 

the regulation of carbon sources, are delineated with dashed lines to distinguish different regulatory 

modules. This figure was generated using Cytoscape and published at (Martinez-Antonio et al., 2008). 

 

uvi31+ did not produce significant changes in cell proliferation or division (Kim et 

al., 2002). 

Alternatively, BolA has been predicted to function as a reductase through 

interaction with the prokaryotic genomes neighbours mono-thiol glutaredoxins 

(which would provide it reducing equivalents to the evolutionarily conserved 

cysteines’ loss) and thus be responsible for reducing organic peroxides (like it’s 
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structurally more closely related OsmC) (Huynen et al., 2005). In addition, strong 

phylogenetic connection is observed for genes encoding BolA and monothiol 

glutathioneredoxins as they are genome co-occurrent: either both BolA-like 

proteins and CGFS-type Grx are present or absent in most organisms (Couturier 

et al., 2009; Huynen et al., 2005). Accordingly, genome-wide yeast two-hybrid 

assays and proteome-wide FLAG- and TAP-tag affinity purification studies have 

identified a physical interaction between cytosolic monothiol Grxs and BolA-like 

proteins in E. coli, yeast and Drosophila melanogaster (Butland et al., 2005; Giot et 

al., 2003; Ho et al., 2002; Ito et al., 2000; Krogan et al., 2006). Recently yeast Grx3 

and Grx4 were determined to directly interact  with the BolA-like protein Fra2 

(Kumanovics et al., 2008) and to be involved in the intracellular Fe signaling, 

through the formation of Fe-S cluster binding regulatory complex where the [2Fe-

2S]-containing heterodimers show different cluster coordination to the [2Fe-2S]- 

bridged Grx3 or Grx4 homodimers reconstituted in the absence of Fra2 (Li et al., 

2009). Initial characterization of a bolA homologue in Pseudomonas fluorescens has 

suggested a link to sulphur metabolism, but the deletion phenotype could only be 

complemented through simultaneous addition of the 2 downstream (out of the 7) 

genes of the operon, encoding a putative sulphur reductase and disulphide 

isomerase, respectively. Thus, more is needed to understand the BolA-like 

proteins functions in this organism (Koch and Nybroe, 2006). 

Moreover, not only Escherichia coli but several Proteobacterial genomes, have been 

determined to harbor two genes encoding BolA type proteins (Tatusov et al., 

2001). However, functional studies have been carried out only for the E. coli BolA 

protein. In this work, we have analyzed the yrbA Escherichia coli homologue, 

which was renamed of ibaG, for “induced by acid gene” (see 

http://www.ncbi.nlm.nih.gov/protein/ NP_417657.2, and Chapter 4 of this 

Dissertation) strengthening the idea of stress endurance by BolA-type proteins. 

 

http://www.ncbi.nlm.nih.gov/protein/%20NP_417657.2
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Function on persistence 

In the past century bacterial infections were the major reason of premature death. 

With vaccination, antibiotics appearance and the development of new generation 

synthetic drugs prognosis for most of the microbial infections strongly inverted 

from certain death. But apart from mechanisms that genetically define a 

microorganism’s ability to evade a particular antibiotics action, insights have 

arose into the aptitude microorganisms present of avoiding death due to random 

multi-external aggressions just by changing physiology or metabolism. Bacteria 

have been recognized, since the middle of the XXth century, to have the ability to 

“tolerate” or “persist” enduring strong environmental pressures, like antibiotics, 

in the absence of the genomic resistances, eventually through dormancy, without 

dividing (Bigger, 1944). This tolerance phenomenon, only termed in the 70s, does 

not occur due to specific antidrug mechanisms; instead, the ability to escape the 

lethality induced by the metabolism corrupters seems to rely on the “absence” of 

active metabolism in the cells – “if persisters are dormant and have little or no 

cell-wall synthesis, translation, or topoisomerase activity, when the antibiotics 

bind to their molecular targets they are nevertheless unable to corrupt their 

function (...) at the price of non-proliferation”(Lewis, 2007) (Fig.9).  

It is not regarded as the fittest but instead an altruistic behaviour where cells take 

longer to resume growth (1 to 1,5 hours more) but can propagate their genetic 

background by “escaping” different kinds of lethal factors (Balaban et al., 2004).  

Cells in culture do not increase their level of resistance to lethal substances, in 

fact, bulk cells are highly susceptible to antibiotics and speedily killed when 

exposed; nevertheless a minor persister multidrug resistant subpopulation is able 

to evade those effects, and repopulate after drug clearance, in this way favouring 

chronic infection. The ability to form persister cell varies along the growth curve: 

it is reduced in the initial steps but increases until stationary phase cells to about 

1% of the population. This dependence on the bacterial physiological state was 
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confirmed by the inability to create persisters when cultures were diluted four 

times only reaching exponential phase of growth (Keren et al., 2004). Quorum 

sensing mechanisms did not seem to concur to this, since the use of spent growth 

medium (enriched of QS signalling molecules) did not lead to a persister cells 

enrichment (Lewis, 2007). This dynamics seems to rely on the inherent 

phenotypic heterogeneity of the bacterial populations, which may be dependent 

on “persister” protein levels accumulation, elicited by different environmental 

factors that affect the death process.  

Pursuit of genes responsible for persistence has proven misleading due to the 

overlapping functions of different genes/proteins, avoiding the detection in single 

gene deletion libraries (Baba et al., 2006; Hansen et al., 2008). 

Persister genes detected by deletion are generally global regulators –  dnaJ and 

dnaK (chaperones), apaH (diadenosine tetraphosphatase), surA (peptidyl-prolyl 

cis-trans isomerase), fis and hns (global regulators), hnr (response regulator of 

RpoS), dksA (transcriptional regulator of rRNA transcription), ygfA (5-formyl-

tetrahydrofolate cyclo-ligase), and yigB (flavin mononucleotide [FMN] 

phosphatase), the latter two not being global regulators but depleting cells in 

folate and FMN pools - once more, strengthening the idea of redundancy. Some 

genes that might contribute are rmf, a stationary phase inhibitor of translaction 

(Yoshida et al., 2002), sulA, an inhibitor of septation (Unoson and Wagner, 2008) 

and strong inducer of persister formation in a SOS pathway dependent way (Dorr 

et al.), carB, a central enzyme for pyrimidine and arginine biosynthetic pathways 

(Beaumont et al., 2009), and toxin-antitoxin (TA) loci like relBE, dinJ, yafQ, ygiU, 

mazEF, tisAB (Christensen and Gerdes, 2003; Christensen et al., 2003; Lewis), and 

hipA(B), that stops cell growth conferring drug tolerance (Correia et al., 2006). 

When considering the TA modules, persistence can be communicated among 

populations by plasmid transfer.  
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Figure 9. Mechanism of persister development and characteristics taken form 

http://img.medscape.com/. 

 

This dormant state may additionally explain the inability to grow most of the 

wild microbial populations – in the absence of certain recognized elements from 

their natural habitat, cells defend stalling growth and multiplication waiting for 

more familiar conditions (Lewis, 2007). 

 

Another line of study, probably corresponding to the same mechanism, only 

analysed in a different perspective, lead to the conclusion that Escherichia coli cells 

become nonculturable or sterile upon starvation or growth arrest, this is, they lost 

their ability to reproduce in (nutrient agar) plates as a result of nutrient depletion, 

low temperatures, high pressure, changes in pH or salinity (Colwell and Grimes, 

2000), as well as by induction of reduced peptidase activity due to mutations or 

addition of inhibitors of protein synthesis, while remaining individually 

structured and organized. Two alternative programming theories were proposed 

to explain such occurence: the formation of viable but nonculturable cells (VBNC) 

that originate intact dormant differentiated matured cells that become insensitive 

to the environment until it becomes favourable and only then resume activity - a 

process that would resemble spores differentiation awaiting for regrowth; or 

nonculturable senescent cells that have accumulated to much (free radical 

induced) damage leading to the production of aberrant proteins that become 

susceptible for oxidative attack and begin a programmed cell death, that will 

result in their fatality (Nystrom, 2003b; Nystrom, 2003c).  

 

Stasis induced cross-protection strongly relies on the expression of several genes 

involved in the resistance against a number of different stresses (Hengge-Aronis, 

1993; Matin, 1991). σS is the master regulator for stasis survival and stress 

resistance and this sigma factor reveals an antagonistic pleiotropy with the rate of 

http://img.medscape.com/
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reproduction, trade-off that is due to the competition with σ70 for the RNA 

polymerase, for which it requires the presence of ppGpp, both for production and 

activity, probably priming the RNA polymerase for competitiveness (Gentry et 

al., 1993; Kvint et al., 2000; Lange et al., 1995; Nystrom, 2003a). σS (Dukan and 

Nystrom, 1998; Dukan and Nystrom, 1999; Hengge-Aronis, 1993; Yasuda et al., 

1999); σE (Testerman et al., 2002), σ32 (Nystrom, 1999), the ArcA regulon [that 

controls the rate of reserves catabolism in stationary phase (Iuchi and Lin, 1991), 

helping cells protect against self-inflicted oxidative damage (Nystrom et al., 

1996)], and the OxyR global regulator (Vlamis-Gardikas et al., 2002) are induced 

when less favourable growth conditions are imposed to cultures. Peptidase 

activity provides the aminoacids as subtrates for the required protein synthesis 

(Matin, 1991; Reeve et al., 1984a; Reeve et al., 1984b).  

The TA loci also support the theory of self-preservation/mechanism to avoid 

deterioration since they do not in fact kill the cells, only impose a bacteriostatic 

condition, where cells become locked in a G0-like state, which can be completely 

reversed. When external (& internal) conditions improve, ppGpp levels decrease 

and stringent response is abolished. As such, Lon and ClpP proteases reduce their 

presence in the cells, discontinuing the unnecessary degradation of proteins. 

Among those, the cognate antitoxins for the toxins that induce the growth arrest 

are left to bind their targets, and thus allow translation to resume its progress, 

general biosynthesis to restart, and cells to regain culturability (Nystrom, 2003c). 

 

On the other hand, aging has been evaluated and actually accounted for in 

microorganisms, even E. coli. It was expected to occur in unicellular eukaryotes 

like budding yeast where cell division is assymmetric, creating a bigger mother 

cell able to divide until 24 times, with the last ones considerably slower and 

leading to granular and/or lysing cells (Jazwinski, 2002). Also Caulobacter 

crescentus, a bacterium that also divides asymmetrically leading to an adhesive 
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anchored stalk, and a smaller motile “swarmer” cell that eventually differentiates 

into a stalk, exhibits a degeneration process where stalk division takes twice the 

time after 100 generations (Ackermann et al., 2003). The passage through a 

swarmer stage apparently seems to rejuvenate the cells and reset the negative 

effects of mutations that cause earlier aging in mother cells (Ackermann et al., 

2007). Surprisingly, a similar effect could be determined for E. coli. Although they 

divide symmetrically with a non-conservative dispersal of the cytoplasmic 

material, therefore supposedly dividing equally the damaged constituents, cell 

poles and DNA strands should not be considered of the same age (Nystrom, 

2003a). Cells with two generation old poles were determined to grow about 2% 

slower then cells with one generation old poles, and this effects were additive 

with every generation (Stewart et al., 2005). Older poles would thus be working 

like aged and damaged material dumps (Stephens, 2005), perhaps as a strategy in 

symmetrical  partitioning - those old poles seem to be inert, therefore they should 

not react so much to the accumulation of cellular waste, whose damage is thus 

prevented to be propagated into the biosynthetically active dynamic structures.  

Nevertheless, E. coli cells lack a mandatory aging process, since old 

macromolecules are quickly diluted due to the fast turnover of all cell 

components when the environment supports growth and proliferation (Nystrom, 

2002).  

 

Here we propose a unifying theory where Gram-negative cells strongly 

confronted with aggressive environments would initially change their 

metabolism reducing it to a minimum amount, condensate their DNA in order to 

protect it from eventual aggressions, translate chaperones and chaperorines to 

protect vital proteins, induce protein degradation of porins to reduce exchanges 

with the surroundings and other superfluous proteins to create pools of 

aminoacids, providing substrates for future metabolism reset, condensate 
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ribosomes to avoid further error-prone translation, induce the reduction of 

external surface changing form rods to spheres reducing the surface-volume ratio, 

differentiate surface membrane asymmetries protecting areas or extrude certain 

polymers into developing biofilms as protective barriers against the injuries, and 

other protection mechanisms. This initial response would be simultaneous with 

the formation of persister or viable but nonculturable cells, according to both 

studies definitions. After the long term growth arrest, with continuous aggression 

and accumulation of internal damages, cell death would be a fatality. The 

controled cell deaths would be important for the population survival as an all. 

Namely, some cell’s deaths would lead to a reduction in the environmental 

pressure due to less resources competition. Moreover, they would provide some 

nutrients release and media renewal, protection molecules available from internal 

agregant/chelant components, and adhesion products for the formation of 

biofilms apart from constituting a physical barrier against the environmental 

toxics. The part of the population slowly accumulating injuries and entering into 

the programmed cell death would provide means for the others to survive in an 

altruist population instead of individual strategy. This point of view would reflect 

an analogue mechanism to apoptosis where cells initially react to avoid death 

with several molecules interacting and communicating, to finally reach the 

decision of life or death according to the internal prevailing situation. When there 

is too much injuries accumulated and the demands in recreating cellular 

homeostasis are high, the cell death and substitution by an all new structure 

formation (by cellular duplication) becomes more beneficial in terms of the 

population/species.  

 

BolA protein may fit in between one or several of mechanisms just uncovered. It 

has been determined to change bacterial shape, and simultaneously confer 

resistance against large antibiotic molecules and detergents, by reducing 
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permeability, changing the outer membrane porins equilibrium, some 

peptidoglycan modification enzymes like the DD-carboxypeptidases PBP5 and 

PBP6 , which cross-link the murein, namely increasing its resistance against host 

protection lysozyme injuries, and strongly inducing biofilm development. This 

pleiotropic effector protein has recently been demonstrated to act as a 

transcriptional regulator, what accounts for such global cell phenotypes. 

Nevertheless, its action as a nucleic acid binding regulator and the targets 

determined do not completely explain the cell physiological behavior upon BolA 

expression. This global phenotype has several common elements with the 

persistence/tolerance/senescence features, partially responsible for the chronic 

diseases emergence and microorganism’s multitude of stresses resistance. 

Molecular knowledge should be obtained to evaluate these hypotheses. 
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ABSTRACT  

The gene bolA was discovered in the 80’s, but unraveling its function in the cell 

has proven to be a complex task. The BolA protein has pleiotropic effects over cell 

physiology, altering growth and morphology, inducing biofilm formation, and 

regulating the balance of several membrane proteins. Recently BolA was shown 

to be a transcription factor by repressing the expression of the mreB gene. The 

present report shows that BolA is a transcriptional regulator of the dacA and dacC 

genes, thus regulating both DD-carboxypeptidases PBP5 and PBP6 and thereby 

demonstrating the versatility of BolA as a cellular regulator. In this work, we also 

demonstrate that reduction of cell growth and survival can be connected to the 

overexpression of bolA gene in different E. coli backgrounds, particularly in 

exponential growth phase. The most interesting finding is that overproduction of 

BolA affects bacterial growth differently depending on whether the cells were 

inoculated directly from a plate culture or from an overnight batch culture. This 

strengthens the idea that BolA can be engaged in the coordination of genes that 

adapt the cell physiology in order to enhance cell adaptation and survival under 

stress conditions. 

 

Keywords: BolA, DD-carboxypeptidase, transcriptional regulator, PBP 
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INTRODUCTION 

The BolA-like proteins are widely conserved from prokaryotes to eukaryotes. 

They seem to be involved in cell proliferation or cell-cycle regulation, although 

their molecular function is still a matter of debate. The 13.5 kDa E. coli BolA 

protein is encoded in the 10 min region of the genetic map, and is responsible for 

inducing spherical morphology in rod shaped bacteria in stationary phase, 

possibly in a FtsZ-dependent manner (Aldea et al., 1988; Lange and Hengge-

Aronis, 1991). The BolA protein contains a helix-turn-helix motif, that includes a 

putative DNA-binding domain, through which it can eventually interact with 

nucleic acids and regulate the expression of different genes (Aldea et al., 1989). 

The bolA gene is regulated by two promoters: a weak and constitutive promoter 

bolA2p and a main promoter bolA1p, regulated by growth phase and/or growth 

rate. The expression from this “gearbox promoter” is driven by σS sigma factor 

and shows an activity inversely dependent on growth rate (Aldea et al., 1990; 

Aldea et al., 1988; Aldea et al., 1989). bolA was initially considered a stationary 

phase gene but later it was shown that bolA can also be induced in exponential 

phase in response to several stresses (Santos et al., 1999). Ribonuclease III can act 

as a positive modulator of bolA (Freire et al., 2006a). BolA is suggested to be 

implicated in the tolerance to different environmental pressures since it is 

expressed under stress conditions, and leads to the reduction of the surface area 

of cells. Moreover, bolA was shown to be involved in the formation of biofilms, 

modulation of OmpF/OmpC balance and control of the cell cycle (Freire et al., 

2006b; Kim et al., 2002; Santos et al., 1999; Vieira et al., 2004). BolA may act as an 

inducer of cell wall biosynthetic enzymes, enhancing the expression of the 

mRNAs from the hydrolytic DD-carboxypeptidases Penicillin-Binding Proteins 

PBP5 and PBP6 and the β–lactamase AmpC (Aldea et al., 1989; Freire et al., 2009; 

Santos et al., 2002). In fact, PBP5 over-production, like bolA overexpression, has 

been reported to produce spherical cells (Markiewicz et al., 1982). The deletion of 
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PBP5 produced an accumulation of muropeptides with pentapeptide side-chains 

and a reduction on the thickness of the peptidoglycan layer (Santos et al., 2002). 

Additionally, PBP6 can change its protein levels, and it increases four times in 

stationary phase (Buchanan and Sowell, 1982).  

Recently, BolA has been demonstrated to specifically interact with the mreB 

promoter and repress mreB transcription, leading to a reduction in protein levels 

and abnormal MreB polymerization (Freire et al., 2009). MreB protein, a structural 

homolog of actin, was revealed to be essential for bacterial cell elongation and rod 

shape (Jones et al., 2001; van den Ent et al., 2001). Moreover, the absence of both 

PBP5 and PBP6 influences the cellular concentration of MreB in stationary phase. 

This data supports the existence of a concerted regulation between the 

peptidoglycan polymerization machinery and the morphology maintenance 

systems.  

In this work we have established that the high levels of BolA can be detrimental 

for cell morphology and viability, especially if present in the early phases of 

growth, where this protein levels are usually negligible. Even though too much 

BolA seems to be harmful, its homologues are evolutionary conserved, with the 

remarkable exception of Gram-positive bacteria, which includes several species 

that can sporulate when adverse conditions occur. It thus seems tempting to 

speculate that this gene and the respective protein have been maintained along 

the evolution to favour adaptation of cells to adverse conditions.  

We also wanted to understand the role of BolA in the regulation, of the PBP5 and 

PBP6 hydrolytic murein proteins. These two proteins are homologues but they 

behave slightly differently within cells (Nelson and Young, 2001), as evaluated by 

the phenotypic differences in the single deletion mutants studied here. Part of the 

BolA function in the cell requires PBP5 or PBP6 since a double deletion mutant 

showed different growth and morphologies in response to the increase in BolA 

levels (Santos et al., 2002). When overexpressing BolA the levels of PBP5 and 
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PBP6 transcripts are increased. Here we have shown by Surface Plasmon 

Resonance that BolA directly interacts with the operator region of both dacA 

(PBP5) and dacC (PBP6) promoters, thereby indicating a possible wider impact of 

BolA as a transcriptional regulator. 

 

METHODS 

Bacterial strains, plasmids and genetic manipulations 

The strains used in this study are described in Table 1. When necessary, strains 

were transformed with plasmid pMAK580 (Aldea et al., 1988) containing bolA 

under regulation of its own promoters. Transformations were carried out as 

previously described (Sambrook, 1989). 

Media, growth conditions and viabilities  

Luria broth (LB) and Luria agar (LA) were prepared as described previously 

(Miller, 1972). When required, the media were supplemented with 0.4 mM 

thymine, 50 mg/ml chloramphenicol, and 50 mg/ml kanamycin (all from Sigma). 

Optical densities were measured in an Amersham Biosciences 

Ultrospec®500/1100pro spectrophotometer at 620nm, using 10 mm light path 

couvettes. The ODs were determined according to the Lambert-Beer law’s limits 

of direct proportionality between OD and sample concentration (dilutions were 

made in LB so that density values would be read between 0.02 and 0.6); the 

phases of growth analyzed were determined according to growth curves. Batch 

cultures were launched in one of two ways: 1- directly from LA plate where 

colonies were grown 16-18 hours at 37 ºC (the plates could be stored for at least 

one week at 4 ºC and the behavior was reproducible); 2- from an overnight (16 h) 

liquid culture grown at 37 ºC and 100 r.p.m. (the inoculi were diluted to an optical 

density of 0.08 measured at 620 nm (OD620)). Cultures were grown aerobically at 

37 ºC and 120 r.p.m. For evaluation of viability, the samples were processed in LB 

serial dilutions, and 100 µl plated in LA. The number of colony forming units 
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(cfu) was counted and viability was determined according to the equation: 

Number of dividing cells per ml = cfu x 10dilution x 1000/100µl.  

Table 1. Strains used in this study 

Strains Description Reference or source Observations 

MG1693 thyA715 
(Bachmann and Low, 

1980) 
background strain 

CMA10 MG1693 + bolA+ (Santos et al., 1999) 
overexpressing bolA (after its 

own promoters) from pMAK580 

ED3184 his supF 
kindly provided by 

Noreen Murray 

background strain for deletion 

mutants 

JBS980  
F– his supF recA 

ΔdacA::Kanr 
(Spratt, 1980) 

pbp5 deletion mutant based on 

ED3184 strain 

JBS1001 
F– his supF recA 

ΔdacC 

(Broome-Smith and 

Spratt, 1982) 

pbp6 deletion mutant based on 

ED3184 strain 

JBS983 

F–his supF recA 

ΔdacC 

ΔdacA::Kanr 

(Broome-Smith, 1985) 
pbp5 and pbp6 double deletion 

mutant based on ED3184 strain 

CMA15 JBS980 + bolA+ (Santos et al., 2002) 
JBS980 overexpressing bolA from 

pMAK580 

CMA16 JBS1001 + bolA+ (Santos et al., 2002) 
JBS1001 overexpressing bolA 

from pMAK580 

CMA17 JBS983 + bolA+ (Santos et al., 2002) 
JBS983 overexpressing bolA from 

pMAK580 

CMA 18 ED3184 + bolA+ (this study) 
ED3184 overexpressing bolA 

from pMAK580 

CMA50 
BL21 (DE3) + 

pPFA02 
(Freire et al., 2009) 

Novagen strain with plasmid 

overexpressing (His)6–BolA 
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Microscope preparations 

To observe the effect of BolA on cell morphology, planktonic cells were harvested 

from cultures growing in LB, at the time points corresponding to log, early 

exponential, late exponential, early stationary and late stationary phases, 

according to the growth curve. Cells were fixed with 0.75% (v/v) formaldehyde 

and stored at 4 ºC. For the Differential Interference Contrast (DIC) microscopy 

photographs, 20 µl of the samples were observed in slides coated with a thin 1.5% 

(w/v) agarose film, and enclosed with nr.1 cover glass. Images were obtained 

using a DMRA2 microscope (Leica) under Nomarski optics coupled to a CCD 

camera, with Metamorph software. 

Overexpression and purification of BolA protein 

The plasmid used for expression of BolA was a pET28a derived pPFA02 (Freire et 

al., 2009) transformed into a Novagen E. coli BL21 (DE3) strain (Table 1). Cells 

were incubated at 37 ºC in 250 ml LB medium supplemented with 100 µg/ml 

ampicillin to an OD620 of 0.5. Induction was performed with 0.5 mM IPTG during 

60 min. Bacterial cells were pelleted by centrifugation at 6500 rpm for 10 min and 

stored at -20°C.  

Purification of BolA was performed by histidine affinity chromatography using 

HiTrap Chelating HP columns (GE Healthcare) and AKTA fast protein liquid 

chromatography system (GE Healthcare). Cells were ressuspended in buffer A 

with 20mM Sodium Phosphate pH7.4 and 50mM NaCl and lysed using a French 

Press at 9,000 psi, in the presence of 0.1 mM phenylmethylsulfonyl fluoride 

(PMSF). The crude extracts were treated with Benzonase (Sigma) during 30 

minutes and clarified by a 15 min centrifugation at 9500 g. The clarified extracts 

were then added to a HiTrap Chelating Sepharose 1 ml column equilibrated in 

buffer A. Protein elution was achieved by a continuous imidazol gradient (until 

100 mM) in the same buffer. The fractions containing purified protein were 

pooled together and buffer was exchanged to pure buffer A (without imidazol) 
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using Amicon®Ultra Centrifugal Filters 10 kDa (Millipore™). Protein 

concentration was determined by spectrophotometry using a Nanodrop device 

and measuring the OD at 280 nm. 10µl of purified protein fractions were applied 

to a 15% SDS-PAGE and visualized by Coomassie blue staining to assess protein 

purity (data not shown).  

Surface Plasmon Resonance (SPR) Analysis  

The SPR analysis was performed in a BIACORE 2000 instrument. Purified BolA 

protein was immobilized in a CM5 sensor chip by amine coupling immobilization 

method according to the manufacturer’s instructions (GE Healthcare). The same 

immobilization procedure was performed with the same molarity of BSA control 

protein in a reference flow cell, used to correct for refractive index changes and 

non-specific binding. The dacA (PBP5) and dacC (PBP6) promoters were 

amplified by PCR using pbp5Fw 5’-GGGGTACCGCAACGTTTGCAAACCGA 

AG-3’, pbp5Rev 5’-CCATCGATCTGAACTACGACATCCGTG-3’, pbp6Fw 5’-GG 

GGTACCCATACTCACCCCTTTTCC-3’, and pbp6Rev 5’-CCATCGATCCACCC 

GAGTATCCATTC-3’ primers, respectively. As a positive control, the promoter 

sequence of the mreBCD operon was used and as a negative control we tested 

bolA open reading frame (ORF) DNA encoding fragment as previously described 

(Freire et al., 2009). We also used, as negative controls, the ORF from mreB, PBP5, 

PBP6 and RNase II. These regions were amplified by PCR using RTmreB 5’-

ACTTGTCCATTGACCTGGGTACTG-3’, RTmreB2 5’-GCCGCCGTGCATGTCGA 

TCATTTC-3’, codingpbp5Fw 5’-CCGCTCGTATCATGAAGCGCC-3’, coding 

pbp5Rev 5’-CCGAAGAAGTTACCTTCCGGG-3’, coding pbp6Fw 5’-CTCCTTCG 

TGGTCTTGC-3’, codingpbp6Rev 5’- GATTAAGAGAACCAGCTGCCG-3’, 

rnb_477 5’-GGCGATCGTTCTTTCTATGCAGAA-3’ and Asp210Asn_Rev 5’- 

TAGCGAAGAGGGCGTTATCCATATCTTCTG-3’ (Barbas et al., 2008). The 

assays were run at 25 ºC in 20 mM Sodium Phosphate pH 7.4, 1 mM 

dithiothreitol, and 500 mM NaCl buffer. The amplified DNA fragments were 
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injected over the flow cells for 2.5 minutes at a minimum of 5 different 

concentrations between 6.4 x10-5 and 5 nM using a flow rate of 20 µl/min. All 

experiments included triple injections of each sequence concentration to 

determine the reproducibility of the signal. Bound protein was removed with a 60 

sec wash with 50 mM NaOH. Equilibrium constants were determined using the 

BIA Evaluation 3.0 software package, according to the fitting model 1:1 Langmuir 

Binding, and 2 was the statistics used to measure the fitness of the model to the 

data. 

 

RESULTS AND DISCUSSION 

BolA overexpression impairs cell growth rate 

Bacterial growth rates after inoculation depend on the growth stage at time zero. 

If the culture is growth arrested, cell replication will be partially delayed as 

metabolism has to be restarted; if, on the contrary, the culture is in exponential 

phase, the multiplication rate is maximal, and so there will be no lag phase. 

Regarding BolA expression, however, this situation is more prominent. In this 

case, the cells do not just have to resume or maintain growth, but it seems that 

they have to adapt to the levels of this protein in the cell. 

In optimal growth conditions, BolA protein increases its levels when cells are 

entering into stationary phase (Aldea et al., 1989). Therefore, if growth is initiated 

after an overnight suspension culture with BolA highly expressed, BolA will be 

present in high concentration in the cells diluted into new media. We wanted to 

study the role of differential BolA levels on starting cultures. Therefore we have 

monitored the growth on two different backgrounds (MG1693 and ED3184), 

using cultures started after an overnight liquid growth (liq_), or cultures directly 

inoculated from the plate (pl_). Comparisons were made for the same conditions 

using the strains transformed with pMAK580 bolA overexpressing plasmid 

(respectively CMA10 and CMA18) (Fig.1).  
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Figure 1. Optical density measurements at 620 nm for determination of growth curves in LB media 

supplemented according to the strains, at 120  r.p.m., 37 ºC – average and standard deviations from a 

minimum of three independent repetitions are presented; prefix with starting OD: (pl_) for strains 

directly grown from plate and (liq_) after an overnight liquid growth. A. MG1693 and MG1693+bolA+ 

(CMA10) strains; B. ED3184 and ED3184+bolA+ (CMA18) strains. 

A 

B 
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In the wild type strains the growth rate is not dependent on the starting culture 

(see pl_MG1693 vs.liq_MG1693, and pl_ED3184 vs. liq_ED3184, Fig. 1). 

Nevertheless, in the presence of additional copies of bolA due to the presence of 

pMAK580, a bolA overexpressing plasmid, serious changes in growth are 

observed depending on the inoculum (see pl_CMA10 (MG1693+bolA+) versus 

liq_CMA10 (MG1693+bolA+) and pl_CMA18 (ED3184+bolA+) versus liq_CMA18 

(ED3184+bolA+)) (Fig.1). For strains bearing the plasmid (bolA+) growth is strongly 

impaired for cultures started from batch culture, when compared to the cultures 

directly inoculated from the plate. We have compared the levels of bolA mRNA 

levels in both starters and the results showed that the levels of bolA mRNA are 

about 2.3 times higher when the inoculum comes from an overnight liquid growth. 

In this case, cultures can only support growth until half of the maximum OD 

value reached when they are directly grown from plate (liq_CMA10 and 

liq_CMA18 vs. pl_CMA10 and pl_CMA18) (Fig.1). This behavior is not reported 

for the strains without pMAK580 and occurs similarly in both MG1693 and 

ED3184 E. coli backgrounds (Fig.1).  

BolA effect on growth rate is correlated with alterations in bacterial morphology 

The changes in growth behavior were evaluated by microscopy analysis (Fig.2). 

Similarly to what has been observed in the growth curves, cell morphology does 

not vary much according to the growth state of the inoculum for the wild type 

strains: in MG1693 background no differences can be distinguished; and in the 

ED3184 strain it is possible to see a mixed filament/rods population with a 

propensity for rods after an overnight liquid growth (Fig.2).  

 

Figure 2. (In the next page) Representative Differential Interference Contrast microscopy photographs 

overlaid in Photoshop to increase amount of data presented. DIC micrographs were obtained using a 

DMRA microscope (Leica) at time points 60, 120, 340, and 700 or 540 min of the growth curves. A 

MG1693 and CMA10 (MG1693+bolA+) strains; B. ED3184 and CMA18 (ED3184+bolA+) strains. The 

black bar represents 5 µm. 
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The strains carrying pMAK580 plasmid alter their morphologies from rods to 

spheres as advanced exponential phase is reached, when they start growth from 

an agar plate (pl_CMA10 and pl_CMA18) (Fig.2). However, when they are 

started from a suspension culture (liq_CMA10 and liq_CMA18), cells present a 

spherical shape even in the beginning of logarithmic phase. In this case, as long as 

cell division proceeds, the spherical morphologies evolve towards larger spheres 

that eventually bulge, or even burst (Fig.2). This may be the reason for these 

strains to have a lower growth rate when compared to the others.  

BolA affects the PBP5 and PBP6 DD-carboxypeptidases 

After establishing how bacterial growth rates and patterns depend on the origin 

of the inoculi, which revealed particularly important for strains where BolA is 

more expressed, the effects of this protein over the E. coli DD-carboxypeptidases 

Penicillin-Binding Proteins PBP5 and PBP6 were analyzed. For that purpose, 

strains derived from ED3184 wild type were used, namely single and double 

deletants for dacA (PBP5) and dacC (PBP6) genes, and those transformed with 

pMAK580 (see Table 1). Similarly to what had been observed for the background 

strains, the growth curves for the deletant mutants, with and without pMAK580, 

were completely superimposed when they were cultured from plated colonies 

(data not shown). Further analysis was performed in the conditions where strains 

presented pronounced phenotypic effects derived from BolA increased levels, 

therefore starting after overnight batch cultures. 

Initially, growth curves were performed for all the strains derived from ED3184, 

with and without pMAK580 plasmid for overexpression of BolA. The results 

show that the PBP deletants JBS980 (PBP5-), JBS1001 (PBP6-), and JBS983 (PBP5-

PBP6-), follow a similar growth curve to their respective wild type strain ED3184 

(Fig. 3A). However, upon BolA overexpression, all strains except the double 

deletant have their growth strongly impaired, mainly in early log phase, where 

optical density values remain constant or even decrease (see Fig. 3A).  
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Figure 3. Growth and viability analysis for evaluation of the role of BolA on PBP mutant strains– 

average and standard deviations from a minimum of three independent repetitions are presented. A. 

Optical density measurements at 620nm for determination of growth curves in LB media 

supplemented according to the requirement of the respective strains, at 120 r.p.m., 37ºC, after an 

overnight liquid growth. B. Viability analysis at the 240 min, in decimal and logarithmic scale, 

according to materials and methods description. 

A 

B 
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BolA is naturally expressed in the transition from late exponential to stationary 

phase (Aldea et al., 1989), concomitantly with a multitude of metabolic and 

morphological changes in the cells (Aldea et al., 1988; Freire et al., 2009; Freire et 

al., 2006b; Santos et al., 2002). After a certain threshold BolA might be toxic for 

cells. In that sense, most cells with increased BolA levels (in strains transformed 

with pMAK580, particularly after overnight growth) tend to have difficulties in 

recovering. The cultures present an adaptation period that can be considered as 

an “extreme” form of lag phase. In strain liq_ED3184+bolA (liq_CMA18) while 

cells adapt to fresh media and restart a fast duplication stage (corresponding to 

exponential phase of bacterial development) a significant increase in the cells 

sizes occurs (see fig. 2B, liq_CMA18, times 60 to 120 minutes) increasing the OD 

unrelated to the changes in cell number. Those cells that significantly increase in 

size (the majority of the initial population inoculated) seem to become committed 

to a “lysis” and at about 240 minutes of growth we observe cells lysing or 

“bursting” (see fig. 2B, liq_CMA18, 240 minutes). The transition between 120 and 

240 minutes of the growth curve should correspond to the “explosion” of the 

majority of high dimensioned cells.  At that time, a reduced number of smaller 

rod shaped unsynchronized cells, already present at the inoculum, substitute the 

initial bacterial population already dividing at a fast rate, and that accounts for 

the subsequent increase in OD. All strains overexpressing BolA, with the 

exception of the double deletion mutant, present longer adaptation time to reach 

exponential phase. In fact, the largest difference between growth curves with and 

without pMAK580 is not in the rate of multiplication, after the strains are already 

adapted to the new growth media (Fig. 3). The rate is about the same for all, 

except the PBP6 single deletion strain overexpressing BolA. The latter multiplies 

about 2.7 times slower than all others. Differences in curves are mostly due to the 

time that the strains require to "adapt" BolA levels to new media conditions. In 

that sense, there is virtually no lag phase in cultures where pMAK580 is absent, 
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and while the transformed background strain CMA18 takes the longest period to 

adjust (7 times more), the double mutant, along with the single PBP6 mutant 

overexpressing BolA adapts faster (4 times faster than in the absence of the 

plasmid). It is possible that a partial substitution effect between PBPs might be 

happening, since the effects on growth due to BolA are apparently prevented in 

the simultaneous absence of both DD-carboxypeptidases. The data additionally 

suggests that PBP5 is a preferential target for BolA action. The strains where this 

protein is present are more affected by BolA, not only in growth rate but also in 

the maximum OD reached by cultures: OD620nm= 2 for the PBP6 single mutant - 

where PBP5 is present - versus OD620nm= 3 for the PBP5 single deletant CMA15 and 

4.5 for the double mutant CMA17, where both PBPs - and BolA targets - are 

absent. The double mutant CMA17, apart from an increased lag time, appears to 

grow quite similarly to the strains without the BolA overexpressing plasmid. A 

possible explanation could be that this lag period may be independent from the 

effects of BolA over the PBPs but instead related to regulation of mreB by BolA. In 

laboratory regular growth conditions, the MreB cytoskeleton protein should be 

continuously expressed until later stages of the growth curve, when its levels are 

reduced. Nevertheless, this protein is strongly inhibited by BolA, presenting 

reduced concentrations in cells whenever it is being expressed (Freire et al., 2009). 

In this way, when cells should be ready to divide, their size is artificially reduced 

thus avoiding or delaying division. As a result, the fast growth phenotype and 

true exponential phase are concealed until BolA levels are reduced/washed out 

from cells, at about 240 minutes of growth, demonstrating a simple response of 

the division rate to the amount of MreB (Freire et al., 2009), directly dependent on 

the BolA levels (see Fig. 3A). Convergent conclusions can be inferred from the 

examination of viabilities throughout growth, with the exception of the wild type 

strain transformed with pMAK580 (CMA18) (Fig. 3B and 4). CMA18 growth 

curve seems to be strongly impaired, but it is only slightly affected in actual 
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viability counts (Fig. 3B). At 240 minutes of growth viable colonies for strains 

transformed with pMAK580 increase about one order of magnitude from the 

PBP5- to the PBP6- strain, and the same happens between the PBP6 single mutant 

and the double mutant (that shows the minimal phenotype related to BolA, when 

comparing all the deletants). The PBP5 deletant with enhanced BolA expression 

reaches increased viable counts later on, after adaptation has occurred, giving the 

idea that this protein might not be naturally expressed at early stationary phase. 

This can be clearly observed in the representative viability analysis of all strains 

along time (Fig. 4). The double mutant CMA17 is the one in which viability is less 

influenced by the increased BolA levels, while the viabilities for single PBP6 

mutant are the most affected, again suggesting that in the presence of PBP5 the 

cells are more sensitive to BolA levels. The detrimental effects of excess of BolA 

protein levels are particularly observed in fast cellular replication stages, 

coherently with the fact that this protein is naturally expressed in reduced growth 

rate conditions, such as in stationary phase or upon stresses (Aldea et al., 1989; 

Santos et al., 1999). These results further strengthen the idea that BolA may act as 

a regulator for both DD-carboxypeptidases. They also reinforce the observation 

that this regulation might be important for the phenotypes observed upon 

stationary phase or stress induction. 

 

 

 

 

 

 

 

Figure 4. Representative viability analysis for the time points 60, 120, 240, and 540 min, presented as 

10 µl spots of serial dilutions (100 to 10-5) from the cultures in LB media. 
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It seems tempting to speculate that BolA has a preference for PBP5 as target, since 

when this gene is deleted, the presence of pMAK580 has a reduced impact on 

growth impairment and cell counts remain higher. 

Morphological evaluation of these strains by optical microscopy further 

substantiated that the double deletion strain with pMAK580 is less sensitive to 

the BolA overproduction (Fig. 5). For CMA17 strain we can see that rods and 

even filaments are always present, and that even when some spheres appear they  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Representative Differential Interference Contrast microscopy photographs. obtained using a 

DMRA microscope (Leica) for early exponential and early stationary phase of the all strains derived 

from ED3184 background - A - and the same strains transformed with bolA+ - B. The black bar 

represents 5 µm. 

A 

B 
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are not the dominant phenotype; however, in the other strains with the pMAK580 

plasmid (CMA15, CMA16 and CMA18) the cells are essentially spherically 

shaped, changing in size and membrane integrity, as it can be visualized through 

cells bulging and/or bursting (Fig. 5). Interestingly, when PBP5 is absent, the 

spheres seem to become larger than for the other single mutant, showing again 

that PBP5 and PBP6 are not equivalent targets for BolA. 

BolA interacts in vitro with the promoter regions of dacA and dacC, acting as a 

positive transcriptional regulator for PBP5 and PBP6 

Finally, we wanted to verify if the effect of BolA over the PBP5 and PBP6 proteins 

(Aldea et al., 1989) and mRNA levels (Santos et al., 2002) is direct. It was 

previously determined that BolA directly interacts with mreB promoters in vitro 

(Freire et al., 2009). In that system, BolA acts repressing mreB transcription and 

strongly reduces the mreB mRNA and protein levels. BolA upregulation of dacA 

and dacC mRNA levels has already been established (Santos et al., 2002). By 

Surface Plasmon Resonance, we measured the affinity of BolA protein to PBP5 

and PBP6 promoters. As negative controls, we used DNA fragments amplified 

from the coding region of both PBPs (PBP5 ORF and PBP6 ORF) and also from a 

different gene, rnb, which encodes for the ribonuclease II (RNase II), an enzyme 

that degrades RNA molecules (RNase II ORF). As a positive control, we used the 

promoter region of mreB, previously demonstrated to have affinity for BolA 

protein (Freire et al., 2009). The results obtained are presented in Table 2. The 

dissociation constant value obtained for the mreB promoter in these new 

experiments corresponds to the one previously published (6.9 nM) (Freire et al., 

2009). The obtained data shows that BolA protein has slightly more affinity for 

dacA and dacC than for the mreB promoter (1.8nM and 5.3 nM versus 6.9 nM, 

respectively) (Table 2). In all cases, the affinity of BolA is significantly higher for 

the promoter regions than for the coding regions (120 nM e 102 nM, respectively). 

These results confirm that BolA behaves as a general transcriptional regulator. 
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Furthermore, it can act either as a repressor of mreB, or as an activator of gene 

expression for production of PBP5 and PBP6. It is also possible to detect that BolA 

has more affinity for PBP5 promoter when compared to the others (1.8 nM versus 

6.9 nM and 5.3nM) (Table 2). According to the van´t Hoff equation: ΔG0= RTlnKD, 

where R and T are the universal gas constant and absolute temperature, we 

determined the Gibbs free energy difference, ΔG0. The values obtained are also 

reported in Table 2. The determination of the ΔG0 informs us about the likelihood 

of complex formation. If ΔG0 is negative, then we are in the presence of a 

spontaneous reaction. All the BolA protein-DNA interaction tests present a 

negative ΔG°, which means that all these reactions are spontaneous and can occur 

in vivo. However, for the PBP5 promoter interaction, an even lower value is 

obtained when compared to the others (Table 2), meaning that the binding of 

BolA to the PBP5 promoter is much more probable. The binding to the coding 

regions PBP5 ORF, PBP6 ORF and RNase II ORF, on the other hand, is not so 

favourable since they present the highest ΔG0 values (Table 2). If we analyze the 

other equilibrium constants, we can see that the BolA protein interacts with the 

three promoters in a different way. The association rate constant (ka) gives us 

information about the kinetics of association, i.e., how fast the complex is formed, 

while the dissociation rate constant (kd) relates to the dissociation kinetics or the 

velocity of complex dissociation. For the MreB promoter, the association is fast (ka 

of 1.1 x 105 /M.s) and the dissociation is slow (kd of 7.43x 10-4 /s). For the PBP5 

promoter, the association is not as fast as for the MreB promoter (ka of 7.5 x 104 

/M.s) but the dissociation is also slower (kd of 1.3 x 10-4 /M.s) (Table 2) showing 

that the PBP5 promoter DNA-BolA complex is more stable than the MreB 

promoter DNA-BolA. However, for the PBP6 promoter, the results are quite 

different: the association of BolA to the promoter is really slow and the same is 

observed for the dissociation, which is much slower than the ones observed for 

the MreB or PBP5 promoters (Table 2). This behavior may indicate that the 
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complex BolA-PBP6 promoter once bound can be even more stable when 

compared to the other complexes. For the coding regions tested, we can observe 

that the association is very slow, which reflects the poor affinity of BolA to these 

regions (Table 2). 

Overall SPR experimental results confirm that BolA acts as a transcriptional 

regulator of dacA, dacC, and mreB. They particularly contribute to understand 

why the single deletion mutants for the PBP5 and PBP6 proteins present such 

physiological differences in response to BolA accumulation, as reported in this 

work. An increase of the dacA (PBP5) and dacC (PBP6) mRNA levels had 

previously been observed when BolA was overexpressed (Santos et al., 2002), 

therefore we can hypothesize that BolA is acting as an activator of dacA and dacC.  

 

Table 2. BolA binding affinity for different promoter (Prom) and coding regions (ORF). 

Equilibrium constants (KD) were determined by Surface Plasmon Resonance using BIACORE2000 and 

according to the 1:1 Langmuir Binding Model. ka is the association rate constant, kd the dissociation 

rate constant, and KD the equilibrium dissociation constant of the reaction. 2 was the statistics used to 

measure the fitness of the model to the data. ΔG0 values were determined according to the van´t Hoff 

equation: ΔG0= RTlnKD, where R and T are the universal gas constant and absolute temperature. 

 

 ka (1/Ms) kd (1/s) KD (nM) 2 ΔG0 (KJ/mol) 

MreB Prom 1.1 x 105 7.4 x 10-4 6.9 1.3 -46.6 

PBP5 Prom 7.5 x 104 1.3 x 10-4 1.8 0.8 -50.0 

PBP5 ORF 8.4 x 101 1.0 x 10-5 120 1.1 -39.5 

PBP6 Prom 1.5 x 103 8.1 x 10-6 5.3 1.7 -47.2 

PBP6 ORF 9.8 x 101 9.9 x 10-6 102 1.1 -39.9 

RNase II ORF 2.8 x 101 1.0 x 10-5 365 1.6 -36.8 
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CONCLUSION 

BolA is a protein whose levels strongly impact cellular growth rate, and the 

pattern of growth curves/ability to grow in rich LB media. The effects of 

overexpression of BolA result in aberrant cell morphologies, initially inducing 

formation of small spheres that then evolve into large spheres and aberrant 

morphologies. It was demonstrated that the phenotypes regarding the 

overexpression of bolA are much more prominent if the inoculum is taken from an 

overnight liquid culture, in which BolA has been considerably expressed and 

accumulated. It had been previously proposed that BolA might be related with 

hydrolytic DD-carboxypeptidases Penicillin-Binding Proteins PBP5 and PBP6. An 

increase of the dacA (PBP5) and dacC (PBP6) mRNA levels had previously been 

established (Santos et al., 2002) and a strain where bolA gene was deleted seemed 

to show a decrease in PBP5 or PBP6 protein levels (Aldea et al., 1989). In this 

study BolA was shown to be a more broad range transcriptional regulator directly 

interacting not only with the promoter region of mreB reducing its expression 

levels, but also with the promoter regions of the genes that code for the murein 

cross-linking enzymes PBP5 and PBP6. 

This work has opened new perspectives for the impact of BolA in bacterial 

growth and survival. Since BolA is able to target different genes as a 

transcriptional regulator, having the capacity of acting either as a repressor or as 

an activator, it is now important to determine to which other targets it can bind 

and regulate. Furthermore it is also required to analyze how BolA regulation 

might connect with sigma factors and affect global transcriptional machinery in 

stress conditions. This will allow us to determine to which extent BolA can 

modulate the cell and facilitate adaptation to less than optimal growth conditions.  
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ABSTRACT  

 

Microorganisms have evolved to divide and maintain in harsh conditions. Several 

external stresses are dealt with by bacteria in a daily basis, many times through 

biofilm formation. The adaptation mechanisms usually imply cell surface and/or 

structure changes in shape, dimensions, cell wall thickness, protein content, and 

permeability. The E. coli gene bolA is involved in morphological transformations 

and is mainly expressed in stress conditions. BolA is a good candidate to evaluate 

adaptation mechanisms to unfavourable environments. In this report we have 

evaluated BolA function as a potential bacterial persister protein, declining the 

multiplication potential and providing tolerance against different stresses 

imposed, creating a multiplication potential in a long term perspective. 
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INTRODUCTION 

 

Bacteria are constantly facing environmental challenges. Membrane plasticity is 

important to evaluate bacterial surroundings and facilitate exchanges; more rigid 

and less permeable boundaries, nevertheless, promote survival when coping with 

stress conditions. The stationary phase gene gene bolA (Aldea et al., 1990; Aldea et 

al., 1989) is growth phase-regulated and controlled by the sigma factor S (rpoS 

gene) (Lange and Hengge-Aronis, 1991). Its expression is also induced in 

response to several stresses, in a partially S-independent manner (Santos et al., 

1999). E. coli bolA is a morphogene that induces spherical shape of cells when 

overexpressed (Aldea et al., 1988). This effect of bolA is mediated by the induction 

of either PBP5 and/or PBP6 D,D-carboxypeptidases (Aldea et al., 1988; Guinote et 

al., 2010; Santos et al., 2002) and repression of the expression of bacterial actin 

homologue MreB (Carballido-Lopez, 2006; Freire et al., 2009). The increased 

expression of bolA not only reduces the exposed surface but also increases the 

ratio volume to area, modulates cell permeability (Freire et al., 2006b) and induces 

the  formation of biofilms (Vieira et al., 2004) the ultimate protection structure 

against external damaging agents. Some bacteria can survive different kinds of 

stresses without particular gene resistances. They have the ability to escape 

lethality by becoming dormant, this is stopping cellular metabolism and division. 

For instance, when antibiotics are added to a system they are expected to interact 

with the proteins they have affinity with, in a way that prevents their correct 

function. If there are persister cells in the system where the antibiotics are 

applied, the antibiotics molecular targets are practically inactive, and thus, 

binding will not lead to any effect. The antibiotics will decontaminate the system 

of the proliferating cells but not of the persisters, that latter on regain the ability to 

proliferate (Lewis, 2007). The existence of persisters has been acknowledged since 

the middle of the XXth century (Bigger, 1944). The ability to form persister cells 
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was furthermore shown to differ along the growth curve: it is decreased in the 

beginning, presents a sharp increase in the middle of the exponential phase, and 

reaches its maximum (about 1%) in stationary phase cells. This dependence on 

the bacterial physiological state was confirmed by the inability to create persisters 

when cultures were diluted four times only reaching exponential phase of growth 

(Keren et al., 2004). This dynamics seems to rely on the inherent phenotypic 

heterogeneity of the bacterial populations, which may be dependent on the 

differential accumulation levels of “persister” protein(s), elicited by different 

environmental factors that affect the killing process (Lewis, 2007). The expression 

of E. coli bolA has been extensively studied and is tightly controlled both at the 

transcriptional and post-transcriptional levels, having an expression consistent 

with those of persister proteins (Freire et al., 2006a; Lange and Hengge-Aronis, 

1991; Santos et al., 2006). This 13.5 kDa protein is the most studied member of the 

BolA-like family. It contains only one defined domain named BolA/YrbA, 

essentially formed by a putative DNA-binding helix-turn-helix (HTH) motif 

(Aldea et al., 1989). In this study we assessed both physiological induction of bolA 

as it happens along the growth curve, and artificially imposed high expression of 

BolA events. The results led us to acknowledge that this protein can act in two 

complementary ways. An initial survival mechanism is induced when low to 

medium amounts of BolA are present in the cell. Medium levels of BolA lead to 

the formation of small spheres. The reduction of surface to volume ratio makes 

them less susceptible to be affected by the action of certain toxics. It furthermore 

reduces the division constraining the population increase and reducing the 

consumption of resources. A posterior mechanism is triggered when high levels 

of this protein are present in cells, leading them to progressively increase 

dimensions, deforme and finally burst. This lysis releases cellular components 

that may provide a small part of the population the scavenger molecules for 

toxics, the adhesion properties for biofilm development and protection, or the 
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nutrients lacking in the medium for stalled cells to become metabolically active. A 

desynchronization may account for the absence of relative loss of viability in such 

severe conditions enabling the “rebirth” of cells average sized, regular and rod-

like shaped. Moreover we could show here the protective effect of BolA favouring 

bacteria survival against the antimicrobial nalidixic acid. This preliminary work 

opens the possibility that bolA might be a “new” persistence gene. 

 

METHODS 

Bacterial strains, plasmids and genetic manipulations 

The strains used in this study are described in Table 1. MG1693 chromosomal 

DNA was used as a template for amplification of bolA Open Reading Frame 

(ORF). The product of the PCR reaction was inserted into Bluescript pSK plasmid 

(PROMEGA) to construct plasmid pPFA01 and transformed into strain DH5α. 

Plasmid pPFA01 was used to obtain the bolA ORF flanked with NdeI/BamHI 

restricted sites to be ligated in pET28a (Novagen) originating plasmid pPFA02. E. 

coli strain BL21(DE3) was transformed with pPFA02 to overexpress (His)6-BolA. 

 

Table 1. Strains used in this study. 

Strains Description Reference or source Observations 

MG1693 thyA715 
Bachmann and Low, 

1980 
background strain 

CMA83 MG1693 + pBr325 (this study) mother plasmid 

CMA10 MG1693 + pMAK580 Santos et al., 1999 overexpressing bolA from plasmid 

DH5α   commercial strain 

CMA61 DH5α+pPFA01 (Freire, 2005) 
intermediate plasmid with bolA after 

NdeI sequence 

CMA62 DH5α+pPFA02 (Freire, 2005) 
pET15b based plasmid with bolA 

inducible by IPTG 

BL21(DE3)   Novagen strain 

CMA50 BL21 (DE3) + pPFA02 (Freire et al., 2009) 
BL21 with plasmid over-expressing 

(His)6–BolA 
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Transformations were carried out as previously described (Sambrook, 1989). BolA 

overexpression was induced with a final concentration of 0,5mM IPTG and 

growth was continued for 30 min, 1h and 2h to assess protein expression levels. 

Construction of the (His)6-BolA expressing vector pPFA02  

The ORF coding for BolA protein was generated by polymerase chain reaction 

(PCR) amplification with Pfu polymerase from Fermentas, using E. coli genomic 

DNA (strain MG1693) as template. DNA template was prepared using the 

genomic DNA purification kit from PUREGENE™DNA Cell & Tissue Kit 

Purification System from Gentra Systems. Forward primer BolAp1 (5’- 

CGCCATATGATGATACGTGAGCGG -3’) containing a NdeI restriction site and 

reverse primer BolAp2 (5’- GCGGAATTCGACAGTTGCAAATGCG -3’) 

containing a BamHI restriction site were used in this reaction. The PCR was done 

in a volume of 50 µl, in the presence of 0.5 ng of template DNA, 1 ng of forward 

and reverse primers, and 1 unit of Pfu polymerase (Fermentas), during 35 cycles 

(1 min at 94°C, 2 min at 55°C, and 2 min at 72°C). The resulting product was 

cloned in a blunt-ended Bluescript pSK plasmid backbone (PROMEGA) digested 

by EcoRV, named pPFA01. That plasmid was digested with NdeI and BamHI, and 

after purification of the fragment containing bolA ORF, it was ligated to a pET-28a 

plasmid (Novagen) NdeI and BamHI backbone fragment, and transformed into 

strain BL21 (DE3). E. coli BL21 (DE3) competent strain (Novagen) was used for the 

transformation of the new expression vector construct pPFA02 containing the 

gene encoding for bolA under control of a T7 polymerase IPTG inducible 

promoter. The cloned gene was confirmed by oriented PCR, fragments analysis in 

agarose gel and sequencing by company STAB Vida, Portugal (data not shown).  

Media, and growth conditions  

Luria broth, and Luria agar compositions were prepared as described previously 

(Miller, 1972).When required, the media were supplemented with 0.4 mM 

thymine, 50 mg/ml chloramphenicol, and 50 mg/ml kanamycin (all from Sigma). 
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Optical Densities (OD) were measured at 620nm and determined according to the 

Lambert-Beer law’s limits for the direct proportionality between OD and sample 

concentration (dilutions were made so that density values would be read between 

0.02 and 0.6); phases of growth to be analyzed were determined according to 

growth curves. Batch cultures were either launched directly from previous LA 

plate grown colonies or from overnight growths at 37ºC and 100 r.p.m., that were 

diluted to an optical density of 0.08 measured at 620nm (OD620nm). Cultures were 

grown aerobically at 37ºC and 120 r.p.m. For viability evaluation, the samples 

were subjected to several LB serial dilutions, and plated in the growth media 

added of agar. The number of colony forming units was counted and viability 

was determined according to the equation: Number of dividing cells per ml = cfu 

x 10dilution x 1000/100µl.  

Microscope preparations 

To observe the effect of BolA on morphology, cells were harvested from cultures 

growing in LB, at 60, 210, 340, 700, and 1420 time points of the growth curve and 

every 30 minutes after OD620nm=0.3 was reached and different conditions were 

imposed, to evaluate the response to stress challenge. Cells were fixated with 

0.75% formaldehyde and stored at 4ºC. For the Differential Interference Contrast 

microscopy photographs, 20 µl of the samples were put onto slides coated with a 

thin 1.5% agarose film, and enclosed with nr.1 cover glass. Images were obtained 

using a DMRA microscope (Leica) under phase contrast or Nomarski optics 

coupled to a CCD camera, with Metamorph software. 

 

RESULTS AND DISCUSSION 

BolA increased expression by pMAK580 affects cell growth rate and viabilities.  

Given that the deletion of bolA has proven unsuccessful for the determination of 

its function (data not shown), similarly to what occurs for most of the genes 

potentially involved in persistence, eventually due to partial compensation by 
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other genes (Lewis, 2007), a parallel attempt was done through gain-of-function. 

E. coli MG1693 was transformed with pMAK580, a pBR325 based plasmid that 

encodes bolA under its own promoters (Aldea et al., 1988), therefore enhancing 

the transcript levels. Even though this is only a medium copy plasmid, there were 

phenotypic effects quite distinct from those of the pBR325 transformed cells. 

When culture was started by dilution of an overnight growth, the maximum OD 

reached by the CMA10 (the pMAK580 transformed strain) was about 1, while an 

OD of about 4 to 5 was attained in the other strains (Fig. 1A). Surprisingly, if they 

were to start from a glycerol stock at -80ºC, the lag time until cells were able to 

divide would be higher, but once it growth started high rates until an OD of 6 or 

7 occured (Fig.1A). The same was seen for the cultures directly grown from 

glycerol stocks, although with an increased lag time that takes for cells to resume 

metabolism. As for the controls, MG1693 and MG1693 transformed with pBr325 

strains, similar growth curves were recorded independently on the origin of the 

inocula (except for the higher lag time that cultures started from glycerol stocks 

took) (Fig. 1A). The viabilities were in agreement with the results of the growth 

curves, apart from the bolA overexpression strain which exhibited a strong 

viability reduction (Fig. 1B). In this way, BolA was demonstrated to be 

responsible for serious decrease in the ability of cells to reproduce, although not 

completely abolishing bacterial multiplication. It seems like a sort of stalling is 

induced in its presence, since we can always detect some amount of colony 

forming units throughout the growth curve. BolA could be responsible for the 

reduction of cell division rate to allow a minimum of cellular maintenance until 

better conditions come. 
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Figure 1. Growth curves and viabilities depend on bolA levels. A. Optical Density measurements at 

620nm for determination of growth curves in properly supplemented LB media, at 120 r.p.m., 37ºC; 

MG1693, CMA83 (pBr325 transformed) and CMA10 (pMAK580 transformed) strains; suffix according 

to starting culture OD620nm; B. Viability evaluated by number of colony forming units in properly 

supplemented LA plates for the same strains and conditions (cell counts.ml-1 are in logarithmic scale). 

 

BolA levels strongly impact cell morphology and induce a phenotypic 

desynchronization 

To check the phenotypical effects of different amounts of BolA along the growth 

curve, microscopy studies were performed in an experiment of serial growth after 

a direct inoculum from plate colonies into liquid media (0) from which culture 

new ones would be started, by dilution into new properly supplemented LB 

media, after reaching the ODs: 0.5, 1.5, 3, and 7. In the planning of this experiment 

two aspects were simultaneously addressed: the physiological state of the 

cultures, and the amount of BolA present in the cells when new growth was 

started. Not many differences could be perceived in the growth as well as in the 

morphologies of the MG1693 background strain when growth was started from 

plate (referred as OD 0), or the liquid culture at OD 1.5 or 5 (Figure 2A). On the 

opposite, when MG1693+pMAK580 were grown after different OD values 

reached, the growth patterns were different according to the conditions 

A B 
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(Figure 2A). When growth was started after plate, the curve presented a regular 

pattern but with much higher growth rate and maximum optical density.  

Even though the evolution of ODs does not vary considerably for CMA10 strain 

started after ODs 0.5 and 1.5, the viabilities present significant differences (Figure 

2B). The 0.5 culture showed less cell counts along the curve comparing to the 

culture started at 1.5. The latter, in turn, presented unlikely high viabilities in the 

first time points evaluated corresponding to the early exponential phase. We 

believe the improved ability to multiply in this latter culture is due to the culture 

being already dividing/more metabolically active and BolA levels are still not 

overbearing. As growth proceeds increasing levels of BolA accumulate due to the 

presence of the overexpression plasmid. Finally the OD3 started culture has a 

highly initial growth and multiplication rate but by the 120 minutes of growth the 

initial BolA induced boost starts to reveal its “toxicity” effects and the OD 

evolution relies solely on the dimensions attained by cells, not growth. At OD 7 

led the maximum OD reached by cultures is about 1.5 and growth starts only 

about 24 hours after time 0 (Figure 1A and 2A). That moment seems to be for this 

strain like a time 0 for the others – cells loose the aberrant dimensions, become 

rod shaped again, ODs restart growing and cell count number enlarges instead of 

decreasing like for all other strains and conditions evaluated. It seems that, for 

cultures starting growth with some although amounts of accumulated BolA 

protein (not so much as becoming actually toxic), there is a significant percentage 

of cells that are maintained in culture although not dividing (Nystrom, 2003). 
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Figure 2. Serial growth curves and viabilities. A. Optical Density measurements at 620nm for 

determination of growth curves in LB media supplemented according to the strains, at 120 r.p.m., 

37ºC; CMA10 (MG1693 transformed with pMAK580) strain followed by the starting OD: (OD 0) for 

strains directly grown from plate and (OD 0.5, 1.5, 3, and 7) when an optical density of 0.5, 1.5, 3, and 

7 had been reached, respectively. B. Viability for the same strains and conditions evaluated by number 

of colony forming units in properly supplemented LA plates for the same strains and conditions. 

 

When their growth is initiated after a more significant accumulation of BolA, it 

seems like it has a toxic effect that not only prevents cells from dividing, but also 

B 

A 
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induces some lyses, in a way that the OD diminishes. Since bolA is a morphogene, 

it was performed morphological evaluation to confirm if different growth 

patterns corresponded to differential phenotypes. Making use of this 

methodology we could see that the background strain does not have significant 

changes according to the conditions imposed (Figure 3A). The morphology of the 

CMA10 strain, however, strongly reflected the consequences of the different 

starters (Figure 3B). One could imagine the images put sequentially in the 

moments related to the ODs of the first culture (grown from plate). The 

amplification of morphological changes along time gave the rise to pear-like, 

lemon-like, filament-like, bulging and gigantic spheres-like morphologies (Fig. 

3B). When the starter comes from OD3 or higher, bursting cells and what seems 

to be adhesion compounds (probably released from those lysing cells) are also 

detected (Figure 3B). This allows us to define a condition above which cells seem 

to no longer be able to redirect metabolism and cellular functions to survival; 

where too much external pressure or amount of internal damage leads to cell 

death, accounting for the cells to become gigantic, bulging and bursting.  

After all of the processes described above, a surprising cellular desynchronization 

mechanism may be responsible for the “rebirth” or “resurrection”of small regular 

rods at about the same time. These rods eventually come from cells that had their 

metabolism stalled and regain activity due to new nutritional input or other 

signalling from those “programmed” to lysis.  

BolA overexpression after IPTG induction reduces the rate of cell growth  

In order to confirm the results described above in an independent system, a 

plasmid was constructed containing bolA under an IPTG inducible promoter (see 

Materials and Methods). Through addition of IPTG we could determine the 

effects of extra BolA in cells, independently of their physiology or development. 
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Figure 3. Differential Interference Contrast microscopy photographs, obtained using a DMRA 

microscope (Leica) for time points 60, 120, 340, 700, and 1420 min of the growth curves; suffix 

according to starting OD: (OD 0) for strains directly grown form plate and (OD 0.5, 1.5, 3, and 7) when 

an optical density of 0.5, 1.5, 3, and 7 had been reached. A. MG1693 strain. B. CMA10 strain. 
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The pPFA02 plasmid was used to analyze the influence of bolA overexpression 

perfectly growing cells, in exponential phase. E. coli BL21 cells were grown until 

early exponential phase and then IPTG was added to induce bolA expression 

(Fig. 4). About 2h after bolA induction, the OD620 nm increased negligibly providing 

a growth rate of only 1.25 cell divisions per hour. Without induction of bolA the 

OD value increased around 6x, reaching a growth rate of 3.5 cell divisions per 

hour. The addition of glucose was intended to prevent any possible leaky 

transcription from the plasmid without induction. However, the growth curve 

results seem to show that the absence of IPTG is enough to prevent induction of 

bolA under the experimental conditions used - the system does not seem leaky. 

The use of IPTG by itself could not be accounted for any influence on this rate 

variation observed since BL21 cells control growth with and without ITPG did 

not show differences (Fig. 4). Therefore, the overexpression of bolA is sufficient to 

reduce significantly cell growth rate. The effects of BolA on cell morphology and 

membrane metabolism are probably responsible for this reduction, since they 

might interfere with normal cell division processes through the influence on 

peptidoglycan metabolism (increase of PBP5/6 expression levels) and/or the 

negative impact on the correct establishment of the internal cytoskeleton 

(downregulation of MreB protein) (Freire et al., 2009; Guinote et al., 2010). This 

effect can nevertheless be an important asset for bacteria in poor growth 

conditions or under severe stress since a slower growth rate implies a better 

management of cellular energetic resources and might provide the extra time 

necessary for bacteria to survive until conditions improve. It can furthermore 

prevent deleterious actions from toxics, absence of nutrients, and antimicrobials. 

Escherichia coli are essentially enterobacteria, and as such, must adapt to changes 

in the availability of nutrients but even more importantly to different 

environmental and stress conditions (pH variations, secondary metabolites, 

temperature, etc.). 
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Figure 4. Analysis of the influence of bolA on the growth rate. The BL21 strain was used in these 

experiments transformed with the pPFA02 plasmid when needed (Red, orange and green curves). The 

influence of IPTG on general cell growth was also checked. The green curve represents the growth of 

BL 21+pPFA02 supplemented with glucose as a control to prevent any transcription of bolA due to the 

possible leakiness of the IPTG inducible system used. IPTG or glucose addition to the media was 

performed at 0.3 OD620. 

 

BolA might thus play an important role in ensuring the transition between all 

these different stages of growth, allowing a better adaptation to the next set of 

conditions. 

BolA overexpression reduces filament morphology  

No parallelism can be established with the physiological function of BolA, unless 

this recombinant protein is capable of exerting the same effect on the cellular 

morphology as the native BolA protein. To assess if (His)6-BolA retains the 

morphogenetic effect of BolA, microscopy observations were performed in phase 

contrast (Fig. 5). (His)6-BolA appears to retain the functionality of BolA since 

microscopic analysis clearly showed that, after 2 hours of induction, all the cells 

become round or olive-shaped presenting the typical phenotype of the 

overexpression of bolA. (His)6-BolA is therefore active and can be used to infer the 
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effects of bolA overexpression as described below. BL21+pPFA02 cells contain a 

majority of regular rod-shaped bacteria but in this background there are also 

some cells forming filaments (Fig. 5). This occurs unspecifically along the growth 

curve, indistinctly of exponential or stationary phases of growth (data not 

shown). BL21 strain is depleted of the lon gene, a major inhibitor of the SOS 

response through the proteolysis of SulA protein (Mizusawa and Gottesman, 

1983). This means that higher levels of SulA, a repressor of cell septation by 

inhibiting polymerization of FtsZ proteins, might be present in this strain upon 

activation of the SOS response. Since cell division becomes arrested, these cells 

spontaneously produce filaments due to natural impairment of DNA separation 

in some cells and subsequent activation of the SOS pathway.  

The presence of filaments in non-induced BL21+pPFA02 cultures shows that some 

cells indeed present this behaviour. After BolA overexpression with IPTG in 

exponential phase for 120 min, the filament morphology totally disappears from 

the phenotype of the population and all cells become progressively rounder along 

the time, contrasting with the ones grown in the absence of IPTG (Fig. 5). BolA 

induction appears to completely repress and even reverse the formation of 

 

 

 

 

 

 

 

Figure 5. Phase-contrast microscopy photographs of BL21+pPFA02 strain in the presence and absence 

of IPTG, to induce bolA overexpression, 120 minutes after OD620nm=0.3 was reached. The strain can 

presents filaments and rods. This behavior is maintained after 120 minutes of growth, in the absence 

of IPTG. Upon BolA expression, nevertheless, cells become spheres. This phenotype is already visible 

after 60 min of induction (data not shown). The dark bar represents 5 µm. 
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filaments since all cells present a short rounder phenotype at least 2h after 

induction. BolA is thus acting as a suppressor of the SOS response-derived 

phenotype possibly through a negative effect on cell elongation mechanisms that 

could be related to its repression of MreB polymerisation (Freire et al., 2009). This 

shows that the effect of BolA on cellular mechanisms is able to cancel other 

pathways. Since bolA is a stress response gene, highly induced in general stress 

conditions, this observation implies that BolA overexpression might be able to 

promote a reduction of cell growth and an alteration of cell morphology to 

spherical shape in extreme conditions, thus striving to increase cell survival.  

BolA prolongs cell survival under acute stress conditions   

Nalidixic acid was used to induce SOS response in the whole population of BL21 

cells in the culture. Nalidixic acid is a synthetic narrow-spectrum quinolone 

antibacterial known to specifically inhibit synthesis of bacterial DNA, and induce 

cell filamentation followed by cellular death through lysis (Bauernfeind and 

Grummer, 1965). Since BolA may have a protective effect on cell survival 

according to the previously discussed results, the impact of its overexpression on 

cultures treated with nalidixic acid was examined. BL21+pPFA02 cultures were 

grown in rich LB medium until 0.3 OD620 nm when nalidixic acid (Nal) was added. 

A control culture without Nal presents a typical growth while the addition of the 

antibiotic is detrimental to cell survival (Fig. 6). One hour after addition, Nal 

causes an arrest on cell growth followed by a fast decrease in the OD, eventually 

leading to the death of the population. When 60 min of treatment with Nal is 

followed by induction of bolA by IPTG, BL21 strain is able to resist to the 

immediate effect of the antibiotic and prolong survival (Fig. 6). 
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Figure 6. Phase-contrast microscopy photographs of BL21+pPFA02 cells treated with Nal at the 

OD620nm= 0.3. The dark line represents the culture where no treatment besides Nal was added. The red 

lines show the morphology evolution of cell where IPTG was added 60 minutes after Nal treatment. 

The time is considered 0 min at each new addition. 
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This confirms that BolA induction (by overexpression or in response to stresses) 

has a potential protective effect on the cell leading to a prolonged survival of the 

bacteria. Furthermore, its potential to overcome and even antagonize the effects 

of other cellular responses already in place, as it is the case here for the SOS 

response, point towards a stress-response pathway centered on BolA regulation, 

suggesting its expression to be a cellular last resort. It has indeed been described 

that overproduction of BolA becomes eventually lethal (Aldea et al., 1988), 

something that would not be surprising if one was imaging an analogue situation 

to the eukaryotic programmed cell death, where the cell initially reacts to protect 

from toxics and avoid death, surrendering to fatality once there is too much 

damage accumulation. The cellular effect of bolA induction in the cell appears 

thus to be related to its concentration: a protective effect at increasing but lower 

concentrations, and a lethal effect when a certain threshold (higher concentration) 

is reached. These concentration-dependent effects of BolA might be related to its 

effect on the expression of different genes (Freire et al., 2009; Santos et al., 2002). 

They would also be of vital importance in the biofilm related pattern of cell death 

(Allesen-Holm et al., 2006) which requires inner cell products release and 

adhesion molecules (Rice et al., 2007) as well as biosorption protection 

compounds to be spread (Harrison et al., 2007), all of which are strongly related 

to the ability tolerate a multitude of stresses (Lewis, 2007). 

 

FINAL REMARKS 

BolA homologues are widely distributed among different kingdoms of life, except 

in Gram-positive bacteria. In this report, we have shown that overexpression of 

BolA is able to slow the cellular growth rate and even apparently stop division in 

a significant part of E. coli population. Our results also show that BolA induction 

appears to completely inhibit the spontaneous formation of filaments observed in 

part of the population in BL21 cultures. This effect is probably mediated by the 
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negative impact of BolA on cellular elongation mechanisms, namely through the 

direct repression of MreB expression leading to a deficient formation of the 

internal cytoskeleton of the cell (Freire et al., 2009). However, this reduction of 

cell growth rate can turn into a precious asset when in stress conditions, since cell 

division is delayed and more time is provided for cells to survive against 

metabolic toxics and reorganize the energetic pools. Cells treated with nalidixic 

acid become indeed more resistant to this antibiotic when BolA is overexpressed, 

significantly delaying the rate of cell death. BolA assumes therefore a protective 

role of the cell in stress conditions when its expression levels are induced. BolA is 

nevertheless toxic to the cell in high concentration as it was previously 

hypothesised (Aldea et al., 1988) and confirmed with mechanistic details in this 

study. These different functions depending on the concentration of BolA could 

indicate a more general role as gene expression regulator, possibly through the 

DNA binding properties predicted for the HTH domain of this protein. This has 

already been shown regarding the repression of mreB and activation of dacA and 

dacC genes (Freire et al., 2009; Guinote et al., 2010). BolA assumes therefore an 

important role in ensuring a prolonged survival of the cell in difficult growing 

conditions and as a mediator of general stress response. BolA relevance for cell 

tolerance in stress conditions becomes therefore very high, and this has particular 

relevance in the ecological niches of E. coli such as the animal or human guts. Its 

importance grows even further while being revealed as a new putative 

persistence gene (Lewis, 2007). Therefore, BolA may be involved in the 

mechanisms that confer microorganisms tolerance against the hosts immune 

system and antimicrobials toxicity, responsible for the gradual rise of chronic 

infections. 
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ABSTRACT  

The BolA protein homologues are widely distributed in nature. In this report, we 

have studied YrbA as a BolA homologue protein, and we have renamed it as ibaG 

for “induced by acid gene”. IbaG phenotypes are nevertheless different from the 

bolA associated morphological or growth profiles. The ibaG and bolA single and 

double deletion mutants grew faster and had higher viabilities, in rich medium, 

and the ibaG overexpression strain exhibited no differences in morphologies, 

independently of the culture media. BolA seems to assume a protective role when 

stress conditions are imposed to cultures. In those conditions bolA expression 

levels are the highest. In this work, ibaG was also demonstrated to strongly 

increase its mRNA levels in response to acidic stress, while changing its transcript 

pattern. ibaG hydrochloric acid response may represent a new mechanism for cell 

resistance against acid stress.   
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INTRODUCTION 

The BolA-like proteins are widely conserved from prokaryotes to eukaryotes. 

Although the molecular function is still an open field to research, those proteins 

seem to be involved in cell proliferation or cell-cycle regulation. The overall 

topology of a mouse BolA-like protein is alphabetabetaalphaalphabetaalpha, in 

which beta(1) and beta(2) are antiparallel, and beta(3) is parallel to beta(2). This 

fold is similar to the class II KH fold, except for the absence of the GXXG loop, 

usually well conserved. Escherichia coli protein sequence further exhibits a helix-

turn-helix motif that may correspond to a DNA-binding domain, through which 

it can eventually interact and transcriptionally regulate different genes (Aldea et 

al., 1989). Interestingly, all the conserved residues in the BolA-like proteins are 

assembled on the one side of the protein (Kasai et al., 2004).  

BolA, the E. coli 13.5 KDa morphogene protein is encoded at the 10 min region of 

the genetic map. It is responsible for the size reduction and spherical morphology 

adaptation of E. coli. The rod to sphere shape modulation occurs from 

exponentially growing to stationary phase cells, in a FtsZ (but not RodA, PBP2 or 

FtsQ) dependent manner (Aldea et al., 1988) (Lange and Hengge-Aronis, 1991).  

The bolA is structurally preceded by two promoters: bolA2p and bolA1p. The 

upstream promoter is weak and constitutive dependent on σ70. The bolA1p is 

expression driven by σS dependent gearboxes, showing an activity inversely 

dependent on growth rate (Aldea et al., 1990; Aldea et al., 1988; Aldea et al., 1989). 

In fact, bolA transcription has been shown to increase over 10 times (50 if values 

are normalized to the cell mass) and protein synthesis about 10 times in the 

transition to stationary phase. Besides the gearbox pattern of induction, the σS 

dependent promoter bolA1p is also induced in exponential phase in response to 

several stresses (heat, acid, oxidative, osmotic and glucose depletion), and stress 

induction seems to be partially σS–independent (Aldea et al., 1989) (Santos et al., 

1999). 
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RNase III acts as a positive modulator of rpoS mRNA and σS levels, and therefore 

affects bolA induction (Santos et al., 1997) (Freire et al., 2006a). Also 

polyadenylation, which inversely correlates with bacterial growth rate (Jasiecki 

and Wegrzyn, 2003), reduces RssB-mediated ClpXP σS proteolysis, increasing the 

expression of the σS regulon genes and consequently bolA (Santos et al., 2006).  

Escherichia coli BolA protein is already acknowledged amongst several 

transcriptional factors in E. coli (Martinez-Antonio et al., 2008). BolA was shown 

to repress the actin-like E. coli protein MreB (Freire et al., 2009) and to induce the 

DD-carboxypeptidases PBP5 and PBP6 (Guinote et al., 2010; Santos et al., 2002). 

Moreover, bolA overexpression induces biofilm formation, especially in stationary 

phase, alters the outer membrane properties, accessibility and sensitivity towards 

detergents and antibiotics. Those biochemical and physiological alterations may 

depend on BolA regulation over Inner Membrane Proteins and modulation of 

OmpF/OmpC balance (Aldea et al., 1989) (Vieira et al., 2004) (Freire et al., 2006b). 

Being strongly expressed under stress conditions and quite fastly repressed when 

the surroundings improve, bolA is suggested to be involved in promoting general 

resistance mechanisms. In agreement with this proposal, the bolA yeast 

homologue is a UV-inducible gene who accelerates spore germination, decreases 

proliferation rate, enhances cell size in vegetative growth, controls the correct 

septum formation and cytokinesis, confers UV resistance and is eventually 

responsible for the control of cell division, especially on resumption from cell 

cycle arrest (Kim et al., 2002). An initial characterization of a BolA homologue in 

Pseudomonas fluorescens, revealed a mild phenotype related to the sulphur 

metabolism. Although bolA has been evolutionarily predicted to be a mono-thiol 

glutaredoxin interacting reductase the registered phenotype for P. fluorescens 

could be solely due to the simultaneous inactivation of the two upstream operon 

genes rather than bolA. 
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Given the importance of BolA in several challenging environments in silico 

analysis was performed and a homologue protein (YrbA) was encountered at 

http://blast.ncbi.nlm.nih.gov. In fact, YrbA is described to be a BolA homologue, 

particularly conserved at the bolA/yrbA domain. Although gene similarity is 

basically absent, 23% of aminoacid overall identity, and 58% of similarity at the 

BolA/YrbA domain were found, and over 70% of the aminoacid residues of both 

proteins were aligned at http://www.pdb.org/. Moreover, similarly to BolA, YrbA 

was demonstrated to bear a helix-turn-helix motif, usually responsible for 

protein-DNA interaction, strengthening the idea that it could be accounted for the 

functional substitution of BolA (Fig. 1). 

In this work we created a single deletion mutant for yrbA and a double deletion 

mutant for bolA/yrbA genes in Escherichia coli. We also produced an increased 

expression vector based on pBr325, where the yrbA gene was cloned along with 

its native promoter region, similarly to pMAK580 (Aldea et al., 1988).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. YrbA (IbaG) and BolA protein structures in blue and green, respectively. 1NY8 and 

2DHM PDB’s from http://www.pdb.org/, cartoons were created using pymol evaluation software.  

http://blast.ncbi.nlm.nih.gov/
http://www.pdb.org/
http://www.pdb.org/
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The single yrbA (as the double) deletion mutant grow better than the wild type 

and, in turn, the increased yrbA copy number strain decreases both growth and 

viabilities, in rich neutral medium. The latter plasmid does not produce a 

morphology phenotype as pMAK580 does, nor does it change bolA expression. 

The reverse is also true although a minimum of BolA seems to be crucial for yrbA 

to be properly transcribed. While most of the bolA known phenotypes are not 

reproduced by yrbA, this gene is responsive to acid stress, and was thus named 

ibaG, “induced by acid gene”. Moreover we have determined an inversion in the 

growth curves dynamics upon pH5 acid challenge, where the ibaG 

overexpression strain grew the best while the ibaG deletion strain grew the worst, 

indicating that this gene is involved in resistance and survival against acid stress. 

 

METHODS 

Bacterial strains, plasmids and genetic manipulations 

The strains and plasmids used in this study are described in Table 1. MG1693 

chromosomal DNA was used as a template for polymerase chain reaction (PCR) 

with Pfu polymerase from Fermentas amplification of yrbA with surrounding 

regions using the CLON1 (5’-TGCTGCCATACGTACA GGTG-3’) and pCLON2 

(5’-GCTGGCTTAGCAGCTTCATTG-3’) primers. DNA template was prepared 

using the genomic DNA purification kit from PUREGENE™DNA Cell & Tissue 

Kit Purification System from Gentra Systems. Both pBr325 and the portion of 

genome amplified contained the AatI and PsIt restriction sites that were 

separately digested. The 5319 bp plasmid fragment and the PCR reaction 

digestion were purified with the illustra™ GFX™ PCR DNA and Gel Band 

Purification Kit from GE Healthcare. Overnight ligation was performed by T4 

DNA ligase from Roche to produce the pBGA01 plasmid.  
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Table 1. Strains and plasmids used in this study. 

Strains Description Reference or source Observations 

MG1693 thyA715 
Bachmann and Low, 

1980 
background strain 

CMA83 MG1693 + pBr325 (this study) Gibco Brl commercial  plasmid 

CMA84 MG1693 + pBGA01 (this study) 
strain overexpressing yrbA(ibaG) from 

plasmid 

CMA10 MG1693 + pMAK580 Santos et al., 1999 overexpressing bolA from plasmid 

JW3157 MG1655ΔibaG::Kanr (Baba et al., 2006) Keio collection mutant for yrbA(ibaG) 

JW5060 MG1655ΔbolA::Kanr (Baba et al., 2006) Keio collection mutant for bolA 

CMA85 MG1693 ΔibaG::Kanr (this study) 
yrbA(ibaG) deletion mutant (Keio 

derived) 

CMA86 MG1693 ΔbolA::Kanr (this study) bolA deletion mutant (Keio derived) 

BT340 DH5α+pCP20 
(Cherepanov and 

Wackernagel, 1995) 

thermosensitive plasmid expressing 

recA, to RFFP excise the antibiotic 

cassette inserted in the genome 

CMA87 MG1693 ΔbolA (this study) 
bolA deletion mutant without the 

Kanamycin resistance cassette 

CMA88 
MG1693 

ΔbolAΔibaG::Kanr 
(this study) 

double bolA & yrbA(ibaG) deletion 

mutant 

CMA63 BL21+p363 
(Freire et al., 2009; 

Miksch et al., 2005) 

BL21 with plasmid encoding for GFP 

after Multi Cloning Site to evaluate 

transcription levels of the genes after 

the promoters inserted 

CMA89 MG1693+pRMA02 (this study) 
MG1693 with plasmid expressing GFP 

downstream the yrbA(ibaG) promoter 

CMA90 
MG1693ΔbolA::Kanr 

+pRMA02 
(this study) 

bolA deletion strain with plasmid 

expressing GFP downstream the 

yrbA(ibaG) promoter 

BL21(DE3)   Novagen commercial strain 

CMA50 BL21 (DE3) + pPFA02 (Freire et al., 2009) 
BL21(DE3) with plasmid over-

expressing (His)6–BolA 

CMA91 
BL21 (DE3) + 

pPFA02+pRMA02 
(this study) 

CMA50 with plasmid expressing GFP 

downstream the yrbA(ibaG) promoter 
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The bolA, ibaG, and double bolA/ibaG deletion mutants were constructed for the 

MG1693 background using the Keio collection deletant strains kindly provided 

by Keio University (Baba et al., 2006). Gene transfer was achieved by P1-mediated 

transduction according to method previously described (Miller, 1972). For 

construction of the double deletion mutant the kanamycin resistance cassette 

(introduced to delete the bolA gene) was eliminated before the second 

transduction. The FRT (FLP recombination target) sites flanking the antibiotic 

resistance cassette were eliminated by recombination by the FLP recombinase 

encoded in the pCP20 plasmid that was transformed and then cured following 

the published protocol (Datsenko and Wanner, 2000). A plasmid pRMA2 was 

constructed containing the gfp gene encoding for green fluorescent protein under 

the control of ibaG (yrbA) promoters, using vector p363 (Miksch and Dobrowolski, 

1995). yrbA promoter was amplified using primers yrFw (5’–

GGGGTACCGCTGCTCCATCTTATCGATC–3’) and yrRev (5’–CCATCG 

ATGGGATCTTCAATCATCAG – 3’). The result fragment was digested with ClaI 

(Fermentas) and cloned directly in p363 digested with the same restriction 

enzyme. When necessary, strains were transformed with plasmid pCP20 

(commercial plasmid), pBr325 (commercial plasmid), pBGA01 (this study), 

pMAK580 (Aldea et al., 1988), or pRMA02 (this study). Transformations were 

carried out as previously described (Sambrook, 1989). All plasmids and deletion 

mutants were confirmed by DNA sequencing at STAB Vida, Portugal (data not 

shown).  

Media, growth conditions, and viability evaluation 

Luria broth (LB), M9, and Luria agar (LA) compositions were prepared as 

described previously (Miller, 1972). When required, the media were 

supplemented with 0.4 mM thymine, 50 mg/ml chloramphenicol, and 50 mg/ml 

kanamycin, 0.04% glucose (w/v), (all from Sigma) and 1 mM IPTG (from Apollo 

Scientifics). For acid challenge strains were started after an overnight growth, and 
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grown in LB until they reached an OD620nm between 0.4 and 0.5, at which moment 

all cultures were briefly centrifuged, at about 5500 g for 15 minutes, 4 ºC, to 

change media into a buffered LB at different pH. Strains were tested against pH 3, 

4, and 5 in LB buffered with sodium citrate LB and citric acid, according to 

previous description (Lin et al., 1995). Optical densities were measured in an 

Amersham Biosciences Ultrospec®500/1100pro spectrophotometer at 620nm, 

using 10 mm light path couvettes. The ODs were determined according to the 

Lambert-Beer law’s limits of direct proportionality between OD and sample 

concentration (dilutions were made in LB so that density values would be read 

between 0.02 and 0.6); the phases of growth analyzed were determined according 

to growth curves. Batch cultures were either launched from 16h overnight inoculi 

at 30ºC (for mild growth) or 37 ºC and 100 r.p.m., which were diluted to an optical 

density of 0.08 measured at 620 nm (OD620nm). Cultures were grown aerobically at 

37 ºC and 120 r.p.m. For nutritional stress evaluation cells were grown in M9 

supplemented with glucose until an OD620nm of 0.35 - corresponding to 

exponential phase (M9 Exp), washed twice in M9 without glucose and resumed to 

grow in the same media for 60 minutes – corresponding to starvation (Starv 1h), 

and finally re-added with glucose for additional 15 minutes – corresponding to 

reversion (Rev 15 min). For evaluation of viability, the samples were processed in 

LB serial dilutions, and plated in LA. The number of colony forming units (cfu) 

was counted and viability was determined according to the equation: Number of 

dividing cells per ml = cfu x 10dilution x 1000/100µl.  

Microscope preparations 

To observe the effect of IbaG (YrbA) on cells morphology, planktonic cells were 

harvested from cultures growing in LB, at the time points corresponding to log, 

early exponential, late exponential, early stationary and late stationary phases, 

according to the growth curve or from cultures growing in M9 at exponential 

phase (M9 Exp), after one hour Starvation (Starv 1h), and after 15 minutes of 
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reversion (Rev 15 min). Cells were fixed with 0.75% (v/v) formaldehyde and 

stored at 4 ºC. For the Differential Interference Contrast (DIC) microscopy 

photographs, 20 µl of the samples were observed in slides coated with a thin 1.5% 

(w/v) agarose film, and enclosed with nr.1 cover glass. Images were obtained 

using a DMRA microscope (Leica) under Nomarski optics coupled to a CCD 

camera, with Metamorph software. 

Overexpression and purification of BolA protein 

BolA overexpression using the pPFA02 plasmid and sequential purification was 

performed according to previous description (Guinote et al., 2010). The plasmid 

used for expression of BolA was a pET28a derived pPFA02 (Freire et al., 2009) 

transformed into a Novagen E. coli BL21 (DE3) strain (Table 1). Purification of 

BolA was performed by histidine affinity chromatography using HiTrap 

Chelating HP columns (GE Healthcare) and AKTA fast protein liquid 

chromatography system (GE Healthcare). Proteins were eluted with a continuous 

imidazol gradient (until 100 mM) and buffer was exchanged to 20mM Sodium 

Phosphate pH 7.4 and 50mM NaCl buffer. Protein concentration was determined 

by spectrophotometry using a Nanodrop device and measuring the OD at 280 

nm. 10µl of purified protein fractions were applied to a 15% SDS-PAGE and 

visualized by Coomassie blue staining to assess protein purity (data not shown).  

Surface Plasmon Resonance (SPR) Analysis  

The SPR analysis was performed in a BIACORE 2000 instrument. Purified BolA 

protein was immobilized in a CM5 sensor chip by amine coupling immobilization 

method according to the manufacturer’s instructions (GE Healthcare). The same 

immobilization procedure was performed with the same same molarity of BSA 

control protein in a reference flow cell, used to correct for refractive index 

changes and non-specific binding (Guinote et al., 2010). The ibaG (yrbA) promoter 

and open reading frame (ORF) were amplified by PCR using yrFw and YrRev 

(see Bacterial strains, plasmids and genetic manipulations) and yrbA3: 5’-
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GCCAGCGCAACTTTGCTC-3’ and yrbA5: 5’- CCCATAGCTCAAAAGCCG-3’ 

primers, respectively. To create a fragment only containing the ORF, the second 

PCR product was digested with NcoI, and purified with the Nucleic Acid and 

Protein Purification kit: NucleoSpin®Extract II, from Macherey-Nagel. As a 

positive control, the promoter sequence of the mreBCD operon was used and as a 

negative control we tested bolA open reading frame (ORF) DNA encoding 

fragment as previously described (Freire et al., 2009). The assays were run at 25 ºC 

in 20 mM Sodium Phosphate pH 7.4, 1 mM dithiothreitol, and 500mM NaCl 

buffer as previously described (Guinote et al., 2010). Equilibrium constants were 

determined using the BIA Evaluation 3.0 software package, according to the 

fitting model 1:1 Langmuir Binding, and 2 statistics were used to evaluate the 

fitness of the model to the data. 

RNA extraction and probe preparation 

Culture samples were taken at the desired points along the growth curve – 

OD620nm= 0.4, 1.7, and 5 - or after addition of osmotic or acidic stresses: 350mM 

NaCl (Muffler et al., 1996) or 30% HCl, lowering the pH at 7.2 to 4.4 (Bearson et 

al., 1997) both at time 0 and 60 minutes. Total RNA was extracted as described 

(Santos et al., 1997). In all experiments 1 µl of the RNA samples was quantified by 

UV spectrometry with NANODROP and integrity was verified. The probes used 

for bolA and ibaG (yrbA), in Northern blot experiments spanned the entire 

transcriptional units and were obtained by PCR, using Taq polymerase 

(Fermentas) and respectively the primers P2 (5’- CTGTGTTTCAATCT 

TTAAATCAGTAAACT -3’) and X9 (5’- CCAGACAAAACAAACGGCCCG-3’), 

and 3 (5’- GCCAGCGCAACTTTGCTC-3’) and 5 (5’-CCCATAGCTCAAA 

AGCCG-3’), in the case of DNA probes, or P2 and X9_T7 (5’- G 

TTTTTTTTAATACGACTCACTATAGGCCAGACAAAACAAAACGGCCCG-3’) 

and 3 and 5_T7 (5’- GTTTTTTTTAATACGACTCACTATAGGCCCATAGC 

TCAAAAGCCG-3’), in the case of RNA probes. 3 µl of pUC Mix Marker, 8 
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(Fermentas) was labeled with *δ-32P]-dATP using PNK and 100 times diluted into 

the RNA samples loading buffer, and 7.5 µl were run simultaneously to the 

samples to determine their molecular weight. All radioactive labels were cleaned 

in G-50 columns from GE healthcare. 

 Northern blot and hybridization 

Samples containing 15 µg of total RNA were dissolved in 90% formamide, 0.01 M 

EDTA pH 7.0, 1 mg/ml xylene cyanol, 1 mg/ml bromophenol blue buffer 

(Sambrook et al., 1989), heated for 5 min at 100ºC for denaturation, and incubated 

for 10 min on ice. Total RNA samples were electrophoresed on a 6% denaturing 

polyacrylamide gel and transferred to a nylon membrane (Biodyne A from PALL) 

according to the procedure described by Fitzwater et al. (1987). The RNA was 

then fixed to the membrane by UV light and hybridized with the PCR probe 

radiolabelled with *α-32P]-dCTP, using the Multiprime DNA labelling system 

from Amersham or with *α-32P]-rUTP, using the Promega labeling system for 

riboprobes. Probe hybridization with PerfectHyb™Plus Hybridization Buffer 1x, 

was carried out at 42ºC for DNA probes and 68ºC for RNA probes. Amersham 

Hybond™-N+ nitrocellulose membranes optimized for nucleic acid transfer from 

GE Healthcare were hybridized and washed essentially as described by 

Sambrook et al. (1989). Filters were visualized using the PhosphoImager System 

from Molecular Dynamics.  

Transcription evaluation by p363 derived plasmid 

Transcription evaluation was analyzed using gfp as reporter gene using the p363-

derived vector (Miksch and Dobrowolski, 1995), pRMA02 (see Bacterial strains, 

plasmids and genetic manipulations). BL21 + pPFA02 + pRMA02 was grown at 

120rpm until OD620nm = 0.5 when the culture was split in two. Half the culture was 

added with 1mM IPTG (to induce bolA expression) and the other with 0.04% 

glucose (to repress bolA expression). In a parallel experiment MG1693 and the 

isogenic bolA deletant were grown until OD 1.7 (the mid exponential transcripts 
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evaluation time point). Total protein was extracted using Bugbuster reagent 

(Novagen) and GFP fluorescence was quantified in a Varian-Eclipse 

Spectrofluorimeter. SDS-PAGE gels and Western-blots were done as described 

before (Freire et al., 2009). Results are showed in percentage (%) as ratio of 

fluorescence / EF-Tu quantified in the Western-blots. Final data represents the 

average plus standard deviation of fluorescence per cell, from at least three 

independent experiments. 

 

RESULTS AND DISCUSSION 

IbaG is an E. coli BolA homologue  

In Escherichia coli, when the bolA morphogene is overexpressed, cells become 

round, and cells multiplication is affected. Nevertheless, the deletion of this gene 

does not show any significant phenotype in rich growth medium. When a gene is 

lost or mutated in a way that the correspondent protein function is compromised, 

it tends to be at least partially replaced by others that share some characteristics. 

A search was performed using NCBI public resources and an uncharacterized 

gene was found to have a strong protein similarity with BolA, particularly 

considering the shared bolA/yrbA domain. This ibaG gene is expressed 

counterclockwise at the 71.87 minutes of the E. coli genome, upstream of murA 

and downstream of an operon of five genes (Fig. 2). Although the expression of 

the surrounding genes is co-directional ibaG is not predicted to be co-expressed 

with the upstream operon, but only its single gene expressed from its own 70-

predicted single promoter region as evaluated by the REGULON DB 6.7: Gene 

Form. The upstream genes to ibaG: mlaBCDEF (plus mlaA) compose the Mla 

pathway, an ABC transport system whose function seems to prevent 

phospholipidic accumulation in the outer leaflet of the Gram-negative bacteria 

outer membrane (OM), thus contributing to the preservation of the OM lipid 

asymmetry (Malinverni and Silhavy, 2009).  
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Figure 2. ibaG (yrbA) gene proximal genetic map from Escherichia coli, adapted from Ecogene public 

server. 

 

The downstream gene of this series is the essential murA gene, that encodes for 

the UDP-N-acetylglucosamine enolpyruvyl transferase, which synthesizes 

peptidoglycan precursors from N-acetylglucosamine acid and 

phosphoenoylpyruvate (Brown et al., 1995; Herring and Blattner, 2004; 

Marquardt et al., 1992). All of these seven proteins are predicted to occur or be 

function related to the outer membrane and are either essential or significantly 

affect the ability to resist against external toxics or injuries. The genes that occur 

in the proximity as well as the sequence homology that this gene has with bolA, 

increased the interest in studying yrbA. 

ibaG is not an essential gene and both single and double bolA/ibaG deletions 

improve E. coli growth 

Similarly to what had been appreciated for bolA, the single deletion of ibaG (yrbA) 

did not prove unviable for E. coli cells (Baba et al., 2006). The double deletion 

ΔbolAΔyrbA mutant was expected to be lethal, but such supposition proved to be 

wrong. After removing the kanamycin resistance cassette introduced in the place 

of the bolA gene, by pCP20 transformation and cure, and deletion of the ibaG gene 

with simultaneous insertion of the region coding for kanamycin resistance, both 

regions were sequenced to confirm the disruption of the respective genes (data 

not shown). Finally, growth, viability, and morphological analysis were 
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performed to check the phenotypical effects due to the absence of these proteins. 

At least in the optimal growth conditions used, and contrarily to what had been 

anticipated, the deletion mutants grow similarly or better than the background 

strain MG1693. In fact, although differences are small, both ΔyrbA and 

ΔbolAΔyrbA deletion mutants grow about 1.2 times faster (evaluated by the 

exponential phase rate of growth) and reach higher OD than the wild type 

(Fig. 3A). These results are confirmed by the number of colony forming units 

obtained for the lag, early exponential, mid exponential, and late 

exponential/early stationary phases of growth evaluated (Figure 3B). The most 

significant difference among cultures viability refers to the background MG1693 

strain which forms about half or even less number of colonies than any of the 

deletion mutants. In the beginning of the growth curve differences among strains 

are minimal, and until early stationary phase (inclusive), all cultures reveal a 

viability increment, as expected. However, there is a transitory decrease in the 

ΔbolA strain at mid exponential phase, perhaps when the stimulus for bolA 

expression is occurring. It is also possible to distinguish the deletion strains based 

on the colony forming units (cfu). The cfu are increasingly higher from the ΔbolA 

to the ΔibaG and the ΔbolAΔibaG strains, where the latter is the most significantly 

distinct. As for the late stationary phase the MG1693 viabilities are similar to early 

stationary phase and quite stable along the entire curve. Contrasting, the deletion 

strains largely reduce their cell counts in late stationary phase, strengthening the 

idea that these genes may be important for survival in difficult growth conditions. 

The decrease in growth potential in exponential phase may reduce the exhaustion 

of important resources or prevent some catabolites to be created and released to 

the media, thus favouring the population maintenance in stationary phase (Figure 

3B). Finally, morphology assessment was made for background and all deletion 

strains at the same time points where viability was evaluated. All strains evolved 

similarly (Figure 4A).  
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Figure 3. Growth curves and viabilities depending on the absence of bolA, ibaG, or both genes. A. 

Optical Density measurements at 620nm for determination of growth curves in LB media 

supplemented at 37ºC and 120 r.p.m. according to the strains: MG1693, MG1693ΔbolA, MG1693ΔyrbA 

and MG1693ΔbolAyrbA. B. Viability evaluated by number of colony forming units (see Materials and 

Methods) in properly supplemented LA plates for the same strains and conditions. 
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Figure 4. Differential Interference Contrast microscopy photographs, obtained using a DMRA 

microscope (Leica) for the strains MG1693, MG1693ΔbolA, MG1693ΔyrbA, and MG1693ΔbolAΔyrbA. 

A. Evaluation at time points 60, 120, 340, 700, and 1420 min of the LB growth curves; B. Evaluation at 

time points M9 grown exponential, one hour after induced starvation, and fifteen minutes after 

reversion (see Materials and Methods). The dark bar represents 5 µm. 
 

Given that bolA and ibaG respectively are and may be involved in the cell 

protection against stresses, morphologies were also analysed in poor or stress 

conditions: M9 minimal media growth, one hour of glucose starvation at 

exponential phase and 15 minutes of nutritional stress reversion by re-addition of 

glucose. The results did not diverge according to strains (Fig. 4B).  

B 

A 
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Morphologies are kept similar to wild type in the presence of an increased ibaG 

copy number 

Even though the deletion of bolA does not reflect in cells’ morphologies and 

growth curve, the same is not true for the increased bolA copy number expressed 

after its own promoters in a pBR325 derived plasmid, pMAK580 (Aldea et al., 

1988; Guinote et al., 2011). To further pursue the characterization of ibaG we have 

cloned it preceded of the respective promoter, in an attempt to create a similar 

construct to plasmid pMAK580, pBGA01. Growth curves, viability assessment 

and morphological study were implemented afterwards. The MG1693 strain 

transformed with pBr325 was used as an additional control or background strain 

when evaluating the effects of the pMAK580 and pBGA01 plasmids. Similarly to 

what is reported for MG1693, this control strain showed not to change growth 

dynamics according to the conditions imposed to the starter culture (Figure 5A). 

Oppositely, MG1693 transformed with pMAK580 strongly depends on the 

conditions cultures were exposed before inoculum into the new growth media 

(Guinote et al., 2011; Guinote et al., 2010). According to this, conditions were 

preset with a 3 to 4 hours growth at 30ºC with aeration, for bolA overexpression 

not to be so deleterious, growing to a maximum OD of about 3.5 before dilution 

into the fresh medium. To evaluate YrbA effects usual overnight pre-growth at 

37ºC with aeration was performed, so that any phenotypes associated with this 

protein expression would be determined. The enhanced expression of ibaG using 

pBGA01 showed a deleterious effect as evaluated in the growth curve (Figure 

5A), nevertheless they were significantly less notable than pMAK580 effects 

under the same conditions (Guinote et al., 2011). The viabilities were evaluated in 

the different strains (Figure 5B). The presence of pBr325 does not change viability 

results except at mid exponential phase. The number of dividing cells is similar to 

MG1693 background strain for all the other time points evaluated. As for the pre-

growth conditions, MG1693 strain diluted after reaching  
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Figure 5. Growth curves and viabilities induced by the excess of bolA, ibaG, or the control plasmid. A. 

Optical Density measurements at 620nm for determination of growth curves in LB media 

supplemented at 37ºC and 120 r.p.m. according to the strains: MG1693, MG1693+pMAK580, 

MG1693+pBGA01, and MG1693+pBr325. B. Viability evaluated by number of colony forming units 

(see Materials and Methods) in LA plates for the same strains and conditions. 
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stationary phase had slightly reduced cell counts comparing to the one diluted 

from exponential phase as expected. Similarly to what was observed in the 

growth curves, viability results, show that overexpression of ibaG by pBGA01 

plasmid was detrimental in general, with the sole exception on the transition to 

stationary phase. This plasmid significantly reduces colony counts. In pMAK580 

transformed strain, the viabilities were always quite low and more or less 

constant (Fig. 5B, logarithmic scale) (Guinote et al., 2011). Since bolA is a 

morphogene, and its effects are absolutely visible by microscopy evaluation when 

it is overexpressed by pMAK580, this methodology was used to evaluate the 

plasmid pBGA01 phenotype. Microscopy did not help the characterization of the 

function of YrbA, since no changes were observed in the presence of the later 

plasmid (Fig. 6). An eventual stress reaction by this gene, as described above, was 

evaluated growing all these strains in M9 and sugar depleting the cultures. Only 

pMAK580 transformed strain showed spheres with the conditions imposed. The 

pBGA01 strain behaved similarly to the wild type MG1693. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Differential Interference Contrast microscopy photographs, obtained using a DMRA 

microscope (Leica) for the strains MG1693, MG1693+pMAK580, MG1693+pBGA01, and 

MG1693+pBr325, at time points 60, 120, 340, 700, and 1420 min of the LB growth curves. The dark bar 

represents 5 µm. 
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ibaG is not induced or repressed by BolA but seems to require its presence for 

transcription 

According to the previous results ibaG and bolA seemed not to complement but 

override effects, thus seeming to concur in parallel and not a single pathway. 

Moreover it was possible to observe that BolA overexpression has a stronger 

phenotype than YrbA. Since BolA was shown to interact with the promoter 

regions of mreB, dacA and dacC, Surface Plasmon Resonance (SPR) experiments 

were used to test the ability of that protein to recognize and interact with the ibaG 

promoter and open reading frame (ORF) regions. The results show that BolA 

does not interact directly with ibaG (Table 2). Therefore, BolA was established not 

to act as a direct transcriptional regulator for ibaG. Nevertheless induction of 

indirect transcriptional changes were evaluated by means of pRMA02, a p363 

based plasmid, where GFP is expressed according to the upstream promoter 

activity (Fig.7). This methodology allows transcription activity of any cloned 

promoters to be measured by determination of fluorescence. The ibaG promoter 

did not reveal to be either activated or repressed by increased BolA levels 

(induced by addition of IPTG to the BolA overexpressing pET28a derived 

plasmid, pPFA02 (Freire et al., 2009)).  

 

Table 2. BolA binding affinity for yrbA promoter (ibaG prom) and coding region (ibaG ORF). 

Equilibrium constants (KD) were determined by Surface Plasmon Resonance using BIACORE2000 and 

according to the 1:1 Langmuir Binding Model. ka is the association rate constant, kd the dissociation 

rate constant, and KD the equilibrium dissociation constant of the reaction. 2 was the statistics used to 

measure the fitness of the model to the data. ΔGº values were determined according to the van´t Hoff 

equation: ΔG°= RTlnKD, where R and T are the universal gas constant and absolute temperature. 

 

ka 

(1/Ms) 
kd (1/s) KA (1/nM) KD (nM) Chi2 

ΔG0 

(KJ/mol) 

ibaG prom 285 1,00E-05 0,028 35,20 0,59 -42,54 

ibaG ORF 616 1,04E-05 0,059 16,90 0,96 -44,36 
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Nevertheless, GFP measured transcription levels were halved when bolA was 

repressed (by addition of glucose to the same system) (Fig. 7). Minimal levels of 

BolA, thus seemed to be required for the proper transcriptional activity of this 

promoter. This would provide relevance to the bolAp2 weak constitutive 

promoter, which maintains low levels of bolA expression.  

To confirm this hypothesis wild type and bolA deletion strains were also 

transformed with pRMA02 plasmid and the transcription activity of ibaG 

promoter was evaluated in both backgrounds. Validation was achieved given that 

the transcription was decreased 30% in mid exponential phase and 70% in 

stationary phase. When bolA is poorly expressed the difference of ibaG 

transcription between the background and the bolA deletion strain is much lower 

than in stationary phase, when the expression of bolA is physiologically more 

significant (Fig. 7). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. yrbA transcription evaluation by determination of pRMA2 GFP fluorescence per cell at OD 

0.5, and 30, and 60 minutes after addition of either glucose or IPTG to BL21´pPFA02+pRMA02 (left) 

and at mid exponential and late stationary phase of MG1693+pRMA02 and isogenic bolA deletant 

(right). The averages of GFP fluorescence per cell (by EF-Tu quantification) were determined as a 

percentage towards the exhibited at exponential 0.4 OD.  
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ibaG (yrbA) mRNA expression responds to acid stress  

Both bolA and ibaG patterns of expression along the growth curve and upon 

stresses imposition were evaluated by Northern blot. As expected bolA transcript 

was absent in the deletion strain, and similarly expressed in the wild type strain, 

the single ibaG deletant mutant, the strain with the control vector pBr325, and in 

the strain with the ibaG overexpressing pBGA01 plasmid. BolA mRNA levels were 

only increased in the strain transformed with pMAK580, the plasmid that 

overexpresses bolA. As a result, we could confirm that ibaG higher mRNA levels 

did not influence the bolA transcripts (Fig. 8). 

When we used the ibaG probe for equivalent membranes it was possible to see 

that, in the single copy genome, ibaG does not present sufficient levels to be 

detected (at least with 15ug total RNA per lane used in this study). Nevertheless 

the expression of the latter gene could be acknowledged when strains were 

transformed with pBGA01 plasmid, where ibaG is expressed after its own 

promoter but is present in more copies. As it is a pBr325 derived plasmid, it is 

present until five times more in stationary phase. According to this, if ibaG mRNA 

levels increased at that phase, more than five times higher levels should be 

detected. However, the transcripts of ibaG presented the lower levels exactly in 

stationary phase, which means that the gene is basically absent at this 

developmental phase of E. coli (Fig. 9). The highest expression of this gene occurs 

at mid exponential phase, with correspondence to the start of the increase in bolA 

mRNA levels. Two different stresses were checked, namely, the osmotic and the 

acid stress. It was observed that, when cells were challenged with hidrochlorous 

acid stress, ibaG increases its levels and assumes a completely different expression 

pattern (Fig. 9). When osmotic stress is imposed ibaG expression is not shut down, 

but the mRNA seems to become degraded into multiple fragments. ibaG shares 

with bolA the ability to strongly respond to stress. 
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Fig. 8. Northern Blot analysis of the expression of bolA mRNA in MG1693, MG1693ΔbolA, 

MG1693ΔyrbA, MG1693+pBr325, MG1693+pMAK580, and MG1693+pBGA01, respectively, at OD 0.5, 

1.7, and 5, corresponding to early exponential, mid exponential, and stationary phases. 
 

 

 

 

 

 

 

 

 

 

Former yrbA, now ibaG, standing for induced by acid gene, favours growth in 

mild acid media  

This gene may be involved in the survival or growth enhancement in conditions 

of mild acid. All the strains tested stopped growing as they did not further 

increase their ODs after the pH of the medium was modified to 3 or 4 (data not 

shown). Nevertheless, when pH 7 LB was switched to pH 5 LB, the strain that 

was overexpressing ibaG could grow better than the wild type and, conversely, 

the deletion strain was more sensitive (Fig. 10). Between 180 and 240 minutes 

after the stress challenge the strains are basically overimposed in OD and 

gradually split with inverted pattern to what happened at the pH 7 LB growth. 

Therefore this ibaG does not seem to be responsible for resistance against strong 

     MG1693     MG1693ΔbolA MG1693ΔyrbA  MG+pBr325  MG+pMAK580 MG+pBGA01 

  0.5   1.7    5      0.5    1.7    5        0.5  1.7    5       0.5    1.7    5       0.5   1.7      5     0.5    1.7    5 

Fig. 9. MG1693+pBGA01, yrbA mRNA at OD 0.5, 

1.7_control for stresses, after 1 hour of HCl and NaCl 

challenges, and OD 5, corresponding to early exponential, 

and mid exponential phase, acid (pH4.4) and osmotic 

stresses (NaCl 0.35 M) imposition for one hour, and 

stationary phase. This transcript could not be detected in 

any of the other strains (data not shown).  

MG+pBGA01 

0.5  1.7   HCl  NaCl  5 
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environments (pH 5). In a similar situation to bolA, ibaG mRNA is strongly 

increased in exponential phase, upon acid stress imposition, and could 

additionally be demonstrated to contribute to E. coli tolerance against acid stress. 

 

FINAL REMARKS 

The BolA protein homologues are widely distributed in nature, and even 

represented in several copies or homologue genes within the same organisms, 

with the exception of Gram-positive bacteria. BolA has been predicted to be a 

reductase that interacts with a mono-thiol glutaredoxin (which would provide it 

reducing equivalents to the evolutionarily conserved cysteine’s loss). 

Accordingly, BolA was proposed to be responsible for the reduction of  organic 

peroxides (Huynen et al., 2005). Additionally, an attempt to characterize a 

BolA/YrbA homologue of Pseudomonas fluorescens, revealed a mild phenotype 

Fig. 10. Growth behaviour 

of MG1693, MG1693ΔyrbA, 

and MG1693+pBGA01, 

determined for pH5 acid 

stress challenge induced 

after OD 0.4/0.5 was 

reached by all cultures. 

MG1696+pBr325 strain 

grew similarly to the 

deletion strain (data not 

shown). 
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related to the sulphur metabolism. Nevertheless the “bolA” mutation could only 

be reverted transforming the strain with bolA homologue added of the two 

upstream genes that encode for a putative sulphurtransferase and a 

dissulfideisomerase, respectively (Koch and Nybroe, 2006). So far, the bolA yeast 

homologue was the sole protein that revealed common growth, division and 

resistance/survival characteristics to the E. coli bolA (Kim et al., 2002). In this 

report, we have shown YrbA to be a BolA homologue protein, with significant 

aminoacid sequence similarity and structural fold maintenance. The initial idea 

that this homologue could be substituting for bolA, when the latter was deleted 

from E. coli genome, and in consequence preventing a more evident phenotype to 

be presented was disproven. All attempts to characterize ibaG gene and protein 

similarly to BolA proved unfruitful, since it did not produce any of the 

morphological or growth dynamics’ associated changes, either by means of the 

deletion or overexpression methodologies. In the case of the YrbA 

overexpression, placid decrease in the growth rate, in the maximum OD reached 

by the culture, and in cell counts were determined, with exception of the 

transition from exponential to stationary phase. Such reduction was not as 

pronounced as the reported for BolA overexpression plasmid, pMAK580, 

nevertheless. Moreover, even though the single ΔibaG and double ΔΔbolA/ibaG 

deletion mutants demonstrated improved and additive growth curves and 

viabilities, the cells’ morphologies did not show any differences to the 

background strain independently on the media tested. Also the strains 

transformed with the control pBr325 and the pBGA01 ibaG increased expression 

plasmids, did not change morphologies in any of the growth and stress 

conditions evaluated. 

 BolA assumes a protective role of the cell in stress conditions, when its 

expression levels are induced. This may be the only commonality between these 

two E. coli proteins apart from the aminoacidic and folding similitude, which has 
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conferred them the status of homologues. IbaG was demonstrated to be strongly 

expressed as a reaction to acidic stress, in a process that is simultaneously 

characterized by what seems to be the maturation of the biggest transcript into 

strictly two others different than the shorter fragments exhibited by this gene in 

good growth conditions. Given the protein structural similarity to BolA and 

increased expression in response to stress, but also the additive features in their 

derived growth, and viabilities, it is feasible that ibaG hydrochloric acid response 

represents a parallel to bolA mechanism of cell defence. The parallel and not 

singular pathways or mechanisms yet to characterize would justify the inability 

of one gene to complement the other but both absences to be synergetic. Although 

morphology or expression pattern did not recognize YrbA to mimic or overlap 

BolA, this gene has been proven to share with BolA more than overall structure, 

namely the response against acid stress and increasing tolerance upon those 

conditions. 
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BolA is an E. coli protein which causes round morphology when overexpressed 

(Aldea et al., 1988). The amounts of this protein in the cell are usually reduced 

and tightly controlled. The gene bolA is transcribed from the weak constitutive 

promoter P2, under the control of sigma70 (RpoD) and  the main gearbox 

promoter P1 under the control of both sigmaS (RpoS) and sigma70 (Friedman et 

al., 2005; Nguyen et al., 1993), is transcribed mainly in conditions where sigmaS 

levels are high, like stationary phase (Aldea et al., 1989; Lange and Hengge-

Aronis, 1991; Loewen and Hengge-Aronis, 1994) or during the exponential phase 

of growth, when triggered in response to several forms of stress (Santos et al., 

1999). Northern blot analysis showed that when bolA transcription is induced the 

mRNA transcript is also degraded 3 times slower (Freire et al., 2006a; Santos et 

al., 2006). The complementary regulation, at the level of the bolA mRNA stability, 

enables the cell to respond faster to the need of turning on or off genes. The 

consonance between transcriptional and post-transcriptional controls is expected 

when gene products have global effects over cellular regulation and are only 

required for specific periods, as seems to be the case of bolA. 

 

This morphogene seems to be involved in the cell division control (Aldea et al., 

1989; Freire et al., 2009) induces biofilm formation (Vieira et al., 2004) and affects 

cellular permeability (Freire et al., 2006b). Moreover bolA was shown not only to 

have its mRNA and protein levels affected by the cells growth rate, but its 

overexpression also strongly reduces the growth of cultures and viability counts. 

The reduction of metabolism, cell shape modifications, and increased ability to 

endure imposition of external stresses, desynchronization of population growth, 

dependency on stationary phase, and even more importantly the potency to 

stimulate the production of biofilms, strongly suggested bolA to be a persister 

gene. Increased expectations arise from the idea that this protein can be 

modulating the response of microorganisms against stresses imposed by their 
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hosts therefore making bacteria less susceptible to treatment. The study of 

persister genes may also enlighten understanding of molecular mechanisms 

underlying diseases such as cancer where cells, attempting to protect themselves 

against all kinds of aggressions, gain the ability to change their metabolism, 

shape, and even aggregation behaviour, and also inducing changes in their 

surroundings. 

 

BolA was also proposed to act as a transcriptional regulator. It was shown that it 

interacts with the promoter of mreB (Freire et al., 2009). MreB is a cytosqueleton 

protein that spirals along the cells maintaining their rod shape. BolA decreases 

the levels of MreB which leads to the loss of its ability to polymerize properly, 

while maintaining the spirals. After being established that BolA increases the 

levels of the penicillin binding proteins PBP5 and PBP6 and the β-lactamase 

AmpC mRNA (Santos et al., 2002), it was confirmed that BolA can also interact 

with the dacA and dacC promoters and in that way directly regulate their 

transcripts (Guinote et al., 2010). Although overlapping of PBP5 and PBP6 

functions is imperfect, some substitution effect was confirmed in the sense that 

the BolA overexpression related growth and morphology phenotypes are only 

prevented when both DD_carboxypeptidases PBP5 and PBP6 are depleted. PBP5 

and PBP6 share 65% homology and the peptidoglycan remodeling type of 

activity, although the second presents about 4 times less specific activity 

(Amanuma and Strominger, 1980). In addition, overexpression of either of them 

can reverse the effects of a specific temperature-sensitive allele of PBP3, again 

showing to perform similar functions in vivo (Begg et al., 1990). However, this two 

proteins do not functionally overlap on the basis of their carboxypeptidase 

activities, or on their penicillin binding abilities (Ghosh and Young, 2003); and 

overexpression of one or the other leads to completely different results: high 

levels of PBP5 originate spheres out of rods (Markiewicz et al., 1982) and the same 
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is not seen for PBP6 (van der Linden et al., 1992). On the other hand, the latter 

was suggested to stabilize by cross-linking (van der Linden et al., 1992) the 

peptidoglycan of nongrowing cells (Glauner and Holtje, 1990) and aminoacid 

starved cells (Goodell and Tomasz, 1980), in analogy to the Bacillus subtilis 

sporulation-specific PBP5a (PBP5*) (Buchanan and Ling, 1992; Todd et al., 1985). 

Thus a strong relation of a BolA target PBP5 and bacterial shape alterations and 

PBP6 with change in the characteristics of murein and increasing cell wall 

resistance, could be determined. Although there is not just one function or 

phenotype associated to BolA we can already establish a strong relation of this 

protein with the cell wall function and regulation. Additionally, the cross-linking 

PBP5 and PBP6 enzymes may be involved in some kind of control of population 

or host´s perception of the presence of bacteria by differential cross-linking and 

due to the release of D-Ala-Ala dipeptides, when those proteins are active. This 

may be another way by which BolA helps bacteria avoid the immune 

system/external stresses imposition.  

 

Finally, BolA has possible homologues throughout the living world apart from 

gram-positive bacteria. This absence may be due to the fact that this gene 

appeared only after evolutional divergence between this two types of bacteria or 

simply because its targets do not exist or are not functionally relevant in Gram-

positive species. The major difference between Gram-positive and Gram-negative 

bacteria resides on the cell wall. Gram-negative bacteria have an outer membrane 

after a thin peptidoglycan layer, while Gram-positive have a unique inner 

membrane followed by a thick murein layer in which teichoic acids are arranged 

creating a negative charge. Apart from this structural difference, gram-positive 

species are also the only bacteria that are able to sporulate (although spores can 

also be found among plants, algae, fungi and some protozoans). This stable 

dormant or resting forms occur in their life cycle to enhance their survival under 
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adverse conditions. This fact further substantiates the theory of BolA as a 

persister protein, preventing cell death in response to negative stimuli given that 

Gram-negative bacteria lack the ability to sporulate.  

 

Additionally to the existence of predicted BolA homologue proteins in other 

organisms, one was determined to have high similarity level in E. coli, that was 

designated as yrbA, and was renamed as ibaG. This protein shares a common 

bolA/yrbA domain, also harbouring the Helix-Turn-Helix motif with propensity 

for nucleic acid binding. The substitution of BolA by IbaG could thus explain why 

the deletion of the first gene was not lethal or even detrimental for growth (except 

in minimal medium). A regulatory (eventually inter-regulatory) mechanism 

could exist to equilibrate both mRNA/protein levels. However, the double 

deletion mutant constructed during this doctoral work did not behave as 

predicted. On the contrary, deleting either ibaG or bolA/ibaG has surprisingly 

revealed to be an asset for the cultures growth and viabilities in optimal growth 

conditions. Even more, overexpressing ibaG under its own promoters (by pBGA01 

plasmid) lead to a decrease in growth and viabilities, corroborating the previous 

result. Interestingly enough, ibaG is encoded in the chromosome neighbourhood 

of a series of genes related to the peptidoglycan synthesis and differential 

composition of the outer membrane. This relates to the exchanges with the 

environment as well as adherence and communication, all of which aspects are 

related to BolA. Even though ibaG regulation is not similar to bolA and it is not 

directly affected by the respective protein, nor it presents a similar phenotype to 

the homologue, ibaG was proven to be related to stress and enhance the 

multiplicative potential of cells in adverse low pH conditions. We have thus 

named this gene as induced by acid gene, ibaG. 
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All of these data emphasize the present interest in better characterize the 

expression of the almost ubiquitous bolA gene and its homologues in E. coli, and 

higher organisms. In this way we may not only advance in the characterization of 

global protective regulation in microorganisms but eventually also provide new 

tools or data and insights for developmental and survival processes that are 

known to occur and to be strongly affected by the environmental conditions. 
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In extension to the work until now developed around the idea of BolA as a 

persistence protein, we think it will be important to evaluate its potential in 

growth dynamics and survival against a series of antibiotics. Although minimal 

inhibitory concentrations (MIC) are expected to be unchanged by persister 

proteins we think it will be good to determine them. For such we will initially 

screen qualitatively the reaction of our strains to different antibiotics, measuring 

the halo of growth inhibition created around disks of discrete amounts of 

antibiotic. 

Since purification of his-tagged BolA has been done and optimized, we hope to 

obtain good, potent and specific antibodies, a tool that will open several new 

doors in the study of this protein. The quantification of the protein levels will be 

possible and we expect to compare them with the levels of the transcripts and to 

confirm the premise of a global concerted regulation of BolA in the cell. 

To further study the regulation of this morphogene, both bolA1p and bolA2p 

mRNA levels and stability will be further investigated by steady state and decay 

evaluation of the transcripts by Northern Blot Analysis in RNase II, III and E 

mutants, and eventually in double Hfq/RNase(s) mutants. In all the strains the 

protein levels are expected to be compared with the transcripts data. As the 

transcript has a quite long 3’ tail after the open reading frame, we would like to 

investigate if bolA is also controlled by small RNAs.  

Surface Plasmon Resonance analysis using a sensorchip with BolA immobilized 

may provide the means to analyse specific interactions with different cell extracts 

or specific molecules to evaluate how they are modulated, and eventually recover 

the partners for identification, through mass spectrometry. 

Another goal is to define where and by which mechanisms BolA and the proteins 

whose expression it regulates are acting on: division itself, elongation machinery, 

and/or definition of the division plate. To evaluate if the cell wall if splitting isn’t 

exactly at the middle of the cell as it is predicted, and if the proper patchwork of 
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the mature vs. new murein is being affected by BolA, the peptidoglycan turn-over 

in the several strains could be determined fluorescently labelling cell walls. 

Moreover, the use of strains or plasmids where some cytosqueletal elements or 

penicillin-binding proteins are fused with several forms of eGFP making them 

observable by optic microscopy through the emission of fluorescence at different 

wavelengths, would certainly shed light into this temporal, organizational and 

localized concerted mechanisms. 

The determination of where BolA is being expressed/acting inside the cell and of 

the structures/metabolism proteins/effectors it interacts with, eventually allowed 

with eGFP fused BolA. This could later on help in the definition of the protein’s 

functions and complexes formed. The simultaneous microscopic study with DAPI 

for the chromatin organization would possibly help understanding how the 

protein expression can eventually be related to the bolA position in the 

chromosome or by some DNA differential compaction at its location in different 

stages of growth and conditions in several mutants, as well as the protein’s action 

over other genes expression. 

If resolution is not enough to visualize specific BolA localization(s), labelling the 

anti-BolA antibodies with gold (Au) probes to hybridize the bacteria, observing 

them by electronic transmission microscopy, would improve visualization, even 

though only providing picture of dynamic processes. This later procedure would 

also help determining the degree of chromatin compaction according to the BolA 

levels in different strains. 

The bolA expression is concomitant with the accumulation of stationary-phase 

protein Dps, compacting the nucleoid and eventually regulating gene expression 

profiles, also conferring cells increased resistance against a variety of stresses 

(Almiron et al., 1992; Altuvia et al., 1994; Boylan et al., 2003; Choi et al., 2000; 

Martinez and Kolter, 1997; Nair and Finkel, 2004; Stephani et al., 2003). The 

growth-phase dependent intrinsic MdtEF multidrug efflux systems additionally 
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confer tolerance to toxics (Kobayashi et al., 2006). It could also be interesting to 

observe the Dps and eventually MdtEF mRNA levels at least in wt vs. bolA 

deletion strain.  

On the other hand, considering the predicted action of BolA protein as scavenger 

for organic peroxides reduction (Huynen et al., 2005) and that Dps, also presents 

metal chelating and ferroxidase activities it could be interesting to determine the 

cell’s redox potential, ROS accumulation, eventual ferrous and ferric iron 

distribution/deposition and perhaps the expression metals export proteins in the 

studied strains. Microscopy evaluation would certainly provide information both 

beautiful and meaningful.  

To acknowledge what is determining the size of the cell (increase due to 

accumulating solutes followed by water, enhancing turgor pressure, or the 

augmentation of cell wall resistance in certain regions after alteration of cell wall 

composition) and the cell shape (with changes in the “2” dimensions of the cell, or 

only one: length or radius), it should be interesting to analyse cell wall and 

internal cell solutes composition, and determine BolA related levels. 

Finally, functional DNA microarrays from a bolA deletion mutant based on the 

MG1655 type strain versus the isogenic pMAK580 overexpression, are now being 

compared. Precious information is expected to be retrieved and integrated with 

all the previous results. Based in these data we expect to develop an integrated 

model for BolA. It is anticipated that this can provide knowledge to implement 

biotechnological tools for differential modulation of gene expression and 

ultimately control cell growth and division.  
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ABSTRACT  

Both Hfq and BolA proteins seem to play a general role in stress response 

regulation in E. coli, changing the expression of outer membrane proteins, 

histone-like proteins, and thus DNA condensation and accessibility. Additionally, 

they are partially sigma S regulator and regulated, respectively. Hfq is a 

ribonucleic acids chaperone and facilitator of nucleic acid-sRNA-protein 

interaction, thus inter-regulating their levels, while BolA is a transcriptional 

regulator and they may have complementary functions. The two respond to 

different stresses, particularly sugar presence/depletion, and both mRNAs are 

stabilized upon entry into stationary-phase. Their absence or excessive presence, 

respectively, changes the central carbon flux, production of extracellular 

products, biofilm formation, and eventually virulence. In this work Hfq was 

confirmed to be involved in the post-transcriptional control of bolA and to be 

essential for the steady-state levels of this transcript. Growth curves, viability 

analysis and morphology evaluation, further documented the importance of Hfq 

presence for BolA cellular effects to be achieved. 
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INTRODUCTION 

The induction of genes such as bolA has been so far mostly accounted for at the 

level of transcription. However, our results show that there is an integrated 

answer between transcription and degradation. Under conditions where bolA is 

more transcribed its message is less degraded and when it is less transcribed the 

RNA decay is much faster (Santos et al., 1999). The main E. coli ribonucleases 

involved in the degradation of mRNA are ribonuclease II (RNase II), 

polynucleotide phosphorylase (PNPase), ribonuclease III (RNase III), and 

ribonuclease E (RNase E). Mutants deficient in these ribonucleases were used to 

determine which was responsible for the bolA mRNA decay. Even though the 

decay of this transcript is really fast in conditions where it is not needed (when 

stresses cease to exist), none of the most common RNases seems to participate in 

the degradation of this messenger RNA, with the exception of RNase III, 

according to what has been previously described (Freire et al., 2006; Santos et al., 

1997). 

Hfq is a 15 KDa, nucleic acid-binding protein, originally identified as an 

Escherichia coli host factor required for RNA phage Q (beta) replication. It is a 

pleiotropic post-transcriptional regulator of gene expression, modulating both 

mRNA stability and translational activity, due to its interactions with several 

small non-coding RNA species (sRNAs) (Takada et al., 1997) (Arluison et al., 

2006). Hfq is apparently auto-repressed at the translational level and positively 

regulated at the transcriptional level by  the alarmone ppGpp, the stringent 

response alarmone, and by the general stress response DksA (Sharma and Payne, 

2006). 

Hfq is responsible for increasing growth rate and culture yields, and presents 

several other effects in the cell: enhances DNA supercoiling in the stationary 

phase, reduces cell size, confers resistance to stresses, reduces cellular oxidation 

state, facilitates biofilm formation and nitrogen fixation, and allows lambda 
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phage plaque formation. It strongly influences virulence in pathogenic bacteria, 

affecting σS-independent cell motility, membrane composition, adhesion, 

invasion, ability to replicate in macrophages and to secrete effector proteins (Tsui 

et al., 1994) (Sharma and Payne, 2006) (Ansong et al., 2009; Sittka et al., 2007). 

Hfq harbours two independent RNA binding surfaces: the Proximal Site, which 

binds sRNAs and mRNAs; and the Distal Site, which binds poly(A) tails and was 

shown to interact with Polyadenylation Polymerase I (PAP I), stimulating its 

activity (Le Derout et al., 2003) (Ziolkowska et al., 2006), and Polynucleotide 

Phosphorylase (PNPase) and RNase E, forming complexes involved in the mRNA 

decay pathway (Mikulecky et al., 2004) (Mohanty et al., 2004) (Brennan and Link, 

2007). Nevertheless, RNA degradation by the 3'-5' exoribonucleases PNPase and 

RNase II at oligo(A) tails and RNase E hydrolysis of the interhelical regions, was 

shown to be prevented by Hfq binding, in vitro, suggesting it modulates the 

sensitivity of RNA to ribonucleases in the cell (Folichon et al., 2003). Large subsets 

of additional proteins were identified co-purifying with Hfq: ribosomal proteins, 

RNA degradation and processing proteins, chaperones, transcription proteins, 

RNA modification proteins, and the Lon ATP-dependent protease (Wilusz and 

Wilusz, 2005). 

Stationary phase rpoS as well as bolA1p and dps mRNAs are all polyadenylated, 

eventually preventing them from degradation, and thus enhancing their stability 

(Cao and Sarkar, 1997) (Cunning et al., 1998). Besides protecting mRNAs with 

poly(A) tails, Hfq also seems to confer protection to the sRNAs since the putative 

RNase E recognition sites (A/U-rich sequences and adjacent stem-loop structures) 

are coincident with the Hfq binding sites, preventing sRNAs from being 

degraded by endonucleolytic attack, without their targets attached (Moll et al., 

2003b). 

On the other hand, pairing with the specific mRNA, it can block translation 

initiation and promote their degradation (Arluison et al., 2007) (Geissmann and 
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Touati, 2004) (Udekwu et al., 2005). Hfq binds the sRNA bases that overlap the 

Shine-Dalgarno sequence of the specific target’s mRNA and accelerates the rate of 

duplex formation between them, forming a ribonucleoprotein complex with 

RNase E/degradosome, which degrades both RNAs, promoting an RNase E-

dependent gene silencing and translation inhibition (Aiba, 2007) (Kawamoto et 

al., 2005). Hfq furthermore affects the mRNA’s accessibility to transcription, 

interfering with the ribosome binding and start codon accessibility, even after 

they are no longer bound, given that the induced mRNA’s structural changes are 

not reversible (Moll et al., 2003a). A Hfq null mutant enhances ftsZ mRNA, as 

well as protein levels, in stationary-phase, leading to high frequency mini-cells, 

especially in poor-media (Takada et al., 1999).  

Hfq seems to play a general role in stress response regulation in E. coli, repressing 

the σE mediated envelope stress response (outer membrane proteins); and also 

induces the σ32 -mediated cytoplasmic stress response due to decreasing DnaK 

expression (Guisbert et al., 2007). Hfq moreover regulates DNA repair pathways 

in a σS-dependent (MutH and MutS) and independent way (MutS, in the 

exponential as well as stationary phase of growth) the different mechanisms 

eventually accounting for differential adjustment to different stresses (Tsui et al., 

1997). Response to glucose-P accumulation is sensed by the SgrR transcription 

factor that activates the SgrS sRNA negatively regulating, by Hfq/RNaseE & 

degradosome complex, the stability and translation of the ptsG mRNA encoding 

for the major E. coli glucose transporter, limiting the toxic accumulation 

(Vanderpool, 2007). On a reverse regulation mechanism, CsrA binds specifically 

to the Shine-Dalgarno sequence of hfq leader transcript, inhibiting Hfq synthesis 

by competitively blocking ribosome binding. Hfq mRNA is nevertheless 

stabilized upon entry into stationary-phase by a CsrA-independent mechanism  

(Babitzke and Romeo, 2007) (Baker et al., 2007). Depending on the particular 

organism, the Csr (carbon storage regulation - or Rsm) system, which consists of 
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CsrA, a homodimeric RNA binding protein, two noncoding small RNAs, CsrB 

and CsrC, that function as CsrA antagonists, and CsrD, that targets CsrB and 

CsrC for degradation by RNase E, participate in global regulatory circuits that 

control central carbon flux, the production of extracellular products, cell motility, 

biofilm formation, quorum sensing and/or pathogenesis. 

Hfq is a global regulator of stress response, partially through σS dependent 

induction of genes, but its role, mainly in virulence, is not exclusively attributable 

to σS. This molecule seems to be mandatory for the virulence of several 

pathogenic bacteria, namely Salmonella typhimurium, Vibrio cholerae, Listeria 

pneumophyla, Shigella flexneri, Yersinia enterocolitica, Brucella abortus, and 

Pseudomonas aeruginosa (Brown and Elliott, 1996) (Ding et al., 2004) (McNealy et 

al., 2005) (Sharma and Payne, 2006) (Sonnleitner et al., 2003). 

Pairing data on BolA and Hfq, interaction and regulation were postulated to 

occur. Thus we have purposed to analyze Hfq as a possible factor involved in the 

post-transcriptional control of bolA and understand how it works in consonance 

with transcription, to keep in balance the global regulation of this gene. Growth 

curves viability analysis and morphology evaluation, were performed and mRNA 

decay of both the wild type and hfq deletion strains was analysed to evaluate the 

stability of the bolA mRNA message, depending on Hfq. The presence of Hfq was 

demonstrated to be essential for BolA effects to occur, and interestingly in its 

absence the “excess” of BolA led to unexpected filaments or at least long rods that 

eventually diverged in the poles. This effect was exacerbated when growth media 

was supplemented with glucose, that is known to destabilize hfq. That 

supplement also induced dramatic changes on all strains growth, faster at first 

but strongly reduced as evaluated by the maximum OD attained by the cultures; 

also morphologies were slightly affected, enhanced thickness of the wild type 

cells, and inducing “filamentation” and the up come of bulges in the long rods of 

CMA10 overexpressing BolA strain. 
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METHODS 

Bacterial strains, plasmids and genetic manipulations 

The strains used in this study are described in Table 1. When necessary, strains 

were transformed with plasmid pMAK580 (Aldea et al., 1988) containing bolA 

under regulation of its own promoters. Transformations were carried out as 

previously described (Sambrook, 1989). 
 

Table 1. Strains used in this study 

 

Media, growth conditions and viabilities  

Luria broth (LB) and Luria agar (LA) were prepared as described previously 

(Miller, 1972). When required, the media were supplemented with 0.4 mM 

thymine, 0.4% glucose, 50 mg/ml chloramphenicol, and 50 mg/ml kanamycin (all 

from Sigma). Optical densities were measured in an Amersham Biosciences 

Ultrospec®500/1100pro spectrophotometer at 620nm, using 10 mm light path 

couvettes. The ODs were determined according to the Lambert-Beer law’s limits of 

direct proportionality between OD and sample concentration (dilutions were 

made in LB so that density values would be read between 0.02 and 0.6); the 

phases of growth analyzed were determined according to growth curves. Batch 

cultures were either launched directly from previous LA plate grown colonies or 

from overnight inoculi at 37 ºC and 100 r.p.m., which were diluted to an optical 

density of 0.08 measured at 620 nm (OD620). Cultures were grown aerobically at 

37 ºC and 120 r.p.m. For evaluation of viability, the samples were processed in LB 

Strains Description Reference or source Observations 

MG1693 thyA715 Bachmann and Low, 1980 background strain 

CMA10 MG1693 + bolA+ Santos et al., 1999 
MG1693 overexpressing bolA from 

pMAK580  

CMA29 thyA715 Δhfq:Kanr Freire, 2005 hfq deletion mutant based on MG1693  

CMA14 CMA29::Kanr +bolA+ (this dissertation) 
CMA29 overexpressing bolA from 

pMAK580  
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serial dilutions, and 100 µl plated in LA. The number of colony forming units 

(cfu) was counted and viability was determined according to the equation: 

Number of dividing cells per ml = cfu x 10dilution x 1000/100µl.  

Microscope preparations 

To observe the effect of BolA overexpression and hfq deletion on cells 

morphology, planktonic cells were harvested from cultures growing in LB, at the 

time points corresponding to log, early exponential, late exponential, early 

stationary and late stationary phases, according to the growth curve or from 

cultures growing in M9 at exponential phase (M9 Exp), after one hour Starvation 

(Starv 1h), and after 15 minutes of reversion (Rev 15 min). Cells were fixed with 

0.75% (v/v) formaldehyde and stored at 4 ºC. For the Differential Interference 

Contrast (DIC) microscopy photographs, 20 µl of the samples were observed in 

slides coated with a thin 1.5% (w/v) agarose film, and enclosed with nr.1 cover 

glass. Images were obtained using a DMRA microscope (Leica) under Nomarski 

optics coupled to a CCD camera, with Metamorph software. 

RNA extraction and probe preparation 

Culture samples were taken at the desired points along the growth curve or after 

addition of osmotic or acidic stresses: 350mM NaCl (Muffler et al., 1996) or 30% 

HCl, lowering the pH at 7.2 to 4.4 (Bearson et al., 1997) both at time 0 and 60 

minutes. Total RNA was extracted as described (Santos et al., 1997). In all 

experiments 1 µl of the RNA samples was quantified by UV spectrometry with 

NANODROP and integrity was verified. The probes used for bolA and yrbA, in 

Northern blot experiments spanned the entire transcriptional units and were 

obtained by PCR, using Taq polymerase from Fermentas and primers P2 (5’- 

CTGTGTTTCAATCTTTAAATCAGTAAACT -3’) and X9 (5’- CCAGACAAAACA 

AAACGGCCCG-3’), and 3 (5’- GCCAGCGCAACTTTGCTC-3’) and 5 (5’-CCCAT 

AGCTCAAAAGCCG-3’), respectively.  
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Northern blot and hybridization 

Samples containing 15 mg of total RNA were dissolved in 90% formamide, 0.01 M 

EDTA pH 7.0, 1 mg/ml xylene cyanol, and 1 mg/ml bromophenol blue buffer 

(Sambrook et al., 1989), heated for 5 min at 100ºC for denaturation, and incubated 

for 10 min on ice. Total RNA samples were electrophoresed on a 6% denaturing 

polyacrylamide gel and transferred to a nylon membrane (Biodyne A from PALL) 

according to the procedure described by Fitzwater et al. (1987). The RNA was 

then fixed to the membrane by UV light and hybridized with the probe 

radiolabelled with [α-32P]-dCTP, using the Multiprime DNA labelling system 

from Amersham. Probe hybridization with PerfectHyb™Plus Hybridization 

Buffer 1x, was carried out at 42ºC. Amersham Hybond™-N+ nitrocellulose 

membranes optimized for nucleic acid transfer from GE Healthcare were 

hybridized and washed essentially as described by Sambrook et al. (1989). Filters 

were visualized using the PhosphoImager System from Molecular Dynamics.  

RESULTS AND DISCUSSION 

Glucose supplementation enhances rate but reduces overall growth 

The bolA1p transcript has been recognized to be positively regulated by RNase III 

(Freire et al., 2006; Santos et al., 1997). Under carbon starvation bolA2p  transcript 

is processed to a fragment of the size of bolA1p (Santos, 2000). RNase III is 

involved in this cleavage since in an RNase III deletion mutant only 50% of this 

transcript is processed. In the absence of Hfq about half of this transcript is also 

not cleaved. The influence of hfq on bolA was evaluated by means of an hfq 

deletion strain. Given that usual BolA experiments involve addition and removal 

of glucose to M9 medium, and that this sugar has strong influence on bacteria 

regulation, namely through Hfq (Morita et al., 2008; Wadler and Vanderpool, 

2009), LB was added of this sugar (over the strains requirements) to see if glucose 

is responsible for side effects. 
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When LB media was supplemented with glucose, all strains presented a faster 

growth rate in exponential phase; conversely, it induced cultures to stop growing 

sooner and reaching lower maximum ODs. This latter outcome, if considered 

present, was practically unappreciated in hfq deletion strains (about 8% 

difference, comparing to 60% difference recorded for MG1693 background strain 

and the isogenic bolA deletion strain).  

As for MG1693 transformed with pMAK580 strain (CMA10) after an overnight 

liquid growth this wild type transformed culture would be reluctant on growing, 

and only after a long (and not always similar) period could restart growth. At the 

time the work was being performed this was a true “mystery” but it was finally 

understood that the initial levels of bolA are quite important in defining the 

subsequent growth pattern (see previous chapters 2 and 3). This phenomenon 

was at the time so incomprehensible that older stocks and newly transformed 

strains were created and tested for growth and morphologies, to ensure that 

results were real and accurate. All strains tested had the same phenotype, 

confirming the results.  

Viability assays confirm that growth inhibition by glucose in later phases of 

bacterial growth is due to catabolites accumulation in the medium 

Addition of glucose induced faster growth rates. This growth acceleration was 

predicted since this sugar is highly energetic, stimulating growth and accelerating 

metabolism, eventually inducing higher respiration rates and leading to an 

increase in the cell’s oxidative levels. According to this, adding glucose does not 

only enhance growth but also “ages cells”, what may explain the decrease in 

growth yields. 

On the other hand, glucose has been shown to repress the formation of TCA 

(citric acid) cycle enzymes, namely 2-ketoglutarate dehydrogenase and isocitrate 

dehydrogenase synthesis, and of cytochrome synthesis in complex media, which  
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Figure 1. Representative optical density measurements at 620nm. Growth curves in LB media 

supplemented according to the strains requirements, with or without additional glucose, at 120  

r.p.m., 37 ºC; glucose added strains are represented by filled symbols. 
 

is explained by enough ATP being available from the EMP (glycolytic) pathway 

to minimize the role of the TCA cycle and respiration in energy production. In 

this sense, not only competing sugars pathways but also oxidative 

phosphorylation were shown to be subjected to catabolite repression (Horst W. 

Doelle, 1982). Considering this, the cultures may reach stationary phase sooner 

due to the wear out of glucose in the medium and consequent reduction of 

growth rate while cells adapt sugar uptake and catabolism, and due to less 

energetic efficiency then on (Bruckner and Titgemeyer, 2002). This reduction of 

growth yied may also be due to the accumulation of toxic products after glucose 

fast catabolism or to the exhaustion of may other growth-limiting nutrient like 

any aminoacid, vitamine or growth factor (Pirt, 1967).  
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Finally, it could be due to a homeostatic equilibrium of cells with the medium. 

The higher osmolarity of the medium could be responsible for the shrinking of 

the cells due to some water loss, reflecting on the ability of cells to restrain light 

path, reducing the OD recorded. To evaluate both causes and real effects on 

division, viability measurements were performed (Fig. 2).  

As expected all strains’ colony counts improve along the growth curve, and those 

where glucose is added tend to present more viable cells than in the absence of 

this supplement to the medium. In fact, the viabilities determined for the wild 

type strain did not reflect the growth curves data. They show higher cell counts 

when glucose is added to the medium, arguing in favor of the hypothesis that the 

accumulation of “toxic” byproducts is responsible for stalling growth. Given that 

cultures are diluted into fresh liquid media and cultured on fresh solid media, 

any toxic released for environment (growth media) would be substituted, 

enabling the cells to express their growth potential in the absence of the inhibitors 

(Fig. 2).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Viability analysis of f glucose on hfq mutant strains, at lag, early and mid exponential, early 

and late stationary phases of growth – average and standard deviations from a minimum of three 

independent repetitions are presented. 
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As for the hfq deletion strain, the increased growth due to glucose 

supplementation detected in the ODs was also present in the cell counts until mid 

exponential phase but not after, similarly to what was referred in the growth 

curve. There is a significant increment in the number of dividing cells in the latter 

stages of the growth curve. That may be due to an opposite mechanism to the 

supplementation or to Hfq not being necessary at those developmental stages of 

bacterial cultures (Fig. 1 and 2).  

Presenting reduced growth in the initial stages of media adaptation this hfq 

deletion may spare (nutritional) resources or avoid the formation of catabolic 

toxics that would inhibit growth upon accumulation. This strain would therefore 

have an increased ability to multiply in latter stages, as it is possible to observe in 

the number of colony forming units, determined for early and late stationary 

phases. This process may be underappreciated by OD measurements due to cell’s 

sizes induced by the deletion itself. The hfq deletant strain has its cell numbers 

strongly restrained in the beginning of the growth curve when the presence of 

this protein may be more important for cell development. As time progresses, the 

viability of this strain is not so impaired, getting to override the wild type strain 

in late stationary phase, where cell turnover is usually strongly reduced, as 

regulation of mRNAs, sRNAs and proteins are kept to a minimal  function.  

The presence of pMAK580 does not seem as injurious for the hfq deletant as for 

the wild type strain in the growth curves but that is not so obvious in the 

viabilities evaluation. Cell counts are the same for the single deletant and the 

transformed derived strain in the beginning of growth, but once mid exponential 

phase is reached it becomes about two orders of magnitude less represented or 

even four in late stationary phase. Eventually this could not be easily accessed by 

absorbance measurements due to the shape changes induced by BolA and/or the 

absence of Hfq, which also strongly affects cells’ dimensions.  
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Hfq & BolA effects are already foreseen in colony growth 

Another interesting aspect to be retained from the viability studies is that colonies 

have differential aspect/dimensions according to the strains: Hfq mutants are the 

smallest, the wild types significantly larger, and interestingly the 

CMA29+pMAK580 have intermediate size (Fig. 3). In CMA10 the bolA 

overexpression may also induce a mild increase in the colonies dimensions but 

differences are not obvious. Cell morphologies were accessed by Differencial 

Interference Contrast (DIC) microscopy. 

Hfq deletion averts BolA overexpression induced spherical morphologies, and 

instead creates tripolar filaments; less upon glucose addition 

Glucose addition revealed to change dimensions of cells, rather than shape. 

Moreover it induced cells to condense their DNA into reduced compacted 

regions, usually at one or both poles. In those conditions, DNA compaction was 

determined from early exponential phase on, while in glucose nonadded medium 

this phenomenon only occurred at late stationary phase, for part of the 

population. All cells except those of the wild type strain increased about twice, 

both in length and radius. The strains that were transformed with BolA 

overexpressing plasmid additionally gained the ability to form filaments at 340 

minutes and forward time points. The expected small cells that characterize the 

absence of Hfq were detected for the hfq single deletant strain grown in LB 

medium, but such phenotype could unexpectedly be reverted by 

supplementation with glucose. This chaperone strongly influences cells for 

glucose uptake and metabolism by the interaction with the global regulator of 

carbon source metabolism CprA (Lucchetti-Miganeh et al., 2008) and/or SgrS, the 

sRNA that destabilizes the glucose permease ptsG mRNA (Maki et al., 2008; 

Vanderpool and Gottesman, 2004). 
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Figure. 3. LA plated with MG1693 (wt), CMA29 (hfq) and each strain transformed with pMAK580 

(+bolA+) after 30 minutes of inoculate growth, incubated at 37ºC for 24 hours. 
 

Eventually, the increased availability of glucose as energy source reduces the 

impact of Hfq absence in what relates to cellular morphologies. This could justify 

the similarity of morphologies between the wild type and deletant strains, when 

with glucose. BolA effects of overexpression also increase phenotypes upon 

glucose addition since the size of the cells is considerably increased. Some 

CMA10 cells(wild type transformed with pMAK580), at least after 700 minutes, 

become huge and worm-like, differentiating two poles at one extremity, while 

others remain symmetrical and present a huge central swelling where the cell 

nucleoid localizes. Although BolA increased expression induces changes in both 

wild type and hfq deletion strains it is absolutely doubtless that the effects are 

strongly attenuated in the hfq deletion strain. Although small spheres and rare 

longer or Y cells are formed in the CMA14 strain, it mainly shows regular sized 

rods (Fig. 4).  
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Figure 4A. Representative Differential Interference Contrast microscopy photographs overlaid in 

Photoshop to increase amount of data presented. Micrographs took by a DMRA microscope (Leica) at 

time points 30, 210, 340, and 700 and 1420 min of the growth curves of MG1693 (wt) and CMA29 

(MG1693Δhfq) and the respective pMAK580 transformed strains, CMA10 and CMA14. 

 

 

 

 

 

 



HFQ, GLUCOSE AND BOLA  

I- 19 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4B. Representative Differential Interference Contrast microscopy photographs. Micrographs 

took at the same time points of the same strains but for the glucose supplemented medium growth 

curves. 

The combined hfq deletion and BolA overexpression morphology phenotype is 

privileged in minimal media and glucose depleted conditions 

In glucose supplemented M9 media exponential phase, the wild type strain is 

characterized by small rods most of all dividing, and as numerous small rods or 

round spheres after one hour starving (without  glucose), and again dividing 15 

minutes after reversion by readdition of glucose to the depleted medium. CMA29 
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cells, in turn, show rod morphology with approximately twice the length of the 

wild type ones, also mostly dividing; after one hour starvation the cells remain 

long but increasing in width/thickness, a few still dividing; and upon 15 minutes 

of induced reversion the cells maintain their length becoming fatter, some of them 

round and less opaque, without apparent division processes occurring. In the 

later case, the absence of this regulatory protein seems to impair the growth rate 

preventing division, leading to the longer cells and in fewer numbers. Moreover, 

the absence of Hfq alone could induce cells to split into mini-cells and (rarely) Y-

like after 1 hour of starvation had been imposed (Fig. 5). Unlike for LB medium, 

pMAK580 could induce shape disturbances both in the hfq deletant mutant and 

the wild type strain. Reversion from nutritional stress did not lead to 

morphological changes after 15 minutes of glucose readdition (the condition used 

to assess the variation in mRNA expression). That may be due to the fact that the 

time cells take to adapt mRNA levels does not correspond to the time they 

require to change both protein levels and their physiological effects, namely cell 

shape.  

 

 

 

 

 

 

 

 

 

 

Figure 5. Representative DIC micrographs for MG1693 (wt), CMA10 (wt+bolA+), CMA29 (Δhfq) and 

CMA14 (Δhfq+ bolA+) transformed strains grown in M9 supplemented with glucose until 

OD620nm=0,35 (Exp), starved for 1 hour (1h Starv) and glucose readded for 15 minutes (15min Rev). 
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Hfq deletion reduces the levels of bolA mRNA and affects its stability 

We wanted to evaluate if Hfq could have any effect on bolA mRNA levels and 

stability of the transcripts. Northern Blot analysis was performed to check the 

levels of bolA mRNA and the decay of this transcript in the hfq deletant strain, and 

the results were compared with the wild type. RNA was extracted from steady-

state (time 0 minutes for each condition) levels and mRNA stability evaluated 

after extraction of RNA at times 2, 4, 8, 16, and 30 minutes after addition of 

rifampicin, an antibiotic that blocks de novo mRNA synthesis. 

Both the bolA transcript’s steady state levels and stabilities were shown to greatly 

decrease in CMA29 hfq deletion strain, when compared with the wild type 

MG1693, at exponential phase in minimal M9 growth medium supplemented 

with glucose (Fig. 6A); after one hour sugar deprivation induced at 0,35 

exponential OD620nm (Fig. 6B); and after 15 minutes of reversion, through the re-

addition of glucose into starved medium (Fig. 6C). The bolA transcripts increase 

upon several stresses induction and rapidly decrease after the cells are relieved 

from stress (Santos et al., 1999) (Fig. 6D). Even though bolA mRNA levels are 

severely reduced in the hfq deletion strain, it’s nevertheless possible to ascertain 

that the amounts as well as stabilities are higher in the imposed starvation 

condition (Fig. 6D). In both strains transcripts levels are extremely reduced upon 

glucose re-addition, as expected, due to the relief of carbon deprivation stress. 

Given that σS protein levels are controlled by Hfq, one cannot exclude that this is 

the mechanism of bolA mRNA transcription control. Hfq both acts at the 

transcription levels as it does in the half-life of bolA mRNA, severely reflecting on 

the cellular levels of this transcript.  
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Figure 6. Northern Blot analysis of the expression of bolA mRNA and decay in MG1693 and CMA29 

grown in M9, with total RNA samples taken at 0, 2, 4, 8, 16, and 30 minutes after addition of 

rifampicin. A. Exponential phase (OD620nm=0.35); B. After 1h starvation; C. After 15 min of nutritional 

reversion; D. MG1693 bolA decay in the same conditions. E. CMA29 bolA decay in the same 

exponential, starvation and reversion conditions. 
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CONCLUSION 

The levels of bolA transcript are affected by the presence of the RNA chaperone 

Hfq. The relevance of Hfq for BolA can be distinguished in the growth curves or 

morphologies in the presence of the pMAK580 bolA overexpressing plasmid. 

BolA is becoming increasingly relevant as more targets for its transcription factor 

function are known, and better understanding of physiological development and 

changes that it induces are achieved. Here we could prove that hfq deletion 

significantly reduces the levels of bolA mRNA and affect its stability. 
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INTRODUCTION 

The Burkholderia cepacia complex (Bcc) consists of a group of Gram-negative β-

proteobacteria, which can be isolated from a variety of environmental niches from 

water and soils, to animals, namely humans. It was initially described to be a 

phytopatogen, but emerged in the 1980s to an important opportunistic human 

pathogen for patients with chronic granulomatous disease, in 

immunocompromised patients, and predominantly among cystic fibrosis (CF) 

patients  (Mahenthiralingam et al., 2005). This group arises from commonalities of 

phenotypes of at least 9 different species, all capable of colonizing the lungs of 

CF’s patients although with very different representativities (Agodi et al., 2001; 

Bevivino et al., 2002; Coenye et al., 2001; Cunha et al., 2003; Cunha et al., 2007; De 

Soyza et al., 2001; De Soyza et al., 2004; Drevinek et al., 2003; Drevinek et al., 2005; 

Kalish et al., 2006; Kidd et al., 2003; Mahenthiralingam et al., 2001; Moore et al., 

2002; Vandamme et al., 2003; Vandamme et al., 1997; Whiteford et al., 1995). 

Although B. cenocepacia are considered of higher clinical risk in terms of death, all 

the others are capable of causing severe infections to this patients (Biddick et al., 

2003; LiPuma et al., 1990). There is an increasing concern in Bcc strains due to 

their ability to survive not only in nutritionally limited environments, but even 

more, based on the decomposition of the antibiotics as sole carbon source, or 

toxics in general (Beckman and Lessie, 1979; Coenye and Vandamme, 2003).  

Cystic fibrosis is the most common autosomal recessive disorder in caucasian 

populations, with different frequencies depending on their country origin and 

particular mutation analyzed (FitzSimmons, 1993). It is caused by a large number 

(over 1500) of mutations (Fig.1 from (Zielenski and Tsui, 1995)) in the cftr (Cystic 

Fibrosis Transmembrane Conductance Regulator) gene, 250kb (1480 aa) encoded 

at the chromosome 7, creating a complete lack of synthesis or defective function. 

This ATP-binding cassette family transporter is a cAMP-sensitive low 

conductance chloride channel that locates in the apical surface of epithelial cells  
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(Collins, 1992) but additionally seems to be involved in several signaling 

pathways and regulation of other transporters (Vankeerberghen et al., 2002). 

Thus any mutation corrupting its function leads to simultaneous defective 

sodium, chloride and bicarbonate ions’ stasis, inducing pathology in several 

organs. Namely, it has been associated with chronic pulmonary disease, 

pancreatic exocrine insufficiency, male infertility, and abnormally high chloride 

concentrations in sweat (Ratjen and Doring, 2003). 

The most remarkable alterations induced by this disease occur in the patients’ 

lungs, in an age-dependent manner. Those become progressively colonized by 

opportunistic, usually non-pathogenic, bacterial species. B.cenocepacia promotes 

severe decline in lung function and increased mortality, namely due to the 

development of cepacia syndrome with high fevers, bacteremia, severe 

necrotizing pneumonia and death (Govan and Deretic, 1996; Lyczak et al., 2002). 

The latter infections give a poor prognosis since they are very difficult to treat due 
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to intrinsic resistance of this microorganism to broad spectrum antibiotics (Aaron 

et al., 2000; Lang et al., 2000) and bactericidal components of the immune system 

(Baird et al., 1999). Even aggressive triple therapies rarely result in significant cfu 

reduction in patients (Manno et al., 2003). 

Exopolysaccharides (EPS) produced by bacteria favor virulence through host 

defense mechanisms evasion like phagocytosis killing, scavenging the 

hypochlorite produced by activated phagocytes, and suppressing neutrophil and 

lymphocyte antibacterial functions (Pier et al., 2001). Additionally, conversion 

form non-mucoid to mucoid phenotype favor bacterial adhesion and biofilm 

development, increasing antibacterial agents resistance, thus promoting a more 

persistent state leading to chronic infection (Lyczak et al., 2002).  

Mouse models of CF (from the Virtual Repository of Cystic Fibrosis European 

Network) do not reproduce human pulmonary and pancreatic insufficiencies or 

non-artificial persistence, sometimes providing data inconsistent with clinical 

history of infected patients. Those models can nevertheless produce similar to the 

human’s disease initial phenotypes, namely developing intestinal, fertility and 

airway pathologies (Davidson and Rolfe, 2001). 

Collaboration has been started between Control of Gene Expression Lab at ITQB 

and Biological Sciences Research Group at Instituto Superior Técnico (IST), after 

plasposon gene disruption has significantly reduced the mucoid characteristics of 

Burkholderia cenocepacia J2315 mother strain, due to inactivation of hfq gene. We 

aim to determine if the bolA gene of E. coli is able to restore the phenotype and 

additionally quantify and characterize differences in EPS, assay cell adhesion and 

biofilm development, and test for antibiotic susceptibility. Finally, if initial results 

are promising it would be interesting to attempt CF mouse model infection with 

Bcc strains deleted in bolA, and reversely with increased expression of BolA and 

evaluate for vitality deterioration, bacterial cfu, and lungs histopathology with 

hematoxylin-eosine. 
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METHODS 

Bacterial strains, plasmids and genetic manipulations 

A pMLBAD based shuttle vector for Escherichia coli and Burkholderia cenocepacia 

was used to clone bolA from E. coli (Lefebre and Valvano, 2002). The pMLBAD 

vector was restricted with the blunt end single cut enzyme SmaI (Fermentas) and 

cloned with different bolA DNA sequences amplified through Pfu (Fermentas) by 

PCR. Amplification was performed over a template of BamHI linearized 

pMAK580 with the two sets of primers: P1+X10 and X0+X10 (Freire, 2005). The 

transformation protocols were optimized to eliminate the false positives due to 

some intrinsic resistance of E. coli to the antibiotic used for Burkholderia – 

Trimethropim. The plasmids obtained were first screened by colony-PCR with the 

same primers used for amplification of the fragment of interest. This was done to 

check for the presence of the insert, due to the high number of false positive 

colonies grown. Initially 10 colonies were screened per PCR reaction, and only the 

ones accusing the presence of the fragment would be further analysed. That 

allowed a faster and less expensive evaluation. The positive colonies were then 

grown in liquid medium for plasmid extraction, and the plasmids were restricted 

with ClaI (NEB) to confirm the direction of the insertion present. The following 

table represents the sizes expected for each construction. 

 

Table1. Cloned  plasmids (see Table 2) tests: PCR amplification and digestion fragment products. 

Genotype PCR result (DNA bp) ClaI restriction bands (bp) 

DH5pMLBAD-Bcc Absent 743+6032 

DH5pMLBAD/P1-X10 673 743+1965+4740 

DH5pMLBAD/X10-P1 673 743+1358+5347 

DH5pMLBAD/X0-X10 894 743+2186+4740 

DH5pMLBAD/X10-X0 894 743+1358+5568 
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Fig. 1. pMAK580, pMLBAD, and derived plasmids 

pMLBAD/P1-X10, pMLBAD/X10-P1, and 

pMLBAD/X0-X10 expression vector maps (see Table 

2). Plasmids cloned adding parental shuttle vector 

with the E. coli bolA gene direct and reversed DNA 

sequence and direct DNA sequence preceded by its 

own original promoters, respectively. The outside 

indicated restriction enzyme designations correspond 

to the single cutter restriction sites; dhfr, dihydrofolate 

reductase gene encoding the trimethroprim resistance; 

araC, transcriptional regulator gene for pBAD; 

pBAD, arabinose inducible promoter; rrnB, strong transcriptional terminator; mob, gene required for conjugal 

transfer of the plasmid; ori, origin of replication; rep, replication protein gene; bolA, E. coli morphogene cloned 

for study; P1, bolA1p promoter, mainly regulated by the S transcription factor and induced in stationary 

phase and stress conditions; P2, bolA2p 70-dependent and constitutive promoter. 
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Other primer sequences were designed for sequencing the plasmids, a forward 

primer pC:5’-CTCCCGCCATTCAGAGAAG-3’, and a reverse one pB: 5’-

CTTGGCTGTTTTGGCGGATG-3’. The sequenciation results confirmed the 

expected plasmids. The plasmids constructed were: pMLBAD_Bcc/X10-P1 with 

the inverted bolA sequence without promoters, designed to evaluate the effect of 

an eventual sRNA, responsible for controlling the respective antiparallel mRNA, 

if induced with arabinose; pMLBAD_Bcc/P1-X10, with the direct bolA sequence 

without promoters, and thus presenting controlled expression from the inducible 

arabinose promoter already present in the original pMLBAD plasmid; and 

pMLBAD_Bcc/X0-X10, with the direct bolA sequence preceded by its own 

promoters in order to simulate a physiologic response of this gene, if the 

promoter is recognized by Burkholderia similarly to what happens in E. coli.  

These constructions were sent to IST to be transformed into a bolA Burkholderia 

cenocepacia strain to study the effects of bolA E. coli versus its absence. Preliminary 

studies were unfruitful in the sense that what seemed to be absence of effects was 

confirmed to be due to the loss of plasmids previously inserted in those species. 

The transformation in those bacteria is difficult to confirm since the plasmids are 

not efficiently recovered, and on top of that plasmids are easily lost even after 

successful introduction in cells. New transformation and confirmation by colony-

PCR (using the primers designed for clones sequencing) is currently at work.  

 

Table 2. Plasmids used in this study 

Plasmids Reference or source Observations 

pMAK580 (Aldea et al., 1988) plasmid overexpressing bolA 

pMLBAD (Lefebre and Valvano, 2002) optimized shutle vector  

pMLBAD/X10-P1 this dissertation control vector_with reversed bolA 

pMLBAD/P1-X10 this dissertation bolA inducible by Ara vector  

pMLBAD/X0-X10 this dissertation 
bolA expressed after its own promoters 

vector 
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