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ABSTRACT 

 

 Neuroinflammation, a response of the nervous system to injury, results in the release of 

pro-inflammatory mediators, as interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α). 

Exposure of nerve cells to a neuroinflammatory environment was shown to change the normal 

neurodevelopment, which can be linked to the appearance of neurological disabilities. In this 

work, we aimed to assess the effects of moderate levels of IL-1β and TNF-α in the 

establishment of neuronal arborization, growth cone morphology and synaptogenesis. 

        An early exposure of embryonic hippocampal neurons to cytokines delay neuronal 

development, with an increase in the number of non-polarized cells, stage 2 of development. 

When analyzing stage 3 neurons, IL-1β showed to decrease total arborization, in particular at 

the axonal level, while TNF-α increased dendritic arborization. In fact, IL-1β reduces dendritic 

and axonal length and the number of axonal branches, whereas it increases the extent of 

dendritic and axonal branches, probably to compensate the other effects. In contrast, TNF-α 

increases the number of primary dendrites and dendritic branches, as well as their length. By 

next analyzing microtubule dynamics as the ratio of acetylated- (old) vs. tyrosinated-tubulin 

(newly-formed), we found that IL-1β and TNF-α induce microtubule stabilization, which may be 

related to a deficient axonal outgrowth. In addition, both cytokines reduced the area of growth 

cones, with an increase in the immunofluorescence of F-actin, indicating alterations at the 

cytoskeleton which may compromise axonal elongation and branching. Regarding neuronal 

connectivity, we demonstrated that both cytokines not only reduced the density of dendritic 

spines and synapses, but also the maturity of dendritic spines, suggesting a reduction in the 

synaptic strength. 

        These findings establish a relation between neuroinflammation in fetal life and the 

emergence of neuronal damage, similar to those observed in neurodevelopmental disorders, as 

schizophrenia. 

 

 

Keywords: Neuroinflammation; hippocampal neurons; neuronal arborization; growth cone; 

synaptogenesis; cytoskeleton. 
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RESUMO 

 

 A neuroinflamação, resposta do sistema nervoso a danos, resulta na libertação de 

mediadores pró-inflamatórios, como a interleucina (IL)-1β e o factor de necrose tumoral (TNF)-

α. A exposição de células nervosas a ambientes neuroinflamatórios induz mudanças no normal 

neuro-desenvolvimento, podendo levar ao aparecimento de incapacidades neurológicas. 

Assim, neste trabalho pretendemos elucidar os efeitos de níveis moderados de IL-1β e TNF-α 

na formação da arborização neuronal, morfologia do cone de crescimento e sinaptogénese. 

        Uma exposição inicial dos neurónios de hipocampo às citocinas atrasa o seu 

desenvolvimento, aumentando a percentagem de neurónios não polarizados, estadio 2 de 

desenvolvimento. A análise de neurónios já polarizados, estadio 3, demonstrou que a IL-1β 

diminui a arborização total, em particular no axónio, enquanto que o TNF-α aumenta a 

arborização dendrítica. De facto, a IL-1β reduz o comprimento das dendrites e do axónio, bem 

como o número de ramificações axonais, embora aumente a extensão dos ramos axonais e 

dendríticos, provavelmente para compensar os outros efeitos. Relativamente ao TNF-α, este 

aumenta o número de dendrites primárias, suas ramificações e extensão. Analisando a nível 

axonal a dinâmica dos microtúbulos (rácio tubulina-acetilada, antiga vs. tubulina-tirosinada, 

recém-formada), observámos que ambas as citocinas induzem uma estabilização selectiva dos 

microtúbulos, o que pode originar deficiências no crescimento axonal. A IL-1β e o TNF-α 

induzem ainda uma redução da área do cone de crescimento, estrutura que direcciona o 

movimento axonal, em paralelo com um aumento da F-actina, indicando alterações do 

citoesqueleto e possível comprometimento da arborização axonal. Relativamente à 

conectividade neuronal, as citocinas reduzem o número de espículas dendríticas e de 

sinapses, atrasando a maturação das espículas, o que sugere uma redução na força sináptica. 

        Assim, os nossos dados apontam para uma relação entre a neuroinflamação no período 

embrionário e o estabelecimento de danos neuronais semelhantes aos observados em 

doenças do neuro-desenvolvimento, como a esquizofrenia. 

 

 

Termos-chave: Neuroinflamação; neurónios do hipocampo; arborização neuronal; cone de 

crescimento; sinaptogénse; citoesqueleto. 
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I. INTRODUCTION 

 

 
The formation of a functional nervous system, in which neurons are accurately connected to 

each other, is one of the major steps of embryogenesis. This defined process involves a sophisticated 

neuronal polarization and the appropriate extension of axons and dendrites directed by external 

guidance cues and intracellular signalling pathways, with the ultimate goal of synapse formation. 

Hence, understanding how the neuronal development can be negatively affected by perinatal risk 

factors has a captivating importance, since changes in this early neurodevelopment have been linked 

with several detrimental outcomes, as mental disorders and cognitive deficits. 

 

 

1. Development of Hippocampal Neurons 

A mature neuron is a highly polarized and specialized cell characterized by elongated 

protrusions named dendrites, which can appear in a variable number, and a single axon. Two neurons 

and their interconnecting dendritic-synaptic-dendritic field are considered to be the basic functional 

unit in the brain involved in information processing (Baslow, 2011). Dendrites receive electrochemical 

signals at postsynaptic sites. Then, the electrochemical signals are transmitted to the axon, through 

the cell body or soma that contains the nucleus and the majority of organelles. The axon is 

responsible for the transport of the electrical signal from the cell body to the presynaptic terminal, 

which then will transmit the signal to the postsynaptic partner at the synapse. The process that leads 

to a fully developed and polarized neuron follows an intrinsic program of various steps with great 

morphological changes critical for neuronal network assembly and signal propagation (Brandt, 1998; 

Tahirovic and Bradke, 2009). Furthermore, in order to form the correct connection between neurons, 

axons and dendrites grow as a response to molecular signals, encompassing one of the major steps 

of embryogenesis, besides the maintenance of neuronal polarization (Geraldo and Gordon-Weeks, 

2009). 

One of the earliest and best studied in vitro systems to evaluate the development and 

maturation of nerve cells uses the hippocampal neuronal culture from rodent embryonic brain. This 

system has shown that neurons develop their characteristic morphology through a stereotypic 

sequence of events with distinct intermediate steps (Fig. I.1.). In fact, hippocampal neuronal cultures 

allow the study of neuronal development and synaptogenesis, enabling the comprehension of the 

events that lead to the differentiation of both pre- and postsynaptic compartments (Verderio et al., 

1999). Hippocampus has a central role on learning and memory processes, and several cognitive 

impairments have been linked to lesions in this cerebral region (Chauvière et al., 2009; Finke et al., 

2011). Indeed, oxidative damage in rat hippocampus after injection of corticosterone induced marked 

deficits in memory processes (Sato et al., 2010). Furthermore, neuronal network dysfunction has been 

observed in hippocampal slice cultures after traumatic brain injury, leading to deficits in 

electrophysiological function (Yu and Morrison III, 2010) 
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Fig. I.1. Developmental stages of mouse hippocampal cultured neurons. Initially, neurons are round 

cells that extend lamellipodia (stage 1) and develop minor processes called neurites (stage 2). One of these 
neurites starts to grow more rapidly and becomes the axon (stage 3), while the remaining neurites will develop 
into dendrites (stage 4). Finally, dendritic spines develop and mature at dendritic shafts leading to the 
establishment of synapses with the axonal presynaptic partner (stage 5), originating a mature neuron. 

 

Upon seeding, hippocampal neurons start as simple and symmetric spheres that spread 

lamellipodia all around the cell body. The lamellipodia stably attach to the substrate and this is 

considered the stage 1 of neuronal development (Tahirovic and Bradke, 2009). Next, these round cells 

start to acquire several minor processes with similar lengths, named neurites, which are formed by an 

active outgrowth from the cell body (Verderio et al., 1999; Tahirovic and Bradke, 2009). Neurites 

exhibit a dynamic behavior and frequently elongate in a saltatory manner, with periods of sudden 

advances and retractions or pausing, also displaying turning and branching (Dehmelt and Halpain, 

2004a; Tahirovic and Bradke, 2009). These neurites are decorated with dynamic growth cones at their 

tips (stage 2), which are bulbous and highly motile structures responsible for sensing the surrounding 

environment. At this early developmental state, all neurites are assumed to be similar and the 

regulation of polarity in vivo is induced by extracellular signals (e.g. nerve growth factor), which trigger 

intracellular signaling events (Tahirovic and Bradke, 2009). In the absence of external cues, as in the 

culture condition, all neurites compete to become the axon (Craig and Banker, 1994). As the 

polarization of a neuron is deeply associated with intense cytoskeleton rearrangements, alterations in 

its dynamics occur prior to morphological changes and polarization, which become retained in the 

future axon. There is also a cytoplasmic flow of cargos containing limiting factors for axonal growth (as 

cytoskeleton regulators) into the future axon preceding the beginning of neuronal polarization (Witte 

and Bradke, 2008). These events are required for the formation of the axon, the initial step in the 

establishment of neuronal polarization and, subsequently, in the loss of the cellular symmetry. The 

symmetry breakage has to be precisely regulated, since only one of the neurites is selected to 

become the axon, while the remaining processes develop into dendrites. Once the selected neurite 

starts to grow more rapidly and to develop into an axon, its growth is reinforced and internal inhibitory 

cues prevent the growth of the other neurites, being the stage 3 of development achieved (Andersen 

and Bi, 2000; Tahirovic and Bradke, 2009). Indeed, several intra- and extracellular signals have been 
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shown to be involved in the selection of the future axon, as small GTPases, and netrins and brain-

derived neurotrophic factor (BDNF), respectively (Polleux and Snider, 2010). After the establishment 

of neuronal polarity, the axon can extend considerably and start branching. Next, the remaining 

shorter neurites start to grow and acquire the morphology of typical dendrites, characteristic of the 

stage 4 of neuronal development (Witte and Bradke, 2008). As neuronal development proceeds, 

neurons become connected due to synapses formation (stage 5) with the purpose of establishing a 

proper neuronal circuitry. In this final stage, presynaptic axonal tips connect with postsynaptic partners 

at the dendritic trees in order to transmit the electrochemical signal from one neuron to the other. After 

neuronal polarization and maturation, axonal and somatodendritic compartments display distinct 

patterns of protein segregation, due to the proteins sorting into different vesicles at the trans-Golgi 

(Song et al., 2009). Nevertheless, a physical barrier exists at the initial segment of the axon and it is 

important to maintain the differential molecular segregation of both membrane and cytoplasmic 

proteins (Song et al., 2009). 

Thereby, during neuronal development, several signals and pathways converge aiming the 

formation of a functional nervous system.  

 

1.1. Neuronal Growth Cones 

Growth cones are motile structures, composed by microtubules and microfilaments that 

incorporate the information of the molecules present in the extracellular milieu, which is then 

translated into cytoskeletal rearrangements. It is generally believed that these guidance molecules 

interact with membrane receptors and induce intracellular signaling cascades, thus targeting the 

growth cone cytoskeleton (Suter and Forscher, 2000; Gordon-Weeks, 2004). The rearrangements of 

the cytoskeleton ultimately determine an appropriate movement, either toward the guidance cue 

(attraction) or away from it (repulsion) (Gordon-Weeks, 2004). Growth cones are divided in three 

domains according to its cytoskeletal composition, as displayed in Figure I.2: the central domain (C-

domain), majorly composed by the distal-ends of axonal microtubules; the transition domain (T-

domain), consisting in a dense network of actin filaments; and the peripheral domain (P-domain), a 

protrusive region enriched in actin filaments (Geraldo and Gordon-Weeks, 2009). The P-domain 

exhibits lamellipodia, sheet-like cellular protrusions, and filopodia, which consists of finger-like 

dynamic and transient plasma-membrane protrusions. Morphologically, growth cones can vary in size, 

being large during the quiescence or pausing phases and small during the active or growth phases. In 

the quiescence phase, the growth cones become stalled and their microtubules achieve an inactive 

state, forming a loop in the C-domain. As the quiescence phase ends, the active state leads to the 

breakage of the loop by microtubules, which start to invade the P-domain, allowing the protrusion 

growth (Dent et al., 1999; Dent et al., 2011a).  
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Fig. I.2. The growth cone cytoskeleton in 
primary embryonic hippocampal neurons. 
The cytoskeletal filaments are organized into three 
different regions. The microtubules emerge from the 
axon shaft and splay out into the central domain (C; 
blue). Here, there is a relatively sparse network of 
actin filaments of unknown organization. The transition 
region (T; green) contains a dense meshwork of cross 
linked actin filaments, while the peripheral domain (P; 
red) is dominated by filopodia with bundle actin 
filaments oriented with their polymerizing ends at the 
distal tips. 

 

Filopodia are probably the first to detect the guidance cues, since their dynamic expansion and 

retraction places them in the front line to sense the surrounding environment (Gallo and Letourneau, 

2004; Gordon-Weeks, 2004). Moreover, filopodia, as well as the surface of the growth cone, express 

several receptors that bind to extracellular molecular signals, ultimately eliciting the guided axonal 

outgrowth (Myers et al., 2011). Therefore, filopodial length is important in determining the 

environmental area that a growth cone can directly probe. As a transient structure, the growth cone is 

only present during the time elapsed between the beginning of neuronal polarization and 

synaptogenesis, as well as during axon sprouting and regeneration following axonal injury 

(Avwenagha et al., 2003). Interestingly, during neuronal polarization cytoskeleton dynamics at the 

growth cone plays an important role. Indeed, the actin cytoskeleton becomes more dynamic and less 

stable in the growth cone of one neurite and the microtubules at the neuritic shaft become stabilized 

and aligned to form a bundle, initiating the future axon  (Dehmelt and Halpain, 2004a; Witte and 

Bradke, 2008). By contrast, the growth cones of the remaining neurites are static and exhibit a rigid 

actin cytoskeleton, which blocks the microtubules protrusion (Tahirovic and Bradke, 2009). 

In order to achieve a directional growth, extracellular molecules, as the ones present in the 

extracellular matrix (ECM), are thought to induce a selective stabilization of actin cytoskeleton in both 

lamellipodia and filopodia, since actin destabilization alters growth cone turning (Challacombe et al., 

1996). In fact, ECM proteins can provide a cellular substratum to the axon outgrowth and they can 

also bind to soluble molecules at the growth cones, influencing intracellular signaling pathways and, 

consequently, the axonal outgrowth (Myers et al., 2011). Also, in the developing axon, specific micro 

RNAs (miRNAs), non-coding oligoribonucleotides that regulate the gene expression at the post-

transcriptional level, are translated in response to extracellular guidance cues at growth cones, 

influencing the axonal pathfinding (Hengst and Jaffrey, 2007). Furthermore, microtubule dynamic 

instability is also required for growth cone turning in response to guidance cues. Indeed, attenuation of 

microtubule dynamics blocks in vitro growth cone turning due to microtubule restriction to C-domain, 

which decreases or abolishes the interaction with actin network (Williamson et al., 1996; Challacombe 

et al., 1997). Additionally, the release of the microtubule-stabilizing drug taxol in one side of the growth 

cone induces attraction and turning toward the site of the cue, while microtubule-destabilizing drug 

nocodazole induces repulsion, steering the growth cone away from that side (Buck and Zheng, 2002). 
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Thus, there is dynamic microtubule reorganization in the growth cone in the direction of a guidance 

cue and microtubule stabilization in the direction of the turn (Gordon-Weeks, 2004).  

 

1.2.  Neuritic Arborization 

Both axonal and dendritic development and stabilization is due to several complex processes 

extremely organized at the molecular level. Indeed, there is an intricate network of molecules involved 

in various processes as signal transduction, synthesis of macromolecules, cytoskeleton 

rearrangements and protein intracellular trafficking, all of them regulated by both intrinsic programs 

and extracellular cues (Urbanska et al., 2008). Furthermore, the neuronal development and maturation 

are also controlled by miRNAs, since they are able to regulate the expression of proteins involved in 

the extension of neuritic processes and dendritogenesis (Loohuis et al., 2011). The axonal 

arborization provides neurons with the ability to make synaptic contacts with a multitude of targets, 

being a decisive factor for the interconnection, a characteristic of the nervous system (Hall and Lalli, 

2010). For an interstitial axonal branch to emerge, the primary axonal growth cone should pause, 

becoming larger. After the pausing period, a new primary growth cone then emerges to direct the 

growing axon, whereas the pausing one remains behind (Szebenyi et al., 1998; Kalil et al., 2000). The 

formation of axonal branches is characterized by the local splaying of the bundled microtubules and 

the breakdown of longer microtubules (Kalil et al., 2000). These shorter microtubules start to explore 

new directions and to invade the branches formed from the paused growth cone, allowing the 

ramification development from the axonal shaft (Kalil et al., 2000). Thus, cytoskeleton, specially the 

microtubule compartment, assumes an important role in the development of axonal complexity. 

On the other hand, dendrites receive electrochemical signals transmitted by axons from other 

neurons, being the preferential localization of postsynaptical sites. Hence, dendrites and their 

branching complexity are intimately related with synaptic integration (Häusser et al., 2000). The 

development of the dendritic tree is associated with high rates of branch addition and retraction, but 

the mature dendritic arborization is less plastic and has lower rates of branching (Wu et al., 1999). 

Nevertheless, the dendritic trees preserve some degree of plasticity in the mature nervous system 

(Urbanska et al., 2008). In this context, the contribution of extracellular signals, as BDNF and 

semaphorins, may be critical to direct dendritic arborization development, stability and plasticity 

(Urbanska et al., 2008). Moreover, neuronal activity may count to the growth of dendritic trees. Indeed, 

modification of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor activity 

decreases the complexity of the dendritic arborization and the lifetime of the dendritic branches (Haas 

et al., 2006). Curiously, anomalies in dendritic arborization structure are related with several mental 

retardation syndromes and even neurodegenerative conditions such as Alzheimer’s disease 

(Kaufmann and Moser, 2000; Couch et al. 2010).  
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1.3. Synapse 

Synapses are highly specialized and asymmetrical junctions responsible for the directional 

transfer of electrochemical signals from a presynaptic neuron to a postsynaptic cell. In vertebrates, 

synapse formation, or synaptogenesis, essentially occurs from embryonic development to early 

postnatal life, characterized by its complex nature, involving a myriad of hierarchical signals (Waites et 

al., 2005). However, the formation of new synapses also occurs throughout adulthood and is thought 

to contribute to learning and memory, despite the progressive decline of synapses with age (Waites et 

al., 2005; Harms and Dunaevsky, 2007).  

Synapse formation engages coordinated changes due to ligand-receptor interactions, 

intracellular signaling cascades and subsequent cytoskeletal rearrangements, and intrinsic processes 

that contribute to the pre-establishment of synaptic machinery prior to synaptic contacts (Shen and 

Cowan, 2010). A multitude of signaling molecules, including secreted factors and cell-adhesion 

molecules, are involved in synaptogenesis specificity. Prior to synapse formation, secreted molecules 

involved in growth cone guidance act diffusely from local sources and guide axons to their targets, 

which are normally dynamic dendritic filopodia that extend from the dendritic shaft (Shen and Cowan, 

2010). Upon approach to the target site, a presynaptic growth cone slows its advance, makes a 

physical contact and transforms itself into a rudimentary synaptic ending (Munno and Syed, 2003). 

Then, priming factors derived from surrounding glia and neurons promote the maturation of both target 

neurons and innervating axons, as well as the competence of dendrites and axons to undergo 

synaptogenesis (Waites et al., 2005). The premature contacts between axons and dendrites are 

allowed by adhesive factors, being then stabilized by the cooperative action of adhesive and inductive 

factors, which are involved in the specialization of both pre- and postsynaptical compartments (Waites 

et al., 2005). So, several mechanisms permit the establishment of proper connections, upon growth 

cone guidance, allowing axons and dendrites to find their appropriate synaptic targets (Fig. I.3.). 

 

Fig. I.3. Synapses allow the directional connection of neurons. Axonal boutons (brown) can form 

synapses with different dendrites (green). Axons are guided towards their targets, normally dendritic 
specializations, as dendritic spines, and both pre- and postsynaptical compartments suffer maturation (blue and 
red, respectively), allowing the propagation of the electrochemical signal from the axon to the dendrites.    
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Synaptic development is characterized by a prolonged maturation phase with the purpose of 

properly integrate individual neurons into a functional network. Perhaps the most dramatic change in 

the postsynaptic side is the appearance and maturation of dendritic spines. Dendritic spines are small 

protrusions emerging from dendrites and the postsynaptic regions of most excitatory neuronal 

synapses, exerting an important role in several brain functions, such as memory and learning at the 

hippocampus (Mattila and Lappalainen, 2008). The development of these spines usually involves 

filopodia-like precursors that dynamically grow, with the intention of reaching the presynaptic partner, 

being very abundant during early development, but decreasing as neurons maturate (Fiala et al., 

1998). The filopodial precursor stabilizes and matures into a dendritic spine if the signal is proper, 

whereas it shrinks back to the dendritic backbone in the absence of an appropriate signal (Sekino et 

al., 2007). Generally, dendritic spines consist of a head linked to the dendrite by a stalk or neck and 

have been divided into several categories of shapes that vary from filopodium-like (more prominent on 

younger dendrites), to mushroom-shaped (in more mature ones) (Fig. I.4. A). The size of the head 

correlates with the synaptic force since the smaller spine head corresponds to a smaller associated 

postsynaptic density (PSD) (McKinney, 2005). Thus, mushroom-shaped spines, consisting of a short 

neck and a large mushroom-shaped head, bear larger PSD, oppositely to elongated and thin filopodial 

spines. PSD is a marker of the contact between a presynaptical terminal and a dendritic spine, 

containing the machinery that links the synaptic transmission to various signaling cascades and 

cytoskeletal components (Kennedy, 2000). Indeed, head spines are enriched in actin filaments, which 

modulates the high degree of spines plasticity and motility, allowing the dynamic behavior of the 

spines, as well as their ability to continuously change their morphology (Lippman and Dunaevsky, 

2005; Mattila and Lappalainen, 2008). Thus, regulators of the cytoskeleton may exert effects in 

dendritic spines number and shape, which alterations are often correlated with changes in neuronal 

activity (Lippman and Dunaevsky, 2005). Synaptic dysfunction and deficits in cognitive function can be 

associated with irregular shapes and densities of dendritic spines (McKinney, 2005). Actually, 

abnormal alterations in dendritic spines are often seen in cases of mental retardation, such as fragile 

X syndrome (Fig. I.4. C) and neurological disorders including schizophrenia (Fig. I.4. D) (von Bohlen 

und Balbach, 2010; Faludi and Mirnics, 2011). 
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Fig. I.4. Schematic representation of different dendritic spine morphologies. The immature 

morphologies are characterized by longer necks and smaller heads (e.g. filopodia and thin shapes), whereas the 
mature forms have lower height and larger heads (e.g. cup and mushroom shapes) (A). Dendritic shafts usually 
present several types of dendritic spines which may suffer morphological changes during plasticity (B). Spine 
density and morphology is altered in cases of mental retardation, as fragile-X syndrome (C). In such case, 
increased immature spines and high density appear along the dendritic shaft of neurons from both temporal and 
visual cortices. On the other hand, schizophrenic patients exhibit lower spine density along the dendritic shaft, but 
the dendritic spines are also more immature (D). The alterations observed in both conditions may trigger the 
cognitive deficits verified in patients. (Based in Irwin et al., 2001; von Bohlen und Halbach, 2010 and Faludi and 
Mirnics, 2011). 

 

Interestingly, a high degree of neuronal plasticity does not end during the early neuronal 

development and persist even after neuronal polarization and synaptogenesis. As Gomis-Rüth and 

colleagues (2008) have demonstrated, neurons fully integrated in a neuronal network can convert a 

mature dendrite to a functional axon upon a proximal axon cut, whereas a more distal injury leads to 

the re-growth of the axon (Gomis-Rüth et al., 2008). Additionally, synaptic plasticity, characterized by 

reconfigurations in the structure and functionality of synapses, is important in normal brain function 

and induces changes in synapse number, shape and strength and, ultimately, in neuronal connectivity.  

In fact, the inability to undergo these plastic changes can be a cause for several neurodegenerative 

and psychological disorders (Munno and Syed, 2003; von Bohlen und Halbach, 2010; Faludi and 

Mirnics, 2011). However, neuronal plasticity may not only depend on neurons. Indeed, glial cells have 

been indicated as active controllers of dendritic outgrowth and dendritic spine morphologies, therefore 

contributing for the non-stationary state of the central nervous system (CNS) (Procko and Shaham, 
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2010). Moreover, the development of synapses is facilitated by the presence of glial cells, as they help 

the guidance and the growth of both axons and dendrites in the CNS (Pfrieger, 2009). 

 

 

2. Cytoskeleton Dynamics in Neuronal Development 

Cytoskeleton has a vital role in the normal cell function and takes part in several activities from 

cell shape and locomotion to intracellular organelle transport. Within eukaryotic cells, the cytoskeleton 

is composed by three organized types of polymeric protein filaments: microtubules, intermediate 

filaments and microfilaments. These long protein polymers, that exhibit distinct properties, interact with 

each other and are dynamic structures. The regulation of cytoskeleton filaments is achieved by 

several proteins, such as microtubule-associated proteins (MAPs), actin-binding proteins and motor 

proteins. In neurons, all cytoskeletal components are crucial to provide structural organization, to 

establish and maintain neuronal polarity, to serve as tracks for intracellular transport and to allow 

different cellular morphologies (Tahirovic and Bradke, 2009; Polleux and Snider, 2010; Dent et al., 

2011a). In fact, the formation of a polarized neuron is essential for the integration and proper 

propagation of synaptic information in the adult CNS, which is dependent on cytoskeleton 

rearrangements (Witte and Bradke, 2008; Barnes et al., 2008; Tahirovic and Bradke, 2009). Moreover, 

cytoskeleton has also a substantial role in neurite elongation, growth cone turning, advance and 

branching, and all of these processes are involved in neuronal development (Dehmelt and Halpain, 

2004a; Gallo and Letourneau, 2004). So, an intricate interplay between the different compartments of 

cytoskeleton and their respective proteins exists during neuronal development.  

From a classic point of view, the microtubule cytoskeleton has been thought to be important for 

cell division and organelle trafficking, while the dynamic actin cytoskeleton was known to generate 

force during cell contraction and dispersion. In more recent times, this classic vision has been 

contested and a cooperative relation between these two cytoskeleton complexes has emerged, as 

actin filaments have been implied in both cell division and trafficking, as well as microtubules have 

been addressed with roles in cellular morphology generation and plasticity (Dehmelt and Halpain, 

2004a; Dent et al., 2011b). Furthermore, the precise control of neuronal morphogenetic program 

involves the regulation of cytoskeleton dynamics, which can be achieved by several intracellular 

signaling pathways, as the Rho family of small GTPases. This family possesses several members, as 

Ras homolog gene family member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and 

cell division control protein 42 homolog (Cdc42). Rho GTPases cycle between an inactive guanosine 

diphosphate (GDP)-bound state and an active guanosine triphosphate (GTP)-bound state, which 

interacts with specific effectors to propagate downstream signaling events (Hall and Lalli, 2010). 

Indeed, the conserved and major role of Rho GTPases is the control of the dynamic rearrangements 

of both microtubules and microfilaments, therefore playing an influential in the neurodevelopment (Hall 

and Lalli, 2010). 
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2.1. Microtubules 

Microtubules are formed by polymers of α- and β-tubulin heterodimers associated head-to-tail to 

form a hollow and elongated cylinder normally composed by 13 protofilaments (Lodish et al., 2004). 

The microtubules are polar structures given the intrinsic polarity of the tubulin heterodimers and their 

linearly disposition. These polymers undergo post-translational modifications, as tyrosination, present 

in recently synthesized and dynamic microtubules, and acetylation, which occurs in more elderly and 

stable microtubules (Fukushima et al., 2009). These structures have the ability to grow and shrink 

through end-polymerization of heterodimer subunits using the energy derived from the hydrolysis of 

GTP bound to β-tubulin (Gordon-Weeks, 2004). Therefore, the rate of growth or shrinkage depends on 

the kinetics of subunit addition or subtraction, which is different in the two ends. The microtubule’s 

fast-growing end, with the β-subunit exposed, is named the ―plus end‖ and it is the preferential local to 

tubulin assembly, while the slow-growing end, with the α-tubulin uncovered, is denominated the 

―minus end‖ and is usually attached to a microtubule organizing center or capped (Gordon-Weeks, 

2004). Microtubule cytoskeleton in vitro cultured cells suffers a dynamic instability characterized by 

cycles of relative slow and continuous growth interrupted by catastrophes, phases of rapid shortening 

due to heterodimer dissociation probably caused by the loss of the GTP-β-tubulin cap at the end of the 

microtubule (Kirschner and Mitchinson, 1986; Cassimeris et al., 1988). However, this rapid length loss 

does not lead to microtubule complete depolymerization because it occurs in parallel to a phase of 

sustained growth (Gordon-Weeks, 2004, Geraldo and Gordon-Weeks, 2009). 

Microtubules exhibit a typical compartment-specific distribution in the axons of developing 

neurons with their plus-ends oriented toward the distal end (Fig. I.5.). In contrast, dendrites display a 

mixed microtubules orientation, i.e. some have their plus-ends toward the cell soma, while others have 

their plus-ends pointing toward the peripheral zone. The uniform axonal distribution is thought to be 

the default state in neurites, as it exists when minor neurites start to emerge, where they are usually 

found in bundles (Brandt, 1998; Gordon-Weeks, 2004). As one of the principal cytoskeletal 

components, microtubules are involved in the maintenance of neuronal morphology and in the 

establishment of both dendritic and axonal arborizations. In neurites, a gradient of microtubule 

instability is observed, with distal microtubules undergoing a higher turnover than the microtubules in 

the middle of the neurite or near the cell body (Bamburg et al., 1986). However, studies with taxol and 

nocodazole have shown that the spontaneous neurite initiation depends on both the presence and 

dynamic properties of microtubules (Letourneau and Ressler, 1984; Witte et al., 2008). Therefore, 

changes in microtubule dynamics are sufficient to induce modifications in normal neuronal 

development. Indeed, stabilization of microtubules is required to the formation of the axon and, 

consequently, to neuronal polarization rising. Witte and colleagues (2008) have shown that low doses 

of taxol lead to the formation of multiple axons, while local microtubules stabilization, by UV-mediated 

photoactivation of caged taxol at the tip of one random minor neurite, promotes axon formation (Witte 

et al., 2008). This stabilization favors microtubules to distally advance with their dynamic plus-ends, 

promoting axon formation (Witte and Bradke, 2008). Also, microtubule cytoskeleton confers a 

structural support for dendrites and its depolymerization leads to the invasion of filopodia and 

subsequent filopodial stabilization, which will form a dendritic branch (Georges et al., 2008). 
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At both dendritic and axonal growth cones, microtubules are disposed in a similar way with their 

plus ends oriented distally towards the P-domain (Heidemann et al., 1981; Baas et al., 1988). Here, as 

microtubules enter the C-domain, they defasciculate and some can even cross this domain as single 

microtubules (Gordon-Weeks, 2004). Furthermore, dynamically unstable microtubules invade the P-

domain and explore the actin network, where they become stabilized, leading to axon specification 

(Geraldo and Gordon-Weeks, 2009; Dent et al., 2011a). In response to guidance cues, microtubule 

dynamic instability is required for growth cone turning and consequently to the directional axonal 

outgrowth (Tanaka et al., 1995; Challacombe et al., 1997) Moreover, in the absence of dynamic 

microtubules, the remaining microtubules do not suffer the typical cycle of bundling and splaying, what 

is deeply associated with the forward movement of the growth cone (Tanaka et al., 1995). In addition, 

the attenuation of microtubule dynamics in growth cones has also shown to impair lamellipodial 

protrusion (Gallo, 1998). 

Microtubules are also important to dendritic spine morphology and function, even though the 

central role of the actin filaments in these excitatory postsynaptical sites (Dent et al., 2011b). Thus, 

modifications in microtubule dynamics are related to changes in the normal dendritic spine formation 

and further maturation (Gu et al., 2008; Jaworski et al., 2009). Moreover, the polymerization and 

depolymerization of microtubules is coincident with the extension and retraction of transient spine 

heads protrusions, respectively (Hu et al., 2008). This study has also shown that an increase of 

neuronal activity is related to a higher number of spines with a longer-invasion by microtubules (Hu et 

al., 2008). Additionally to structural support, microtubules are important to cellular trafficking, because 

they provide tracks for motor proteins, as kinesin and dynein, allowing the cargo transportation to 

specific cellular parts, as dendritic spines and synaptic terminals. This transportation to and from pre- 

and post-synaptical sites is critical for synaptic function, as synapses are highly vulnerable to transport 

impairments (Gendron and Petrucelli, 2009). 

 

2.2. Microtubule-associated proteins 

Microtubule associated proteins (MAPs) are a family of proteins known by their role in regulation 

of microtubules polymerization, stability and organization (Gendron and Petrucelli, 2009). However, 

besides the regulation of microtubule networks in the axons and dendrites, there are evidences for a 

larger range of functions for MAPs, including binding to F-actin, recruitment of signaling proteins and 

regulation of microtubule-mediated transport (Dehmelt and Halpain, 2004b). Microtubule associated 

protein 2 (MAP2) and Tau are structural MAPs, i.e. have the ability to alter microtubule structures, 

acting to reduce catastrophe periods and to increase rescue phases upon binding along the outer 

ridges of the protofilaments (Al-Bassam et al., 2002; Dehmelt and Halpain, 2004a). Hence, they do not 

prevent microtubule dynamic instability. Instead, they simply alter the dynamic behavior of this 

cytoskeleton compartment, creating a partial stable but dynamic state important for cell growth and 

transport. 

MAP2 and Tau seem to have essential and distinct roles in the early stages of 

neuromorphogenesis. In cultured neurons, Tau protein is related to the polarity development and is 
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disposed in a proximo-distal gradient in the process that will develop into the axon, with the higher 

concentration at the transition from the axonal shaft to the growth cone (Kempf et al., 1996). Thus, 

Tau is gradually segregated into the future axon and is able to adjust microtubules assembly and 

stabilization in this process (Fig. I.5.) (Dehmelt and Halpain, 2004a). The distinctive distribution of Tau 

in neurons is regulated by its degree of phosphorylation, as this post-translational modification of 

certain residues detaches Tau from microtubules, decreasing its affinity for them. Therefore, 

phosphatases (e.g. tyrosine phosphatases) are implicated in the complex regulation of the intracellular 

function and localization of this MAP (Mandell and Baker, 1996). In contrast, MAP2 is essential for 

initiation of neurites and is segregated into the emerging dendrites, exhibiting a somatodendritic 

distribution. In fact, the suppression of MAP2 synthesis inhibits the initial formation of neurites in 

cultured neurons (Cáceres et al., 1992). The differential distribution of these two MAPs is maintained 

in the mature neuron, i.e. MAP2 is exclusively present in the somatodendritic region, whereas Tau 

only exists in the axon (Dehmelt and Halpain, 2004a). 

MAPs were also found to interact with both actin filaments and microtubules. While actin 

filaments and tubulin polymers do not interact without MAPs, their presence is sufficient to induce 

interactions between the two cytoskeletal compartments (Griffith and Pollard, 1978). Thus, MAPs 

might mediate the crosstalk between microtubules and actin filaments. However, it is suggested that 

both microtubules and microfilaments bind to the same domain in MAP2 and Tau proteins, because 

microtubules exclude the binding of microfilaments and vice-versa (Correas et al., 1990). 

 

2.3. Microfilaments 

Microfilaments consist in two helical and separated strands of filamentous actin (F-actin), each 

one a polymer of globular-actin (G-actin). As microtubules, microfilaments are intrinsically polar 

because all actin subunits are directed toward the same end of the filament. Conventionally, the 

terminal actin subunit exposing adenosine diphosphate (ADP) -G-actin is designated the minus-end or 

the pointed-end, while the opposite end, the plus-end or the barbed-end, is the fast-growing end of the 

filament and the local for the binding of adenosine triphosphate (ATP)-G-actin (Lodish et al., 2004). 

Hence, the barbed-end is the preferential local for actin subunits addition, whereas the pointed-end is 

the local for actin subunit dissociation. Microfilaments are highly dynamic structures that can rapidly 

suffer cycles of assembly and disassembly and the actin polymerization is favored by stimulation of 

ADP/ATP exchange of G-actin (Witte and Bradke, 2008).  Actually, actin filaments undergo a process 

called treadmiling, by which they are able to exert net movement, consisting in the assembly of 

filaments at their fast-growing ends and disassembly at their slow-growing ends (Brandt, 1998).  

Actin cytoskeleton is deeply involved in neurite development, breakage of the initial symmetry in 

neurons, i.e. neuronal polarization, and alterations in actin dynamics are also associated with changes 

in neuronal morphology. Initiation of neurites is induced by a reduction in the tensile forces mediated 

by actin cytoskeleton (Georges et al., 2008). Indeed, the use of cytochalasin B, which reduces tensile 

forces by depolymerization of actin filaments, increases the length of both axons and dendrites (Lafont 

et al., 1993). On the other hand, jasplakinolide, a macrocyclic peptide that inhibits F-actin turnover, 
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causes axonal retraction, showing that the turnover of microfilaments is required for axonal extension 

(Gallo et al., 2002). One feature of the future axonal growth cone in immature neurons is a lower actin 

cytoskeleton stability, that can be the cause of microtubule protrusion and, consequently, of neurite 

outgrowth (Bradke and Dotti, 1999). Furthermore, the disruption of the actin network of one individual 

growth cone is sufficient to induce its neurite to develop as an axon, and the application of actin 

depolymerizing drugs is enough to produce neurons with multiple axons (Bradke and Dotti, 1999). 

 

Fig. I.5. Schematic representation of dendritic and axonal cytoskeletons. (A) Dendrites display 

mixed microtubules orientations, i.e. some microtubules have their plus-end directed to the cell soma, whereas 
others exhibit their plus-end toward the distal end of the dendrite. The dendritic microtubules are stabilized by 
MAP2. The dendritic spines are, essentially, composed by actin filaments, which contribute to their dynamics. (B) 
In the axon, microtubules are stabilized by Tau and disposed in a regular and uniform way, with their plus-ends 
pointing to the distal end. Usually, microtubules are retained in the C-domain of the growth cone and actin 
filaments occupy the P-domain, with both filopodia and lamellipodia.   

 

In order to achieve a directional growth, extracellular cues are thought to induce a selectively 

stabilization of actin cytoskeleton in both lamellipodia and filopodia, the preferential locals for actin 

polymerization (Fig. I.5.) (Gallo and Letourneau, 2004). Actually, the extension of filopodial tips is 

determined by the rate of F-actin polymerization and the retrograde transport of the polymerized 

filaments on the way to the bottom of the filopodium (Mallavarapu and Mitchinson, 1999). During axon 

guidance, actin polymerization is favored in areas contacting with positive or attractive guidance cues, 
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inducing growth cone turning (Shen and Cowan, 2010). Moreover, actin structures redirect and 

stabilize microtubules in the direction of turning, since actin destabilization by low concentrations of 

cytochalasin B alters growth cone turning and microtubules fail to retract from the side in contact with 

an inhibitory signal (Challacombe et al., 1997). Furthermore, the loss of actin filaments at the leading 

edge of the growth cones is related to growth cone collapse (Fan et al., 1993; Fournier et al., 2000; 

Avwenagha et al., 2003). Hence, F-actin can be a major intracellular target of extracellular guidance 

cues that modulate growth cone behavior.  

The heads of dendritic spines, mainly the postsynaptic density zone, are enriched in actin 

cytoskeleton, which is important for both formation and motility of dendritic spines (Fig. I.5.) 

(Dunaevsky et al., 1999; Capani et al., 2001). Moreover, the high level of plasticity observed in spines 

may be due to the rapid turnover rates of actin cytoskeleton. Concerning synaptogenesis, the use of 

the actin-depolymerizing agent latrunculin A leads to an almost complete loss of synapses in the first 

week of hippocampal neuronal cultures, as well as to a decrease in the synaptophysin clusters 

number and size, revealing an important role of F-actin in the development and maintenance of young 

synapses (Zhang and Benson, 2001). 

Despite the morphological and plastic roles of actin cytoskeleton, these filaments are also 

involved in the transportation of certain cargos, because myosins, a family of motor proteins, directly 

bind to actin filaments and transport a cargo in their tails (Lodish et al., 2004). Actin cytoskeleton can 

even serve as a substrate for the microtubule anterograde movement (from the cell soma to the 

presynaptic terminal), when there are no longer microtubules available to play this role (Hasaka et al., 

2004). Indeed, the transport of microtubules at the growth cone may be dependent on actin based-

mechanisms (Myers et al., 2006). 

 

 

3. Neuroinflammation: from a beneficial to a detrimental effect  

For a long time, the CNS was considered an immune privileged site, by the absence of a typical 

and classical immune response (Di Filippo et al., 2008). Likewise, it was also thought that the brain 

was not largely affected by systemic or immune inflammatory reactions (Lucas et al., 2006). 

Nowadays, it is widely accepted that an interaction between immune and nervous systems exists, 

involving a bidirectional cross talk. Indeed, the CNS is provided with an active immune surveillance 

and it can be the host of inflammatory responses to different types of injuries (Di Filippo et al., 2008). 

Neuroinflammation, the inflammation of the CNS, consists in a set of events, including the activation of 

the resident neural cells, as microglia and astrocytes, which together with neurons release a panoply 

of inflammatory molecules (Fig. I.6.) (Chavarria and Alcocer-Varela, 2004; Infante-Duarte et al., 2008; 

Whitney et al., 2009).  



I. INTRODUCTION 
 

 

15 
 

Fig. I.6. Neuroinflammation is a complex response of neural cells to a detrimental stimulus. 
Upon stress, injury or sepsis, the resident neural cells, as microglia (blue), astrocytes (orange) and neurons 
(green) produce inflammatory mediators (purple). These molecules influence the normal state of the CNS and are 
capable of recruiting circulating immune cells, leading to neuroinflammation. 

 

The segregated inflammatory mediators are responsible for the expression of chemokines and 

adhesion molecules, the activation of endogenous glial cells and the stimulation of astrogliosis, in 

addition to the recruitment of immune cells to the site of inflammation (Rothwell and Luheshi, 2000; 

Whitney et al., 2009). Indeed, the CNS can be invaded by circulating immune cells, which contribute to 

the brain inflammatory state. Hence, neuroinflammation is seen as a complex cellular and molecular 

response of neural cells to a detrimental stimulus, such as injury, stress or sepsis (Semmler et al., 

2008; Whitney et al., 2009). The main goals of neuroinflammation are the defense against these 

insults, the clearance of dead and damaged neurons, as well as the return of the CNS to homeostasis 

(Whitney et al., 2009). However, when neuroinflammation is not controlled, its beneficial role is 

overcome and may then turn into damage. In that case, the recruited cells become activated and 

release even more inflammatory mediators, establishing a positive feedback and leading to neuronal 

injury with changes in neurogenesis (Das and Basu, 2008; Whitney et al., 2009). Therefore, 

neuroinflammation, if in excess, may contribute to neurodevelopmental impairments. In addition, 

oligodendrocytes are extremely vulnerable to inflammatory molecules which may result in white matter 

damage and the emergence of long-term neuromotor, cognitive, and behavioral limitations, or to 

degenerative disorders, such as Alzheimer’s and Parkinson’s diseases (Lucas et al., 2006; Aktas et 

al., 2007).  

 Most attractive is the recent hypothesis that an early infection could produce a latent or hidden 

change in the immune system that could be unmasked by a second immune challenge. This ―two-hit 

hypothesis‖ was first proposed for schizophrenia etiology, suggesting that the first hit, which may 

occur during the embryonic life, ―primes‖ the nervous system for the second one, accelerating the 

disease symptoms (Maynard et al., 2001). Therefore, the concept of ―glial priming‖ has been proposed 

to account for the ―two-hit hypothesis‖ (Bilbo and Schwarz, 2009). The authors describe that, after a 

first insult in the early-life, a subset of glial cells become primed and display an activated morphology. 
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Hence, when facing a second immune challenge in later-life, the primed glia, which do not chronically 

produce inflammatory mediators, over-release cytokines within the brain exaggerating the immune 

response and producing damaging consequences (Bilbo and Schwarz, 2009). 

 

3.1. Cytokines as neuroinflammation mediators 

Cytokines are secreted polypeptides with several addressed roles in immune responses. 

Previously, cytokines were thought to only act in the peripheral system, but nowadays a crescent 

number of data have found that these molecules can exert several actions in the brain, including in the 

development of neurons. Pro-inflammatory cytokines, as tumor necrosis factor-alpha (TNF-α) and 

interleukin-1beta (IL-1β), are synthesized by neural cells and take part in the normal intercellular 

communication, assuming an important role for the maintenance of homeostasis. The pro-

inflammatory cytokines can act as neurotrophic factors during the normal development of the brain, 

e.g. IL-1 is regarded as an important growth factor in brain formation (Giulian et al., 1988; Zhao and 

Schwartz, 1998). Additionally, these cytokines can induce the production of anti-inflammatory 

mediators, therefore creating a feedback loop, in order to control the immunologic state (Morganti-

Kossman et al., 2002). Normally, the levels of such cytokines are low, but their expression is rapid and 

radically increased in situations of neuroinflammation. When this elevation of expression is sustained, 

pro-inflammatory cytokines can become pathological, deregulating cytokine release, and can even 

cause neuron and oligodendrocyte death (Donnelly and Popovich, 2008). In reality, when 

neuroinflammation happens in the perinatal period during the development of the nervous system, the 

intrinsic developmental program of the brain can be altered by the exposure of the fetus to 

inflammatory mediators, what may eventually result in lasting neuronal disorders (Degos et al., 2010). 

Yet, the detrimental effect of cytokines may rely on the type and level of cytokines produced. In other 

words, the low physiological rates of cytokine expression may be important for the cross-talk between 

the neural cells during development, but the overexpression observed during the neuroinflammatory 

stage may compromise neuronal survival and plasticity. 

IL-1 is a potent pro-inflammatory cytokine with the capability to orchestrate inflammatory 

responses, since it can induce the expression of several inflammatory molecules that intensify the 

immune response. Moreover, IL-1 has the ability to enhance responses in cells with low levels of its 

own receptor, for the reason that it activates a complex signaling cascade that amplifies the initial 

signal (Rothwell and Luheshi, 2000). This cytokine exists in two partially homologous isoforms, IL-1α 

and IL-1β, both translated as a proform that it is further cleaved by cell-surface-bound calpain and 

caspase-1 or IL-1β converting enzyme, respectively, in order to produce the mature forms (Mrak and 

Griffin, 2001; Basu et al., 2004). The two isoforms bind with high affinity to a specific membrane 

receptor, the IL-1 receptor type I, which contains a cytoplasmic domain engaging intracellular signaling 

pathways (Di Filippo et al., 2008; Spulber and Schultzberg, 2010). It is described that the binding of IL-

1β to its receptor may induce modifications at the cytoskeleton level, through the activation of p38 

mitogen-activated protein kinases (Temporin et al., 2008). However, an endogenous receptor 

antagonist (IL-1ra) can prevent the activation of IL-1 receptor upon IL-1 binding, thus blocking the 
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actions of the cytokine (Lucas et al., 2006). All these components are present within the brain, albeit at 

low rates in the normal and healthy CNS (Basu et al., 2004). Following CNS damage, IL-1 is regarded 

as an important initiator of the immune response and, consequently, is rapidly produced and released 

specially by activated microglia (Rothwell and Luheshi, 2000). There is accumulating evidence 

suggesting a detrimental role of high levels of IL-1β in neuronal function following an in vivo insult. 

Indeed, it was reported that IL-1β may even exacerbate the initial damaging stimulus of conditions 

such as ischemia and/or excitotoxicity (Loddick and Rothwell, 1996; Allan et al., 2000; Boutin et al., 

2001). 

Other important pro-inflammatory cytokine, TNF-α, is predominantly produced by glial cells and 

in a lower rate by neuronal cells, also having an important role in the initiation and regulation of the 

inflammatory process (Whitney et al., 2009; Ziebell and Morganti-Kossmann, 2010). This cytokine is 

synthesized as a membrane-bound precursor that is subsequently cleaved by the TNF converting 

enzyme, in order to produce the active cytokine, which levels are quickly increased in response to 

CNS damage (Perry et al., 2001). TNF-α can bind to two different cell-surface receptors, p55 (tumor 

necrosis factor receptor-1; TNFR1) and p75 (TNFR2) (Lucas et al., 2006; Whitney et al., 2009). The 

cytotoxic actions leading to neuronal apoptosis exerted by TNF-α are mediated through p55, while the 

actions upon binding to p75 are generally proliferative and may involve anti-apoptotic signals (Muñoz-

Fernández et al., 1998). Therefore, opposing and different effects of TNF-α may be due to the distinct 

signaling pathways triggered by the different receptors. Nevertheless, as IL-1β, TNF-α was shown to 

mediate neuronal damage after an insult, and exert a variety of effects, from neuronal loss to 

neurotoxicity and brain edema (Shohami et al., 1997; Ådén et al., 2010; Kendall et al., 2011). Besides, 

TNF-α was also demonstrated to act synergistically with IL-1β, enhancing neuronal injury and 

neurotoxicity (Chao et al., 1995). 

 

3.2. Neuroinflammation during development 

During pregnancy, the inflammatory state of the fetus may be influenced by the substances 

derived from the uterine environment that can cross the placenta. Indeed, the injection of 

lipopolysaccharide (LPS) to pregnant rats at day 18 of gestation, mimicking a pre-natal infection 

condition, triggers the production of cytokines in the fetal brain (Cai et al., 2000). These fetuses 

present elevated mRNA levels for pro-inflammatory cytokines such as TNF-α and IL-1β in a dose-

dependent manner (Cai et al., 2000). Consequently, intrauterine infection can have a significant 

impact on the proper development of the brain. Indeed, several works have confirmed that maternal 

infection may influence the neurodevelopment of the fetus due to alterations in pro-inflammatory 

cytokine levels (Ling et al., 2002; Bell et al., 2004; Burd et al., 2010). Furthermore, neuroinflammation 

in the fetal brain has been associated with neurological sequelae. High levels of pro-inflammatory 

cytokines in the amniotic fluid or umbilical blood increase the risk for white matter damage and/or 

cerebral palsy (Yoon et al., 1996; Yoon et al., 2000). Moreover, antenatal inflammatory events have 

been linked to the permanent loss of dopaminergic neurons in parallel with the rise in TNF-α levels 

(Ling et al., 2002). Therefore, antenatal infections are considered to be a potential risk factor for the 



I. INTRODUCTION 

 

 

18 

 

development of Parkinson’s disease. In the neonatal rat brain, IL-1β is able to induce apoptosis 24h 

after its intracerebral injection, whereas TNF-α exhibits a less evasive role in brain injury, inducing a 

lower number of apoptotic cells (Cai et al., 2004). In addition, co-administration of IL-1ra and LPS 

decreases caspase-3 activity and white matter injury, suggesting that IL-1β may mediate brain injury in 

the neonatal rat brain (Cai et al., 2003). Conversely, IL-1β was shown to promote cell survival in 

primary neuronal cultures from fetal rat cortices after exposure to excitatory amino acids, whereas the 

co-administration of IL-1ra failed to prevent neuronal cell death (Strijbos and Rothwell, 1995). 

Nonetheless, the deletion of the TNF cluster can abolish the detrimental effects induced by LPS, as 

neuronal loss in mouse hippocampus, after an hypoxic ischemic insult in postnatal day 7 (Kendall et 

al., 2011). In addition to neuronal cell death, inflammation can affect not only the neuronal function 

and cytoskeleton, but also the nervous system development, which may have important implications 

for neurological outcome in preterm infants. In fact, the increased levels of pro-inflammatory cytokines 

mRNA together with the disruption of neuronal morphology were observed in an inflammation-induced 

preterm birth model (Burd et al., 2010). It was also reported that TNF-α was able to promote the 

activation of small GTPase RhoA which is an important modulator of neurite outgrowth and branching 

(Neumann et al., 2002). Nevertheless, the exact mechanisms by which IL-1β and TNF-α act on the 

formation of neuronal arborization are not clarified. 

Synaptic strength and plasticity may also be modulated by the presence of pro-inflammatory 

cytokines. The injection of LPS to pregnant mice at day 15 of gestation causes alterations in 

glutamatergic synapses in the adult offspring, showing that the prenatal inflammatory environment in 

the developing brain is able to induce modifications in the normal synaptic functionality (Roumier et al., 

2008).  These data suggest that a prenatal brain inflammation can have long-lasting impacts in 

neuronal and synaptic dysfunction, perhaps instigating cognitive disabilities. It is described that during 

long-term potentiation (LTP) of synaptic transmission, IL-1β gene expression is induced and the 

administration of IL-1ra inhibits the maintenance phase of LTP (Schneider et al., 1998). On the other 

hand, Bellinger and collaborators (1993) demonstrated that low levels of IL-1β have an inhibitory effect 

on the induction of hippocampal LTP, reducing the strength of synapses (Bellinger et al., 1993). 

Therefore, IL-1β seems to modulate the synaptic transmission in the hippocampus, potentially with a 

concentration dependent mechanism. However, this effect may result in an impairment of the main 

forms of neuroplasticity and in the destabilization of neuronal circuits, which do occur in several 

neurodegenerative conditions, as Alzheimer’s and Parkinson’s diseases (Di Filippo et al., 2008). The 

cytokine TNF-α raises the number of the glutamate receptor AMPA on neuronal cell membranes, 

rendering these cells more sensible to extracellular glutamate which can contribute to excitotoxicity 

(Stellwagen et al., 2005). Besides, the same molecule has a crucial role in some forms of synaptic 

plasticity, as synaptic scaling, which is responsible for adjustments in synaptic strength, promoting 

stability in neuronal firing rates (Turrigiano and Nelson, 2004). Thus, it seems that TNF-α has the 

ability to influence synaptic strength, since changes in AMPA receptors number in the synaptic 

membrane are often correlated with the ability of synaptic scaling to modify synaptic strength 

(Wierenga et al., 2005). Overall, cytokines are not only regulatory proteins of the immune responses, 
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but can also act as neuromodulators. Nevertheless, cytokine role in synaptogenesis during and/or 

following an inflammatory stimulus is less well described. 

 

 

4. Aims 

Fetal neuroinflammation assumes an important role in neurodevelopment, as it affects neuronal 

survival, morphology, plasticity and functionality, often leading to damage and to several 

neurodevelopment sequelae in the adult offspring. Therefore, it is fundamental to understand how the 

inflammatory environment induces alterations in neuronal architecture and inter-neurons 

communication during the development of the nervous system, in order to identify determinants and 

novel target-directed therapies.  

Hence, the main goal of the present project was to investigate the effects of the pro-

inflammatory cytokines TNF-α and IL-1β on neuronal development by assessing alterations on:  

(i) neuronal morphology, focusing on the measurement of neuronal arborization and evaluation of 

cytoskeleton changes, to perceive cytokine influence on the extension and branching of both 

dendrites and axons; 

(ii) growth cone morphology and the presence of cytoskeleton proteins due to its influence on 

active and sustained growth of the neuronal protrusions; 

(iii) synaptogenesis by measuring dendritic spine and synapse densities, that are involved in the 

communication between neurons and maturation of synapses. 

 

Overall, clarification of the key events involved in alterations of neurite morphology and synaptic 

plasticity that accompanies CNS inflammation will be vital to achieve neurite regeneration, synaptic 

reorganization and a successful rehabilitation 

. 
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II. MATERIALS AND METHODS 

 

 

1. Materials 

 Neurobasal media, B27 supplement, Hanks' Balanced Salt Solution (HBSS), and Tripsin 2.5% 

were purchased from Gibco® (Grand Island, NY, USA). Poly-D-lysine, human serum albumin (HSA) 

and bovine serum albumin (BSA) (fraction V, fatty acid free), were acquired from Sigma-Aldrich®. 

Laminin was from Invitrogen Corporation™ (Carlsbad, CA, USA). Minimum essential medium (MEM) 

with Earle’s salts, HEPES (4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid) buffer, sodium 

pyruvate, fetal bovine serum (FBS) and glutamine were purchased from Biochrom AG (Berlin, 

Germany). Recombinant mouse IL-1β and TNF-α were bought to R&D Systems® (Minneapolis, MN, 

USA). Triton X-100 was obtained from Roche Diagnostics Deutschland GmbH (Mannhein, Germany). 

Primary specific monoclonal antibodies were mouse anti-Tau1 and rat anti-tyrosinated-tubulin from 

Chemicon® (Billerica, MA, USA), rabbit anti-Map2 from Covance (Princeton, NJ, USA), rabbit anti-α-

tubulin from Santa Cruz Biotechnology® (Santa Cruz, CA, USA), mouse anti-acetylated-tubulin from 

Sigma-Aldrich® and mouse anti-synaptic vesicles 2 (SV2) from Developmental Studies Hybridoma 

Bank at the University of Iowa. Alexa 594 phalloidin was purchased from Molecular Probes® 

(Carlsbad, CA, USA). Secondary antibodies were Alexa 488 anti-rabbit from Molecular Probes®, and 

FITC anti-rabbit and anti-rat, TRITC anti-mouse and AMCA anti-mouse from Chemicon®. 

 

 

2. Animals 

 Animal care followed the recommendations of European Convention for the Protection of 

Vertebrate Animals Used for Experimental and other Scientific Purposes (Council Directive 

86/609/EEC) and National Law 1005/92 (rules for protection of experimental animals). All animal 

procedures were approved by the Institutional Animal Care and Use Committee. Every effort was 

made to minimize the number of animals used and their suffering. 

 

 

3. Hippocampal neuronal cell culture and treatment 

 Primary cultures for hippocampal neurons were prepared from embryonic day 16 (E16) mice as 

previously described (Lanier et al., 1999). E16 correlates with the middle of the second trimester in 

humans, which is preceded by the neurogenesis of hippocampal pyramidal cells (Fatemi et al., 2009). 

Pregnant mice were euthanized by asphyxiation with CO2 and the fetuses were removed from uterus. 

The fetuses were decapitated and their heads placed in a Petri dish with HBSS solution. Mice brains 

were carefully removed, cerebral hemispheres were dissected and meninges were removed. Then, 

the dissected hippocampi were placed in a microcentrifuge tube with HBSS solution and dissociated 

with 2.5 % trypsin for 15 minutes at 37ºC, followed by the mechanical dissociation with a Pasteur 

pipette. Approximately 2 x 10
4
 cells were plated on each 12 mm coverslip, which were coated with 

poly-D-lysine (100 µg/mL) and laminin (4 µg/mL), in plating medium (MEM with Earle’s salts 
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supplemented with 10 mM HEPES, 1 mM sodium pyruvate, 0.5 mM glutamine, 12.5 µM glutamate, 

10% FBS, and 0.6% glucose). Three hours later, the plating medium was replaced with neuronal 

growth medium (Neurobasal media supplemented with B27 and 0.5 mM glutamine). After 1 day in 

vitro (DIV), cells were incubated with 1 or 10 ng/mL IL-1β, TNF-α or with vehicle (culture medium 

without cytokines), for 24 hours at 37ºC, as illustrated in Fig. II.1. Following inflammatory exposure, 

the incubation medium was replaced by conditioned medium from a parallel set of dishes with cultured 

hippocampal neurons at the same stage of differentiation. The growth medium was changed twice a 

week. Neurons were analyzed at 3 or 21 DIV.  

 

 
Fig. II.1. Schematic representation of the experimental model. Hippocampal neurons from E16 mice were 

plated in 12 mm coverslips coated with poly-D-lysine and laminin. At 1 DIV, cells were incubated with 1 or 10 
ng/mL IL-1β, TNF-α or with vehicle, for 24h at 37ºC. After the incubation period, media was replaced with 
conditioned neuronal growth media without cytokines and neurons were analyzed at 3 DIV for neuronal 
arborizations/growth cone morphology and at 21 DIV for synaptogenesis.  

 

 

4. Immunocytochemistry 

 Neuronal cells were fixed at 3 and 21 DIV with PPS (4% paraformaldehyde in PHEM buffer [60 

mM PIPES (pH 7.0), 25 mM HEPES (pH 7.0), 10 mM EGTA, 2 mM MgCl2] with 0.12 M sucrose) for 30 

minutes at room temperature. After rinsing in phosphate buffer saline (PBS), coverslips were blocked 

in 3% fatty acid free BSA in PBS for 30 minutes, permeabilized for 10 minutes in 0.2% Triton X-

100/PBS, rinsed and reblocked in 3% BSA/PBS for 30 minutes. Incubations with primary and 

secondary antisera were done in the presence of 1% BSA/PBS, and coverslips mounted with glycerol-

based mountant (2.5% 1,4-Diazabicyclo-[2.2.2]Octane, 150 mM Tris (pH 8.0), 30% glycerol) to reduce 

photo bleaching. Images for neuritic and synaptogenesis analysis were captured on an Axiocam HR 

adapted to an Axiovert® 200 microscope (Zeiss, Göttingen, Germany) using Openlab software 

(Improvision). Images of the growth cones were captured using a Leica DC 100 camera model 

DFC490 (Leica, Wetzlar, Germany) adapted to an AxioSkope® microscope model Scope.A1 (Zeiss, 
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Göttingen, Germany). F-actin was identified using Alexa 594 phalloidin (1:50) and for the other makers 

the following antisera were used: anti-Tau1 (1:200), anti-MAP2 (1:1000), anti-acetylated-tubulin 

(1:1000), anti-tyrosinated tubulin (1:1000), anti-α-tubulin (1:100) and anti-SV2 (1:100). 

 

 

5. Analysis of neurites 

 The measurement of dendritic and axonal lengths was performed on stage three neurons, i.e. 

neurons with a single neurite (the axon) that was at least twice as long as all the other neurites 

(Strasser et al., 2004). Cells were fixed at 3 DIV and neurons were imaged using a 10Χ plan-neofluar 

objective. The identification of dendrites and axons were confirmed by the immunostaining of neurons 

with anti-MAP2 for dendrites and anti-Tau1 for the axon. Neuritic arborization was manually traced 

using ImageJ v1.43 software (National Institutes of Health) and the NeuronJ plugin v1.4.1 (Meijering et 

al., 2004). NeuronJ allows a semi-automated tracing of individual neurons, generating a text file with 

the neuritic length/number and branching measurements. This file was then converted to an Excel file 

using a Java-based program, the XL-Calculations, as previously described by us (Popko et al., 2008).  

 

 

6. Analysis of axonal microtubules 

Neurons were fixed at 3 DIV and immunostained for anti-acetylated-tubulin and anti-tyrosinated-

tubulin, in order to identify the older and the newer microtubules, respectively. Cells were imaged 

using 10Χ plan-neofluar objective and axons were manually traced using ImageJ v1.43 software. 

 

 

7. Analysis of growth cones 

 The analysis of the growth cones was performed in cells fixed at 3 DIV, stained with anti-α- 

tubulin, to visualize the axonal shaft, and phalloidin, in order to identify the P-domain cytoskeleton by 

the visualization of F-actin. Cells were fixed at 3 DIV and images were obtained using a 63Χ plan-

neofluar objective. The areas of axonal growth cones were manually traced and fluorescence was 

measured using ImageJ v1.43. 

 

 

8. Analysis of dendritic spines and synapses 

 Dendritic spine and synapse determinations were performed in cells fixed at 21 DIV, which 

were stained with anti-MAP2 to identify the dendritic shaft, phalloidin to visualize F-actin at the 

dendritic spine and anti-SV2 to detect the presynaptic vesicles. Images were taken using a 100Χ plan-

neofluar objective, and the number of dendritic spines and synapses were counted along the dendritic 

shafts and expressed as the number of spines/synapses per 10 µm of dendrite. Here, all spine-like 

protrusions on dendritic shafts were counted as dendritic spines, and a synapse was strictly defined as 

a proximity between the presynaptic protein SV2 and the postsynaptic dendritic spines. To determine 

the rate of spine maturation, the dendritic spine morphology was also evaluated by the ratio of the 
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dendritic spine neck height versus spine head width, measured from the base of dendritic shaft to the 

tip of the head. 

 

 

9. Statistical analysis 

 Results are presented as mean ± SEM. Differences between groups were determined by one-

way ANOVA with Dunnett’s multiple comparisons post test, using GraphPad Prism 5 (GraphPad 

Software, San Diego, CA). p <0.05 was accepted as statistically significant. On each experiment at 

least 50 neurons were sampled per condition and each experiment was repeated at least three times. 
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III. RESULTS 

 

1. Treatment of Immature Hippocampal Neurons With Pro-Inflammatory 

Cytokines Alters Neuritic Output 

 

Hippocampal neurons acquire their unique and polarized morphology after undergoing dramatic 

and well-defined morphological changes. However, such characterized development can be altered by 

the presence of extracellular signals (Tahirovic and Bradke, 2009). Therefore, to characterize the role 

of a pro-inflammatory environment in the total neuronal arborization, embryonic hippocampal neurons 

were treated with vehicle and pro-inflammatory cytokines IL-1β (1 or 10 ng/mL) or TNF-α (1 or 10 

ng/mL) at 1 DIV, as illustrated in Fig. II.1. After a 24h treatment, the incubation medium was replaced 

by conditioned growth medium without cytokines and cells were fixed and immunostained with MAP2 

for dendritic identification and Tau1 to identify the axon at 3 DIV. It is known that hippocampal neurons 

suffer polarization within the first 24h after seeding passing from stage 2 neurons with emerging 

neurites to stage 3 neurons displaying the axon that corresponds to one neurite that is twice longer 

than the remaining neurites (Strasser et al., 2004). In vehicle-treated neurons, we observed that the 

proportion between stage 2 and stage 3 neurons was similar (≈ 49% and 51%, respectively). 

However, the incubation with pro-inflammatory cytokines seems to delay neuronal development, since 

the treatment with either IL-1β and TNF-α led to an increase in neurons at stage 2 of development 

(Table III.1). 

 

Table III.1. Number of stage 2 and stage 3 hippocampal neurons following pro-inflammatory 
cytokine treatment. 

 

 
Control 

IL-1β 
1ng/mL 

IL-1β 
10ng/mL 

TNF-α 
1ng/mL 

TNF-α 
10ng/mL 

Stage2 48.92% (± 3.01) 54.08% (± 5.93) 63.53% (± 9.41) 57.67% (± 3.45) 60.18% (± 14.30) 

Stage3 51.08% (± 3.01) 45.93% (± 5.93) 36.47% (± 9.41 42.34% (± 3.45) 39.83% (± 14.30) 

 

For the evaluation of cytokine action on neuronal arborization, only stage 3 neurons were 

analyzed. At 3 DIV, treatment with IL-1β reduced total neuronal arborization, characterized by a more 

marked effect in axonal arborization (Fig. III.1. A). In addition, this effect also showed to be 

concentration dependent with significant changes only for the higher concentration (Fig. III.1. B). 

Indeed, total neuronal output decreased by 17% (p<0.05) at 3 DIV after treatment with 10 ng/mL IL-

1β, while axonal arborization was reduced by approximately 30% (p<0.01) upon the same treatment. 

On the other hand, the dendritic arborization was not significantly affected by the incubation with IL-1β. 

In contrast, neurons treated with TNF-α only showed significant alterations at the dendritic level when 

analyzed at 3 DIV (Fig. III.1. A). In these case, dendritic arborization increased by 20% (p<0.05) after 

treatment with 1 and 10 ng/mL of TNF-α (Fig. III.1. C). Therefore, it seems that IL-1β mainly affects the 
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axonal compartment, decreasing the axonal arborization and, consequently, the total neuronal output, 

whereas TNF-α has a more marked effect at the dendritic compartment by increasing the dendritic 

arborization. 

Fig. III.1. Treatment of immature hippocampal neurons with pro-inflammatory cytokines alters 
the neuritic output. Embryonic hippocampal neurons were treated with vehicle, IL-1β (1 or 10 ng/mL) and 

TNF-α (1 or 10 ng/mL) for 24h at 1 DIV and fixed at 3 DIV. (A) Representative images of hippocampal neurons 
immunostained for MAP2, to identify the cell soma and dendrites, and Tau1, to identify the axon (shown in black 
and white and inverted such that merged MAP2 and Tau1 fluorescence appears black). Cells were visualized by 
fluorescence and the neuronal arborization was manually traced and measured using ImageJ v1.43 and NeuronJ 
plugin v1.4.1. Graph bars represent the effect (±SEM) of pro-inflammatory cytokines IL-1β (B) and TNF-α (C) on 
total, dendritic and axonal arborizations at 3 DIV. *p<0.05 and **p< 0.01 vs. vehicle. Scale bar equals 100 µm.  

 

 

2. TNF-α Has a Marked Effect at the Dendritic Level of Immature 

Hippocampal Neurons, while IL-1β Only Slightly Alters Dendritic and Branches 

Length 

 

Since we observed distinct modifications at the dendritic versus axonal level upon cytokines 

incubation, we next evaluated the capability of pro-inflammatory cytokines to alter different aspects of 

the dendritic compartment. For this purpose, neurons were incubated with vehicle, IL-1β (1 or 10 

ng/mL) and TNF-α (1 or 10 ng/mL) as shown in Fig. II.1. Then, at 3 DIV, cells were fixed and 

immunostained for MAP2 and Tau1 to identify the dendrites and the axon, respectively. Primary 

dendrites were identified as the ones emerging directly from the cell soma, while dendritic branches 

were defined as ramifications arising from both primary dendrites and from the ramifications 

themselves.  
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Although the number of dendrites and their branches were not significantly altered by IL-1β at 3 

DIV (Fig. III.2. A and C), IL-1β-treated neurons exhibit a decline in the length of the primary dendrites 

(Fig. III.2. B), but an increase in the length of their branches (Fig. III.2. D). Indeed, the length of 

primary dendrites was reduced by 11 and 13% after treatment with 1 and 10 ng/mL IL-1β, respectively 

(n.s.), while the higher concentration of this cytokine increased the length of the dendritic branches by 

17% (n.s.). 

Fig. III.2. Treatment of immature hippocampal neurons with IL-1β reduces the length of primary 
dendrites, but increases the extent of their branches. Embryonic hippocampal neurons were treated 

with vehicle and IL-1β (1 or 10 ng/mL) for 24h at 1 DIV and fixed at 3 DIV. Then, neurons were immunostained for 
MAP2 and Tau1 and visualized by fluorescence. Dendrites were manually traced and measured using ImageJ 
v1.43 and NeuronJ plugin v1.4.1. Graph bars show the effect (±SEM) of IL-1β on the number (A) and the length 
(B) of primary dendrites, as well as the number (C) and the length (D) of the dendritic branches at 3 DIV.  

 

On the other hand, embryonic hippocampal neurons incubated with TNF-α showed a marked 

effect at the dendritic compartment (Fig. III.3.). Indeed, a slightly increase is seen at the number of 

primary dendrites following TNF-α exposure (Fig. III.3. A), without affecting their length (Fig. III.3. B). 

In addition, TNF-α treatment induced the formation of more dendritic branches when compared to 

vehicle-treated neurons (Fig. III.3. C). More importantly, TNF-α exposure led to a significant increase 

in the length of the dendritic branches at 3 DIV by 28% (p<0.01) and by 32% (p<0.01) for the lowest 

and the highest concentration, respectively (Fig. III.3. D). 
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Fig. III.3. Treatment of immature hippocampal neurons with TNF-α has a marked effect at the 
dendritic level. Embryonic hippocampal neurons were treated with vehicle and TNF-α (1 or 10 ng/mL) for 24h 

at 1 DIV and fixed at 3 DIV. Then, neurons were immunostained for MAP2 and Tau1, visualized by fluorescence 
and dendrites were manually traced and measured using ImageJ v1.43 and NeuronJ plugin v1.4.1. Graph bars 
show the effect (±SEM) of TNF-α on the number (A) and the length (B) of primary dendrites, as well as the 

number (C) and length (D) of dendritic branches at 3 DIV. **p< 0.01 vs. vehicle. 
 

Overall, TNF-α appeared to affect more appreciably the dendritic compartment at 3 DIV than IL-

1β, by increasing the number of dendrites and dendritic branches, as well as the length of the 

branches, confirming the previous data. Alternatively, the length of the primary dendrites is noticeably 

reduced in neurons incubated with the pro-inflammatory cytokine IL-1β, which is possibly 

compensated by the increase in the length of their branches. 

 

 

3. IL-1β Has a Higher Impact at the Axonal Level of Immature 

Hippocampal Neurons, while TNF-α Only Increases Axonal Branches Length 

 

Next, we also assessed how pro-inflammatory cytokines could modify different aspects of the 

axonal arborization. For that, embryonic hippocampal neurons were treated as explained in Fig. II.1. 

and at 3 DIV, cells were fixed and immunostained for MAP2 and Tau1 to distinguish the dendrites and 

the axon, respectively. The axon was identified by the longest neurite staining for Tau1 and axonal 

branches were defined as the ramifications rising from the axon or from the ramifications themselves. 
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At 3 DIV, the treatment with IL-1β drastically reduces the length of the axon, plus the number of 

its branches (Fig. III.4. A and B, respectively) in a concentration dependent manner. Indeed, the 

axonal length decreased by 17% (p<0.01) and 28% (p<0.01) at 3 DIV in neurons treated with 1 and 10 

ng/mL IL-1β, respectively, while the number of branches was reduced by 23% (n.s.) and 38% (p<0.01) 

for 1 and 10 ng/mL IL-1β, respectively. In contrast, the lowest concentration of IL-1β induced longer 

axonal branches (~20%, n.s.) (Fig. III.4. C). 

 

Fig. III.4. Treatment of immature hippocampal neurons with IL-1β has a marked impact at the 
axonal level. Embryonic neurons from hippocampus were treated with vehicle and IL-1β (1 or 10 ng/mL) 24h at 

1 DIV and fixed at 3 DIV. Then, neurons were immunostained for MAP2 and Tau1, visualized by fluorescence and 
axonal branching was manually traced and measured using ImageJ v1.43 and NeuronJ plugin v1.4.1. Graph bars 
show the effect (±SEM) of IL-1β on the length of the axon (A), on the number of axonal branches (B) and their 
length (C). **p< 0.01 vs. vehicle. 

 

After treatment with TNF-α, the length of the axon and the number of its branches showed no 

significant alterations (Fig. III.5. A and B). Nevertheless, the extension of axonal branches was 

induced in a concentration dependent manner (Fig. III.5. C). The assay with 1 ng/mL TNF-α increases 

the length of branches by 19% (n.s.), whereas the highest concentration of TNF-α elongates their 

length by 32% (p<0.01). 
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Fig. III.5. Treatment of immature hippocampal neurons with TNF-α only affects the length of 
axonal branches. Embryonic neurons from hippocampus were treated with vehicle and TNF-α (1 or 10 ng/mL) 

for 24h at 1 DIV and fixed at 3 DIV. Then, neurons were immunostained for MAP2 and Tau1, visualized by 
fluorescence and axonal branching was manually traced and measured using ImageJ v1.43 and NeuronJ plugin 
v1.4.1. Graph bars show the effect (±SEM) of TNF-α on the length of the axon (A), the number of its branches (B), 
as well as their length (C). *p< 0.05 and **p< 0.01 vs. vehicle. 

 

Hence, IL-1β appears to affect the axonal compartment more drastically than TNF-α, as it was 

able to diminish not only the length of the axon, but also the degree of its branching. However, the 

length of the axonal branches is increased after incubation with both cytokines, an observation that is 

in agreement with the results obtained for the dendritic compartment. 

 

 

4. Cytokines Affect the Distribution of Microtubules Along the Axon of 

Immature Hippocampal Neurons 

 

Microtubules are polymers of α- and β-tubulin, which suffer diverse post-translational 

modifications, including tyrosination and acetylation. Tyrosinated tubulin appears in recently 

synthesized microtubules, whereas acetylated tubulin is found in long-lived and stable microtubules 

(Fukushima et al., 2009). As cytokines were able to affect the length of the axon, namely IL-1β, we 

next evaluated the ability of pro-inflammatory cytokines to modify the distribution of microtubules along 

the axon. For this, embryonic hippocampal neurons were incubated with vehicle and cytokines IL-1β 

as shown in Fig. II.1. and at 3 DIV, cells were fixed and immunostained for tyrosinated- and 

acetylated-tubulin to identify the younger and the older microtubules, respectively.  
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The analysis of the ratio between acetylated- and tyrosinated-tubulin fluorescence along the 

axon showed that the treatment of immature hippocampal neurons with IL-1β increases the stable and 

older microtubules along the axon, essentially at its apical portion (Fig. III.6). Indeed, the ratio 

increased by ~17% in the first quarter of the axon after incubation with 10 ng/mL IL-1β (n.s.). 

  

Fig. III.6. Treatment of immature hippocampal neurons with IL-1β affects the distribution of 
microtubules along the axon. Embryonic neurons from hippocampus were treated with vehicle (light gray) 

and IL-1β 1 (gray) or 10 ng/mL (black) for 24h at 1 DIV and fixed at 3 DIV. Neurons were immunostained for 
acetylated-tubulin and tyrosinated-tubulin and visualized by fluorescence. The axons were manually traced and 
the fluorescence was measured using ImageJ v1.43. Graph bars show the effect (±SEM) of IL-1β on the 
microtubules post-translational modifications along the axon at 3 DIV.  

 

 

At 3 DIV, the incubation of immature hippocampal neurons with TNF-α increased the ratio 

between acetylated- and tyrosinated-tubulin along the axon, mainly at the proximal portion of the axon 

(Fig. III.7). The ratio significantly increased by 20% (p<0.05) and 25% (p<0.01) for the first and second 

quarter of the axon upon treatment with 1 ng/mL TNF-α.  
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Fig. III.7. Treatment of immature hippocampal neurons with TNF-α affects the distribution of 
microtubules along the axon. Embryonic hippocampal neurons were treated with vehicle (light gray) and 

TNF-α 1 (gray) or 10 ng/mL (black) for 24h at 1 DIV and fixed at 3 DIV. Then, neurons were immunostained for 
acetylated-tubulin and tyrosinated-tubulin and visualized by fluorescence. The axons were manually traced and 
the fluorescence was measured using ImageJ v1.43. Graph bars show the effect (±SEM) of TNF-α on the 
microtubules post-translational modifications along the axon at 3 DIV. *p<0.05 and **p<0.01 vs. vehicle. 

 
 

Therefore, IL-1β appears to affect the microtubules from the proximal region of the axon, 

whereas TNF-α has a higher effect at the distal region of the axon. Overall, cytokines may influence 

the microtubule dynamics and stabilization, which may therefore account for the reduction of axonal 

length observed for IL-1β (both 1 and 10 ng/mL) and TNF-α (1 ng/mL) treatment. 

 
 

5. Exposure of Immature Hippocampal Neurons to Cytokines Decreases 

Axonal Growth Cone Area and Alters the Composition of Growth Cone 

Cytoskeleton 

 

The dynamic growth cones at axonal tips are responsible to direct the axons to their synaptic 

partner, by the incorporation of the extracellular signals present in the surrounding environment, which 

induce intracellular signaling cascades (Gordon-Weeks, 2004). Szebenyi and colleagues (2001) have 

shown that alterations of axonal growth cone behavior are correlated with alterations in the normal 

development of cortical axonal branches. In particular, larger and pausing growth cones determine the 

formation of collateral axon branches (Szebenyi et al., 2001). Since pro-inflammatory cytokines 

affected axonal extension and branching, we decided to address if IL-1β and TNF-α were also able to 

alter the dynamics and the area of growth cones. Thus, embryonic hippocampal neurons were treated 
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at 1 DIV as illustrated in Fig. II.1. and at 3 DIV, neurons were fixed and immunostained with an 

antibody to α-tubulin and phalloidin, to visualize F-actin. Hence, it is possible to identify different 

regions of the growth cone, as the distal-ends of microtubules compose the C-domain and the 

protrusive region of the P-domain is composed by actin filaments. 

At 3 DIV, the treatment of embryonic hippocampal neurons with both IL-1β concentrations has a 

significant detrimental effect in the areas of the axonal growth cones, which appeared to display less 

filopodia, a characteristic of growth cone collapse (Fig. III.8. A). Indeed, the growth cone areas 

decreased by ~20% (p<0.01) and ~18% (p<0.05) after the incubation with 1 and 10 ng/mL IL-1β, 

respectively (Fig. III.8. B). TNF-α-treated neurons also exhibited smaller growth cones at the tips of 

their axons at 3 DIV, when compared to vehicle-treated neurons (Fig. III.8. A). Actually, the exposure 

of neurons to TNF-α decreased the area by ~30% (p<0.01) and ~14% (n.s.) for the lower and the 

highest concentration, respectively (Fig III.8. C).  

As the area of growth cones was altered upon cytokines-treatment, we next evaluated how IL-

1β and TNF-α affect the normal distribution of microtubules and actin in the growth cones. Upon 

incubation with IL-1β, the F-actin protein expression of the growth cone is elevated when compared 

with vehicle-treated neurons (Fig. III.8. A). Furthermore, F-actin seems to accumulate in the C- and T-

domain of growth cones, perhaps due to the loss of filopodia in the P-domain (Fig. III.8. A). In fact, 

immunofluorescence of F-actin was increased in a concentration-dependent manner by ~27% 

(p<0.05) and by ~79% (p<0.01) after incubation with 1 ng/ml and 10 ng/mL IL-1β, respectively (Fig. 

III.8. D). No significant alterations of the α-tubulin immunofluorescence were observed in growth cones 

after treatment with IL-1β (Fig. III.8. D). At 3 DIV, neurons treated with TNF-α also exhibited a higher 

protein expression of F-actin on axonal growth cones (Fig. III.8. A). More exactly, TNF-α increased the 

immunofluoresce of F-actin in a concentration dependent manner, as neurons treated with 1 ng/mL 

TNF-α have an increase by ~31 % (p<0.01), whereas in neurons treated with 10 ng/mL TNF-α the 

increase was by ~70% (p<0.01) (Fig. III.8. E). As well, the immunofluorescence of α-tubulin was 

higher by ~9% (p<0.01) and ~10% (p<0.01) in neurons incubated with 1 and 10 ng/mL TNF-α, 

respectively (Fig. III.8. E). 
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Fig. III.8. Treatment of immature hippocampal neurons with pro-inflammatory cytokines alters the growth 

cone area and cytoskeleton. Embryonic hippocampal neurons were treated with vehicle, IL-1β (1 or 10 ng/mL) 

and TNF-α (1 or 10 ng/mL) for 24h at 1 DIV and fixed at 3 DIV. (A) Representative images of axonal growth cones 

from hippocampal neurons labeled with anti-α-tubulin (green), to identify the microtubules, and phalloidin (red), to 

visualize F-actin. Cells were visualized by fluorescence, the growth cone area was drawn and measured using 

ImageJ v1.43, cytoskeleton protein fluorescence was quantified in the same area. Graph bars represent the effect 

(±SEM) of pro-inflammatory cytokines IL-1β (B) and TNF-α (C) on the areas of growth cones, as well the 

fluorescence intensity (±SEM) of α-tubulin and F-actin after IL-1β (D) and TNF-α (E) treatment at 3 DIV. *p<0.05 

and **p< 0.01 vs. vehicle. Scale bar equals 10 µm. 
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Therefore, neurons incubated with pro-inflammatory cytokines exhibited smaller growth cones, 

perhaps due to the alteration of the cytoskeleton composition. Indeed, both cytokines increase the 

actin cytoskeleton, mainly at the C- and T-domain. Overall, the alterations at the growth cone level 

may contribute to abnormalities in the formation of branches and in the directional growth of the 

axons, ultimately contributing to deficits on neuronal connectivity. 

 

 

6. Cytokines Not Only Reduce Spinogenesis and Synaptogenesis, But 

Also Dendritic Spine Maturation 

 

In vertebrates, the formation of synapses begins in the embryo and extends to the early 

postnatal period, coupled to the neuronal development (Waites et al., 2005). Moreover, a prolonged 

maturation phase may occur in synaptic development, with the purpose of promoting the integration of 

each neuron into a proper and efficient network. In hippocampal neuronal cultures, dendritic spines, 

the postsynaptic structures with the majority of excitatory synapses, start to emerge by 9-11 DIV and 

they become mature or stable by 18-21 DIV. During maturation, dendritic spines change their 

morphology from long and thin immature spines (filopodial-like) to shorter spines ending in a bulbous 

head (Lippman and Dunaevsky, 2005). To examine the effect of pro-inflammatory cytokines on 

spinogenesis and synaptogenesis, neurons were treated with vehicle and IL-1β or TNF-α as explained 

in Fig. II.1. After the treatment, the incubation medium was replaced by conditioned growth medium 

without cytokines and cells were allowed to develop until 21 DIV. Dendritic spines were visualized by 

the use of phalloidin to detect F-actin, the dendritic shafts were identified with MAP2 staining and 

synapses were identified by the proximity of SV2, at the pre-synaptic partner, and phalloidin at the 

dendritic spine. 

The treatment of immature hippocampal neurons with IL-1β led to a significant decline in the 

density of dendritic spines and synapses along dendrites (Fig. III.9. A). In fact, this cytokine decreases 

the spinogenesis by ~28% (p<0.01) for both concentrations (Fig. III.9. B), and the synaptogenesis by 

28% (p<0.01) and 30% (p<0.01) for 1 and 10 ng/mL of IL-1β, respectively. (Fig. III.9. C). Vehicle-

treated neurons exhibited mature shorter spines with a mushroom-shape, on the contrary, IL-1β-

treated neurons displayed more long and thin spines, resembling a more immature form (Fig. III.9. A). 

By analyzing the ratio between the spine neck length and spine head width, these observations were 

confirmed, as the incubation with IL-1β increased this ratio by 15% (p<0.01) and 12% (p<0.01) for 1 

and 10 ng/mL IL-1β, respectively (Fig. III.9. D).  
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Fig. III.9. Treatment of immature hippocampal neurons with IL-1β decreases the density of 
dendritic spines and synapses, as well the rate of dendritic spine maturation. Embryonic 

hippocampal neurons were treated with vehicle and IL-1β (1 or 10 ng/mL) for 24h at 1 DIV and fixed at 21 DIV. 
(A) Representative images of hippocampal neurons immunostained for MAP2 (green) to identify the dendritic 
shaft, phalloidin (red) to detect the actin cytoskeleton at the dendritic spines, and SV2 (blue) to visualize the pre-
synaptical sites, are shown. Cells were visualized by fluorescence and the synaptic and spine densities were 
measured using ImageJ v1.43. Arrows identify a synaptic site by the proximity of SV2 and phalloidin. Graph bars 
represent the effect (±SEM) of IL-1β on the dendritic spine (B) and synapse density (C), as well as on dendritic 
spine morphology (D). **p< 0.01 vs. vehicle. Scale bar equals 10 µm. 

 

TNF-α-treated neurons exhibit a lower density of dendritic spines and synapses all along the 

dendritic shaft (Fig. III.10. A). Actually, the spine density decreased by, approximately, 25% (p<0.01) 

and 34% (p<0.01) for 1 and 10 ng/mL TNF-α, respectively (Fig. III.10. B), while the synaptic density 

decreased by 30% (p<0.01) and 32% (p<0.01) for the same treatments (Fig. III.10. C). Moreover, the 

incubation with this cytokine led to the appearance of longer and thinner dendritic spines, i.e. the 

spines correspond to a more immature pattern (Fig. III.10. A). Indeed, by the calculation of the spine 

neck length to spine head width ratio, the ratio was increased by ~11% (p<0.01) and 12% (p<0.01) in 

neurons incubated with 1 and 10 ng/mL TNF-α, respectively (Fig. III.10. D). 
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Fig. III.10. Treatment of immature hippocampal neurons with TNF-α decreases the density of 
dendritic spines and synapses, decreasing the rate of dendritic spine maturation. Embryonic 

hippocampal neurons were treated with vehicle and TNF-α (1 or 10 ng/mL) for 24h at 1 DIV and fixed at 21 DIV. 
(A) Representative images of hippocampal neurons immunostained for MAP2 (green) to identify the dendritic 
shaft, phalloidin (red) to detect the actin cytoskeleton at the dendritic spines, and SV2 (blue) to visualize the pre-
synaptical sites, are shown. Cells were visualized by fluorescence and the synaptic and spine densities were 
measured using ImageJ v1.43. Arrows identify a synaptic local by the proximity of SV2 and phalloidin. Graph bars 
represent the effect (±SEM) of TNF-α on the dendritic spine (B) and synapse density (C), as well as on dendritic 
spine morphology (D). **p< 0.01 vs. vehicle. Scale bar equals 10 µm. 

 

Altogether, these results suggest that pro-inflammatory cytokines IL-1β and TNF-α may 

influence the correct formation of neuronal circuits in the hippocampus, since they are able to reduce 

the formation of synapses, keeping dendritic spines in a more immature state. 
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IV. DISCUSSION 

 

During pregnancy, intrauterine infection was suggested to induce the production of pro-

inflammatory cytokines, as IL-1β and TNF-α, in the immature fetal brain (Bell et al., 2004; Huleihel et 

al., 2004). Several studies have linked the abnormal inflammatory environment with the propensity of 

the offspring to develop several neurodevelopmental disorders, as autism, schizophrenia, cerebral 

palsy and periventricular leukomalacia (Huleihel et al., 2004; Fatemi et al., 2008). In addition, high 

levels of pro-inflammatory cytokines have been associated with alterations in neuronal architecture, 

synaptic function and cytoskeleton (Roumier et al., 2008; Ådén et al., 2010; Burd et al., 2010; 

Montgomery and Bowers, 2011). Since the elaboration of the proper neuronal architecture and 

neuronal connections are the basis of the CNS functionality, in the present study we have further 

analyzed the effects of a pro-inflammatory environment on neuronal arborization, neuronal 

cytoskeleton, growth cone morphology and synapse formation. Here, we have demonstrated that 

cytokines IL-1β and TNF-α differently affect neuronal arborization, but both reduce growth cone area 

and synaptic connectivity of developing neurons.  

Moreover, cytokines affect microtubule dynamic instability necessary for the axonal extension, 

by increasing the number of acetylated-microtubules. Similarly, in growth cones, cytokines are 

responsible for an increase in the F-actin immunofluorescence, and TNF-α has also induced an 

increase in α-tubulin fluorescence, which can be related to detrimental axon guidance and pathfinding. 

Therefore, we have demonstrated that pro-inflammatory cytokines may influence not only several 

steps of neuronal development and function, but also the dynamics of neuronal cytoskeleton, crucial 

for the emergence and maintenance of neuronal polarization. Some of abovementioned effects have 

yet been described in some neurological disorders, as schizophrenia (Sweet et al., 2009; Faludi and 

Mirnics, 2011). Hence, our study provides structural evidences for the effect of inflammatory mediators 

in the neuronal development and its association with long-term disabilities, which can lead to cognitive 

impairments later in life. 

The acquisition of neuronal polarization occurs in the stage 3 of neuronal development, when 

one of the neurites starts to grow more intensively becoming the axon (Tahirovic and Bradke, 2009). 

Here, we demonstrated that cytokines delay the progression of the development of hippocampal 

neurons, since a higher percentage of stage 2 neurons is present after incubation with both IL-1β and 

TNF-α. This first result may unveil that pro-inflammatory cytokines are able to change the normal 

development and polarization of embryonic hippocampal neurons. In accordance, others have showed 

that TNF-α-deficient mice exhibit an accelerated maturation of the neurons on the dentate gyrus 

(Golan et al., 2004). Importantly, the formation of a functional nervous system depends on the growth 

and branching of axonal and dendritic processes, as they allow the finding of the proper synaptic 

partner and, consequently, the formation of the correct neuronal networks. Therefore, the complexity 

of the neuronal tree is intimately related with the formation of synaptic contacts (Häusser et al., 2000; 

Hall and Lalli, 2010). We have observed that the axonal arborization is reduced in IL-1β-treated 

neurons, essentially by impairment in axonal elongation and axonal branches formation in 
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hippocampal embryonic neurons, and this effect is translated to a less complex neuritic arborization. In 

contrast, a study with cerebellar and dorsal root ganglion neurons from neonatal Wistar rats incubated 

with higher levels of IL-1β (50 ng/mL) showed that IL-1β overcomes the neuritic outgrowth inhibition by 

myelin-associated glycoprotein (Temporin et al., 2008). In this work, IL-1β induces the axonal growth 

upon nerve injury by the deactivation of the small GTPase RhoA. These results indicate that IL-1β 

may play a different role on neurite outgrowth depending on the concentrations attained. Furthermore, 

our data showed that IL-1β also decreases the length of dendrites, thus indicating that IL-1β has a 

detrimental effect in the elongation of the main neuronal processes, both dendrites and axons. In 

accordance, another study performed in cortical neurons from prenatal rats showed that moderate 

levels of IL-1β decrease the extension of dendrites (Gilmore et al., 2004). However, our observations 

that IL-1β increases the length of axonal and dendritic ramifications may reveal that neurons try to 

overcome the detrimental effects of IL-1β at both the axonal and dendritic main processes.  

In contrast, we observed that TNF-α has an inductor role at the dendritic level, increasing the 

number of dendrites and their branches, as well as the length of dendritic ramifications, which results 

in a raise of the dendritic arborization. In contrast, a study in hippocampal neurons from E16 mice co-

cultured with glial cells showed that incubation with TNF-α reduces both outgrowth and branching of 

neurites by the activation of RhoA (Neumann et al., 2002). Although the author also use 10 ng/mL 

TNF-α, we must not forget that in this case neurons were platted on top of a glial cell layer, which can 

be easily activated by TNF-α to produce a higher amount of cytokines. Indeed, we have previously 

demonstrated in a bilirubin-induced astroglial inflammatory response model that silencing of TNFR1 

reduce the overall production of cytokines including IL-1β, IL-6 and also TNF-α, indicating that either in 

an autocrine or paracrine fashion TNF-α may elicit a further release of this cytokine by glial cells. 

(Fernandes et al., 2011). Therefore, it seems that in resemblance with IL-1β, TNF-α may also have a 

varied role in neuritogenesis based on the concentration that is present. Furthermore, in a model of 

inflammation-induced preterm birth by intrauterine infusion of LPS, the authors report an increase in 

the levels of pro-inflammatory cytokines mRNA such as TNF-α, IL-1β, IL-6 and IL-10 in whole fetal 

brains, in parallel with a reduction in the number of dendrites observed by MAP-2 staining (Burd et al., 

2010). Accordingly, in mice autoimmune disease models, the cerebral inflammatory environment 

causes dendrite atrophy, decreasing the complexity of the dendritic arborization (Zhu et al., 2003), 

while the same results were obtained in primary cortical neurons from embryonic rats incubated with 

moderate levels of TNF-α (Gilmore et al., 2004). On the other hand, in a study using a developing 

visual system of Xenopus laevis, TNF-α-treated tectal neurons exhibited enhanced dendritic 

outgrowth, with larger dendritic arbors (Lee et al., 2010). Furthermore, postnatal mice deficient in TNF-

α gene exhibited smaller dendritic trees of neurons from hippocampal areas, indicating that TNF-α is 

involved in the morphogenesis of hippocampal neurons with an inductive role in the development of 

the dendritic arbor (Golan et al., 2004). However, those mice showed an improvement in the 

performance on behavioral tasks related to spatial memory (Golan et al., 2004). This result may lead 

us to hypothesize that the induced outgrowth of dendritic arbor by TNF-α is not related to better 

cognitive performances. Therefore, no consensus exists concerning the precise effects of cytokines on 

neuronal arborization, nevertheless this may be a result of different experimental approaches. In 
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addition, our results also suggests that pro-inflammatory cytokines IL-1β and TNF-α are involved in the 

elongation and branching of neuronal processes during the development of embryonic hippocampal 

neurons, possibly by alterations at cytoskeleton dynamics and its regulation pathways, as Rho 

GTPases. If this proves to be true, disruption of cytoskeleton dynamics may be an indicator of future 

neuronal damage. Indeed, cytokines effect on dendritic development has been considered a link 

between prenatal exposure to infection and a risk to suffer schizophrenia and related 

neurodevelopmental disorders (Gilmore et al., 2004; Meyer et al., 2009). 

Microtubule stabilization is required for axonal elongation, but the dynamic properties of 

microtubules have to be present in order to the axonal process continue to grow (Witte et al., 2008). 

Here, we present that pro-inflammatory cytokines alter the ratio between acetylated-tubulin, a post-

translational modification of tubulin present in older and stable microtubules, and tyrosinated-tubulin, 

characteristic of recently synthesized and more dynamic microtubules. In reality, the presence of the 

tubulin tyrosin ligase, the protein responsible for the post-translational modification of the last amino 

acid of α-tubulin, is necessary for the proper morphogenesis and axonal extension (Erck et al., 2005; 

Marcos et al., 2009). Thereby, cytokines may influence the axonal growth by inducing changes at the 

cytoskeleton level, more precisely at the post-translational modifications, as they induce a selective 

stabilization at the microtubule compartment, altering the normal dynamic instability. In particular, it 

seems that IL-1β and TNF-α (1 ng/mL) reduce the axonal outgrowth by increasing the stability of 

axonal microtubules, indicated by an increase in the fluorescence of acetylated-tubulin. 

The growth cone, present at the edge of the neuritic processes, commands the guidance of 

extending axons and dendrites towards the correct partner, since they are highly dynamic and 

sensible structures (Myers et al., 2011). We observed that both cytokines reduce the growth cone 

area, consequently reducing the area of the surrounding environment that the axonal growth cone can 

directly probe. Furthermore, the growth cones appeared to display less filopodia, a characteristic of 

growth cone collapse. Actually, the growth cone collapse, upon treatment with human semaphorin III, 

is characterized by a decrease in growth cone area (Fritsche et al., 1999). On the other hand, 

increases in axonal growth cone size, and consequently pausing in growth, are related to an induction 

of axonal branching (Szebenyi et al., 2001). Our results showed that while IL-1β reduces axonal 

branching in a concentration-dependent manner, TNF-α has no effect in this feature, therefore 

cytokines effect on growth cone appears to be related to other consequences rather than a decrease 

in axonal branching.  

Alterations in the growth cone are also intimately related to a deficient and impaired axonal 

guidance, since the growth cone pathfinding depends on the protrusive and dynamic P-domain and, 

ultimately on the cytoskeleton (Geraldo and Gordon-Weeks, 2009; Dent et al., 2011a). Indeed, the 

extension of filopodial tips is determined by the rate of F-actin polymerization and the retrograde flow 

of filaments to the bottom of the filopodia (Mallavarapu and Mitchinson, 1999). Particularly, 

semaphorin3A, a repulsive guidance cue, induces a loss of F-actin meshwork, which is moved to the 

neurite, during growth cone collapse (Brown et al., 2009). Here, we notice that the cytoskeleton of 

growth cones is altered after the inflammatory stimulus by IL-1β and TNF-α. In fact, all inflammatory 

treatments induced an increase in the F-actin fluorescence, in a concentration-dependent manner. 
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Indeed, our results point to an accumulation of F-actin in the C- and T-domain of growth cones, 

appearing that F-actin from the leading edges is retrogradely transported from the P-domain, perhaps 

due to the loss of filopodia. A recent study performed in an immortalized mouse brain endothelial cell 

line, showed that TNF-α, through the activation of RhoA, is able to induce modifications at the 

microfilaments level (Peng et al., 2011). In addition, in a human neuroblastoma cell line, the acute 

exposition to TNF-α or IL-1β induces the loss of lamellipodia and ultimately cellular plasticity, due to 

oxidative damages in actin cytoskeleton and regulation of the small GTPase Rac1 (Barth et al., 2009). 

Therefore, it seems that both TNF-α and IL-1β are able to change actin cytoskeleton dynamics at the 

tip of the axon which may influence growth cone activity. Additional to the effect on microfilaments, 

TNF-α also raises the immunofluorescence of α-tubulin. The raise in the α-tubulin 

immunofluorescence may indicate an accumulation of microtubules in the C-domain of the growth 

cone. In growth cone collapse, the dynamic microtubules, characterized by the presence of 

tyrosinated-α-tubulin, start to fasciculate and bundle, reducing the distance between the dynamic and 

the stable microtubules, which are retained in the axonal shaft and the most proximal part of the 

growth cone (Fritsche et al., 1999). The tyrosination of tubulin was shown to be essential for the 

normal guidance by growth cones, as it is required for the regulation of the cytoskeleton organization 

at the growth cone (Marcos et al., 2009). Indeed, the dynamic properties of microtubules were found 

to be a prerequisite to growth cone guidance and subsequent axonal elongation (Tanaka et al., 1995). 

Our preceding results showed that 1 ng/mL TNF-α, but not the higher concentration, induced a 

stabilization of microtubules by an increase in the fluorescence of acetylated-tubulin vs. tyrosinated-

tubulin. However, the treatment with 10 ng/mL TNF-α, despite of no changes at the axonal elongation, 

may exert problems in growth cone guidance. Having as basis our results, cytokines may affect deeply 

the growth cone cytoskeleton, impairing the correct axonal guidance toward its partner, and possibly 

induce long-term modification in synapse formation. 

The extension of axonal and dendritic processes, upon guidance by growth cones, enhances 

the growth towards the correct partner, allowing the formation of the neuronal networks by synapse 

formation (Shen and Cowan, 2010). Our data demonstrate that pro-inflammatory cytokines trigger 

events in neurons at 1 DIV that not only modify the normal axonal guidance, by decreasing the growth 

cone areas, but also decrease the densities of dendritic spines and synapses at 21 DIV. In rodent 

models of experimental autoimmune encephalomyelitis, characterized by a chronic 

neuroinflammation, it is reported a disruption in the neuronal circuits with a reduction in synaptic 

density in hippocampus (Ziehn et al., 2010). Also, the induction of the pro-inflammatory pathways 

induced by LPS administrated intraperitoneally was shown to decrease the number of dendritic spines 

along the dendritic shaft (Kondo et al., 2011). Furthermore, a decreased density of dendritic spines 

exists in auditory cortex of schizophrenic patients, which can be correlated with the cognitive 

impairment observed in this disease (Sweet et al., 2009). Therefore, the effect of the inflammatory 

mediators on the synaptic compartments may result in brain dysfunction due to damage on neuronal 

networks. In fact, altered neuronal connectivity persists in the progeny upon maternal infection 

(Roumier et al., 2008). Additionally, several reports have associated modifications at the synaptic 

functionality, strength and plasticity upon a neuroinflammatory stimulus, which might result in cognitive 
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impairments. Moreover, morphological alterations of synapses result from synaptic plasticity and pro-

inflammatory cytokines have been addressed with contradictory and even opposing roles in some 

forms of synaptic plasticity, as LTP, which induces an expansion of dendritic spines and an increase of 

spine volume (Yamagata et al., 2009). Indeed, in what concerns to synaptic plasticity, IL-1β was 

shown to have both inhibitory and inducing effects on LTP (Bellinger et al., 1993; Schneider et al., 

1998; Vereker et al., 2000). The inhibitory effect of IL-1β (10 pg/ml) on LTP is accompanied by 

stimulation in stress-activated kinases activity, which, in turn, may attenuate the release of glutamate 

and, consequently, compromise LTP (Vereker et al., 2000). Interestingly, a study performed in an 

elderly population revealed that genetic variation in the IL-1β-converting enzyme gene, responsible for 

the formation of the active form of IL-1β, is not only related with a better performance in cognitive 

function, but also with lower levels of IL-1β production (Trompet et al., 2008). On the other hand, TNF-

α at 6-60 nM increases the synaptic strength in hippocampal neurons, by inducing the expression of 

AMPA glutamate receptors, therefore contributing to synaptic plasticity (Beattie et al., 2002). 

Nevertheless, a more recent report showed that TNF-α at 4.5 ng/ml inhibits LTP in hippocampal slices 

(Butler et al., 2004). Additionally, chronic neuroinflammation was related to impairments in LTP in rat 

hippocampus, which may lead to defects in spatial memory (Min et al., 2009). Hence, pro-

inflammatory cytokines may affect the dendritic spine and synapse densities at embryonic 

hippocampal neurons by affecting their ability to undergo synaptic plasticity, which may lead to 

detrimental neurological outcome. Indeed, chronic inflammation induces damaging effects on 

hippocampus by a disruption in CA3 region networks, decreasing the ability to process spatial 

information (Rosi et al., 2009). Furthermore, as dendritic spine density is directly related to the 

diffusion of intracellular chemical signals in hippocampus (Santamaria et al., 2011), the exposure to 

cytokines at 1 DIV may influence the movement of signaling molecules along the dendrite, thereby 

reducing dendritic spine density and affecting neuronal connectivity as previously reported.  

The strength of a synapse may be regulated through several aspects, as changes in 

postsynaptic receptor clustering (Turrigiano and Nelson, 2004). Therefore, the size of a dendritic spine 

may influence the strength of a synapse, since a more mature form, as the mushroom- or cup-shaped 

spine, can bear a larger PSD and, consequently, a larger synaptic transmission machinery, whereas a 

more immature form, as filopodia-like spines, are related with a lower synaptic strength (McKinney, 

2005). In other words, the size of a spine head is directly proportional to the strength of synapses, 

possibly by an increase in the number of post-synaptic receptors at the dendritic spine. Our results 

showed that IL-1β and TNF-α-treated neurons exhibited more immature spines, characterized by a 

higher ratio between the spine neck height and head width. Thereby, following neuroinflammation, the 

presence of more immature spines may result in synaptic strength reduction which may compromise 

cognitive function. In accordance, in some cases of mental retardation, as in Fragile-X Syndrome 

patients, and several cognitive disorders, as schizophrenia, longer and thinner dendritic spines occur 

along the dendritic shaft, resembling a more immature morphology (Irwin et al., 2001; Faludi and 

Mirnics, 2011).  

Collectively, our results demonstrate that an early exposure of immature embryonic 

hippocampal neurons to pro-inflammatory cytokines IL-1β and TNF-α induce modifications in the 
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normal development by affecting neuronal arborization, increasing microtubule stability in the axon, 

and by altering growth cone area and the dynamics of growth cone cytoskeleton. Cytokines also 

promote long-term effects altering the formation of synapses, by decreasing both dendritic spine and 

synapse densities, and delaying the maturation of dendritic spines. As most of these modifications 

were described in neurodevelopmental disorders, as schizophrenia, the present work points out a 

causal relationship between neuroinflammation in embryonic life and subsequent brain damage 

leading to neurological disabilities such as learning and memory deficits. 

  

 

Future Perspectives 

 

Our results point to a modification of cytoskeleton dynamics upon IL-1β and TNF-α treatment, 

hence it would be interesting to evaluate the effect of cytokines in the major regulators of cytoskeleton, 

i.e. small Rho GTPases. Indeed, Rho GTPases regulate several pathways involved in the extension of 

neuritic processes, therefore controlling the neuronal development (Hall and Lalli, 2010). This could be 

first addressed by evaluating alterations in the expression of these proteins using Real Time- PCR and 

the specific primers, and then by assessing the level of these proteins, namely the activated forms 

GTP-bound, using a Rho active Pull-down assay followed by Western Blot. Upon engagement of 

specific cell surface receptors, both cytokines can also trigger intracellular pathways, as the 

translocation of nuclear factor-kappaB (NF-κB) to the nucleus or the activation of mitogen-activated 

protein kinases (MAPK), which can culminate in the regulation of small Rho GTPases and ultimately 

their effectors (Temporin et al., 2008; Fernandes and Brites, 2009; Hall and Lalli, 2010). Therefore, the 

activation of these proteins could also be evaluated in order to elucidate the cascade of events that 

bridge cytokine cellular interaction with modifications of neuronal development. 

The axonal transport is intimately related to the establishment of the pre-synaptic machinery, 

by promoting the transport of proteins and/or molecules from the cell body to the axonal bouton which 

are necessary for a proper transmission of the synaptic impulse (Gendron and Petrucelli, 2009). So, it 

would also be interesting to perceive the role of pro-inflammatory cytokines in the axonal transport 

process, namely by assessing the expression (Western Blot) and localization (immunocytochemistry) 

of motor proteins dynein and kinesin. 

Glial cells are the principal source of inflammatory mediators in the CNS. Indeed, microglia 

and/or astrocytes upon stimulation, such as LPS, over-produce several pro-inflammatory cytokines 

and are then responsible for the levels of cytokines that we have used in our model upon brain injury. 

Thus, to corroborate our results it would be interesting to incubate hippocampal neurons with 

conditioned medium from previously activated glia and analyze whether the same effects that we have 

observed were maintained or even exacerbated. In addition, by using specific antibodies directed to 

either IL-1β or TNF-α we could certify the role of each cytokine in the neuronal arborization effects.  

Although the use of cell cultures give us the possibility to study in a simplified context the 

mechanism of action of each cytokine, the use of organotypic hippocampal slice cultures incubated 
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with pro-inflammatory cytokines will provide an in vivo approach and a more precise effect of 

neuroinflammation in the cerebral context. Moreover, incubation with inhibitors of TNF-α and IL-1β, as 

soluble TNF receptors and IL-1ra respectively, will give us novel cues to achieve a successful 

recovery upon neuroinflammation. These experimental procedures might unveil new possible targets 

to ameliorate the detrimental outcomes, as cognitive impairments, and the neurodevelopmental 

disorders, emerging after a neuroinflammatory episode in the embryonic life. 
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