

REDUCING THE NUMBER OF MEMBERSHIP
FUNCTIONS IN LINGUISTIC VARIABLES

Margarida Santos Mattos Marques Gomes

Dissertation presented at Universidade Nova de Lisboa, Faculdade de Ciências e

Tecnologia in fulfilment of the requirements for the Masters degree in Mathematics

and Applications, specialization in Actuarial Sciences, Statistics and Operations

Research

Supervisor: Paula Alexandra da Costa Amaral Jorge

Co-supervisor: Rita Almeida Ribeiro

Lisboa

2009

Acknowledgments

 I would like to thank Professor Rita Almeida Ribeiro for inviting me to work at

CA3/Uninova in the context of the MODI project and for accepting to co-supervise

this thesis. The work developed during this project was the basis of this thesis. Thank

you for introducing me to the fuzzy world.

 I want to express my gratitude to Professor Paula Amaral, for her excellent

guidance and important contribution to overcome some of the difficulties encountered

through this thesis.

 To all my family and friends, especially my friends at CA3, thank you for the

emotional support that gave me strength to finish the thesis.

Abstract

The purpose of this thesis was to develop algorithms to reduce the number of

membership functions in a fuzzy linguistic variable. Groups of similar membership

functions to be merged were found using clustering algorithms. By “summarizing” the

information given by a similar group of membership functions into a new membership

function we obtain a smaller set of membership functions representing the same

concept as the initial linguistic variable.

The complexity of clustering problems makes it difficult for exact methods to

solve them in practical time. Heuristic methods were therefore used to find good

quality solutions. A Scatter Search clustering algorithm was implemented in Matlab

and compared to a variation of the K-Means algorithm. Computational results on two

data sets are discussed.

A case study with linguistic variables belonging to a fuzzy inference system

automatically constructed from data collected by sensors while drilling in different

scenarios is also studied. With these systems already constructed, the task was to

reduce the number of membership functions in its linguistic variables without losing

performance. A hierarchical clustering algorithm relying on performance measures for

the inference system was implemented in Matlab. It was possible not only to simplify

the inference system by reducing the number of membership functions in each

linguistic variable but also to improve its performance.

Resumo

O objectivo desta tese era desenvolver algoritmos para reduzir o número de

funções de pertença numa variável linguística. Foram usados algoritmos de

agrupamento ou clustering para encontrar grupos de funções de pertença

semelhantes. Concentrando a informação dada por um grupo de funções de

pertença semelhantes numa nova função de pertença obtém-se um conjunto mais

reduzido de funções de pertença que representam o mesmo conceito que a variável

linguística original.

Dada a complexidade computacional dos problemas de agrupamento,

métodos exactos para a resolução de problemas de programação inteira apenas

conseguem encontrar uma solução óptima em tempo útil para pequenas instâncias.

Assim, foram usados métodos heurísticos para encontrar boas soluções. Foi

implementado em Matlab um algoritmo do tipo Scatter Search e este foi comparado

com uma variante do algoritmo K-Means. São apresentados resultados

computacionais para dois casos de estudo.

É também apresentado um caso de estudo em que as variáveis linguísticas

pertencem a um sistema de inferência previamente construído a partir de dados

recolhidos por sensores. O objectivo era reduzir o número de funções de pertença

das suas variáveis linguísticas sem comprometer o desempenho do sistema. Foi

implementado em Matlab um algoritmo de agrupamento hierárquico que tem em

conta medidas de desempenho do sistema de inferência. Para além de ter sido

possível simplificar o sistema, a redução do número de funções de pertença levou a

um aumento do desempenho do próprio sistema, através da remoção de alguma

redundância existente no sistema inicial.

 Table of Contents

 - 4 -

Table of Contents

Introduction... 10

Chapter 1. Preliminaries .. 14

1.1 Fuzzy Logic .. 14
1.2 Fuzzy Inference Systems ... 19
1.3 Representation of Membership Functions .. 23

1.3.1 Triangular Membership Functions ... 23
1.3.2 Trapezoidal Membership Functions ... 25
1.3.3 Gaussian Membership Functions .. 26

1.4 Proximity Measures between Membership Functions 27
1.5 Merging Membership Functions ... 30

1.5.1 Merging Trapezoidal Membership Functions ... 30
1.5.2 Merging Triangular Membership Functions ... 32
1.5.3 Merging Gaussian Membership Functions .. 32

1.6 Summary .. 33

Chapter 2. A Clustering Problem Approach ... 35

2.1 The Clustering Problem .. 35
2.2 State of the Art ... 36

2.2.1 Hierarchical Methods ... 37
2.2.2 Classical Partition Clustering Methods .. 41
2.2.3 Graph Based Methods ... 43
2.2.4 Metaheuristics .. 45
2.2.5 Other Methods ... 48

2.3 Formulations in Integer Programming .. 49
2.3.1 A Binary Linear Programming Formulation - I .. 49
2.3.2 A Binary Linear Programming Formulation - II 51
2.3.3 A Formulation using precedence ... 53
2.3.4 Quadratic Formulation ... 55

2.4 Summary .. 56

Chapter 3. Exact Methods ... 57

3.1 Branch-and-Bound ... 57
3.2 Branch-and-Cut .. 59
3.3 Branch-and-Price ... 60
3.4 Computational Results ... 60
3.5 Summary .. 62

Chapter 4. Heuristic Methods Based on Local Search .. 63

4.1 A heuristic approach: K-means ++ ... 64
4.1.1 Initialization .. 64
4.1.2 Iterative Procedure .. 65
4.1.3 Choosing the number of clusters ... 66

4.2 Scatter Search ... 67
4.2.1 Fitness Function .. 69
4.2.2 Diversification Generation Method ... 69

 Table of Contents

 - 5 -

4.2.3 Improvement Method ... 72
4.2.4 Reference Set Update Method .. 72
4.2.5 Subset Generation Method .. 73
4.2.6 Solution Combination Method .. 74
4.2.7 The Final Algorithm .. 74

4.3 Computational Results ... 75
4.3.1 Wisconsin Diagnostic Breast Cancer Data Set 75
4.3.2 Credit Approval Data Set ... 103

4.4 Summary .. 121

Chapter 5. Case Study: a Fuzzy Inference System ... 122

5.1 Overview of the case study: MODI ... 122
5.2 Heuristics ... 127
5.3 Computational Results ... 134
5.4 Summary .. 144

Chapter 6. Conclusions and Future Work.. 145

Chapter 7. References .. 147

APPENDIX ... 157

 List of Figures

 - 6 -

List of Figures

Figure 1.1: Concepts Short, Medium and Tall represented by Crisp Sets 15

Figure 1.2: Concepts Short, Medium and Tall represented by Fuzzy Sets 15

Figure 1.3: Fuzzy min .. 17

Figure 1.4: Fuzzy max ... 18

Figure 1.5: Standard fuzzy complement .. 19

Figure 1.6: Precision vs. Significance in the Real World [Mathworks] 19

Figure 1.7: Example of fuzzy if-then rule [Mathworks] ... 21

Figure 1.8: Example of fuzzy inference system [Mathworks] ... 22

Figure 1.9: Triangular membership function)8,3,1(),,(cba .. 24

Figure 1.10: Symmetrical trapezoidal membership function  )8,6,3,1(,,, dcba 26

Figure 1.11: Gaussian membership function    1,5,  ... 27

Figure 1.12: Merging trapezoidal membership functions)6,4,2,1(A and)7,5,3,2(B

into)7,5.4,5.2,1(C . .. 31

Figure 1.13: Merging Gaussian membership functions    2.0,5, 11  and

   4.0,6, 22  into    3464.0,667.5,  .. 33

Figure 2.1: Diagram of Clustering Algorithms [Gan, Ma et al. 2007] 36

Figure 2.2: Dendogram ... 37

Figure 2.3: Example of single-link method using a MST: (a) distance matrix; (b)
weighted graph; (c) MST; (d) Dendogram ... 45

Figure 2.4: Example of a Linguistic Variable with three fuzzy sets 53

Figure 4.1: Scatter Search Algorithm ... 68

Figure 4.2: Linguistic Variable Radius .. 78

Figure 4.3: Linguistic Variable Texture ... 78

Figure 4.4: Linguistic Variable Perimeter ... 79

Figure 4.5: Linguistic Variable Area .. 79

Figure 4.6: Linguistic Variable Smoothness .. 80

Figure 4.7: Linguistic Variable Compactness .. 80

Figure 4.8: Linguistic Variable Concativity ... 81

Figure 4.9: Linguistic Variable Concave Points .. 81

Figure 4.10: Linguistic Variable Symmetry .. 82

Figure 4.11: Linguistic Variable Fractal Dimension .. 82

Figure 4.12: Evaluation measure I using K-means++ for 5681  K , linguistic

variable Radius ... 83

Figure 4.13: Evaluation measure I using K-means++ for 5001  K (zoom in of

previous plot) 5681  K , linguistic variable Radius ... 84

Figure 4.14: Evaluation measure I using K-means++ for 5681  K , linguistic

variable Texture ... 84

Figure 4.15: Evaluation measure I using K-means++ for 5001  K (zoom in of

previous plot), linguistic variable Texture ... 85

Figure 4.16: Influence of  in fitness function I standard deviation 86

Figure 4.17: Influence of  in best results obtained for fitness function I 87

Figure 4.18: Influence of  in mean results for fitness function I 87

Figure 4.19: Influence of  in mean results for fitness function I 88

 List of Figures

 - 7 -

Figure 4.20: Influence of 1b in mean results for fitness function I 89

Figure 4.21: Influence of 1b in execution time ... 89

Figure 4.22: Influence of Improvement Method in mean ... 90

Figure 4.23: Influence of Improvement Method in execution time 91

Figure 4.24: Best Results for Linguistic Variable Radius .. 93

Figure 4.25: Best Results for Linguistic Variable Texture ... 94

Figure 4.26: Best Results for Linguistic Variable Perimeter ... 95

Figure 4.27: Best Results for Linguistic Variable Area .. 96

Figure 4.28: Best Results for Linguistic Variable Smoothness....................................... 97

Figure 4.29: Best Results for Linguistic Variable Compactness 98

Figure 4.30: Best Results for Linguistic Variable Concativity ... 99

Figure 4.31: Best Results for Linguistic Variable Concave Points 100

Figure 4.32: Best Results for Linguistic Variable Symmetry ... 101

Figure 4.33: Best Results for Linguistic Variable Fractal Dimension 102

Figure 4.34: Linguistic Variable A2 ... 104

Figure 4.35: Linguistic Variable A3 ... 105

Figure 4.36: Linguistic Variable A8 ... 105

Figure 4.37: Linguistic Variable A11 ... 106

Figure 4.38: Linguistic Variable A14 ... 106

Figure 4.39: Linguistic Variable A15 ... 107

Figure 4.40: Evaluation measure I using K-means++ for 6651  K , linguistic

variable A2 .. 108

Figure 4.41: Evaluation measure I using K-means++ for 1501  K (zoom in of

previous plot), linguistic variable A2 ... 108

Figure 4.42: Evaluation measure I using K-means++ for 6651  K , linguistic

variable A3 .. 109

Figure 4.43: Evaluation measure I using K-means++ for 1501  K (zoom in of

previous plot), linguistic variable A3 ... 109

Figure 4.44: Influence of  in fitness function I standard deviation 110

Figure 4.45: Influence of  in best results obtained for fitness function I 111

Figure 4.46: Influence of  in mean results for fitness function I 111

Figure 4.47: Influence of  in mean results for fitness function I 112

Figure 4.48: Influence of 1b in mean results for fitness function I 112

Figure 4.49: Influence of 1b in execution time ... 113

Figure 4.50: Influence of Improvement Method in mean ... 113

Figure 4.51: Influence of Improvement Method in execution time 114

Figure 4.52: Best Results for Linguistic Variable A2 .. 115

Figure 4.53: Best Results for Linguistic Variable A3 .. 116

Figure 4.54: Best Results for Linguistic Variable A8 .. 117

Figure 4.55: Best Results for Linguistic Variable A11 .. 118

Figure 4.56: Best Results for Linguistic Variable A14 .. 119

Figure 4.57: Best Results for Linguistic Variable A15 .. 120

Figure 5.1: MODI drill station ... 123

Figure 5.2: ExoMars Rover (courtesy of ESA [ESA 2008]) ... 123

Figure 5.3: Example of linguistic variable – Rotational Voltage 126

Figure 5.4: Original algorithm [Setnes, Babuska et al. 1998] 128

Figure 5.5: Example of model error .. 129

Figure 5.6: Adapted algorithm ... 130

Figure 5.7: a) Iteration vs Model Error; b) L-method .. 131

 List of Figures

 - 8 -

Figure 5.8: Final algorithm – bestP ... 133

Figure 5.9: Original input linguistic variables (except set points) 135

Figure 5.10: Evolution of performance measure F during the algorithm – Rotation
Current ... 136

Figure 5.11: Evolution of performance measure F during the algorithm – Rotation
Voltage ... 137

Figure 5.12: Evolution of performance measure F during the algorithm – Rotation
Speed ... 137

Figure 5.13: Evolution of performance measure F during the algorithm – Thrust 138

Figure 5.14: Evolution of performance measure F during the algorithm – Torque ... 138

Figure 5.15: Evolution of performance measure F during the algorithm –
Translational Voltage ... 139

Figure 5.16: Evolution of performance measure F during the algorithm –
Translational Current ... 139

Figure 5.17: Evolution of performance measure F during the algorithm –
Translational Speed ... 140

Figure 5.18: Linguistic Variable Translational Voltage before (a) and after using the
adapted (b) and BestP (c) algorithms ... 142

Figure 5.19: Input linguistic variables after optimization with BestP (except set points)
 .. 143

 List of Tables

 - 9 -

List of Tables

Table 3.1: Computational Results ... 61

Table 4.1: K-Means++ vs Scatter Search (best results) .. 92

Table 4.2: K-Means++ vs Scatter Search (best results) .. 115

Table 5.1: MODI Confusion Matrix .. 126

Table 5.2: Number of membership functions before and after optimization 140

Table 5.3: Comparison of inference systems .. 141

 Introduction

 - 10 -

Introduction

 In human reasoning many concepts are not crisp in the sense of being

completely true or false, instead they can be interpreted in a more qualitative way. In

everyday life we use concepts like tall, small, fast, slow, good, bad … that are difficult

to translate numerically. Classical logic and inference have been insufficient to deal

with these apparently vague concepts. Although humans reason with these concepts

in a natural way on a daily basis, our search for scientific knowledge has lead us to

address the problem of representing these concepts in a more systematic and

precise way. As Engelbrecht [Engelbrecht 2002] states, “In a sense, fuzzy sets and

logic allow the modelling of common sense”.

 Since 1965, when Zadeh first formalized the concept of fuzzy set [Zadeh

1965], the field of fuzzy logic and approximate reasoning has attracted the interest of

the scientific community. Fuzzy set theory and fuzzy logic concepts have been

applied in almost all fields, from decision making to engineering [Costa, Gloria et al.

1997; Ross 2004], from medicine [Adlassnig 1986] to pattern recognition and

clustering [Nakashima, Ishibuchi et al. 1998].

 In engineering, fuzzy logic has been used, for instance, in monitoring and

classification applications [Isermann 1998; Ribeiro 2006]. The main goal when

constructing a fuzzy monitoring system is to develop a fuzzy inference system (FIS)

[Lee 1990a; Lee 1990b] to monitor certain variables and warn decisors (or an

automatic system) when variables behaviour is not correct, so that they can

intervene. For the development of monitoring systems, in general, a formal and

precise mathematical understanding of the underlying process is usually needed.

These mathematical models may become too complex to formalize or to implement,

reducing the advantage of an automatic and independent system over a human

expert. Once again, fuzzy knowledge can be used to overcome this problem,

modelling complex systems by mimicking human thinking.

 In decision making, for instance, the advantages of using fuzzy logic is even

more evident. In many cases the processes behind a decision are too complex to be

defined through a precise classical mathematical model and the underlying

 Introduction

 - 11 -

preferences and choices of decision makers have many uncertainties and are better

represented through a fuzzy number. Although crisp decision models do exist, more

and more papers and books propose the use of fuzzy sets and fuzzy models to deal

with the underlying uncertainty [Anoop Kumar and Moskowitz 1991; Lai and Hwang

1994; Ribeiro 1996; Ross 2004].

 The main idea when choosing a fuzzy model over a classical one is to obtain

models that are less complex and easy to interpret. The trade off between

interpretability and precision must be studied for each application. To achieve such

interpretability, it is desirable that the linguistic variables in a fuzzy model [Zadeh

1975] are as intuitive as possible. This in addition to a search for computationally

efficient models motivated the research of this master thesis. When linguistic

variables are constructed directly from expert knowledge its interpretability is usually

clearer. This is not the case when an automatic procedure is used to create the

membership functions of a certain linguistic variable or when membership functions

represent a single sample from a large data base. As an example consider a fuzzy

set used to represent an agent preference between two alternatives and suppose the

number of agents involved in the process to be modelled is considerably large.

 The purpose of this thesis is to develop algorithms to reduce the number of

membership functions in a linguistic variable. The problem of reducing the amount of

data to be analysed, while maintaining as most information as possible from the

original data, is not exclusive from fuzzy domains. Large crisp data sets often have to

be clustered to become treatable [Hartigan 1975; Murtagh 1983; Everitt, Landau et

al. 2001; Gan, Ma et al. 2007]. Clustering data corresponds to finding natural groups

of data that represent similar objects. The same approach can be used to reduce the

number of membership functions in linguistic variables. We start by identifying

clusters of similar membership functions. If each cluster of membership functions can

be “summarized” into a new membership function, we obtain a new and smaller set

of membership functions that approximately represents the same concept as the

initial linguistic variable. This will be the basic approach that will be developed during

this thesis. The problem of reducing the number of membership functions in linguistic

variables will be formulated as a clustering problem. Resulting clusters of

membership functions will be merged in a way of “summarizing” the information

contained in the original membership functions.

 Introduction

 - 12 -

 In Chapter 1 theoretical background that is needed to understand following

development is presented. An introduction to fuzzy logic and fuzzy inference systems

is described. Similarity measures and merging methods that will be used to reduce

the number of membership functions in linguistic variables are also introduced.

Since, as stated before, the problem of reducing the number of membership

functions in a linguistic variable can be stated as a clustering problem, Chapter 2 will

present different approaches to the clustering problem in statistics and optimization

and the state of the art. Also, some possible formulations to the clustering problem

will be discussed.

The complexity of clustering problems makes it difficult for exact methods to

solve them in practical time. Exact methods can only find an optimal solution in a

reasonable amount of time for very small data sets, especially if the number of

clusters is unknown. However, before deciding for heuristic methods, it is important to

use exact methods to better understand the complexity of the problem at hands.

Since it was never the purpose of this thesis to solve these problems through exact

methods, Chapter 3 gives only a brief introduction to some of the exact methods

used for combinatorial and integer programming.

When finding optimal solutions through exact procedures is too time

consuming, it is still usually possible to find good quality solutions in a reasonable

amount of time, using heuristic methods that take advantage of the problem structure

to achieve good solutions (not necessarily optimal) in less computational time. Both a

heuristic and a metaheuristic to solve the automatic clustering problem were

implemented in Matlab. Chapter 4 describes these algorithms and presents

computational results on two case studies. In both case studies several linguistic

variables are pruned. These linguistic variables could later be used in a fuzzy

inference system or any other fuzzy model. The model would be constructed taking

into account the already clustered membership functions instead of the original ones.

Chapter 5 introduces another case study. This case study has different

characteristics from those used in Chapter 5. In this case study linguistic variables

belong to an already existing fuzzy inference system. Instead of using the algorithms

from Chapter 4, a heuristic relying on measures of performance of the inference

system is used. The work presented in this chapter was developed within the scope

 Introduction

 - 13 -

of project “MODI – Simulation of a Knowledge Enabled Monitoring and Diagnosis

Tool for ExoMars Pasteur Payloads”[CA3 2006; Jameaux, Vitulli et al. 2006; Santos,

Fonseca et al. 2006], a CA3 – UNINOVA project for the European Space Agency

[ESA] Aurora programme [ESA 2008]. In this project two inference systems were

constructed: one for monitoring exploratory drilling processes and another capable of

detecting the type of terrain being drilled. These systems were automatically

constructed using data collected from sensors while drilling in different scenarios.

With these systems already constructed, the task was to reduce the number of

membership functions in its linguistic variables without losing performance. This

project was on the origin of the development of the ideas presented in this thesis.

The contribution to this project can also be found in [Gomes, Santos et al. 2008]. This

paper summarizes the main results obtained when reducing the number of

membership functions of MODI’s linguistic variables and was presented at the Eight

International Conference on Application of Fuzzy Systems and Soft Computing

(ICAFS-2008) in September 2008 in Helsinki, Finland.

Finally, Chapter 6 presents the conclusions of this thesis and some guidelines

for future work.

 Chapter 1. Preliminaries

 - 14 -

Chapter 1. Preliminaries

In this Chapter we present the background on fuzzy set theory necessary to

understand the results presented later.

Sections 1.1 and 1.2 introduce the main concepts of fuzzy logic and fuzzy

inference systems. Formal definitions of the concepts of linguistic variable, fuzzy set,

membership function and the most used operations on fuzzy sets are given. A

description of the structure of a fuzzy inference system and of its underlying modules

is also presented.

In section 1.3, analytical and pR representations of some of the most common

types of membership functions - triangular, trapezoidal and Gaussian membership

functions – are introduced.

The notion of similarity or proximity between membership functions will be the

main idea underneath the algorithms for reducing the number of membership

functions in linguistic variables. Section 1.4 describes these concepts and presents

the measures of proximity of fuzzy sets that will be used. After identifying the most

similar membership functions, these will be merged to give rise to a new set of

membership functions simultaneously as small and as representative of the original

linguistic variable as possible. Section 1.5 presents some membership functions

merging methods.

1.1 Fuzzy Logic

In crisp logic, if we want to categorize a group of individuals as tall, medium or

small, we have to distribute those individuals into two disjoint sets, as in Figure 1.1,

by a crisp rule. For instance, if the height of an individual is above 1.75m, the

individual is tall, if the height is bellow 1.60m, the individual is short and otherwise the

individual is medium.

 Chapter 1. Preliminaries

 - 15 -

Figure 1.1: Concepts Short, Medium and Tall represented by Crisp Sets

 This does not accurately represent human reasoning. In our mind, the frontier

between these sets is not as well defined as in Figure 1.1. These concepts are better

represented by fuzzy sets [Zadeh 1965], as in Figure 1.2. This representation allows

for an individual to be considered simultaneously short and medium or medium and

tall, with different degrees of membership. The definition of fuzzy set is given bellow.

Figure 1.2: Concepts Short, Medium and Tall represented by Fuzzy Sets

Definition 1.1 [Zimmermann 1990] - If X is a collection of objects denoted

generically by x then a fuzzy set A
~

 in X is a set of ordered pairs:

   XxxxA A  :)(,
~

 (1.1)

where)(~ x
A

 is called the membership function or grade of membership of x in A
~

which maps X to the membership space M . The range of the membership function is

B

A C

D

Short

G
E

F

Tall Medium

 Chapter 1. Preliminaries

 - 16 -

a subset of nonnegative real numbers whose supremum is finite. Usually M is the

real interval  1,0 .

 ♦

The representation of some common types of membership functions will be

further presented in the next section.

 Zadeh [Zadeh 1975] defines a linguistic variable as a quintuple

),,),(,(MGUxTx in which x is the name of the variable;)(xT is the term set of x , that

is, the collection of its linguistic values; U is a universe of discourse; G is a syntactic

rule which generates the terms in)(xT ; and M is a semantic rule which associates

with each linguistic value)(xT its meaning,)(XM , where)(XM denotes a subset of

U .

 The fuzzy sets in Figure 1.2 represent a linguistic variable Height.

 T-norms and t-conorms generalize the idea of intersection and union of sets to

fuzzy set theory.

Definition 1.2 [Klir and Yuan 1995] – A t-norm is a function      1,01,01,0: t

satisfying the following properties:

Boundary Condition: aat )1,((1.2)

Monotonicity: cbcatbat  if),(),((1.3)

Commutativity:),(),(abtbat  (1.4)

Associativity:)),,(()),(,(cbattcbtat  (1.5)

 ♦

Definition 1.3 [Klir and Yuan 1995] – A t-conorm or s-norm is a function

     1,01,01,0: u satisfying the following conditions:

Boundary Condition: aau )0,((1.6)

 Chapter 1. Preliminaries

 - 17 -

Monotonicity: cbcaubau  if),(),((1.7)

Commutativity:),(),(abubau  (1.8)

Associativity:)),,(()),(,(cbauucbuau  (1.9)

 ♦

The fuzzy minimum and the fuzzy maximum, defined bellow, are the most

used t-norms and t-conorms. Examples of these operators can be found in Figure 1.3

and Figure 1.4, respectively.

Definition 1.4 [Klir and Yuan 1995] – Given two fuzzy sets A and B , their standard

intersection, BA , and standard union, BA , also known as fuzzy minimum and

fuzzy maximum, are defined for all Xx by the equations:

  )(),(min))((xBxAxBA  (1.10)

  )(),(max))((xBxAxBA  (1.11)

 ♦

Figure 1.3: Fuzzy min

 Chapter 1. Preliminaries

 - 18 -

Figure 1.4: Fuzzy max

 To generalize the concept of negation, complement operators are used. The

membership function of a fuzzy set A represents, for each x in its universe of

discourse, the degree to which x belongs to A . The membership functions of the

complement of A represents the degree to which x does not belong to A .

Definition 1.5 [Klir and Yuan 1995] – A complement of a fuzzy set A is specified by

a function    1,01,0: c satisfying the following properties [Klir and Yuan 1995]:

Boundary Conditions: 0)1(;1)0( cc (1.12)

Monotonicity: babcac  if)()((1.13)

 ♦

 The standard complement is defined bellow and exemplified in Figure 1.5.

Definition 1.6 [Klir and Yuan 1995] - The standard complement, A , of a fuzzy set A

with respect to the universal set X is defined for all Xx by the equation:

)(1)(xAxA  (1.14)

 ♦

 Chapter 1. Preliminaries

 - 19 -

Figure 1.5: Standard fuzzy complement

1.2 Fuzzy Inference Systems

 A fuzzy inference system is composed of fuzzy if-then rules relating different

fuzzy sets, which are stored in a knowledge-base, and an inference engine that

performs approximate reasoning [Ross 2004]. As mentioned before, one of the main

advantages of inference systems [Ross 2004] is the ability to build models that mimic

human reasoning and are relatively simple and easy to interpret. These models might

be less accurate than classical and more formal ones but when dealing with real

world applications interpretability, significance and computational efficiency can

overcome some lack of accuracy, as depicted in Figure 1.6, taken from [Mathworks].

Figure 1.6: Precision vs. Significance in the Real World [Mathworks]

 Chapter 1. Preliminaries

 - 20 -

There are two main kinds of fuzzy inference systems, Mamdani and Sugeno

[Lee 1990a; Lee 1990b]. The knowledge base of a Mamdani inference system

contains rules where both the antecedents and the consequents are fuzzy sets.

Sugeno inference systems, on the other hand, use rules with fuzzy antecedents and

crisp consequents. In this thesis only Mamdani inference systems will be used but

the ideas and algorithms developed can also be used in Sugeno inference systems.

Fuzzy if-then rules used in Mamdani inference systems are expressions of the

type [Ross 2004]:

“if x is A then y is B ”

where A and B are fuzzy sets, “ x is A ” is called the antecedent and “ y is B ” is

called the consequent of the rule.

The antecedent part of the rule can have multiple parts connected by fuzzy

operators, typically t-norms and t-conorms giving meaning to the linguistic

expressions “and” and “or” respectively. The consequent can have multiple parts

representing distinct conclusions that can be inferred from the given antecedent. The

firing level or firing strength of the rule is the degree to which the antecedent part of

the rule is satisfied.

To determine the outcome of fuzzy if-then rules given the crisp inputs, we need

to fuzzify the inputs, apply the fuzzy operators that connect the multiple parts of the

antecedent (if needed) to find the firing level of the rule and use an implication

operator to apply the firing level to the consequent part (or parts) [Lee 1990a; Lee

1990b]. The output of the rule is a fuzzy set (or fuzzy sets). These concepts are

better explained through an example. The following example in Figure 1.7 is taken

from Matlab Fuzzy Logic Toolbox documentation [Mathworks].

 Chapter 1. Preliminaries

 - 21 -

Figure 1.7: Example of fuzzy if-then rule [Mathworks]

Given crisps values for the service and food quality the correspondent degrees

of membership in the antecedent are computed and combined through the OR

operator to give the rule firing level. For instance, if we consider service=3 and

food=8, the degrees of membership in excellent (for service) and delicious (for food)

are 0 and 0.7, respectively, and the firing level of the rule is given by   7.07.0,0max  .

The implication operator is then applied taking into account this firing level to obtain

the fuzzy set representing the output of the rule.

 Chapter 1. Preliminaries

 - 22 -

Figure 1.8: Example of fuzzy inference system [Mathworks]

For each rule in the knowledge base the previously described steps are

performed and the resulting fuzzy sets are aggregated through an appropriate

operator (usually standard fuzzy maximum) to obtain a new fuzzy set representing

the output of the system. This fuzzy set is then defuzzified to obtain a crisp value for

the inference. Several defuzzification methods can be used, e.g. the centroid [Lee

1990a; Lee 1990b]. Continuing with the tipping example from Fuzzy Logic Toolbox

documentation [Mathworks], Figure 1.8 shows a possible inference system with three

rules and the necessary steps to determine the tip to be given crisp values for the

service and food quality. In Figure 1.8, the three first fuzzy sets on the right represent

the output of each rule after implication, using the same input values as before, i.e.,

 Chapter 1. Preliminaries

 - 23 -

service=3 and food=8. Aggregating these three fuzzy sets, the fuzzy set in the

bottom right of Figure 1.8 is obtained. In this example the centre of area or centroid

defuzzification method, defined by (1.15), is used and a tip of 16.7% is

recommended.

Definition 1.7 [Klir and Yuan 1995] - Consider a fuzzy set A with membership

function  1,0: XA . The centre of area or centroid defuzzification method returns

the value)(AdCA within X for which the area underneath the graph of membership

function A is divided into two equal subareas. This value is given by the following

expression:

dxx

dxxx

Ad

X

A

X

A

CA

)(

)(

)(



 






 (1.15)

 ♦

1.3 Representation of Membership Functions

Some types of membership functions can be mapped to pR , where p is the

number of parameters of that family of membership functions and each dimension

represents a different parameter. In this section both analytical and pR

representations of some of the most common types of membership functions are

presented.

1.3.1 Triangular Membership Functions

Definition 1.8 - A triangular membership function is given by the analytical

expression:

 Chapter 1. Preliminaries

 - 24 -

  



























otherwise,0

,

,

,,, cxb
bc

xc

bxa
ab

ax

xcba (1.16)

where ba, and c correspond to the x-axis coordinates of the vertices of the triangle,

as in Figure 1.9.

 ♦

There are several possibilities for mapping these membership functions into

3,2, pR p . For instance, for 3p we can consider a vector with the x-axis

coordinates of the vertices of the triangle,  cba ,, , or a vector  RLb  ,, where

abL  and bcR  represent its left and right spreads, respectively. This way

we define a mapping between the family of triangular membership functions and 3R .

If we only consider symmetrical membership functions, i.e., if   RL , we can use

a pair  ,b to represent a membership function of this family. In this way the

mapping can be done in 2R .

Figure 1.9: Triangular membership function)8,3,1(),,(cba

 Chapter 1. Preliminaries

 - 25 -

1.3.2 Trapezoidal Membership Functions

Definition 1.9 - A trapezoidal membership function is given by the analytical

expression:

  





























otherwise,0

,

,

,1

,,,,

dxc
cd

xd

bxa
ab

ax

cxb

xdcba (1.17)

where cba ,, and d correspond to the x-axis coordinates of the vertices of the

trapezoid, as in Figure 1.10.

 ♦

Similarly to the case of triangular membership functions, we can now map the

family of trapezoidal membership functions to 4R and 3R (symmetric trapezoidal). We

can consider a vector with the x-axis coordinates of the vertices of the trapezoidal,

 dcba ,,, , to map this family of membership functions to 4R and if we only consider

symmetrical membership functions, i.e., if
22

cbda 



, we can use a vector   ,,m ,

where
22

cbda
m





 , bc  and ad  , to represent a membership function

of this family.

 Chapter 1. Preliminaries

 - 26 -

Figure 1.10: Symmetrical trapezoidal membership function  )8,6,3,1(,,, dcba

1.3.3 Gaussian Membership Functions

Definition 1.10 – A Gaussian membership function is given by the analytical

expression:

 2  xe (1.18)

where  and  are the mean and spread of the Gaussian function.

 ♦

The mapping of this family of membership functions to 2R is straightforward

and is given by the pair  , .

 Chapter 1. Preliminaries

 - 27 -

Figure 1.11: Gaussian membership function    1,5, 

1.4 Proximity Measures between Membership Functions

As stated in the introduction of this Chapter, the notion of similarity or proximity

between membership functions will be the main idea underneath the algorithms for

reducing the number of membership functions in linguistic variables. When faced with

the problem of reducing the number of terms in linguistic variables, we intuitively

think of joining or merging membership functions that are somehow similar. For crisp

data sets, a similar idea is the foundation of cluster analysis. Clusters are groups of

objects that are similar according to some proximity measure [Hartigan 1975]. The

problem presented in this thesis can then be approached as a clustering problem

where the objects are membership functions and suitable proximity measures are

used.

 In general, similarity measures between membership functions or fuzzy sets

can be classified as geometric or set-theoretical [Miyamoto 1990]. Geometric

measures are based on distance-measures and represent proximity between fuzzy

sets. Set-theoretical similarity measures, based on operations such as union and

intersection, translate the degree to which two fuzzy sets are equal and are not

influenced by scaling and ordering of the domain.

 Chapter 1. Preliminaries

 - 28 -

 One of the most used set-theoretical similarity measures, the fuzzy Jaccard

index or Jaccard similarity measure [Miyamoto 1990], is defined by:

  
BA

BA
BASJ




, (1.19)

where  U C dxxC)(||  and),( is a pair of fuzzy t-norms   and t-conorms)( .

 An overview of some similarity measures for comparing fuzzy sets can be

found in [Chen, Yeh et al. 1995]. The Jaccard similarity measure will be used in the

algorithms presented in Chapter 5, but other similarity measures could also be used.

For instance, since in Chapter 5 only trapezoidal membership functions are used, the

following two similarity measures used for comparing trapezoidal fuzzy sets could be

considered.

The first one can be calculated by the following expression [Chen 1996]:

4

||

1),(

4

1






 i

ii

C

ba

BAS (1.20)

where),,,(4321 aaaaA  and),,,(4321 bbbbB  .

The second one was proposed by Shi-Jay Chen and Shyi-Ming Chen [Chen

and Chen 2008] and is given by:

),max(

),min(
|)|1(

4

||

1),(
),(

4

1




 























BA

BASSB

BA
i

ii

SCGM
yy

yy
xx

ba

BAS BA (1.21)

where










0 if,0

0 if,1
),(

BA

BA

BA
SS

SS
SSB (1.22)

 14 aaSA  (1.23)

 14 bbSB  (1.24)

 Chapter 1. Preliminaries

 - 29 -

and),(

AA yx and),(

BB yx are the centre of gravity points of A and B , respectively.

These points can be easily determined by the simple centre of gravity method

(SCGM) [Chen and Chen 2008], using the following expressions:
























41

41
14

23

,
2

1

,
6

2

aaif

aaif
aa

aa

yA (1.25)

2

)1)(()(1423



 
 AA

A

yaaaay
x (1.26)

 In the previous section it was shown how the most used families of

membership functions can be mapped to pR . By mapping a membership function to

pR the problem to be addressed becomes equivalent to finding clusters given a data

set in pR , provided that we are considering linguistic variables where all membership

functions belong to the same family, which is usually the case. Therefore, the

proximity measures used for comparing objects in pR can also be used to compare

membership functions of the same family. For instance, the Euclidean Distance given

by (1.27) can be used to compare two membership functions of the same family,

 
paaA ,,1  and  pbbB ,,1  , represented in pR . This will be done in the

algorithms presented in Chapter 4 where the problem of reducing the number of

membership functions in linguistic variables will be approached by clustering the

vectors of parameters representing the membership functions.

    



p

i

ii baBAD
1

2
, (1.27)

 Chapter 1. Preliminaries

 - 30 -

1.5 Merging Membership Functions

In this section we discuss some methods on how to merge membership

functions to reduce the number of membership functions in a linguistic variable, by

using the concept of similarity. This section is not intended as an overview of the

possible methods for merging membership functions since these methods could vary

according to several factors: the type of membership functions being merged, the

algorithms in use, the context of the problem, among others.

Membership functions of the types referred in section 1.2 will be considered,

since these are the most used ones. Also, throughout this thesis, it will be assumed

that all membership functions of a certain linguistic variable to be pruned share the

same type (either triangular or trapezoidal) and that the merging of two membership

functions should yield a new membership function of the same type as the original

ones. This simplification does not change the nature of the problem and the

algorithms that will be use to solve it are as general as possible. If one of these

conditions fails we only have to redefine the way two membership functions are

merged but the algorithms still apply.

1.5.1 Merging Trapezoidal Membership Functions

Given two trapezoidal membership functions),,,(4321 aaaaA  and

),,,(4321 bbbbB  , merging them using the method proposed in [Setnes, Babuska et al.

1998] gives a new trapezoidal membership function),,,(4321 ccccC  where:

  111 ,min bac  (1.28)

   22222 1 bac   (1.29)

   33333 1 bac   (1.30)

  444 ,max bac  (1.31)

 Chapter 1. Preliminaries

 - 31 -

 The parameters 2 and 3 belong to the interval  1,0 . These parameters allow

weighting the importance of A and B in the final membership C . In subsequent

chapters this operator will be used with 5.032   . See for instance Figure 1.12,

which shows the trapezoidal membership functions)6,4,2,1(A and)7,5,3,2(B

combined into)7,5.4,5.2,1(C . Notice that (1.28) and (1.31) guarantee that the same

“coverage” as A and B , i.e., points with positive membership in either A or B will

still have positive membership in C . This might be crucial for some applications.

Figure 1.12: Merging trapezoidal membership functions)6,4,2,1(A and)7,5,3,2(B

into)7,5.4,5.2,1(C .

In the previous merging method only two membership functions are merged at

a time. When merging more than two membership functions at a time, a

generalization of this method was used. Given n trapezoidal membership functions

  nidcbaT iiii

i ,,1,,,,  , these will be simultaneously merged into a membership

function   nidcbaT ,,1,,,,  where:

 i
ni
aa

,,1
min


 (1.32)

 



n

i

ib
n

b
1

1
 (1.33)

 Chapter 1. Preliminaries

 - 32 -

 



n

i

ic
n

c
1

1
 (1.34)

 i
ni
dd

,,1
max


 (1.35)

1.5.2 Merging Triangular Membership Functions

It is straightforward to adapt the previous methodology to the case of triangular

membership functions. Considering that a triangular membership function is a

trapezoidal membership function with ii cb  Given n triangular membership

functions   nidbaS iii

i ,,1,,,  , these will be simultaneously merged into a

membership function   nidbaS ,,1,,,  where:

 i
ni
aa

,,1
min


 (1.36)

 



n

i

ib
n

b
1

1
 (1.37)

 i
ni
dd

,,1
max


 (1.38)

1.5.3 Merging Gaussian Membership Functions

In [Song, Marks et al. 1993] the fusion of two Gaussian membership functions

with parameters  11, and  22 , is a Gaussian membership function with

parameters  , defined by the following equations. See for instance Figure 1.13.

21

2211









 (1.39)

 Chapter 1. Preliminaries

 - 33 -

21

3

2

3

12









 (1.40)

Figure 1.13: Merging Gaussian membership functions    2.0,5, 11  and

   4.0,6, 22  into    3464.0,667.5, 

 We can extend this method by defining the merge of n Gaussian membership

functions with parameters   niii ,,1,,  as by the pair  , , where:








n

i

i

n

i

ii

1

1





 (1.41)








n

i

i

n

i

i

1

1

3

2





 (1.42)

1.6 Summary

In this Chapter the concepts of fuzzy set theory necessary to understand the

work presented in this thesis were introduced. The concepts in sections 1.1 and 1.2

 Chapter 1. Preliminaries

 - 34 -

are the basic concepts of fuzzy logic and inference systems. Analytical and pR

representations of three of the most used families of membership functions are given

in section 1.3. In this thesis it will be seen how to reduce the number of terms in a

linguistic variable by merging similar membership functions. Sections 1.4 and 1.5

present the proximity measures between membership functions that will be used in

later chapters and the methods for merging membership functions.

 Chapter 2. A Clustering Problem Approach

 - 35 -

Chapter 2. A Clustering Problem Approach

 As stated in the introduction, the problem of reducing the number of

membership functions in linguistic variables can be formulated as a clustering

problem. We need to identify groups of similar membership functions and merge

them. As a result, we should obtain a smaller set of membership functions capable of

approximately represent the initial linguistic variable.

 In section 2.1 the clustering problem will be introduced. Section 2.2 will

present the state of the art and finally in section 2.3 some integer programming

formulations for the clustering problem will be given.

2.1 The Clustering Problem

There is no uniform formal definition for data clustering. The task of defining the

meaning of clustering have been pointed out as a difficult one by several authors

[Everitt, Landau et al. 2001; Estivill-Castro 2002]. In [Gan, Ma et al. 2007] the

following informal definition can be found:

“Data clustering (or just clustering), also called cluster analysis, segmentation

analysis, taxonomy analysis, or unsupervised classification, is a method of creating

groups of objects, or clusters, in such a way that objects in one cluster are very

similar and objects in different clusters are quite distinct.”

As can be seen in Figure 2.1, two main types of clustering problems exist: hard

clustering and fuzzy clustering [Gan, Ma et al. 2007]. In hard clustering problems an

object or record has to belong to one and only one cluster, that is, a partition of the

data into mutually exclusive groups is obtained. Fuzzy clustering problems on the

other hand, allow an object to belong to several clusters, with different degrees of

membership. In this thesis the problem of reducing the number of membership

functions in a linguistic variable will be formulated as a hard clustering problem.

Therefore the term clustering will be used instead of hard clustering. Approaching

 Chapter 2. A Clustering Problem Approach

 - 36 -

this problem as a fuzzy clustering problem by allowing membership functions to

belong to more than one cluster and defining appropriate membership function

merging techniques is a possibility to be studied in the future.

Figure 2.1: Diagram of Clustering Algorithms [Gan, Ma et al. 2007]

2.2 State of the Art

As stated in the previous section, there is no unique definition of clustering.

Appropriate criteria for clustering have to be chosen for each application, according

to the type of groups to be found in data. This partially explains the existing diversity

of clustering algorithms [Estivill-Castro 2002]. Given this diversity, this state of the art

will not be exhaustive in describing all the existing methods. Some more extensive

reviews can be found in [Sokal and Sneath 1963; Hartigan 1975; Rijsbergen 1979;

Jain and Dubes 1988; Kaufman and Rousseeuw 1990; Jain, Murty et al. 1999;

Everitt, Landau et al. 2001; Engelbrecht 2002; Mirkin 2005; Gan, Ma et al. 2007].

As depicted in Figure 2.1, conventional (hard) clustering algorithms can be

divided into two categories, according to the type of structures they return.

 Chapter 2. A Clustering Problem Approach

 - 37 -

Hierarchical methods return a hierarchy or set of nested partitions while partition

methods return a single partition of the data.

The next subsections will present the main ideas of hierarchical methods

(section 2.2.1), classical partition methods (section 2.2.2), graph based methods

(section 2.2.3), metaheuristics (section 2.2.4) and other clustering methods (section

2.2.5).

2.2.1 Hierarchical Methods

As stated before, hierarchical methods return a hierarchy or set of nested

partitions, as depicted in Figure 2.2. Agglomerative hierarchical algorithms start with

each data point in a different cluster and proceed by merging clusters, according to

some criterion, until there is only one cluster containing all data points in the data set.

Divisive hierarchical algorithms start with one cluster containing all data points and

proceed by splitting clusters until each data point is in a different cluster.

Figure 2.2: Dendogram

An hierarchical agglomerative clustering algorithm consists of the following

steps [Jain, Murty et al. 1999]:

 Chapter 2. A Clustering Problem Approach

 - 38 -

1. Compute the proximity matrix containing the distance between each pair

of data points. Treat each data point as a cluster;

2. Find the most similar pair of clusters using the proximity matrix and

merge them into one cluster;

3. Update the proximity matrix to reflect the merging operation in 2;

4. If all data points are in one cluster, stop. Otherwise, go to step 2.

Different algorithms can be developed according to the way the proximity

measure is updated in step 3. The most used are the single-link, complete link and

Ward’s methods [Jain, Murty et al. 1999].

The single-link method, also known as nearest neighbour method and minimum

method, was first introduced by [Florek, Lukaszewicz et al. 1951] and then

independently by [McQuitty 1957] and [Sneath 1957]. Let 1C and 2C be two clusters

and  ,d a distance measure between two points. In the single-link method, the

distance between 1C and 2C , also referred to as linkage function, is given by:

    yxdCCD
CyCx

,min,
21 ,

21


 (2.1)

The complete-link [King 1967], also known as farthest neighbour method,

updates the proximity measure using the following expression, using the same

notation as in (2.1).

    yxdCCD
CyCx

,max,
21 ,

21


 (2.2)

The Ward’s method [Ward Jr. 1963; Ward Jr. and Hook 1963], also known as

minimum-variance method, aims at forming partitions 1,, PPn  of the original data

minimizing the loss of information, quantified in terms of the error sum of squares

(ESS) criterion, associated with each merge. Consider a partition of the data into K

clusters KCC ,,1  . The information loss is represented by:

 Chapter 2. A Clustering Problem Approach

 - 39 -

 



K

i

iCESSESS
1

)((2.3)

where

      



Cx

T
CxCxCESS )((2.4)

and

 



Xx

x
C

X
1

)( (2.5)

 At each step of the Ward’s method the two clusters whose fusion results in the

minimum increase in loss of information are merged. The linkage function is

computed as the increase in ESS after merging two clusters, i.e.:

        212121, CESSCESSCCESSCCD  (2.6)

where 21CC denotes the cluster resulting from merging 1C and 2C .

 Other linkage functions are described in [Hartigan 1975; Everitt, Landau et al.

2001; Gan, Ma et al. 2007]. In [Kuiper and Fisher 1975] a comparison of several

hierarchical clustering algorithms is done using the Monte Carlo method.

 As stated before, divisive hierarchical algorithms proceed the opposite way of

the agglomerative algorithms. We start with one cluster containing all data points and

proceed by splitting clusters until each data point is in a different cluster. Since given

a cluster C there are 12
1


C
 nontrivial ways of splitting it into two subclusters, it is

not feasible to enumerate all the possible divisions of a cluster to find the optimal

division, except for small clusters [Edwards and Cavalli-Sforza 1965]. Several divisive

hierarchical clustering algorithms can therefore be designed considering different

criteria for choosing the cluster to be split and different methods for splitting clusters.

Examples of divisive algorithms can be found in [Edwards and Cavalli-Sforza 1965;

Spath 1980; Kaufman and Rousseeuw 1990].

 Chapter 2. A Clustering Problem Approach

 - 40 -

To illustrate divisive hierarchical clustering algorithms we will consider the

DIANA (DIvisive ANAlysis) algorithm proposed by [Kaufman and Rousseeuw 1990].

For a given distance measure),(d , the diameter of a cluster C is given by:

  ),(max
,

yxdCDiam
Cyx 

 (2.7)

 Denote the average dissimilarity from a point x to the points in a set S by

 SxD , , i.e.,

    



Sy

yxd
S

SxD ,
1

, (2.8)

 In each step of the DIANA algorithm, the cluster with largest diameter, C

(2C), is split into two subclusters, A and B . These subclusters are determined by

the following procedure:

1. Do CA  and  B ;

2. Do    AxxAxDz  ,\,maxarg ;

3. Move point z from A to B , i.e.,  zAA \ and  zBB  ;

4. Do      AxBxDxAxDz  ,,\,maxarg ;

5. If      0,\,  BzDzAzD then move point z from A to B , i.e.,  zAA \

and  zBB  , and return to 4. Otherwise stop the procedure, returning

A and B .

The procedure starts by considering CA  and  B , i.e., all points belong

to subcluster A . Then the point with highest dissimilarity is moved from subcluster

A to B . The procedure continues by moving points from A to B whenever their

average dissimilarity to B is smaller than the average dissimilarity to the rest of the

points in A .

 Chapter 2. A Clustering Problem Approach

 - 41 -

Generally, hierarchical methods have a complexity of)(2nO for memory space

and)(3nO for CPU time [Hartigan 1975; Murtagh 1983], n being the number of

points to be clustered. Therefore, they become impractical for large data sets.

2.2.2 Classical Partition Clustering Methods

Unlike hierarchical methods, partition methods create a single partition of the

data points.

The most known partition method is the K-Means algorithm [McQueen 1967].

This algorithm is a centre-based method. Each cluster is represented by a centre and

the corresponding clusters have convex shapes. The algorithm starts by choosing

initial K cluster centres from the original data. After the initialization, a partition of the

data is determined by assigning each point to the cluster with closest centre. After

this assignment the centroids of each cluster are calculated according to the

following expression:

 Kix
C

c
iCxi

i ,,1,
1

 


 (2.9)

where ic is the centre of cluster iC .

 Then the points are reassigned to the clusters regarding the closeness to the

centroids. Again, the centroids are recalculated and the algorithm proceeds in the

same way until some stopping criterion is met. Usually the algorithm will proceed until

the cluster centroid and partition no longer change or until a predefined number of

iterations is reached. This way the K-Means algorithm is a heuristic method that tries

to minimize the sum of squared distances from each point to its cluster centre. The

number of clusters K is determined by the user a priori. In practice, if the user can

not identify the correct number of clusters, the algorithm is run for a certain range for

the number of clusters, i.e.  maxmin ,, KKK  , and the best configuration found,

according to some criterion, is chosen.

 Chapter 2. A Clustering Problem Approach

 - 42 -

Many variations of the original K-Means algorithm have been developed.

Some try to improve the efficiency of the algorithm by reducing the computational

effort demanded by the algorithm [Tapas, David et al. 2002]. Others differ from the

original algorithm in the way the initial cluster centres are chosen, as is the case of

the algorithm presented in [David and Sergei 2007] called K-Means++ that will be

further discussed in section 4.1. Some allow merging or splitting clusters according to

centres distances or cluster within variance [Ball and Hall 1965].

Another widely used partition method is the Expectation Maximization

Algorithm (EM) [Dempster, Laird et al. 1977], a model based clustering algorithm. In

model based clustering it is assumed that the data comes from a certain mixture of

distributions 



K

k

kk axfpxf
1

),()(







 



K

k

kk pp
1

1,0 , with each component),(kaxf

representing a different cluster, where),(kaxf is a family of density functions over x

and ka is the parameter vector that identifies a particular density from that family.

Model based clustering algorithms try to optimize the fit between the data and the

proposed model.

To estimate the individual cluster parameter the EM algorithm uses the

maximum likelihood approach. The logarithm of the likelihood of the observed data

given by (2.10) is maximized under the assumption that the data comes from a

mixture of distributions.

  








 
 

N

i

K

k

kik ayfpL
1 1

,log (2.10)

Maximization of (2.10) can be reformulated as the maximization of (2.11).

   
   


N

i

N

i

K

k

ikik

K

k

kiik

N

i

K

k

kik ggfayfgpgL
1 1 111 1

logloglog (2.11)

where

 

 



K

j

kjk

kik
ik

ayfp

ayfp
g

1

,

,
 (2.12)

 Chapter 2. A Clustering Problem Approach

 - 43 -

and K and N are the number of clusters and data points, respectively.

The EM algorithm can then be summarized in the following way [Mirkin 2005]:

1. Start with any initial values of the parameters kk ap , and ikg ,

Ni ,,1 , Kk ,,1 ;

2. (E-step) Given kp and ka estimate ikg ;

3. (M-step) Given ikg find kp and ka maximizing (2.11);

4. Repeat steps 2 and 3 until there is no change in the parameter values

(or the absolute difference is below some previously defined threshold).

2.2.3 Graph Based Methods

The relationship between graph theory and the clustering problem has been

discussed by [Wirth, Estabrook et al. 1966; Jardine and Sibson 1968; Gower and

Ross 1969; Hubert 1974; Hansen and Delattre 1978], among other authors.

Algorithms that take advantage of the graph theoretical properties of data are called

graph based methods.

The single-link and complete-link hierarchical methods discussed in section

2.2.1 can be approached from a graph theoretical view. More computationally

efficient algorithms for single and complete link hierarchical methods than the ones

already presented are described in [Gower and Ross 1969; Hansen and Delattre

1978; Jain and Dubes 1988].

A minimum spanning tree (MST) of a connected, undirected, weighted graph

is a subgraph that connects all its edges without cycles (tree) with minimum weight.

Several methods for finding a minimum spanning tree of a graph have been

developed [Kruskal 1956; Prim 1957]. In [Jain and Dubes 1988] the following

algorithm for the single-link method using a minimum spanning tree is given, where

the data is represented by a complete weighted graph  WEVG ,, , V being the

vertices of the graph representing the objects or data points to be clustered, E being

 Chapter 2. A Clustering Problem Approach

 - 44 -

the set of edges connecting all pairs of vertices and W being the weights of the

edges representing the distance between two points:

1. Begin with each object in its own cluster and find the MST of G ;

2. Merge the two clusters connected by the MST edge with smallest

weight to define the next clustering;

3. Replace the weight of the edge selected in 2 by a weight larger than the

largest proximity;

4. Repeat steps 2 and 3 until all objects are in one cluster.

Figure 2.3 presents an example of this procedure. The information in the

distance matrix D serves as a basis for the construction of the graph in Figure 2.3

(b). Figure 2.3 (c) depicts a possible minimum spanning tree for this graph. Merging

the clusters corresponding to connected vertices in the MST from the smallest to the

largest edge weight gives the dendogram in Figure 2.3 (d).

(a) (b)

 Chapter 2. A Clustering Problem Approach

 - 45 -

(c) (d)

Figure 2.3: Example of single-link method using a MST: (a) distance matrix; (b)

weighted graph; (c) MST; (d) Dendogram

Just as the single-link method can be approached using a minimum spanning

tree, the complete-link method can be approached using node colouring theory

[Hansen and Delattre 1978]. Other graph based methods for clustering data are

reviewed in [Gan, Ma et al. 2007].

2.2.4 Metaheuristics

Heuristic approaches consist on a search strategy starting from a given

feasible or unfeasible solution or set, an iterative process designed to favour the

improvement of the solutions regarding feasibility and value and a stopping criterion.

In [Colin 1993], the following definition of heuristic is given:

Definition 2.1 – A heuristic is a technique which seeks good (i.e. near-optimal)

solution at a reasonable computational cost without being able to guarantee either

 Chapter 2. A Clustering Problem Approach

 - 46 -

feasibility or optimality, or even in many cases to state how close to optimality a

particular feasible solution is.

 ♦

The most classical clustering methods in statistics and data mining, namely

hierarchical clustering methods and partitioning methods, like K-Means [Gan, Ma et

al. 2007], are heuristic. They take advantage of the problem structure to find good

solutions but they cannot guarantee optimality.

The most basic heuristic methods may be trapped at local optima. Although it

is possible that this local optimum is also the global optimum in general this will not

be the case. To overcome this deficiency more sophisticated and elaborated

heuristics incorporate techniques to increase the search space and escape local

optima. With this purpose, in recent decades more algorithms that use information

regarding the search process itself have been developed. These methods are

designated as metaheuristics. In [Hillier and Lieberman 2005], the following definition

of metaheuristics in given.

Definition 2.2 – A metaheuristic is a general kind of solution method that

orchestrates the interaction between local improvement procedures and higher level

strategies to create a process that is capable of escaping from local optima and

performing a robust search of a feasible solution.

 ♦

 Among the most well-known metaheuristics we have Simulated Annealing,

Genetic Algorithms and Tabu Search.

Simulated Annealing, proposed by [Kirkpatrick, Gelatt et al. 1983], mimics the

process of healing and cooling of material. At each iteration of the algorithm we move

from the current solution to a neighbour solution, similarly to what happens in a

descent heuristic for minimization. However, instead of moving always in the direction

of improvement, worse solutions are accepted with a probability that depends on the

magnitude of increase of the cost function (in a minimization problem) and on a

parameter representing the temperature of the system. This parameter is decreased

during the algorithm, simulating the cooling of material, until the temperature is close

 Chapter 2. A Clustering Problem Approach

 - 47 -

enough to zero. Following thermodynamics rules, at high temperatures the probability

of accepting a randomly generated neighbor solution is higher. As the temperature

decreases, this probability of acceptance also decreases. Application of the

Simulated Annealing algorithm to the clustering problem can be found in [Brown and

Huntley 1990; McErlean, Bell et al. 1990; Shokri and Alsultan 1991].

Genetic Algorithms [Holland 1975] are population based methods and are

inspired in Charles Darwin theory of evolution. During the algorithm, a population

consisting of a usually large set of solutions (chromosomes) is evolved through

crossover and mutation operators. Pairs of solutions (parents) are chosen randomly

to serve as input for the crossover operator that will generate one or more children.

Fittest members are more likely to become parents, thus the next generation tends to

be more fitted than the current one, following the natural selection and the principle of

survival of the fittest. Additionally, with a typically small probability, mutation of one or

more genes (variables) of a chromosome occurs. Through the natural selection

process, at the end of the algorithm we expect a population of good quality solutions.

Genetic Algorithms have been widely used on the clustering problem. A variety of

papers on this subject have been published, for instance [Jiang and Ma 1996; Maulik

and Bandyopadhyay 2000; Cheng, Lee et al. 2002; Gautam and Chaudhuri 2004;

Jimenez, Cuevas et al. 2007; Petra 2007].

Unlike the two previous metaheuristics, Tabu Search [Glover 1986; Glover and

Laguna 1997] is a deterministic process. The keyword in Tabu Search is “memory”.

Tabu Search uses different structures of memory – long term and short term memory

- to control the search process. In this way it is possible to avoid search cycles,

conduct the search to domains of the solution space that would otherwise be

skipped, concentrate the search around good quality solutions and avoid getting

stuck at local optima. By concentrating the search around good solutions, usually

called elite solutions, we are intensifying the search process. On the other hand, by

moving to solutions somehow distant to the ones already visited, to avoid local

optima, we are diversifying the search process. Efficiency of the Tabu Search

Algorithm widely depends on a good balance between these two opposite strategies

– intensification and diversification. Just as the previous metaheuristics, Tabu Search

has also been applied to the clustering problem [Joyce and Michael 2000; Sung and

Jin 2000; Yongguo, Zhang et al. 2008].

 Chapter 2. A Clustering Problem Approach

 - 48 -

In this thesis a Scatter Search algorithm [Glover 1977] will be implemented. In

a Scatter Search algorithm a reference set of both good quality and diverse solutions

chosen from a larger original set of solutions is sequentially updated to produce

better solutions. The algorithm implements both diversification and intensification

search strategies to achieve a more intelligent search. Scatter Search algorithms

were already applied to the clustering problem in [Pacheco 2005; Abdule-Wahab,

Monmarché et al. 2006]. The scatter search algorithm that was implemented is based

on the algorithms presented in these two papers. The algorithm is presented in detail

in section 4.2.

2.2.5 Other Methods

Density-based or grid-based clustering methods are useful for finding

arbitrarily shaped clusters consisting of denser regions than their surroundings in

large multidimensional spaces. As pointed out in [Gan, Ma et al. 2007], “the grid-

based clustering approach differs from the conventional clustering algorithms in that

it is concerned not with the data points but with the value space that surrounds the

data points”. The main idea of a density-based cluster is that for each point of a

cluster the density of points in its ε-neighbourhood, for some 0 , has to exceed

some threshold [Ester, Kriegel et al. 1996]. The most well-known density-based

algorithm, proposed by [Ester, Kriegel et al. 1996], is called DBSCAN.

For high dimensional data it is hard to find good clusters using conventional

clustering algorithms. Dimension reduction or feature selection techniques can be

used before performing clustering, thus reducing the dimensionality of the data to be

clustered. However, these approaches imply a loss of information and consequently

the clusters obtained may not fully reflect the original structure of a given data set

[Gan, Ma et al. 2007]. The goal of subspace clustering or projected clustering is to

find clusters embedded in subspaces of the original data space with their own

associated dimensions. The first subspace clustering algorithm, CLIQUE, was

proposed by [Agrawal, Gehrke et al. 1998]. Other subspace clustering algorithms

were proposed by [Agrawal, Gehrke et al. 1998; Aggarwal and Yu 2000; Procopiuc,

 Chapter 2. A Clustering Problem Approach

 - 49 -

Jones et al. 2002], among others. In this thesis we are clustering data points

representing the parameters of membership functions belonging to a certain family of

membership functions, typically Triangular, Trapezoidal or Gaussian membership

functions. Since these families of membership functions can be described using a

small number of parameters, the dimensionality of the data involved is low.

Therefore, the methodology for subspace clustering will not be further described.

Details on some of these algorithms can be found in [Gan, Ma et al. 2007].

2.3 Formulations in Integer Programming

 In this section some formulations of the clustering problem to be solved are

given. In these formulations only binary and integer variables will be used. The

problem consists of clustering n fuzzy sets into k clusters, nk 1 . The number of

clusters is not known a priori. In all formulations ijd denotes the distance between

fuzzy sets i and j . If the fuzzy sets are represented in pR , the Euclidean Distance

defined by (1.27) or other distance for comparing objects in pR can be used. It is also

possible to use distance measures based on similarity measures for comparing fuzzy

sets. The formulations presented are as general as possible and do not assume any

particular distance measure.

2.3.1 A Binary Linear Programming Formulation - I

This first formulation is a linear programming formulation using only binary

variables.

  
  


n

i

n

k

k

n

ij

n

k

ijkij zyd
n

Min
1 11 1

21
 (2.13)

..ts

 Chapter 2. A Clustering Problem Approach

 - 50 -

 nix
n

k

ik ,,1,1
1




 (2.14)

 nkjiyxx ijkjkik ,,1,,,1  (2.15)

 nkjiyxx ijkjkik ,,1,,,2  (2.16)

 nkjiyx ijkik ,,1,,,  (2.17)

 nkzMy k

n

i

n

j

ijk ,,1,
1 1


 

 (2.18)

       nknjnizyx kijkik ,,1,,,1,,,1,1,0,   (2.19)

As can be seen by the integrality conditions (2.19), ikx , ijky and kz are binary

variables. Variable ikx takes value 1 if and only if point i is in cluster k , ijky equals 1

if and only if points i and j belong to cluster k and kz takes value 1 if and only if

cluster k is not empty. Notice that jkikijk xxy  and ikiik xy  .

One of the most used criteria for clustering is to minimize the sum of squared

distances (or equivalently the mean of squared distances) of data points belonging to

the same cluster. However, if the number of clusters is not defined a priori, this yields

an optimal solution where each data point forms a different cluster, with an optimal

value of zero. Therefore the objective function has to account for the number of

clusters formed. Since 1
1




n

k

ijky if points i and j belong to the same cluster and

0
1




n

k

ijky otherwise,  
  

n

i

n

ij

n

k

ijkij yd
n 1 1 1

21
 is the mean of squared distances of all pair of

points belonging to the same cluster. The number of non-empty clusters is given by




n

k

kz
1

 and the parameter 0 is not only used to control the importance given to

both objectives – minimization of mean of squared distances and minimization of the

number of clusters – but also to deal with the difference in scales present in the

objective function.

 Chapter 2. A Clustering Problem Approach

 - 51 -

Equations (2.14) ensure that each point belongs to exactly one cluster.

Equations (2.15) translate that if point i belongs to cluster k (1ikx) and point j

belongs to cluster j (1jkx), then both clusters belong to cluster k (1ijky). The

reciprocal is ensured by minimization of the objective function but can also be

expressed by equations (2.16) or by equations (2.17). Equations (2.18), where M is

a large constant, allow identifying if the clusters are empty or not. If 1ijky for some

i and j then 1kz , i.e., the cluster is not empty. Minimization of the objective

function guarantees that 0kz whenever cluster k is empty.

2.3.2 A Binary Linear Programming Formulation - II

This formulation is another linear programming formulation using only binary

variables. In the previous formulation the ikx variables are redundant, since iikik yx  .

Also, since jikijk yy   nji ,,1,  , it is possible to further reduce the number of

variables in the formulation by considering only variables ijky for  ni ,,1 and

 nij ,, .

  
  


n

i

n

k

k

n

ij

n

k

ijkij zyd
n

Min
1 11 1

21
 (2.20)

..ts

 niy
n

k

iik ,,1,1
1




 (2.21)

     nknijniyyy ijkjjkiik ,,1,,,1,,,1,1   (2.22)

     nknijnizy kijk ,,1,,,,,,1,   (2.23)

       nknijnizy kijk ,,1,,,,,,1,1,0,   (2.24)

 Chapter 2. A Clustering Problem Approach

 - 52 -

In this formulation ijky are binary variables, as can be seen by the integrality

conditions (2.24), taking value 1 if and only if points i and j belong to cluster k and

kz is a binary variable that takes value 1 if and only if cluster k is not empty. Notice

that 1iiky if and only if point i belongs to cluster k .

The objective function in (2.20) was already explained in the previous

formulation. Equations (2.21) ensure that each point belongs to exactly one cluster,

as was the case for equations (2.14). Equations (2.22), similarly to equations (2.15),

translate that if point i belongs to cluster k (1iiky) and point j belongs to cluster j

(1jjky), then both clusters belong to cluster k (1ijky). The reciprocal is ensured

by minimization of the objective function. Equations (2.23) allow identifying if the

clusters are empty or not. If 1ijky then 1kz , i.e., the cluster is not empty.

Minimization of the objective function guarantees that 0kz whenever cluster k is

empty.

Additional valid inequalities, i.e., constraints that are satisfied by all admissible

solutions, can be considered. The following inequalities are just some of the possible

valid inequalities that can be used.

     nknijniyy ijkiik ,,1,,,1,,,1,   (2.25)

     nknijniyyy ijkjjkiik ,,1,,,1,,,1,2   (2.26)

 nkzMy
n

i

n

ij

kijk ,,1,
1


 

 (2.27)

Equations (2.25), similarly to equations (2.17) express that if both points i and

j are in cluster k , then point i is in cluster k . Equations (2.26) can be immediately

obtained from equations (2.25). Just like equations (2.23), Equations (2.27) allow to

identify if the clusters are empty or not. These equations could replace equations

(2.23), as in the case of the previous formulation.

 Chapter 2. A Clustering Problem Approach

 - 53 -

2.3.3 A Formulation using precedence

 In the previous formulation, we do not take advantage of the fact that

membership functions have their domain in R . Consider the linguistic variable in

Figure 2.4. In the previous formulation, membership functions 1A and 3A can belong

to the same cluster even if 2A does not belong to this cluster. Intuitively this should

not happen. The space of admissible solutions can be reduced if we consider an

ordering of the membership functions.

Figure 2.4: Example of a Linguistic Variable with three fuzzy sets

Consider that an ordering of the membership functions to be clustered

nAAA  21 exists. Then we can formulate the problem if the following way.

 
 


n

i

n

n

ij

ijij zxd
n

Min

1 1

21
 (2.28)

..ts

11 z (2.29)

 1,,1,11  nizz ii  (2.30)

 1,,1,01  nizz ii  (2.31)

 Chapter 2. A Clustering Problem Approach

 - 54 -

   nijnixzz ijij ,,1,1,,1,1   (2.32)

   nijnixMzz ijij ,,1,1,,1,)1(  (2.33)

   ninzi ,,1,,,1   (2.34)

     nijnixij ,,1,1,,1,1,0   (2.35)

where iz is the number of the cluster that contains membership function iA ,

 ni ,,1 , ijx is a binary variable that takes value 1 if and only if membership

functions iA and jA belong to the same cluster,    nijni ,,1,1,,1   , and

M is an arbitrarily large constant.

 The equality in (2.29) guarantees that the first membership function is always

in the first cluster. Since  nizi ,,1,  are integers, inequalities (2.30) and (2.31)

state that two consecutive membership functions iA and  niAi ,,1,1  are in the

same cluster (ii zz 1) or 1iA is in the cluster immediately after the cluster that

contains iA (11  ii zz). Equations (2.32) and (2.33) make the correspondence

between the two groups of variables. Membership functions iA and  njiAj ,,1,, 

belong to the same cluster (1ijx) if and only if they have the same cluster number

(ji zz ).

 The objective function has the same meaning as the one in (2.20).

 This formulation assumes that an ordering of the fuzzy sets exists. There are

several methods for ordering fuzzy sets [Shu-Jen and Hwang 1992]. However, this

ordering is not unique. It varies according to the method used. Therefore, an optimal

solution to the previous formulation is only optimal for that particular ordering and not

for the problem itself.

 Chapter 2. A Clustering Problem Approach

 - 55 -

2.3.4 Quadratic Formulation

The previous formulations were all linear formulations. It is also possible to

formulate this problem as a quadratic integer programming problem. Although the

problem is easy to formulate with a quadratic objective function, quadratic problems

are usually more difficult to solve then linear ones.

  
  


n

k

n

k

k

n

i

n

ij

jkikij cxxd
n

Min

1 11 1

21
 (2.36)

..ts

 nix
n

k

ik ,,1,1
1




 (2.37)

 nkMcx k

n

i

ik ,,1,
1




 (2.38)

 nkcx k

n

i

ik ,,1,
1




 (2.39)

     njnixik ,,1,,,1,1,0   (2.40)

   nkck ,,1,1,0  (2.41)

where ijx is a binary variable that takes value 1 if and only if membership function i

is in cluster k ,  nki ,,1,  , kc is a binary value that takes value 1 if and only if

cluster k is not empty,  nk ,,1 , and M is an arbitrarily large constant.

 Equations (2.37) state that each membership function is in exactly one cluster.

Equations (2.38) and (2.39) are equivalent to  nkcx k

n

i

ik ,,1,00
1




. By

identifying if the clusters are empty or not it is possible to get the number of non-

empty clusters to be used in the objective function.

 Chapter 2. A Clustering Problem Approach

 - 56 -

2.4 Summary

The problem of reducing the number of membership functions in linguistic

variables can be formulated as a clustering problem, as explained before. Therefore,

this chapter started by introducing the clustering problem and the state of the art in

this area (sections 2.1 and 2.2) and proceeded by discussing some integer

programming formulations to the clustering problem (section 2.3).

 Chapter 3. Exact Methods

 - 57 -

Chapter 3. Exact Methods

 The initial purpose of the work in this thesis was not to solve the reduction of

membership functions through exact methods. The complexity of clustering problems

is one of the main reasons why exact methods are in general not efficient and so

finding an optimal solution in a reasonable amount of time will most likely only be

possible for small data sets, particularly if the number of clusters is unknown.

Nevertheless it seemed important to explain, even briefly, how to approach the

problem if a global optimal solution is intended. Therefore, this chapter presents only

a brief introduction to some of the exact methods used for combinatorial and integer

programming.

 Finding an optimal solution of a discrete optimization problem is in general

difficult and known methods are not efficient for large instances. The complexity that

characterizes these NP-Hard problems has the consequence that the computational

implementation of exact algorithms is in general too heavy in terms of memory and

too time-consuming for large problems. Partial enumeration methods, like Branch-

and-Bound [Land and Doig 1960] or Branch-and-Cut [Wolsey 1998], are examples of

such algorithms. The dimension of the instances above which is no more practical to

apply an exact method varies according to the problems under study. This is one

reason why exact methods should always be, at least, tested before switching to a

heuristic approach. Cluster problems are among those problems for which a

dimensionality above 40 variables makes the application of exact methods almost

impractical [Lourenço 1995].

3.1 Branch-and-Bound

The Branch-and-Bound algorithm [Land and Doig 1960] is a divide and

conquer technique that implicitly enumerates all feasible solutions of an integer (or

mixed integer) linear programming problem. The three main aspects of this algorithm

are the branching, fathoming or pruning and bounding strategies used. The original

problem is divided into smaller problems by the branching strategy, usually

 Chapter 3. Exact Methods

 - 58 -

represented by a solution tree. The bounding strategy tries to update the lower and

upper bound on the optimal value of the objective function, L and U , by solving the

linear relaxations of the integer problems considered, providing information that

allows pruning some of the branches of the solution tree.

Consider the integer linear programming maximization problem defined by

(3.1).

  integers and0,,

..

1 





nxxx

bAxts

cxZMax



 (3.1)

and its linear relaxation

  0,,

..

1 





nxxx

bAxts

cxZMax



 (3.2)

To initialize the upper bound U the linear relaxation (3.2) at the root node is

solved through a linear programming method. The lower bound is set to L .

If the optimal solution *x of the linear relaxation problem is integer, i.e., if

nxx ,,1  are integers, then this is also the optimal solution of the integer problem.

Otherwise, a branching variable jx is chosen among the basic variables that have

non-integer values in this solution and two sub-problems are considered by adding

the constraints  *

jj xx  and   1*  jj xx to (3.2), where  a stands for the largest

integer smaller or equal to a.

The bounding strategy is applied for each new sub-problem. If an integer

optimal solution for one of the sub-problems is found, we may try to update L

because this solution is a feasible solution of the original problem. If subz denotes the

objective function value of such solution we have L =  subzL,max .

The pruning strategy allows reducing the number of nodes in the solution tree

that need to be explicitly visited. If a sub-problem satisfies one of the following

conditions – pruning by optimality, pruning by bound or pruning by infeasibility

 Chapter 3. Exact Methods

 - 59 -

[Wolsey 1998] - the corresponding node will node be branched. These conditions are

presented below:

1. Pruning by optimality – an integer optimal solution to the sub-problem was

found;

2. Pruning by bound – Lzsub  , i.e., solutions found by branching this node

will always be worse than a feasible known solution whose value is equal

to the lower bound;

3. Pruning by infeasibility – the sub-problem (and thus all possible branches

of this node) is infeasible.

The branching, bounding and pruning steps are iteratively applied to each sub-

problem until there are no remaining non-pruned sub-problems or until *ZUL  . In

this case either an optimal solution was found or the problem is infeasible. It is also

common to stop the algorithm when the amplitude of the interval  UL, is small,

where the concept small is given by considering an error measure and threshold for

this error, but in this case optimality is not guaranteed.

3.2 Branch-and-Cut

The Branch-and-Cut algorithm [Wolsey 1998] is a hybrid of Branch-and-Bound

and cutting plane algorithms. A cutting plane for an integer programming problem is a

valid inequality, i.e., a constraint that is satisfied by all admissible solutions, that

reduces the admissible region of the linear programming relaxation.

 Several implementations of this algorithm exist. Basically, cutting planes are

generated during the Branch-and-Bound algorithm. The goal is to find better bounds

in each node in order to reduce the number of nodes to be visited. As stated in

[Wolsey 1998], “though this may seem to be a minor difference, in practice there is a

change of philosophy”. Instead of quickly solving the node problems, emphasis is

given to improving the formulation at each node.

 Other than generating cutting planes, additional strategies can be used to

improve the formulation at each node. Some of these strategies consist of fixing

 Chapter 3. Exact Methods

 - 60 -

variables to the only possible value that can take part in an optimal solution or

eliminating redundant constraints. The efficiency of a Branch-and-Cut algorithm

depends on a good implementation of such strategies. Knowing when to include or

eliminate constraints is a major aspect of this algorithm. Although general

implementations exist, to solve a specific (and more complex) problem an

implementation that takes advantage of the underlying problem structure should be

developed.

3.3 Branch-and-Price

The Branch-and-Price algorithm [Barnhart, Johnson et al. 1998] is another

variation of Branch-and-Bound. Just like in Branch-and-Cut, emphasis is given to the

strategies employed in each node to obtain better solutions or better bounds.

However, instead of using cutting planes (row generation) to improve the

formulations at each node, column generation methods are used.

This algorithm is especially suited for solving problems with a large number of

variables. The basic idea is that in many problems most of the variables will have a

zero value in the optimal solution. By using column generation, a master problem

corresponding to the original problem but where only a subset of variables is

considered can be more efficiently solved. To identify which columns should enter

the master problem, subproblems based on the dual linear programming problem,

called pricing problems, are solved. This allows choosing variables with positive

(negative) reduced cost in the minimization (maximization) problem that should

therefore enter the master problem. When no such variables exist and the integrality

conditions are not satisfied, branching is performed as in the original Branch-and-

Bound algorithm.

3.4 Computational Results

To better understand the dimension of the problem and the difficulty of using

exact methods for clustering some computational experiments were done. These

experiments were done using data from the case study that will be presented in

 Chapter 3. Exact Methods

 - 61 -

Chapter 5. The formulation presented in section 2.3.1 was implemented in GAMS

and latter run on CPLEX. In these experiments the distance between two

membership functions i and j , ijd , was chosen to be ijij sd 1 , where ijs is the

Jaccard Similarity given by (1.19) using the fuzzy minimum and fuzzy maximum,

given by (1.10) and (1.11), as intersection and union operators.

All experiments were done in Pentium(R) 4 CPU 2.6 GHz, 504 MB of RAM.

First we considered linguistic variables with 12 membership functions each.

The results are summarized in Table 3.1. Instead of running CPLEX until an optimal

solution was found (and proved to be optimal) a threshold of 10% for the relative gap

between the lower and upper bounds on the objective function was used as a

stopping criterion. As can be seen in Table 3.1, CPLEX took less than 2 minutes –

40.41 seconds in average – to stop. Given these results we ran CPLEX for linguistic

variables with 54 membership functions to see if exact methods could still be used to

solve these problems in a reasonable amount of time. However, for these problems

CPLEX stopped because lack of memory, without returning an optimal solution.

These results show what was already expected by the combinatorial nature of

clustering problems: exact methods can only deal with very small data sets.

Solution

Best
Possible

Absolute
Gap

Relative
Gap

Elapsed Time
(sec.)

Number of
Clusters

Rotation Current 0.767505 0.690776 0.076729 0.099972 95.063 8

Rotation Voltage 0.898916 0.809514 0.089402 0.099455 33.672 8

Rotation Speed 0.768401 0.694777 0.073624 0.095815 19.313 7

Thrust 0.939391 0.845645 0.093746 0.099794 41.172 10

Torque 0.75501 0.680006 0.075003 0.099341 45.922 7

Translational Voltage 0.58426 0.527426 0.056835 0.097276 30.219 5

Translational Current 0.555146 0.501321 0.053825 0.096956 26.531 4

Translational Speed 0.684707 0.616784 0.067923 0.099199 31.422 7

Table 3.1: Computational Results

 Chapter 3. Exact Methods

 - 62 -

3.5 Summary

In this Chapter some exact methods for solving integer problems were briefly

described. These methods consist of a set of strategies to methodically examine the

search space of an integer or mixed integer problem without having to implicitly

enumerate all possible solutions. Even though these methods allow to optimally solve

many problems that by explicit enumeration could not be solved in a reasonable

amount of time, for a wide class of combinatorial problems the search for an optimal

solution is still too time-consuming. When this is the case, heuristic methods such as

the ones described in Chapter 4 can provide good quality solutions with less

computational effort without guaranteeing optimality.

 Chapter 4. Heuristic Methods Based on Local Search

 - 63 -

Chapter 4. Heuristic Methods Based on Local

Search

In real applications, the dimension and complexity of combinatorial and integer

problems and the need to find good solutions in useful time have lead to the

development of algorithms that take advantage of the problem structure to achieve

good solutions (not necessarily optimal). Computational implementations of these

algorithms, contrary to exact methods, are quite efficient regarding time and memory.

Whenever the application of global optimization methods is not advisable, it is still

usually possible to find good quality solutions by using heuristic methods.

As was pointed out in section 2.2.4, the most classical clustering methods in

statistics and data mining are heuristic and can therefore be trapped at local optima.

For this reason, a variety of metaheuristics have been applied to the clustering

problem.

In this thesis a Scatter Search algorithm was implemented. Although this

metaheuristic is not as well-known as the metaheuristics described in section 2.2.4, it

already proved to be efficient at finding good quality solutions for many problems.

Scatter Search has been applied to find solutions to the nodes graph coloring

problem [Jean-Philippe and Jin-Kao 2002], to vehicle routing problems [Russell and

Chiang 2006], to clustering problems [Pacheco 2005; Abdule-Wahab, Monmarché et

al. 2006], among many other applications.

 Both a heuristic and a metaheuristic to solve the automatic clustering problem

were implemented in Matlab. Section 4.1 describes a heuristic approach called K-

Means++ [David and Sergei 2007]. Section 4.2 describes the general Scatter Search

algorithm and the details of this particular implementation. In Section 4.3

computational results on two case studies are presented in order to compare these

two implementations.

 Chapter 4. Heuristic Methods Based on Local Search

 - 64 -

4.1 A heuristic approach: K-means ++

One of the most used algorithms for clustering data is the K-Means algorithm

[McQueen 1967], already described in section 2.2.2. The algorithm starts by

choosing initial K cluster centres from the original data X . After the initialization, a

partition of the data is determined by assigning each point to the cluster with closest

centre. After this assignment the centroids of each cluster are calculated and the

points are reassigned to the clusters regarding the closeness to the centroids. Again

the centroids are recalculated and the algorithm proceeds in the same way until

some stopping criterion is met.

A variation of this method, called K-Means++ [David and Sergei 2007], was

implemented in Matlab for finding a feasible solution of the clustering problem. This

method differs from the original K-Means algorithm in the way the initial clusters are

chosen. Sections 4.1.1 and 4.1.2 describe the K-Means++ algorithm used for

partitioning n points into K clusters. Section 4.1.3 discusses how to choose the

correct number of clusters by evaluation of cluster validity indexes.

4.1.1 Initialization

The K-Means algorithm starts by choosing K cluster centres from the original

data to be clustered. Usually the cluster centres are chosen uniformly at random from

the original data, i.e., they are chosen with equal probabilities. The K-Means++

[David and Sergei 2007] differs from the original K-Means algorithm in the way the

initial cluster centres are chosen. Cluster centres are still chosen randomly, but they

are not chosen uniformly. After the first cluster centre is chosen uniformly at random

from the original data, the remaining 1K centres are chosen proportionally to their

distance to the centres already chosen, a method referred in [David and Sergei 2007]

by “ 2D weighting”. The empirical reasoning of this rule is to diversify the location

centres within the set of points to allow for a better assignment of points to clusters.

Let)(xD denote the shortest distance from a point Xx to the closest centre

already chosen. In this work we used the Euclidean distance and so)(xD is given

by:

 Chapter 4. Heuristic Methods Based on Local Search

 - 65 -

  ),(min)(i
Si

cxdxD


 (4.1)

where S is the set of all already chosen cluster centres and),(d is the Euclidean

distance.

Then the necessary steps to perform the cluster centres initialization are the

following:

1. Choose an initial centre uniformly at random from X , i.e., ,
1

n
pi 

ni ,,1 , where ip denotes the probability of choosing ix .

2. Choose the next centre randomly according to the probability distribution





n

j

j

i

i

xD

xD
p

1

2

2

)(

)(
, ni ,,1 .

3. Repeat step 2 until K centres have been chosen.

We should notice that the probability of choosing a point is proportional to the

distance to the closest already chosen centre. So the further away the point is the

likely it is that it will be chosen as a new centre. After the K initial cluster centres are

chosen, the algorithm proceeds as the original K-Means. The iterative procedure is

described in the next section.

4.1.2 Iterative Procedure

Now that the initial cluster centres are chosen, the remaining points are

assigned to its closest cluster and the cluster centroids are updated. This procedure

is repeated until a stopping criterion is met. The steps of this procedure, after the

initialization phase, are summarized below.

1. Assign each point to the closest centre.

2. Update cluster centres by recalculating the cluster centres according to

(2.9).

3. Repeat steps 1 and 2 until the centres no longer change.

 Chapter 4. Heuristic Methods Based on Local Search

 - 66 -

In addition, a maximum number of iterations could be used as a stopping

criterion. However, due to the rapid convergence of the algorithm, in the

computational experiments that will be presented in section 4.3, it was not necessary

to prematurely stop the algorithm.

4.1.3 Choosing the number of clusters

The previous algorithm partitions n data points into K clusters (or less,

because empty cluster might be formed). However, when the number of clusters is

not known a priori, the correct number of clusters has to be estimated. Usually this is

done by running the algorithm for a range of values for K and choosing the best

partition according to some cluster validity index.

In [Ujjwal and Sanghamitra 2002] several validity indexes for clustering

algorithms are compared using different clustering algorithms. The experiments

conducted by the authors lead them to the following conclusion: “Compared to the

other considered validity indexes, I is found to be more consistent and reliable in

indicating the correct number of clusters”. This index is defined by equation (4.2).

p

K

K

D
E

E

K
KI 








 11

)((4.2)

where 
 


K

k

n

j

kjkjK cxuE
1 1

 (4.3)

and ji
Kji

K ccD 
 ,,1,

max


 (4.4)

 In these equations  nxxX ,,1  is the data to be clustered and  
nKkjuU


 is

a partition binary matrix representing a possible clustering of the data into K disjoint

clusters, i.e., 1kju if and only if jx is in the kth cluster. The centroid of cluster k is

denoted by kc . To find the correct number of clusters we chose the value of K which

maximizes)(KI .

 Chapter 4. Heuristic Methods Based on Local Search

 - 67 -

 Analyzing)(KI we see that as the error KE decreases, the factor
KE

E1

increases. It is always possible to obtain a partition with zero error by considering n

clusters, each consisting of a single data point. To balance the error with the number

of cluster the factor
K

1
 is introduced. As the number of clusters decreases, this factor

increases. To achieve well separated clusters, the factor KD should be large, that is,

the maximum distance between two cluster centres should be large. The previous

considerations intuitively justify that)(KI should be maximized.

4.2 Scatter Search

Scatter Search [Glover 1977] has some similarities to Tabu Search and Genetic

Algorithms. The use of memory is one of the main features of Tabu Search and is

usually present in Scatter Search. Such as Genetic Algorithms, Scatter Search is an

evolutionary algorithm. While in Genetic Algorithms an usually large population is

evolved through crossover and mutation operations, in Scatter Search instead of a

population it is used a smaller reference set (composed of good quality solutions and

diverse solutions) and it plays the most important role in the algorithm.

Essentially, Scatter Search operates on a small set of solutions, the reference

set, and consists on the application of the following methods, which can be

implemented in different ways, according to the problem at hand:

1. A Diversification Generation (DG) method to produce a collection of diverse

trial solutions from which the initial reference set is built;

2. An Improvement (Imp) method to enhance the quality of trial solutions;

3. A Reference Set Update (RSU) method responsible for constructing a

reference set of both high quality solutions and diverse solutions from the

collection of solutions obtained by the diversification generation method and

of updating this reference set when new solutions are created during the

algorithm;

 Chapter 4. Heuristic Methods Based on Local Search

 - 68 -

4. A Subset Generation (SG) method that, in each iteration of the algorithm,

creates a collection of subsets of solutions belonging to the reference set,

such that the solutions in each subset are to be combined through the

solution combination method;

5. A Solution Combination (SC) method that takes a subset of solutions given

by the subset generation method and generates one or more new trial

solutions.

Figure 4.1: Scatter Search Algorithm

The way the previous methods operate is summarized in Figure 4.1. The

original set is created by the Diversification Generation Method (DG). Each solution

in this set is then improved by the Improvement Method (Imp) before the Reference

Set Update Method (RSU) constructs the reference set, selecting the best quality

 Chapter 4. Heuristic Methods Based on Local Search

 - 69 -

solutions in the original set, along with diverse solutions. The subsets of solutions to

be combined through the Solution Combination Method (SC) are chosen by the

Subset Generation Method (SG). The solutions resulting from this combination are

improved before the Reference Set Update Method (RSU) updates the reference set.

The process continues until some stopping criterion is met.

The scatter search algorithm that was implemented is based on the algorithms

in [Pacheco 2005] and [Abdule-Wahab, Monmarché et al. 2006]. The next sections

describe the implementations of each of the five methods mentioned above.

4.2.1 Fitness Function

In [Pacheco 2005], quality of solutions was measured by the sum of squared

distances from each point to the centroid of its cluster. This measure cannot be used

in the automatic clustering problem, where the number of clusters is not defined a

priori. Using this measure when the number of clusters can vary, yields the

construction of as many clusters as the number of points to be clustered, giving a

sum of the squared distances from each point to the centroid of its cluster (the point

itself) of zero. Therefore, a different quality measure was used. The validity index I

described in section 4.1.3 and defined by equations (4.2) - (4.4) was used as fitness

function, to be maximized.

4.2.2 Diversification Generation Method

The diversification generation method used was proposed by Pacheco

[Pacheco 2005], based on GRASP – Greedy Randomized Adaptive Search

Procedure. However in this work the number of clusters is predefined by the user. To

achieve an automatic clustering procedure, as it is aimed in our work, the correct

number of clusters should be determined by the algorithm. Therefore, before creating

a new solution with the diversification generation method, it is necessary to generate

a random number of clusters, i.e., an integer K between 1 and maxK , where maxK is

the maximum number of clusters allowed.

 Chapter 4. Heuristic Methods Based on Local Search

 - 70 -

 Given the number of clusters K to be considered for the generation of a

solution, the cluster centres  KccS ,,1  are randomly chosen from the data set X

in the following way [Pacheco 2005]:

1. Find *j
x , the farthest point from the centroid of X and do *1 j

xc  and  1cS  .

Set 2h .

2. Fix 0 ≤ ≤  and while KS  do:

a. Determine   SXxSccx jlljj \,:min 

b. Determine  SXx jj \:maxmax 

c. Do  max:  jjxL

d. Choose Lx
j
* uniformly at random and do *jh xc  ,  hcSS  and

1 hh .

If 0 , the cluster centres are chosen completely at random from the original

data X . If 1 the process is deterministic if there is only one point in L, and so the

only farthest point from the centres already chosen will enter S . Therefore, generally

speaking, the parameter  controls the level of randomization of the process.

A memory structure is used to avoid repetition of centres and consequently of

solutions. The number of times that a point jx is selected as a centre is stored in

)(jfreq and the values of j in subsequent iterations are modified according to

equation (4.6), where:

  jjfreqfreq  :)(maxmax (4.5)

and  controls the importance of memory in the diversification generation method.

max

max

')(

freq

jfreq
jj   (4.6)

 Chapter 4. Heuristic Methods Based on Local Search

 - 71 -

Equation (4.6) decreases the value of j proportionally to)(jfreq and so the

possibility of inclusion of jx in L also diminishes.

After the clusters centres are defined, the remaining points are assigned to

these clusters. This is done with the goal of minimizing the sum of squared distances

from each point to its cluster centre. When the number of clusters is not

predetermined, minimizing the sum of squared distances from each point to its

cluster centre yields a solution where each point is a centre itself and we have as

many clusters as points. However, since for a particular solution to be generated the

number of clusters is previously determined, the remaining points can be assigned in

order to minimize this measure, as in [Pacheco 2005], in the following way:

1. Let A be the set of unsigned points, i.e., SXA \ .

2. For each point Ax j  and each cluster KiCi ,,1,  determine ij given by

2

1
ji

i

i

ij xc
C

C



 (4.7)

where ic is the centroid of iC .

3. Calculate  KiAx jijji
,,1,:min**  .

4. Assign *j
x to *i

C and set  *\
j

xAA  .

5. If 0A return to 2, else stop.

The formula in (4.7) gives the increase in terms of sum of squared distances

from each point to its cluster centre when point jx is assigned to cluster iC . Steps 1

through 5 define a greedy heuristic for assigning the remaining points to the clusters

whose centres were previously chosen.

This algorithm is used to generate sizeOS initial solutions, called the original set

that will serve as basis for constructing the reference set.

 Chapter 4. Heuristic Methods Based on Local Search

 - 72 -

4.2.3 Improvement Method

The improvement method is used to enhance the quality of the solutions

generated both during the diversification phase and after the combination of two

solutions. In this thesis it was chosen to implement the improvement method

presented in [Abdule-Wahab, Monmarché et al. 2006], based on the K-Means

algorithm [Gan, Ma et al. 2007]. The following steps are taken a number of times

equal to MaxIterImp, where MaxIterImp is a parameter to be chosen by the user.

1. For each point Xx j  do:

a. For each cluster KiCi ,,1,  determine ijv given by

22

11
jl

l

l

ji

i

i

ij xc
C

C
xc

C

C
v 





 (4.8)

where jx currently belongs to cluster lC and ic and lc are the

centroids of iC and lC , respectively.

b. Determine  ijljKj va  ,,,1minarg  .

c. If 0a reassign jx to aC .

2. Compute the fitness of the new solution obtained.

3. If the fitness of the new solution, given by equation (4.2) is better than the

original solution, replace the original solution by the new solution.

The formula in (4.8) is given by Spath [Spath 1980] to simplify the K-Means

algorithm and approximates the increase in terms of sum of squared distances from

each point to its cluster centre when point ix is moved from cluster lC to cluster jC .

4.2.4 Reference Set Update Method

The reference set, RS , is composed of 1b high quality solutions and 2b diverse

solutions. To construct the initial reference set, the first 1b best solutions are inserted

in the reference set, where the quality of solutions is given by the fitness function

 Chapter 4. Heuristic Methods Based on Local Search

 - 73 -

presented in section 4.2.1. Next, 2b solutions are added one by one to reference set

according to its diversity. In this work it was used the diversity measure proposed by

Pacheco[Pacheco 2005]. Let),( dif be the number of assignments in solution 

that are different from the assignments in solution  . For instance, suppose that we

have an instance with 5 objects and 4 clusters. Consider two solutions,  2,3,2,1,11 y

and  3,4,2,2,12 y , where the i -element of the vector corresponds to the cluster to

which object i is assigned. In this case),( dif is equal to 3.

Iteratively, it is chosen to enter the reference set, the solution that maximizes:

  RSdif   :),(min)(min (4.9)

In this implementation the reference set is only updated when better quality

solutions are found. Other implementations [Abdule-Wahab, Monmarché et al. 2006]

also update the reference set according to the measure of diversity, reinforcing the

diversification strategy.

4.2.5 Subset Generation Method

In each iteration of the algorithm, the subsets of solutions from the reference

set that will be latter combined by the solution combination method consist of pairs of

solutions. The collection of subsets created through this method is composed of all

pairs of solutions from the reference set  ji, , 1,,1 21  bbi  , 21,,2 bbj   ,

ji  . Supposing that we have 3 solutions, we should consider the following subsets

(1,2), (1,3), (2,3).

Each element of the collection of subsets generated by this method serves as

an input to the solution combination method that generates one or more trial

solutions that, after being enhanced by the improvement method in section 4.2.3, can

enter the reference set as described in section 4.2.4.

 Chapter 4. Heuristic Methods Based on Local Search

 - 74 -

4.2.6 Solution Combination Method

To combine two solutions it was implemented the path relinking strategy

described in [Pacheco 2005]. The idea of path relinking is that, in the “path” between

two good quality solutions other good quality solutions should exist. A “path” is a

series of simple movements that lead from one solution to another. In this case we

can start on one solution and move points from one cluster to another until the

second solution is reached. For instance, consider two solutions,  2,3,2,1,11 y and

 3,4,2,2,12 y to be combined. A path between these solutions could be given by:

       3,4,2,2,12,4,2,2,12,3,2,2,12,3,2,1,1  , where in each movement the first point

assigned differently than in 2y is assigned as in 2y . Solutions in this path can be

chosen as trial solutions.

As in [Pacheco 2005], given two solutions, the number of trial solutions that

will be generated through the solution combination method varies. If the two solutions

to be combined were chosen from the 1b high quality solutions in the reference set,

three trial solutions will be generated. If the two solutions were chosen from the 2b

diverse solutions in the reference set, only one solution will be generated. Otherwise,

two solutions will be created. These solutions are randomly chosen from the

solutions in the path.

4.2.7 The Final Algorithm

After the basic methods of the scatter search algorithm have been described,

we may now describe the final algorithm.

The algorithm starts by generating the original set through the diversification

method. The best quality solutions and most diverse solutions are chosen to form the

reference set before the iterative part of the algorithm starts. In each iteration, the

subset generation method forms all subsets consisting of pairs of solutions from the

reference set. These pairs of solutions are then combined through the solution

combination method and the generated trial solutions are improved through the

improvement method. The reference set update method is then responsible for

deciding if any of the generated solutions should replace one of the solutions in the

 Chapter 4. Heuristic Methods Based on Local Search

 - 75 -

reference set. The iterative procedure continues until there are no new elements in

the reference set. The best solution is then returned.

4.3 Computational Results

In this section computational results on two case studies will be presented. In

both case studies real world data sets are used. Fuzzyfication of the data is needed

before using the previously described algorithms. The reason for fuzzyfying data

comes either from a way to deal with different source of uncertainty or to categorize

numerical data. Depending on the application that it will be given to the fuzzified data,

it may be needed to reduce the number of membership functions to simplify the

system that will use this functions. The idea is to reduce the number of terms in each

linguistic variable by merging membership functions in the same cluster. These

linguistic variables could then be used, for instance in a fuzzy inference system or

other fuzzy model. All experiments were conducted in a Intel Core2 Duo, CPU 2.2

GHz, 2 GB of RAM.

4.3.1 Wisconsin Diagnostic Breast Cancer Data Set

The data used in this section is taken from [Asuncion 2007]. Wisconsin

Diagnostic Breast Cancer (WDBC) data set contains 569 samples of data describing

characteristics of the cell nuclei present in digitalized images of a fine needle aspirate

(FNA) of a breast mass. Ten real-valued features were computed for each cell

nucleus [Asuncion 2007]:

a) Radius (mean of distances from centre to points on the perimeter)

b) Texture (standard deviation of gray-scale values)

c) Perimeter

d) Area

e) Smoothness (local variation in radius lengths)

 Chapter 4. Heuristic Methods Based on Local Search

 - 76 -

f) Compactness

g) Concavity (severity of concave portions of the contour)

h) Concave Points (number of concave portions of the contour)

i) Symmetry

j) Fractal dimension (“coastline approximation” -1)

For each of these features, the mean, standard error and mean of the three

largest values (“worst”) of these features were computed for each image. Therefore,

each sample has the following 32 attributes:

1. ID number

2. Diagnosis (M = malignant, B = benign)

3. Mean Radius

4. Mean Texture

5. Mean Perimeter

6. Mean Area

7. Mean Smoothness

8. Mean Compactness

9. Mean Concavity

10. Mean Concave Points

11. Mean Symmetry

12. Mean Fractal dimension

13. Radius Standard Deviation

14. Texture Standard Deviation

15. Perimeter Standard Deviation

16. Area Standard Deviation

17. Smoothness Standard Deviation

18. Compactness Standard Deviation

19. Concavity Standard Deviation

20. Concave Points Standard Deviation

21. Symmetry Standard Deviation

 Chapter 4. Heuristic Methods Based on Local Search

 - 77 -

22. Fractal dimension Standard Deviation

23. Worst Radius

24. Worst Texture

25. Worst Perimeter

26. Worst Area

27. Worst Smoothness

28. Worst Compactness

29. Worst Concavity

30. Worst Concave Points

31. Worst Symmetry

32. Worst Fractal dimension

In this thesis only features 3 through 22 where used. The mean radius can be

used as a measure of the cell nuclei radius. The radius standard deviation gives a

measure of the error associated with this measure. For this reason it is advisable to

fuzzify the data as a way to deal with uncertainty. To do so we represent each

sample’s radius by a symmetric triangular membership function   2, , as described

in section 1.3.1 with  equal to the mean radius. The width of the triangular

membership functions was chosen to be 4 because in a random variable following

a normal distribution, approximately 95% of the samples are expected to belong to

the interval   2,2  . The same fuzzification scheme, and with the same

reasoning, was used for the rest of the features, resulting in 10 linguistic variables

with 569 membership functions each, depicted in Figure 4.2 through Figure 4.11. The

objective is to reduce the number of membership functions in each linguistic variable

using the algorithms described in Chapter 4. The resulting linguistic variables could

then be used in a fuzzy inference system or other fuzzy model to diagnose the type

of cancer. The construction of such model is outside the scope of this thesis.

 Chapter 4. Heuristic Methods Based on Local Search

 - 78 -

Radius

Figure 4.2: Linguistic Variable Radius

Texture

Figure 4.3: Linguistic Variable Texture

 Chapter 4. Heuristic Methods Based on Local Search

 - 79 -

Perimeter

Figure 4.4: Linguistic Variable Perimeter

Area

Figure 4.5: Linguistic Variable Area

 Chapter 4. Heuristic Methods Based on Local Search

 - 80 -

Smoothness

Figure 4.6: Linguistic Variable Smoothness

Compactness

Figure 4.7: Linguistic Variable Compactness

 Chapter 4. Heuristic Methods Based on Local Search

 - 81 -

Concativity

Figure 4.8: Linguistic Variable Concativity

Concave Points

Figure 4.9: Linguistic Variable Concave Points

 Chapter 4. Heuristic Methods Based on Local Search

 - 82 -

Symmetry

Figure 4.10: Linguistic Variable Symmetry

Fractal Dimension

Figure 4.11: Linguistic Variable Fractal Dimension

 Chapter 4. Heuristic Methods Based on Local Search

 - 83 -

4.3.1.1 Computational results

The K-Means++ algorithm, described in section 4.1, was applied to each

linguistic variable previously presented. The number of clusters was estimated by

running the algorithm for 15681  nK and choosing the iteration that maximizes

the evaluation measure I given in (4.2). For nK  the evaluation measure I is not

defined since 0nE , as can be seen in (4.3). Figure 4.12 and Figure 4.14 show the

evolution of I using K-Means++ for 5681  K , for linguistic variables Radius and

Texture. For all other linguistic variables in this case study the overall behaviour is

the same. It seems that I increases with K . However, looking at Figure 4.13 and

Figure 4.15 it is possible to see that this is not always that case.

Radius - Evaluation Measure

Figure 4.12: Evaluation measure I using K-means++ for 5681  K , linguistic

variable Radius

 Chapter 4. Heuristic Methods Based on Local Search

 - 84 -

Radius - Evaluation Measure – zoom

Figure 4.13: Evaluation measure I using K-means++ for 5001  K (zoom in of

previous plot) 5681  K , linguistic variable Radius

Texture - Evaluation Measure

Figure 4.14: Evaluation measure I using K-means++ for 5681  K , linguistic

variable Texture

 Chapter 4. Heuristic Methods Based on Local Search

 - 85 -

Texture - Evaluation Measure – zoom

Figure 4.15: Evaluation measure I using K-means++ for 5001  K (zoom in of

previous plot), linguistic variable Texture

 Running the Scatter Search algorithm from section 4.2 with 1max  nK yield

solutions with 1n clusters. This is easily explained by the behavior of I depicted in

Figure 4.12 and Figure 4.14. Given this results it was necessary to redefine the

maximum number of clusters allowed, maxK . Taking into account Figure 4.13 and

Figure 4.15, it was chosen 100max K . Therefore we are interested in finding a

partition of the data into less that 101 clusters that maximizes the cluster validity

index I .

The Scatter Search algorithm was run with several values for the parameters

 ,  , MaxIterImp and 1b . To reduce the number of parameters to be analyzed, the

number of good quality solutions and of diverse solutions to be included in the

reference set was chosen to be equal (21 bb ) and the original set was chosen to be

10 times the size of the reference set ()(*10 21 bbOSsize ). This last choice is

recommended in [Martí, Laguna et al. 1997; Abdule-Wahab, Monmarché et al. 2006].

The algorithm was run until no new elements entered the reference set. Since

random numbers are used during the algorithm, for each combination of values of the

parameters 5 experiments were run. Only 5 runs of each experiment is clearly not

 Chapter 4. Heuristic Methods Based on Local Search

 - 86 -

enough to take any statistically valid conclusions, the purpose of these experiments

was only to see how results were influenced by different choices of the several

parameters involved.

Only the results relative to the linguistic variable Radius will be discussed in

more detail. Similar conclusions were found for the rest of the linguistic variables in

this case study. Final results will be presented for all linguistic variables.

The first experiments were conducted with no improvement method (i.e.

MaxIterImp 0) and all possible combinations of  1;8.0;5.0;0 ,  5.0;0 and

 5;21 b , with the purpose of analysing the influence of the parameter  in the

algorithm. In section 4.2.2 it is stated that the parameter  controls the level of

randomization used when choosing cluster centres. When 0 , the cluster centres

are chosen completely at random from the original data X . In Figure 4.16 it is clear

that this randomness affects the standard deviation of the fitness of solutions

returned by the algorithm. When 0 the standard deviation of results is much

higher than for larger values of  . This standard deviation means that it is likely to

achieve very good results but also very bad results, a characteristic that is

undesirable in an algorithm. In fact, although in terms of the best result found for

each 5 experiments a choice of 0 seems to produce good results (Figure 4.17),

the same does not happen in terms of average results (Figure 4.18). Given this

results, no further experiments were done with 0 .

Figure 4.16: Influence of  in fitness function I standard deviation

 Chapter 4. Heuristic Methods Based on Local Search

 - 87 -

Figure 4.17: Influence of  in best results obtained for fitness function I

Figure 4.18: Influence of  in mean results for fitness function I

The parameter  controls the weight given to the memory in the process of

choosing the cluster centres when creating initial solutions, as given by (4.6). Notice

that it does not make sense to study the importance of this parameter for values of 

very close to zero since the choice of the cluster centres is close to random. In this

case, although the quantities j are replaced by '

j , this does not significantly

change the set L from which the cluster centres are chosen. As can be seen in

Figure 4.19, there seems to be an improvement in terms of average results in using

 Chapter 4. Heuristic Methods Based on Local Search

 - 88 -

this memory during the creation of the original set. Therefore, no further experiments

for 0 will be discussed.

Figure 4.19: Influence of  in mean results for fitness function I

By considering a larger reference set we expect to obtain better results but

worse computational efficiency. Not only does it take more time to generate the

original set (since the size of the original set was chosen to be 10 times the size of

the reference set), but also the number of subsets of solutions to be combined

increases exponentially. In Figure 4.20 we can see that increasing the size of the

reference set does indeed produce better quality results, but this improvement is

achieved at a computational cost, as can be seen in Figure 4.21. However, in this

case study, we are considering an increase from an execution time of around 1

minute to around 3.5 minutes. Due to these low execution times, we can afford to

consider a larger reference set to obtain better solutions. In other applications where

the number of membership functions to merge is higher, this increase in execution

time could be unaffordable. Reference sets are typically small. Only two small values

for 1b were considered, 21 b and 51 b . This is due to the way the size of original

set is related to this parameter. Since it was chosen that 21 bb  and

)(*10 21 bbOSsize  , we are considering original sets with 40 and 100 solutions.

Larger original sets would mean that the initial diversification achieved would be such

that a very good quality solution was probably already found in this first step of the

algorithm.

 Chapter 4. Heuristic Methods Based on Local Search

 - 89 -

Figure 4.20: Influence of 1b in mean results for fitness function I

Figure 4.21: Influence of 1b in execution time

Until this point experiments were done without the Improvement Method. This

way the influence of the parameters being analyzed in the solutions obtained was

clearer. The computational cost, in terms of execution time (Figure 4.23), of using the

Improvement Method should lead to an improvement in the quality of the solutions

obtained by the algorithm. However, this was not always the case, as can be seen in

 Chapter 4. Heuristic Methods Based on Local Search

 - 90 -

Figure 4.22. The increase in execution time when using MaxIterImp 5 is

considerably high and does not result in a significant improvement in the quality of

solutions. Considering MaxIterImp 2 the increase in terms of execution time is not

high (from approximately 1 minute to approximately 3 minutes) but only improves the

average quality of solutions in some of the sets of experiences made. This result was

unexpected. Since only 5 experiments per each choice of parameters were made,

these results could be explained by the weak estimate of the actual mean values.

Since the increase in execution time for using MaxIterImp 2 is not too high, this

value will be considered for this parameter. Also, the two first combinations of

parameters seem to give consistently better results than the rest. From these two

sets of experiences, the second presents slightly better average results. Therefore, in

the results presented in Table 4.1 and Figure 4.24 through Figure 4.33 were obtained

with 5.0 , 8.0 , 51 b and MaxIterImp 2 . Figure 4.24 through Figure 4.33

show, for both algorithms, a scatter plot of the centre values versus the width of the

triangular membership and the final configuration of the linguistic variable.

Figure 4.22: Influence of Improvement Method in mean

results for fitness function I

 Chapter 4. Heuristic Methods Based on Local Search

 - 91 -

Figure 4.23: Influence of Improvement Method in execution time

To better understand what happens during the algorithm a study of how the

reference set evolves was conducted. Surprisingly, for all experiments conducted the

reference set was only updated a few times after its initial construction and the best

solution found was always generated during the first part of the algorithm. This result

was not expected. Unfortunately, the second part of the Scatter Search algorithm is

not producing good solutions. Still, Table 4.1 shows that the Scatter Search returned

better results than K-Means++ for almost all variables. The first part of the algorithm

is sufficient to obtain better quality solutions than the K-Means++. The computational

time of the Scatter Search was expected to be much higher than the computational

time of the K-Means++. This did not happen only because the Scatter Search

algorithm stopped after the first iteration of the second part of the algorithm.

 Chapter 4. Heuristic Methods Based on Local Search

 - 92 -

K-Means++ Scatter Search

Time

(sec.)
Nr. Clusters I

Time

(sec.)

Nr.

Clusters
I

Radius 426,3904 4 18,9609 352,8277 3 26,9636

Texture 398,9221 3 16,8796 344,1798 5 30,18262

Perimeter 463,4574 7 830,33 371,4513 3 1286,17

Area 416,6392 6 426500,7 394,1495 3 668728,5

Smoothness 419,2019 3 0,000143 413,9573 4 0,0002044

Compactness 407,7729 3 0,004632 308,5648 3 0,004547

Concativity 418,1248 3 0,080241 305,7193 3 0,080673

Concave Points 405,9813 3 0,002273 470,995 3 0,002743

Symmetry 411,8899 3 0,000921 672,4182 3 0,000932

Fractal Dimension 413,8989 4 0,000167 679,9634 3 0,000255

Table 4.1: K-Means++ vs Scatter Search (best results)

 Chapter 4. Heuristic Methods Based on Local Search

 - 93 -

Radius

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.24: Best Results for Linguistic Variable Radius

 Chapter 4. Heuristic Methods Based on Local Search

 - 94 -

Texture

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.25: Best Results for Linguistic Variable Texture

 Chapter 4. Heuristic Methods Based on Local Search

 - 95 -

Perimeter

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.26: Best Results for Linguistic Variable Perimeter

 Chapter 4. Heuristic Methods Based on Local Search

 - 96 -

Area

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.27: Best Results for Linguistic Variable Area

 Chapter 4. Heuristic Methods Based on Local Search

 - 97 -

Smoothness

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.28: Best Results for Linguistic Variable Smoothness

 Chapter 4. Heuristic Methods Based on Local Search

 - 98 -

Compactness

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.29: Best Results for Linguistic Variable Compactness

 Chapter 4. Heuristic Methods Based on Local Search

 - 99 -

Concativity

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.30: Best Results for Linguistic Variable Concativity

 Chapter 4. Heuristic Methods Based on Local Search

 - 100 -

Concave Points

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.31: Best Results for Linguistic Variable Concave Points

 Chapter 4. Heuristic Methods Based on Local Search

 - 101 -

Symmetry

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.32: Best Results for Linguistic Variable Symmetry

 Chapter 4. Heuristic Methods Based on Local Search

 - 102 -

Fractal Dimension

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.33: Best Results for Linguistic Variable Fractal Dimension

 Chapter 4. Heuristic Methods Based on Local Search

 - 103 -

4.3.2 Credit Approval Data Set

The data used in this section is taken from [Asuncion 2007]. This data concerns

credit approval information. Credit approval information is usually prone to

uncertainty. On one hand, attributes like annual income are usually average

information rather than absolute information. On the other hand, misinformation from

the credit candidates, for instance undeclared income, provides additional uncertainty

to the values presented. Therefore, it is natural to use fuzzy models when

constructing automatic credit approval applications. Credit Approval (CA) data set

contains 690 samples (665 after removing missing data) of data concerning credit

approval information. Unfortunately, for confidentiality purposes, all attribute names

and values have been changed to meaningless symbols. Each sample is composed

of features A1 through A16. Ahead each variable its possible values are presented

[Asuncion 2007]:

1. A1 – b, a

2. A2 – continuous

3. A3 – continuous

4. A4 - u, y, l, t

5. A5 – g, p, gg

6. A6 – c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff

7. A7 – v, h, bb, j, n, z, dd, ff, o

8. A8 – continuous

9. A9 - t, f

10. A10 – t, f

11. A11 – continuous

12. A12 – t, f

13. A13 – g, p, s

14. A14 – continuous

15. A15 – continuous

16. A16 - +,- (class attribute)

 Chapter 4. Heuristic Methods Based on Local Search

 - 104 -

Only continuous attributes will be considered because other attributes are

already categorized and the number of categories is already small. Once again,

symmetrical triangular membership functions will be used. Since there is no

information on the attributes and no additional information on accuracy of the data,

triangular membership functions  
jijv 2, where used, where ijv is the value of

attribute j for sample i and j is the standard deviation of attribute j . Of course all

membership functions from the same linguistic variable, representing an attribute, will

have the same width. In reality, the width of the membership functions would vary

according to additional information collected from experts or from credit candidates.

The six linguistic variables in this case study are represented in Figure 4.34 through

Figure 4.39.

A2

Figure 4.34: Linguistic Variable A2

 Chapter 4. Heuristic Methods Based on Local Search

 - 105 -

A3

Figure 4.35: Linguistic Variable A3

A8

Figure 4.36: Linguistic Variable A8

 Chapter 4. Heuristic Methods Based on Local Search

 - 106 -

A11

Figure 4.37: Linguistic Variable A11

A14

Figure 4.38: Linguistic Variable A14

 Chapter 4. Heuristic Methods Based on Local Search

 - 107 -

A15

Figure 4.39: Linguistic Variable A15

4.3.2.1 Computational Results

The same study conducted for the linguistic variables in the previous case

study was conducted for the six linguistic variables in this case study. The K-

Means++ algorithm, described in section 4.1, was applied to each of the linguistic

variables.

Figure 4.40 and Figure 4.42 show the evolution of I using K-Means++ for

6651  K , for linguistic variables A2 and A3. For all other linguistic variables in this

case study the overall behaviour is the same. This is not the same behaviour as in

the previous case study. Now there is a very sudden improvement in the quality of

solutions for a certain number of clusters. However, this sudden improvement is

achieved only for high number of clusters, between 200 and 350 clusters for the

linguistic variables in this case study. This is a high number of membership functions

in a linguistic variable. It is desirable to achieve a greater reduction in the number of

membership functions to improve its interpretability. Therefore, as in the previous

case study, it was chosen 100max K . It is left for future work to investigate on

 Chapter 4. Heuristic Methods Based on Local Search

 - 108 -

procedures to estimate this parameter. Figure 4.41 and Figure 4.43 show a zoom of

the previous plots, for 1501  K .

A2 - Evaluation Measure

Figure 4.40: Evaluation measure I using K-means++ for 6651  K , linguistic

variable A2

A2 - Evaluation Measure – zoom

Figure 4.41: Evaluation measure I using K-means++ for 1501  K (zoom in of

previous plot), linguistic variable A2

 Chapter 4. Heuristic Methods Based on Local Search

 - 109 -

A3 - Evaluation Measure

Figure 4.42: Evaluation measure I using K-means++ for 6651  K , linguistic

variable A3

A3 - Evaluation Measure – zoom

Figure 4.43: Evaluation measure I using K-means++ for 1501  K (zoom in of

previous plot), linguistic variable A3

 The Scatter Search algorithm was run with the same values for the

parameters  ,  , MaxIterImp and 1b as in the previous case study, considering 5

 Chapter 4. Heuristic Methods Based on Local Search

 - 110 -

experiments for each choice of parameters and with the same stopping criterion as

before. Once again, the number of good quality solutions and of diverse solutions to

be included in the reference set was chosen to be equal (21 bb ) and the original set

was chosen to be 10 times the size of the reference set ()(*10 21 bbOSsize ), as in

[Martí, Laguna et al. 1997; Abdule-Wahab, Monmarché et al. 2006].

Only the results relative to the linguistic variable A2 will be discussed in more

detail.

To study the influence of  in the results, experiments were conducted with

no improvement method (i.e. MaxIterImp 0) and all possible combinations of

 1;8.0;5.0;0 ,  5.0;0 and  5;21 b . When 0 the standard deviation of

results is much higher than for other values of  (Figure 4.44), explaining why 0

was responsible for the best results (Figure 4.45) but does not give competitive

results in average (Figure 4.46). Due to the referred high standard deviation in the

results, no further experiments were done with 0 .

Figure 4.44: Influence of  in fitness function I standard deviation

 Chapter 4. Heuristic Methods Based on Local Search

 - 111 -

Figure 4.45: Influence of  in best results obtained for fitness function I

Figure 4.46: Influence of  in mean results for fitness function I

In Figure 4.47 the use of memory in the Diversification Generation method is

clear since using 0 gives worse results in average. Therefore, no further

experiments for 0 will be discussed.

 Chapter 4. Heuristic Methods Based on Local Search

 - 112 -

Figure 4.47: Influence of  in mean results for fitness function I

Increasing the size of the reference set produces better quality results, as can

be seen in Figure 4.48. Increasing the number of solutions in the reference set from 4

to 10 (21 b to 51 b .) resulted in an increase in the execution time (Figure 4.49) by

a factor between 1.6 and 2.9. Still, all experiments were run in less than 10 minutes.

It is still affordable to consider a larger reference set to improve the overall quality of

solutions.

Figure 4.48: Influence of 1b in mean results for fitness function I

 Chapter 4. Heuristic Methods Based on Local Search

 - 113 -

Figure 4.49: Influence of 1b in execution time

Just as before, the increase in execution time when using MaxIterImp 5 is

considerably high (Figure 4.51) and does not result in a significant improvement in

the quality of solutions in most of the cases (Figure 4.50). Since the increase in

execution time for using MaxIterImp 2 is not too high (from approximately 6 minute

to approximately 10 minutes), this value will be considered for this parameter. Just as

in the previous case study, the choice of parameters 5.0 , 8.0 , 51 b and

MaxIterImp 2 gives better results, in average, and were used to obtain the results

summarized in Table 4.2 and Figure 4.52 through Figure 4.57.

Figure 4.50: Influence of Improvement Method in mean

results for fitness function I

 Chapter 4. Heuristic Methods Based on Local Search

 - 114 -

Figure 4.51: Influence of Improvement Method in execution time

Once again, the best solution found by the algorithm was always generated by

the diversification generation method. The results reported in Table 4.2 were

achieved only by the first stage of the algorithm, which still was sufficient to produce

better results than the K-Means++ algorithm in most variables. Notice that both

algorithms returned the same solution (except for cluster numbering) with 23 clusters

for linguistic variable A11. This can be explained with information about this linguistic

variable. Although A11 is continuous, there are only 23 different values for this

variable. The solution returned by the algorithm corresponds to the 23 different

membership functions corresponding to the 23 crisp values. This result show that the

two algorithms are not giving “fake” low numbers of clusters (until now the number of

clusters varied from 3 to 6) but are indeed capable of estimating a good number of

clusters.

 Chapter 4. Heuristic Methods Based on Local Search

 - 115 -

K-Means++ Scatter Search

Time

(sec.)
Nr. Clusters I

Time

(sec.)

Nr.

Clusters
I

A2 854.5374 5 266.0796 821.3367 3 384.8384

A3 862.5715 4 90.18299 794.977 4 96.4486

A8 810.7072 6 105.4446 1277.734 6 94.76789

A11 735.1273 23 6.97E+28 1112.77 23 6.97E+28

A14 1134.509 6 346890.2 1812.912 4 402917.4

A15 1062.561 6 5.51E+09 2031.943 6 5.57E+09

Table 4.2: K-Means++ vs Scatter Search (best results)

A2

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.52: Best Results for Linguistic Variable A2

 Chapter 4. Heuristic Methods Based on Local Search

 - 116 -

A3

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.53: Best Results for Linguistic Variable A3

 Chapter 4. Heuristic Methods Based on Local Search

 - 117 -

A8

(a) Cluters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.54: Best Results for Linguistic Variable A8

 Chapter 4. Heuristic Methods Based on Local Search

 - 118 -

A11

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.55: Best Results for Linguistic Variable A11

 Chapter 4. Heuristic Methods Based on Local Search

 - 119 -

A14

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.56: Best Results for Linguistic Variable A14

 Chapter 4. Heuristic Methods Based on Local Search

 - 120 -

A15

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.57: Best Results for Linguistic Variable A15

 Chapter 4. Heuristic Methods Based on Local Search

 - 121 -

4.4 Summary

In this Chapter an heuristic and a metaheuristic for clustering were described.

The first is the K-Means++ algorithm [David and Sergei 2007], a variation of the K-

Means algorithm [Gan, Ma et al. 2007]. The second is a Scatter Search algorithm

based on the work of [Pacheco 2005] and [Abdule-Wahab, Monmarché et al. 2006].

These two algorithms where implemented in Matlab.

The computational results were not as expected. The second phase of the

Scatter Search algorithm was not able to produce good quality solutions. However,

the first part of the algorithm was sufficient to obtain better results than the ones

given by the K-Means++ algorithm. Both methods achieved a high reduction in the

number of membership functions in each linguistic variable.

 5. Case Study: a Fuzzy Inference System

 - 122 -

Chapter 5. Case Study: a Fuzzy Inference

System

In the previous chapter, computational results for two case studies were

presented. In both cases the problem consisted in reducing the number of

membership functions in linguistic variables that could later be used in the

construction of an inference system. Each membership function represented a

sample or an individual and merging similar membership functions could be seen as

finding groups of individuals with similar characteristics. The rule base system that

could be constructed afterwards would take into account the final morphology of the

linguistic variables. The case study presented in this section is of a different nature.

In this case, the goal is to reduce the number of membership functions in linguistic

variables of an already existing inference system [Gomes, Santos et al. 2008]. The

aim is to reduce the complexity of the inference system while maintaining its

structure, without losing too much performance.

In 2001, the European Space Agency [ESA] launched the Aurora Programme

whose main goal is the robotic and human exploration of the solar system [ESA

2008]. ExoMars, one of the missions under this programme, will require the drilling

and sampling of Martian rocks [ESA 2008]. The case study here presented has been

developed at CA3 - UNINOVA [CA3 2006] in the scope of this programme.

In section 5.1 the case study will be described. Section 5.2 discusses the

heuristics used for reducing the number of membership functions and in section 5.3

the computational results for the heuristics applied to this case study will be

presented and discussed.

5.1 Overview of the case study: MODI

During project “MODI- Simulation of a Knowledge Enabled Monitoring and

Diagnosis Tool for ExoMars Pasteur Payloads” [CA3 2006; Jameaux, Vitulli et al.

2006; Santos, Fonseca et al. 2006; Santos, Martins et al. 2008] two fuzzy inference

systems were developed: one for an alarm system for detecting faulty behaviours

 5. Case Study: a Fuzzy Inference System

 - 123 -

during drilling in Mars and other for recognition of terrain hardness types. These

inference systems were created automatically from signals first generated by a

simulator and later in the project acquired from a drilling station developed during the

project. Pictures of this drilling station prototype constructed as proof of concept

during this project and a simulated image of the rover that might use this technology

can be found in Figure 5.1 and Figure 5.2, respectively.

Figure 5.1: MODI drill station

Figure 5.2: ExoMars Rover (courtesy of ESA [ESA 2008])

 5. Case Study: a Fuzzy Inference System

 - 124 -

The inference systems developed included two types of input variables: set

points and sensor variables. The set points are variables whose values are pre-

defined by the user to study the behaviour of the drill while drilling in different types of

materials (rocks). Given the values for these two set points, the drilling process would

start and sensors installed in the drill would measure the rest of the variables in our

model.

As the project evolved, the sensors available increased. These sensors were

able to measure rotational and translational currents and voltages, thrust, among

other measures.

All linguistic variables that were created in the MODI project are trapezoidal

membership functions, except the ones that describe the set points that are either

triangular membership functions or singletons [Santos, Fonseca et al. 2008]. In the

MODI project the linguistic variables (except the set points that are pre-defined by the

user) were constructed automatically, using sensor data collected during a learning

phase [Santos, Fonseca et al. 2008]. During the learning phase, drills in different

types of terrain hardness, using different values for the set points, were performed.

Each combination of values for the set points and terrain type defined a sub-scenario

in our model. Each linguistic variable represents a different sensor and each term in

a linguistic variable refers to a different sub-scenario. Trapezoidal membership

functions for each sub-scenario and sensor were constructed taking into account the

mean and standard deviation of the corresponding signal.

If we consider a drill with d sensors and a set of tests consisting in drilling in t

different types of terrain with all possible combinations of 1sp values for set point 1

and 2sp values for set point 2, the model will have 21 spsptd  membership

functions, excluding set points and output variables. As the number of sub-scenarios

or number of sensors increases, so does the complexity of the inference system.

The output of the terrain recognition inference system is the terrain hardness

for the t scenarios defined (T) and the certainty level of that classification [CA3 2006;

Jameaux, Vitulli et al. 2006; Santos, Fonseca et al. 2006]. An example of a rule used

for scenario Concrete hardness type, sub-scenario 0 (C0) with 2 set points – Set

Point Rotation Speed (SPRS) and Set Point Translational Speed (SPTS) – and 8

sensor variables – Rotation Current (RC), Rotation Voltage (RV), Rotation Speed

 5. Case Study: a Fuzzy Inference System

 - 125 -

(RS), Thrust (TH), Torque (TO), Translational Voltage (TV), Translational Current

(TC) and Translational Speed (TS) - is shown bellow. There is one such rule in the

system for every sub-scenario considered. In the following rules Variable_Name –

Sub-scenario_code is the fuzzy set representing the nominal situation in variable

Variable_Name and sub-scenario Sub-scenario_code.

If

Set Point Rotation Speed is SPRS-C0 and Set Point Translational Speed

is SPTS-C0 and Rotation Current is RC-C0 and Rotation Voltage is RV-

C0 and Rotation Speed is RS-C0 and Thrust is TH-C0 and Torque is TO-

C0 and Translational Voltage is TV-C0 and Translational Current is TC-

C0 and Translational Speed is TS-C0

Then

Terrain is T-C0

The output of the alarm inference system is the alarm level, on a scale from 0

to 1 [CA3 2006; Jameaux, Vitulli et al. 2006; Santos, Fonseca et al. 2006]. An

example of a rule corresponding to the variables and sub-scenario above is shown

bellow.

If

Set Point Rotation Speed is SPRS-C0 and Set Point Translational Speed

is SPTS-C0 and (Rotation Current is not RC-C0 and Rotation Voltage is

not RV-C0 and Rotation Speed is not RS-C0 and Thrust is not TH-C0

and Torque is not TO-C0 and Translational Voltage is not TV-C0 and

Translational Current is not TC-C0 and Translational Speed is not TS-C0

Then

Alarm Level

In this thesis only the terrain recognition system will be used as a test case.

The same analysis could be done to the monitoring system, using appropriate

measures of performance of the inference system.

 5. Case Study: a Fuzzy Inference System

 - 126 -

Figure 5.3: Example of linguistic variable – Rotational Voltage

Considering that an automatic process was used to create the terms for the

linguistic variables, in Figure 5.3 we can see that many terms of this linguistic

variable overlap heavily or are even included in others. It is also easy to observe

some implicit clusters of similar membership functions. Merging the membership

functions, pertaining to a cluster, into a single one seems an obvious way of reducing

the number of membership functions in the system.

The contribution to this project was to define an algorithm capable of reducing

the number of terms of a linguistic variable to improve the overall computational effort

of the system without compromising the performance of the system.

Classified

Concrete GasConcrete Marble NotDrilling Travertine Tuff Unknown Total

R
ea

l

Concrete 299 0 0 0 0 0 242 541

GasConcrete 0 267 0 0 26 0 229 522

Marble 0 0 296 0 0 0 226 522

NotDrilling 0 0 0 210 0 0 311 521

Travertine 0 21 0 0 244 0 259 524

Tuff 0 0 0 0 0 271 251 522

Total 299 282 296 210 270 271 1529 3152

Table 5.1: MODI Confusion Matrix

 5. Case Study: a Fuzzy Inference System

 - 127 -

The measures of performance used to compare the resulting terrain

recognition inference systems were the Precision of the classification [Santos,

Fonseca et al. (to appear 2008)], the Mean Certainty Level and a combination of

these two measures. Consider the confusion matrix in Table 5.1 that shows the

hardness types of terrain of a test data set and its classification with the MODI

inference system.

The overall Precision (P) of the terrain recognition inference system is the ratio

between the number of well classified samples (grey cells) and the total number of

samples [Santos, Fonseca et al. 2008]. For the confusion matrix in Table 5.1 the

precision would be 0.5035 (50.35%). The Mean Certainty Level (MCL) is the average

of the certainty levels obtained for each sample, for the samples that were correctly

classified. To combine these two measures of performance, it is used an average of

these two (based on the F1 score [Rijsbergen 1979]) given by:

MCLP

MCLP
F






2
 (5.1)

These three measures of performance take values between 0 and 1 and are to

be maximized.

5.2 Heuristics

In [Setnes, Babuska et al. 1998], Setnes presents a rule base simplification

algorithm that can be summarized by the fluxogram in Figure 5.4. Given a fuzzy

variable with initial membership functions M and a threshold minS for the similarity

(set by the user or by some other algorithm), we select the most similar pair of fuzzy

sets A and B (for a certain fuzzy similarity measure). If this similarity value is above

the previously defined threshold (minS), we combine these two fuzzy sets, update

the rule-base and the algorithm proceeds by choosing the most similar pair in M .

Otherwise, the algorithm stops and M is returned.

 5. Case Study: a Fuzzy Inference System

 - 128 -

Figure 5.4: Original algorithm [Setnes, Babuska et al. 1998]

Instead of basing the decision of merging or not two membership functions A

and B only on their similarity, it was decided to look at the differences in terms of

“design” between the original model and the ones achieved each iteration. This way

a more global view of the changes being made to the linguistic variable being pruned

was done. Therefore it was defined a measure for comparing two sets of

membership functions representing the same linguistic variable. This way it would be

possible to compare the models obtained through the algorithms to the initial model

or linguistic variable.

A distinguishability measure  between fuzzy sets can be defined as the

complement of their similarity measure [Mencar, Castellano et al. 2007].

),(1),(BASBA  (5.2)

Given a new set of membership functions (obtained, for instance, by merging

two or more membership functions of the original set) and the correspondence

between the new set and the original one, we can define what can be intuitively seen

as a model error by taking the average distinguishability measures between all

NO

YES

Start

End

Initial Model: M

Threshold : minS

Select the most similar pair of

fuzzy sets A and B in M

Merge A and B

Return M

S(A,B)>minS

Update rule-base

 5. Case Study: a Fuzzy Inference System

 - 129 -

original sets and the one that represents them in the new set. Consider the example

in Figure 5.5:

Figure 5.5: Example of model error

Using the Jaccard similarity measure [Mencar, Castellano et al. 2007] given

by equation (1.19) with the pair (minimum, maximum) as intersection and union

operators we obtain:

 1),(8182.0),(6364.0),( CCSDBSDAS (5.3)

Thus,

1818.0
3

)11()8182.01()6364.01(

3

),(),(),(










CCDBDA

ModelError

 (5.4)

The adapted algorithm can then be summarized by the fluxogram in Figure

5.6. Given a fuzzy variable with initial linguistic variables M and a threshold ε for the

model error (set by the user or by some other algorithm), we select the most similar

pair of fuzzy sets A and B (for a certain fuzzy similarity measure) and combine

these two fuzzy sets, thus obtaining a new set of linguistic variables, M  . If the model

error, denoted by ε, is above the threshold or if all pairs of fuzzy sets are totally

dissimilar (similarity zero) the algorithm stops. Otherwise, the algorithm proceeds by

choosing the most similar pair in M  .

Original Set New Set

)3,2,1,0(A

)4,3,2,0(B

)8,7,5,4(C

)4,5.2,5.1,0(D

)8,7,5,4(C

Merge A and B
into D

 5. Case Study: a Fuzzy Inference System

 - 130 -

Figure 5.6: Adapted algorithm

The above algorithm can be seen as a hierarchical clustering algorithm. We

start with as many clusters as the initial number of membership functions and in each

step we merge two clusters into a single one. Several methods of choosing the

optimal number of clusters (and thus the optimal number of iterations) for this kind of

clustering algorithms have been proposed [Milligan and Cooper 1985; Salvador and

Chan 2004]. Some consist of finding the knee of a curve obtained by representing

the number of iterations or number of clusters versus some metric of evaluation of

the clustering algorithm. Since using the inference system performance measure

(5.1) as evaluating metric during the clustering would be time consuming, it was

decided to use the model error instead. Running the adapted algorithm using the

NO

NO

YES

Start

End

Initial Model: M

Maximum Error: ε

Select the most similar pair of

fuzzy sets A and B in M

M’ ← new model with A and B

merged

M ← M’

Model

Error < ε

Return M

S(A,B)=0 YES

 5. Case Study: a Fuzzy Inference System

 - 131 -

Jaccard similarity measure in (1.19) with the minimum and maximum operators until

all membership functions are disjoint and plotting each iteration number versus its

model error, gave a curve like the one in Figure 5.7 a). The Model Error increases

slowly with each iteration until it reaches a point where it starts to grow exponentially.

We can choose the number of iterations to be the x-axis coordinate of that point. This

way, we will have an automatic method for choosing the number of iterations of the

algorithm and we will no longer need to heuristically choose the parameter ε.

 a) Iteration vs Model Error b) L-Method

Figure 5.7: a) Iteration vs Model Error; b) L-method

 To find the knee of this curve the L-method, proposed by Salvador and Chan

in [Salvador and Chan 2004], was used. Let n be the number of the last iteration,

that is, nx ,,1 . Let cL and cR be the left and right sequences of data points

partitioned at 2,...,2,  nccx . Fitting a line to cL and another to cR we can define

the total root mean square error (RMSE) by:

)()(ccc RRMSE
n

cn
LRMSE

n

c
RMSE


 (5.5)

i.e., the total root mean squared error is a weighted average of the root mean

squared error of both fittings. The optimal number of iterations is the value c that

minimizes cRMSE . In Figure 5.7 b), c is the number of chosen iterations

 5. Case Study: a Fuzzy Inference System

 - 132 -

corresponding to the point circled (43c). The c value is the stopping criterion

threshold used in the adapted algorithm.

 As will be seen through the computational results presented in section 5.3,

although this approach improves the original inference system used as a test case,

the use of the L-method as a stopping criterion is not the best choice. By penalizing

dissimilarity, it assumes that the initial model is the one with best performance, which

is not the case in this case study. Since the original inference system was obtained

automatically from sensor data, it is full of redundancy. The stopping criterion should

not be based on a comparison in terms of “design” to the original model but on the

actual performance measures of the inference system.

The final algorithm, called bestP, is illustrated in Figure 5.8.

We ran the original algorithm (Figure 5.4) until all membership functions are

disjoint (similarity zero). In each iteration, the rules are updated and the performance

of the resulting inference system, P(M), is obtained and compared with the

performance of the best model found so far, P(BestM). The bestP algorithm returns

the inference system with best performance, from the ones generated throughout the

iterations. Note that this algorithm is defined for any performance measure, P(.). In

our case study, we used the performance measure F given by (5.1). This means

that we will be maximizing the inference system performance. If the initial system is

the best system in terms of this measure of performance, there will be no reduction in

the number of membership functions. If we want to find a compromise between the

number of membership functions and the inference system performance we can use

a linear combination of these two objectives in the following way:

 n
n

FMP
0

1
)(





 (5.6)

where  1,0 is the weight given to F , 0n is the initial number of membership

functions, used as a scaling factor and n is the number of membership functions of

model M .

 5. Case Study: a Fuzzy Inference System

 - 133 -

Finally, the adapted algorithm is applied sequentially to each input variable to

be pruned (in this case, all input variables except the set points). After this pruning is

completed, duplicate rules are removed from the rule system to improve the

computational efficiency of the final inference system.

Figure 5.8: Final algorithm – bestP

YES

YES

NO

End

Return BestM

YES

NO

Start

S(A,B)=0

BestM=M

Initial Model: M

Select the most similar pair of fuzzy sets

A and B in M

NO

BestM = M

P(M)

 worse then

P(BestM)

Merge A and B

size(M)=1

Update rule-base

 5. Case Study: a Fuzzy Inference System

 - 134 -

5.3 Computational Results

The heuristic algorithms described in the previous section were applied to a

terrain recognition inference system constructed as described in section 5.1. All

experiments were done using Matlab and Java.

The set points used were:

1. Rotation Speed (rpm) - SPRS

2. Translational Speed (mm / min) - SPTS

The sensor’s variables used were:

1. Rotation Current (A) - RC

2. Rotation Voltage (V) - RV

3. Rotation Speed (rpm) - RS

4. Thrust (N) - TH

5. Torque (N) - TO

6. Translational Voltage (V) - TV

7. Translational Current (A) - TC

8. Translational Speed (mm/min) - TS

Six different types of terrain hardness were tested. The 6 scenarios considered

were: Not Drilling (drilling in air); Concrete; Gas-Concrete; Marble; Travertine; and

Tuff. Setting 3 different values for each of the set points, these scenarios were further

sub-divided into 54 (336 ) sub-scenarios that provided the basis for the

construction of the linguistic variables representing each input variable.

 The original membership functions in this inference system are represented in

Figure 5.9. In all linguistic variables in the system it is clear that some of its terms

should be merged. The sensor values were collected as integers. Integer

programming is more efficient and was thus used to guarantee real time tasks.

Therefore, the x-axis of the plots representing the linguistic variables in the system

have no physical meaning, i.e., they cannot be interpreted as voltages, rotations per

minute, ...

 5. Case Study: a Fuzzy Inference System

 - 135 -

Rotation Current Rotation Voltage

Rotation Speed Thrust

Torque Translational Voltage

Translational Current Translational Speed

Figure 5.9: Original input linguistic variables (except set points)

 5. Case Study: a Fuzzy Inference System

 - 136 -

 First, the algorithm summarized by Figure 5.6 (adapted algorithm) with the

stopping criterion defined by minimization of (5.5) – L-method [Salvador and Chan

2004] - was applied sequentially to all input variables except set points. Then, the

algorithm summarized by Figure 5.8, were the inference system with best

performance is chosen, was used in the same sequence. The following figures show

the evolution of the performance measure F (to be maximized) given by equation

(5.1) when the algorithms run until all membership functions are disjoint. The vertical

lines mark the iteration chosen by the L-method and the circle marks the iteration

with best performance, i.e., the iteration chosen by bestP.

Figure 5.10: Evolution of performance measure F during the algorithm – Rotation

Current

 5. Case Study: a Fuzzy Inference System

 - 137 -

Figure 5.11: Evolution of performance measure F during the algorithm – Rotation

Voltage

Figure 5.12: Evolution of performance measure F during the algorithm – Rotation

Speed

 5. Case Study: a Fuzzy Inference System

 - 138 -

Figure 5.13: Evolution of performance measure F during the algorithm – Thrust

Figure 5.14: Evolution of performance measure F during the algorithm – Torque

 5. Case Study: a Fuzzy Inference System

 - 139 -

Figure 5.15: Evolution of performance measure F during the algorithm –

Translational Voltage

Figure 5.16: Evolution of performance measure F during the algorithm –

Translational Current

 5. Case Study: a Fuzzy Inference System

 - 140 -

Figure 5.17: Evolution of performance measure F during the algorithm –

Translational Speed

 Original Adapted Algorithm BestP

Rotation Current 54 21 3

Rotation Voltage 54 20 5

Rotation Speed 54 8 3

Thrust 54 22 17

Torque 54 25 46

Translational Voltage 54 10 3

Translational Current 54 10 3

Translational Speed 54 13 3

TOTAL 432 129 45

Table 5.2: Number of membership functions before and after optimization

As can be seen by the previous figures and by Table 5.2, using the L-method

as a stopping criterion is not the best choice. In most cases this stopping criterion

chooses to stop too early. Although in this case study this method already reduces

the number of membership functions without losing performance, this method fails to

choose the best iteration to stop. Analyzing the previous figures it is clear why

concentrating on the model error instead of the inference system actual performance

 5. Case Study: a Fuzzy Inference System

 - 141 -

is not a good strategy. By minimizing the model error, changes to the original

inference system are being penalized. If the original system was “perfect”, reducing

the number of terms in linguistic variables by merging similar membership functions

should negatively affect the performance of the system. The previous figures show

that this is not the case, merging membership functions is actually increasing the

inference system performance. This means that the initial system is full of

redundancy and that some of this redundancy is being eliminated by the algorithm.

For this reason, instead of using the model error, a comparison between the initial

inference system and the ones obtained by the algorithm, it is wiser to focus on

performance measures such as the ones described in the previous section. This is

what motivated the use of the bestP algorithm.

 Original Adapted Algorithm BestP

P 72.33% 76.49% 85.47%

MCL 34.49% 36.88% 44.00%

F 46.71% 49.77% 58.09%

N 423 129 45

Table 5.3: Comparison of inference systems

Table 5.3 compares the three inference systems – original inference system

and inference systems obtained using the Adapted Algorithm and the BestP

algorithm – in terms of systems performance measures and number of membership

functions. Figure 5.18 shows the linguistic variable Translational Voltage before and

after using both algorithms. By using the bestP heuristic it was possible to reduce the

number of membership functions in the system and improve its overall performance.

It was possible to reduce the number of membership functions in input linguistic

variables (except set points) from 432 to 45. All measures of performance used

improved after this optimization. The easiest to interpret performance measure, the

Precision of the classification (P), increased from 72.33% to 85.47%. The

advantages of using this algorithm in this case study was clear. If it was desirable to

further reduce the number of membership functions a measure such as the one in

equation (5.6) could be used. Figure 5.19 shows the linguistic variables returned by

 5. Case Study: a Fuzzy Inference System

 - 142 -

the algorithm. Some linguistic variables seem to be too reduced, i.e., its new

linguistic variables do not seem well representative of the original linguistic variables.

We have to keep in mind that the original system was created automatically and is

full of redundancy.

(a) Original

(b) Adapted Algorithm

(c) BestP

Figure 5.18: Linguistic Variable Translational Voltage before (a) and after using the

adapted (b) and BestP (c) algorithms

 5. Case Study: a Fuzzy Inference System

 - 143 -

 Rotation Current Rotation Voltage

Rotation Speed Thrust

Torque Translational Voltage

Translational Current Translational Speed

Figure 5.19: Input linguistic variables after optimization with BestP (except set points)

 5. Case Study: a Fuzzy Inference System

 - 144 -

5.4 Summary

In this chapter the goal was to reduce the number of membership functions in

linguistic variables of an already existing inference system. An inference system

construted in the scope of a project developed for ESA served as case study. The

inference system was constructed automatically from sensor data and was thus full of

redundancy. The aim was to reduce the complexity of the inference system while

maintaining its structure, without losing too much performance. Not only was this

objective achieved, but also the inference system performance was increased.

Moreover, a paper about this subject was published [Gomes, Santos et al. 2008].

 I could have presented only the last algorithm, bestP, and ignore the

intermediate attempts to find an algorithm for reducing the number of membership

functions. However, I preferred to describe my first and more intuitive approach to

this problem for two reasons: first, to show the importance of trial and error in science

and second because the results obtained with the first adapted algorithm justify the

necessity to evaluate the system performance during the algorithm instead of

concentrating on “design” measures such as the model error.

 There are still some questions that should be answered about this procedure.

The algorithm was applied sequentially to input linguistic variables. There was no

study about the importance of the order in which this pruning is made. I believe that

this order can have some impact on the results. To solve this problem, instead of

sequentially running the algorithm, a global algorithm where in each iteration the

most similar membership functions from any linguistic variable was merged could be

designed. Another question concerns the similarity measure used. Experiments with

other similarity measures should be used to justify the choice of similarity measure.

 6. Conclusions and Future Work

 - 145 -

Chapter 6. Conclusions and Future Work

The purpose of this thesis was to develop algorithms to reduce the number of

membership functions in a linguistic variable. One of the main advantages of fuzzy

models is that they are usually less complex and easy to interpret than classical

models. By reducing the number of membership functions in linguistic variables the

aim was to achieve simpler and more efficient fuzzy models.

The problem of reducing the number of membership functions in a linguistic

variable was approached as a clustering problem. The pruned linguistic variable was

the result of merging clusters of similar membership functions into a new membership

function. Some possible formulations to the clustering problem were presented.

Exact methods were used with one of these formulations and the combinatorial

nature of clustering problems was clear. As expected, only very small data sets can

be optimally solved through these methods in a reasonable amount of time. Although

it was never the purpose of this thesis to use exact methods to solve this problem,

this was an important step to better understand the dimension of the problem at

hands.

To find good quality solutions in a more reasonable amount of time a Scatter

Search procedure was developed and compared to the K-Means++ algorithm. Both

procedures were implemented in Matlab and tested with two different case studies.

The linguistic variables from these case studies could later be used in a fuzzy

inference system or any other fuzzy model constructed taking into account the

pruned membership functions instead of the original ones. The computational results

were not as expected. The second phase of the Scatter Search algorithm was not

able to produce good quality solutions. However, the first part of the algorithm was

sufficient to obtain better results than the ones given by the K-Means algorithm. Both

methods achieved a high reduction in the number of membership functions in each

linguistic variable.

The last chapter presented a different case study. The objective was to reduce

the number of membership functions in linguistic variables of an automatically

constructed inference system without losing two much performance. It was seen that,

 6. Conclusions and Future Work

 - 146 -

in this case, concentrating on the characteristics of a single linguistic variable was

insufficient. It is important to concentrate on the actual performance of the inference

system, using appropriate measures of performance. Therefore the heuristics

implemented before were not applied to this case study. Although the fitness function

of the scatter search algorithm could have been changed to account for these

performance measures, the time it takes to evaluate the inference system and the

number of times it would be necessary to evaluate it explain why it was chosen not to

use this algorithm in this case. The algorithms used in this case study can be

categorized as hierarchical clustering algorithms. The results achieved in this case

study were more than satisfying. It was possible to improve the initial inference

system performance and simplify the system at the same time.

 Although a lot of work was developed during this thesis, there is still much to

be done in the future. In the first procedures a comparison of the different cluster

validity indexes and of the shapes of the clusters themselves, translated by the

clustering criteria used, should be made. Different strategies inside the scatter search

algorithm could be tested to try to overcome the poor results obtained in terms of the

way solutions are combined. More work is needed in estimating the correct number

of clusters or a good maximum number of clusters to be given as input for the scatter

search algorithm or other clustering algorithms. It would also be interesting to

construct fuzzy models to identify the type of breast cancer (malign or benign) from

the cell nuclei characteristics and to support credit approval decision processes

using the linguistic variables from section 4.3 before and after being pruned,

comparing results. In the MODI case study, as mentioned, the impact of the order in

which the linguistic variables are pruned in the results or the possibility of designing a

global algorithm that looked at all variables at the same time are possible directions

for future work, along with a study of how results are affected by using different

similarity measures. Furthermore, given the good results obtained in this case study,

it is important to confirm the validity of the algorithm by running it on different case

studies.

 7. References

 - 147 -

Chapter 7. References

Abdule-Wahab, R. S., N. Monmarché, M. Slimane, M. A. Fahdil and H. H. Saleh

(2006). "A Scatter Search Algorithm for the Automatic Clustering Problem."

Advances in Data Mining: 350-364.

Adlassnig, K. (1986). "Fuzzy set theory in medical diagnosis " IEEE Trans. Syst. Man

Cybern. 16(2): 260-265.

Aggarwal, C. C. and P. S. Yu (2000). Finding generalized projected clusters in high

dimensional spaces. Proceedings of the 2000 ACM SIGMOD international

conference on Management of data. Dallas, Texas, United States, ACM. 70-

71.

Agrawal, R., J. Gehrke, D. Gunopulos and P. Raghavan (1998). Automatic subspace

clustering of high dimensional data for data mining applications. Proceedings

of the 1998 ACM SIGMOD international conference on Management of data.

Seattle, Washington, United States, ACM. 94-105.

Anoop Kumar, D. and H. Moskowitz (1991). "Application of fuzzy theories to multiple

objective decision making in system design." European Journal of Operational

Research 53(3): 348-361.

Asuncion, A. N., D.J. (2007). "UCI Machine Learning Repository " Retrieved March

2008, from http://archive.ics.uci.edu/ml/datasets/Credit+Approval.

Ball, G. H. and D. J. Hall (1965). ISODATA, a novel method of data analysis and

classification. T. Rep. Stanford, CA, Stanford Univ.

Barnhart, C., E. Johnson, G. Nemhauser, M. Savelsbergh and P. Vance (1998).

"Branch-and-Price: Column Generation for Solving Huge Integer Programs."

Operations Research 46(3): 316-329.

Brown, D. E. and C. L. Huntley (1990). A Practical Application of Simulated

Annealing to Clustering, University of Virginia.

http://archive.ics.uci.edu/ml/datasets/Credit+Approval

 7. References

 - 148 -

CA3. (2006). "MODI's homepage." Retrieved April 2007, 2007, from

http://www2.uninova.pt/ca3/en/project_MODI.htm.

Chen, S.-J. and S.-M. Chen (2008). "Fuzzy risk analysis based on measures of

similarity between interval-valued fuzzy numbers" Computers & Mathematics

with Applications Pergamon 55(8): 1670-1685.

Chen, S.-M., M.-S. Yeh and P.-Y. Hsiao (1995). "A comparison of similarity measures

of fuzzy values". Fuzzy Sets and Systems 72(1): 79-89.

Chen, S. M. (1996). "New Methods for Subjective Mental Workload Assessment and

Fuzzy Risk Analysis." Cybernetics and Systems 27: 449-472.

Cheng, C., W. Lee and K. Wong (2002). "A genetic algorithm-based clustering

approach for database partitioning." IEEE Transactions on Systems, Man and

Cybernetics, Part C 32(3): 215–230.

Colin, R. R., Ed. (1993). Modern heuristic techniques for combinatorial problems,

John Wiley & Sons, Inc.

Costa, A., A. D. Gloria, F. Giudici and M. Olivieri (1997). "Fuzzy Logic

Microcontroller." IEEE Micro 17(1): 66-74.

David, A. and V. Sergei (2007). k-means++: the advantages of careful seeding.

Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms. New Orleans, Louisiana, Society for Industrial and Applied

Mathematics. 1027-1035

Dempster, A., N. Laird and D. Rubin (1977). "Maximum likelihood from incomplete

data via the EM algorithm." Journal of the Royal Statistical Society. Series B

(Methodological) 39(1): 1–38.

Edwards, A. W. F. and L. L. Cavalli-Sforza (1965). "A Method for Cluster Analysis."

Biometrics 21(2): 362-375.

Engelbrecht, A. (2002). Computational Intelligence: An Introduction, Halsted Press.

http://www2.uninova.pt/ca3/en/project_MODI.htm

 7. References

 - 149 -

ESA. (2008). "Aurora Exploration Program." Retrieved January 2008, from

http://www.esa.int/esaMI/Aurora/index.html.

Ester, M., H.-P. Kriegel, J. Sander and X. Xu (1996). A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise. Proc. 2nd

International Conference on Knowledge Discovery and Data Mining. Portland,

OR: 226-231.

Estivill-Castro, V. (2002). "Why so many clustering algorithms: a position paper".

ACM. 4: 65-75.

Everitt, B., S. Landau and M. Leese (2001). Cluster Analysis, Arnold Publishers.

Florek, K., J. Lukaszewicz, H. Steinhaus and S. Zubrzycki (1951). "Sur la liaison et la

division des points d’un ensemble fini." Colloquium Mathematicum 2: 282-285.

Gan, G., C. Ma and J. Wu (2007). Data Clustering: Theory, Algorithms, and

Applications Philadelphia, SIAM.

Gautam, G. and B. B. Chaudhuri (2004). "A novel genetic algorithm for automatic

clustering", Elsevier Science Inc. 25: 173-187.

Glover, F. (1977). "Heuristics for Integer Programming Using Surrogate Constraints."

Decision Sciences 8(1): 156-166.

Glover, F. (1986). "Future paths for interger programming and links to artificial

intelligence." Computer & Operation Research 13(5): 533-549.

Glover, F. and M. Laguna (1997). Tabu Search, Kluwer Academic Publishers.

Gomes, M. M., B. R. Santos, T. Simas, P. Sousa and R. A. Ribeiro (2008). Reducing

the Number of Membership Functions in Linguistic Variables: Application to a

Fuzzy Monitoring System. Eight International Conference on Application of

Fuzzy Systems and Soft Computing Helsinki, Finland, b- Quadrat Verlag.

Gower, J. C. and G. J. S. Ross (1969). "Minimum Spanning Trees and Single

Linkage Cluster Analysis." Applied Statistics 18(1): 54-64.

http://www.esa.int/esaMI/Aurora/index.html

 7. References

 - 150 -

Hansen, P. and M. Delattre (1978). "Complete-Link Cluster Analysis by Graph

Coloring." Journal of the American Statistical Association 73(362): 397-403.

Hartigan, J. A. (1975). Clustering Algorithms. New York, Jonh Wiley and Sons.

Hillier, F. S. and G. J. Lieberman (2005). Introduction to Operation Research.

Singapore, McGraw-Hill.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor,

University of Michigan Press.

Hubert, L. (1974). "Some applications of graph theory to clustering." Psychometrika

39(3): 283-309.

Isermann, R. (1998). "On fuzzy logic application for automatic control, supervision,

and fault diagnosis." IEEE Transactions on Systems, Man, and Cybernetics -

Part A: Systems and Humans 28(2): 221-235.

Jain, A. K. and R. C. Dubes (1988). Algorithms for Clustering Data. New Jersey,

Prentice Hall, Englewood Cliffs.

Jain, A. K., M. N. Murty and P. J. Flynn (1999). "Data Clustering: A Review." ACM

Computing Surveys 31(3): 264-323.

Jameaux, D., R. Vitulli, R. A. Ribeiro, T. Fonseca, B. R. Santos and M. Barata (2006).

Monitoring & Diagnosis on-board software module for Mars driller.

Proceedings of the 5th International Workshop on Planning and Scheduling

for Space.

Jardine, N. and R. Sibson (1968). "The Construction of Hierarchic and Non-

Hierarchic Classifications." The Computer Journal 11(2): 177-184.

Jean-Philippe, H. and H. Jin-Kao (2002). Scatter Search for Graph Coloring.

Selected Papers from the 5th European Conference on Artificial Evolution,

Springer-Verlag.166-179

Jiang, T. and S. Ma (1996). Cluster analysis using genetic algorithms. Proceedings of

the third international conference on signal processing 2: 1277–1279.

 7. References

 - 151 -

Jimenez, J. F., F. J. Cuevas and J. M. Carpio (2007). Genetic algorithms applied to

clustering problem and data mining. Proceedings of the 7th WSEAS

International Conference on Simulation, Modelling and Optimization. Beijing,

China, World Scientific and Engineering Academy and Society (WSEAS). 219-

224

Joyce, C. W. and K. N. Michael (2000). A Tabu Search Based Algorithm for

Clustering Categorical Data Sets. Proceedings of the Second International

Conference on Intelligent Data Engineering and Automated Learning, Data

Mining, Financial Engineering, and Intelligent Agents, Springer-Verlag.559-

564

Kaufman, L. and P. Rousseeuw (1990). Finding Groups in Data - An Introduction to

Cluster Analysis. New York, John Wiley and Sons, Inc.

King, B. (1967). "Step-wise clustering procedures." Journal of the American

Statistical Association 69: 86–101.

Kirkpatrick, S., C. D. Gelatt, Jr. and M. P. Vecchi (1983). "Optimization by Simulated

Annealing." Science 220(4598): 671-680.

Klir, G. J. and B. Yuan (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applications.

New Jersey, Prentice Hall.

Kruskal, J. B., Jr. (1956). On the Shortest Spanning Subtree of a Graph and the

Traveling Salesman Problem. Proceedings of the American Mathematical

Society 7(1): 48-50.

Kuiper, F. and L. Fisher (1975). "Shorter communications 391: A Monte Carlo

comparison of six clustering procedures." Biometrics 31(3): 777-783.

Lai, Y. J. and C. L. Hwang (1994). Fuzzy multi objective decision making methods

and applications. Berlin, Springer-Verlag.

Land, A. H. and A. G. Doig (1960). "An Automatic Method for Solving Discrete

Programming Problems." Econometrica 28(3): 497-520.

 7. References

 - 152 -

Lee, C. C. (1990a). "Fuzzy logic in control systems: fuzzy logic controller. I."

Systems, Man and Cybernetics, IEEE Transactions on 20(2): 404-418.

Lee, C. C. (1990b). "Fuzzy logic in control systems: fuzzy logic controller. II."

Systems, Man and Cybernetics, IEEE Transactions on 20(2): 419-435.

Lourenço, L. L. (1995). Contributos da Optimização Discreta para a Análise

Classificatória. Aplicação de Heurísticas Genéticas a uma Classificação com

Precedências. Dissertação de Mestrado em Matemática Aplicada à Economia

e Gestão, Instituto Superior de Economia e Gestão, Universidade Técnica de

Lisboa.

Martí, R., M. Laguna and V. Campos (1997). "Scatter Search vs. Genetic Algorithms:

An Experimental Evaluation with Permutation Problems." Adaptive Memory

and Evolution: Tabu Search and Scatter Search. C. Rego, Alidaee, B.(Eds.),

Kluwer Academic Publishers.

Mathworks Matlab Fuzzy Logic Toolbox - User's Guide.

Maulik, U. and S. Bandyopadhyay (2000). "Genetic algorithm-based clustering

technique." Pattern Recognition 33(9): 1455–1465.

McErlean, F. J., D. A. Bell and S. I. McClean (1990). "The use of simulated annealing

for clustering data in databases". Information Systems. 15(2): 233-245.

McQueen, J. (1967). Some methods for classification and analysis of multivariate

observations. In Proceedings of the Fifth Berkeley Symposium on

Mathematical Statistics and Probability: 281–297.

McQuitty, L. (1957). "Elementary linkage analysis for isolating orthogonal and oblique

types

and typal relevancies." Educational and Psychological Measurement 17: 207-222.

Mencar, C., G. Castellano and A. M. Fanelli (2007). "Distinguishability quantification

of fuzzy sets." Information Sciences 177(1): 130-149.

 7. References

 - 153 -

Milligan, G. W. and M. C. Cooper (1985). "An examination of procedures for

determining the number of clusters in a data set." Psychometrika 50(2): 159-

179.

Mirkin, B. (2005). Clustering For Data Mining: A Data Recovery Approach New York,

Chapman & Hall/CRC.

Miyamoto, S. (1990). Fuzzy Sets in Information Retrieval and Clustering Analysis,

Kluwer Academic Publishers.

Murtagh, F. (1983). "A survey of recent advances in hierarchical clustering

algorithms." The Computer Journal 26(4): 354-359.

Nakashima, T., H. Ishibuchi and T. Murata (1998). Evolutionary algorithms for

constructing linguistic rule-based systems for high-dimensional pattern

classification problems. Evolutionary Computation Proceedings, 1998. IEEE

World Congress on Computational Intelligence.

Pacheco, J. A. (2005). "A scatter search approach for the minimum sum-of-squares

clustering problem". Computers and Operations Research. 32: 1325-1335.

Petra, K. (2007). Clustering Genetic Algorithm. Proceedings of the 18th International

Conference on Database and Expert Systems Applications, IEEE Computer

Society.138-142

Prim, R. (1957). "Shortest connection matrix network and some generalizations." Bell

Systems Technical Journal 36: 1389–1401.

Procopiuc, C. M., M. Jones, P. K. Agarwal and T. M. Murali (2002). A Monte Carlo

algorithm for fast projective clustering. Proceedings of the 2002 ACM SIGMOD

international conference on Management of data. Madison, Wisconsin, ACM.

Ribeiro, R. A. (1996). Fuzzy multiple attribute decision making: a review and new

preference elicitation techniques. Fuzzy Sets and Systems. 78: 155-181.

Ribeiro, R. A. (2006). "Fuzzy space monitoring and fault detection applications."

Journal of Decision Systems. 2-3.

 7. References

 - 154 -

Rijsbergen, C. J. v. (1979). Information Retrival. London, Butterwoths.

Ross, T. J. (2004). Fuzzy Logic with Engineering Applications, John Wiley and Sons.

Russell, R. A. and W.-C. Chiang (2006). "Scatter search for the vehicle routing

problem with time windows." European Journal of Operational Research

169(2): 606-622.

Salvador, S. and P. Chan (2004). Determining the number of clusters/segments in

hierarchical clustering/segmentation algorithms. Tools with Artificial

Intelligence, 2004. ICTAI 2004.

Santos, B. R., T. Fonseca, M. Barata, R. A. Ribeiro and P. Sousa (2006). New Data

preparation process - A case study for an ExoMars Drill. Proceedings of the

World Automation Congress (WAC2006).

Santos, B. R., T. Fonseca, M. Barata, R. A. Ribeiro and P. Sousa (2008). "A method

for automatic fuzzy set generation using sensor data." Autosoft-Intelligent

Automation and Soft Computing International Journal.

Santos, B. R., T. Fonseca, M. Barata, R. A. Ribeiro and P. Sousa ((to appear 2008)).

"A method for automatic fuzzy set generation using sensor data." Autosoft-

Intelligent Automation and Soft Computing

International Journal.

Santos, B. R., G. Martins, M. Gomes and R. A. Ribeiro (2008). CCN for MODI -

Simulation of Knowledge Enabled Monitoring and Diagnosis Tool for Mars

Lander Payloads: Final Report, Uninova/CA3.

Setnes, M., R. Babuska, U. Kaymak and H. R. van Nauta Lemke (1998). "Similarity

measures in fuzzy rule base simplification." Systems, Man and Cybernetics,

Part B, IEEE Transactions on 28(3): 376-386.

Shokri, Z. S. and K. Alsultan (1991). A simulated annealing algorithm for the

clustering problem, Elsevier Science Inc. 24: 1003-1008.

Shu-Jen, J. C. and C. L. Hwang (1992). Fuzzy Multiple Attribute Decision Making:

Methods and Applications, Springer-Verlag New York, Inc.

 7. References

 - 155 -

Sneath, P. (1957). "The applications of computers to taxonomy." Journal of General

Microbiology 17: 201–226.

Sokal, R. and P. Sneath (1963). Principles of Numerical Taxonomy. San Francisco,

W.H. Freeman.

Song, B. G., R. J. Marks, II, S. Oh, P. Arabshahi, T. P. Caudell and J. J. Choi (1993).

"Adaptive membership function fusion and annihilation in fuzzy if-then rules".

Fuzzy Systems.

Spath, H. (1980). Cluster analysis algorithms for data reduction and classification of

objects. New York, Ellis Horwood.

Sung, C. and H. Jin (2000). "A tabu-search-based heuristic for clustering." Pattern

Recognition 33(5): 849–858.

Tapas, K., M. M. David, S. N. Nathan, D. P. Christine, S. Ruth and Y. W. Angela

(2002). "An Efficient k-Means Clustering Algorithm: Analysis and

Implementation", IEEE Computer Society. 24: 881-892.

Ujjwal, M. and B. Sanghamitra (2002). "Performance Evaluation of Some Clustering

Algorithms and Validity Indices", IEEE Computer Society. 24: 1650-1654.

Ward Jr., J. (1963). "Hierarchical grouping to optimize an objective function." Journal

of the American Statistical Association 58(301): 236–244.

Ward Jr., J. and M. Hook (1963). "Application of a hierarchical grouping procedure to

a problem of grouping profiles." Educational and Psychological Measurement

23(1): 69–81.

Wirth, M., G. Estabrook and D. Rogers (1966). "A graph theory model for systematic

biology, with an example for the oncidiinae (orchidaceae)." Systematic

Zoology 15(1): 59–69.

Wolsey, L. A. (1998). Integer Programming, Wiley-Interscience.

 7. References

 - 156 -

Yongguo, L., Y. Zhang, W. Hong, Y. Mao and C. Kefei (2008). "A tabu search

approach for the minimum sum-of-squares clustering problem". Information

Sciences. 178: 2680-2704.

Zadeh, L. A. (1965). "Fuzzy Sets." Information and Control 8: 338-353.

Zadeh, L. A. (1975). "The concept of a linguistic variable and its application to

approximate reasoning--I." Information Sciences 8(3): 199-249.

Zimmermann, H. J. (1990). Fuzzy set theory and its applications. Boston, Kluwer

Academic Publishers.

APPENDIX

 Appendix

 - 158 -

Resumo Alargado

1. Introdução

Uma variável linguística [Zadeh 1965] é composta por conjuntos vagos que

podem ser matematicamente representados por funções de pertença. Por exemplo a

variável linguística Altura pode ser composta pelos conjuntos vagos Baixa, Média e

Alta (Figure 1.1). Em vez de um indivíduo pertencer apenas a um destes conjuntos

como aconteceria com a lógica clássica, o grau de pertença de qualquer indivíduo a

cada um destes conjuntos é dado pela respectiva função de pertença.

O objectivo desta tese era desenvolver algoritmos para reduzir o número de

funções de pertença em variáveis linguísticas. Este problema é extremamente

importante quando é utilizado um processo automático de criação de variáveis

linguísticas, podendo-se assim obter uma variável linguística com um elevado

número de funções de pertença. De uma forma mais geral, o problema que se

coloca pode ser visto da seguinte maneira: como reduzir a quantidade de dados a

analizar (aqui representados pelas diferentes funções de pertença) sem com isso

perder informação? Esta é precisamente a mesma questão que nos é posta em

problemas de agrupamento ou clustering. Assim, o problema da redução do número

de funções pertença numa variável linguística foi aqui abordado como um problema

de agrupamento. Começamos por identificar possíveis grupos de funções de

pertença semelhantes. Funções de pertença pertencentes a um mesmo grupo são

então agrupadas numa nova função de pertença, obtendo-se assim um novo

conjunto mais pequeno de funções de pertença que representam aproximadamente

o mesmo conceito que a variável linguística inicial.

Podemos considerar que nesta tese foram abordados dois grandes tipos de

problemas. No primeiro o objectivo é a redução do número de funções de pertença

em variáveis linguísticas que mais tarde poderiam vir a fazer parte de um qualquer

modelo (não necessariamente um sistema de inferência) que seria construído já

tendo em conta as características da variável linguística depois desta redução. No

segundo, pelo contrário, o objectivo seria a redução do número de funções de

pertença de variáveis linguísticas pertencentes a um sistema de inferência

previamente construído, tendo em conta as características das variáveis linguísticas

originais. Assim, neste caso, a variável linguística terá que ser encarada como parte

 Appendix

 - 159 -

de um sistema e o objectivo passa a ser obter um equilíbrio entre o desempenho do

sistema e a sua simplificação por meio da redução do número de funções de

pertença.

2. Conceitos Importantes

No Capítulo 1Chapter 1 é introduzida alguma informação sobre lógica difusa

necessária para melhor compreender o contexto em que esta tese se insere, bem

como alguma notação que será utilizada noutros capítulos. Apenas as ideias mais

importantes são aqui referidas.

2.1. Representação de funções de pertença

Algumas famílias de funções de pertença podem ser mapeadas para pR , em

que p é o número de parâmetros dessa família de funções e cada dimensão

representa um parâmetro diferente.

Por exemplo, para 3p uma função de pertença triangular pode ser

representada por um triplo  cba ,, (Figure 1.9). Se o triângulo for simétrico podemos

tomar 2p , representando a função de pertença por  ,a , em que bcab  .

De modo semelhante, podemos representar uma função de pertença

trapezoidal por um vector  dcba ,,, contendo os seus vertices . No caso de esta ser

simétrica, ou seja,
22

cbda 



, podemos usar um triplo   ,,m , em que

22

cbda
m





 , bc  and ad  (Figure 1.10).

Esta representação será usada para tratar o problema da redução do número

de funções de pertença numa variável linguística como um problema de

agrupamento tradicional.

2.2. Fundir Funções de Pertença

A ideia por trás dos algoritmos a utilizar é a fusão de grupos de funções de

pertença semelhantes.

 Appendix

 - 160 -

Dadas n funções de pertença trapezoidais,   nidcbaT iiii

i ,,1,,,,  ,

estas serão fundidas numa nova função de pertença   nidcbaT ,,1,,,, 

usando uma generalização do método proposto em [Setnes, Babuska et al. 1998]:

 i
ni
aa

,,1
min


 (1)

 



n

i

ib
n

b
1

1
 (2)

 



n

i

ic
n

c
1

1
 (3)

 i
ni
dd

,,1
max


 (4)

As formulas para fundir um grupo de funções de pertença triangular vêm

directamente das anteriores.

3. Métodos Exactos

Nesta tese são discutidas algumas formulações em programação inteira para

este problema (secção 2.3). Embora nunca tenha sido o objectivo desta tese

encontrar soluções óptimas para estes problemas usando métodos exactos como o

Branch & Bound [Land and Doig 1960], uma destas formulações foi introduzida no

CPLEX para dois conjuntos de problemas de pequena dimensão, um com apenas

12 funções de pertença em cada variável linguística e outro com 54. Enquanto que

no primeiro conjunto de problemas foi possível encontrar soluções óptimas em

menos de 2 minutos, no segundo conjunto de problemas já não foi possível

encontrar soluções óptimas, tendo o programa parado por falta de memória. Estas

experiências permitiram ter uma maior noção da dimensão e dificuldade deste tipo

de problemas e justificaram a necessidade de recorrer a métodos heurísticos para

encontrar boas soluções num espaço de tempo mais realista.

 Appendix

 - 161 -

4. Métodos Heurísticos baseados em Pesquisa Local

Dada a ineficácia dos métodos exactos em encontrar a solução óptima para o

agrupamento dos pontos num determinado conjunto X , foram explorados métodos

heurísticos. Foi desenvolvida uma meta-heurística, Scatter Search, baseada em

[Pacheco 2005; Abdule-Wahab, Monmarché et al. 2006] que foi posteriormente

comparada com uma variação do algoritmo das K-Médias ou K-Means [McQueen

1967], denominada K-Means++ [David and Sergei 2007].

4.1. K-Means++

O algoritmo K-Means [McQueen 1967] começa por escolher aleatoriamente

para centros dos clusters K pontos do conjunto de dados  nxxX ,,1  . Depois

desta inicialização, determina-se uma partição dos dados em K grupos, afectando

cada ponto ao grupo com centro mais próximo. A partir deste momento os centros

dos grupos vão sendo actualizados e os pontos vão sendo afectados ao grupo mais

próximo até que algum ser satisfeito algum critério de paragem.

O algoritmo K-Means++ [David and Sergei 2007] difere do algoritmo original

apenas na maneira como os centros iniciais são escolhidos. Depois de o primeiro

centro ser escolhido aleatoriamente e de forma uniforme, isto é, considerando iguais

probabilidades de escolha para cada ponto de X , os restantes são escolhidos de

acordo com probabilidades proporcionais à sua distância ao centro mais próximo, de

entre os centros já escolhidos. Quanto mais longe um ponto se encontra dos centros

já escolhidos, maior será a probabilidade de este ser escolhido. Desta forma

pretende-se dispersar a distribuição dos centros iniciais para que o algoritmo

convirja mais rapidamente.

Neste algoritmo o número de grupos a formar, K , é escolhido a priori.

Quando não sabemos a priori o número de grupos a formar, corremos o algoritmo

para várias escolhas de K e escolhemos a melhor configuração encontrada, tendo

em conta um determinado índice para a qualidade dos agrupamentos. O índice

usado nesta tese, discutido em [Ujjwal and Sanghamitra 2002], deve ser maximizado

e é dado pelas expressões seguintes:

 Appendix

 - 162 -

p

K

K

D
E

E

K
KI 








 11

)((5)

em que 
 


K

k

n

j

kjkjK cxuE
1 1

 (6)

e ji
Kji

K ccD 
 ,,1,

max


 (7)

sendo que  
nKkjuU


 é uma matrix binária representando uma partição dos dados

em K grupos (i.e., 1kju se e só se jx está no k-ésimo grupo) e o centro do grupo

k é representado por kc .

4.2. Scatter Search

O algoritmo Scatter Search (Figure 4.1), opera sobre um pequeno conjunto de

referência, composto por boas soluções e por soluções com elevada diversificação

(em relação às restantes). Um conjunto inicial de soluções é criado pelo Método de

Geração de Diversificação (DG – Diversification Generation Method). Cada solução

neste conjunto é melhorada pelo Método de Melhoria (Imp - Improvement Method)

antes da criação do conjunto de referência pelo Método de Actualização do Conjunto

de Referência (RSU – Reference Set Update Method), que escolhe para fazer parte

deste conjunto as melhores soluções bem como soluções com elevado nível de

diversificação. O Método de Geração de Subconjuntos (SG – Subset Generation

Method) forma subconjuntos de soluções do conjunto de referência para serem

combinados pelo Método de Combinação de Soluções (SC – Solution Combination

Method) em novas soluções. A qualidade das soluções assim obtidas é mais uma

vez melhorada pelo Método de Melhoria antes do conjunto de referência ser

actualizado. O algoritmo continua até que algum critério de paragem seja satisfeito.

O algoritmo pode ser implementado de diversas maneiras de acordo com as

estratégias adoptadas em cada um dos seus cinco métodos principais. As

estratégias utilizadas nesta tese para cada um dos métodos são adaptadas de

[Pacheco 2005; Abdule-Wahab, Monmarché et al. 2006] e resumidamente descritas

de seguida. Como função de adaptação foi usado o índice I .

 Appendix

 - 163 -

4.2.1 Método de Geração de Diversificação

Este método é responsável pela criação de um conjunto inicial de sizeOS

soluções.

Para cada solução, começamos por gerar aleatoriamente um número de

grupos a formar, K , entre 1 e maxK , sendo maxK o número máximo de grupos

permitido (dado pelo utilizador). São escolhidos aleatoriamente K centros

 KccS ,,1  . No entanto, em vez de poderem ser escolhidos para centros

quaisquer pontos de X , foi introduzido um parâmetro  1,0 que controla o nível

de aleatoriedade deste processo, determinando o conjunto de pontos que em cada

passo podem ser escolhidos para centros, como proposto em [Pacheco 2005]. Para

evitar a repetição na escolha dos centros das várias soluções criadas durante esta

fase do algoritmo guardou-se a frequência com que casa ponto foi escolhido como

centro, penalizando-se a escolha de pontos com elevada frequência. A penalização

é controlada pelo parâmetro  .

Depois de terem sido escolhidos os centros dos grupos, os restantes pontos

são atribuídos a estes grupos usando o processo heurístico greedy descrito em

[Pacheco 2005], com o objectivo de minimizar a soma dos quadrados das distâncias

de cada ponto ao centro do grupo a que pretence.

4.2.2 Método de Melhoria

Foi escolhido o método de melhoria apresentado em [Abdule-Wahab,

Monmarché et al. 2006], baseado no algoritmo das K-Médias [Gan, Ma et al. 2007] e

que utiliza a simplificação proposta por Spath [Spath 1980] para aproximar o

incremento em termos de soma dos quadrados das distâncias de cada ponto ao

centro do seu grupo resultante de mover o ponto ix do grupo lC para o grupo jC .

Em cada iteração deste método cada ponto de X é movido para o grupo que

corresponde a um maior decréscimo nesta soma dos quadrados das distâncias. São

feitas MaxIterImp iterações sempre que o método é utilizado.

 Appendix

 - 164 -

4.2.3 Método de Actualização do Conjunto de Referência

Para construir o conjunto de referência, RS , começamos por escolher as

melhores 1b soluções, de entre as sizeOS soluções criadas inicialmente. São depois

adicionadas iterativamente 2b soluções de acordo com a sua diversidade. As

soluções escolhidas são as que maximizam

  RSdif   :),(min)(min (8)

em que),( dif é o número de pontos que são atribuídos a grupos diferentes nas

soluções  e  .

Nesta implementação o conjunto de referência é apenas actualizado quando

são encontradas soluções de boa qualidade.

4.2.4 Método de Geração de Subconjuntos

Este método gera uma colecção de subconjuntos de soluções do conjunto de

referência para serem posteriormente combinadas em novas soluções. Nesta

implementação foram considerados todos os pares de soluções do conjunto de

referência, isto é, são considerados 21

2

bb
C

 pares de soluções.

4.2.5 Método de Combinação de Soluções

Para combinar um par de soluções numa ou mais novas soluções foi

considerada uma estratégia do tipo path relinking, descrita em [Pacheco 2005]. A

ideia deste tipo de estratégia é de que no “caminho” (série de movimentos simples

que permitem alcançar uma solução a partir da outra) entre duas boas soluções

deverão existir outras boas soluções. Neste caso um movimento corresponde a

trocar um ponto de um grupo para outro. São propostas uma a três soluções

escolhidas aleatoriamente neste caminho.

4.3. Resultados

Para ambos casos de estudo considerados, foi apresentada uma pequena

análise dos parâmetros envolvidos no algoritmo Scatter Search. Apenas 5

 Appendix

 - 165 -

experiências foram feitas para cada conjunto de valores dos parâmetros do

algoritmo, pelo que os resultados não devem ser generalizados mas devem ser tidos

em conta apenas a título indicativo. Em todas as experiências foi escolhido

100max K , 21 bb  e  2110 bbOSsize  .

 Foi possível ver a importância do parâmetro  no controlo da aleatoriedade

do algoritmo, uma vez que para 0 (escolha dos centros totalmente aleatória) os

resultados finais apresentavam um elevado desvio padrão, não acompanhado de

uma melhoria dos resultados em termos médios. O uso da memória durante a

geração do conjunto de soluções iniciais mostrou-se positivo. Ao aumentar a

dimensão do conjunto de referência de 4  21 b para 10  51 b conseguimos

aumentar a qualidade das soluções com algum esforço computacional adicional. No

entanto para ambos os casos de estudo este esforço adicional não foi considerado

excessivo. Claro que, numa situação real, esta conclusão dependeria sempre do

problema em concreto e do tempo disponível para realizar esta tarefa. O método de

melhoria das soluções não melhorou significativamente a qualidade média das

soluções para todas as variáveis linguísticas. Ao estudar a evolução do conjunto de

referência verificou-se que a segunda parte do algoritmo não produziu boas

soluções.

K-Means++ Scatter Search

Tempo

(seg.)

Nº

Clusters
I

Tempo

(seg.)

Nº

Clusters
I

Radius 426,3904 4 18,9609 352,8277 3 26,9636

Texture 398,9221 3 16,8796 344,1798 5 30,18262

Perimeter 463,4574 7 830,33 371,4513 3 1286,17

Area 416,6392 6 426500,7 394,1495 3 668728,5

Smoothness 419,2019 3 0,000143 413,9573 4 0,0002044

Compactness 407,7729 3 0,004632 308,5648 3 0,004547

Concativity 418,1248 3 0,080241 305,7193 3 0,080673

Concave Points 405,9813 3 0,002273 470,995 3 0,002743

Symmetry 411,8899 3 0,000921 672,4182 3 0,000932

Fractal Dimension 413,8989 4 0,000167 679,9634 3 0,000255

Tabela 1: Caso de Estudo 1- K-Means++ vs Scatter Search (melhores resultados)

 Appendix

 - 166 -

K-Means++ Scatter Search

Time

(sec.)
Nr. Clusters I

Time

(sec.)

Nr.

Clusters
I

A2 854.5374 5 266.0796 821.3367 3 384.8384

A3 862.5715 4 90.18299 794.977 4 96.4486

A8 810.7072 6 105.4446 1277.734 6 94.76789

A11 735.1273 23 6.97E+28 1112.77 23 6.97E+28

A14 1134.509 6 346890.2 1812.912 4 402917.4

A15 1062.561 6 5.51E+09 2031.943 6 5.57E+09

Tabela 2: Caso de Estudo 2 – K-Means++ vs Scatter Search (melhores resultados)

Em termos médios, foi considerando 5.0 , 8.0 , 51 b e MaxIterImp 2

que se obtiveram os melhores resultados. Os resultados apresentados na Tabela 1

foram obtidos com estes parâmetros. O algoritmo Scatter Search desenvolvido foi

capaz de obter melhores resultados que o algoritmo K-Means++ para a maior parte

das variáveis. Com ambos os algoritmos, foi possível reduzir significativamente o

número de funções de pertença das variáveis linguísticas analisadas (Figure 4.24 -

Figure 4.33 e Figure 4.52 - Figure 4.57).

5. Caso de Estudo: Um Sistema de Inferência Fuzzy

Como foi referido na Introdução, a natureza deste caso de estudo é diferente

da dos casos de estudo do capítulo anterior. Neste caso de estudo o objectivo é a

redução do número de funções de pertença em variáveis linguísticas pertencentes a

um sistema de inferência previamente construído. Pretende-se reduzir a

complexidade do sistema sem perder demasiado desempenho.

Este caso de estudo foi desenvolvido no CA3 – UNINOVA [CA3 2006] no

âmbito do projecto “MODI- Simulation of a Knowledge Enabled Monitoring and

Diagnosis Tool for ExoMars Pasteur Payloads” [CA3 2006; Jameaux, Vitulli et al.

2006; Santos, Fonseca et al. 2006; Santos, Martins et al. 2008] para a Agência

Espacial Europeia [ESA 2008]. Foram construídos de forma automática dois

sistemas de inferência: um para um sistema de alarme para a detecção de

 Appendix

 - 167 -

comportamentos anormais durante perfurações em Marte e outro para o

reconhecimento da dureza do terreno a ser perfurado. Os resultados aqui

apresentados utilizam somente o sistema de reconhecimento de terreno.

As variáveis linguísticas de entrada foram criadas automaticamente usando

dados recolhidos por sensores durante a fase de aprendizagem [Santos, Fonseca et

al. 2008]. Durante a fase de aprendizagem foram realizados furos para diferentes

velocidades de translação e rotação em diversos tipos de terreno. Cada variável

linguística representa um sensor diferente e cada função de pertença trapezoidal

numa dada variável linguística corresponde a um diferente subcenário testado. O

resultado da inferência é um dos tipos de terreno possível e o nível de certeza nessa

classificação [CA3 2006; Jameaux, Vitulli et al. 2006; Santos, Martins et al. 2008].

5.1. Algoritmo

O algoritmo adoptado baseia-se no algoritmo proposto por [Setnes, Babuska

et al. 1998], em que os conjuntos difusos mais semelhantes vão sendo fundidos de

forma iterativa até que os restantes conjuntos sejam suficientemente distintos, o que

é feito através da imposição de um limite mínimo para a semelhança entre dois

conjuntos juntar, minS (Figure 5.4). Este algoritmo pode ser visto como um algoritmo

de agrupamento hierárquico.

Viu-se que neste caso de estudo em que o sistema de inferência foi

construído previamente seria importante ter em conta medidas de desempenho do

sistema de inferência. Assim, em vez de se definir um valor para minS, corremos o

algoritmo até todas as funções de pertença serem disjuntas, avaliando o

desempenho do sistema de inferência actual, P(M), e comparando-o com o

desempenho do melhor sistema encontrado até ao momento, P(BestM). O algoritmo

devolve o sistema de inferência com melhor desempenho, de entre os sistemas

gerados durante o algoritmo (Figure 5.8). O algoritmo foi definido para qualquer

medida de desempenho para um sistema de inferência, P(.). Neste caso foi utilizada

a seguinte medida de desempenho (a ser maximizada) :

MCLP

MCLP
F






2
 (9)

 Appendix

 - 168 -

em que a Precisão (P) do sistema de inferência é o quociente entre o número de

amostras bem classificadas sobre o total de amostras e o Nível de Certeza Média

(MCL) é a média dos níveis de certeza para as amostras correctamente

classificadas.

 Se quisermos uma solução de compromisso entre o número de funções de

pertença no sistema e o seu desempenho podemos combinar estes objectivos

considerando

 n
n

FMP
0

1
)(





 (10)

em que  1,0 é o peso dado a F , 0n é o número inicial de funções de pertença e

n é o número de funções de petença do sistema M a ser avaliado.

O algoritmo está ainda definido para uma medida de semelhança entre dois

conjuntos difusos genérica. Neste caso foi usada a medida de semelhança de

Jaccard com :

  
BA

BA
BASJ




, (11)

em que  U C dxxC)(||  e  e  representam a intersecção e a união de

conjuntos difusos.

5.2. Resultados

Foram testados 6 tipos de terreno, 3 valores para a velocidade de rotação e 3

valores para a velocidade de translação da broca, obtendo-se assim 54 funções de

pertença para cada uma das variáveis linguísticas que representam os diferentes

sensores instalados na broca (Figure 5.9).

O algoritmo foi aplicado a cada uma das variáveis linguísticas de forma

sequencial. Os resultados estão resumidos nas tabelas abaixo. Como se pode ver

na Tabela 3 e pelos gráficos das variáveis linguísticas finais (Figure 5.19) foi

possível reduzir de forma muito significativa o número de funções de pertença em

praticamente todas as variáveis linguísticas. Foi também possível melhorar o

 Appendix

 - 169 -

desempenho do sistema de inferência, como se pode ver pela Tabela 4. Por

exemplo, a Precisão do sistema (P), aumentou de 72.33% para 85.47%.

 Original BestP

Rotation Current 54 3

Rotation Voltage 54 5

Rotation Speed 54 3

Thrust 54 17

Torque 54 46

Translational Voltage 54 3

Translational Current 54 3

Translational Speed 54 3

TOTAL 432 45

Tabela 3: Redução do número de funções de pertença

 Original BestP

P 72.33% 85.47%

MCL 34.49% 44.00%

F 46.71% 58.09%

N 423 45

Tabela 4: Comparação dos sistemas de inferência

6. Conclusões

O objectivo desta tese era desenvolver algoritmos para reduzir o número de

funções de pertença numa variável linguística. Este problema foi abordado como um

problema de agrupamento.

Foi desenvolvida uma metaheurística Scatter Search para encontrar boas

soluções para o problema. Usando dois casos de estudo, esta metaheurística foi

comparada com o algoritmo K-Means++. Os resultados obtidos não foram os

esperados. A segunda parte do algoritmo Scatter Search não conseguiu produzir

 Appendix

 - 170 -

boas soluções. No entanto, a primeira parte do algoritmo foi suficiente para obter

melhores resultados que os resultados conseguidos com o K-Means++. Com ambos

os métodos, foi possível reduzir significativamente o número de funções de pertença

em cada variável linguística.

No último capítulo foi apresentado um caso de estudo em que as variáveis

linguísticas faziam parte de um sistema de inferência construído de forma

automática. Neste caso é importante ter em conta o desempenho do sistema de

inferência durante o algoritmo de redução, usando medidas de desempenho

adequadas. Os resultados obtidos foram bastante satisfatórios. Não só foi possível

reduzir de forma bastante significativa o número de funções de pertença no sistema,

mas também foi possível aumentar o seu desempenho.

REDUCING THE NUMBER OF MEMBERSHIP
FUNCTIONS IN LINGUISTIC VARIABLES

Margarida Santos Mattos Marques Gomes

Dissertation presented at Universidade Nova de Lisboa, Faculdade de Ciências e

Tecnologia in fulfilment of the requirements for the Masters degree in Mathematics

and Applications, specialization in Actuarial Sciences, Statistics and Operations

Research

Supervisor: Paula Alexandra da Costa Amaral Jorge

Co-supervisor: Rita Almeida Ribeiro

Lisboa

2009

Acknowledgments

 I would like to thank Professor Rita Almeida Ribeiro for inviting me to work at

CA3/Uninova in the context of the MODI project and for accepting to co-supervise

this thesis. The work developed during this project was the basis of this thesis. Thank

you for introducing me to the fuzzy world.

 I want to express my gratitude to Professor Paula Amaral, for her excellent

guidance and important contribution to overcome some of the difficulties encountered

through this thesis.

 To all my family and friends, especially my friends at CA3, thank you for the

emotional support that gave me strength to finish the thesis.

Abstract

The purpose of this thesis was to develop algorithms to reduce the number of

membership functions in a fuzzy linguistic variable. Groups of similar membership

functions to be merged were found using clustering algorithms. By “summarizing” the

information given by a similar group of membership functions into a new membership

function we obtain a smaller set of membership functions representing the same

concept as the initial linguistic variable.

The complexity of clustering problems makes it difficult for exact methods to

solve them in practical time. Heuristic methods were therefore used to find good

quality solutions. A Scatter Search clustering algorithm was implemented in Matlab

and compared to a variation of the K-Means algorithm. Computational results on two

data sets are discussed.

A case study with linguistic variables belonging to a fuzzy inference system

automatically constructed from data collected by sensors while drilling in different

scenarios is also studied. With these systems already constructed, the task was to

reduce the number of membership functions in its linguistic variables without losing

performance. A hierarchical clustering algorithm relying on performance measures for

the inference system was implemented in Matlab. It was possible not only to simplify

the inference system by reducing the number of membership functions in each

linguistic variable but also to improve its performance.

Resumo

O objectivo desta tese era desenvolver algoritmos para reduzir o número de

funções de pertença numa variável linguística. Foram usados algoritmos de

agrupamento ou clustering para encontrar grupos de funções de pertença

semelhantes. Concentrando a informação dada por um grupo de funções de

pertença semelhantes numa nova função de pertença obtém-se um conjunto mais

reduzido de funções de pertença que representam o mesmo conceito que a variável

linguística original.

Dada a complexidade computacional dos problemas de agrupamento,

métodos exactos para a resolução de problemas de programação inteira apenas

conseguem encontrar uma solução óptima em tempo útil para pequenas instâncias.

Assim, foram usados métodos heurísticos para encontrar boas soluções. Foi

implementado em Matlab um algoritmo do tipo Scatter Search e este foi comparado

com uma variante do algoritmo K-Means. São apresentados resultados

computacionais para dois casos de estudo.

É também apresentado um caso de estudo em que as variáveis linguísticas

pertencem a um sistema de inferência previamente construído a partir de dados

recolhidos por sensores. O objectivo era reduzir o número de funções de pertença

das suas variáveis linguísticas sem comprometer o desempenho do sistema. Foi

implementado em Matlab um algoritmo de agrupamento hierárquico que tem em

conta medidas de desempenho do sistema de inferência. Para além de ter sido

possível simplificar o sistema, a redução do número de funções de pertença levou a

um aumento do desempenho do próprio sistema, através da remoção de alguma

redundância existente no sistema inicial.

 Table of Contents

 - 4 -

Table of Contents

Introduction... 10

Chapter 1. Preliminaries .. 14

1.1 Fuzzy Logic .. 14
1.2 Fuzzy Inference Systems ... 19
1.3 Representation of Membership Functions .. 23

1.3.1 Triangular Membership Functions ... 23
1.3.2 Trapezoidal Membership Functions ... 25
1.3.3 Gaussian Membership Functions .. 26

1.4 Proximity Measures between Membership Functions 27
1.5 Merging Membership Functions ... 30

1.5.1 Merging Trapezoidal Membership Functions ... 30
1.5.2 Merging Triangular Membership Functions ... 32
1.5.3 Merging Gaussian Membership Functions .. 32

1.6 Summary .. 33

Chapter 2. A Clustering Problem Approach ... 35

2.1 The Clustering Problem .. 35
2.2 State of the Art ... 36

2.2.1 Hierarchical Methods ... 37
2.2.2 Classical Partition Clustering Methods .. 41
2.2.3 Graph Based Methods ... 43
2.2.4 Metaheuristics .. 45
2.2.5 Other Methods ... 48

2.3 Formulations in Integer Programming .. 49
2.3.1 A Binary Linear Programming Formulation - I .. 49
2.3.2 A Binary Linear Programming Formulation - II 51
2.3.3 A Formulation using precedence ... 53
2.3.4 Quadratic Formulation ... 55

2.4 Summary .. 56

Chapter 3. Exact Methods ... 57

3.1 Branch-and-Bound ... 57
3.2 Branch-and-Cut .. 59
3.3 Branch-and-Price ... 60
3.4 Computational Results ... 60
3.5 Summary .. 62

Chapter 4. Heuristic Methods Based on Local Search .. 63

4.1 A heuristic approach: K-means ++ ... 64
4.1.1 Initialization .. 64
4.1.2 Iterative Procedure .. 65
4.1.3 Choosing the number of clusters ... 66

4.2 Scatter Search ... 67
4.2.1 Fitness Function .. 69
4.2.2 Diversification Generation Method ... 69

 Table of Contents

 - 5 -

4.2.3 Improvement Method ... 72
4.2.4 Reference Set Update Method .. 72
4.2.5 Subset Generation Method .. 73
4.2.6 Solution Combination Method .. 74
4.2.7 The Final Algorithm .. 74

4.3 Computational Results ... 75
4.3.1 Wisconsin Diagnostic Breast Cancer Data Set 75
4.3.2 Credit Approval Data Set ... 103

4.4 Summary .. 121

Chapter 5. Case Study: a Fuzzy Inference System ... 122

5.1 Overview of the case study: MODI ... 122
5.2 Heuristics ... 127
5.3 Computational Results ... 134
5.4 Summary .. 144

Chapter 6. Conclusions and Future Work.. 145

Chapter 7. References .. 147

APPENDIX ... 157

 List of Figures

 - 6 -

List of Figures

Figure 1.1: Concepts Short, Medium and Tall represented by Crisp Sets 15

Figure 1.2: Concepts Short, Medium and Tall represented by Fuzzy Sets 15

Figure 1.3: Fuzzy min .. 17

Figure 1.4: Fuzzy max ... 18

Figure 1.5: Standard fuzzy complement .. 19

Figure 1.6: Precision vs. Significance in the Real World [Mathworks] 19

Figure 1.7: Example of fuzzy if-then rule [Mathworks] ... 21

Figure 1.8: Example of fuzzy inference system [Mathworks] ... 22

Figure 1.9: Triangular membership function)8,3,1(),,(cba .. 24

Figure 1.10: Symmetrical trapezoidal membership function  )8,6,3,1(,,, dcba 26

Figure 1.11: Gaussian membership function    1,5,  ... 27

Figure 1.12: Merging trapezoidal membership functions)6,4,2,1(A and)7,5,3,2(B

into)7,5.4,5.2,1(C . .. 31

Figure 1.13: Merging Gaussian membership functions    2.0,5, 11  and

   4.0,6, 22  into    3464.0,667.5,  .. 33

Figure 2.1: Diagram of Clustering Algorithms [Gan, Ma et al. 2007] 36

Figure 2.2: Dendogram ... 37

Figure 2.3: Example of single-link method using a MST: (a) distance matrix; (b)
weighted graph; (c) MST; (d) Dendogram ... 45

Figure 2.4: Example of a Linguistic Variable with three fuzzy sets 53

Figure 4.1: Scatter Search Algorithm ... 68

Figure 4.2: Linguistic Variable Radius .. 78

Figure 4.3: Linguistic Variable Texture ... 78

Figure 4.4: Linguistic Variable Perimeter ... 79

Figure 4.5: Linguistic Variable Area .. 79

Figure 4.6: Linguistic Variable Smoothness .. 80

Figure 4.7: Linguistic Variable Compactness .. 80

Figure 4.8: Linguistic Variable Concativity ... 81

Figure 4.9: Linguistic Variable Concave Points .. 81

Figure 4.10: Linguistic Variable Symmetry .. 82

Figure 4.11: Linguistic Variable Fractal Dimension .. 82

Figure 4.12: Evaluation measure I using K-means++ for 5681  K , linguistic

variable Radius ... 83

Figure 4.13: Evaluation measure I using K-means++ for 5001  K (zoom in of

previous plot) 5681  K , linguistic variable Radius ... 84

Figure 4.14: Evaluation measure I using K-means++ for 5681  K , linguistic

variable Texture ... 84

Figure 4.15: Evaluation measure I using K-means++ for 5001  K (zoom in of

previous plot), linguistic variable Texture ... 85

Figure 4.16: Influence of  in fitness function I standard deviation 86

Figure 4.17: Influence of  in best results obtained for fitness function I 87

Figure 4.18: Influence of  in mean results for fitness function I 87

Figure 4.19: Influence of  in mean results for fitness function I 88

 List of Figures

 - 7 -

Figure 4.20: Influence of 1b in mean results for fitness function I 89

Figure 4.21: Influence of 1b in execution time ... 89

Figure 4.22: Influence of Improvement Method in mean ... 90

Figure 4.23: Influence of Improvement Method in execution time 91

Figure 4.24: Best Results for Linguistic Variable Radius .. 93

Figure 4.25: Best Results for Linguistic Variable Texture ... 94

Figure 4.26: Best Results for Linguistic Variable Perimeter ... 95

Figure 4.27: Best Results for Linguistic Variable Area .. 96

Figure 4.28: Best Results for Linguistic Variable Smoothness....................................... 97

Figure 4.29: Best Results for Linguistic Variable Compactness 98

Figure 4.30: Best Results for Linguistic Variable Concativity ... 99

Figure 4.31: Best Results for Linguistic Variable Concave Points 100

Figure 4.32: Best Results for Linguistic Variable Symmetry ... 101

Figure 4.33: Best Results for Linguistic Variable Fractal Dimension 102

Figure 4.34: Linguistic Variable A2 ... 104

Figure 4.35: Linguistic Variable A3 ... 105

Figure 4.36: Linguistic Variable A8 ... 105

Figure 4.37: Linguistic Variable A11 ... 106

Figure 4.38: Linguistic Variable A14 ... 106

Figure 4.39: Linguistic Variable A15 ... 107

Figure 4.40: Evaluation measure I using K-means++ for 6651  K , linguistic

variable A2 .. 108

Figure 4.41: Evaluation measure I using K-means++ for 1501  K (zoom in of

previous plot), linguistic variable A2 ... 108

Figure 4.42: Evaluation measure I using K-means++ for 6651  K , linguistic

variable A3 .. 109

Figure 4.43: Evaluation measure I using K-means++ for 1501  K (zoom in of

previous plot), linguistic variable A3 ... 109

Figure 4.44: Influence of  in fitness function I standard deviation 110

Figure 4.45: Influence of  in best results obtained for fitness function I 111

Figure 4.46: Influence of  in mean results for fitness function I 111

Figure 4.47: Influence of  in mean results for fitness function I 112

Figure 4.48: Influence of 1b in mean results for fitness function I 112

Figure 4.49: Influence of 1b in execution time ... 113

Figure 4.50: Influence of Improvement Method in mean ... 113

Figure 4.51: Influence of Improvement Method in execution time 114

Figure 4.52: Best Results for Linguistic Variable A2 .. 115

Figure 4.53: Best Results for Linguistic Variable A3 .. 116

Figure 4.54: Best Results for Linguistic Variable A8 .. 117

Figure 4.55: Best Results for Linguistic Variable A11 .. 118

Figure 4.56: Best Results for Linguistic Variable A14 .. 119

Figure 4.57: Best Results for Linguistic Variable A15 .. 120

Figure 5.1: MODI drill station ... 123

Figure 5.2: ExoMars Rover (courtesy of ESA [ESA 2008]) ... 123

Figure 5.3: Example of linguistic variable – Rotational Voltage 126

Figure 5.4: Original algorithm [Setnes, Babuska et al. 1998] 128

Figure 5.5: Example of model error .. 129

Figure 5.6: Adapted algorithm ... 130

Figure 5.7: a) Iteration vs Model Error; b) L-method .. 131

 List of Figures

 - 8 -

Figure 5.8: Final algorithm – bestP ... 133

Figure 5.9: Original input linguistic variables (except set points) 135

Figure 5.10: Evolution of performance measure F during the algorithm – Rotation
Current ... 136

Figure 5.11: Evolution of performance measure F during the algorithm – Rotation
Voltage ... 137

Figure 5.12: Evolution of performance measure F during the algorithm – Rotation
Speed ... 137

Figure 5.13: Evolution of performance measure F during the algorithm – Thrust 138

Figure 5.14: Evolution of performance measure F during the algorithm – Torque ... 138

Figure 5.15: Evolution of performance measure F during the algorithm –
Translational Voltage ... 139

Figure 5.16: Evolution of performance measure F during the algorithm –
Translational Current ... 139

Figure 5.17: Evolution of performance measure F during the algorithm –
Translational Speed ... 140

Figure 5.18: Linguistic Variable Translational Voltage before (a) and after using the
adapted (b) and BestP (c) algorithms ... 142

Figure 5.19: Input linguistic variables after optimization with BestP (except set points)
 .. 143

 List of Tables

 - 9 -

List of Tables

Table 3.1: Computational Results ... 61

Table 4.1: K-Means++ vs Scatter Search (best results) .. 92

Table 4.2: K-Means++ vs Scatter Search (best results) .. 115

Table 5.1: MODI Confusion Matrix .. 126

Table 5.2: Number of membership functions before and after optimization 140

Table 5.3: Comparison of inference systems .. 141

 Introduction

 - 10 -

Introduction

 In human reasoning many concepts are not crisp in the sense of being

completely true or false, instead they can be interpreted in a more qualitative way. In

everyday life we use concepts like tall, small, fast, slow, good, bad … that are difficult

to translate numerically. Classical logic and inference have been insufficient to deal

with these apparently vague concepts. Although humans reason with these concepts

in a natural way on a daily basis, our search for scientific knowledge has lead us to

address the problem of representing these concepts in a more systematic and

precise way. As Engelbrecht [Engelbrecht 2002] states, “In a sense, fuzzy sets and

logic allow the modelling of common sense”.

 Since 1965, when Zadeh first formalized the concept of fuzzy set [Zadeh

1965], the field of fuzzy logic and approximate reasoning has attracted the interest of

the scientific community. Fuzzy set theory and fuzzy logic concepts have been

applied in almost all fields, from decision making to engineering [Costa, Gloria et al.

1997; Ross 2004], from medicine [Adlassnig 1986] to pattern recognition and

clustering [Nakashima, Ishibuchi et al. 1998].

 In engineering, fuzzy logic has been used, for instance, in monitoring and

classification applications [Isermann 1998; Ribeiro 2006]. The main goal when

constructing a fuzzy monitoring system is to develop a fuzzy inference system (FIS)

[Lee 1990a; Lee 1990b] to monitor certain variables and warn decisors (or an

automatic system) when variables behaviour is not correct, so that they can

intervene. For the development of monitoring systems, in general, a formal and

precise mathematical understanding of the underlying process is usually needed.

These mathematical models may become too complex to formalize or to implement,

reducing the advantage of an automatic and independent system over a human

expert. Once again, fuzzy knowledge can be used to overcome this problem,

modelling complex systems by mimicking human thinking.

 In decision making, for instance, the advantages of using fuzzy logic is even

more evident. In many cases the processes behind a decision are too complex to be

defined through a precise classical mathematical model and the underlying

 Introduction

 - 11 -

preferences and choices of decision makers have many uncertainties and are better

represented through a fuzzy number. Although crisp decision models do exist, more

and more papers and books propose the use of fuzzy sets and fuzzy models to deal

with the underlying uncertainty [Anoop Kumar and Moskowitz 1991; Lai and Hwang

1994; Ribeiro 1996; Ross 2004].

 The main idea when choosing a fuzzy model over a classical one is to obtain

models that are less complex and easy to interpret. The trade off between

interpretability and precision must be studied for each application. To achieve such

interpretability, it is desirable that the linguistic variables in a fuzzy model [Zadeh

1975] are as intuitive as possible. This in addition to a search for computationally

efficient models motivated the research of this master thesis. When linguistic

variables are constructed directly from expert knowledge its interpretability is usually

clearer. This is not the case when an automatic procedure is used to create the

membership functions of a certain linguistic variable or when membership functions

represent a single sample from a large data base. As an example consider a fuzzy

set used to represent an agent preference between two alternatives and suppose the

number of agents involved in the process to be modelled is considerably large.

 The purpose of this thesis is to develop algorithms to reduce the number of

membership functions in a linguistic variable. The problem of reducing the amount of

data to be analysed, while maintaining as most information as possible from the

original data, is not exclusive from fuzzy domains. Large crisp data sets often have to

be clustered to become treatable [Hartigan 1975; Murtagh 1983; Everitt, Landau et

al. 2001; Gan, Ma et al. 2007]. Clustering data corresponds to finding natural groups

of data that represent similar objects. The same approach can be used to reduce the

number of membership functions in linguistic variables. We start by identifying

clusters of similar membership functions. If each cluster of membership functions can

be “summarized” into a new membership function, we obtain a new and smaller set

of membership functions that approximately represents the same concept as the

initial linguistic variable. This will be the basic approach that will be developed during

this thesis. The problem of reducing the number of membership functions in linguistic

variables will be formulated as a clustering problem. Resulting clusters of

membership functions will be merged in a way of “summarizing” the information

contained in the original membership functions.

 Introduction

 - 12 -

 In Chapter 1 theoretical background that is needed to understand following

development is presented. An introduction to fuzzy logic and fuzzy inference systems

is described. Similarity measures and merging methods that will be used to reduce

the number of membership functions in linguistic variables are also introduced.

Since, as stated before, the problem of reducing the number of membership

functions in a linguistic variable can be stated as a clustering problem, Chapter 2 will

present different approaches to the clustering problem in statistics and optimization

and the state of the art. Also, some possible formulations to the clustering problem

will be discussed.

The complexity of clustering problems makes it difficult for exact methods to

solve them in practical time. Exact methods can only find an optimal solution in a

reasonable amount of time for very small data sets, especially if the number of

clusters is unknown. However, before deciding for heuristic methods, it is important to

use exact methods to better understand the complexity of the problem at hands.

Since it was never the purpose of this thesis to solve these problems through exact

methods, Chapter 3 gives only a brief introduction to some of the exact methods

used for combinatorial and integer programming.

When finding optimal solutions through exact procedures is too time

consuming, it is still usually possible to find good quality solutions in a reasonable

amount of time, using heuristic methods that take advantage of the problem structure

to achieve good solutions (not necessarily optimal) in less computational time. Both a

heuristic and a metaheuristic to solve the automatic clustering problem were

implemented in Matlab. Chapter 4 describes these algorithms and presents

computational results on two case studies. In both case studies several linguistic

variables are pruned. These linguistic variables could later be used in a fuzzy

inference system or any other fuzzy model. The model would be constructed taking

into account the already clustered membership functions instead of the original ones.

Chapter 5 introduces another case study. This case study has different

characteristics from those used in Chapter 5. In this case study linguistic variables

belong to an already existing fuzzy inference system. Instead of using the algorithms

from Chapter 4, a heuristic relying on measures of performance of the inference

system is used. The work presented in this chapter was developed within the scope

 Introduction

 - 13 -

of project “MODI – Simulation of a Knowledge Enabled Monitoring and Diagnosis

Tool for ExoMars Pasteur Payloads”[CA3 2006; Jameaux, Vitulli et al. 2006; Santos,

Fonseca et al. 2006], a CA3 – UNINOVA project for the European Space Agency

[ESA] Aurora programme [ESA 2008]. In this project two inference systems were

constructed: one for monitoring exploratory drilling processes and another capable of

detecting the type of terrain being drilled. These systems were automatically

constructed using data collected from sensors while drilling in different scenarios.

With these systems already constructed, the task was to reduce the number of

membership functions in its linguistic variables without losing performance. This

project was on the origin of the development of the ideas presented in this thesis.

The contribution to this project can also be found in [Gomes, Santos et al. 2008]. This

paper summarizes the main results obtained when reducing the number of

membership functions of MODI’s linguistic variables and was presented at the Eight

International Conference on Application of Fuzzy Systems and Soft Computing

(ICAFS-2008) in September 2008 in Helsinki, Finland.

Finally, Chapter 6 presents the conclusions of this thesis and some guidelines

for future work.

 Chapter 1. Preliminaries

 - 14 -

Chapter 1. Preliminaries

In this Chapter we present the background on fuzzy set theory necessary to

understand the results presented later.

Sections 1.1 and 1.2 introduce the main concepts of fuzzy logic and fuzzy

inference systems. Formal definitions of the concepts of linguistic variable, fuzzy set,

membership function and the most used operations on fuzzy sets are given. A

description of the structure of a fuzzy inference system and of its underlying modules

is also presented.

In section 1.3, analytical and pR representations of some of the most common

types of membership functions - triangular, trapezoidal and Gaussian membership

functions – are introduced.

The notion of similarity or proximity between membership functions will be the

main idea underneath the algorithms for reducing the number of membership

functions in linguistic variables. Section 1.4 describes these concepts and presents

the measures of proximity of fuzzy sets that will be used. After identifying the most

similar membership functions, these will be merged to give rise to a new set of

membership functions simultaneously as small and as representative of the original

linguistic variable as possible. Section 1.5 presents some membership functions

merging methods.

1.1 Fuzzy Logic

In crisp logic, if we want to categorize a group of individuals as tall, medium or

small, we have to distribute those individuals into two disjoint sets, as in Figure 1.1,

by a crisp rule. For instance, if the height of an individual is above 1.75m, the

individual is tall, if the height is bellow 1.60m, the individual is short and otherwise the

individual is medium.

 Chapter 1. Preliminaries

 - 15 -

Figure 1.1: Concepts Short, Medium and Tall represented by Crisp Sets

 This does not accurately represent human reasoning. In our mind, the frontier

between these sets is not as well defined as in Figure 1.1. These concepts are better

represented by fuzzy sets [Zadeh 1965], as in Figure 1.2. This representation allows

for an individual to be considered simultaneously short and medium or medium and

tall, with different degrees of membership. The definition of fuzzy set is given bellow.

Figure 1.2: Concepts Short, Medium and Tall represented by Fuzzy Sets

Definition 1.1 [Zimmermann 1990] - If X is a collection of objects denoted

generically by x then a fuzzy set A
~

 in X is a set of ordered pairs:

   XxxxA A  :)(,
~

 (1.1)

where)(~ x
A

 is called the membership function or grade of membership of x in A
~

which maps X to the membership space M . The range of the membership function is

B

A C

D

Short

G
E

F

Tall Medium

 Chapter 1. Preliminaries

 - 16 -

a subset of nonnegative real numbers whose supremum is finite. Usually M is the

real interval  1,0 .

 ♦

The representation of some common types of membership functions will be

further presented in the next section.

 Zadeh [Zadeh 1975] defines a linguistic variable as a quintuple

),,),(,(MGUxTx in which x is the name of the variable;)(xT is the term set of x , that

is, the collection of its linguistic values; U is a universe of discourse; G is a syntactic

rule which generates the terms in)(xT ; and M is a semantic rule which associates

with each linguistic value)(xT its meaning,)(XM , where)(XM denotes a subset of

U .

 The fuzzy sets in Figure 1.2 represent a linguistic variable Height.

 T-norms and t-conorms generalize the idea of intersection and union of sets to

fuzzy set theory.

Definition 1.2 [Klir and Yuan 1995] – A t-norm is a function      1,01,01,0: t

satisfying the following properties:

Boundary Condition: aat )1,((1.2)

Monotonicity: cbcatbat  if),(),((1.3)

Commutativity:),(),(abtbat  (1.4)

Associativity:)),,(()),(,(cbattcbtat  (1.5)

 ♦

Definition 1.3 [Klir and Yuan 1995] – A t-conorm or s-norm is a function

     1,01,01,0: u satisfying the following conditions:

Boundary Condition: aau )0,((1.6)

 Chapter 1. Preliminaries

 - 17 -

Monotonicity: cbcaubau  if),(),((1.7)

Commutativity:),(),(abubau  (1.8)

Associativity:)),,(()),(,(cbauucbuau  (1.9)

 ♦

The fuzzy minimum and the fuzzy maximum, defined bellow, are the most

used t-norms and t-conorms. Examples of these operators can be found in Figure 1.3

and Figure 1.4, respectively.

Definition 1.4 [Klir and Yuan 1995] – Given two fuzzy sets A and B , their standard

intersection, BA , and standard union, BA , also known as fuzzy minimum and

fuzzy maximum, are defined for all Xx by the equations:

  )(),(min))((xBxAxBA  (1.10)

  )(),(max))((xBxAxBA  (1.11)

 ♦

Figure 1.3: Fuzzy min

 Chapter 1. Preliminaries

 - 18 -

Figure 1.4: Fuzzy max

 To generalize the concept of negation, complement operators are used. The

membership function of a fuzzy set A represents, for each x in its universe of

discourse, the degree to which x belongs to A . The membership functions of the

complement of A represents the degree to which x does not belong to A .

Definition 1.5 [Klir and Yuan 1995] – A complement of a fuzzy set A is specified by

a function    1,01,0: c satisfying the following properties [Klir and Yuan 1995]:

Boundary Conditions: 0)1(;1)0( cc (1.12)

Monotonicity: babcac  if)()((1.13)

 ♦

 The standard complement is defined bellow and exemplified in Figure 1.5.

Definition 1.6 [Klir and Yuan 1995] - The standard complement, A , of a fuzzy set A

with respect to the universal set X is defined for all Xx by the equation:

)(1)(xAxA  (1.14)

 ♦

 Chapter 1. Preliminaries

 - 19 -

Figure 1.5: Standard fuzzy complement

1.2 Fuzzy Inference Systems

 A fuzzy inference system is composed of fuzzy if-then rules relating different

fuzzy sets, which are stored in a knowledge-base, and an inference engine that

performs approximate reasoning [Ross 2004]. As mentioned before, one of the main

advantages of inference systems [Ross 2004] is the ability to build models that mimic

human reasoning and are relatively simple and easy to interpret. These models might

be less accurate than classical and more formal ones but when dealing with real

world applications interpretability, significance and computational efficiency can

overcome some lack of accuracy, as depicted in Figure 1.6, taken from [Mathworks].

Figure 1.6: Precision vs. Significance in the Real World [Mathworks]

 Chapter 1. Preliminaries

 - 20 -

There are two main kinds of fuzzy inference systems, Mamdani and Sugeno

[Lee 1990a; Lee 1990b]. The knowledge base of a Mamdani inference system

contains rules where both the antecedents and the consequents are fuzzy sets.

Sugeno inference systems, on the other hand, use rules with fuzzy antecedents and

crisp consequents. In this thesis only Mamdani inference systems will be used but

the ideas and algorithms developed can also be used in Sugeno inference systems.

Fuzzy if-then rules used in Mamdani inference systems are expressions of the

type [Ross 2004]:

“if x is A then y is B ”

where A and B are fuzzy sets, “ x is A ” is called the antecedent and “ y is B ” is

called the consequent of the rule.

The antecedent part of the rule can have multiple parts connected by fuzzy

operators, typically t-norms and t-conorms giving meaning to the linguistic

expressions “and” and “or” respectively. The consequent can have multiple parts

representing distinct conclusions that can be inferred from the given antecedent. The

firing level or firing strength of the rule is the degree to which the antecedent part of

the rule is satisfied.

To determine the outcome of fuzzy if-then rules given the crisp inputs, we need

to fuzzify the inputs, apply the fuzzy operators that connect the multiple parts of the

antecedent (if needed) to find the firing level of the rule and use an implication

operator to apply the firing level to the consequent part (or parts) [Lee 1990a; Lee

1990b]. The output of the rule is a fuzzy set (or fuzzy sets). These concepts are

better explained through an example. The following example in Figure 1.7 is taken

from Matlab Fuzzy Logic Toolbox documentation [Mathworks].

 Chapter 1. Preliminaries

 - 21 -

Figure 1.7: Example of fuzzy if-then rule [Mathworks]

Given crisps values for the service and food quality the correspondent degrees

of membership in the antecedent are computed and combined through the OR

operator to give the rule firing level. For instance, if we consider service=3 and

food=8, the degrees of membership in excellent (for service) and delicious (for food)

are 0 and 0.7, respectively, and the firing level of the rule is given by   7.07.0,0max  .

The implication operator is then applied taking into account this firing level to obtain

the fuzzy set representing the output of the rule.

 Chapter 1. Preliminaries

 - 22 -

Figure 1.8: Example of fuzzy inference system [Mathworks]

For each rule in the knowledge base the previously described steps are

performed and the resulting fuzzy sets are aggregated through an appropriate

operator (usually standard fuzzy maximum) to obtain a new fuzzy set representing

the output of the system. This fuzzy set is then defuzzified to obtain a crisp value for

the inference. Several defuzzification methods can be used, e.g. the centroid [Lee

1990a; Lee 1990b]. Continuing with the tipping example from Fuzzy Logic Toolbox

documentation [Mathworks], Figure 1.8 shows a possible inference system with three

rules and the necessary steps to determine the tip to be given crisp values for the

service and food quality. In Figure 1.8, the three first fuzzy sets on the right represent

the output of each rule after implication, using the same input values as before, i.e.,

 Chapter 1. Preliminaries

 - 23 -

service=3 and food=8. Aggregating these three fuzzy sets, the fuzzy set in the

bottom right of Figure 1.8 is obtained. In this example the centre of area or centroid

defuzzification method, defined by (1.15), is used and a tip of 16.7% is

recommended.

Definition 1.7 [Klir and Yuan 1995] - Consider a fuzzy set A with membership

function  1,0: XA . The centre of area or centroid defuzzification method returns

the value)(AdCA within X for which the area underneath the graph of membership

function A is divided into two equal subareas. This value is given by the following

expression:

dxx

dxxx

Ad

X

A

X

A

CA

)(

)(

)(



 






 (1.15)

 ♦

1.3 Representation of Membership Functions

Some types of membership functions can be mapped to pR , where p is the

number of parameters of that family of membership functions and each dimension

represents a different parameter. In this section both analytical and pR

representations of some of the most common types of membership functions are

presented.

1.3.1 Triangular Membership Functions

Definition 1.8 - A triangular membership function is given by the analytical

expression:

 Chapter 1. Preliminaries

 - 24 -

  



























otherwise,0

,

,

,,, cxb
bc

xc

bxa
ab

ax

xcba (1.16)

where ba, and c correspond to the x-axis coordinates of the vertices of the triangle,

as in Figure 1.9.

 ♦

There are several possibilities for mapping these membership functions into

3,2, pR p . For instance, for 3p we can consider a vector with the x-axis

coordinates of the vertices of the triangle,  cba ,, , or a vector  RLb  ,, where

abL  and bcR  represent its left and right spreads, respectively. This way

we define a mapping between the family of triangular membership functions and 3R .

If we only consider symmetrical membership functions, i.e., if   RL , we can use

a pair  ,b to represent a membership function of this family. In this way the

mapping can be done in 2R .

Figure 1.9: Triangular membership function)8,3,1(),,(cba

 Chapter 1. Preliminaries

 - 25 -

1.3.2 Trapezoidal Membership Functions

Definition 1.9 - A trapezoidal membership function is given by the analytical

expression:

  





























otherwise,0

,

,

,1

,,,,

dxc
cd

xd

bxa
ab

ax

cxb

xdcba (1.17)

where cba ,, and d correspond to the x-axis coordinates of the vertices of the

trapezoid, as in Figure 1.10.

 ♦

Similarly to the case of triangular membership functions, we can now map the

family of trapezoidal membership functions to 4R and 3R (symmetric trapezoidal). We

can consider a vector with the x-axis coordinates of the vertices of the trapezoidal,

 dcba ,,, , to map this family of membership functions to 4R and if we only consider

symmetrical membership functions, i.e., if
22

cbda 



, we can use a vector   ,,m ,

where
22

cbda
m





 , bc  and ad  , to represent a membership function

of this family.

 Chapter 1. Preliminaries

 - 26 -

Figure 1.10: Symmetrical trapezoidal membership function  )8,6,3,1(,,, dcba

1.3.3 Gaussian Membership Functions

Definition 1.10 – A Gaussian membership function is given by the analytical

expression:

 2  xe (1.18)

where  and  are the mean and spread of the Gaussian function.

 ♦

The mapping of this family of membership functions to 2R is straightforward

and is given by the pair  , .

 Chapter 1. Preliminaries

 - 27 -

Figure 1.11: Gaussian membership function    1,5, 

1.4 Proximity Measures between Membership Functions

As stated in the introduction of this Chapter, the notion of similarity or proximity

between membership functions will be the main idea underneath the algorithms for

reducing the number of membership functions in linguistic variables. When faced with

the problem of reducing the number of terms in linguistic variables, we intuitively

think of joining or merging membership functions that are somehow similar. For crisp

data sets, a similar idea is the foundation of cluster analysis. Clusters are groups of

objects that are similar according to some proximity measure [Hartigan 1975]. The

problem presented in this thesis can then be approached as a clustering problem

where the objects are membership functions and suitable proximity measures are

used.

 In general, similarity measures between membership functions or fuzzy sets

can be classified as geometric or set-theoretical [Miyamoto 1990]. Geometric

measures are based on distance-measures and represent proximity between fuzzy

sets. Set-theoretical similarity measures, based on operations such as union and

intersection, translate the degree to which two fuzzy sets are equal and are not

influenced by scaling and ordering of the domain.

 Chapter 1. Preliminaries

 - 28 -

 One of the most used set-theoretical similarity measures, the fuzzy Jaccard

index or Jaccard similarity measure [Miyamoto 1990], is defined by:

  
BA

BA
BASJ




, (1.19)

where  U C dxxC)(||  and),( is a pair of fuzzy t-norms   and t-conorms)( .

 An overview of some similarity measures for comparing fuzzy sets can be

found in [Chen, Yeh et al. 1995]. The Jaccard similarity measure will be used in the

algorithms presented in Chapter 5, but other similarity measures could also be used.

For instance, since in Chapter 5 only trapezoidal membership functions are used, the

following two similarity measures used for comparing trapezoidal fuzzy sets could be

considered.

The first one can be calculated by the following expression [Chen 1996]:

4

||

1),(

4

1






 i

ii

C

ba

BAS (1.20)

where),,,(4321 aaaaA  and),,,(4321 bbbbB  .

The second one was proposed by Shi-Jay Chen and Shyi-Ming Chen [Chen

and Chen 2008] and is given by:

),max(

),min(
|)|1(

4

||

1),(
),(

4

1




 























BA

BASSB

BA
i

ii

SCGM
yy

yy
xx

ba

BAS BA (1.21)

where










0 if,0

0 if,1
),(

BA

BA

BA
SS

SS
SSB (1.22)

 14 aaSA  (1.23)

 14 bbSB  (1.24)

 Chapter 1. Preliminaries

 - 29 -

and),(

AA yx and),(

BB yx are the centre of gravity points of A and B , respectively.

These points can be easily determined by the simple centre of gravity method

(SCGM) [Chen and Chen 2008], using the following expressions:
























41

41
14

23

,
2

1

,
6

2

aaif

aaif
aa

aa

yA (1.25)

2

)1)(()(1423



 
 AA

A

yaaaay
x (1.26)

 In the previous section it was shown how the most used families of

membership functions can be mapped to pR . By mapping a membership function to

pR the problem to be addressed becomes equivalent to finding clusters given a data

set in pR , provided that we are considering linguistic variables where all membership

functions belong to the same family, which is usually the case. Therefore, the

proximity measures used for comparing objects in pR can also be used to compare

membership functions of the same family. For instance, the Euclidean Distance given

by (1.27) can be used to compare two membership functions of the same family,

 
paaA ,,1  and  pbbB ,,1  , represented in pR . This will be done in the

algorithms presented in Chapter 4 where the problem of reducing the number of

membership functions in linguistic variables will be approached by clustering the

vectors of parameters representing the membership functions.

    



p

i

ii baBAD
1

2
, (1.27)

 Chapter 1. Preliminaries

 - 30 -

1.5 Merging Membership Functions

In this section we discuss some methods on how to merge membership

functions to reduce the number of membership functions in a linguistic variable, by

using the concept of similarity. This section is not intended as an overview of the

possible methods for merging membership functions since these methods could vary

according to several factors: the type of membership functions being merged, the

algorithms in use, the context of the problem, among others.

Membership functions of the types referred in section 1.2 will be considered,

since these are the most used ones. Also, throughout this thesis, it will be assumed

that all membership functions of a certain linguistic variable to be pruned share the

same type (either triangular or trapezoidal) and that the merging of two membership

functions should yield a new membership function of the same type as the original

ones. This simplification does not change the nature of the problem and the

algorithms that will be use to solve it are as general as possible. If one of these

conditions fails we only have to redefine the way two membership functions are

merged but the algorithms still apply.

1.5.1 Merging Trapezoidal Membership Functions

Given two trapezoidal membership functions),,,(4321 aaaaA  and

),,,(4321 bbbbB  , merging them using the method proposed in [Setnes, Babuska et al.

1998] gives a new trapezoidal membership function),,,(4321 ccccC  where:

  111 ,min bac  (1.28)

   22222 1 bac   (1.29)

   33333 1 bac   (1.30)

  444 ,max bac  (1.31)

 Chapter 1. Preliminaries

 - 31 -

 The parameters 2 and 3 belong to the interval  1,0 . These parameters allow

weighting the importance of A and B in the final membership C . In subsequent

chapters this operator will be used with 5.032   . See for instance Figure 1.12,

which shows the trapezoidal membership functions)6,4,2,1(A and)7,5,3,2(B

combined into)7,5.4,5.2,1(C . Notice that (1.28) and (1.31) guarantee that the same

“coverage” as A and B , i.e., points with positive membership in either A or B will

still have positive membership in C . This might be crucial for some applications.

Figure 1.12: Merging trapezoidal membership functions)6,4,2,1(A and)7,5,3,2(B

into)7,5.4,5.2,1(C .

In the previous merging method only two membership functions are merged at

a time. When merging more than two membership functions at a time, a

generalization of this method was used. Given n trapezoidal membership functions

  nidcbaT iiii

i ,,1,,,,  , these will be simultaneously merged into a membership

function   nidcbaT ,,1,,,,  where:

 i
ni
aa

,,1
min


 (1.32)

 



n

i

ib
n

b
1

1
 (1.33)

 Chapter 1. Preliminaries

 - 32 -

 



n

i

ic
n

c
1

1
 (1.34)

 i
ni
dd

,,1
max


 (1.35)

1.5.2 Merging Triangular Membership Functions

It is straightforward to adapt the previous methodology to the case of triangular

membership functions. Considering that a triangular membership function is a

trapezoidal membership function with ii cb  Given n triangular membership

functions   nidbaS iii

i ,,1,,,  , these will be simultaneously merged into a

membership function   nidbaS ,,1,,,  where:

 i
ni
aa

,,1
min


 (1.36)

 



n

i

ib
n

b
1

1
 (1.37)

 i
ni
dd

,,1
max


 (1.38)

1.5.3 Merging Gaussian Membership Functions

In [Song, Marks et al. 1993] the fusion of two Gaussian membership functions

with parameters  11, and  22 , is a Gaussian membership function with

parameters  , defined by the following equations. See for instance Figure 1.13.

21

2211









 (1.39)

 Chapter 1. Preliminaries

 - 33 -

21

3

2

3

12









 (1.40)

Figure 1.13: Merging Gaussian membership functions    2.0,5, 11  and

   4.0,6, 22  into    3464.0,667.5, 

 We can extend this method by defining the merge of n Gaussian membership

functions with parameters   niii ,,1,,  as by the pair  , , where:








n

i

i

n

i

ii

1

1





 (1.41)








n

i

i

n

i

i

1

1

3

2





 (1.42)

1.6 Summary

In this Chapter the concepts of fuzzy set theory necessary to understand the

work presented in this thesis were introduced. The concepts in sections 1.1 and 1.2

 Chapter 1. Preliminaries

 - 34 -

are the basic concepts of fuzzy logic and inference systems. Analytical and pR

representations of three of the most used families of membership functions are given

in section 1.3. In this thesis it will be seen how to reduce the number of terms in a

linguistic variable by merging similar membership functions. Sections 1.4 and 1.5

present the proximity measures between membership functions that will be used in

later chapters and the methods for merging membership functions.

 Chapter 2. A Clustering Problem Approach

 - 35 -

Chapter 2. A Clustering Problem Approach

 As stated in the introduction, the problem of reducing the number of

membership functions in linguistic variables can be formulated as a clustering

problem. We need to identify groups of similar membership functions and merge

them. As a result, we should obtain a smaller set of membership functions capable of

approximately represent the initial linguistic variable.

 In section 2.1 the clustering problem will be introduced. Section 2.2 will

present the state of the art and finally in section 2.3 some integer programming

formulations for the clustering problem will be given.

2.1 The Clustering Problem

There is no uniform formal definition for data clustering. The task of defining the

meaning of clustering have been pointed out as a difficult one by several authors

[Everitt, Landau et al. 2001; Estivill-Castro 2002]. In [Gan, Ma et al. 2007] the

following informal definition can be found:

“Data clustering (or just clustering), also called cluster analysis, segmentation

analysis, taxonomy analysis, or unsupervised classification, is a method of creating

groups of objects, or clusters, in such a way that objects in one cluster are very

similar and objects in different clusters are quite distinct.”

As can be seen in Figure 2.1, two main types of clustering problems exist: hard

clustering and fuzzy clustering [Gan, Ma et al. 2007]. In hard clustering problems an

object or record has to belong to one and only one cluster, that is, a partition of the

data into mutually exclusive groups is obtained. Fuzzy clustering problems on the

other hand, allow an object to belong to several clusters, with different degrees of

membership. In this thesis the problem of reducing the number of membership

functions in a linguistic variable will be formulated as a hard clustering problem.

Therefore the term clustering will be used instead of hard clustering. Approaching

 Chapter 2. A Clustering Problem Approach

 - 36 -

this problem as a fuzzy clustering problem by allowing membership functions to

belong to more than one cluster and defining appropriate membership function

merging techniques is a possibility to be studied in the future.

Figure 2.1: Diagram of Clustering Algorithms [Gan, Ma et al. 2007]

2.2 State of the Art

As stated in the previous section, there is no unique definition of clustering.

Appropriate criteria for clustering have to be chosen for each application, according

to the type of groups to be found in data. This partially explains the existing diversity

of clustering algorithms [Estivill-Castro 2002]. Given this diversity, this state of the art

will not be exhaustive in describing all the existing methods. Some more extensive

reviews can be found in [Sokal and Sneath 1963; Hartigan 1975; Rijsbergen 1979;

Jain and Dubes 1988; Kaufman and Rousseeuw 1990; Jain, Murty et al. 1999;

Everitt, Landau et al. 2001; Engelbrecht 2002; Mirkin 2005; Gan, Ma et al. 2007].

As depicted in Figure 2.1, conventional (hard) clustering algorithms can be

divided into two categories, according to the type of structures they return.

 Chapter 2. A Clustering Problem Approach

 - 37 -

Hierarchical methods return a hierarchy or set of nested partitions while partition

methods return a single partition of the data.

The next subsections will present the main ideas of hierarchical methods

(section 2.2.1), classical partition methods (section 2.2.2), graph based methods

(section 2.2.3), metaheuristics (section 2.2.4) and other clustering methods (section

2.2.5).

2.2.1 Hierarchical Methods

As stated before, hierarchical methods return a hierarchy or set of nested

partitions, as depicted in Figure 2.2. Agglomerative hierarchical algorithms start with

each data point in a different cluster and proceed by merging clusters, according to

some criterion, until there is only one cluster containing all data points in the data set.

Divisive hierarchical algorithms start with one cluster containing all data points and

proceed by splitting clusters until each data point is in a different cluster.

Figure 2.2: Dendogram

An hierarchical agglomerative clustering algorithm consists of the following

steps [Jain, Murty et al. 1999]:

 Chapter 2. A Clustering Problem Approach

 - 38 -

1. Compute the proximity matrix containing the distance between each pair

of data points. Treat each data point as a cluster;

2. Find the most similar pair of clusters using the proximity matrix and

merge them into one cluster;

3. Update the proximity matrix to reflect the merging operation in 2;

4. If all data points are in one cluster, stop. Otherwise, go to step 2.

Different algorithms can be developed according to the way the proximity

measure is updated in step 3. The most used are the single-link, complete link and

Ward’s methods [Jain, Murty et al. 1999].

The single-link method, also known as nearest neighbour method and minimum

method, was first introduced by [Florek, Lukaszewicz et al. 1951] and then

independently by [McQuitty 1957] and [Sneath 1957]. Let 1C and 2C be two clusters

and  ,d a distance measure between two points. In the single-link method, the

distance between 1C and 2C , also referred to as linkage function, is given by:

    yxdCCD
CyCx

,min,
21 ,

21


 (2.1)

The complete-link [King 1967], also known as farthest neighbour method,

updates the proximity measure using the following expression, using the same

notation as in (2.1).

    yxdCCD
CyCx

,max,
21 ,

21


 (2.2)

The Ward’s method [Ward Jr. 1963; Ward Jr. and Hook 1963], also known as

minimum-variance method, aims at forming partitions 1,, PPn  of the original data

minimizing the loss of information, quantified in terms of the error sum of squares

(ESS) criterion, associated with each merge. Consider a partition of the data into K

clusters KCC ,,1  . The information loss is represented by:

 Chapter 2. A Clustering Problem Approach

 - 39 -

 



K

i

iCESSESS
1

)((2.3)

where

      



Cx

T
CxCxCESS )((2.4)

and

 



Xx

x
C

X
1

)( (2.5)

 At each step of the Ward’s method the two clusters whose fusion results in the

minimum increase in loss of information are merged. The linkage function is

computed as the increase in ESS after merging two clusters, i.e.:

        212121, CESSCESSCCESSCCD  (2.6)

where 21CC denotes the cluster resulting from merging 1C and 2C .

 Other linkage functions are described in [Hartigan 1975; Everitt, Landau et al.

2001; Gan, Ma et al. 2007]. In [Kuiper and Fisher 1975] a comparison of several

hierarchical clustering algorithms is done using the Monte Carlo method.

 As stated before, divisive hierarchical algorithms proceed the opposite way of

the agglomerative algorithms. We start with one cluster containing all data points and

proceed by splitting clusters until each data point is in a different cluster. Since given

a cluster C there are 12
1


C
 nontrivial ways of splitting it into two subclusters, it is

not feasible to enumerate all the possible divisions of a cluster to find the optimal

division, except for small clusters [Edwards and Cavalli-Sforza 1965]. Several divisive

hierarchical clustering algorithms can therefore be designed considering different

criteria for choosing the cluster to be split and different methods for splitting clusters.

Examples of divisive algorithms can be found in [Edwards and Cavalli-Sforza 1965;

Spath 1980; Kaufman and Rousseeuw 1990].

 Chapter 2. A Clustering Problem Approach

 - 40 -

To illustrate divisive hierarchical clustering algorithms we will consider the

DIANA (DIvisive ANAlysis) algorithm proposed by [Kaufman and Rousseeuw 1990].

For a given distance measure),(d , the diameter of a cluster C is given by:

  ),(max
,

yxdCDiam
Cyx 

 (2.7)

 Denote the average dissimilarity from a point x to the points in a set S by

 SxD , , i.e.,

    



Sy

yxd
S

SxD ,
1

, (2.8)

 In each step of the DIANA algorithm, the cluster with largest diameter, C

(2C), is split into two subclusters, A and B . These subclusters are determined by

the following procedure:

1. Do CA  and  B ;

2. Do    AxxAxDz  ,\,maxarg ;

3. Move point z from A to B , i.e.,  zAA \ and  zBB  ;

4. Do      AxBxDxAxDz  ,,\,maxarg ;

5. If      0,\,  BzDzAzD then move point z from A to B , i.e.,  zAA \

and  zBB  , and return to 4. Otherwise stop the procedure, returning

A and B .

The procedure starts by considering CA  and  B , i.e., all points belong

to subcluster A . Then the point with highest dissimilarity is moved from subcluster

A to B . The procedure continues by moving points from A to B whenever their

average dissimilarity to B is smaller than the average dissimilarity to the rest of the

points in A .

 Chapter 2. A Clustering Problem Approach

 - 41 -

Generally, hierarchical methods have a complexity of)(2nO for memory space

and)(3nO for CPU time [Hartigan 1975; Murtagh 1983], n being the number of

points to be clustered. Therefore, they become impractical for large data sets.

2.2.2 Classical Partition Clustering Methods

Unlike hierarchical methods, partition methods create a single partition of the

data points.

The most known partition method is the K-Means algorithm [McQueen 1967].

This algorithm is a centre-based method. Each cluster is represented by a centre and

the corresponding clusters have convex shapes. The algorithm starts by choosing

initial K cluster centres from the original data. After the initialization, a partition of the

data is determined by assigning each point to the cluster with closest centre. After

this assignment the centroids of each cluster are calculated according to the

following expression:

 Kix
C

c
iCxi

i ,,1,
1

 


 (2.9)

where ic is the centre of cluster iC .

 Then the points are reassigned to the clusters regarding the closeness to the

centroids. Again, the centroids are recalculated and the algorithm proceeds in the

same way until some stopping criterion is met. Usually the algorithm will proceed until

the cluster centroid and partition no longer change or until a predefined number of

iterations is reached. This way the K-Means algorithm is a heuristic method that tries

to minimize the sum of squared distances from each point to its cluster centre. The

number of clusters K is determined by the user a priori. In practice, if the user can

not identify the correct number of clusters, the algorithm is run for a certain range for

the number of clusters, i.e.  maxmin ,, KKK  , and the best configuration found,

according to some criterion, is chosen.

 Chapter 2. A Clustering Problem Approach

 - 42 -

Many variations of the original K-Means algorithm have been developed.

Some try to improve the efficiency of the algorithm by reducing the computational

effort demanded by the algorithm [Tapas, David et al. 2002]. Others differ from the

original algorithm in the way the initial cluster centres are chosen, as is the case of

the algorithm presented in [David and Sergei 2007] called K-Means++ that will be

further discussed in section 4.1. Some allow merging or splitting clusters according to

centres distances or cluster within variance [Ball and Hall 1965].

Another widely used partition method is the Expectation Maximization

Algorithm (EM) [Dempster, Laird et al. 1977], a model based clustering algorithm. In

model based clustering it is assumed that the data comes from a certain mixture of

distributions 



K

k

kk axfpxf
1

),()(







 



K

k

kk pp
1

1,0 , with each component),(kaxf

representing a different cluster, where),(kaxf is a family of density functions over x

and ka is the parameter vector that identifies a particular density from that family.

Model based clustering algorithms try to optimize the fit between the data and the

proposed model.

To estimate the individual cluster parameter the EM algorithm uses the

maximum likelihood approach. The logarithm of the likelihood of the observed data

given by (2.10) is maximized under the assumption that the data comes from a

mixture of distributions.

  








 
 

N

i

K

k

kik ayfpL
1 1

,log (2.10)

Maximization of (2.10) can be reformulated as the maximization of (2.11).

   
   


N

i

N

i

K

k

ikik

K

k

kiik

N

i

K

k

kik ggfayfgpgL
1 1 111 1

logloglog (2.11)

where

 

 



K

j

kjk

kik
ik

ayfp

ayfp
g

1

,

,
 (2.12)

 Chapter 2. A Clustering Problem Approach

 - 43 -

and K and N are the number of clusters and data points, respectively.

The EM algorithm can then be summarized in the following way [Mirkin 2005]:

1. Start with any initial values of the parameters kk ap , and ikg ,

Ni ,,1 , Kk ,,1 ;

2. (E-step) Given kp and ka estimate ikg ;

3. (M-step) Given ikg find kp and ka maximizing (2.11);

4. Repeat steps 2 and 3 until there is no change in the parameter values

(or the absolute difference is below some previously defined threshold).

2.2.3 Graph Based Methods

The relationship between graph theory and the clustering problem has been

discussed by [Wirth, Estabrook et al. 1966; Jardine and Sibson 1968; Gower and

Ross 1969; Hubert 1974; Hansen and Delattre 1978], among other authors.

Algorithms that take advantage of the graph theoretical properties of data are called

graph based methods.

The single-link and complete-link hierarchical methods discussed in section

2.2.1 can be approached from a graph theoretical view. More computationally

efficient algorithms for single and complete link hierarchical methods than the ones

already presented are described in [Gower and Ross 1969; Hansen and Delattre

1978; Jain and Dubes 1988].

A minimum spanning tree (MST) of a connected, undirected, weighted graph

is a subgraph that connects all its edges without cycles (tree) with minimum weight.

Several methods for finding a minimum spanning tree of a graph have been

developed [Kruskal 1956; Prim 1957]. In [Jain and Dubes 1988] the following

algorithm for the single-link method using a minimum spanning tree is given, where

the data is represented by a complete weighted graph  WEVG ,, , V being the

vertices of the graph representing the objects or data points to be clustered, E being

 Chapter 2. A Clustering Problem Approach

 - 44 -

the set of edges connecting all pairs of vertices and W being the weights of the

edges representing the distance between two points:

1. Begin with each object in its own cluster and find the MST of G ;

2. Merge the two clusters connected by the MST edge with smallest

weight to define the next clustering;

3. Replace the weight of the edge selected in 2 by a weight larger than the

largest proximity;

4. Repeat steps 2 and 3 until all objects are in one cluster.

Figure 2.3 presents an example of this procedure. The information in the

distance matrix D serves as a basis for the construction of the graph in Figure 2.3

(b). Figure 2.3 (c) depicts a possible minimum spanning tree for this graph. Merging

the clusters corresponding to connected vertices in the MST from the smallest to the

largest edge weight gives the dendogram in Figure 2.3 (d).

(a) (b)

 Chapter 2. A Clustering Problem Approach

 - 45 -

(c) (d)

Figure 2.3: Example of single-link method using a MST: (a) distance matrix; (b)

weighted graph; (c) MST; (d) Dendogram

Just as the single-link method can be approached using a minimum spanning

tree, the complete-link method can be approached using node colouring theory

[Hansen and Delattre 1978]. Other graph based methods for clustering data are

reviewed in [Gan, Ma et al. 2007].

2.2.4 Metaheuristics

Heuristic approaches consist on a search strategy starting from a given

feasible or unfeasible solution or set, an iterative process designed to favour the

improvement of the solutions regarding feasibility and value and a stopping criterion.

In [Colin 1993], the following definition of heuristic is given:

Definition 2.1 – A heuristic is a technique which seeks good (i.e. near-optimal)

solution at a reasonable computational cost without being able to guarantee either

 Chapter 2. A Clustering Problem Approach

 - 46 -

feasibility or optimality, or even in many cases to state how close to optimality a

particular feasible solution is.

 ♦

The most classical clustering methods in statistics and data mining, namely

hierarchical clustering methods and partitioning methods, like K-Means [Gan, Ma et

al. 2007], are heuristic. They take advantage of the problem structure to find good

solutions but they cannot guarantee optimality.

The most basic heuristic methods may be trapped at local optima. Although it

is possible that this local optimum is also the global optimum in general this will not

be the case. To overcome this deficiency more sophisticated and elaborated

heuristics incorporate techniques to increase the search space and escape local

optima. With this purpose, in recent decades more algorithms that use information

regarding the search process itself have been developed. These methods are

designated as metaheuristics. In [Hillier and Lieberman 2005], the following definition

of metaheuristics in given.

Definition 2.2 – A metaheuristic is a general kind of solution method that

orchestrates the interaction between local improvement procedures and higher level

strategies to create a process that is capable of escaping from local optima and

performing a robust search of a feasible solution.

 ♦

 Among the most well-known metaheuristics we have Simulated Annealing,

Genetic Algorithms and Tabu Search.

Simulated Annealing, proposed by [Kirkpatrick, Gelatt et al. 1983], mimics the

process of healing and cooling of material. At each iteration of the algorithm we move

from the current solution to a neighbour solution, similarly to what happens in a

descent heuristic for minimization. However, instead of moving always in the direction

of improvement, worse solutions are accepted with a probability that depends on the

magnitude of increase of the cost function (in a minimization problem) and on a

parameter representing the temperature of the system. This parameter is decreased

during the algorithm, simulating the cooling of material, until the temperature is close

 Chapter 2. A Clustering Problem Approach

 - 47 -

enough to zero. Following thermodynamics rules, at high temperatures the probability

of accepting a randomly generated neighbor solution is higher. As the temperature

decreases, this probability of acceptance also decreases. Application of the

Simulated Annealing algorithm to the clustering problem can be found in [Brown and

Huntley 1990; McErlean, Bell et al. 1990; Shokri and Alsultan 1991].

Genetic Algorithms [Holland 1975] are population based methods and are

inspired in Charles Darwin theory of evolution. During the algorithm, a population

consisting of a usually large set of solutions (chromosomes) is evolved through

crossover and mutation operators. Pairs of solutions (parents) are chosen randomly

to serve as input for the crossover operator that will generate one or more children.

Fittest members are more likely to become parents, thus the next generation tends to

be more fitted than the current one, following the natural selection and the principle of

survival of the fittest. Additionally, with a typically small probability, mutation of one or

more genes (variables) of a chromosome occurs. Through the natural selection

process, at the end of the algorithm we expect a population of good quality solutions.

Genetic Algorithms have been widely used on the clustering problem. A variety of

papers on this subject have been published, for instance [Jiang and Ma 1996; Maulik

and Bandyopadhyay 2000; Cheng, Lee et al. 2002; Gautam and Chaudhuri 2004;

Jimenez, Cuevas et al. 2007; Petra 2007].

Unlike the two previous metaheuristics, Tabu Search [Glover 1986; Glover and

Laguna 1997] is a deterministic process. The keyword in Tabu Search is “memory”.

Tabu Search uses different structures of memory – long term and short term memory

- to control the search process. In this way it is possible to avoid search cycles,

conduct the search to domains of the solution space that would otherwise be

skipped, concentrate the search around good quality solutions and avoid getting

stuck at local optima. By concentrating the search around good solutions, usually

called elite solutions, we are intensifying the search process. On the other hand, by

moving to solutions somehow distant to the ones already visited, to avoid local

optima, we are diversifying the search process. Efficiency of the Tabu Search

Algorithm widely depends on a good balance between these two opposite strategies

– intensification and diversification. Just as the previous metaheuristics, Tabu Search

has also been applied to the clustering problem [Joyce and Michael 2000; Sung and

Jin 2000; Yongguo, Zhang et al. 2008].

 Chapter 2. A Clustering Problem Approach

 - 48 -

In this thesis a Scatter Search algorithm [Glover 1977] will be implemented. In

a Scatter Search algorithm a reference set of both good quality and diverse solutions

chosen from a larger original set of solutions is sequentially updated to produce

better solutions. The algorithm implements both diversification and intensification

search strategies to achieve a more intelligent search. Scatter Search algorithms

were already applied to the clustering problem in [Pacheco 2005; Abdule-Wahab,

Monmarché et al. 2006]. The scatter search algorithm that was implemented is based

on the algorithms presented in these two papers. The algorithm is presented in detail

in section 4.2.

2.2.5 Other Methods

Density-based or grid-based clustering methods are useful for finding

arbitrarily shaped clusters consisting of denser regions than their surroundings in

large multidimensional spaces. As pointed out in [Gan, Ma et al. 2007], “the grid-

based clustering approach differs from the conventional clustering algorithms in that

it is concerned not with the data points but with the value space that surrounds the

data points”. The main idea of a density-based cluster is that for each point of a

cluster the density of points in its ε-neighbourhood, for some 0 , has to exceed

some threshold [Ester, Kriegel et al. 1996]. The most well-known density-based

algorithm, proposed by [Ester, Kriegel et al. 1996], is called DBSCAN.

For high dimensional data it is hard to find good clusters using conventional

clustering algorithms. Dimension reduction or feature selection techniques can be

used before performing clustering, thus reducing the dimensionality of the data to be

clustered. However, these approaches imply a loss of information and consequently

the clusters obtained may not fully reflect the original structure of a given data set

[Gan, Ma et al. 2007]. The goal of subspace clustering or projected clustering is to

find clusters embedded in subspaces of the original data space with their own

associated dimensions. The first subspace clustering algorithm, CLIQUE, was

proposed by [Agrawal, Gehrke et al. 1998]. Other subspace clustering algorithms

were proposed by [Agrawal, Gehrke et al. 1998; Aggarwal and Yu 2000; Procopiuc,

 Chapter 2. A Clustering Problem Approach

 - 49 -

Jones et al. 2002], among others. In this thesis we are clustering data points

representing the parameters of membership functions belonging to a certain family of

membership functions, typically Triangular, Trapezoidal or Gaussian membership

functions. Since these families of membership functions can be described using a

small number of parameters, the dimensionality of the data involved is low.

Therefore, the methodology for subspace clustering will not be further described.

Details on some of these algorithms can be found in [Gan, Ma et al. 2007].

2.3 Formulations in Integer Programming

 In this section some formulations of the clustering problem to be solved are

given. In these formulations only binary and integer variables will be used. The

problem consists of clustering n fuzzy sets into k clusters, nk 1 . The number of

clusters is not known a priori. In all formulations ijd denotes the distance between

fuzzy sets i and j . If the fuzzy sets are represented in pR , the Euclidean Distance

defined by (1.27) or other distance for comparing objects in pR can be used. It is also

possible to use distance measures based on similarity measures for comparing fuzzy

sets. The formulations presented are as general as possible and do not assume any

particular distance measure.

2.3.1 A Binary Linear Programming Formulation - I

This first formulation is a linear programming formulation using only binary

variables.

  
  


n

i

n

k

k

n

ij

n

k

ijkij zyd
n

Min
1 11 1

21
 (2.13)

..ts

 Chapter 2. A Clustering Problem Approach

 - 50 -

 nix
n

k

ik ,,1,1
1




 (2.14)

 nkjiyxx ijkjkik ,,1,,,1  (2.15)

 nkjiyxx ijkjkik ,,1,,,2  (2.16)

 nkjiyx ijkik ,,1,,,  (2.17)

 nkzMy k

n

i

n

j

ijk ,,1,
1 1


 

 (2.18)

       nknjnizyx kijkik ,,1,,,1,,,1,1,0,   (2.19)

As can be seen by the integrality conditions (2.19), ikx , ijky and kz are binary

variables. Variable ikx takes value 1 if and only if point i is in cluster k , ijky equals 1

if and only if points i and j belong to cluster k and kz takes value 1 if and only if

cluster k is not empty. Notice that jkikijk xxy  and ikiik xy  .

One of the most used criteria for clustering is to minimize the sum of squared

distances (or equivalently the mean of squared distances) of data points belonging to

the same cluster. However, if the number of clusters is not defined a priori, this yields

an optimal solution where each data point forms a different cluster, with an optimal

value of zero. Therefore the objective function has to account for the number of

clusters formed. Since 1
1




n

k

ijky if points i and j belong to the same cluster and

0
1




n

k

ijky otherwise,  
  

n

i

n

ij

n

k

ijkij yd
n 1 1 1

21
 is the mean of squared distances of all pair of

points belonging to the same cluster. The number of non-empty clusters is given by




n

k

kz
1

 and the parameter 0 is not only used to control the importance given to

both objectives – minimization of mean of squared distances and minimization of the

number of clusters – but also to deal with the difference in scales present in the

objective function.

 Chapter 2. A Clustering Problem Approach

 - 51 -

Equations (2.14) ensure that each point belongs to exactly one cluster.

Equations (2.15) translate that if point i belongs to cluster k (1ikx) and point j

belongs to cluster j (1jkx), then both clusters belong to cluster k (1ijky). The

reciprocal is ensured by minimization of the objective function but can also be

expressed by equations (2.16) or by equations (2.17). Equations (2.18), where M is

a large constant, allow identifying if the clusters are empty or not. If 1ijky for some

i and j then 1kz , i.e., the cluster is not empty. Minimization of the objective

function guarantees that 0kz whenever cluster k is empty.

2.3.2 A Binary Linear Programming Formulation - II

This formulation is another linear programming formulation using only binary

variables. In the previous formulation the ikx variables are redundant, since iikik yx  .

Also, since jikijk yy   nji ,,1,  , it is possible to further reduce the number of

variables in the formulation by considering only variables ijky for  ni ,,1 and

 nij ,, .

  
  


n

i

n

k

k

n

ij

n

k

ijkij zyd
n

Min
1 11 1

21
 (2.20)

..ts

 niy
n

k

iik ,,1,1
1




 (2.21)

     nknijniyyy ijkjjkiik ,,1,,,1,,,1,1   (2.22)

     nknijnizy kijk ,,1,,,,,,1,   (2.23)

       nknijnizy kijk ,,1,,,,,,1,1,0,   (2.24)

 Chapter 2. A Clustering Problem Approach

 - 52 -

In this formulation ijky are binary variables, as can be seen by the integrality

conditions (2.24), taking value 1 if and only if points i and j belong to cluster k and

kz is a binary variable that takes value 1 if and only if cluster k is not empty. Notice

that 1iiky if and only if point i belongs to cluster k .

The objective function in (2.20) was already explained in the previous

formulation. Equations (2.21) ensure that each point belongs to exactly one cluster,

as was the case for equations (2.14). Equations (2.22), similarly to equations (2.15),

translate that if point i belongs to cluster k (1iiky) and point j belongs to cluster j

(1jjky), then both clusters belong to cluster k (1ijky). The reciprocal is ensured

by minimization of the objective function. Equations (2.23) allow identifying if the

clusters are empty or not. If 1ijky then 1kz , i.e., the cluster is not empty.

Minimization of the objective function guarantees that 0kz whenever cluster k is

empty.

Additional valid inequalities, i.e., constraints that are satisfied by all admissible

solutions, can be considered. The following inequalities are just some of the possible

valid inequalities that can be used.

     nknijniyy ijkiik ,,1,,,1,,,1,   (2.25)

     nknijniyyy ijkjjkiik ,,1,,,1,,,1,2   (2.26)

 nkzMy
n

i

n

ij

kijk ,,1,
1


 

 (2.27)

Equations (2.25), similarly to equations (2.17) express that if both points i and

j are in cluster k , then point i is in cluster k . Equations (2.26) can be immediately

obtained from equations (2.25). Just like equations (2.23), Equations (2.27) allow to

identify if the clusters are empty or not. These equations could replace equations

(2.23), as in the case of the previous formulation.

 Chapter 2. A Clustering Problem Approach

 - 53 -

2.3.3 A Formulation using precedence

 In the previous formulation, we do not take advantage of the fact that

membership functions have their domain in R . Consider the linguistic variable in

Figure 2.4. In the previous formulation, membership functions 1A and 3A can belong

to the same cluster even if 2A does not belong to this cluster. Intuitively this should

not happen. The space of admissible solutions can be reduced if we consider an

ordering of the membership functions.

Figure 2.4: Example of a Linguistic Variable with three fuzzy sets

Consider that an ordering of the membership functions to be clustered

nAAA  21 exists. Then we can formulate the problem if the following way.

 
 


n

i

n

n

ij

ijij zxd
n

Min

1 1

21
 (2.28)

..ts

11 z (2.29)

 1,,1,11  nizz ii  (2.30)

 1,,1,01  nizz ii  (2.31)

 Chapter 2. A Clustering Problem Approach

 - 54 -

   nijnixzz ijij ,,1,1,,1,1   (2.32)

   nijnixMzz ijij ,,1,1,,1,)1(  (2.33)

   ninzi ,,1,,,1   (2.34)

     nijnixij ,,1,1,,1,1,0   (2.35)

where iz is the number of the cluster that contains membership function iA ,

 ni ,,1 , ijx is a binary variable that takes value 1 if and only if membership

functions iA and jA belong to the same cluster,    nijni ,,1,1,,1   , and

M is an arbitrarily large constant.

 The equality in (2.29) guarantees that the first membership function is always

in the first cluster. Since  nizi ,,1,  are integers, inequalities (2.30) and (2.31)

state that two consecutive membership functions iA and  niAi ,,1,1  are in the

same cluster (ii zz 1) or 1iA is in the cluster immediately after the cluster that

contains iA (11  ii zz). Equations (2.32) and (2.33) make the correspondence

between the two groups of variables. Membership functions iA and  njiAj ,,1,, 

belong to the same cluster (1ijx) if and only if they have the same cluster number

(ji zz ).

 The objective function has the same meaning as the one in (2.20).

 This formulation assumes that an ordering of the fuzzy sets exists. There are

several methods for ordering fuzzy sets [Shu-Jen and Hwang 1992]. However, this

ordering is not unique. It varies according to the method used. Therefore, an optimal

solution to the previous formulation is only optimal for that particular ordering and not

for the problem itself.

 Chapter 2. A Clustering Problem Approach

 - 55 -

2.3.4 Quadratic Formulation

The previous formulations were all linear formulations. It is also possible to

formulate this problem as a quadratic integer programming problem. Although the

problem is easy to formulate with a quadratic objective function, quadratic problems

are usually more difficult to solve then linear ones.

  
  


n

k

n

k

k

n

i

n

ij

jkikij cxxd
n

Min

1 11 1

21
 (2.36)

..ts

 nix
n

k

ik ,,1,1
1




 (2.37)

 nkMcx k

n

i

ik ,,1,
1




 (2.38)

 nkcx k

n

i

ik ,,1,
1




 (2.39)

     njnixik ,,1,,,1,1,0   (2.40)

   nkck ,,1,1,0  (2.41)

where ijx is a binary variable that takes value 1 if and only if membership function i

is in cluster k ,  nki ,,1,  , kc is a binary value that takes value 1 if and only if

cluster k is not empty,  nk ,,1 , and M is an arbitrarily large constant.

 Equations (2.37) state that each membership function is in exactly one cluster.

Equations (2.38) and (2.39) are equivalent to  nkcx k

n

i

ik ,,1,00
1




. By

identifying if the clusters are empty or not it is possible to get the number of non-

empty clusters to be used in the objective function.

 Chapter 2. A Clustering Problem Approach

 - 56 -

2.4 Summary

The problem of reducing the number of membership functions in linguistic

variables can be formulated as a clustering problem, as explained before. Therefore,

this chapter started by introducing the clustering problem and the state of the art in

this area (sections 2.1 and 2.2) and proceeded by discussing some integer

programming formulations to the clustering problem (section 2.3).

 Chapter 3. Exact Methods

 - 57 -

Chapter 3. Exact Methods

 The initial purpose of the work in this thesis was not to solve the reduction of

membership functions through exact methods. The complexity of clustering problems

is one of the main reasons why exact methods are in general not efficient and so

finding an optimal solution in a reasonable amount of time will most likely only be

possible for small data sets, particularly if the number of clusters is unknown.

Nevertheless it seemed important to explain, even briefly, how to approach the

problem if a global optimal solution is intended. Therefore, this chapter presents only

a brief introduction to some of the exact methods used for combinatorial and integer

programming.

 Finding an optimal solution of a discrete optimization problem is in general

difficult and known methods are not efficient for large instances. The complexity that

characterizes these NP-Hard problems has the consequence that the computational

implementation of exact algorithms is in general too heavy in terms of memory and

too time-consuming for large problems. Partial enumeration methods, like Branch-

and-Bound [Land and Doig 1960] or Branch-and-Cut [Wolsey 1998], are examples of

such algorithms. The dimension of the instances above which is no more practical to

apply an exact method varies according to the problems under study. This is one

reason why exact methods should always be, at least, tested before switching to a

heuristic approach. Cluster problems are among those problems for which a

dimensionality above 40 variables makes the application of exact methods almost

impractical [Lourenço 1995].

3.1 Branch-and-Bound

The Branch-and-Bound algorithm [Land and Doig 1960] is a divide and

conquer technique that implicitly enumerates all feasible solutions of an integer (or

mixed integer) linear programming problem. The three main aspects of this algorithm

are the branching, fathoming or pruning and bounding strategies used. The original

problem is divided into smaller problems by the branching strategy, usually

 Chapter 3. Exact Methods

 - 58 -

represented by a solution tree. The bounding strategy tries to update the lower and

upper bound on the optimal value of the objective function, L and U , by solving the

linear relaxations of the integer problems considered, providing information that

allows pruning some of the branches of the solution tree.

Consider the integer linear programming maximization problem defined by

(3.1).

  integers and0,,

..

1 





nxxx

bAxts

cxZMax



 (3.1)

and its linear relaxation

  0,,

..

1 





nxxx

bAxts

cxZMax



 (3.2)

To initialize the upper bound U the linear relaxation (3.2) at the root node is

solved through a linear programming method. The lower bound is set to L .

If the optimal solution *x of the linear relaxation problem is integer, i.e., if

nxx ,,1  are integers, then this is also the optimal solution of the integer problem.

Otherwise, a branching variable jx is chosen among the basic variables that have

non-integer values in this solution and two sub-problems are considered by adding

the constraints  *

jj xx  and   1*  jj xx to (3.2), where  a stands for the largest

integer smaller or equal to a.

The bounding strategy is applied for each new sub-problem. If an integer

optimal solution for one of the sub-problems is found, we may try to update L

because this solution is a feasible solution of the original problem. If subz denotes the

objective function value of such solution we have L =  subzL,max .

The pruning strategy allows reducing the number of nodes in the solution tree

that need to be explicitly visited. If a sub-problem satisfies one of the following

conditions – pruning by optimality, pruning by bound or pruning by infeasibility

 Chapter 3. Exact Methods

 - 59 -

[Wolsey 1998] - the corresponding node will node be branched. These conditions are

presented below:

1. Pruning by optimality – an integer optimal solution to the sub-problem was

found;

2. Pruning by bound – Lzsub  , i.e., solutions found by branching this node

will always be worse than a feasible known solution whose value is equal

to the lower bound;

3. Pruning by infeasibility – the sub-problem (and thus all possible branches

of this node) is infeasible.

The branching, bounding and pruning steps are iteratively applied to each sub-

problem until there are no remaining non-pruned sub-problems or until *ZUL  . In

this case either an optimal solution was found or the problem is infeasible. It is also

common to stop the algorithm when the amplitude of the interval  UL, is small,

where the concept small is given by considering an error measure and threshold for

this error, but in this case optimality is not guaranteed.

3.2 Branch-and-Cut

The Branch-and-Cut algorithm [Wolsey 1998] is a hybrid of Branch-and-Bound

and cutting plane algorithms. A cutting plane for an integer programming problem is a

valid inequality, i.e., a constraint that is satisfied by all admissible solutions, that

reduces the admissible region of the linear programming relaxation.

 Several implementations of this algorithm exist. Basically, cutting planes are

generated during the Branch-and-Bound algorithm. The goal is to find better bounds

in each node in order to reduce the number of nodes to be visited. As stated in

[Wolsey 1998], “though this may seem to be a minor difference, in practice there is a

change of philosophy”. Instead of quickly solving the node problems, emphasis is

given to improving the formulation at each node.

 Other than generating cutting planes, additional strategies can be used to

improve the formulation at each node. Some of these strategies consist of fixing

 Chapter 3. Exact Methods

 - 60 -

variables to the only possible value that can take part in an optimal solution or

eliminating redundant constraints. The efficiency of a Branch-and-Cut algorithm

depends on a good implementation of such strategies. Knowing when to include or

eliminate constraints is a major aspect of this algorithm. Although general

implementations exist, to solve a specific (and more complex) problem an

implementation that takes advantage of the underlying problem structure should be

developed.

3.3 Branch-and-Price

The Branch-and-Price algorithm [Barnhart, Johnson et al. 1998] is another

variation of Branch-and-Bound. Just like in Branch-and-Cut, emphasis is given to the

strategies employed in each node to obtain better solutions or better bounds.

However, instead of using cutting planes (row generation) to improve the

formulations at each node, column generation methods are used.

This algorithm is especially suited for solving problems with a large number of

variables. The basic idea is that in many problems most of the variables will have a

zero value in the optimal solution. By using column generation, a master problem

corresponding to the original problem but where only a subset of variables is

considered can be more efficiently solved. To identify which columns should enter

the master problem, subproblems based on the dual linear programming problem,

called pricing problems, are solved. This allows choosing variables with positive

(negative) reduced cost in the minimization (maximization) problem that should

therefore enter the master problem. When no such variables exist and the integrality

conditions are not satisfied, branching is performed as in the original Branch-and-

Bound algorithm.

3.4 Computational Results

To better understand the dimension of the problem and the difficulty of using

exact methods for clustering some computational experiments were done. These

experiments were done using data from the case study that will be presented in

 Chapter 3. Exact Methods

 - 61 -

Chapter 5. The formulation presented in section 2.3.1 was implemented in GAMS

and latter run on CPLEX. In these experiments the distance between two

membership functions i and j , ijd , was chosen to be ijij sd 1 , where ijs is the

Jaccard Similarity given by (1.19) using the fuzzy minimum and fuzzy maximum,

given by (1.10) and (1.11), as intersection and union operators.

All experiments were done in Pentium(R) 4 CPU 2.6 GHz, 504 MB of RAM.

First we considered linguistic variables with 12 membership functions each.

The results are summarized in Table 3.1. Instead of running CPLEX until an optimal

solution was found (and proved to be optimal) a threshold of 10% for the relative gap

between the lower and upper bounds on the objective function was used as a

stopping criterion. As can be seen in Table 3.1, CPLEX took less than 2 minutes –

40.41 seconds in average – to stop. Given these results we ran CPLEX for linguistic

variables with 54 membership functions to see if exact methods could still be used to

solve these problems in a reasonable amount of time. However, for these problems

CPLEX stopped because lack of memory, without returning an optimal solution.

These results show what was already expected by the combinatorial nature of

clustering problems: exact methods can only deal with very small data sets.

Solution

Best
Possible

Absolute
Gap

Relative
Gap

Elapsed Time
(sec.)

Number of
Clusters

Rotation Current 0.767505 0.690776 0.076729 0.099972 95.063 8

Rotation Voltage 0.898916 0.809514 0.089402 0.099455 33.672 8

Rotation Speed 0.768401 0.694777 0.073624 0.095815 19.313 7

Thrust 0.939391 0.845645 0.093746 0.099794 41.172 10

Torque 0.75501 0.680006 0.075003 0.099341 45.922 7

Translational Voltage 0.58426 0.527426 0.056835 0.097276 30.219 5

Translational Current 0.555146 0.501321 0.053825 0.096956 26.531 4

Translational Speed 0.684707 0.616784 0.067923 0.099199 31.422 7

Table 3.1: Computational Results

 Chapter 3. Exact Methods

 - 62 -

3.5 Summary

In this Chapter some exact methods for solving integer problems were briefly

described. These methods consist of a set of strategies to methodically examine the

search space of an integer or mixed integer problem without having to implicitly

enumerate all possible solutions. Even though these methods allow to optimally solve

many problems that by explicit enumeration could not be solved in a reasonable

amount of time, for a wide class of combinatorial problems the search for an optimal

solution is still too time-consuming. When this is the case, heuristic methods such as

the ones described in Chapter 4 can provide good quality solutions with less

computational effort without guaranteeing optimality.

 Chapter 4. Heuristic Methods Based on Local Search

 - 63 -

Chapter 4. Heuristic Methods Based on Local

Search

In real applications, the dimension and complexity of combinatorial and integer

problems and the need to find good solutions in useful time have lead to the

development of algorithms that take advantage of the problem structure to achieve

good solutions (not necessarily optimal). Computational implementations of these

algorithms, contrary to exact methods, are quite efficient regarding time and memory.

Whenever the application of global optimization methods is not advisable, it is still

usually possible to find good quality solutions by using heuristic methods.

As was pointed out in section 2.2.4, the most classical clustering methods in

statistics and data mining are heuristic and can therefore be trapped at local optima.

For this reason, a variety of metaheuristics have been applied to the clustering

problem.

In this thesis a Scatter Search algorithm was implemented. Although this

metaheuristic is not as well-known as the metaheuristics described in section 2.2.4, it

already proved to be efficient at finding good quality solutions for many problems.

Scatter Search has been applied to find solutions to the nodes graph coloring

problem [Jean-Philippe and Jin-Kao 2002], to vehicle routing problems [Russell and

Chiang 2006], to clustering problems [Pacheco 2005; Abdule-Wahab, Monmarché et

al. 2006], among many other applications.

 Both a heuristic and a metaheuristic to solve the automatic clustering problem

were implemented in Matlab. Section 4.1 describes a heuristic approach called K-

Means++ [David and Sergei 2007]. Section 4.2 describes the general Scatter Search

algorithm and the details of this particular implementation. In Section 4.3

computational results on two case studies are presented in order to compare these

two implementations.

 Chapter 4. Heuristic Methods Based on Local Search

 - 64 -

4.1 A heuristic approach: K-means ++

One of the most used algorithms for clustering data is the K-Means algorithm

[McQueen 1967], already described in section 2.2.2. The algorithm starts by

choosing initial K cluster centres from the original data X . After the initialization, a

partition of the data is determined by assigning each point to the cluster with closest

centre. After this assignment the centroids of each cluster are calculated and the

points are reassigned to the clusters regarding the closeness to the centroids. Again

the centroids are recalculated and the algorithm proceeds in the same way until

some stopping criterion is met.

A variation of this method, called K-Means++ [David and Sergei 2007], was

implemented in Matlab for finding a feasible solution of the clustering problem. This

method differs from the original K-Means algorithm in the way the initial clusters are

chosen. Sections 4.1.1 and 4.1.2 describe the K-Means++ algorithm used for

partitioning n points into K clusters. Section 4.1.3 discusses how to choose the

correct number of clusters by evaluation of cluster validity indexes.

4.1.1 Initialization

The K-Means algorithm starts by choosing K cluster centres from the original

data to be clustered. Usually the cluster centres are chosen uniformly at random from

the original data, i.e., they are chosen with equal probabilities. The K-Means++

[David and Sergei 2007] differs from the original K-Means algorithm in the way the

initial cluster centres are chosen. Cluster centres are still chosen randomly, but they

are not chosen uniformly. After the first cluster centre is chosen uniformly at random

from the original data, the remaining 1K centres are chosen proportionally to their

distance to the centres already chosen, a method referred in [David and Sergei 2007]

by “ 2D weighting”. The empirical reasoning of this rule is to diversify the location

centres within the set of points to allow for a better assignment of points to clusters.

Let)(xD denote the shortest distance from a point Xx to the closest centre

already chosen. In this work we used the Euclidean distance and so)(xD is given

by:

 Chapter 4. Heuristic Methods Based on Local Search

 - 65 -

  ),(min)(i
Si

cxdxD


 (4.1)

where S is the set of all already chosen cluster centres and),(d is the Euclidean

distance.

Then the necessary steps to perform the cluster centres initialization are the

following:

1. Choose an initial centre uniformly at random from X , i.e., ,
1

n
pi 

ni ,,1 , where ip denotes the probability of choosing ix .

2. Choose the next centre randomly according to the probability distribution





n

j

j

i

i

xD

xD
p

1

2

2

)(

)(
, ni ,,1 .

3. Repeat step 2 until K centres have been chosen.

We should notice that the probability of choosing a point is proportional to the

distance to the closest already chosen centre. So the further away the point is the

likely it is that it will be chosen as a new centre. After the K initial cluster centres are

chosen, the algorithm proceeds as the original K-Means. The iterative procedure is

described in the next section.

4.1.2 Iterative Procedure

Now that the initial cluster centres are chosen, the remaining points are

assigned to its closest cluster and the cluster centroids are updated. This procedure

is repeated until a stopping criterion is met. The steps of this procedure, after the

initialization phase, are summarized below.

1. Assign each point to the closest centre.

2. Update cluster centres by recalculating the cluster centres according to

(2.9).

3. Repeat steps 1 and 2 until the centres no longer change.

 Chapter 4. Heuristic Methods Based on Local Search

 - 66 -

In addition, a maximum number of iterations could be used as a stopping

criterion. However, due to the rapid convergence of the algorithm, in the

computational experiments that will be presented in section 4.3, it was not necessary

to prematurely stop the algorithm.

4.1.3 Choosing the number of clusters

The previous algorithm partitions n data points into K clusters (or less,

because empty cluster might be formed). However, when the number of clusters is

not known a priori, the correct number of clusters has to be estimated. Usually this is

done by running the algorithm for a range of values for K and choosing the best

partition according to some cluster validity index.

In [Ujjwal and Sanghamitra 2002] several validity indexes for clustering

algorithms are compared using different clustering algorithms. The experiments

conducted by the authors lead them to the following conclusion: “Compared to the

other considered validity indexes, I is found to be more consistent and reliable in

indicating the correct number of clusters”. This index is defined by equation (4.2).

p

K

K

D
E

E

K
KI 








 11

)((4.2)

where 
 


K

k

n

j

kjkjK cxuE
1 1

 (4.3)

and ji
Kji

K ccD 
 ,,1,

max


 (4.4)

 In these equations  nxxX ,,1  is the data to be clustered and  
nKkjuU


 is

a partition binary matrix representing a possible clustering of the data into K disjoint

clusters, i.e., 1kju if and only if jx is in the kth cluster. The centroid of cluster k is

denoted by kc . To find the correct number of clusters we chose the value of K which

maximizes)(KI .

 Chapter 4. Heuristic Methods Based on Local Search

 - 67 -

 Analyzing)(KI we see that as the error KE decreases, the factor
KE

E1

increases. It is always possible to obtain a partition with zero error by considering n

clusters, each consisting of a single data point. To balance the error with the number

of cluster the factor
K

1
 is introduced. As the number of clusters decreases, this factor

increases. To achieve well separated clusters, the factor KD should be large, that is,

the maximum distance between two cluster centres should be large. The previous

considerations intuitively justify that)(KI should be maximized.

4.2 Scatter Search

Scatter Search [Glover 1977] has some similarities to Tabu Search and Genetic

Algorithms. The use of memory is one of the main features of Tabu Search and is

usually present in Scatter Search. Such as Genetic Algorithms, Scatter Search is an

evolutionary algorithm. While in Genetic Algorithms an usually large population is

evolved through crossover and mutation operations, in Scatter Search instead of a

population it is used a smaller reference set (composed of good quality solutions and

diverse solutions) and it plays the most important role in the algorithm.

Essentially, Scatter Search operates on a small set of solutions, the reference

set, and consists on the application of the following methods, which can be

implemented in different ways, according to the problem at hand:

1. A Diversification Generation (DG) method to produce a collection of diverse

trial solutions from which the initial reference set is built;

2. An Improvement (Imp) method to enhance the quality of trial solutions;

3. A Reference Set Update (RSU) method responsible for constructing a

reference set of both high quality solutions and diverse solutions from the

collection of solutions obtained by the diversification generation method and

of updating this reference set when new solutions are created during the

algorithm;

 Chapter 4. Heuristic Methods Based on Local Search

 - 68 -

4. A Subset Generation (SG) method that, in each iteration of the algorithm,

creates a collection of subsets of solutions belonging to the reference set,

such that the solutions in each subset are to be combined through the

solution combination method;

5. A Solution Combination (SC) method that takes a subset of solutions given

by the subset generation method and generates one or more new trial

solutions.

Figure 4.1: Scatter Search Algorithm

The way the previous methods operate is summarized in Figure 4.1. The

original set is created by the Diversification Generation Method (DG). Each solution

in this set is then improved by the Improvement Method (Imp) before the Reference

Set Update Method (RSU) constructs the reference set, selecting the best quality

 Chapter 4. Heuristic Methods Based on Local Search

 - 69 -

solutions in the original set, along with diverse solutions. The subsets of solutions to

be combined through the Solution Combination Method (SC) are chosen by the

Subset Generation Method (SG). The solutions resulting from this combination are

improved before the Reference Set Update Method (RSU) updates the reference set.

The process continues until some stopping criterion is met.

The scatter search algorithm that was implemented is based on the algorithms

in [Pacheco 2005] and [Abdule-Wahab, Monmarché et al. 2006]. The next sections

describe the implementations of each of the five methods mentioned above.

4.2.1 Fitness Function

In [Pacheco 2005], quality of solutions was measured by the sum of squared

distances from each point to the centroid of its cluster. This measure cannot be used

in the automatic clustering problem, where the number of clusters is not defined a

priori. Using this measure when the number of clusters can vary, yields the

construction of as many clusters as the number of points to be clustered, giving a

sum of the squared distances from each point to the centroid of its cluster (the point

itself) of zero. Therefore, a different quality measure was used. The validity index I

described in section 4.1.3 and defined by equations (4.2) - (4.4) was used as fitness

function, to be maximized.

4.2.2 Diversification Generation Method

The diversification generation method used was proposed by Pacheco

[Pacheco 2005], based on GRASP – Greedy Randomized Adaptive Search

Procedure. However in this work the number of clusters is predefined by the user. To

achieve an automatic clustering procedure, as it is aimed in our work, the correct

number of clusters should be determined by the algorithm. Therefore, before creating

a new solution with the diversification generation method, it is necessary to generate

a random number of clusters, i.e., an integer K between 1 and maxK , where maxK is

the maximum number of clusters allowed.

 Chapter 4. Heuristic Methods Based on Local Search

 - 70 -

 Given the number of clusters K to be considered for the generation of a

solution, the cluster centres  KccS ,,1  are randomly chosen from the data set X

in the following way [Pacheco 2005]:

1. Find *j
x , the farthest point from the centroid of X and do *1 j

xc  and  1cS  .

Set 2h .

2. Fix 0 ≤ ≤  and while KS  do:

a. Determine   SXxSccx jlljj \,:min 

b. Determine  SXx jj \:maxmax 

c. Do  max:  jjxL

d. Choose Lx
j
* uniformly at random and do *jh xc  ,  hcSS  and

1 hh .

If 0 , the cluster centres are chosen completely at random from the original

data X . If 1 the process is deterministic if there is only one point in L, and so the

only farthest point from the centres already chosen will enter S . Therefore, generally

speaking, the parameter  controls the level of randomization of the process.

A memory structure is used to avoid repetition of centres and consequently of

solutions. The number of times that a point jx is selected as a centre is stored in

)(jfreq and the values of j in subsequent iterations are modified according to

equation (4.6), where:

  jjfreqfreq  :)(maxmax (4.5)

and  controls the importance of memory in the diversification generation method.

max

max

')(

freq

jfreq
jj   (4.6)

 Chapter 4. Heuristic Methods Based on Local Search

 - 71 -

Equation (4.6) decreases the value of j proportionally to)(jfreq and so the

possibility of inclusion of jx in L also diminishes.

After the clusters centres are defined, the remaining points are assigned to

these clusters. This is done with the goal of minimizing the sum of squared distances

from each point to its cluster centre. When the number of clusters is not

predetermined, minimizing the sum of squared distances from each point to its

cluster centre yields a solution where each point is a centre itself and we have as

many clusters as points. However, since for a particular solution to be generated the

number of clusters is previously determined, the remaining points can be assigned in

order to minimize this measure, as in [Pacheco 2005], in the following way:

1. Let A be the set of unsigned points, i.e., SXA \ .

2. For each point Ax j  and each cluster KiCi ,,1,  determine ij given by

2

1
ji

i

i

ij xc
C

C



 (4.7)

where ic is the centroid of iC .

3. Calculate  KiAx jijji
,,1,:min**  .

4. Assign *j
x to *i

C and set  *\
j

xAA  .

5. If 0A return to 2, else stop.

The formula in (4.7) gives the increase in terms of sum of squared distances

from each point to its cluster centre when point jx is assigned to cluster iC . Steps 1

through 5 define a greedy heuristic for assigning the remaining points to the clusters

whose centres were previously chosen.

This algorithm is used to generate sizeOS initial solutions, called the original set

that will serve as basis for constructing the reference set.

 Chapter 4. Heuristic Methods Based on Local Search

 - 72 -

4.2.3 Improvement Method

The improvement method is used to enhance the quality of the solutions

generated both during the diversification phase and after the combination of two

solutions. In this thesis it was chosen to implement the improvement method

presented in [Abdule-Wahab, Monmarché et al. 2006], based on the K-Means

algorithm [Gan, Ma et al. 2007]. The following steps are taken a number of times

equal to MaxIterImp, where MaxIterImp is a parameter to be chosen by the user.

1. For each point Xx j  do:

a. For each cluster KiCi ,,1,  determine ijv given by

22

11
jl

l

l

ji

i

i

ij xc
C

C
xc

C

C
v 





 (4.8)

where jx currently belongs to cluster lC and ic and lc are the

centroids of iC and lC , respectively.

b. Determine  ijljKj va  ,,,1minarg  .

c. If 0a reassign jx to aC .

2. Compute the fitness of the new solution obtained.

3. If the fitness of the new solution, given by equation (4.2) is better than the

original solution, replace the original solution by the new solution.

The formula in (4.8) is given by Spath [Spath 1980] to simplify the K-Means

algorithm and approximates the increase in terms of sum of squared distances from

each point to its cluster centre when point ix is moved from cluster lC to cluster jC .

4.2.4 Reference Set Update Method

The reference set, RS , is composed of 1b high quality solutions and 2b diverse

solutions. To construct the initial reference set, the first 1b best solutions are inserted

in the reference set, where the quality of solutions is given by the fitness function

 Chapter 4. Heuristic Methods Based on Local Search

 - 73 -

presented in section 4.2.1. Next, 2b solutions are added one by one to reference set

according to its diversity. In this work it was used the diversity measure proposed by

Pacheco[Pacheco 2005]. Let),( dif be the number of assignments in solution 

that are different from the assignments in solution  . For instance, suppose that we

have an instance with 5 objects and 4 clusters. Consider two solutions,  2,3,2,1,11 y

and  3,4,2,2,12 y , where the i -element of the vector corresponds to the cluster to

which object i is assigned. In this case),( dif is equal to 3.

Iteratively, it is chosen to enter the reference set, the solution that maximizes:

  RSdif   :),(min)(min (4.9)

In this implementation the reference set is only updated when better quality

solutions are found. Other implementations [Abdule-Wahab, Monmarché et al. 2006]

also update the reference set according to the measure of diversity, reinforcing the

diversification strategy.

4.2.5 Subset Generation Method

In each iteration of the algorithm, the subsets of solutions from the reference

set that will be latter combined by the solution combination method consist of pairs of

solutions. The collection of subsets created through this method is composed of all

pairs of solutions from the reference set  ji, , 1,,1 21  bbi  , 21,,2 bbj   ,

ji  . Supposing that we have 3 solutions, we should consider the following subsets

(1,2), (1,3), (2,3).

Each element of the collection of subsets generated by this method serves as

an input to the solution combination method that generates one or more trial

solutions that, after being enhanced by the improvement method in section 4.2.3, can

enter the reference set as described in section 4.2.4.

 Chapter 4. Heuristic Methods Based on Local Search

 - 74 -

4.2.6 Solution Combination Method

To combine two solutions it was implemented the path relinking strategy

described in [Pacheco 2005]. The idea of path relinking is that, in the “path” between

two good quality solutions other good quality solutions should exist. A “path” is a

series of simple movements that lead from one solution to another. In this case we

can start on one solution and move points from one cluster to another until the

second solution is reached. For instance, consider two solutions,  2,3,2,1,11 y and

 3,4,2,2,12 y to be combined. A path between these solutions could be given by:

       3,4,2,2,12,4,2,2,12,3,2,2,12,3,2,1,1  , where in each movement the first point

assigned differently than in 2y is assigned as in 2y . Solutions in this path can be

chosen as trial solutions.

As in [Pacheco 2005], given two solutions, the number of trial solutions that

will be generated through the solution combination method varies. If the two solutions

to be combined were chosen from the 1b high quality solutions in the reference set,

three trial solutions will be generated. If the two solutions were chosen from the 2b

diverse solutions in the reference set, only one solution will be generated. Otherwise,

two solutions will be created. These solutions are randomly chosen from the

solutions in the path.

4.2.7 The Final Algorithm

After the basic methods of the scatter search algorithm have been described,

we may now describe the final algorithm.

The algorithm starts by generating the original set through the diversification

method. The best quality solutions and most diverse solutions are chosen to form the

reference set before the iterative part of the algorithm starts. In each iteration, the

subset generation method forms all subsets consisting of pairs of solutions from the

reference set. These pairs of solutions are then combined through the solution

combination method and the generated trial solutions are improved through the

improvement method. The reference set update method is then responsible for

deciding if any of the generated solutions should replace one of the solutions in the

 Chapter 4. Heuristic Methods Based on Local Search

 - 75 -

reference set. The iterative procedure continues until there are no new elements in

the reference set. The best solution is then returned.

4.3 Computational Results

In this section computational results on two case studies will be presented. In

both case studies real world data sets are used. Fuzzyfication of the data is needed

before using the previously described algorithms. The reason for fuzzyfying data

comes either from a way to deal with different source of uncertainty or to categorize

numerical data. Depending on the application that it will be given to the fuzzified data,

it may be needed to reduce the number of membership functions to simplify the

system that will use this functions. The idea is to reduce the number of terms in each

linguistic variable by merging membership functions in the same cluster. These

linguistic variables could then be used, for instance in a fuzzy inference system or

other fuzzy model. All experiments were conducted in a Intel Core2 Duo, CPU 2.2

GHz, 2 GB of RAM.

4.3.1 Wisconsin Diagnostic Breast Cancer Data Set

The data used in this section is taken from [Asuncion 2007]. Wisconsin

Diagnostic Breast Cancer (WDBC) data set contains 569 samples of data describing

characteristics of the cell nuclei present in digitalized images of a fine needle aspirate

(FNA) of a breast mass. Ten real-valued features were computed for each cell

nucleus [Asuncion 2007]:

a) Radius (mean of distances from centre to points on the perimeter)

b) Texture (standard deviation of gray-scale values)

c) Perimeter

d) Area

e) Smoothness (local variation in radius lengths)

 Chapter 4. Heuristic Methods Based on Local Search

 - 76 -

f) Compactness

g) Concavity (severity of concave portions of the contour)

h) Concave Points (number of concave portions of the contour)

i) Symmetry

j) Fractal dimension (“coastline approximation” -1)

For each of these features, the mean, standard error and mean of the three

largest values (“worst”) of these features were computed for each image. Therefore,

each sample has the following 32 attributes:

1. ID number

2. Diagnosis (M = malignant, B = benign)

3. Mean Radius

4. Mean Texture

5. Mean Perimeter

6. Mean Area

7. Mean Smoothness

8. Mean Compactness

9. Mean Concavity

10. Mean Concave Points

11. Mean Symmetry

12. Mean Fractal dimension

13. Radius Standard Deviation

14. Texture Standard Deviation

15. Perimeter Standard Deviation

16. Area Standard Deviation

17. Smoothness Standard Deviation

18. Compactness Standard Deviation

19. Concavity Standard Deviation

20. Concave Points Standard Deviation

21. Symmetry Standard Deviation

 Chapter 4. Heuristic Methods Based on Local Search

 - 77 -

22. Fractal dimension Standard Deviation

23. Worst Radius

24. Worst Texture

25. Worst Perimeter

26. Worst Area

27. Worst Smoothness

28. Worst Compactness

29. Worst Concavity

30. Worst Concave Points

31. Worst Symmetry

32. Worst Fractal dimension

In this thesis only features 3 through 22 where used. The mean radius can be

used as a measure of the cell nuclei radius. The radius standard deviation gives a

measure of the error associated with this measure. For this reason it is advisable to

fuzzify the data as a way to deal with uncertainty. To do so we represent each

sample’s radius by a symmetric triangular membership function   2, , as described

in section 1.3.1 with  equal to the mean radius. The width of the triangular

membership functions was chosen to be 4 because in a random variable following

a normal distribution, approximately 95% of the samples are expected to belong to

the interval   2,2  . The same fuzzification scheme, and with the same

reasoning, was used for the rest of the features, resulting in 10 linguistic variables

with 569 membership functions each, depicted in Figure 4.2 through Figure 4.11. The

objective is to reduce the number of membership functions in each linguistic variable

using the algorithms described in Chapter 4. The resulting linguistic variables could

then be used in a fuzzy inference system or other fuzzy model to diagnose the type

of cancer. The construction of such model is outside the scope of this thesis.

 Chapter 4. Heuristic Methods Based on Local Search

 - 78 -

Radius

Figure 4.2: Linguistic Variable Radius

Texture

Figure 4.3: Linguistic Variable Texture

 Chapter 4. Heuristic Methods Based on Local Search

 - 79 -

Perimeter

Figure 4.4: Linguistic Variable Perimeter

Area

Figure 4.5: Linguistic Variable Area

 Chapter 4. Heuristic Methods Based on Local Search

 - 80 -

Smoothness

Figure 4.6: Linguistic Variable Smoothness

Compactness

Figure 4.7: Linguistic Variable Compactness

 Chapter 4. Heuristic Methods Based on Local Search

 - 81 -

Concativity

Figure 4.8: Linguistic Variable Concativity

Concave Points

Figure 4.9: Linguistic Variable Concave Points

 Chapter 4. Heuristic Methods Based on Local Search

 - 82 -

Symmetry

Figure 4.10: Linguistic Variable Symmetry

Fractal Dimension

Figure 4.11: Linguistic Variable Fractal Dimension

 Chapter 4. Heuristic Methods Based on Local Search

 - 83 -

4.3.1.1 Computational results

The K-Means++ algorithm, described in section 4.1, was applied to each

linguistic variable previously presented. The number of clusters was estimated by

running the algorithm for 15681  nK and choosing the iteration that maximizes

the evaluation measure I given in (4.2). For nK  the evaluation measure I is not

defined since 0nE , as can be seen in (4.3). Figure 4.12 and Figure 4.14 show the

evolution of I using K-Means++ for 5681  K , for linguistic variables Radius and

Texture. For all other linguistic variables in this case study the overall behaviour is

the same. It seems that I increases with K . However, looking at Figure 4.13 and

Figure 4.15 it is possible to see that this is not always that case.

Radius - Evaluation Measure

Figure 4.12: Evaluation measure I using K-means++ for 5681  K , linguistic

variable Radius

 Chapter 4. Heuristic Methods Based on Local Search

 - 84 -

Radius - Evaluation Measure – zoom

Figure 4.13: Evaluation measure I using K-means++ for 5001  K (zoom in of

previous plot) 5681  K , linguistic variable Radius

Texture - Evaluation Measure

Figure 4.14: Evaluation measure I using K-means++ for 5681  K , linguistic

variable Texture

 Chapter 4. Heuristic Methods Based on Local Search

 - 85 -

Texture - Evaluation Measure – zoom

Figure 4.15: Evaluation measure I using K-means++ for 5001  K (zoom in of

previous plot), linguistic variable Texture

 Running the Scatter Search algorithm from section 4.2 with 1max  nK yield

solutions with 1n clusters. This is easily explained by the behavior of I depicted in

Figure 4.12 and Figure 4.14. Given this results it was necessary to redefine the

maximum number of clusters allowed, maxK . Taking into account Figure 4.13 and

Figure 4.15, it was chosen 100max K . Therefore we are interested in finding a

partition of the data into less that 101 clusters that maximizes the cluster validity

index I .

The Scatter Search algorithm was run with several values for the parameters

 ,  , MaxIterImp and 1b . To reduce the number of parameters to be analyzed, the

number of good quality solutions and of diverse solutions to be included in the

reference set was chosen to be equal (21 bb ) and the original set was chosen to be

10 times the size of the reference set ()(*10 21 bbOSsize ). This last choice is

recommended in [Martí, Laguna et al. 1997; Abdule-Wahab, Monmarché et al. 2006].

The algorithm was run until no new elements entered the reference set. Since

random numbers are used during the algorithm, for each combination of values of the

parameters 5 experiments were run. Only 5 runs of each experiment is clearly not

 Chapter 4. Heuristic Methods Based on Local Search

 - 86 -

enough to take any statistically valid conclusions, the purpose of these experiments

was only to see how results were influenced by different choices of the several

parameters involved.

Only the results relative to the linguistic variable Radius will be discussed in

more detail. Similar conclusions were found for the rest of the linguistic variables in

this case study. Final results will be presented for all linguistic variables.

The first experiments were conducted with no improvement method (i.e.

MaxIterImp 0) and all possible combinations of  1;8.0;5.0;0 ,  5.0;0 and

 5;21 b , with the purpose of analysing the influence of the parameter  in the

algorithm. In section 4.2.2 it is stated that the parameter  controls the level of

randomization used when choosing cluster centres. When 0 , the cluster centres

are chosen completely at random from the original data X . In Figure 4.16 it is clear

that this randomness affects the standard deviation of the fitness of solutions

returned by the algorithm. When 0 the standard deviation of results is much

higher than for larger values of  . This standard deviation means that it is likely to

achieve very good results but also very bad results, a characteristic that is

undesirable in an algorithm. In fact, although in terms of the best result found for

each 5 experiments a choice of 0 seems to produce good results (Figure 4.17),

the same does not happen in terms of average results (Figure 4.18). Given this

results, no further experiments were done with 0 .

Figure 4.16: Influence of  in fitness function I standard deviation

 Chapter 4. Heuristic Methods Based on Local Search

 - 87 -

Figure 4.17: Influence of  in best results obtained for fitness function I

Figure 4.18: Influence of  in mean results for fitness function I

The parameter  controls the weight given to the memory in the process of

choosing the cluster centres when creating initial solutions, as given by (4.6). Notice

that it does not make sense to study the importance of this parameter for values of 

very close to zero since the choice of the cluster centres is close to random. In this

case, although the quantities j are replaced by '

j , this does not significantly

change the set L from which the cluster centres are chosen. As can be seen in

Figure 4.19, there seems to be an improvement in terms of average results in using

 Chapter 4. Heuristic Methods Based on Local Search

 - 88 -

this memory during the creation of the original set. Therefore, no further experiments

for 0 will be discussed.

Figure 4.19: Influence of  in mean results for fitness function I

By considering a larger reference set we expect to obtain better results but

worse computational efficiency. Not only does it take more time to generate the

original set (since the size of the original set was chosen to be 10 times the size of

the reference set), but also the number of subsets of solutions to be combined

increases exponentially. In Figure 4.20 we can see that increasing the size of the

reference set does indeed produce better quality results, but this improvement is

achieved at a computational cost, as can be seen in Figure 4.21. However, in this

case study, we are considering an increase from an execution time of around 1

minute to around 3.5 minutes. Due to these low execution times, we can afford to

consider a larger reference set to obtain better solutions. In other applications where

the number of membership functions to merge is higher, this increase in execution

time could be unaffordable. Reference sets are typically small. Only two small values

for 1b were considered, 21 b and 51 b . This is due to the way the size of original

set is related to this parameter. Since it was chosen that 21 bb  and

)(*10 21 bbOSsize  , we are considering original sets with 40 and 100 solutions.

Larger original sets would mean that the initial diversification achieved would be such

that a very good quality solution was probably already found in this first step of the

algorithm.

 Chapter 4. Heuristic Methods Based on Local Search

 - 89 -

Figure 4.20: Influence of 1b in mean results for fitness function I

Figure 4.21: Influence of 1b in execution time

Until this point experiments were done without the Improvement Method. This

way the influence of the parameters being analyzed in the solutions obtained was

clearer. The computational cost, in terms of execution time (Figure 4.23), of using the

Improvement Method should lead to an improvement in the quality of the solutions

obtained by the algorithm. However, this was not always the case, as can be seen in

 Chapter 4. Heuristic Methods Based on Local Search

 - 90 -

Figure 4.22. The increase in execution time when using MaxIterImp 5 is

considerably high and does not result in a significant improvement in the quality of

solutions. Considering MaxIterImp 2 the increase in terms of execution time is not

high (from approximately 1 minute to approximately 3 minutes) but only improves the

average quality of solutions in some of the sets of experiences made. This result was

unexpected. Since only 5 experiments per each choice of parameters were made,

these results could be explained by the weak estimate of the actual mean values.

Since the increase in execution time for using MaxIterImp 2 is not too high, this

value will be considered for this parameter. Also, the two first combinations of

parameters seem to give consistently better results than the rest. From these two

sets of experiences, the second presents slightly better average results. Therefore, in

the results presented in Table 4.1 and Figure 4.24 through Figure 4.33 were obtained

with 5.0 , 8.0 , 51 b and MaxIterImp 2 . Figure 4.24 through Figure 4.33

show, for both algorithms, a scatter plot of the centre values versus the width of the

triangular membership and the final configuration of the linguistic variable.

Figure 4.22: Influence of Improvement Method in mean

results for fitness function I

 Chapter 4. Heuristic Methods Based on Local Search

 - 91 -

Figure 4.23: Influence of Improvement Method in execution time

To better understand what happens during the algorithm a study of how the

reference set evolves was conducted. Surprisingly, for all experiments conducted the

reference set was only updated a few times after its initial construction and the best

solution found was always generated during the first part of the algorithm. This result

was not expected. Unfortunately, the second part of the Scatter Search algorithm is

not producing good solutions. Still, Table 4.1 shows that the Scatter Search returned

better results than K-Means++ for almost all variables. The first part of the algorithm

is sufficient to obtain better quality solutions than the K-Means++. The computational

time of the Scatter Search was expected to be much higher than the computational

time of the K-Means++. This did not happen only because the Scatter Search

algorithm stopped after the first iteration of the second part of the algorithm.

 Chapter 4. Heuristic Methods Based on Local Search

 - 92 -

K-Means++ Scatter Search

Time

(sec.)
Nr. Clusters I

Time

(sec.)

Nr.

Clusters
I

Radius 426,3904 4 18,9609 352,8277 3 26,9636

Texture 398,9221 3 16,8796 344,1798 5 30,18262

Perimeter 463,4574 7 830,33 371,4513 3 1286,17

Area 416,6392 6 426500,7 394,1495 3 668728,5

Smoothness 419,2019 3 0,000143 413,9573 4 0,0002044

Compactness 407,7729 3 0,004632 308,5648 3 0,004547

Concativity 418,1248 3 0,080241 305,7193 3 0,080673

Concave Points 405,9813 3 0,002273 470,995 3 0,002743

Symmetry 411,8899 3 0,000921 672,4182 3 0,000932

Fractal Dimension 413,8989 4 0,000167 679,9634 3 0,000255

Table 4.1: K-Means++ vs Scatter Search (best results)

 Chapter 4. Heuristic Methods Based on Local Search

 - 93 -

Radius

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.24: Best Results for Linguistic Variable Radius

 Chapter 4. Heuristic Methods Based on Local Search

 - 94 -

Texture

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.25: Best Results for Linguistic Variable Texture

 Chapter 4. Heuristic Methods Based on Local Search

 - 95 -

Perimeter

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.26: Best Results for Linguistic Variable Perimeter

 Chapter 4. Heuristic Methods Based on Local Search

 - 96 -

Area

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.27: Best Results for Linguistic Variable Area

 Chapter 4. Heuristic Methods Based on Local Search

 - 97 -

Smoothness

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.28: Best Results for Linguistic Variable Smoothness

 Chapter 4. Heuristic Methods Based on Local Search

 - 98 -

Compactness

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.29: Best Results for Linguistic Variable Compactness

 Chapter 4. Heuristic Methods Based on Local Search

 - 99 -

Concativity

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.30: Best Results for Linguistic Variable Concativity

 Chapter 4. Heuristic Methods Based on Local Search

 - 100 -

Concave Points

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.31: Best Results for Linguistic Variable Concave Points

 Chapter 4. Heuristic Methods Based on Local Search

 - 101 -

Symmetry

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.32: Best Results for Linguistic Variable Symmetry

 Chapter 4. Heuristic Methods Based on Local Search

 - 102 -

Fractal Dimension

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.33: Best Results for Linguistic Variable Fractal Dimension

 Chapter 4. Heuristic Methods Based on Local Search

 - 103 -

4.3.2 Credit Approval Data Set

The data used in this section is taken from [Asuncion 2007]. This data concerns

credit approval information. Credit approval information is usually prone to

uncertainty. On one hand, attributes like annual income are usually average

information rather than absolute information. On the other hand, misinformation from

the credit candidates, for instance undeclared income, provides additional uncertainty

to the values presented. Therefore, it is natural to use fuzzy models when

constructing automatic credit approval applications. Credit Approval (CA) data set

contains 690 samples (665 after removing missing data) of data concerning credit

approval information. Unfortunately, for confidentiality purposes, all attribute names

and values have been changed to meaningless symbols. Each sample is composed

of features A1 through A16. Ahead each variable its possible values are presented

[Asuncion 2007]:

1. A1 – b, a

2. A2 – continuous

3. A3 – continuous

4. A4 - u, y, l, t

5. A5 – g, p, gg

6. A6 – c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff

7. A7 – v, h, bb, j, n, z, dd, ff, o

8. A8 – continuous

9. A9 - t, f

10. A10 – t, f

11. A11 – continuous

12. A12 – t, f

13. A13 – g, p, s

14. A14 – continuous

15. A15 – continuous

16. A16 - +,- (class attribute)

 Chapter 4. Heuristic Methods Based on Local Search

 - 104 -

Only continuous attributes will be considered because other attributes are

already categorized and the number of categories is already small. Once again,

symmetrical triangular membership functions will be used. Since there is no

information on the attributes and no additional information on accuracy of the data,

triangular membership functions  
jijv 2, where used, where ijv is the value of

attribute j for sample i and j is the standard deviation of attribute j . Of course all

membership functions from the same linguistic variable, representing an attribute, will

have the same width. In reality, the width of the membership functions would vary

according to additional information collected from experts or from credit candidates.

The six linguistic variables in this case study are represented in Figure 4.34 through

Figure 4.39.

A2

Figure 4.34: Linguistic Variable A2

 Chapter 4. Heuristic Methods Based on Local Search

 - 105 -

A3

Figure 4.35: Linguistic Variable A3

A8

Figure 4.36: Linguistic Variable A8

 Chapter 4. Heuristic Methods Based on Local Search

 - 106 -

A11

Figure 4.37: Linguistic Variable A11

A14

Figure 4.38: Linguistic Variable A14

 Chapter 4. Heuristic Methods Based on Local Search

 - 107 -

A15

Figure 4.39: Linguistic Variable A15

4.3.2.1 Computational Results

The same study conducted for the linguistic variables in the previous case

study was conducted for the six linguistic variables in this case study. The K-

Means++ algorithm, described in section 4.1, was applied to each of the linguistic

variables.

Figure 4.40 and Figure 4.42 show the evolution of I using K-Means++ for

6651  K , for linguistic variables A2 and A3. For all other linguistic variables in this

case study the overall behaviour is the same. This is not the same behaviour as in

the previous case study. Now there is a very sudden improvement in the quality of

solutions for a certain number of clusters. However, this sudden improvement is

achieved only for high number of clusters, between 200 and 350 clusters for the

linguistic variables in this case study. This is a high number of membership functions

in a linguistic variable. It is desirable to achieve a greater reduction in the number of

membership functions to improve its interpretability. Therefore, as in the previous

case study, it was chosen 100max K . It is left for future work to investigate on

 Chapter 4. Heuristic Methods Based on Local Search

 - 108 -

procedures to estimate this parameter. Figure 4.41 and Figure 4.43 show a zoom of

the previous plots, for 1501  K .

A2 - Evaluation Measure

Figure 4.40: Evaluation measure I using K-means++ for 6651  K , linguistic

variable A2

A2 - Evaluation Measure – zoom

Figure 4.41: Evaluation measure I using K-means++ for 1501  K (zoom in of

previous plot), linguistic variable A2

 Chapter 4. Heuristic Methods Based on Local Search

 - 109 -

A3 - Evaluation Measure

Figure 4.42: Evaluation measure I using K-means++ for 6651  K , linguistic

variable A3

A3 - Evaluation Measure – zoom

Figure 4.43: Evaluation measure I using K-means++ for 1501  K (zoom in of

previous plot), linguistic variable A3

 The Scatter Search algorithm was run with the same values for the

parameters  ,  , MaxIterImp and 1b as in the previous case study, considering 5

 Chapter 4. Heuristic Methods Based on Local Search

 - 110 -

experiments for each choice of parameters and with the same stopping criterion as

before. Once again, the number of good quality solutions and of diverse solutions to

be included in the reference set was chosen to be equal (21 bb ) and the original set

was chosen to be 10 times the size of the reference set ()(*10 21 bbOSsize ), as in

[Martí, Laguna et al. 1997; Abdule-Wahab, Monmarché et al. 2006].

Only the results relative to the linguistic variable A2 will be discussed in more

detail.

To study the influence of  in the results, experiments were conducted with

no improvement method (i.e. MaxIterImp 0) and all possible combinations of

 1;8.0;5.0;0 ,  5.0;0 and  5;21 b . When 0 the standard deviation of

results is much higher than for other values of  (Figure 4.44), explaining why 0

was responsible for the best results (Figure 4.45) but does not give competitive

results in average (Figure 4.46). Due to the referred high standard deviation in the

results, no further experiments were done with 0 .

Figure 4.44: Influence of  in fitness function I standard deviation

 Chapter 4. Heuristic Methods Based on Local Search

 - 111 -

Figure 4.45: Influence of  in best results obtained for fitness function I

Figure 4.46: Influence of  in mean results for fitness function I

In Figure 4.47 the use of memory in the Diversification Generation method is

clear since using 0 gives worse results in average. Therefore, no further

experiments for 0 will be discussed.

 Chapter 4. Heuristic Methods Based on Local Search

 - 112 -

Figure 4.47: Influence of  in mean results for fitness function I

Increasing the size of the reference set produces better quality results, as can

be seen in Figure 4.48. Increasing the number of solutions in the reference set from 4

to 10 (21 b to 51 b .) resulted in an increase in the execution time (Figure 4.49) by

a factor between 1.6 and 2.9. Still, all experiments were run in less than 10 minutes.

It is still affordable to consider a larger reference set to improve the overall quality of

solutions.

Figure 4.48: Influence of 1b in mean results for fitness function I

 Chapter 4. Heuristic Methods Based on Local Search

 - 113 -

Figure 4.49: Influence of 1b in execution time

Just as before, the increase in execution time when using MaxIterImp 5 is

considerably high (Figure 4.51) and does not result in a significant improvement in

the quality of solutions in most of the cases (Figure 4.50). Since the increase in

execution time for using MaxIterImp 2 is not too high (from approximately 6 minute

to approximately 10 minutes), this value will be considered for this parameter. Just as

in the previous case study, the choice of parameters 5.0 , 8.0 , 51 b and

MaxIterImp 2 gives better results, in average, and were used to obtain the results

summarized in Table 4.2 and Figure 4.52 through Figure 4.57.

Figure 4.50: Influence of Improvement Method in mean

results for fitness function I

 Chapter 4. Heuristic Methods Based on Local Search

 - 114 -

Figure 4.51: Influence of Improvement Method in execution time

Once again, the best solution found by the algorithm was always generated by

the diversification generation method. The results reported in Table 4.2 were

achieved only by the first stage of the algorithm, which still was sufficient to produce

better results than the K-Means++ algorithm in most variables. Notice that both

algorithms returned the same solution (except for cluster numbering) with 23 clusters

for linguistic variable A11. This can be explained with information about this linguistic

variable. Although A11 is continuous, there are only 23 different values for this

variable. The solution returned by the algorithm corresponds to the 23 different

membership functions corresponding to the 23 crisp values. This result show that the

two algorithms are not giving “fake” low numbers of clusters (until now the number of

clusters varied from 3 to 6) but are indeed capable of estimating a good number of

clusters.

 Chapter 4. Heuristic Methods Based on Local Search

 - 115 -

K-Means++ Scatter Search

Time

(sec.)
Nr. Clusters I

Time

(sec.)

Nr.

Clusters
I

A2 854.5374 5 266.0796 821.3367 3 384.8384

A3 862.5715 4 90.18299 794.977 4 96.4486

A8 810.7072 6 105.4446 1277.734 6 94.76789

A11 735.1273 23 6.97E+28 1112.77 23 6.97E+28

A14 1134.509 6 346890.2 1812.912 4 402917.4

A15 1062.561 6 5.51E+09 2031.943 6 5.57E+09

Table 4.2: K-Means++ vs Scatter Search (best results)

A2

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.52: Best Results for Linguistic Variable A2

 Chapter 4. Heuristic Methods Based on Local Search

 - 116 -

A3

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.53: Best Results for Linguistic Variable A3

 Chapter 4. Heuristic Methods Based on Local Search

 - 117 -

A8

(a) Cluters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.54: Best Results for Linguistic Variable A8

 Chapter 4. Heuristic Methods Based on Local Search

 - 118 -

A11

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.55: Best Results for Linguistic Variable A11

 Chapter 4. Heuristic Methods Based on Local Search

 - 119 -

A14

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.56: Best Results for Linguistic Variable A14

 Chapter 4. Heuristic Methods Based on Local Search

 - 120 -

A15

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search

Figure 4.57: Best Results for Linguistic Variable A15

 Chapter 4. Heuristic Methods Based on Local Search

 - 121 -

4.4 Summary

In this Chapter an heuristic and a metaheuristic for clustering were described.

The first is the K-Means++ algorithm [David and Sergei 2007], a variation of the K-

Means algorithm [Gan, Ma et al. 2007]. The second is a Scatter Search algorithm

based on the work of [Pacheco 2005] and [Abdule-Wahab, Monmarché et al. 2006].

These two algorithms where implemented in Matlab.

The computational results were not as expected. The second phase of the

Scatter Search algorithm was not able to produce good quality solutions. However,

the first part of the algorithm was sufficient to obtain better results than the ones

given by the K-Means++ algorithm. Both methods achieved a high reduction in the

number of membership functions in each linguistic variable.

 5. Case Study: a Fuzzy Inference System

 - 122 -

Chapter 5. Case Study: a Fuzzy Inference

System

In the previous chapter, computational results for two case studies were

presented. In both cases the problem consisted in reducing the number of

membership functions in linguistic variables that could later be used in the

construction of an inference system. Each membership function represented a

sample or an individual and merging similar membership functions could be seen as

finding groups of individuals with similar characteristics. The rule base system that

could be constructed afterwards would take into account the final morphology of the

linguistic variables. The case study presented in this section is of a different nature.

In this case, the goal is to reduce the number of membership functions in linguistic

variables of an already existing inference system [Gomes, Santos et al. 2008]. The

aim is to reduce the complexity of the inference system while maintaining its

structure, without losing too much performance.

In 2001, the European Space Agency [ESA] launched the Aurora Programme

whose main goal is the robotic and human exploration of the solar system [ESA

2008]. ExoMars, one of the missions under this programme, will require the drilling

and sampling of Martian rocks [ESA 2008]. The case study here presented has been

developed at CA3 - UNINOVA [CA3 2006] in the scope of this programme.

In section 5.1 the case study will be described. Section 5.2 discusses the

heuristics used for reducing the number of membership functions and in section 5.3

the computational results for the heuristics applied to this case study will be

presented and discussed.

5.1 Overview of the case study: MODI

During project “MODI- Simulation of a Knowledge Enabled Monitoring and

Diagnosis Tool for ExoMars Pasteur Payloads” [CA3 2006; Jameaux, Vitulli et al.

2006; Santos, Fonseca et al. 2006; Santos, Martins et al. 2008] two fuzzy inference

systems were developed: one for an alarm system for detecting faulty behaviours

 5. Case Study: a Fuzzy Inference System

 - 123 -

during drilling in Mars and other for recognition of terrain hardness types. These

inference systems were created automatically from signals first generated by a

simulator and later in the project acquired from a drilling station developed during the

project. Pictures of this drilling station prototype constructed as proof of concept

during this project and a simulated image of the rover that might use this technology

can be found in Figure 5.1 and Figure 5.2, respectively.

Figure 5.1: MODI drill station

Figure 5.2: ExoMars Rover (courtesy of ESA [ESA 2008])

 5. Case Study: a Fuzzy Inference System

 - 124 -

The inference systems developed included two types of input variables: set

points and sensor variables. The set points are variables whose values are pre-

defined by the user to study the behaviour of the drill while drilling in different types of

materials (rocks). Given the values for these two set points, the drilling process would

start and sensors installed in the drill would measure the rest of the variables in our

model.

As the project evolved, the sensors available increased. These sensors were

able to measure rotational and translational currents and voltages, thrust, among

other measures.

All linguistic variables that were created in the MODI project are trapezoidal

membership functions, except the ones that describe the set points that are either

triangular membership functions or singletons [Santos, Fonseca et al. 2008]. In the

MODI project the linguistic variables (except the set points that are pre-defined by the

user) were constructed automatically, using sensor data collected during a learning

phase [Santos, Fonseca et al. 2008]. During the learning phase, drills in different

types of terrain hardness, using different values for the set points, were performed.

Each combination of values for the set points and terrain type defined a sub-scenario

in our model. Each linguistic variable represents a different sensor and each term in

a linguistic variable refers to a different sub-scenario. Trapezoidal membership

functions for each sub-scenario and sensor were constructed taking into account the

mean and standard deviation of the corresponding signal.

If we consider a drill with d sensors and a set of tests consisting in drilling in t

different types of terrain with all possible combinations of 1sp values for set point 1

and 2sp values for set point 2, the model will have 21 spsptd  membership

functions, excluding set points and output variables. As the number of sub-scenarios

or number of sensors increases, so does the complexity of the inference system.

The output of the terrain recognition inference system is the terrain hardness

for the t scenarios defined (T) and the certainty level of that classification [CA3 2006;

Jameaux, Vitulli et al. 2006; Santos, Fonseca et al. 2006]. An example of a rule used

for scenario Concrete hardness type, sub-scenario 0 (C0) with 2 set points – Set

Point Rotation Speed (SPRS) and Set Point Translational Speed (SPTS) – and 8

sensor variables – Rotation Current (RC), Rotation Voltage (RV), Rotation Speed

 5. Case Study: a Fuzzy Inference System

 - 125 -

(RS), Thrust (TH), Torque (TO), Translational Voltage (TV), Translational Current

(TC) and Translational Speed (TS) - is shown bellow. There is one such rule in the

system for every sub-scenario considered. In the following rules Variable_Name –

Sub-scenario_code is the fuzzy set representing the nominal situation in variable

Variable_Name and sub-scenario Sub-scenario_code.

If

Set Point Rotation Speed is SPRS-C0 and Set Point Translational Speed

is SPTS-C0 and Rotation Current is RC-C0 and Rotation Voltage is RV-

C0 and Rotation Speed is RS-C0 and Thrust is TH-C0 and Torque is TO-

C0 and Translational Voltage is TV-C0 and Translational Current is TC-

C0 and Translational Speed is TS-C0

Then

Terrain is T-C0

The output of the alarm inference system is the alarm level, on a scale from 0

to 1 [CA3 2006; Jameaux, Vitulli et al. 2006; Santos, Fonseca et al. 2006]. An

example of a rule corresponding to the variables and sub-scenario above is shown

bellow.

If

Set Point Rotation Speed is SPRS-C0 and Set Point Translational Speed

is SPTS-C0 and (Rotation Current is not RC-C0 and Rotation Voltage is

not RV-C0 and Rotation Speed is not RS-C0 and Thrust is not TH-C0

and Torque is not TO-C0 and Translational Voltage is not TV-C0 and

Translational Current is not TC-C0 and Translational Speed is not TS-C0

Then

Alarm Level

In this thesis only the terrain recognition system will be used as a test case.

The same analysis could be done to the monitoring system, using appropriate

measures of performance of the inference system.

 5. Case Study: a Fuzzy Inference System

 - 126 -

Figure 5.3: Example of linguistic variable – Rotational Voltage

Considering that an automatic process was used to create the terms for the

linguistic variables, in Figure 5.3 we can see that many terms of this linguistic

variable overlap heavily or are even included in others. It is also easy to observe

some implicit clusters of similar membership functions. Merging the membership

functions, pertaining to a cluster, into a single one seems an obvious way of reducing

the number of membership functions in the system.

The contribution to this project was to define an algorithm capable of reducing

the number of terms of a linguistic variable to improve the overall computational effort

of the system without compromising the performance of the system.

Classified

Concrete GasConcrete Marble NotDrilling Travertine Tuff Unknown Total

R
ea

l

Concrete 299 0 0 0 0 0 242 541

GasConcrete 0 267 0 0 26 0 229 522

Marble 0 0 296 0 0 0 226 522

NotDrilling 0 0 0 210 0 0 311 521

Travertine 0 21 0 0 244 0 259 524

Tuff 0 0 0 0 0 271 251 522

Total 299 282 296 210 270 271 1529 3152

Table 5.1: MODI Confusion Matrix

 5. Case Study: a Fuzzy Inference System

 - 127 -

The measures of performance used to compare the resulting terrain

recognition inference systems were the Precision of the classification [Santos,

Fonseca et al. (to appear 2008)], the Mean Certainty Level and a combination of

these two measures. Consider the confusion matrix in Table 5.1 that shows the

hardness types of terrain of a test data set and its classification with the MODI

inference system.

The overall Precision (P) of the terrain recognition inference system is the ratio

between the number of well classified samples (grey cells) and the total number of

samples [Santos, Fonseca et al. 2008]. For the confusion matrix in Table 5.1 the

precision would be 0.5035 (50.35%). The Mean Certainty Level (MCL) is the average

of the certainty levels obtained for each sample, for the samples that were correctly

classified. To combine these two measures of performance, it is used an average of

these two (based on the F1 score [Rijsbergen 1979]) given by:

MCLP

MCLP
F






2
 (5.1)

These three measures of performance take values between 0 and 1 and are to

be maximized.

5.2 Heuristics

In [Setnes, Babuska et al. 1998], Setnes presents a rule base simplification

algorithm that can be summarized by the fluxogram in Figure 5.4. Given a fuzzy

variable with initial membership functions M and a threshold minS for the similarity

(set by the user or by some other algorithm), we select the most similar pair of fuzzy

sets A and B (for a certain fuzzy similarity measure). If this similarity value is above

the previously defined threshold (minS), we combine these two fuzzy sets, update

the rule-base and the algorithm proceeds by choosing the most similar pair in M .

Otherwise, the algorithm stops and M is returned.

 5. Case Study: a Fuzzy Inference System

 - 128 -

Figure 5.4: Original algorithm [Setnes, Babuska et al. 1998]

Instead of basing the decision of merging or not two membership functions A

and B only on their similarity, it was decided to look at the differences in terms of

“design” between the original model and the ones achieved each iteration. This way

a more global view of the changes being made to the linguistic variable being pruned

was done. Therefore it was defined a measure for comparing two sets of

membership functions representing the same linguistic variable. This way it would be

possible to compare the models obtained through the algorithms to the initial model

or linguistic variable.

A distinguishability measure  between fuzzy sets can be defined as the

complement of their similarity measure [Mencar, Castellano et al. 2007].

),(1),(BASBA  (5.2)

Given a new set of membership functions (obtained, for instance, by merging

two or more membership functions of the original set) and the correspondence

between the new set and the original one, we can define what can be intuitively seen

as a model error by taking the average distinguishability measures between all

NO

YES

Start

End

Initial Model: M

Threshold : minS

Select the most similar pair of

fuzzy sets A and B in M

Merge A and B

Return M

S(A,B)>minS

Update rule-base

 5. Case Study: a Fuzzy Inference System

 - 129 -

original sets and the one that represents them in the new set. Consider the example

in Figure 5.5:

Figure 5.5: Example of model error

Using the Jaccard similarity measure [Mencar, Castellano et al. 2007] given

by equation (1.19) with the pair (minimum, maximum) as intersection and union

operators we obtain:

 1),(8182.0),(6364.0),( CCSDBSDAS (5.3)

Thus,

1818.0
3

)11()8182.01()6364.01(

3

),(),(),(










CCDBDA

ModelError

 (5.4)

The adapted algorithm can then be summarized by the fluxogram in Figure

5.6. Given a fuzzy variable with initial linguistic variables M and a threshold ε for the

model error (set by the user or by some other algorithm), we select the most similar

pair of fuzzy sets A and B (for a certain fuzzy similarity measure) and combine

these two fuzzy sets, thus obtaining a new set of linguistic variables, M  . If the model

error, denoted by ε, is above the threshold or if all pairs of fuzzy sets are totally

dissimilar (similarity zero) the algorithm stops. Otherwise, the algorithm proceeds by

choosing the most similar pair in M  .

Original Set New Set

)3,2,1,0(A

)4,3,2,0(B

)8,7,5,4(C

)4,5.2,5.1,0(D

)8,7,5,4(C

Merge A and B
into D

 5. Case Study: a Fuzzy Inference System

 - 130 -

Figure 5.6: Adapted algorithm

The above algorithm can be seen as a hierarchical clustering algorithm. We

start with as many clusters as the initial number of membership functions and in each

step we merge two clusters into a single one. Several methods of choosing the

optimal number of clusters (and thus the optimal number of iterations) for this kind of

clustering algorithms have been proposed [Milligan and Cooper 1985; Salvador and

Chan 2004]. Some consist of finding the knee of a curve obtained by representing

the number of iterations or number of clusters versus some metric of evaluation of

the clustering algorithm. Since using the inference system performance measure

(5.1) as evaluating metric during the clustering would be time consuming, it was

decided to use the model error instead. Running the adapted algorithm using the

NO

NO

YES

Start

End

Initial Model: M

Maximum Error: ε

Select the most similar pair of

fuzzy sets A and B in M

M’ ← new model with A and B

merged

M ← M’

Model

Error < ε

Return M

S(A,B)=0 YES

 5. Case Study: a Fuzzy Inference System

 - 131 -

Jaccard similarity measure in (1.19) with the minimum and maximum operators until

all membership functions are disjoint and plotting each iteration number versus its

model error, gave a curve like the one in Figure 5.7 a). The Model Error increases

slowly with each iteration until it reaches a point where it starts to grow exponentially.

We can choose the number of iterations to be the x-axis coordinate of that point. This

way, we will have an automatic method for choosing the number of iterations of the

algorithm and we will no longer need to heuristically choose the parameter ε.

 a) Iteration vs Model Error b) L-Method

Figure 5.7: a) Iteration vs Model Error; b) L-method

 To find the knee of this curve the L-method, proposed by Salvador and Chan

in [Salvador and Chan 2004], was used. Let n be the number of the last iteration,

that is, nx ,,1 . Let cL and cR be the left and right sequences of data points

partitioned at 2,...,2,  nccx . Fitting a line to cL and another to cR we can define

the total root mean square error (RMSE) by:

)()(ccc RRMSE
n

cn
LRMSE

n

c
RMSE


 (5.5)

i.e., the total root mean squared error is a weighted average of the root mean

squared error of both fittings. The optimal number of iterations is the value c that

minimizes cRMSE . In Figure 5.7 b), c is the number of chosen iterations

 5. Case Study: a Fuzzy Inference System

 - 132 -

corresponding to the point circled (43c). The c value is the stopping criterion

threshold used in the adapted algorithm.

 As will be seen through the computational results presented in section 5.3,

although this approach improves the original inference system used as a test case,

the use of the L-method as a stopping criterion is not the best choice. By penalizing

dissimilarity, it assumes that the initial model is the one with best performance, which

is not the case in this case study. Since the original inference system was obtained

automatically from sensor data, it is full of redundancy. The stopping criterion should

not be based on a comparison in terms of “design” to the original model but on the

actual performance measures of the inference system.

The final algorithm, called bestP, is illustrated in Figure 5.8.

We ran the original algorithm (Figure 5.4) until all membership functions are

disjoint (similarity zero). In each iteration, the rules are updated and the performance

of the resulting inference system, P(M), is obtained and compared with the

performance of the best model found so far, P(BestM). The bestP algorithm returns

the inference system with best performance, from the ones generated throughout the

iterations. Note that this algorithm is defined for any performance measure, P(.). In

our case study, we used the performance measure F given by (5.1). This means

that we will be maximizing the inference system performance. If the initial system is

the best system in terms of this measure of performance, there will be no reduction in

the number of membership functions. If we want to find a compromise between the

number of membership functions and the inference system performance we can use

a linear combination of these two objectives in the following way:

 n
n

FMP
0

1
)(





 (5.6)

where  1,0 is the weight given to F , 0n is the initial number of membership

functions, used as a scaling factor and n is the number of membership functions of

model M .

 5. Case Study: a Fuzzy Inference System

 - 133 -

Finally, the adapted algorithm is applied sequentially to each input variable to

be pruned (in this case, all input variables except the set points). After this pruning is

completed, duplicate rules are removed from the rule system to improve the

computational efficiency of the final inference system.

Figure 5.8: Final algorithm – bestP

YES

YES

NO

End

Return BestM

YES

NO

Start

S(A,B)=0

BestM=M

Initial Model: M

Select the most similar pair of fuzzy sets

A and B in M

NO

BestM = M

P(M)

 worse then

P(BestM)

Merge A and B

size(M)=1

Update rule-base

 5. Case Study: a Fuzzy Inference System

 - 134 -

5.3 Computational Results

The heuristic algorithms described in the previous section were applied to a

terrain recognition inference system constructed as described in section 5.1. All

experiments were done using Matlab and Java.

The set points used were:

1. Rotation Speed (rpm) - SPRS

2. Translational Speed (mm / min) - SPTS

The sensor’s variables used were:

1. Rotation Current (A) - RC

2. Rotation Voltage (V) - RV

3. Rotation Speed (rpm) - RS

4. Thrust (N) - TH

5. Torque (N) - TO

6. Translational Voltage (V) - TV

7. Translational Current (A) - TC

8. Translational Speed (mm/min) - TS

Six different types of terrain hardness were tested. The 6 scenarios considered

were: Not Drilling (drilling in air); Concrete; Gas-Concrete; Marble; Travertine; and

Tuff. Setting 3 different values for each of the set points, these scenarios were further

sub-divided into 54 (336 ) sub-scenarios that provided the basis for the

construction of the linguistic variables representing each input variable.

 The original membership functions in this inference system are represented in

Figure 5.9. In all linguistic variables in the system it is clear that some of its terms

should be merged. The sensor values were collected as integers. Integer

programming is more efficient and was thus used to guarantee real time tasks.

Therefore, the x-axis of the plots representing the linguistic variables in the system

have no physical meaning, i.e., they cannot be interpreted as voltages, rotations per

minute, ...

 5. Case Study: a Fuzzy Inference System

 - 135 -

Rotation Current Rotation Voltage

Rotation Speed Thrust

Torque Translational Voltage

Translational Current Translational Speed

Figure 5.9: Original input linguistic variables (except set points)

 5. Case Study: a Fuzzy Inference System

 - 136 -

 First, the algorithm summarized by Figure 5.6 (adapted algorithm) with the

stopping criterion defined by minimization of (5.5) – L-method [Salvador and Chan

2004] - was applied sequentially to all input variables except set points. Then, the

algorithm summarized by Figure 5.8, were the inference system with best

performance is chosen, was used in the same sequence. The following figures show

the evolution of the performance measure F (to be maximized) given by equation

(5.1) when the algorithms run until all membership functions are disjoint. The vertical

lines mark the iteration chosen by the L-method and the circle marks the iteration

with best performance, i.e., the iteration chosen by bestP.

Figure 5.10: Evolution of performance measure F during the algorithm – Rotation

Current

 5. Case Study: a Fuzzy Inference System

 - 137 -

Figure 5.11: Evolution of performance measure F during the algorithm – Rotation

Voltage

Figure 5.12: Evolution of performance measure F during the algorithm – Rotation

Speed

 5. Case Study: a Fuzzy Inference System

 - 138 -

Figure 5.13: Evolution of performance measure F during the algorithm – Thrust

Figure 5.14: Evolution of performance measure F during the algorithm – Torque

 5. Case Study: a Fuzzy Inference System

 - 139 -

Figure 5.15: Evolution of performance measure F during the algorithm –

Translational Voltage

Figure 5.16: Evolution of performance measure F during the algorithm –

Translational Current

 5. Case Study: a Fuzzy Inference System

 - 140 -

Figure 5.17: Evolution of performance measure F during the algorithm –

Translational Speed

 Original Adapted Algorithm BestP

Rotation Current 54 21 3

Rotation Voltage 54 20 5

Rotation Speed 54 8 3

Thrust 54 22 17

Torque 54 25 46

Translational Voltage 54 10 3

Translational Current 54 10 3

Translational Speed 54 13 3

TOTAL 432 129 45

Table 5.2: Number of membership functions before and after optimization

As can be seen by the previous figures and by Table 5.2, using the L-method

as a stopping criterion is not the best choice. In most cases this stopping criterion

chooses to stop too early. Although in this case study this method already reduces

the number of membership functions without losing performance, this method fails to

choose the best iteration to stop. Analyzing the previous figures it is clear why

concentrating on the model error instead of the inference system actual performance

 5. Case Study: a Fuzzy Inference System

 - 141 -

is not a good strategy. By minimizing the model error, changes to the original

inference system are being penalized. If the original system was “perfect”, reducing

the number of terms in linguistic variables by merging similar membership functions

should negatively affect the performance of the system. The previous figures show

that this is not the case, merging membership functions is actually increasing the

inference system performance. This means that the initial system is full of

redundancy and that some of this redundancy is being eliminated by the algorithm.

For this reason, instead of using the model error, a comparison between the initial

inference system and the ones obtained by the algorithm, it is wiser to focus on

performance measures such as the ones described in the previous section. This is

what motivated the use of the bestP algorithm.

 Original Adapted Algorithm BestP

P 72.33% 76.49% 85.47%

MCL 34.49% 36.88% 44.00%

F 46.71% 49.77% 58.09%

N 423 129 45

Table 5.3: Comparison of inference systems

Table 5.3 compares the three inference systems – original inference system

and inference systems obtained using the Adapted Algorithm and the BestP

algorithm – in terms of systems performance measures and number of membership

functions. Figure 5.18 shows the linguistic variable Translational Voltage before and

after using both algorithms. By using the bestP heuristic it was possible to reduce the

number of membership functions in the system and improve its overall performance.

It was possible to reduce the number of membership functions in input linguistic

variables (except set points) from 432 to 45. All measures of performance used

improved after this optimization. The easiest to interpret performance measure, the

Precision of the classification (P), increased from 72.33% to 85.47%. The

advantages of using this algorithm in this case study was clear. If it was desirable to

further reduce the number of membership functions a measure such as the one in

equation (5.6) could be used. Figure 5.19 shows the linguistic variables returned by

 5. Case Study: a Fuzzy Inference System

 - 142 -

the algorithm. Some linguistic variables seem to be too reduced, i.e., its new

linguistic variables do not seem well representative of the original linguistic variables.

We have to keep in mind that the original system was created automatically and is

full of redundancy.

(a) Original

(b) Adapted Algorithm

(c) BestP

Figure 5.18: Linguistic Variable Translational Voltage before (a) and after using the

adapted (b) and BestP (c) algorithms

 5. Case Study: a Fuzzy Inference System

 - 143 -

 Rotation Current Rotation Voltage

Rotation Speed Thrust

Torque Translational Voltage

Translational Current Translational Speed

Figure 5.19: Input linguistic variables after optimization with BestP (except set points)

 5. Case Study: a Fuzzy Inference System

 - 144 -

5.4 Summary

In this chapter the goal was to reduce the number of membership functions in

linguistic variables of an already existing inference system. An inference system

construted in the scope of a project developed for ESA served as case study. The

inference system was constructed automatically from sensor data and was thus full of

redundancy. The aim was to reduce the complexity of the inference system while

maintaining its structure, without losing too much performance. Not only was this

objective achieved, but also the inference system performance was increased.

Moreover, a paper about this subject was published [Gomes, Santos et al. 2008].

 I could have presented only the last algorithm, bestP, and ignore the

intermediate attempts to find an algorithm for reducing the number of membership

functions. However, I preferred to describe my first and more intuitive approach to

this problem for two reasons: first, to show the importance of trial and error in science

and second because the results obtained with the first adapted algorithm justify the

necessity to evaluate the system performance during the algorithm instead of

concentrating on “design” measures such as the model error.

 There are still some questions that should be answered about this procedure.

The algorithm was applied sequentially to input linguistic variables. There was no

study about the importance of the order in which this pruning is made. I believe that

this order can have some impact on the results. To solve this problem, instead of

sequentially running the algorithm, a global algorithm where in each iteration the

most similar membership functions from any linguistic variable was merged could be

designed. Another question concerns the similarity measure used. Experiments with

other similarity measures should be used to justify the choice of similarity measure.

 6. Conclusions and Future Work

 - 145 -

Chapter 6. Conclusions and Future Work

The purpose of this thesis was to develop algorithms to reduce the number of

membership functions in a linguistic variable. One of the main advantages of fuzzy

models is that they are usually less complex and easy to interpret than classical

models. By reducing the number of membership functions in linguistic variables the

aim was to achieve simpler and more efficient fuzzy models.

The problem of reducing the number of membership functions in a linguistic

variable was approached as a clustering problem. The pruned linguistic variable was

the result of merging clusters of similar membership functions into a new membership

function. Some possible formulations to the clustering problem were presented.

Exact methods were used with one of these formulations and the combinatorial

nature of clustering problems was clear. As expected, only very small data sets can

be optimally solved through these methods in a reasonable amount of time. Although

it was never the purpose of this thesis to use exact methods to solve this problem,

this was an important step to better understand the dimension of the problem at

hands.

To find good quality solutions in a more reasonable amount of time a Scatter

Search procedure was developed and compared to the K-Means++ algorithm. Both

procedures were implemented in Matlab and tested with two different case studies.

The linguistic variables from these case studies could later be used in a fuzzy

inference system or any other fuzzy model constructed taking into account the

pruned membership functions instead of the original ones. The computational results

were not as expected. The second phase of the Scatter Search algorithm was not

able to produce good quality solutions. However, the first part of the algorithm was

sufficient to obtain better results than the ones given by the K-Means algorithm. Both

methods achieved a high reduction in the number of membership functions in each

linguistic variable.

The last chapter presented a different case study. The objective was to reduce

the number of membership functions in linguistic variables of an automatically

constructed inference system without losing two much performance. It was seen that,

 6. Conclusions and Future Work

 - 146 -

in this case, concentrating on the characteristics of a single linguistic variable was

insufficient. It is important to concentrate on the actual performance of the inference

system, using appropriate measures of performance. Therefore the heuristics

implemented before were not applied to this case study. Although the fitness function

of the scatter search algorithm could have been changed to account for these

performance measures, the time it takes to evaluate the inference system and the

number of times it would be necessary to evaluate it explain why it was chosen not to

use this algorithm in this case. The algorithms used in this case study can be

categorized as hierarchical clustering algorithms. The results achieved in this case

study were more than satisfying. It was possible to improve the initial inference

system performance and simplify the system at the same time.

 Although a lot of work was developed during this thesis, there is still much to

be done in the future. In the first procedures a comparison of the different cluster

validity indexes and of the shapes of the clusters themselves, translated by the

clustering criteria used, should be made. Different strategies inside the scatter search

algorithm could be tested to try to overcome the poor results obtained in terms of the

way solutions are combined. More work is needed in estimating the correct number

of clusters or a good maximum number of clusters to be given as input for the scatter

search algorithm or other clustering algorithms. It would also be interesting to

construct fuzzy models to identify the type of breast cancer (malign or benign) from

the cell nuclei characteristics and to support credit approval decision processes

using the linguistic variables from section 4.3 before and after being pruned,

comparing results. In the MODI case study, as mentioned, the impact of the order in

which the linguistic variables are pruned in the results or the possibility of designing a

global algorithm that looked at all variables at the same time are possible directions

for future work, along with a study of how results are affected by using different

similarity measures. Furthermore, given the good results obtained in this case study,

it is important to confirm the validity of the algorithm by running it on different case

studies.

 7. References

 - 147 -

Chapter 7. References

Abdule-Wahab, R. S., N. Monmarché, M. Slimane, M. A. Fahdil and H. H. Saleh

(2006). "A Scatter Search Algorithm for the Automatic Clustering Problem."

Advances in Data Mining: 350-364.

Adlassnig, K. (1986). "Fuzzy set theory in medical diagnosis " IEEE Trans. Syst. Man

Cybern. 16(2): 260-265.

Aggarwal, C. C. and P. S. Yu (2000). Finding generalized projected clusters in high

dimensional spaces. Proceedings of the 2000 ACM SIGMOD international

conference on Management of data. Dallas, Texas, United States, ACM. 70-

71.

Agrawal, R., J. Gehrke, D. Gunopulos and P. Raghavan (1998). Automatic subspace

clustering of high dimensional data for data mining applications. Proceedings

of the 1998 ACM SIGMOD international conference on Management of data.

Seattle, Washington, United States, ACM. 94-105.

Anoop Kumar, D. and H. Moskowitz (1991). "Application of fuzzy theories to multiple

objective decision making in system design." European Journal of Operational

Research 53(3): 348-361.

Asuncion, A. N., D.J. (2007). "UCI Machine Learning Repository " Retrieved March

2008, from http://archive.ics.uci.edu/ml/datasets/Credit+Approval.

Ball, G. H. and D. J. Hall (1965). ISODATA, a novel method of data analysis and

classification. T. Rep. Stanford, CA, Stanford Univ.

Barnhart, C., E. Johnson, G. Nemhauser, M. Savelsbergh and P. Vance (1998).

"Branch-and-Price: Column Generation for Solving Huge Integer Programs."

Operations Research 46(3): 316-329.

Brown, D. E. and C. L. Huntley (1990). A Practical Application of Simulated

Annealing to Clustering, University of Virginia.

http://archive.ics.uci.edu/ml/datasets/Credit+Approval

 7. References

 - 148 -

CA3. (2006). "MODI's homepage." Retrieved April 2007, 2007, from

http://www2.uninova.pt/ca3/en/project_MODI.htm.

Chen, S.-J. and S.-M. Chen (2008). "Fuzzy risk analysis based on measures of

similarity between interval-valued fuzzy numbers" Computers & Mathematics

with Applications Pergamon 55(8): 1670-1685.

Chen, S.-M., M.-S. Yeh and P.-Y. Hsiao (1995). "A comparison of similarity measures

of fuzzy values". Fuzzy Sets and Systems 72(1): 79-89.

Chen, S. M. (1996). "New Methods for Subjective Mental Workload Assessment and

Fuzzy Risk Analysis." Cybernetics and Systems 27: 449-472.

Cheng, C., W. Lee and K. Wong (2002). "A genetic algorithm-based clustering

approach for database partitioning." IEEE Transactions on Systems, Man and

Cybernetics, Part C 32(3): 215–230.

Colin, R. R., Ed. (1993). Modern heuristic techniques for combinatorial problems,

John Wiley & Sons, Inc.

Costa, A., A. D. Gloria, F. Giudici and M. Olivieri (1997). "Fuzzy Logic

Microcontroller." IEEE Micro 17(1): 66-74.

David, A. and V. Sergei (2007). k-means++: the advantages of careful seeding.

Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms. New Orleans, Louisiana, Society for Industrial and Applied

Mathematics. 1027-1035

Dempster, A., N. Laird and D. Rubin (1977). "Maximum likelihood from incomplete

data via the EM algorithm." Journal of the Royal Statistical Society. Series B

(Methodological) 39(1): 1–38.

Edwards, A. W. F. and L. L. Cavalli-Sforza (1965). "A Method for Cluster Analysis."

Biometrics 21(2): 362-375.

Engelbrecht, A. (2002). Computational Intelligence: An Introduction, Halsted Press.

http://www2.uninova.pt/ca3/en/project_MODI.htm

 7. References

 - 149 -

ESA. (2008). "Aurora Exploration Program." Retrieved January 2008, from

http://www.esa.int/esaMI/Aurora/index.html.

Ester, M., H.-P. Kriegel, J. Sander and X. Xu (1996). A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise. Proc. 2nd

International Conference on Knowledge Discovery and Data Mining. Portland,

OR: 226-231.

Estivill-Castro, V. (2002). "Why so many clustering algorithms: a position paper".

ACM. 4: 65-75.

Everitt, B., S. Landau and M. Leese (2001). Cluster Analysis, Arnold Publishers.

Florek, K., J. Lukaszewicz, H. Steinhaus and S. Zubrzycki (1951). "Sur la liaison et la

division des points d’un ensemble fini." Colloquium Mathematicum 2: 282-285.

Gan, G., C. Ma and J. Wu (2007). Data Clustering: Theory, Algorithms, and

Applications Philadelphia, SIAM.

Gautam, G. and B. B. Chaudhuri (2004). "A novel genetic algorithm for automatic

clustering", Elsevier Science Inc. 25: 173-187.

Glover, F. (1977). "Heuristics for Integer Programming Using Surrogate Constraints."

Decision Sciences 8(1): 156-166.

Glover, F. (1986). "Future paths for interger programming and links to artificial

intelligence." Computer & Operation Research 13(5): 533-549.

Glover, F. and M. Laguna (1997). Tabu Search, Kluwer Academic Publishers.

Gomes, M. M., B. R. Santos, T. Simas, P. Sousa and R. A. Ribeiro (2008). Reducing

the Number of Membership Functions in Linguistic Variables: Application to a

Fuzzy Monitoring System. Eight International Conference on Application of

Fuzzy Systems and Soft Computing Helsinki, Finland, b- Quadrat Verlag.

Gower, J. C. and G. J. S. Ross (1969). "Minimum Spanning Trees and Single

Linkage Cluster Analysis." Applied Statistics 18(1): 54-64.

http://www.esa.int/esaMI/Aurora/index.html

 7. References

 - 150 -

Hansen, P. and M. Delattre (1978). "Complete-Link Cluster Analysis by Graph

Coloring." Journal of the American Statistical Association 73(362): 397-403.

Hartigan, J. A. (1975). Clustering Algorithms. New York, Jonh Wiley and Sons.

Hillier, F. S. and G. J. Lieberman (2005). Introduction to Operation Research.

Singapore, McGraw-Hill.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor,

University of Michigan Press.

Hubert, L. (1974). "Some applications of graph theory to clustering." Psychometrika

39(3): 283-309.

Isermann, R. (1998). "On fuzzy logic application for automatic control, supervision,

and fault diagnosis." IEEE Transactions on Systems, Man, and Cybernetics -

Part A: Systems and Humans 28(2): 221-235.

Jain, A. K. and R. C. Dubes (1988). Algorithms for Clustering Data. New Jersey,

Prentice Hall, Englewood Cliffs.

Jain, A. K., M. N. Murty and P. J. Flynn (1999). "Data Clustering: A Review." ACM

Computing Surveys 31(3): 264-323.

Jameaux, D., R. Vitulli, R. A. Ribeiro, T. Fonseca, B. R. Santos and M. Barata (2006).

Monitoring & Diagnosis on-board software module for Mars driller.

Proceedings of the 5th International Workshop on Planning and Scheduling

for Space.

Jardine, N. and R. Sibson (1968). "The Construction of Hierarchic and Non-

Hierarchic Classifications." The Computer Journal 11(2): 177-184.

Jean-Philippe, H. and H. Jin-Kao (2002). Scatter Search for Graph Coloring.

Selected Papers from the 5th European Conference on Artificial Evolution,

Springer-Verlag.166-179

Jiang, T. and S. Ma (1996). Cluster analysis using genetic algorithms. Proceedings of

the third international conference on signal processing 2: 1277–1279.

 7. References

 - 151 -

Jimenez, J. F., F. J. Cuevas and J. M. Carpio (2007). Genetic algorithms applied to

clustering problem and data mining. Proceedings of the 7th WSEAS

International Conference on Simulation, Modelling and Optimization. Beijing,

China, World Scientific and Engineering Academy and Society (WSEAS). 219-

224

Joyce, C. W. and K. N. Michael (2000). A Tabu Search Based Algorithm for

Clustering Categorical Data Sets. Proceedings of the Second International

Conference on Intelligent Data Engineering and Automated Learning, Data

Mining, Financial Engineering, and Intelligent Agents, Springer-Verlag.559-

564

Kaufman, L. and P. Rousseeuw (1990). Finding Groups in Data - An Introduction to

Cluster Analysis. New York, John Wiley and Sons, Inc.

King, B. (1967). "Step-wise clustering procedures." Journal of the American

Statistical Association 69: 86–101.

Kirkpatrick, S., C. D. Gelatt, Jr. and M. P. Vecchi (1983). "Optimization by Simulated

Annealing." Science 220(4598): 671-680.

Klir, G. J. and B. Yuan (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applications.

New Jersey, Prentice Hall.

Kruskal, J. B., Jr. (1956). On the Shortest Spanning Subtree of a Graph and the

Traveling Salesman Problem. Proceedings of the American Mathematical

Society 7(1): 48-50.

Kuiper, F. and L. Fisher (1975). "Shorter communications 391: A Monte Carlo

comparison of six clustering procedures." Biometrics 31(3): 777-783.

Lai, Y. J. and C. L. Hwang (1994). Fuzzy multi objective decision making methods

and applications. Berlin, Springer-Verlag.

Land, A. H. and A. G. Doig (1960). "An Automatic Method for Solving Discrete

Programming Problems." Econometrica 28(3): 497-520.

 7. References

 - 152 -

Lee, C. C. (1990a). "Fuzzy logic in control systems: fuzzy logic controller. I."

Systems, Man and Cybernetics, IEEE Transactions on 20(2): 404-418.

Lee, C. C. (1990b). "Fuzzy logic in control systems: fuzzy logic controller. II."

Systems, Man and Cybernetics, IEEE Transactions on 20(2): 419-435.

Lourenço, L. L. (1995). Contributos da Optimização Discreta para a Análise

Classificatória. Aplicação de Heurísticas Genéticas a uma Classificação com

Precedências. Dissertação de Mestrado em Matemática Aplicada à Economia

e Gestão, Instituto Superior de Economia e Gestão, Universidade Técnica de

Lisboa.

Martí, R., M. Laguna and V. Campos (1997). "Scatter Search vs. Genetic Algorithms:

An Experimental Evaluation with Permutation Problems." Adaptive Memory

and Evolution: Tabu Search and Scatter Search. C. Rego, Alidaee, B.(Eds.),

Kluwer Academic Publishers.

Mathworks Matlab Fuzzy Logic Toolbox - User's Guide.

Maulik, U. and S. Bandyopadhyay (2000). "Genetic algorithm-based clustering

technique." Pattern Recognition 33(9): 1455–1465.

McErlean, F. J., D. A. Bell and S. I. McClean (1990). "The use of simulated annealing

for clustering data in databases". Information Systems. 15(2): 233-245.

McQueen, J. (1967). Some methods for classification and analysis of multivariate

observations. In Proceedings of the Fifth Berkeley Symposium on

Mathematical Statistics and Probability: 281–297.

McQuitty, L. (1957). "Elementary linkage analysis for isolating orthogonal and oblique

types

and typal relevancies." Educational and Psychological Measurement 17: 207-222.

Mencar, C., G. Castellano and A. M. Fanelli (2007). "Distinguishability quantification

of fuzzy sets." Information Sciences 177(1): 130-149.

 7. References

 - 153 -

Milligan, G. W. and M. C. Cooper (1985). "An examination of procedures for

determining the number of clusters in a data set." Psychometrika 50(2): 159-

179.

Mirkin, B. (2005). Clustering For Data Mining: A Data Recovery Approach New York,

Chapman & Hall/CRC.

Miyamoto, S. (1990). Fuzzy Sets in Information Retrieval and Clustering Analysis,

Kluwer Academic Publishers.

Murtagh, F. (1983). "A survey of recent advances in hierarchical clustering

algorithms." The Computer Journal 26(4): 354-359.

Nakashima, T., H. Ishibuchi and T. Murata (1998). Evolutionary algorithms for

constructing linguistic rule-based systems for high-dimensional pattern

classification problems. Evolutionary Computation Proceedings, 1998. IEEE

World Congress on Computational Intelligence.

Pacheco, J. A. (2005). "A scatter search approach for the minimum sum-of-squares

clustering problem". Computers and Operations Research. 32: 1325-1335.

Petra, K. (2007). Clustering Genetic Algorithm. Proceedings of the 18th International

Conference on Database and Expert Systems Applications, IEEE Computer

Society.138-142

Prim, R. (1957). "Shortest connection matrix network and some generalizations." Bell

Systems Technical Journal 36: 1389–1401.

Procopiuc, C. M., M. Jones, P. K. Agarwal and T. M. Murali (2002). A Monte Carlo

algorithm for fast projective clustering. Proceedings of the 2002 ACM SIGMOD

international conference on Management of data. Madison, Wisconsin, ACM.

Ribeiro, R. A. (1996). Fuzzy multiple attribute decision making: a review and new

preference elicitation techniques. Fuzzy Sets and Systems. 78: 155-181.

Ribeiro, R. A. (2006). "Fuzzy space monitoring and fault detection applications."

Journal of Decision Systems. 2-3.

 7. References

 - 154 -

Rijsbergen, C. J. v. (1979). Information Retrival. London, Butterwoths.

Ross, T. J. (2004). Fuzzy Logic with Engineering Applications, John Wiley and Sons.

Russell, R. A. and W.-C. Chiang (2006). "Scatter search for the vehicle routing

problem with time windows." European Journal of Operational Research

169(2): 606-622.

Salvador, S. and P. Chan (2004). Determining the number of clusters/segments in

hierarchical clustering/segmentation algorithms. Tools with Artificial

Intelligence, 2004. ICTAI 2004.

Santos, B. R., T. Fonseca, M. Barata, R. A. Ribeiro and P. Sousa (2006). New Data

preparation process - A case study for an ExoMars Drill. Proceedings of the

World Automation Congress (WAC2006).

Santos, B. R., T. Fonseca, M. Barata, R. A. Ribeiro and P. Sousa (2008). "A method

for automatic fuzzy set generation using sensor data." Autosoft-Intelligent

Automation and Soft Computing International Journal.

Santos, B. R., T. Fonseca, M. Barata, R. A. Ribeiro and P. Sousa ((to appear 2008)).

"A method for automatic fuzzy set generation using sensor data." Autosoft-

Intelligent Automation and Soft Computing

International Journal.

Santos, B. R., G. Martins, M. Gomes and R. A. Ribeiro (2008). CCN for MODI -

Simulation of Knowledge Enabled Monitoring and Diagnosis Tool for Mars

Lander Payloads: Final Report, Uninova/CA3.

Setnes, M., R. Babuska, U. Kaymak and H. R. van Nauta Lemke (1998). "Similarity

measures in fuzzy rule base simplification." Systems, Man and Cybernetics,

Part B, IEEE Transactions on 28(3): 376-386.

Shokri, Z. S. and K. Alsultan (1991). A simulated annealing algorithm for the

clustering problem, Elsevier Science Inc. 24: 1003-1008.

Shu-Jen, J. C. and C. L. Hwang (1992). Fuzzy Multiple Attribute Decision Making:

Methods and Applications, Springer-Verlag New York, Inc.

 7. References

 - 155 -

Sneath, P. (1957). "The applications of computers to taxonomy." Journal of General

Microbiology 17: 201–226.

Sokal, R. and P. Sneath (1963). Principles of Numerical Taxonomy. San Francisco,

W.H. Freeman.

Song, B. G., R. J. Marks, II, S. Oh, P. Arabshahi, T. P. Caudell and J. J. Choi (1993).

"Adaptive membership function fusion and annihilation in fuzzy if-then rules".

Fuzzy Systems.

Spath, H. (1980). Cluster analysis algorithms for data reduction and classification of

objects. New York, Ellis Horwood.

Sung, C. and H. Jin (2000). "A tabu-search-based heuristic for clustering." Pattern

Recognition 33(5): 849–858.

Tapas, K., M. M. David, S. N. Nathan, D. P. Christine, S. Ruth and Y. W. Angela

(2002). "An Efficient k-Means Clustering Algorithm: Analysis and

Implementation", IEEE Computer Society. 24: 881-892.

Ujjwal, M. and B. Sanghamitra (2002). "Performance Evaluation of Some Clustering

Algorithms and Validity Indices", IEEE Computer Society. 24: 1650-1654.

Ward Jr., J. (1963). "Hierarchical grouping to optimize an objective function." Journal

of the American Statistical Association 58(301): 236–244.

Ward Jr., J. and M. Hook (1963). "Application of a hierarchical grouping procedure to

a problem of grouping profiles." Educational and Psychological Measurement

23(1): 69–81.

Wirth, M., G. Estabrook and D. Rogers (1966). "A graph theory model for systematic

biology, with an example for the oncidiinae (orchidaceae)." Systematic

Zoology 15(1): 59–69.

Wolsey, L. A. (1998). Integer Programming, Wiley-Interscience.

 7. References

 - 156 -

Yongguo, L., Y. Zhang, W. Hong, Y. Mao and C. Kefei (2008). "A tabu search

approach for the minimum sum-of-squares clustering problem". Information

Sciences. 178: 2680-2704.

Zadeh, L. A. (1965). "Fuzzy Sets." Information and Control 8: 338-353.

Zadeh, L. A. (1975). "The concept of a linguistic variable and its application to

approximate reasoning--I." Information Sciences 8(3): 199-249.

Zimmermann, H. J. (1990). Fuzzy set theory and its applications. Boston, Kluwer

Academic Publishers.

APPENDIX

 Appendix

 - 158 -

Resumo Alargado

1. Introdução

Uma variável linguística [Zadeh 1965] é composta por conjuntos vagos que

podem ser matematicamente representados por funções de pertença. Por exemplo a

variável linguística Altura pode ser composta pelos conjuntos vagos Baixa, Média e

Alta (Figure 1.1). Em vez de um indivíduo pertencer apenas a um destes conjuntos

como aconteceria com a lógica clássica, o grau de pertença de qualquer indivíduo a

cada um destes conjuntos é dado pela respectiva função de pertença.

O objectivo desta tese era desenvolver algoritmos para reduzir o número de

funções de pertença em variáveis linguísticas. Este problema é extremamente

importante quando é utilizado um processo automático de criação de variáveis

linguísticas, podendo-se assim obter uma variável linguística com um elevado

número de funções de pertença. De uma forma mais geral, o problema que se

coloca pode ser visto da seguinte maneira: como reduzir a quantidade de dados a

analizar (aqui representados pelas diferentes funções de pertença) sem com isso

perder informação? Esta é precisamente a mesma questão que nos é posta em

problemas de agrupamento ou clustering. Assim, o problema da redução do número

de funções pertença numa variável linguística foi aqui abordado como um problema

de agrupamento. Começamos por identificar possíveis grupos de funções de

pertença semelhantes. Funções de pertença pertencentes a um mesmo grupo são

então agrupadas numa nova função de pertença, obtendo-se assim um novo

conjunto mais pequeno de funções de pertença que representam aproximadamente

o mesmo conceito que a variável linguística inicial.

Podemos considerar que nesta tese foram abordados dois grandes tipos de

problemas. No primeiro o objectivo é a redução do número de funções de pertença

em variáveis linguísticas que mais tarde poderiam vir a fazer parte de um qualquer

modelo (não necessariamente um sistema de inferência) que seria construído já

tendo em conta as características da variável linguística depois desta redução. No

segundo, pelo contrário, o objectivo seria a redução do número de funções de

pertença de variáveis linguísticas pertencentes a um sistema de inferência

previamente construído, tendo em conta as características das variáveis linguísticas

originais. Assim, neste caso, a variável linguística terá que ser encarada como parte

 Appendix

 - 159 -

de um sistema e o objectivo passa a ser obter um equilíbrio entre o desempenho do

sistema e a sua simplificação por meio da redução do número de funções de

pertença.

2. Conceitos Importantes

No Capítulo 1Chapter 1 é introduzida alguma informação sobre lógica difusa

necessária para melhor compreender o contexto em que esta tese se insere, bem

como alguma notação que será utilizada noutros capítulos. Apenas as ideias mais

importantes são aqui referidas.

2.1. Representação de funções de pertença

Algumas famílias de funções de pertença podem ser mapeadas para pR , em

que p é o número de parâmetros dessa família de funções e cada dimensão

representa um parâmetro diferente.

Por exemplo, para 3p uma função de pertença triangular pode ser

representada por um triplo  cba ,, (Figure 1.9). Se o triângulo for simétrico podemos

tomar 2p , representando a função de pertença por  ,a , em que bcab  .

De modo semelhante, podemos representar uma função de pertença

trapezoidal por um vector  dcba ,,, contendo os seus vertices . No caso de esta ser

simétrica, ou seja,
22

cbda 



, podemos usar um triplo   ,,m , em que

22

cbda
m





 , bc  and ad  (Figure 1.10).

Esta representação será usada para tratar o problema da redução do número

de funções de pertença numa variável linguística como um problema de

agrupamento tradicional.

2.2. Fundir Funções de Pertença

A ideia por trás dos algoritmos a utilizar é a fusão de grupos de funções de

pertença semelhantes.

 Appendix

 - 160 -

Dadas n funções de pertença trapezoidais,   nidcbaT iiii

i ,,1,,,,  ,

estas serão fundidas numa nova função de pertença   nidcbaT ,,1,,,, 

usando uma generalização do método proposto em [Setnes, Babuska et al. 1998]:

 i
ni
aa

,,1
min


 (1)

 



n

i

ib
n

b
1

1
 (2)

 



n

i

ic
n

c
1

1
 (3)

 i
ni
dd

,,1
max


 (4)

As formulas para fundir um grupo de funções de pertença triangular vêm

directamente das anteriores.

3. Métodos Exactos

Nesta tese são discutidas algumas formulações em programação inteira para

este problema (secção 2.3). Embora nunca tenha sido o objectivo desta tese

encontrar soluções óptimas para estes problemas usando métodos exactos como o

Branch & Bound [Land and Doig 1960], uma destas formulações foi introduzida no

CPLEX para dois conjuntos de problemas de pequena dimensão, um com apenas

12 funções de pertença em cada variável linguística e outro com 54. Enquanto que

no primeiro conjunto de problemas foi possível encontrar soluções óptimas em

menos de 2 minutos, no segundo conjunto de problemas já não foi possível

encontrar soluções óptimas, tendo o programa parado por falta de memória. Estas

experiências permitiram ter uma maior noção da dimensão e dificuldade deste tipo

de problemas e justificaram a necessidade de recorrer a métodos heurísticos para

encontrar boas soluções num espaço de tempo mais realista.

 Appendix

 - 161 -

4. Métodos Heurísticos baseados em Pesquisa Local

Dada a ineficácia dos métodos exactos em encontrar a solução óptima para o

agrupamento dos pontos num determinado conjunto X , foram explorados métodos

heurísticos. Foi desenvolvida uma meta-heurística, Scatter Search, baseada em

[Pacheco 2005; Abdule-Wahab, Monmarché et al. 2006] que foi posteriormente

comparada com uma variação do algoritmo das K-Médias ou K-Means [McQueen

1967], denominada K-Means++ [David and Sergei 2007].

4.1. K-Means++

O algoritmo K-Means [McQueen 1967] começa por escolher aleatoriamente

para centros dos clusters K pontos do conjunto de dados  nxxX ,,1  . Depois

desta inicialização, determina-se uma partição dos dados em K grupos, afectando

cada ponto ao grupo com centro mais próximo. A partir deste momento os centros

dos grupos vão sendo actualizados e os pontos vão sendo afectados ao grupo mais

próximo até que algum ser satisfeito algum critério de paragem.

O algoritmo K-Means++ [David and Sergei 2007] difere do algoritmo original

apenas na maneira como os centros iniciais são escolhidos. Depois de o primeiro

centro ser escolhido aleatoriamente e de forma uniforme, isto é, considerando iguais

probabilidades de escolha para cada ponto de X , os restantes são escolhidos de

acordo com probabilidades proporcionais à sua distância ao centro mais próximo, de

entre os centros já escolhidos. Quanto mais longe um ponto se encontra dos centros

já escolhidos, maior será a probabilidade de este ser escolhido. Desta forma

pretende-se dispersar a distribuição dos centros iniciais para que o algoritmo

convirja mais rapidamente.

Neste algoritmo o número de grupos a formar, K , é escolhido a priori.

Quando não sabemos a priori o número de grupos a formar, corremos o algoritmo

para várias escolhas de K e escolhemos a melhor configuração encontrada, tendo

em conta um determinado índice para a qualidade dos agrupamentos. O índice

usado nesta tese, discutido em [Ujjwal and Sanghamitra 2002], deve ser maximizado

e é dado pelas expressões seguintes:

 Appendix

 - 162 -

p

K

K

D
E

E

K
KI 








 11

)((5)

em que 
 


K

k

n

j

kjkjK cxuE
1 1

 (6)

e ji
Kji

K ccD 
 ,,1,

max


 (7)

sendo que  
nKkjuU


 é uma matrix binária representando uma partição dos dados

em K grupos (i.e., 1kju se e só se jx está no k-ésimo grupo) e o centro do grupo

k é representado por kc .

4.2. Scatter Search

O algoritmo Scatter Search (Figure 4.1), opera sobre um pequeno conjunto de

referência, composto por boas soluções e por soluções com elevada diversificação

(em relação às restantes). Um conjunto inicial de soluções é criado pelo Método de

Geração de Diversificação (DG – Diversification Generation Method). Cada solução

neste conjunto é melhorada pelo Método de Melhoria (Imp - Improvement Method)

antes da criação do conjunto de referência pelo Método de Actualização do Conjunto

de Referência (RSU – Reference Set Update Method), que escolhe para fazer parte

deste conjunto as melhores soluções bem como soluções com elevado nível de

diversificação. O Método de Geração de Subconjuntos (SG – Subset Generation

Method) forma subconjuntos de soluções do conjunto de referência para serem

combinados pelo Método de Combinação de Soluções (SC – Solution Combination

Method) em novas soluções. A qualidade das soluções assim obtidas é mais uma

vez melhorada pelo Método de Melhoria antes do conjunto de referência ser

actualizado. O algoritmo continua até que algum critério de paragem seja satisfeito.

O algoritmo pode ser implementado de diversas maneiras de acordo com as

estratégias adoptadas em cada um dos seus cinco métodos principais. As

estratégias utilizadas nesta tese para cada um dos métodos são adaptadas de

[Pacheco 2005; Abdule-Wahab, Monmarché et al. 2006] e resumidamente descritas

de seguida. Como função de adaptação foi usado o índice I .

 Appendix

 - 163 -

4.2.1 Método de Geração de Diversificação

Este método é responsável pela criação de um conjunto inicial de sizeOS

soluções.

Para cada solução, começamos por gerar aleatoriamente um número de

grupos a formar, K , entre 1 e maxK , sendo maxK o número máximo de grupos

permitido (dado pelo utilizador). São escolhidos aleatoriamente K centros

 KccS ,,1  . No entanto, em vez de poderem ser escolhidos para centros

quaisquer pontos de X , foi introduzido um parâmetro  1,0 que controla o nível

de aleatoriedade deste processo, determinando o conjunto de pontos que em cada

passo podem ser escolhidos para centros, como proposto em [Pacheco 2005]. Para

evitar a repetição na escolha dos centros das várias soluções criadas durante esta

fase do algoritmo guardou-se a frequência com que casa ponto foi escolhido como

centro, penalizando-se a escolha de pontos com elevada frequência. A penalização

é controlada pelo parâmetro  .

Depois de terem sido escolhidos os centros dos grupos, os restantes pontos

são atribuídos a estes grupos usando o processo heurístico greedy descrito em

[Pacheco 2005], com o objectivo de minimizar a soma dos quadrados das distâncias

de cada ponto ao centro do grupo a que pretence.

4.2.2 Método de Melhoria

Foi escolhido o método de melhoria apresentado em [Abdule-Wahab,

Monmarché et al. 2006], baseado no algoritmo das K-Médias [Gan, Ma et al. 2007] e

que utiliza a simplificação proposta por Spath [Spath 1980] para aproximar o

incremento em termos de soma dos quadrados das distâncias de cada ponto ao

centro do seu grupo resultante de mover o ponto ix do grupo lC para o grupo jC .

Em cada iteração deste método cada ponto de X é movido para o grupo que

corresponde a um maior decréscimo nesta soma dos quadrados das distâncias. São

feitas MaxIterImp iterações sempre que o método é utilizado.

 Appendix

 - 164 -

4.2.3 Método de Actualização do Conjunto de Referência

Para construir o conjunto de referência, RS , começamos por escolher as

melhores 1b soluções, de entre as sizeOS soluções criadas inicialmente. São depois

adicionadas iterativamente 2b soluções de acordo com a sua diversidade. As

soluções escolhidas são as que maximizam

  RSdif   :),(min)(min (8)

em que),( dif é o número de pontos que são atribuídos a grupos diferentes nas

soluções  e  .

Nesta implementação o conjunto de referência é apenas actualizado quando

são encontradas soluções de boa qualidade.

4.2.4 Método de Geração de Subconjuntos

Este método gera uma colecção de subconjuntos de soluções do conjunto de

referência para serem posteriormente combinadas em novas soluções. Nesta

implementação foram considerados todos os pares de soluções do conjunto de

referência, isto é, são considerados 21

2

bb
C

 pares de soluções.

4.2.5 Método de Combinação de Soluções

Para combinar um par de soluções numa ou mais novas soluções foi

considerada uma estratégia do tipo path relinking, descrita em [Pacheco 2005]. A

ideia deste tipo de estratégia é de que no “caminho” (série de movimentos simples

que permitem alcançar uma solução a partir da outra) entre duas boas soluções

deverão existir outras boas soluções. Neste caso um movimento corresponde a

trocar um ponto de um grupo para outro. São propostas uma a três soluções

escolhidas aleatoriamente neste caminho.

4.3. Resultados

Para ambos casos de estudo considerados, foi apresentada uma pequena

análise dos parâmetros envolvidos no algoritmo Scatter Search. Apenas 5

 Appendix

 - 165 -

experiências foram feitas para cada conjunto de valores dos parâmetros do

algoritmo, pelo que os resultados não devem ser generalizados mas devem ser tidos

em conta apenas a título indicativo. Em todas as experiências foi escolhido

100max K , 21 bb  e  2110 bbOSsize  .

 Foi possível ver a importância do parâmetro  no controlo da aleatoriedade

do algoritmo, uma vez que para 0 (escolha dos centros totalmente aleatória) os

resultados finais apresentavam um elevado desvio padrão, não acompanhado de

uma melhoria dos resultados em termos médios. O uso da memória durante a

geração do conjunto de soluções iniciais mostrou-se positivo. Ao aumentar a

dimensão do conjunto de referência de 4  21 b para 10  51 b conseguimos

aumentar a qualidade das soluções com algum esforço computacional adicional. No

entanto para ambos os casos de estudo este esforço adicional não foi considerado

excessivo. Claro que, numa situação real, esta conclusão dependeria sempre do

problema em concreto e do tempo disponível para realizar esta tarefa. O método de

melhoria das soluções não melhorou significativamente a qualidade média das

soluções para todas as variáveis linguísticas. Ao estudar a evolução do conjunto de

referência verificou-se que a segunda parte do algoritmo não produziu boas

soluções.

K-Means++ Scatter Search

Tempo

(seg.)

Nº

Clusters
I

Tempo

(seg.)

Nº

Clusters
I

Radius 426,3904 4 18,9609 352,8277 3 26,9636

Texture 398,9221 3 16,8796 344,1798 5 30,18262

Perimeter 463,4574 7 830,33 371,4513 3 1286,17

Area 416,6392 6 426500,7 394,1495 3 668728,5

Smoothness 419,2019 3 0,000143 413,9573 4 0,0002044

Compactness 407,7729 3 0,004632 308,5648 3 0,004547

Concativity 418,1248 3 0,080241 305,7193 3 0,080673

Concave Points 405,9813 3 0,002273 470,995 3 0,002743

Symmetry 411,8899 3 0,000921 672,4182 3 0,000932

Fractal Dimension 413,8989 4 0,000167 679,9634 3 0,000255

Tabela 1: Caso de Estudo 1- K-Means++ vs Scatter Search (melhores resultados)

 Appendix

 - 166 -

K-Means++ Scatter Search

Time

(sec.)
Nr. Clusters I

Time

(sec.)

Nr.

Clusters
I

A2 854.5374 5 266.0796 821.3367 3 384.8384

A3 862.5715 4 90.18299 794.977 4 96.4486

A8 810.7072 6 105.4446 1277.734 6 94.76789

A11 735.1273 23 6.97E+28 1112.77 23 6.97E+28

A14 1134.509 6 346890.2 1812.912 4 402917.4

A15 1062.561 6 5.51E+09 2031.943 6 5.57E+09

Tabela 2: Caso de Estudo 2 – K-Means++ vs Scatter Search (melhores resultados)

Em termos médios, foi considerando 5.0 , 8.0 , 51 b e MaxIterImp 2

que se obtiveram os melhores resultados. Os resultados apresentados na Tabela 1

foram obtidos com estes parâmetros. O algoritmo Scatter Search desenvolvido foi

capaz de obter melhores resultados que o algoritmo K-Means++ para a maior parte

das variáveis. Com ambos os algoritmos, foi possível reduzir significativamente o

número de funções de pertença das variáveis linguísticas analisadas (Figure 4.24 -

Figure 4.33 e Figure 4.52 - Figure 4.57).

5. Caso de Estudo: Um Sistema de Inferência Fuzzy

Como foi referido na Introdução, a natureza deste caso de estudo é diferente

da dos casos de estudo do capítulo anterior. Neste caso de estudo o objectivo é a

redução do número de funções de pertença em variáveis linguísticas pertencentes a

um sistema de inferência previamente construído. Pretende-se reduzir a

complexidade do sistema sem perder demasiado desempenho.

Este caso de estudo foi desenvolvido no CA3 – UNINOVA [CA3 2006] no

âmbito do projecto “MODI- Simulation of a Knowledge Enabled Monitoring and

Diagnosis Tool for ExoMars Pasteur Payloads” [CA3 2006; Jameaux, Vitulli et al.

2006; Santos, Fonseca et al. 2006; Santos, Martins et al. 2008] para a Agência

Espacial Europeia [ESA 2008]. Foram construídos de forma automática dois

sistemas de inferência: um para um sistema de alarme para a detecção de

 Appendix

 - 167 -

comportamentos anormais durante perfurações em Marte e outro para o

reconhecimento da dureza do terreno a ser perfurado. Os resultados aqui

apresentados utilizam somente o sistema de reconhecimento de terreno.

As variáveis linguísticas de entrada foram criadas automaticamente usando

dados recolhidos por sensores durante a fase de aprendizagem [Santos, Fonseca et

al. 2008]. Durante a fase de aprendizagem foram realizados furos para diferentes

velocidades de translação e rotação em diversos tipos de terreno. Cada variável

linguística representa um sensor diferente e cada função de pertença trapezoidal

numa dada variável linguística corresponde a um diferente subcenário testado. O

resultado da inferência é um dos tipos de terreno possível e o nível de certeza nessa

classificação [CA3 2006; Jameaux, Vitulli et al. 2006; Santos, Martins et al. 2008].

5.1. Algoritmo

O algoritmo adoptado baseia-se no algoritmo proposto por [Setnes, Babuska

et al. 1998], em que os conjuntos difusos mais semelhantes vão sendo fundidos de

forma iterativa até que os restantes conjuntos sejam suficientemente distintos, o que

é feito através da imposição de um limite mínimo para a semelhança entre dois

conjuntos juntar, minS (Figure 5.4). Este algoritmo pode ser visto como um algoritmo

de agrupamento hierárquico.

Viu-se que neste caso de estudo em que o sistema de inferência foi

construído previamente seria importante ter em conta medidas de desempenho do

sistema de inferência. Assim, em vez de se definir um valor para minS, corremos o

algoritmo até todas as funções de pertença serem disjuntas, avaliando o

desempenho do sistema de inferência actual, P(M), e comparando-o com o

desempenho do melhor sistema encontrado até ao momento, P(BestM). O algoritmo

devolve o sistema de inferência com melhor desempenho, de entre os sistemas

gerados durante o algoritmo (Figure 5.8). O algoritmo foi definido para qualquer

medida de desempenho para um sistema de inferência, P(.). Neste caso foi utilizada

a seguinte medida de desempenho (a ser maximizada) :

MCLP

MCLP
F






2
 (9)

 Appendix

 - 168 -

em que a Precisão (P) do sistema de inferência é o quociente entre o número de

amostras bem classificadas sobre o total de amostras e o Nível de Certeza Média

(MCL) é a média dos níveis de certeza para as amostras correctamente

classificadas.

 Se quisermos uma solução de compromisso entre o número de funções de

pertença no sistema e o seu desempenho podemos combinar estes objectivos

considerando

 n
n

FMP
0

1
)(





 (10)

em que  1,0 é o peso dado a F , 0n é o número inicial de funções de pertença e

n é o número de funções de petença do sistema M a ser avaliado.

O algoritmo está ainda definido para uma medida de semelhança entre dois

conjuntos difusos genérica. Neste caso foi usada a medida de semelhança de

Jaccard com :

  
BA

BA
BASJ




, (11)

em que  U C dxxC)(||  e  e  representam a intersecção e a união de

conjuntos difusos.

5.2. Resultados

Foram testados 6 tipos de terreno, 3 valores para a velocidade de rotação e 3

valores para a velocidade de translação da broca, obtendo-se assim 54 funções de

pertença para cada uma das variáveis linguísticas que representam os diferentes

sensores instalados na broca (Figure 5.9).

O algoritmo foi aplicado a cada uma das variáveis linguísticas de forma

sequencial. Os resultados estão resumidos nas tabelas abaixo. Como se pode ver

na Tabela 3 e pelos gráficos das variáveis linguísticas finais (Figure 5.19) foi

possível reduzir de forma muito significativa o número de funções de pertença em

praticamente todas as variáveis linguísticas. Foi também possível melhorar o

 Appendix

 - 169 -

desempenho do sistema de inferência, como se pode ver pela Tabela 4. Por

exemplo, a Precisão do sistema (P), aumentou de 72.33% para 85.47%.

 Original BestP

Rotation Current 54 3

Rotation Voltage 54 5

Rotation Speed 54 3

Thrust 54 17

Torque 54 46

Translational Voltage 54 3

Translational Current 54 3

Translational Speed 54 3

TOTAL 432 45

Tabela 3: Redução do número de funções de pertença

 Original BestP

P 72.33% 85.47%

MCL 34.49% 44.00%

F 46.71% 58.09%

N 423 45

Tabela 4: Comparação dos sistemas de inferência

6. Conclusões

O objectivo desta tese era desenvolver algoritmos para reduzir o número de

funções de pertença numa variável linguística. Este problema foi abordado como um

problema de agrupamento.

Foi desenvolvida uma metaheurística Scatter Search para encontrar boas

soluções para o problema. Usando dois casos de estudo, esta metaheurística foi

comparada com o algoritmo K-Means++. Os resultados obtidos não foram os

esperados. A segunda parte do algoritmo Scatter Search não conseguiu produzir

 Appendix

 - 170 -

boas soluções. No entanto, a primeira parte do algoritmo foi suficiente para obter

melhores resultados que os resultados conseguidos com o K-Means++. Com ambos

os métodos, foi possível reduzir significativamente o número de funções de pertença

em cada variável linguística.

No último capítulo foi apresentado um caso de estudo em que as variáveis

linguísticas faziam parte de um sistema de inferência construído de forma

automática. Neste caso é importante ter em conta o desempenho do sistema de

inferência durante o algoritmo de redução, usando medidas de desempenho

adequadas. Os resultados obtidos foram bastante satisfatórios. Não só foi possível

reduzir de forma bastante significativa o número de funções de pertença no sistema,

mas também foi possível aumentar o seu desempenho.

	tese_Margarida_Gomes.pdf
	capa_final

	tese_Margarida_Gomes.pdf
	capa_final

