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Abstract 

 

The purpose of this thesis was to develop algorithms to reduce the number of 

membership functions in a fuzzy linguistic variable. Groups of similar membership 

functions to be merged were found using clustering algorithms. By “summarizing” the 

information given by a similar group of membership functions into a new membership 

function we obtain a smaller set of membership functions representing the same 

concept as the initial linguistic variable. 

The complexity of clustering problems makes it difficult for exact methods to 

solve them in practical time. Heuristic methods were therefore used to find good 

quality solutions. A Scatter Search clustering algorithm was implemented in Matlab 

and compared to a variation of the K-Means algorithm. Computational results on two 

data sets are discussed. 

A case study with linguistic variables belonging to a fuzzy inference system 

automatically constructed from data collected by sensors while drilling in different 

scenarios is also studied. With these systems already constructed, the task was to 

reduce the number of membership functions in its linguistic variables without losing 

performance. A hierarchical clustering algorithm relying on performance measures for 

the inference system was implemented in Matlab. It was possible not only to simplify 

the inference system by reducing the number of membership functions in each 

linguistic variable but also to improve its performance.  



   

 

Resumo 

 

O objectivo desta tese era desenvolver algoritmos para reduzir o número de 

funções de pertença numa variável linguística. Foram usados algoritmos de 

agrupamento ou clustering para encontrar grupos de funções de pertença 

semelhantes. Concentrando a informação dada por um grupo de funções de 

pertença semelhantes numa nova função de pertença obtém-se um conjunto mais 

reduzido de funções de pertença que representam o mesmo conceito que a variável 

linguística original. 

Dada a complexidade computacional dos problemas de agrupamento, 

métodos exactos para a resolução de problemas de programação inteira apenas 

conseguem encontrar uma solução óptima em tempo útil para pequenas instâncias. 

Assim, foram usados métodos heurísticos para encontrar boas soluções. Foi 

implementado em Matlab um algoritmo do tipo Scatter Search e este foi comparado 

com uma variante do algoritmo K-Means. São apresentados resultados 

computacionais para dois casos de estudo. 

É também apresentado um caso de estudo em que as variáveis linguísticas 

pertencem a um sistema de inferência previamente construído a partir de dados 

recolhidos por sensores. O objectivo era reduzir o número de funções de pertença 

das suas variáveis linguísticas sem comprometer o desempenho do sistema. Foi 

implementado em Matlab um algoritmo de agrupamento hierárquico que tem em 

conta medidas de desempenho do sistema de inferência. Para além de ter sido 

possível simplificar o sistema, a redução do número de funções de pertença levou a 

um aumento do desempenho do próprio sistema, através da remoção de alguma 

redundância existente no sistema inicial. 
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Introduction 

 

 In human reasoning many concepts are not crisp in the sense of being 

completely true or false, instead they can be interpreted in a more qualitative way. In 

everyday life we use concepts like tall, small, fast, slow, good, bad … that are difficult 

to translate numerically. Classical logic and inference have been insufficient to deal 

with these apparently vague concepts. Although humans reason with these concepts 

in a natural way on a daily basis, our search for scientific knowledge has lead us to 

address the problem of representing these concepts in a more systematic and 

precise way. As Engelbrecht [Engelbrecht 2002] states, “In a sense, fuzzy sets and 

logic allow the modelling of common sense”. 

 Since 1965, when Zadeh first formalized the concept of fuzzy set [Zadeh 

1965], the field of fuzzy logic and approximate reasoning has attracted the interest of 

the scientific community. Fuzzy set theory and fuzzy logic concepts have been 

applied in almost all fields, from decision making to engineering [Costa, Gloria et al. 

1997; Ross 2004], from medicine [Adlassnig 1986 ] to pattern recognition and 

clustering [Nakashima, Ishibuchi et al. 1998].   

 In engineering, fuzzy logic has been used, for instance, in monitoring and 

classification applications [Isermann 1998; Ribeiro 2006]. The main goal when 

constructing a fuzzy monitoring system is to develop a fuzzy inference system (FIS) 

[Lee 1990a; Lee 1990b] to monitor certain variables and warn decisors (or an 

automatic system) when variables behaviour is not correct, so that they can 

intervene.  For the development of monitoring systems, in general, a formal and 

precise mathematical understanding of the underlying process is usually needed. 

These mathematical models may become too complex to formalize or to implement, 

reducing the advantage of an automatic and independent system over a human 

expert. Once again, fuzzy knowledge can be used to overcome this problem, 

modelling complex systems by mimicking human thinking.   

 In decision making, for instance, the advantages of using fuzzy logic is even 

more evident. In many cases the processes behind a decision are too complex to be 

defined through a precise classical mathematical model and the underlying 
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preferences and choices of decision makers have many uncertainties and are better 

represented through a fuzzy number. Although crisp decision models do exist, more 

and more papers and books propose the use of fuzzy sets and fuzzy models to deal 

with the underlying uncertainty [Anoop Kumar and Moskowitz 1991; Lai and Hwang 

1994; Ribeiro 1996; Ross 2004]. 

 The main idea when choosing a fuzzy model over a classical one is to obtain 

models that are less complex and easy to interpret. The trade off between 

interpretability and precision must be studied for each application. To achieve such 

interpretability, it is desirable that the linguistic variables in a fuzzy model [Zadeh 

1975] are as intuitive as possible. This in addition to a search for computationally 

efficient models motivated the research of this master thesis. When linguistic 

variables are constructed directly from expert knowledge its interpretability is usually 

clearer. This is not the case when an automatic procedure is used to create the 

membership functions of a certain linguistic variable or when membership functions 

represent a single sample from a large data base. As an example consider a fuzzy 

set used to represent an agent preference between two alternatives and suppose the 

number of agents involved in the process to be modelled is considerably large.  

 The purpose of this thesis is to develop algorithms to reduce the number of 

membership functions in a linguistic variable. The problem of reducing the amount of 

data to be analysed, while maintaining as most information as possible from the 

original data, is not exclusive from fuzzy domains. Large crisp data sets often have to 

be clustered to become treatable [Hartigan 1975; Murtagh 1983; Everitt, Landau et 

al. 2001; Gan, Ma et al. 2007]. Clustering data corresponds to finding natural groups 

of data that represent similar objects. The same approach can be used to reduce the 

number of membership functions in linguistic variables. We start by identifying 

clusters of similar membership functions. If each cluster of membership functions can 

be “summarized” into a new membership function, we obtain a new and smaller set 

of membership functions that approximately represents the same concept as the 

initial linguistic variable. This will be the basic approach that will be developed during 

this thesis. The problem of reducing the number of membership functions in linguistic 

variables will be formulated as a clustering problem. Resulting clusters of 

membership functions will be merged in a way of “summarizing” the information 

contained in the original membership functions.  
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 In Chapter 1 theoretical background that is needed to understand following 

development is presented. An introduction to fuzzy logic and fuzzy inference systems 

is described. Similarity measures and merging methods that will be used to reduce 

the number of membership functions in linguistic variables are also introduced. 

Since, as stated before, the problem of reducing the number of membership 

functions in a linguistic variable can be stated as a clustering problem, Chapter 2 will 

present different approaches to the clustering problem in statistics and optimization 

and the state of the art. Also, some possible formulations to the clustering problem 

will be discussed.  

The complexity of clustering problems makes it difficult for exact methods to 

solve them in practical time. Exact methods can only find an optimal solution in a 

reasonable amount of time for very small data sets, especially if the number of 

clusters is unknown. However, before deciding for heuristic methods, it is important to 

use exact methods to better understand the complexity of the problem at hands. 

Since it was never the purpose of this thesis to solve these problems through exact 

methods, Chapter 3 gives only a brief introduction to some of the exact methods 

used for combinatorial and integer programming.  

When finding optimal solutions through exact procedures is too time 

consuming, it is still usually possible to find good quality solutions in a reasonable 

amount of time, using heuristic methods that take advantage of the problem structure 

to achieve good solutions (not necessarily optimal) in less computational time. Both a 

heuristic and a metaheuristic to solve the automatic clustering problem were 

implemented in Matlab. Chapter 4 describes these algorithms and presents 

computational results on two case studies. In both case studies several linguistic 

variables are pruned. These linguistic variables could later be used in a fuzzy 

inference system or any other fuzzy model. The model would be constructed taking 

into account the already clustered membership functions instead of the original ones.  

Chapter 5 introduces another case study. This case study has different 

characteristics from those used in Chapter 5. In this case study linguistic variables 

belong to an already existing fuzzy inference system. Instead of using the algorithms 

from Chapter 4, a heuristic relying on measures of performance of the inference 

system is used. The work presented in this chapter was developed within the scope 
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of project “MODI – Simulation of a Knowledge Enabled Monitoring and Diagnosis 

Tool for ExoMars Pasteur Payloads”[CA3 2006; Jameaux, Vitulli et al. 2006; Santos, 

Fonseca et al. 2006], a CA3 – UNINOVA project for the European Space Agency 

[ESA] Aurora programme [ESA 2008]. In this project two inference systems were 

constructed: one for monitoring exploratory drilling processes and another capable of 

detecting the type of terrain being drilled. These systems were automatically 

constructed using data collected from sensors while drilling in different scenarios. 

With these systems already constructed, the task was to reduce the number of 

membership functions in its linguistic variables without losing performance. This 

project was on the origin of the development of the ideas presented in this thesis. 

The contribution to this project can also be found in [Gomes, Santos et al. 2008]. This 

paper summarizes the main results obtained when reducing the number of 

membership functions of MODI’s linguistic variables and was presented at the Eight 

International Conference on Application of Fuzzy Systems and Soft Computing 

(ICAFS-2008) in September 2008 in Helsinki, Finland. 

Finally, Chapter 6 presents the conclusions of this thesis and some guidelines 

for future work. 
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Chapter 1. Preliminaries 

 

In this Chapter we present the background on fuzzy set theory necessary to 

understand the results presented later.  

Sections 1.1 and 1.2 introduce the main concepts of fuzzy logic and fuzzy 

inference systems. Formal definitions of the concepts of linguistic variable, fuzzy set, 

membership function and the most used operations on fuzzy sets are given. A 

description of the structure of a fuzzy inference system and of its underlying modules 

is also presented. 

In section 1.3, analytical and pR  representations of some of the most common 

types of membership functions - triangular, trapezoidal and Gaussian membership 

functions – are introduced. 

The notion of similarity or proximity between membership functions will be the 

main idea underneath the algorithms for reducing the number of membership 

functions in linguistic variables. Section 1.4 describes these concepts and presents 

the measures of proximity of fuzzy sets that will be used. After identifying the most 

similar membership functions, these will be merged to give rise to a new set of 

membership functions simultaneously as small and as representative of the original 

linguistic variable as possible. Section 1.5 presents some membership functions 

merging methods. 

 

1.1  Fuzzy Logic 

 

In crisp logic, if we want to categorize a group of individuals as tall, medium or 

small, we have to distribute those individuals into two disjoint sets, as in Figure 1.1, 

by a crisp rule. For instance, if the height of an individual is above 1.75m, the 

individual is tall, if the height is bellow 1.60m, the individual is short and otherwise the 

individual is medium.  

 



  Chapter 1. Preliminaries 

 - 15 - 

 

Figure 1.1: Concepts Short, Medium and Tall represented by Crisp Sets 

 

 This does not accurately represent human reasoning. In our mind, the frontier 

between these sets is not as well defined as in Figure 1.1. These concepts are better 

represented by fuzzy sets [Zadeh 1965], as in Figure 1.2. This representation allows 

for an individual to be considered simultaneously short and medium or medium and 

tall, with different degrees of membership. The definition of fuzzy set is given bellow. 

 

 

Figure 1.2: Concepts Short, Medium and Tall represented by Fuzzy Sets 

 

  

Definition 1.1 [Zimmermann 1990] - If X  is a collection of objects denoted 

generically by x  then a fuzzy set A
~

 in X  is a set of ordered pairs: 

   XxxxA A  :)(,
~

  (1.1) 

where )(~ x
A

  is called the membership function or grade of membership of x  in A
~

 

which maps X to the membership space M . The range of the membership function is 

B 

A C 

D 

Short 

G 
E 

F 

Tall Medium 
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a subset of nonnegative real numbers whose supremum is finite. Usually M  is the 

real interval  1,0 . 

 ♦ 

 

The representation of some common types of membership functions will be 

further presented in the next section. 

 

 Zadeh [Zadeh 1975] defines a linguistic variable as a quintuple 

),,),(,( MGUxTx  in which x  is the name of the variable; )(xT is the term set of x , that 

is, the collection of its linguistic values; U  is a universe of discourse; G  is a syntactic 

rule which generates the terms in )(xT ; and M  is a semantic rule which associates 

with each linguistic value )(xT  its meaning, )(XM , where )(XM denotes a subset of  

U . 

 The fuzzy sets in Figure 1.2 represent a linguistic variable Height.  

 

 T-norms and t-conorms generalize the idea of intersection and union of sets to 

fuzzy set theory. 

 

Definition 1.2 [Klir and Yuan 1995] – A t-norm is a function      1,01,01,0: t  

satisfying the following properties: 

Boundary Condition: aat )1,(   (1.2) 

Monotonicity: cbcatbat  if),(),(  (1.3) 

Commutativity: ),(),( abtbat   (1.4) 

Associativity: )),,(()),(,( cbattcbtat   (1.5) 

 ♦ 

 

 

Definition 1.3 [Klir and Yuan 1995] – A t-conorm or s-norm is a function 

     1,01,01,0: u  satisfying the following conditions: 

Boundary Condition: aau )0,(   (1.6) 
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Monotonicity: cbcaubau  if),(),(   (1.7) 

Commutativity: ),(),( abubau   (1.8) 

Associativity: )),,(()),(,( cbauucbuau   (1.9) 

 ♦ 

 

The fuzzy minimum and the fuzzy maximum, defined bellow, are the most 

used t-norms and t-conorms. Examples of these operators can be found in Figure 1.3 

and Figure 1.4, respectively. 

 

Definition 1.4 [Klir and Yuan 1995] – Given two fuzzy sets A  and B , their standard 

intersection, BA , and standard union, BA , also known as fuzzy minimum and 

fuzzy maximum, are defined for all Xx  by the equations: 

  )(),(min))(( xBxAxBA   (1.10) 

  )(),(max))(( xBxAxBA   (1.11) 

 ♦ 

 

 

 

 

Figure 1.3: Fuzzy min 
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Figure 1.4: Fuzzy max 

 

 To generalize the concept of negation, complement operators are used. The 

membership function of a fuzzy set A  represents, for each x  in its universe of 

discourse, the degree to which x  belongs to A . The membership functions of the 

complement of A  represents the degree to which x  does not belong to A . 

 

Definition 1.5 [Klir and Yuan 1995] – A complement of a fuzzy set A  is specified by 

a function    1,01,0: c  satisfying the following properties [Klir and Yuan 1995]: 

 

Boundary Conditions: 0)1(;1)0(  cc   (1.12) 

Monotonicity: babcac  if)()(  (1.13) 

 ♦ 

 

 The standard complement is defined bellow and exemplified in Figure 1.5. 

  

Definition 1.6 [Klir and Yuan 1995] -  The standard complement, A , of a fuzzy set A  

with respect to the universal set X  is defined for all Xx  by the equation: 

 )(1)( xAxA   (1.14) 

 ♦ 
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Figure 1.5: Standard fuzzy complement 

 

1.2  Fuzzy Inference Systems 

 

 A fuzzy inference system is composed of fuzzy if-then rules relating different 

fuzzy sets, which are stored in a knowledge-base, and an inference engine that 

performs approximate reasoning [Ross 2004].  As mentioned before, one of the main 

advantages of inference systems [Ross 2004] is the ability to build models that mimic 

human reasoning and are relatively simple and easy to interpret. These models might 

be less accurate than classical and more formal ones but when dealing with real 

world applications interpretability, significance and computational efficiency can 

overcome some lack of accuracy, as depicted in Figure 1.6, taken from [Mathworks]. 

 

 

Figure 1.6: Precision vs. Significance in the Real World [Mathworks] 
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There are two main kinds of fuzzy inference systems, Mamdani and Sugeno 

[Lee 1990a; Lee 1990b]. The knowledge base of a Mamdani inference system 

contains rules where both the antecedents and the consequents are fuzzy sets. 

Sugeno inference systems, on the other hand, use rules with fuzzy antecedents and 

crisp consequents. In this thesis only Mamdani inference systems will be used but 

the ideas and algorithms developed can also be used in Sugeno inference systems. 

Fuzzy if-then rules used in Mamdani inference systems are expressions of the 

type [Ross 2004]: 

“if x  is A  then y  is B ” 

where A  and B  are fuzzy sets, “ x  is A ” is called the antecedent and  “ y  is B ” is 

called the consequent of the rule.  

The antecedent part of the rule can have multiple parts connected by fuzzy 

operators, typically t-norms and t-conorms giving meaning to the linguistic 

expressions “and” and “or” respectively. The consequent can have multiple parts 

representing distinct conclusions that can be inferred from the given antecedent. The 

firing level or firing strength of the rule is the degree to which the antecedent part of 

the rule is satisfied.  

To determine the outcome of fuzzy if-then rules given the crisp inputs, we need 

to fuzzify the inputs, apply the fuzzy operators that connect the multiple parts of the 

antecedent (if needed) to find the firing level of the rule and use an implication 

operator to apply the firing level to the consequent part (or parts) [Lee 1990a; Lee 

1990b]. The output of the rule is a fuzzy set (or fuzzy sets). These concepts are 

better explained through an example. The following example in Figure 1.7 is taken 

from Matlab Fuzzy Logic Toolbox documentation [Mathworks]. 
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Figure 1.7: Example of fuzzy if-then rule [Mathworks] 

 

 

Given crisps values for the service and food quality the correspondent degrees 

of membership in the antecedent are computed and combined through the OR 

operator to give the rule firing level. For instance, if we consider service=3 and 

food=8, the degrees of membership in excellent (for service) and delicious (for food) 

are 0 and 0.7, respectively, and the firing level of the rule is given by   7.07.0,0max  . 

The implication operator is then applied taking into account this firing level to obtain 

the fuzzy set representing the output of the rule.  
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Figure 1.8: Example of fuzzy inference system [Mathworks] 

 

For each rule in the knowledge base the previously described steps are 

performed and the resulting fuzzy sets are aggregated through an appropriate 

operator (usually standard fuzzy maximum) to obtain a new fuzzy set representing 

the output of the system. This fuzzy set is then defuzzified to obtain a crisp value for 

the inference. Several defuzzification methods can be used, e.g. the centroid [Lee 

1990a; Lee 1990b]. Continuing with the tipping example from Fuzzy Logic Toolbox 

documentation [Mathworks], Figure 1.8 shows a possible inference system with three 

rules and the necessary steps to determine the tip to be given crisp values for the 

service and food quality. In Figure 1.8, the three first fuzzy sets on the right represent 

the output of each rule after implication, using the same input values as before, i.e., 
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service=3 and food=8. Aggregating these three fuzzy sets, the fuzzy set in the 

bottom right of Figure 1.8 is obtained. In this example the centre of area or centroid 

defuzzification method, defined by (1.15), is used and a tip of 16.7% is 

recommended. 

 

Definition 1.7 [Klir and Yuan 1995] -  Consider a fuzzy set A  with membership 

function  1,0: XA . The centre of area or centroid defuzzification method returns 

the value )(AdCA  within X  for which the area underneath the graph of membership 

function A  is divided into two equal subareas. This value is given by the following 

expression: 

 
dxx

dxxx

Ad

X

A

X

A

CA

)(

)(

)(



 






 (1.15) 

 ♦ 

 

1.3 Representation of Membership Functions 

 

Some types of membership functions can be mapped to pR , where p  is the 

number of parameters of that family of membership functions and each dimension 

represents a different parameter. In this section both analytical and pR  

representations of some of the most common types of membership functions are 

presented. 

 

1.3.1 Triangular Membership Functions 

 

Definition 1.8 - A triangular membership function is given by the analytical 

expression:  
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  



























otherwise,0

,

,

,,, cxb
bc

xc

bxa
ab

ax

xcba  (1.16) 

where ba, and c  correspond to the x-axis coordinates of the vertices of the triangle, 

as in Figure 1.9.  

 ♦ 

  

There are several possibilities for mapping these membership functions into 

3,2, pR p . For instance, for 3p  we can consider a vector with the x-axis 

coordinates of the vertices of the triangle,  cba ,, , or a vector  RLb  ,,  where 

abL   and bcR   represent its left and right spreads, respectively. This way 

we define a mapping between the family of triangular membership functions and 3R . 

If we only consider symmetrical membership functions, i.e., if   RL , we can use 

a pair  ,b  to represent a membership function of this family. In this way the 

mapping can be done in 2R . 

 

 

Figure 1.9: Triangular membership function )8,3,1(),,( cba  
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1.3.2 Trapezoidal Membership Functions 

 

Definition 1.9 - A trapezoidal membership function is given by the analytical 

expression:  

  





























otherwise,0

,

,

,1

,,,,

dxc
cd

xd

bxa
ab

ax

cxb

xdcba  (1.17) 

 

where cba ,, and d correspond to the x-axis coordinates of the vertices of the 

trapezoid, as in Figure 1.10.  

 ♦ 

 

Similarly to the case of triangular membership functions, we can now map the 

family of trapezoidal membership functions to 4R  and 3R (symmetric trapezoidal). We 

can consider a vector with the x-axis coordinates of the vertices of the trapezoidal, 

 dcba ,,, , to map this family of membership functions to 4R  and if we only consider 

symmetrical membership functions, i.e., if 
22

cbda 



, we can use a vector   ,,m , 

where 
22

cbda
m





 , bc   and ad  , to represent a membership function 

of this family. 
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Figure 1.10: Symmetrical trapezoidal membership function   )8,6,3,1(,,, dcba  

 

1.3.3 Gaussian Membership Functions 

 

Definition 1.10 – A Gaussian membership function is given by the analytical 

expression:  

 
 2  xe  (1.18) 

where   and   are the mean and spread of the Gaussian function.  

 ♦ 

 

The mapping of this family of membership functions to 2R  is straightforward 

and is given by the pair  , . 



  Chapter 1. Preliminaries 

 - 27 - 

 

Figure 1.11: Gaussian membership function    1,5,   

 

 

1.4 Proximity Measures between Membership Functions 

 

As stated in the introduction of this Chapter, the notion of similarity or proximity 

between membership functions will be the main idea underneath the algorithms for 

reducing the number of membership functions in linguistic variables. When faced with 

the problem of reducing the number of terms in linguistic variables, we intuitively 

think of joining or merging membership functions that are somehow similar. For crisp 

data sets, a similar idea is the foundation of cluster analysis. Clusters are groups of 

objects that are similar according to some proximity measure [Hartigan 1975]. The 

problem presented in this thesis can then be approached as a clustering problem 

where the objects are membership functions and suitable proximity measures are 

used. 

 In general, similarity measures between membership functions or fuzzy sets 

can be classified as geometric or set-theoretical [Miyamoto 1990]. Geometric 

measures are based on distance-measures and represent proximity between fuzzy 

sets. Set-theoretical similarity measures, based on operations such as union and 

intersection, translate the degree to which two fuzzy sets are equal and are not 

influenced by scaling and ordering of the domain. 
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 One of the most used set-theoretical similarity measures, the fuzzy Jaccard 

index or Jaccard similarity measure [Miyamoto 1990], is defined by: 

  
BA

BA
BASJ




,  (1.19) 

where  U C dxxC )(||   and ),(   is a pair of fuzzy t-norms    and t-conorms )( . 

 

 An overview of some similarity measures for comparing fuzzy sets can be 

found in [Chen, Yeh et al. 1995]. The Jaccard similarity measure will be used in the 

algorithms presented in Chapter 5, but other similarity measures could also be used. 

For instance, since in Chapter 5 only trapezoidal membership functions are used, the 

following two similarity measures used for comparing trapezoidal fuzzy sets could be 

considered. 

The first one can be calculated by the following expression [Chen 1996]: 
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BAS  (1.20) 

where ),,,( 4321 aaaaA   and ),,,( 4321 bbbbB  .  

 
The second one was proposed by Shi-Jay Chen and Shyi-Ming Chen [Chen 

and Chen 2008] and is given by: 
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where 

 

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 14 aaSA   (1.23) 

 14 bbSB   (1.24) 
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and ),( 

AA yx  and ),( 

BB yx  are the centre of gravity points of A  and B , respectively. 

These points can be easily determined by the simple centre of gravity method 

(SCGM) [Chen and Chen 2008], using the following expressions: 
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2

)1)(()( 1423



 
 AA

A

yaaaay
x  (1.26) 

 

 In the previous section it was shown how the most used families of 

membership functions can be mapped to pR . By mapping a membership function to 

pR  the problem to be addressed becomes equivalent to finding clusters given a data 

set in pR , provided that we are considering linguistic variables where all membership 

functions belong to the same family, which is usually the case. Therefore, the 

proximity measures used for comparing objects in pR  can also be used to compare 

membership functions of the same family. For instance, the Euclidean Distance given 

by (1.27) can be used to compare two membership functions of the same family, 

 
paaA ,,1   and  pbbB ,,1  , represented in pR . This will be done in the 

algorithms presented in Chapter 4 where the problem of reducing the number of 

membership functions in linguistic variables will be approached by clustering the 

vectors of parameters representing the membership functions.  

 

    
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1.5 Merging Membership Functions 

 

In this section we discuss some methods on how to merge membership 

functions to reduce the number of membership functions in a linguistic variable, by 

using the concept of similarity. This section is not intended as an overview of the 

possible methods for merging membership functions since these methods could vary 

according to several factors: the type of membership functions being merged, the 

algorithms in use, the context of the problem, among others. 

Membership functions of the types referred in section 1.2 will be considered, 

since these are the most used ones. Also, throughout this thesis, it will be assumed 

that all membership functions of a certain linguistic variable to be pruned share the 

same type (either triangular or trapezoidal) and that the merging of two membership 

functions should yield a new membership function of the same type as the original 

ones. This simplification does not change the nature of the problem and the 

algorithms that will be use to solve it are as general as possible. If one of these 

conditions fails we only have to redefine the way two membership functions are 

merged but the algorithms still apply. 

 

1.5.1 Merging Trapezoidal Membership Functions 

 

Given two trapezoidal membership functions ),,,( 4321 aaaaA   and 

),,,( 4321 bbbbB  , merging them using the method proposed in [Setnes, Babuska et al. 

1998] gives a new trapezoidal membership function ),,,( 4321 ccccC   where: 

 

  111 ,min bac   (1.28) 

   22222 1 bac    (1.29) 

   33333 1 bac    (1.30) 

  444 ,max bac   (1.31) 
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 The parameters 2  and 3 belong to the interval  1,0 . These parameters allow 

weighting the importance of A  and B  in the final membership C . In subsequent 

chapters this operator will be used with 5.032   . See for instance Figure 1.12, 

which shows the trapezoidal membership functions )6,4,2,1(A  and )7,5,3,2(B  

combined into )7,5.4,5.2,1(C . Notice that (1.28) and (1.31) guarantee that the same 

“coverage” as A  and B , i.e., points with positive membership in either A  or B  will 

still have positive membership in C . This might be crucial for some applications.  

 

 

Figure 1.12: Merging trapezoidal membership functions )6,4,2,1(A  and )7,5,3,2(B  

into )7,5.4,5.2,1(C . 

 

In the previous merging method only two membership functions are merged at 

a time. When merging more than two membership functions at a time, a 

generalization of this method was used.  Given n  trapezoidal membership functions 

  nidcbaT iiii

i ,,1,,,,  , these will be simultaneously merged into a membership 

function   nidcbaT ,,1,,,,   where: 
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1.5.2 Merging Triangular Membership Functions 

 

It is straightforward to adapt the previous methodology to the case of triangular 

membership functions. Considering that a triangular membership function is a 

trapezoidal membership function with ii cb   Given n  triangular membership 

functions   nidbaS iii

i ,,1,,,  , these will be simultaneously merged into a 

membership function   nidbaS ,,1,,,   where: 
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1.5.3 Merging Gaussian Membership Functions 

 

In [Song, Marks et al. 1993] the fusion of two Gaussian membership functions 

with parameters  11,  and  22 ,  is a Gaussian membership function with 

parameters  ,  defined by the following equations. See for instance Figure 1.13. 
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  (1.39) 
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Figure 1.13: Merging Gaussian membership functions    2.0,5, 11   and 

   4.0,6, 22   into    3464.0,667.5,   

 

 We can extend this method by defining the merge of n  Gaussian membership 

functions with parameters   niii ,,1,,   as by the pair  , , where: 
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1.6 Summary 

In this Chapter the concepts of fuzzy set theory necessary to understand the 

work presented in this thesis were introduced. The concepts in sections 1.1 and 1.2 
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are the basic concepts of fuzzy logic and inference systems. Analytical and pR  

representations of three of the most used families of membership functions are given 

in section 1.3. In this thesis it will be seen how to reduce the number of terms in a 

linguistic variable by merging similar membership functions. Sections 1.4 and 1.5 

present the proximity measures between membership functions that will be used in 

later chapters and the methods for merging membership functions.   
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Chapter 2. A Clustering Problem Approach 

  

 As stated in the introduction, the problem of reducing the number of 

membership functions in linguistic variables can be formulated as a clustering 

problem. We need to identify groups of similar membership functions and merge 

them. As a result, we should obtain a smaller set of membership functions capable of 

approximately represent the initial linguistic variable.   

 In section 2.1 the clustering problem will be introduced. Section 2.2 will 

present the state of the art and finally in section 2.3 some integer programming 

formulations for the clustering problem will be given. 

 

2.1 The Clustering Problem 

 

There is no uniform formal definition for data clustering. The task of defining the 

meaning of clustering have been pointed out as a difficult one by several authors 

[Everitt, Landau et al. 2001; Estivill-Castro 2002]. In [Gan, Ma et al. 2007] the 

following informal definition can be found: 

 

“Data clustering (or just clustering), also called cluster analysis, segmentation 

analysis, taxonomy analysis, or unsupervised classification, is a method of creating 

groups of objects, or clusters, in such a way that objects in one cluster are very 

similar and objects in different clusters are quite distinct.” 

 

As can be seen in Figure 2.1, two main types of clustering problems exist: hard 

clustering and fuzzy clustering [Gan, Ma et al. 2007]. In hard clustering problems an 

object or record has to belong to one and only one cluster, that is, a partition of the 

data into mutually exclusive groups is obtained. Fuzzy clustering problems on the 

other hand, allow an object to belong to several clusters, with different degrees of 

membership. In this thesis the problem of reducing the number of membership 

functions in a linguistic variable will be formulated as a hard clustering problem. 

Therefore the term clustering will be used instead of hard clustering. Approaching 
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this problem as a fuzzy clustering problem by allowing membership functions to 

belong to more than one cluster and defining appropriate membership function 

merging techniques is a possibility to be studied in the future. 

 

 

 

Figure 2.1: Diagram of Clustering Algorithms [Gan, Ma et al. 2007] 

 

 

2.2 State of the Art 

 

As stated in the previous section, there is no unique definition of clustering. 

Appropriate criteria for clustering have to be chosen for each application, according 

to the type of groups to be found in data. This partially explains the existing diversity 

of clustering algorithms [Estivill-Castro 2002]. Given this diversity, this state of the art 

will not be exhaustive in describing all the existing methods. Some more extensive 

reviews can be found in [Sokal and Sneath 1963; Hartigan 1975; Rijsbergen 1979; 

Jain and Dubes 1988; Kaufman and Rousseeuw 1990; Jain, Murty et al. 1999; 

Everitt, Landau et al. 2001; Engelbrecht 2002; Mirkin 2005; Gan, Ma et al. 2007]. 

As depicted in Figure 2.1, conventional (hard) clustering algorithms can be 

divided into two categories, according to the type of structures they return. 
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Hierarchical methods return a hierarchy or set of nested partitions while partition 

methods return a single partition of the data. 

The next subsections will present the main ideas of hierarchical methods 

(section 2.2.1), classical partition methods (section 2.2.2), graph based methods 

(section 2.2.3), metaheuristics (section 2.2.4) and other clustering methods (section 

2.2.5). 

 

2.2.1 Hierarchical Methods 

 

As stated before, hierarchical methods return a hierarchy or set of nested 

partitions, as depicted in Figure 2.2. Agglomerative hierarchical algorithms start with 

each data point in a different cluster and proceed by merging clusters, according to 

some criterion, until there is only one cluster containing all data points in the data set. 

Divisive hierarchical algorithms start with one cluster containing all data points and 

proceed by splitting clusters until each data point is in a different cluster. 

 

 

Figure 2.2: Dendogram 

 

An hierarchical agglomerative clustering algorithm consists of the following 

steps [Jain, Murty et al. 1999]: 
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1. Compute the proximity matrix containing the distance between each pair 

of data points. Treat each data point as a cluster; 

2. Find the most similar pair of clusters using the proximity matrix and 

merge them into one cluster; 

3. Update the proximity matrix to reflect the merging operation in 2; 

4. If all data points are in one cluster, stop. Otherwise, go to step 2. 

 

Different algorithms can be developed according to the way the proximity 

measure is updated in step 3. The most used are the single-link, complete link and 

Ward’s methods [Jain, Murty et al. 1999].  

 

The single-link method, also known as nearest neighbour method and minimum 

method, was first introduced by [Florek, Lukaszewicz et al. 1951] and then 

independently by [McQuitty 1957] and [Sneath 1957]. Let 1C  and 2C  be two clusters 

and  ,d  a distance measure between two points. In the single-link method, the 

distance between 1C  and 2C , also referred to as linkage function, is given by: 

 

    yxdCCD
CyCx

,min,
21 ,

21


  (2.1) 

 

 

The complete-link [King 1967], also known as farthest neighbour method, 

updates the proximity measure using the following expression, using the same 

notation as in (2.1). 

 

    yxdCCD
CyCx

,max,
21 ,

21


  (2.2) 

 

 

The Ward’s method [Ward Jr. 1963; Ward Jr. and Hook 1963], also known as 

minimum-variance method, aims at forming partitions 1,, PPn   of the original data 

minimizing the loss of information, quantified in terms of the error sum of squares 

(ESS) criterion, associated with each merge. Consider a partition of the data into K  

clusters KCC ,,1  . The information loss is represented by: 
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where 

       



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T
CxCxCESS )(  (2.4) 

and 

 



Xx

x
C

X
1

)(  (2.5) 

 

 At each step of the Ward’s method the two clusters whose fusion results in the 

minimum increase in loss of information are merged. The linkage function is 

computed as the increase in ESS after merging two clusters, i.e.: 

 

        212121, CESSCESSCCESSCCD   (2.6) 

 

where 21CC  denotes the cluster resulting from merging 1C  and 2C . 

 

 Other linkage functions are described in [Hartigan 1975; Everitt, Landau et al. 

2001; Gan, Ma et al. 2007]. In [Kuiper and Fisher 1975] a comparison of several 

hierarchical clustering algorithms is done using the Monte Carlo method. 

  

 As stated before, divisive hierarchical algorithms proceed the opposite way of 

the agglomerative algorithms. We start with one cluster containing all data points and 

proceed by splitting clusters until each data point is in a different cluster. Since given 

a cluster C  there are 12
1


C
 nontrivial ways of splitting it into two subclusters, it is 

not feasible to enumerate all the possible divisions of a cluster to find the optimal 

division, except for small clusters [Edwards and Cavalli-Sforza 1965]. Several divisive 

hierarchical clustering algorithms can therefore be designed considering different 

criteria for choosing the cluster to be split and different methods for splitting clusters. 

Examples of divisive algorithms can be found in [Edwards and Cavalli-Sforza 1965; 

Spath 1980; Kaufman and Rousseeuw 1990].  
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To illustrate divisive hierarchical clustering algorithms we will consider the 

DIANA (DIvisive ANAlysis) algorithm proposed by [Kaufman and Rousseeuw 1990].  

 

For a given distance measure ),( d , the diameter of a cluster C  is given by: 

 

   ),(max
,

yxdCDiam
Cyx 

  (2.7) 

 

 Denote the average dissimilarity from a point x  to the points in a set S  by 

 SxD , , i.e., 

 

    



Sy

yxd
S

SxD ,
1

,  (2.8) 

 

 In each step of the DIANA algorithm, the cluster with largest diameter, C  

( 2C ), is split into two subclusters, A  and B . These subclusters are determined by 

the following procedure: 

 

1. Do CA   and  B ; 

2. Do    AxxAxDz  ,\,maxarg ; 

3. Move point z  from A  to B , i.e.,  zAA \  and  zBB  ; 

4. Do      AxBxDxAxDz  ,,\,maxarg ; 

5. If      0,\,  BzDzAzD  then move point z  from A  to B , i.e.,  zAA \  

and  zBB  , and return to 4. Otherwise stop the procedure, returning 

A  and B . 

 

The procedure starts by considering CA   and  B , i.e., all points belong 

to subcluster A .  Then the point with highest dissimilarity is moved from subcluster 

A  to B . The procedure continues by moving points from A  to B  whenever their 

average dissimilarity to B  is smaller than the average dissimilarity to the rest of the 

points in A . 
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Generally, hierarchical methods have a complexity of )( 2nO  for memory space 

and  )( 3nO  for CPU time [Hartigan 1975; Murtagh 1983], n  being the number of 

points to be clustered. Therefore, they become impractical for large data sets. 

 

 

 

 

2.2.2 Classical Partition Clustering Methods 

 
Unlike hierarchical methods, partition methods create a single partition of the 

data points.  

The most known partition method is the K-Means algorithm [McQueen 1967]. 

This algorithm is a centre-based method. Each cluster is represented by a centre and 

the corresponding clusters have convex shapes. The algorithm starts by choosing 

initial K  cluster centres from the original data. After the initialization, a partition of the 

data is determined by assigning each point to the cluster with closest centre. After 

this assignment the centroids of each cluster are calculated according to the 

following expression: 

  

 Kix
C

c
iCxi

i ,,1,
1

 


 (2.9) 

where ic  is the centre of cluster iC . 

 

 Then the points are reassigned to the clusters regarding the closeness to the 

centroids. Again, the centroids are recalculated and the algorithm proceeds in the 

same way until some stopping criterion is met. Usually the algorithm will proceed until 

the cluster centroid and partition no longer change or until a predefined number of 

iterations is reached. This way the K-Means algorithm is a heuristic method that tries 

to minimize the sum of squared distances from each point to its cluster centre. The 

number of clusters K  is determined by the user a priori. In practice, if the user can 

not identify the correct number of clusters, the algorithm is run for a certain range for 

the number of clusters, i.e.  maxmin ,, KKK  , and the best configuration found, 

according to some criterion, is chosen. 
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Many variations of the original K-Means algorithm have been developed. 

Some try to improve the efficiency of the algorithm by reducing the computational 

effort demanded by the algorithm [Tapas, David et al. 2002]. Others differ from the 

original algorithm in the way the initial cluster centres are chosen, as is the case of 

the algorithm presented in [David and Sergei 2007] called K-Means++ that will be 

further discussed in section 4.1. Some allow merging or splitting clusters according to 

centres distances or cluster within variance [Ball and Hall 1965].  

 

Another widely used partition method is the Expectation Maximization 

Algorithm (EM) [Dempster, Laird et al. 1977], a model based clustering algorithm. In 

model based clustering it is assumed that the data comes from a certain mixture of 

distributions 



K

k

kk axfpxf
1

),()(  







 



K

k

kk pp
1

1,0 ,  with each component ),( kaxf  

representing a different cluster, where ),( kaxf  is a family of density functions over x  

and ka  is the parameter vector that identifies a particular density from that family. 

Model based clustering algorithms try to optimize the fit between the data and the 

proposed model.  

To estimate the individual cluster parameter the EM algorithm uses the 

maximum likelihood approach. The logarithm of the likelihood of the observed data 

given by (2.10) is maximized under the assumption that the data comes from a 

mixture of distributions.  
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



 
 

N

i

K

k
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Maximization of (2.10) can be reformulated as the maximization of (2.11).  

   
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and K  and N  are the number of clusters and data points, respectively. 

 

The EM algorithm can then be summarized in the following way [Mirkin 2005]: 

 

1. Start with any initial values of the parameters kk ap ,  and ikg , 

Ni ,,1 , Kk ,,1 ; 

2. (E-step) Given kp  and ka  estimate ikg ; 

3. (M-step) Given ikg  find kp  and ka  maximizing (2.11); 

4. Repeat steps 2 and 3 until there is no change in the parameter values 

(or the absolute difference is below some previously defined threshold). 

 

 

2.2.3 Graph Based Methods 

 

The relationship between graph theory and the clustering problem has been 

discussed by [Wirth, Estabrook et al. 1966; Jardine and Sibson 1968; Gower and 

Ross 1969; Hubert 1974; Hansen and Delattre 1978], among other authors. 

Algorithms that take advantage of the graph theoretical properties of data are called 

graph based methods.  

The single-link and complete-link hierarchical methods discussed in section 

2.2.1 can be approached from a graph theoretical view. More computationally 

efficient algorithms for single and complete link hierarchical methods than the ones 

already presented are described in [Gower and Ross 1969; Hansen and Delattre 

1978; Jain and Dubes 1988].   

A minimum spanning tree (MST) of a connected, undirected, weighted graph 

is a subgraph that connects all its edges without cycles (tree) with minimum weight. 

Several methods for finding a minimum spanning tree of a graph have been 

developed [Kruskal 1956; Prim 1957]. In [Jain and Dubes 1988] the following 

algorithm for the single-link  method using a  minimum spanning tree is given, where 

the data is represented by a complete weighted graph  WEVG ,, , V  being the 

vertices of the graph representing the objects or data points to be clustered, E  being 
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the set of edges connecting all pairs of vertices and W  being the weights of the 

edges representing the distance between two points: 

  

1. Begin with each object in its own cluster and find the MST of G ; 

2. Merge the two clusters connected by the MST edge with smallest 

weight to define the next clustering; 

3. Replace the weight of the edge selected in 2 by a weight larger than the 

largest proximity; 

4. Repeat steps 2 and 3 until all objects are in one cluster.  

 

 

Figure 2.3 presents an example of this procedure. The information in the 

distance matrix D  serves as a basis for the construction of the graph in Figure 2.3 

(b). Figure 2.3 (c) depicts a possible minimum spanning tree for this graph. Merging 

the clusters corresponding to connected vertices in the MST from the smallest to the 

largest edge weight gives the dendogram in Figure 2.3 (d).   

 

 

 

 

 

(a) (b) 
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(c) (d) 

 

Figure 2.3: Example of single-link method using a MST: (a) distance matrix; (b) 

weighted graph; (c) MST; (d) Dendogram 

 

 

 

Just as the single-link method can be approached using a minimum spanning 

tree, the complete-link method can be approached using node colouring theory 

[Hansen and Delattre 1978]. Other graph based methods for clustering data are  

reviewed in [Gan, Ma et al. 2007]. 

 

 

 

 

2.2.4 Metaheuristics 

 

Heuristic approaches consist on a search strategy starting from a given 

feasible or unfeasible solution or set, an iterative process designed to favour the 

improvement of the solutions regarding feasibility and value and a stopping criterion. 

In [Colin 1993], the following definition of heuristic is given: 

 

Definition 2.1 – A heuristic is a technique which seeks good (i.e. near-optimal) 

solution at a reasonable computational cost without being able to guarantee either 
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feasibility or optimality, or even in many cases to state how close to optimality a 

particular feasible solution is. 

 ♦ 

 

 

The most classical clustering methods in statistics and data mining, namely 

hierarchical clustering methods and partitioning methods, like K-Means [Gan, Ma et 

al. 2007], are heuristic. They take advantage of the problem structure to find good 

solutions but they cannot guarantee optimality. 

The most basic heuristic methods may be trapped at local optima. Although it 

is possible that this local optimum is also the global optimum in general this will not 

be the case. To overcome this deficiency more sophisticated and elaborated 

heuristics incorporate techniques to increase the search space and escape local 

optima. With this purpose, in recent decades more algorithms that use information 

regarding the search process itself have been developed. These methods are 

designated as metaheuristics. In [Hillier and Lieberman 2005], the following definition 

of metaheuristics in given. 

 

Definition 2.2 – A metaheuristic is a general kind of solution method that 

orchestrates the interaction between local improvement procedures and higher level 

strategies to create a process that is capable of escaping from local optima and 

performing a robust search of a feasible solution. 

 ♦ 

 

 Among the most well-known metaheuristics we have Simulated Annealing, 

Genetic Algorithms and Tabu Search.  

Simulated Annealing, proposed by [Kirkpatrick, Gelatt et al. 1983], mimics the 

process of healing and cooling of material. At each iteration of the algorithm we move 

from the current solution to a neighbour solution, similarly to what happens in a 

descent heuristic for minimization. However, instead of moving always in the direction 

of improvement, worse solutions are accepted with a probability that depends on the 

magnitude of increase of the cost function (in a minimization problem) and on a 

parameter representing the temperature of the system. This parameter is decreased 

during the algorithm, simulating the cooling of material, until the temperature is close 
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enough to zero. Following thermodynamics rules, at high temperatures the probability 

of accepting a randomly generated neighbor solution is higher. As the temperature 

decreases, this probability of acceptance also decreases. Application of the 

Simulated Annealing algorithm to the clustering problem can be found in [Brown and 

Huntley 1990; McErlean, Bell et al. 1990; Shokri and Alsultan 1991]. 

Genetic Algorithms [Holland 1975] are population based methods and are 

inspired in Charles Darwin theory of evolution. During the algorithm, a population 

consisting of a usually large set of solutions (chromosomes) is evolved through 

crossover and mutation operators. Pairs of solutions (parents) are chosen randomly 

to serve as input for the crossover operator that will generate one or more children. 

Fittest members are more likely to become parents, thus the next generation tends to 

be more fitted than the current one, following the natural selection and the principle of 

survival of the fittest. Additionally, with a typically small probability, mutation of one or 

more genes (variables) of a chromosome occurs. Through the natural selection 

process, at the end of the algorithm we expect a population of good quality solutions. 

Genetic Algorithms have been widely used on the clustering problem. A variety of 

papers on this subject have been published, for instance [Jiang and Ma 1996; Maulik 

and Bandyopadhyay 2000; Cheng, Lee et al. 2002; Gautam and Chaudhuri 2004; 

Jimenez, Cuevas et al. 2007; Petra 2007].  

Unlike the two previous metaheuristics, Tabu Search [Glover 1986; Glover and 

Laguna 1997] is a deterministic process. The keyword in Tabu Search is “memory”. 

Tabu Search uses different structures of memory – long term and short term memory 

- to control the search process. In this way it is possible to avoid search cycles, 

conduct the search to domains of the solution space that would otherwise be 

skipped, concentrate the search around good quality solutions and avoid getting 

stuck at local optima. By concentrating the search around good solutions, usually 

called elite solutions, we are intensifying the search process. On the other hand, by 

moving to solutions somehow distant to the ones already visited, to avoid local 

optima, we are diversifying the search process. Efficiency of the Tabu Search 

Algorithm widely depends on a good balance between these two opposite strategies 

– intensification and diversification. Just as the previous metaheuristics, Tabu Search 

has also been applied to the clustering problem [Joyce and Michael 2000; Sung and 

Jin 2000; Yongguo, Zhang et al. 2008].  
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In this thesis a Scatter Search algorithm [Glover 1977] will be implemented. In 

a Scatter Search algorithm a reference set of both good quality and diverse solutions 

chosen from a larger original set of solutions is sequentially updated to produce 

better solutions. The algorithm implements both diversification and intensification 

search strategies to achieve a more intelligent search. Scatter Search algorithms 

were already applied to the clustering problem in [Pacheco 2005; Abdule-Wahab, 

Monmarché et al. 2006]. The scatter search algorithm that was implemented is based 

on the algorithms presented in these two papers. The algorithm is presented in detail 

in section 4.2. 

 

 

2.2.5 Other Methods 

 

Density-based or grid-based clustering methods are useful for finding 

arbitrarily shaped clusters consisting of denser regions than their surroundings in 

large multidimensional spaces. As pointed out in [Gan, Ma et al. 2007], “the grid-

based clustering approach differs from the conventional clustering algorithms in that 

it is concerned not with the data points but with the value space that surrounds the 

data points”. The main idea of a density-based cluster is that for each point of a 

cluster the density of points in its ε-neighbourhood, for some 0 , has to exceed 

some threshold [Ester, Kriegel et al. 1996]. The most well-known density-based 

algorithm, proposed by [Ester, Kriegel et al. 1996], is called DBSCAN.  

 

For high dimensional data it is hard to find good clusters using conventional 

clustering algorithms. Dimension reduction or feature selection techniques can be 

used before performing clustering, thus reducing the dimensionality of the data to be 

clustered. However, these approaches imply a loss of information and consequently 

the clusters obtained may not fully reflect the original structure of a given data set 

[Gan, Ma et al. 2007]. The goal of subspace clustering or projected clustering is to 

find clusters embedded in subspaces of the original data space with their own 

associated dimensions. The first subspace clustering algorithm, CLIQUE, was 

proposed by [Agrawal, Gehrke et al. 1998]. Other subspace clustering algorithms 

were proposed by [Agrawal, Gehrke et al. 1998; Aggarwal and Yu 2000; Procopiuc, 
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Jones et al. 2002], among others. In this thesis we are clustering data points 

representing the parameters of membership functions belonging to a certain family of 

membership functions, typically Triangular, Trapezoidal or Gaussian membership 

functions. Since these families of membership functions can be described using a 

small number of parameters, the dimensionality of the data involved is low. 

Therefore, the methodology for subspace clustering will not be further described. 

Details on some of these algorithms can be found in [Gan, Ma et al. 2007].  

 

 

2.3 Formulations in Integer Programming 

 

 In this section some formulations of the clustering problem to be solved are 

given. In these formulations only binary and integer variables will be used. The 

problem consists of clustering n  fuzzy sets into k  clusters, nk 1 . The number of 

clusters is not known a priori. In all formulations ijd  denotes the distance between 

fuzzy sets i  and j . If the fuzzy sets are represented in pR , the Euclidean Distance 

defined by (1.27) or other distance for comparing objects in pR  can be used. It is also 

possible to use distance measures based on similarity measures for comparing fuzzy 

sets. The formulations presented are as general as possible and do not assume any 

particular distance measure. 

 

2.3.1 A Binary Linear Programming Formulation - I 

 

This first formulation is a linear programming formulation using only binary 

variables.  
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 nkjiyxx ijkjkik ,,1,,,1   (2.15) 

 nkjiyxx ijkjkik ,,1,,,2   (2.16) 

 nkjiyx ijkik ,,1,,,   (2.17) 
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 (2.18) 

       nknjnizyx kijkik ,,1,,,1,,,1,1,0,    (2.19) 

 

As can be seen by the integrality conditions (2.19), ikx , ijky  and kz  are binary 

variables. Variable ikx  takes value 1 if and only if point i  is in cluster k , ijky  equals  1 

if and only if points i  and j  belong to cluster k  and kz  takes value 1 if and only if 

cluster k  is not empty. Notice that jkikijk xxy   and ikiik xy  .  

One of the most used criteria for clustering is to minimize the sum of squared 

distances (or equivalently the mean of squared distances) of data points belonging to 

the same cluster. However, if the number of clusters is not defined a priori, this yields 

an optimal solution where each data point forms a different cluster, with an optimal 

value of zero. Therefore the objective function has to account for the number of 

clusters formed. Since 1
1




n

k

ijky  if points i  and j  belong to the same cluster and 

0
1



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k
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ijkij yd
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21
 is the mean of squared distances of all pair of 

points belonging to the same cluster. The number of non-empty clusters is given by 




n

k

kz
1

 and the parameter 0  is not only used to control the importance given to 

both objectives – minimization of mean of squared distances and minimization of the 

number of clusters – but also to deal with the difference in scales present in the 

objective function. 
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Equations (2.14) ensure that each point belongs to exactly one cluster. 

Equations (2.15) translate that if point i  belongs to cluster k  ( 1ikx ) and point j  

belongs to cluster j  ( 1jkx ), then both clusters belong to cluster k  ( 1ijky ). The 

reciprocal is ensured by minimization of the objective function but can also be 

expressed by equations (2.16) or by equations (2.17). Equations (2.18), where M is 

a large constant, allow identifying if the clusters are empty or not. If 1ijky  for some 

i  and j  then 1kz , i.e., the cluster is not empty. Minimization of the objective 

function guarantees that 0kz  whenever cluster k  is empty. 

 

 

2.3.2 A Binary Linear Programming Formulation - II 

 

This formulation is another linear programming formulation using only binary 

variables. In the previous formulation the ikx  variables are redundant, since iikik yx  . 

Also, since jikijk yy    nji ,,1,  , it is possible to further reduce the number of 

variables in the formulation by considering only variables ijky  for  ni ,,1  and 

 nij ,, . 
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 (2.21) 

     nknijniyyy ijkjjkiik ,,1,,,1,,,1,1    (2.22) 

     nknijnizy kijk ,,1,,,,,,1,    (2.23) 

       nknijnizy kijk ,,1,,,,,,1,1,0,    (2.24) 
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In this formulation ijky  are binary variables, as can be seen by the integrality 

conditions (2.24), taking value 1 if and only if points i  and j  belong to cluster k  and 

kz  is a binary variable that takes value 1 if and only if cluster k  is not empty. Notice 

that 1iiky  if and only if point i  belongs to cluster k .  

The objective function in (2.20) was already explained in the previous 

formulation. Equations (2.21) ensure that each point belongs to exactly one cluster, 

as was the case for equations (2.14). Equations (2.22), similarly to equations (2.15), 

translate that if point i  belongs to cluster k  ( 1iiky ) and point j  belongs to cluster j  

( 1jjky ), then both clusters belong to cluster k  ( 1ijky ). The reciprocal is ensured 

by minimization of the objective function. Equations (2.23) allow identifying if the 

clusters are empty or not. If 1ijky  then 1kz , i.e., the cluster is not empty. 

Minimization of the objective function guarantees that 0kz  whenever cluster k  is 

empty.  

Additional valid inequalities, i.e., constraints that are satisfied by all admissible 

solutions, can be considered. The following inequalities are just some of the possible 

valid inequalities that can be used.  

 

 

     nknijniyy ijkiik ,,1,,,1,,,1,    (2.25) 

     nknijniyyy ijkjjkiik ,,1,,,1,,,1,2    (2.26) 
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 (2.27) 

 

Equations (2.25), similarly to equations (2.17) express that if both points i  and 

j  are in cluster k , then point i  is in cluster k . Equations (2.26) can be immediately 

obtained from equations (2.25). Just like equations (2.23), Equations (2.27) allow to 

identify if the clusters are empty or not. These equations could replace equations 

(2.23), as in the case of the previous formulation. 
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2.3.3 A Formulation using precedence 

  

 In the previous formulation, we do not take advantage of the fact that 

membership functions have their domain in R . Consider the linguistic variable in 

Figure 2.4. In the previous formulation, membership functions 1A  and 3A  can belong 

to the same cluster even if 2A  does not belong to this cluster. Intuitively this should 

not happen. The space of admissible solutions can be reduced if we consider an 

ordering of the membership functions.  

 

 

Figure 2.4: Example of a Linguistic Variable with three fuzzy sets 

 

Consider that an ordering of the membership functions to be clustered 

nAAA  21  exists. Then we can formulate the problem if the following way. 

 

 
 


n

i

n

n

ij

ijij zxd
n

Min

1 1

21
  (2.28) 

..ts  

 

11 z   (2.29) 

 1,,1,11  nizz ii   (2.30) 

 1,,1,01  nizz ii   (2.31) 
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   nijnixzz ijij ,,1,1,,1,1    (2.32) 

   nijnixMzz ijij ,,1,1,,1,)1(    (2.33) 

   ninzi ,,1,,,1    (2.34) 

     nijnixij ,,1,1,,1,1,0    (2.35) 

where iz  is the number of the cluster that contains membership function iA , 

 ni ,,1 , ijx  is a binary variable that takes value 1 if and only if membership 

functions iA  and jA  belong to the same cluster,    nijni ,,1,1,,1   , and 

M  is an arbitrarily large constant. 

 

 The equality in (2.29) guarantees that the first membership function is always 

in the first cluster.  Since  nizi ,,1,   are integers, inequalities (2.30) and (2.31) 

state that two consecutive membership functions iA  and  niAi ,,1,1   are in the 

same cluster ( ii zz 1 ) or 1iA  is in the cluster immediately after the cluster that 

contains iA  ( 11  ii zz ). Equations (2.32) and (2.33) make the correspondence 

between the two groups of variables. Membership functions iA  and  njiAj ,,1,,   

belong to the same cluster ( 1ijx ) if and only if they have the same cluster number 

( ji zz  ).  

 The objective function has the same meaning as the one in (2.20).  

 This formulation assumes that an ordering of the fuzzy sets exists. There are 

several methods for ordering fuzzy sets [Shu-Jen and Hwang 1992]. However, this 

ordering is not unique. It varies according to the method used. Therefore, an optimal 

solution to the previous formulation is only optimal for that particular ordering and not 

for the problem itself.   
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2.3.4 Quadratic Formulation 

 

The previous formulations were all linear formulations. It is also possible to 

formulate this problem as a quadratic integer programming problem. Although the 

problem is easy to formulate with a quadratic objective function, quadratic problems 

are usually more difficult to solve then linear ones. 

 

  
  


n
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n
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k
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ij

jkikij cxxd
n

Min

1 11 1

21
  (2.36) 

..ts  

 nix
n

k

ik ,,1,1
1




 (2.37) 

 nkMcx k

n

i

ik ,,1,
1




 (2.38) 

 nkcx k

n

i

ik ,,1,
1




 (2.39) 

     njnixik ,,1,,,1,1,0    (2.40) 

   nkck ,,1,1,0   (2.41) 

 

where ijx  is a binary variable that takes value 1 if and only if membership function i  

is in cluster k ,  nki ,,1,  , kc  is a binary value that takes value 1 if and only if 

cluster k  is not empty,  nk ,,1 , and M is an arbitrarily large constant. 

 

 Equations (2.37) state that each membership function is in exactly one cluster. 

Equations (2.38) and (2.39) are equivalent to  nkcx k

n

i

ik ,,1,00
1




. By 

identifying if the clusters are empty or not it is possible to get the number of non-

empty clusters to be used in the objective function. 
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2.4 Summary 

 

The problem of reducing the number of membership functions in linguistic 

variables can be formulated as a clustering problem, as explained before. Therefore, 

this chapter started by introducing the clustering problem and the state of the art in 

this area (sections 2.1 and 2.2) and proceeded by discussing some integer 

programming formulations to the clustering problem (section 2.3).   
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Chapter 3. Exact Methods 

 

 The initial purpose of the work in this thesis was not to solve the reduction of 

membership functions through exact methods. The complexity of clustering problems 

is one of the main reasons why exact methods are in general not efficient and so 

finding an optimal solution in a reasonable amount of time will most likely only be 

possible for small data sets, particularly if the number of clusters is unknown. 

Nevertheless it seemed important to explain, even briefly, how to approach the 

problem if a global optimal solution is intended. Therefore, this chapter presents only 

a brief introduction to some of the exact methods used for combinatorial and integer 

programming.  

 Finding an optimal solution of a discrete optimization problem is in general 

difficult and known methods are not efficient for large instances. The complexity that 

characterizes these NP-Hard problems has the consequence that the computational 

implementation of exact algorithms is in general too heavy in terms of memory and 

too time-consuming for large problems. Partial enumeration methods, like Branch-

and-Bound [Land and Doig 1960] or Branch-and-Cut [Wolsey 1998], are examples of 

such algorithms. The dimension of the instances above which is no more practical to 

apply an exact method varies according to the problems under study. This is one 

reason why exact methods should always be, at least, tested before switching to a 

heuristic approach. Cluster problems are among those problems for which a 

dimensionality above 40 variables makes the application of exact methods almost 

impractical [Lourenço 1995]. 

 

3.1 Branch-and-Bound 

 

The Branch-and-Bound algorithm [Land and Doig 1960] is a divide and 

conquer technique that implicitly enumerates all feasible solutions of an integer (or 

mixed integer) linear programming problem. The three main aspects of this algorithm 

are the branching, fathoming or pruning and bounding strategies used. The original 

problem is divided into smaller problems by the branching strategy, usually 
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represented by a solution tree. The bounding strategy tries to update the lower and 

upper bound on the optimal value of the objective function, L  and U , by solving the 

linear relaxations of the integer problems considered, providing information that 

allows pruning some of the branches of the solution tree. 

Consider the integer linear programming maximization problem defined by 

(3.1). 

 

  integers and0,,

..

1 





nxxx

bAxts

cxZMax



 (3.1) 

and its linear relaxation 

 

  0,,

..

1 





nxxx

bAxts

cxZMax



 (3.2) 

 

To initialize the upper bound U  the linear relaxation (3.2) at the root node is 

solved through a linear programming method. The lower bound is set to L .  

If the optimal solution *x  of the linear relaxation problem is integer, i.e., if 

nxx ,,1   are integers, then this is also the optimal solution of the integer problem.  

Otherwise, a branching variable jx  is chosen among the basic variables that have 

non-integer values in this solution and two sub-problems are considered by adding 

the constraints  *

jj xx   and   1*  jj xx  to (3.2), where  a  stands for the largest 

integer smaller or equal to a. 

 

The bounding strategy is applied for each new sub-problem. If an integer 

optimal solution for one of the sub-problems is found, we may try to update L  

because this solution is a feasible solution of the original problem. If subz  denotes the 

objective function value of such solution we have L =  subzL,max .  

The pruning strategy allows reducing the number of nodes in the solution tree 

that need to be explicitly visited. If a sub-problem satisfies one of the following 

conditions – pruning by optimality, pruning by bound or pruning by infeasibility 
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[Wolsey 1998] - the corresponding node will node be branched. These conditions are 

presented below: 

 

1. Pruning by optimality – an integer optimal solution to the sub-problem was 

found; 

2. Pruning by bound – Lzsub  , i.e., solutions found by branching this node 

will always be worse than a feasible known solution whose value is equal 

to the lower bound; 

3. Pruning by infeasibility – the sub-problem (and thus all possible branches 

of this node) is infeasible. 

 

The branching, bounding and pruning steps are iteratively applied to each sub-

problem until there are no remaining non-pruned sub-problems or until *ZUL  . In 

this case either an optimal solution was found or the problem is infeasible. It is also 

common to stop the algorithm when the amplitude of the interval  UL,  is small, 

where the concept small is given by considering an error measure and threshold for 

this error, but in this case optimality is not guaranteed. 

 

3.2 Branch-and-Cut 

 

The Branch-and-Cut algorithm [Wolsey 1998] is a hybrid of Branch-and-Bound 

and cutting plane algorithms. A cutting plane for an integer programming problem is a 

valid inequality, i.e., a constraint that is satisfied by all admissible solutions, that 

reduces the admissible region of the linear programming relaxation.  

 Several implementations of this algorithm exist. Basically, cutting planes are 

generated during the Branch-and-Bound algorithm. The goal is to find better bounds 

in each node in order to reduce the number of nodes to be visited. As stated in 

[Wolsey 1998], “though this may seem to be a minor difference, in practice there is a 

change of philosophy”. Instead of quickly solving the node problems, emphasis is 

given to improving the formulation at each node. 

 Other than generating cutting planes, additional strategies can be used to 

improve the formulation at each node. Some of these strategies consist of fixing 
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variables to the only possible value that can take part in an optimal solution or 

eliminating redundant constraints. The efficiency of a Branch-and-Cut algorithm 

depends on a good implementation of such strategies. Knowing when to include or 

eliminate constraints is a major aspect of this algorithm. Although general 

implementations exist, to solve a specific (and more complex) problem an 

implementation that takes advantage of the underlying problem structure should be 

developed.    

 

3.3 Branch-and-Price 

 

The Branch-and-Price algorithm [Barnhart, Johnson et al. 1998] is another 

variation of Branch-and-Bound. Just like in Branch-and-Cut, emphasis is given to the 

strategies employed in each node to obtain better solutions or better bounds. 

However, instead of using cutting planes (row generation) to improve the 

formulations at each node, column generation methods are used.   

This algorithm is especially suited for solving problems with a large number of 

variables. The basic idea is that in many problems most of the variables will have a 

zero value in the optimal solution. By using column generation, a master problem 

corresponding to the original problem but where only a subset of variables is 

considered can be more efficiently solved. To identify which columns should enter 

the master problem, subproblems based on the dual linear programming problem, 

called pricing problems, are solved. This allows choosing variables with positive 

(negative) reduced cost in the minimization (maximization) problem that should 

therefore enter the master problem. When no such variables exist and the integrality 

conditions are not satisfied, branching is performed as in the original Branch-and-

Bound algorithm. 

 

3.4 Computational Results 

 

To better understand the dimension of the problem and the difficulty of using 

exact methods for clustering some computational experiments were done. These 

experiments were done using data from the case study that will be presented in 



  Chapter 3. Exact Methods 

 - 61 - 

Chapter 5. The formulation presented in section 2.3.1 was implemented in GAMS 

and latter run on CPLEX. In these experiments the distance between two 

membership functions i  and j , ijd , was chosen to be ijij sd 1 , where ijs  is the 

Jaccard Similarity given by (1.19) using the fuzzy minimum and fuzzy maximum, 

given by (1.10)  and  (1.11), as intersection and union operators.  

All experiments were done in Pentium(R) 4 CPU 2.6 GHz, 504 MB of RAM. 

First we considered linguistic variables with 12 membership functions each. 

The results are summarized in Table 3.1. Instead of running CPLEX until an optimal 

solution was found (and proved to be optimal) a threshold of 10% for the relative gap 

between the lower and upper bounds on the objective function was used as a 

stopping criterion. As can be seen in Table 3.1, CPLEX took less than 2 minutes – 

40.41 seconds in average – to stop. Given these results we ran CPLEX for linguistic 

variables with 54 membership functions to see if exact methods could still be used to 

solve these problems in a reasonable amount of time. However, for these problems 

CPLEX stopped because lack of memory, without returning an optimal solution. 

These results show what was already expected by the combinatorial nature of 

clustering problems: exact methods can only deal with very small data sets. 

 

   

 
Solution 

Best 
Possible 

Absolute 
Gap 

Relative 
Gap 

Elapsed Time 
(sec.) 

Number of 
Clusters 

Rotation Current 0.767505 0.690776 0.076729 0.099972 95.063 8 

Rotation Voltage 0.898916 0.809514 0.089402 0.099455 33.672 8 

Rotation Speed 0.768401 0.694777 0.073624 0.095815 19.313 7 

Thrust 0.939391 0.845645 0.093746 0.099794 41.172 10 

Torque 0.75501 0.680006 0.075003 0.099341 45.922 7 

Translational Voltage 0.58426 0.527426 0.056835 0.097276 30.219 5 

Translational Current 0.555146 0.501321 0.053825 0.096956 26.531 4 

Translational Speed 0.684707 0.616784 0.067923 0.099199 31.422 7 

 

Table 3.1: Computational Results 
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3.5 Summary 

 

In this Chapter some exact methods for solving integer problems were briefly 

described. These methods consist of a set of strategies to methodically examine the 

search space of an integer or mixed integer problem without having to implicitly 

enumerate all possible solutions. Even though these methods allow to optimally solve 

many problems that by explicit enumeration could not be solved in a reasonable 

amount of time, for a wide class of combinatorial problems the search for an optimal 

solution is still too time-consuming. When this is the case, heuristic methods such as 

the ones described in Chapter 4 can provide good quality solutions with less 

computational effort without guaranteeing optimality. 
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Chapter 4. Heuristic Methods Based on Local 

Search 

 

In real applications, the dimension and complexity of combinatorial and integer 

problems and the need to find good solutions in useful time have lead to the 

development of algorithms that take advantage of the problem structure to achieve 

good solutions (not necessarily optimal). Computational implementations of these 

algorithms, contrary to exact methods, are quite efficient regarding time and memory. 

Whenever the application of global optimization methods is not advisable, it is still 

usually possible to find good quality solutions by using heuristic methods. 

As was pointed out in section 2.2.4, the most classical clustering methods in 

statistics and data mining are heuristic and can therefore be trapped at local optima. 

For this reason, a variety of metaheuristics have been applied to the clustering 

problem. 

In this thesis a Scatter Search algorithm was implemented. Although this 

metaheuristic is not as well-known as the metaheuristics described in section 2.2.4, it 

already proved to be efficient at finding good quality solutions for many problems. 

Scatter Search has been applied to find solutions to the nodes graph coloring 

problem [Jean-Philippe and Jin-Kao 2002], to vehicle routing problems [Russell and 

Chiang 2006], to clustering problems [Pacheco 2005; Abdule-Wahab, Monmarché et 

al. 2006], among many other applications.  

 Both a heuristic and a metaheuristic to solve the automatic clustering problem 

were implemented in Matlab. Section 4.1 describes a heuristic approach called K-

Means++ [David and Sergei 2007]. Section 4.2 describes the general Scatter Search 

algorithm and the details of this particular implementation. In Section 4.3 

computational results on two case studies are presented in order to compare these 

two implementations.  
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4.1 A heuristic approach: K-means ++ 

 

One of the most used algorithms for clustering data is the K-Means algorithm 

[McQueen 1967], already described in section 2.2.2. The algorithm starts by 

choosing initial K  cluster centres from the original data X . After the initialization, a 

partition of the data is determined by assigning each point to the cluster with closest 

centre. After this assignment the centroids of each cluster are calculated and the 

points are reassigned to the clusters regarding the closeness to the centroids. Again 

the centroids are recalculated and the algorithm proceeds in the same way until 

some stopping criterion is met. 

A variation of this method, called K-Means++ [David and Sergei 2007], was 

implemented in Matlab for finding a feasible solution of the clustering problem. This 

method differs from the original K-Means algorithm in the way the initial clusters are 

chosen. Sections 4.1.1 and 4.1.2 describe the K-Means++ algorithm used for 

partitioning n  points into K  clusters. Section 4.1.3 discusses how to choose the 

correct number of clusters by evaluation of cluster validity indexes. 

 

4.1.1 Initialization 

 

The K-Means algorithm starts by choosing K  cluster centres from the original 

data to be clustered. Usually the cluster centres are chosen uniformly at random from 

the original data, i.e., they are chosen with equal probabilities. The K-Means++ 

[David and Sergei 2007] differs from the original K-Means algorithm in the way the 

initial cluster centres are chosen. Cluster centres are still chosen randomly, but they 

are not chosen uniformly.  After the first cluster centre is chosen uniformly at random 

from the original data, the remaining 1K  centres are chosen proportionally to their 

distance to the centres already chosen, a method referred in [David and Sergei 2007] 

by “ 2D  weighting”.  The empirical reasoning of this rule is to diversify the location 

centres within the set of points to allow for a better assignment of points to clusters. 

Let )(xD  denote the shortest distance from a point Xx  to the closest centre 

already chosen. In this work we used the Euclidean distance and so )(xD  is given 

by:  
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  ),(min)( i
Si

cxdxD


  (4.1) 

where S  is the set of all already chosen cluster centres and ),( d  is the Euclidean 

distance. 

Then the necessary steps to perform the cluster centres initialization are the 

following: 

 

1. Choose an initial centre uniformly at random from X , i.e., ,
1

n
pi   

ni ,,1  , where ip  denotes the probability of choosing ix . 

2. Choose the next centre randomly according to the probability distribution  
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xD
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1

2

2

)(

)(
, ni ,,1 . 

3. Repeat step 2 until K  centres have been chosen. 

 

We should notice that the probability of choosing a point is proportional to the 

distance to the closest already chosen centre. So the further away the point is the 

likely it is that it will be chosen as a new centre. After the K  initial cluster centres are 

chosen, the algorithm proceeds as the original K-Means.  The iterative procedure is 

described in the next section. 

 

4.1.2 Iterative Procedure 

 

Now that the initial cluster centres are chosen, the remaining points are 

assigned to its closest cluster and the cluster centroids are updated. This procedure 

is repeated until a stopping criterion is met. The steps of this procedure, after the 

initialization phase, are summarized below.  

1.  Assign each point to the closest centre. 

2. Update cluster centres by recalculating the cluster centres according to 

(2.9). 

3. Repeat steps 1 and 2 until the centres no longer change. 
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In addition, a maximum number of iterations could be used as a stopping 

criterion. However, due to the rapid convergence of the algorithm, in the 

computational experiments that will be presented in section 4.3, it was not necessary 

to prematurely stop the algorithm. 

 

4.1.3 Choosing the number of clusters 

 

The previous algorithm partitions n  data points into K  clusters (or less, 

because empty cluster might be formed). However, when the number of clusters is 

not known a priori, the correct number of clusters has to be estimated. Usually this is 

done by running the algorithm for a range of values for K  and choosing the best 

partition according to some cluster validity index.  

In [Ujjwal and Sanghamitra 2002] several validity indexes for clustering 

algorithms are compared using different clustering algorithms. The experiments 

conducted by the authors lead them to the following conclusion: “Compared to the 

other considered validity indexes, I  is found to be more consistent and reliable in 

indicating the correct number of clusters”. This index is defined by equation (4.2). 
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and ji
Kji

K ccD 
 ,,1,
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

 (4.4) 

 In these equations  nxxX ,,1   is the data to be clustered and  
nKkjuU


  is 

a partition binary matrix representing a possible clustering of the data into K  disjoint 

clusters, i.e., 1kju  if and only if jx  is in the kth cluster. The centroid of cluster k  is 

denoted by kc . To find the correct number of clusters we chose the value of K  which 

maximizes )(KI .  
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 Analyzing )(KI  we see that as the error KE  decreases, the factor 
KE

E1  

increases. It is always possible to obtain a partition with zero error by considering n  

clusters, each consisting of a single data point. To balance the error with the number 

of cluster the factor 
K

1
 is introduced. As the number of clusters decreases, this factor 

increases. To achieve well separated clusters, the factor KD  should be large, that is, 

the maximum distance between two cluster centres should be large. The previous 

considerations intuitively justify that )(KI  should be maximized. 

 

 

 

4.2 Scatter Search 

 

Scatter Search [Glover 1977] has some similarities to Tabu Search and Genetic 

Algorithms. The use of memory is one of the main features of Tabu Search and is 

usually present in Scatter Search. Such as Genetic Algorithms, Scatter Search is an 

evolutionary algorithm. While in Genetic Algorithms an usually large population is 

evolved through crossover and mutation operations, in Scatter Search instead of a 

population it is used a smaller reference set (composed of good quality solutions and 

diverse solutions) and it plays the most important role in the algorithm. 

Essentially, Scatter Search operates on a small set of solutions, the reference 

set, and consists on the application of the following methods, which can be 

implemented in different ways, according to the problem at hand: 

1. A Diversification Generation (DG) method to produce a collection of diverse 

trial solutions from which the initial reference set is built; 

2. An Improvement (Imp) method to enhance the quality of trial solutions;  

3. A Reference Set Update (RSU) method responsible for constructing a 

reference set of both high quality solutions and diverse solutions from the 

collection of solutions obtained by the diversification generation method and 

of updating this reference set when new solutions are created during the 

algorithm;  
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4. A Subset Generation (SG) method that, in each iteration of the algorithm, 

creates a collection of subsets of solutions belonging to the reference set, 

such that the solutions in each subset are to be combined through the 

solution combination method;  

5. A Solution Combination (SC) method that takes a subset of solutions given 

by the subset generation method and generates one or more new trial 

solutions. 

 

 

 

Figure 4.1: Scatter Search Algorithm 

 

The way the previous methods operate is summarized in Figure 4.1. The 

original set is created by the Diversification Generation Method (DG). Each solution 

in this set is then improved by the Improvement Method (Imp) before the Reference 

Set Update Method (RSU) constructs the reference set, selecting the best quality 
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solutions in the original set, along with diverse solutions. The subsets of solutions to 

be combined through the Solution Combination Method (SC) are chosen by the 

Subset Generation Method (SG). The solutions resulting from this combination are 

improved before the Reference Set Update Method (RSU) updates the reference set. 

The process continues until some stopping criterion is met.   

The scatter search algorithm that was implemented is based on the algorithms 

in [Pacheco 2005] and [Abdule-Wahab, Monmarché et al. 2006]. The next sections 

describe the implementations of each of the five methods mentioned above.  

 

4.2.1 Fitness Function 

 

In  [Pacheco 2005], quality of solutions was measured by the sum of squared 

distances from each point to the centroid of  its cluster. This measure cannot be used 

in the automatic clustering problem, where the number of clusters is not defined a 

priori. Using this measure when the number of clusters can vary, yields the 

construction of as many clusters as the number of points to be clustered, giving a 

sum of the squared distances from each point to the centroid of its cluster (the point 

itself) of zero. Therefore, a different quality measure was used. The validity index I  

described in section 4.1.3 and defined by equations (4.2) - (4.4) was used as fitness 

function, to be maximized.  

 

4.2.2 Diversification Generation Method 

 

The diversification generation method used was proposed by Pacheco 

[Pacheco 2005], based on GRASP – Greedy Randomized Adaptive Search 

Procedure. However in this work the number of clusters is predefined by the user. To 

achieve an automatic clustering procedure, as it is aimed in our work, the correct 

number of clusters should be determined by the algorithm. Therefore, before creating 

a new solution with the diversification generation method, it is necessary to generate 

a random number of clusters, i.e., an integer K  between 1 and maxK , where maxK  is 

the maximum number of clusters allowed. 
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 Given the number of clusters K  to be considered for the generation of a 

solution, the cluster centres  KccS ,,1   are randomly chosen from the data set X  

in the following way [Pacheco 2005]: 

 

1. Find *j
x , the farthest point from the centroid of X  and do *1 j

xc   and  1cS  . 

Set 2h . 

2. Fix  0 ≤ ≤  and while KS  do: 

a. Determine   SXxSccx jlljj \,:min   

b. Determine  SXx jj \:maxmax   

c. Do  max:  jjxL  

d. Choose Lx
j
*  uniformly at random and do *jh xc  ,  hcSS   and 

1 hh . 

 

If 0 , the cluster centres are chosen completely at random from the original 

data X . If 1  the process is deterministic if there is only one point in L, and so the 

only farthest point from the centres already chosen will enter S . Therefore, generally 

speaking, the parameter   controls the level of randomization of the process.  

A memory structure is used to avoid repetition of centres and consequently of 

solutions. The number of times that a point jx  is selected as a centre is stored in 

)( jfreq  and the values of j  in subsequent iterations are modified according to 

equation (4.6), where: 

 

  jjfreqfreq  :)(maxmax  (4.5) 

    

and   controls the importance of memory in the diversification generation method.  

 

 

max

max

' )(

freq

jfreq
jj    (4.6) 
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Equation (4.6) decreases the value of j  proportionally to )( jfreq  and so the 

possibility of inclusion of jx  in L  also diminishes.   

After the clusters centres are defined, the remaining points are assigned to 

these clusters. This is done with the goal of minimizing the sum of squared distances 

from each point to its cluster centre. When the number of clusters is not 

predetermined, minimizing the sum of squared distances from each point to its 

cluster centre yields a solution where each point is a centre itself and we have as 

many clusters as points. However, since for a particular solution to be generated the 

number of clusters is previously determined, the remaining points can be assigned in 

order to minimize this measure, as in [Pacheco 2005], in the following way: 

   

1. Let A  be the set of unsigned points, i.e., SXA \ . 

2. For each point Ax j   and each cluster KiCi ,,1,   determine ij  given by 

 
2

1
ji

i

i

ij xc
C

C



  (4.7) 

where ic  is the centroid of iC . 

3. Calculate  KiAx jijji
,,1,:min**  . 

4. Assign *j
x  to *i

C and set  *\
j

xAA  . 

5. If 0A return to 2, else stop. 

 

The formula in (4.7) gives the increase in terms of sum of squared distances 

from each point to its cluster centre when point jx  is assigned to cluster iC . Steps 1 

through 5 define a greedy heuristic for assigning the remaining points to the clusters 

whose centres were previously chosen. 

This algorithm is used to generate sizeOS  initial solutions, called the original set 

that will serve as basis for constructing the reference set.  
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4.2.3 Improvement Method 

 

The improvement method is used to enhance the quality of the solutions 

generated both during the diversification phase and after the combination of two 

solutions. In this thesis it was chosen to implement the improvement method 

presented in [Abdule-Wahab, Monmarché et al. 2006], based on the K-Means 

algorithm [Gan, Ma et al. 2007]. The following steps are taken a number of times 

equal to MaxIterImp, where MaxIterImp is a parameter to be chosen by the user. 

 

1. For each point Xx j   do: 

a. For each cluster KiCi ,,1,   determine ijv  given by 

 
22

11
jl

l

l

ji

i

i

ij xc
C

C
xc

C

C
v 





  (4.8) 

where jx  currently belongs to cluster lC  and ic   and lc  are the 

centroids of iC  and lC , respectively. 

b. Determine  ijljKj va  ,,,1minarg  . 

c. If 0a  reassign jx  to aC . 

2. Compute the fitness of the new solution obtained. 

3.  If the fitness of the new solution, given by equation (4.2) is better than the 

original solution, replace the original solution by the new solution. 

 

The formula in (4.8) is given by Spath [Spath 1980] to simplify the K-Means 

algorithm and approximates the increase in terms of sum of squared distances from 

each point to its cluster centre when point ix  is moved from cluster lC  to cluster jC .  

 

4.2.4 Reference Set Update Method 

 

The reference set, RS , is composed of 1b  high quality solutions and 2b diverse 

solutions. To construct the initial reference set, the first 1b  best solutions are inserted 

in the reference set, where the quality of solutions is given by the fitness function 
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presented in section 4.2.1.  Next, 2b  solutions are added one by one to reference set 

according to its diversity. In this work  it was used the diversity measure proposed by 

Pacheco[Pacheco 2005]. Let ),(  dif  be the number of assignments in solution   

that are different from the assignments in solution  . For instance, suppose that we 

have an instance with 5 objects and 4 clusters. Consider two solutions,  2,3,2,1,11 y  

and  3,4,2,2,12 y , where the i -element of the vector corresponds to the cluster to 

which object i  is assigned. In this case ),(  dif  is equal to 3. 

 

Iteratively, it is chosen to enter the reference set, the solution that maximizes: 

 

  RSdif   :),(min)(min  (4.9) 

 

In this implementation the reference set is only updated when better quality 

solutions are found. Other implementations [Abdule-Wahab, Monmarché et al. 2006] 

also update the reference set according to the measure of diversity, reinforcing the  

diversification strategy.  

 

4.2.5 Subset Generation Method 

 

In each iteration of the algorithm, the subsets of solutions from the reference 

set that will be latter combined by the solution combination method consist of pairs of 

solutions. The collection of subsets created through this method is composed of all 

pairs of solutions from the reference set  ji, , 1,,1 21  bbi  , 21,,2 bbj   , 

ji  . Supposing that we have 3 solutions, we should consider the following subsets 

(1,2), (1,3), (2,3). 

Each element of the collection of subsets generated by this method serves as 

an input to the solution combination method that generates one or more trial 

solutions that, after being enhanced by the improvement method in section 4.2.3, can 

enter the reference set as described in section 4.2.4. 
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4.2.6 Solution Combination Method 

 

To combine two solutions it was implemented the path relinking strategy 

described in [Pacheco 2005]. The idea of path relinking is that, in the “path” between 

two good quality solutions other good quality solutions should exist. A “path” is a 

series of simple movements that lead from one solution to another. In this case we 

can start on one solution and move points from one cluster to another until the 

second solution is reached. For instance, consider two solutions,  2,3,2,1,11 y  and 

 3,4,2,2,12 y  to be combined. A path between these solutions could be given by: 

       3,4,2,2,12,4,2,2,12,3,2,2,12,3,2,1,1  , where in each movement the first point 

assigned differently than in 2y  is assigned as in 2y . Solutions in this path can be 

chosen as trial solutions.  

As in [Pacheco 2005], given two solutions, the number of trial solutions that 

will be generated through the solution combination method varies. If the two solutions 

to be combined were chosen from the 1b  high quality solutions in the reference set, 

three trial solutions will be generated. If the two solutions were chosen from the 2b  

diverse solutions in the reference set, only one solution will be generated. Otherwise, 

two solutions will be created. These solutions are randomly chosen from the 

solutions in the path. 

 

4.2.7 The Final Algorithm 

 

After the basic methods of the scatter search algorithm have been described, 

we may now describe the final algorithm.  

The algorithm starts by generating the original set through the diversification 

method. The best quality solutions and most diverse solutions are chosen to form the 

reference set before the iterative part of the algorithm starts. In each iteration, the 

subset generation method forms all subsets consisting of pairs of solutions from the 

reference set. These pairs of solutions are then combined through the solution 

combination method and the generated trial solutions are improved through the 

improvement method. The reference set update method is then responsible for 

deciding if any of the generated solutions should replace one of the solutions in the 
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reference set. The iterative procedure continues until there are no new elements in 

the reference set. The best solution is then returned. 

 

4.3 Computational Results 

 

In this section computational results on two case studies will be presented. In 

both case studies real world data sets are used. Fuzzyfication of the data is needed 

before using the previously described algorithms. The reason for fuzzyfying data 

comes either from a way to deal with different source of uncertainty or to categorize 

numerical data. Depending on the application that it will be given to the fuzzified data, 

it may be needed to reduce the number of membership functions to simplify the 

system that will use this functions. The idea is to reduce the number of terms in each 

linguistic variable by merging membership functions in the same cluster. These 

linguistic variables could then be used, for instance in a fuzzy inference system or 

other fuzzy model. All experiments were conducted in a Intel Core2 Duo, CPU 2.2 

GHz, 2 GB of RAM. 

 

 

4.3.1 Wisconsin Diagnostic Breast Cancer Data Set 

 

The data used in this section is taken from [Asuncion 2007]. Wisconsin 

Diagnostic Breast Cancer (WDBC) data set contains 569 samples of data describing 

characteristics of the cell nuclei present in digitalized images of a fine needle aspirate 

(FNA) of a breast mass. Ten real-valued features were computed for each cell 

nucleus [Asuncion 2007]: 

 

 

a) Radius (mean of distances from centre to points on the perimeter) 

b) Texture (standard deviation of gray-scale values) 

c) Perimeter 

d) Area 

e) Smoothness (local variation in radius lengths) 
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f) Compactness 

g) Concavity (severity of concave portions of the contour) 

h) Concave Points (number of concave portions of the contour) 

i) Symmetry 

j) Fractal dimension (“coastline approximation” -1) 

 

 

 

For each of these features, the mean, standard error and mean of the three 

largest values (“worst”) of these features were computed for each image. Therefore, 

each sample has the following 32 attributes: 

 

 

1. ID number 

2. Diagnosis (M = malignant, B = benign) 

3. Mean Radius 

4. Mean Texture 

5. Mean Perimeter 

6. Mean Area 

7. Mean Smoothness 

8. Mean Compactness 

9. Mean Concavity 

10. Mean Concave Points 

11. Mean Symmetry 

12. Mean Fractal dimension 

13. Radius  Standard Deviation 

14. Texture  Standard Deviation 

15. Perimeter Standard Deviation 

16. Area Standard Deviation 

17. Smoothness Standard Deviation 

18. Compactness Standard Deviation 

19. Concavity Standard Deviation 

20. Concave Points Standard Deviation 

21. Symmetry Standard Deviation 
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22. Fractal dimension Standard Deviation 

23. Worst Radius 

24. Worst Texture 

25. Worst Perimeter 

26. Worst Area 

27. Worst Smoothness 

28. Worst Compactness 

29. Worst Concavity 

30. Worst Concave Points 

31. Worst Symmetry 

32. Worst Fractal dimension 

 

 

 

 

In this thesis only features 3 through 22 where used.  The mean radius can be 

used as a measure of the cell nuclei radius. The radius standard deviation gives a 

measure of the error associated with this measure. For this reason it is advisable to 

fuzzify the data as a way to deal with uncertainty.  To do so we represent each 

sample’s radius by a symmetric triangular membership function   2, , as described 

in section 1.3.1 with  equal to the mean radius. The width of the triangular 

membership functions was chosen to be 4  because in a random variable following 

a normal distribution, approximately 95% of the samples are expected to belong to 

the interval   2,2  . The same fuzzification scheme, and with the same 

reasoning, was used for the rest of the features, resulting in 10 linguistic variables 

with 569 membership functions each, depicted in Figure 4.2 through Figure 4.11. The 

objective is to reduce the number of membership functions in each linguistic variable 

using the algorithms described in Chapter 4. The resulting linguistic variables could 

then be used in a fuzzy inference system or other fuzzy model to diagnose the type 

of cancer. The construction of such model is outside the scope of this thesis. 
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Radius 

 

Figure 4.2: Linguistic Variable Radius 

 

 

Texture 

 

Figure 4.3: Linguistic Variable Texture 
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Perimeter 

 

Figure 4.4: Linguistic Variable Perimeter 

 

 

Area 

 

Figure 4.5: Linguistic Variable Area 
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Smoothness 

 

Figure 4.6: Linguistic Variable Smoothness 

 

 

Compactness 

 

Figure 4.7: Linguistic Variable Compactness 
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Concativity 

 

Figure 4.8: Linguistic Variable Concativity 

 

 

Concave Points 

 

Figure 4.9: Linguistic Variable Concave Points 
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Symmetry 

 

Figure 4.10: Linguistic Variable Symmetry 

 

 

Fractal Dimension 

 

Figure 4.11: Linguistic Variable Fractal Dimension 
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4.3.1.1  Computational results 

 

The K-Means++ algorithm, described in section 4.1, was applied to each 

linguistic variable previously presented. The number of clusters was estimated by 

running the algorithm for 15681  nK  and choosing the iteration that maximizes 

the evaluation measure I  given in (4.2). For nK   the evaluation measure I  is not 

defined since 0nE , as can be seen in (4.3). Figure 4.12 and Figure 4.14 show the 

evolution of I  using K-Means++ for 5681  K , for linguistic variables Radius and 

Texture. For all other linguistic variables in this case study the overall behaviour is 

the same. It seems that I  increases with K . However, looking at Figure 4.13 and 

Figure 4.15 it is possible to see that this is not always that case.  

 

 

 

Radius - Evaluation Measure 

 

Figure 4.12: Evaluation measure I using K-means++ for 5681  K , linguistic 

variable Radius 
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Radius - Evaluation Measure – zoom 

 

Figure 4.13: Evaluation measure I using K-means++ for 5001  K (zoom in of 

previous plot) 5681  K , linguistic variable Radius 

 

 

Texture - Evaluation Measure 

 

Figure 4.14: Evaluation measure I using K-means++ for 5681  K , linguistic 

variable Texture 
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Texture - Evaluation Measure – zoom 

 

Figure 4.15: Evaluation measure I using K-means++ for 5001  K (zoom in of 

previous plot), linguistic variable Texture 

 

 

 Running the Scatter Search algorithm from section 4.2 with 1max  nK  yield 

solutions with 1n  clusters. This is easily explained by the behavior of I  depicted in 

Figure 4.12 and Figure 4.14. Given this results it was necessary to redefine the 

maximum number of clusters allowed, maxK . Taking into account Figure 4.13 and 

Figure 4.15, it was chosen 100max K . Therefore we are interested in finding a 

partition of the data into less that 101 clusters that maximizes the cluster validity 

index I .  

The Scatter Search algorithm was run with several values for the parameters 

 ,  , MaxIterImp and 1b . To reduce the number of parameters to be analyzed, the 

number of good quality solutions and of diverse solutions to be included in the 

reference set was chosen to be equal ( 21 bb  ) and the original set was chosen to be 

10 times the size of the reference set ( )(*10 21 bbOSsize  ). This last choice is 

recommended in [Martí, Laguna et al. 1997; Abdule-Wahab, Monmarché et al. 2006]. 

The algorithm was run until no new elements entered the reference set. Since 

random numbers are used during the algorithm, for each combination of values of the 

parameters 5 experiments were run. Only 5 runs of each experiment is clearly not 
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enough to take any statistically valid conclusions, the purpose of these experiments 

was only to see how results were influenced by different choices of the several 

parameters involved.  

Only the results relative to the linguistic variable Radius will be discussed in 

more detail. Similar conclusions were found for the rest of the linguistic variables in 

this case study. Final results will be presented for all linguistic variables. 

 

The first experiments were conducted with no improvement method (i.e. 

MaxIterImp 0 ) and all possible combinations of  1;8.0;5.0;0 ,  5.0;0  and 

 5;21 b , with the purpose of analysing the influence of the parameter   in the 

algorithm. In section 4.2.2 it is stated that the parameter   controls the level of 

randomization used when choosing cluster centres. When 0 , the cluster centres 

are chosen completely at random from the original data X .  In Figure 4.16 it is clear 

that this randomness affects the standard deviation of the fitness of solutions 

returned by the algorithm. When 0  the standard deviation of results is much 

higher than for larger values of  . This standard deviation means that it is likely to 

achieve very good results but also very bad results, a characteristic that is 

undesirable in an algorithm. In fact, although in terms of the best result found for 

each 5 experiments a choice of 0  seems to produce good results (Figure 4.17), 

the same does not happen in terms of average results (Figure 4.18). Given this 

results, no further experiments were done with 0 .  

 

 

Figure 4.16: Influence of   in fitness function I  standard deviation 



 Chapter 4. Heuristic Methods Based on Local Search 

 - 87 - 

 

 

Figure 4.17: Influence of   in best results obtained for fitness function I  

 

 

Figure 4.18: Influence of   in mean results for fitness function I   

 

The parameter   controls the weight given to the memory in the process of 

choosing the cluster centres when creating initial solutions, as given by (4.6). Notice 

that it does not make sense to study the importance of this parameter for values of   

very close to zero since the choice of the cluster centres is close to random. In this 

case, although the quantities j  are replaced by '

j , this does not significantly 

change the set L  from which the cluster centres are chosen. As can be seen in 

Figure 4.19, there seems to be an improvement in terms of average results in using 
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this memory during the creation of the original set. Therefore, no further experiments 

for 0  will be discussed. 

 

 

Figure 4.19: Influence of   in mean results for fitness function I  

 

By considering a larger reference set we expect to obtain better results but 

worse computational efficiency. Not only does it take more time to generate the 

original set (since the size of the original set was chosen to be 10 times the size of 

the reference set), but also the number of subsets of solutions to be combined 

increases exponentially. In Figure 4.20 we can see that increasing the size of the 

reference set does indeed produce better quality results, but this improvement is 

achieved at a computational cost, as can be seen in Figure 4.21. However, in this 

case study, we are considering an increase from an execution time of around 1 

minute to around 3.5 minutes. Due to these low execution times, we can afford to 

consider a larger reference set to obtain better solutions. In other applications where 

the number of membership functions to merge is higher, this increase in execution 

time could be unaffordable. Reference sets are typically small. Only two small values 

for 1b  were considered, 21 b  and 51 b . This is due to the way the size of original 

set is related to this parameter. Since it was chosen that 21 bb   and 

)(*10 21 bbOSsize  , we are considering original sets with 40 and 100 solutions. 

Larger original sets would mean that the initial diversification achieved would be such 

that a very good quality solution was probably already found in this first step of the 

algorithm.   
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Figure 4.20: Influence of 1b  in mean results for fitness function I  

 

 

 

Figure 4.21: Influence of 1b  in execution time 

 

 

 

Until this point experiments were done without the Improvement Method. This 

way the influence of the parameters being analyzed in the solutions obtained was 

clearer. The computational cost, in terms of execution time (Figure 4.23), of using the 

Improvement Method should lead to an improvement in the quality of the solutions 

obtained by the algorithm. However, this was not always the case, as can be seen in 
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Figure 4.22.  The increase in execution time when using MaxIterImp 5  is 

considerably high and does not result in a significant improvement in the quality of 

solutions. Considering MaxIterImp 2  the increase in terms of execution time is not 

high (from approximately 1 minute to approximately 3 minutes) but only improves the 

average quality of solutions in some of the sets of experiences made. This result was 

unexpected. Since only 5 experiments per each choice of parameters were made, 

these results could be explained by the weak estimate of the actual mean values. 

Since the increase in execution time for using MaxIterImp 2  is not too high, this 

value will be considered for this parameter. Also, the two first combinations of 

parameters seem to give consistently better results than the rest. From these two 

sets of experiences, the second presents slightly better average results. Therefore, in 

the results presented in Table 4.1 and Figure 4.24 through Figure 4.33 were obtained 

with 5.0 , 8.0 , 51 b  and  MaxIterImp 2 . Figure 4.24 through Figure 4.33 

show, for both algorithms, a scatter plot of the centre values versus the width of the 

triangular membership and the final configuration of the linguistic variable. 

 

 

 

 

Figure 4.22: Influence of Improvement Method in mean  

results for fitness function I  
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Figure 4.23: Influence of Improvement Method in execution time 

 

 

 

 

To better understand what happens during the algorithm a study of how the 

reference set evolves was conducted. Surprisingly, for all experiments conducted the 

reference set was only updated a few times after its initial construction and the best 

solution found was always generated during the first part of the algorithm. This result 

was not expected. Unfortunately, the second part of the Scatter Search algorithm is 

not producing good solutions. Still, Table 4.1 shows that the Scatter Search returned 

better results than K-Means++ for almost all variables. The first part of the algorithm 

is sufficient to obtain better quality solutions than the K-Means++. The computational 

time of the Scatter Search was expected to be much higher than the computational 

time of the K-Means++. This did not happen only because the Scatter Search 

algorithm stopped after the first iteration of the second part of the algorithm.  
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K-Means++ Scatter Search 

Time 

(sec.) 
Nr. Clusters I 

Time 

(sec.) 

Nr. 

Clusters 
I 

Radius 426,3904 4 18,9609 352,8277 3 26,9636 

Texture 398,9221 3 16,8796 344,1798 5 30,18262 

Perimeter 463,4574 7 830,33 371,4513 3 1286,17 

Area 416,6392 6 426500,7 394,1495 3 668728,5 

Smoothness 419,2019 3 0,000143 413,9573 4 0,0002044 

Compactness 407,7729 3 0,004632 308,5648 3 0,004547 

Concativity 418,1248 3 0,080241 305,7193 3 0,080673 

Concave Points 405,9813 3 0,002273 470,995 3 0,002743 

Symmetry 411,8899 3 0,000921 672,4182 3 0,000932 

Fractal Dimension 413,8989 4 0,000167 679,9634 3 0,000255 

 

Table 4.1: K-Means++ vs Scatter Search (best results) 
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Radius 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.24: Best Results for Linguistic Variable Radius 
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Texture 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.25: Best Results for Linguistic Variable Texture 
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Perimeter 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.26: Best Results for Linguistic Variable Perimeter 
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Area 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.27: Best Results for Linguistic Variable Area 
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Smoothness 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.28: Best Results for Linguistic Variable Smoothness 
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Compactness 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.29: Best Results for Linguistic Variable Compactness 
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Concativity 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.30: Best Results for Linguistic Variable Concativity 
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Concave Points 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.31: Best Results for Linguistic Variable Concave Points 
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Symmetry 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.32: Best Results for Linguistic Variable Symmetry 
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Fractal Dimension 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.33: Best Results for Linguistic Variable Fractal Dimension 
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4.3.2 Credit Approval Data Set 

 

The data used in this section is taken from [Asuncion 2007]. This data concerns 

credit approval information. Credit approval information is usually prone to 

uncertainty. On one hand, attributes like annual income are usually average 

information rather than absolute information. On the other hand, misinformation from 

the credit candidates, for instance undeclared income, provides additional uncertainty 

to the values presented. Therefore, it is natural to use fuzzy models when 

constructing automatic credit approval applications. Credit Approval (CA) data set 

contains 690 samples (665 after removing missing data) of data concerning credit 

approval information. Unfortunately, for confidentiality purposes, all attribute names 

and values have been changed to meaningless symbols. Each sample is composed 

of features A1 through A16. Ahead each variable its possible values are presented 

[Asuncion 2007]: 

 

1. A1 – b, a 

2. A2 – continuous 

3. A3 – continuous 

4. A4 - u, y, l, t 

5. A5 – g, p, gg 

6. A6 – c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff 

7. A7 – v, h, bb, j, n, z, dd, ff, o 

8. A8 – continuous 

9. A9 - t, f 

10. A10 – t, f 

11. A11 – continuous 

12. A12 – t, f 

13. A13 – g, p, s 

14. A14 – continuous 

15. A15 – continuous 

16. A16 - +,- (class attribute) 
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Only continuous attributes will be considered because other attributes are 

already categorized and the number of categories is already small. Once again, 

symmetrical triangular membership functions will be used. Since there is no 

information on the attributes and no additional information on accuracy of the data, 

triangular membership functions  
jijv 2,  where used, where ijv  is the value of 

attribute j  for sample i  and j  is the standard deviation of attribute j .  Of course all 

membership functions from the same linguistic variable, representing an attribute, will 

have the same width. In reality, the width of the membership functions would vary 

according to additional information collected from experts or from credit candidates. 

The six linguistic variables in this case study are represented in Figure 4.34 through 

Figure 4.39.  

 

 

 

A2 

 

Figure 4.34: Linguistic Variable A2 
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A3 

 

Figure 4.35: Linguistic Variable A3 

 

 

 

A8 

 

Figure 4.36: Linguistic Variable A8 
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A11 

 

Figure 4.37: Linguistic Variable A11 

 

 

 

A14 

 

Figure 4.38: Linguistic Variable A14 
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A15 

 

Figure 4.39: Linguistic Variable A15 

 

 

4.3.2.1 Computational Results 

 

The same study conducted for the linguistic variables in the previous case 

study was conducted for the six linguistic variables in this case study. The K-

Means++ algorithm, described in section 4.1, was applied to each of the linguistic 

variables.  

Figure 4.40 and Figure 4.42 show the evolution of I  using K-Means++ for 

6651  K , for linguistic variables A2 and A3. For all other linguistic variables in this 

case study the overall behaviour is the same. This is not the same behaviour as in 

the previous case study. Now there is a very sudden improvement in the quality of 

solutions for a certain number of clusters. However, this sudden improvement is 

achieved only for high number of clusters, between 200 and 350 clusters for the 

linguistic variables in this case study. This is a high number of membership functions 

in a linguistic variable. It is desirable to achieve a greater reduction in the number of 

membership functions to improve its interpretability. Therefore, as in the previous 

case study, it was chosen 100max K .  It is left for future work to investigate on 
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procedures to estimate this parameter. Figure 4.41 and Figure 4.43 show a zoom of 

the previous plots, for 1501  K . 

 

A2 - Evaluation Measure 

 

 

Figure 4.40: Evaluation measure I using K-means++ for 6651  K , linguistic 

variable A2 

 

 

A2 - Evaluation Measure – zoom 

 

Figure 4.41: Evaluation measure I using K-means++ for 1501  K (zoom in of 

previous plot), linguistic variable A2 
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A3 - Evaluation Measure 

 

Figure 4.42: Evaluation measure I using K-means++ for 6651  K , linguistic 

variable A3 

 

A3 - Evaluation Measure – zoom 

 

Figure 4.43: Evaluation measure I using K-means++ for 1501  K  (zoom in of 

previous plot), linguistic variable A3 

 

 

 The Scatter Search algorithm was run with the same values for the 

parameters  ,  , MaxIterImp and 1b  as in the previous case study, considering 5 
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experiments for each choice of parameters and with the same stopping criterion as 

before. Once again, the number of good quality solutions and of diverse solutions to 

be included in the reference set was chosen to be equal ( 21 bb  ) and the original set 

was chosen to be 10 times the size of the reference set ( )(*10 21 bbOSsize  ), as in 

[Martí, Laguna et al. 1997; Abdule-Wahab, Monmarché et al. 2006].  

Only the results relative to the linguistic variable A2 will be discussed in more 

detail.  

 

To study the influence of   in the results, experiments were conducted with 

no improvement method (i.e. MaxIterImp 0 ) and all possible combinations of 

 1;8.0;5.0;0 ,  5.0;0  and  5;21 b . When 0  the standard deviation of 

results is much higher than for other values of   (Figure 4.44), explaining why 0  

was responsible for the best results (Figure 4.45) but does not give competitive 

results in average (Figure 4.46). Due to the referred high standard deviation in the 

results, no further experiments were done with 0 .  

 

 

 

Figure 4.44: Influence of   in fitness function I  standard deviation 
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Figure 4.45: Influence of   in best results obtained for fitness function I  

 

 

Figure 4.46: Influence of   in mean results for fitness function I   

 

 

In Figure 4.47 the use of memory in the Diversification Generation method is 

clear since using 0  gives worse results in average. Therefore, no further 

experiments for 0  will be discussed. 
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Figure 4.47: Influence of   in mean results for fitness function I  

 

Increasing the size of the reference set produces better quality results, as can 

be seen in Figure 4.48. Increasing the number of solutions in the reference set from 4 

to 10 ( 21 b  to 51 b .) resulted in an increase in the execution time (Figure 4.49) by 

a factor between 1.6 and 2.9. Still, all experiments were run in less than 10 minutes. 

It is still affordable to consider a larger reference set to improve the overall quality of 

solutions.  

 

 

Figure 4.48: Influence of 1b  in mean results for fitness function I  
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Figure 4.49: Influence of 1b  in execution time 

 

Just as before, the increase in execution time when using MaxIterImp 5  is 

considerably high (Figure 4.51) and does not result in a significant improvement in 

the quality of solutions in most of the cases (Figure 4.50). Since the increase in 

execution time for using MaxIterImp 2  is not too high (from approximately 6 minute 

to approximately 10 minutes), this value will be considered for this parameter. Just as 

in the previous case study, the choice of parameters 5.0 , 8.0 , 51 b  and  

MaxIterImp 2  gives better results, in average, and were used to obtain the results 

summarized in Table 4.2 and Figure 4.52 through Figure 4.57. 

 

 

Figure 4.50: Influence of Improvement Method in mean  

results for fitness function I  
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Figure 4.51: Influence of Improvement Method in execution time 

 

 

 

Once again, the best solution found by the algorithm was always generated by 

the diversification generation method. The results reported in Table 4.2 were 

achieved only by the first stage of the algorithm, which still was sufficient to produce 

better results than the K-Means++ algorithm in most variables.  Notice that both 

algorithms returned the same solution (except for cluster numbering) with 23 clusters 

for linguistic variable A11. This can be explained with information about this linguistic 

variable. Although A11 is continuous, there are only 23 different values for this 

variable. The solution returned by the algorithm corresponds to the 23 different 

membership functions corresponding to the 23 crisp values. This result show that the 

two algorithms are not giving “fake” low numbers of clusters (until now the number of 

clusters varied from 3 to 6) but are indeed capable of estimating a good number of 

clusters.  
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K-Means++ Scatter Search 

Time 

(sec.) 
Nr. Clusters I 

Time 

(sec.) 

Nr. 

Clusters 
I 

A2 854.5374 5 266.0796 821.3367 3 384.8384 

A3 862.5715 4 90.18299 794.977 4 96.4486 

A8 810.7072 6 105.4446 1277.734 6 94.76789 

A11 735.1273 23 6.97E+28 1112.77 23 6.97E+28 

A14 1134.509 6 346890.2 1812.912 4 402917.4 

A15 1062.561 6 5.51E+09 2031.943 6 5.57E+09 

 

Table 4.2: K-Means++ vs Scatter Search (best results) 

 

A2 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

Figure 4.52: Best Results for Linguistic Variable A2 
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A3 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.53: Best Results for Linguistic Variable A3 
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A8 

  

(a) Cluters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.54: Best Results for Linguistic Variable A8 
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A11 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.55: Best Results for Linguistic Variable A11 
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A14 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.56: Best Results for Linguistic Variable A14 
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A15 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.57: Best Results for Linguistic Variable A15 
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4.4 Summary 

 

In this Chapter an heuristic and a metaheuristic for clustering were described. 

The first is the K-Means++ algorithm [David and Sergei 2007], a variation of the K-

Means algorithm [Gan, Ma et al. 2007]. The second is a Scatter Search algorithm 

based on the work of [Pacheco 2005] and [Abdule-Wahab, Monmarché et al. 2006]. 

These two algorithms where implemented in Matlab.  

The computational results were not as expected. The second phase of the 

Scatter Search algorithm was not able to produce good quality solutions. However, 

the first part of the algorithm was sufficient to obtain better results than the ones 

given by the K-Means++ algorithm. Both methods achieved a high reduction in the 

number of membership functions in each linguistic variable.   
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Chapter 5. Case Study: a Fuzzy Inference 

System 

 

In the previous chapter, computational results for two case studies were 

presented. In both cases the problem consisted in reducing the number of 

membership functions in linguistic variables that could later be used in the 

construction of an inference system. Each membership function represented a 

sample or an individual and merging similar membership functions could be seen as 

finding groups of individuals with similar characteristics. The rule base system that 

could be constructed afterwards would take into account the final morphology of the 

linguistic variables. The case study presented in this section is of a different nature. 

In this case, the goal is to reduce the number of membership functions in linguistic 

variables of an already existing inference system [Gomes, Santos et al. 2008]. The 

aim is to reduce the complexity of the inference system while maintaining its 

structure, without losing too much performance. 

In 2001, the European Space Agency [ESA] launched the Aurora Programme 

whose main goal is the robotic and human exploration of the solar system [ESA 

2008]. ExoMars, one of the missions under this programme, will require the drilling 

and sampling of Martian rocks [ESA 2008]. The case study here presented has been 

developed at CA3 - UNINOVA [CA3 2006] in the scope of this programme.  

In section 5.1 the case study will be described. Section 5.2 discusses the 

heuristics used for reducing the number of membership functions and in section 5.3 

the computational results for the heuristics applied to this case study will be 

presented and discussed. 

 

5.1 Overview of the case study: MODI 

 

During project “MODI- Simulation of a Knowledge Enabled Monitoring and 

Diagnosis Tool for ExoMars Pasteur Payloads” [CA3 2006; Jameaux, Vitulli et al. 

2006; Santos, Fonseca et al. 2006; Santos, Martins et al. 2008] two fuzzy inference 

systems were developed: one for an alarm system for detecting faulty behaviours 
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during drilling in Mars and other for recognition of terrain hardness types. These 

inference systems were created automatically from signals first generated by a 

simulator and later in the project acquired from a drilling station developed during the 

project. Pictures of this drilling station prototype constructed as proof of concept 

during this project and a simulated image of the rover that might use this technology 

can be found in Figure 5.1 and Figure 5.2, respectively.  

 

 

Figure 5.1: MODI drill station 

 

Figure 5.2: ExoMars Rover (courtesy of ESA [ESA 2008]) 
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The inference systems developed included two types of input variables: set 

points and sensor variables. The set points are variables whose values are pre-

defined by the user to study the behaviour of the drill while drilling in different types of 

materials (rocks). Given the values for these two set points, the drilling process would 

start and sensors installed in the drill would measure the rest of the variables in our 

model. 

As the project evolved, the sensors available increased. These sensors were 

able to measure rotational and translational currents and voltages, thrust, among 

other measures. 

All linguistic variables that were created in the MODI project are trapezoidal 

membership functions, except the ones that describe the set points that are either 

triangular membership functions or singletons [Santos, Fonseca et al. 2008]. In the 

MODI project the linguistic variables (except the set points that are pre-defined by the 

user) were constructed automatically, using sensor data collected during a learning 

phase [Santos, Fonseca et al. 2008]. During the learning phase, drills in different 

types of terrain hardness, using different values for the set points, were performed. 

Each combination of values for the set points and terrain type defined a sub-scenario 

in our model. Each linguistic variable represents a different sensor and each term in 

a linguistic variable refers to a different sub-scenario. Trapezoidal membership 

functions for each sub-scenario and sensor were constructed taking into account the 

mean and standard deviation of the corresponding signal.    

If we consider a drill with d  sensors and a set of tests consisting in drilling in t  

different types of terrain with all possible combinations of 1sp  values for set point 1 

and 2sp  values for set point 2, the model will have 21 spsptd   membership 

functions, excluding set points and output variables. As the number of sub-scenarios 

or number of sensors increases, so does the complexity of the inference system.    

 

The output of the terrain recognition inference system is the terrain hardness 

for the t  scenarios defined (T) and the certainty level of that classification [CA3 2006; 

Jameaux, Vitulli et al. 2006; Santos, Fonseca et al. 2006]. An example of a rule used 

for scenario Concrete hardness type, sub-scenario 0 (C0) with 2 set points – Set 

Point Rotation Speed (SPRS) and Set Point Translational Speed (SPTS) – and 8 

sensor variables – Rotation Current (RC), Rotation Voltage (RV), Rotation Speed 
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(RS), Thrust (TH), Torque (TO), Translational Voltage (TV), Translational Current 

(TC) and Translational Speed (TS) - is shown bellow. There is one such rule in the 

system for every sub-scenario considered. In the following rules Variable_Name –

Sub-scenario_code is the fuzzy set representing the nominal situation in variable 

Variable_Name and sub-scenario Sub-scenario_code.  

 

If        

Set Point Rotation Speed is SPRS-C0 and Set Point Translational Speed 

is SPTS-C0 and Rotation Current is RC-C0 and Rotation Voltage is RV-

C0 and Rotation Speed is RS-C0 and Thrust is TH-C0 and Torque is TO-

C0 and Translational Voltage is TV-C0 and Translational Current is TC-

C0 and Translational Speed is TS-C0  

Then       

Terrain is T-C0 

 

The output of the alarm inference system is the alarm level, on a scale from 0 

to 1 [CA3 2006; Jameaux, Vitulli et al. 2006; Santos, Fonseca et al. 2006]. An 

example of a rule corresponding to the variables and sub-scenario above is shown 

bellow. 

If        

Set Point Rotation Speed is SPRS-C0 and Set Point Translational Speed 

is SPTS-C0 and (Rotation Current is not RC-C0 and Rotation Voltage is 

not RV-C0 and Rotation Speed is not RS-C0 and Thrust is not TH-C0 

and Torque is not TO-C0 and Translational Voltage is not TV-C0 and 

Translational Current is not TC-C0 and Translational Speed is not TS-C0  

Then       

Alarm Level 

 

In this thesis only the terrain recognition system will be used as a test case. 

The same analysis could be done to the monitoring system, using appropriate 

measures of performance of the inference system. 
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Figure 5.3: Example of linguistic variable – Rotational Voltage 

 

Considering that an automatic process was used to create the terms for the 

linguistic variables, in Figure 5.3 we can see that many terms of this linguistic 

variable overlap heavily or are even included in others. It is also easy to observe 

some implicit clusters of similar membership functions. Merging the membership 

functions, pertaining to a cluster, into a single one seems an obvious way of reducing 

the number of membership functions in the system.  

The contribution to this project was to define an algorithm capable of reducing 

the number of terms of a linguistic variable to improve the overall computational effort 

of the system without compromising the performance of the system.  

 

 

  

Classified  

Concrete GasConcrete Marble NotDrilling Travertine Tuff Unknown Total 

R
ea

l 

Concrete 299 0 0 0 0 0 242 541 

GasConcrete 0 267 0 0 26 0 229 522 

Marble 0 0 296 0 0 0 226 522 

NotDrilling 0 0 0 210 0 0 311 521 

Travertine 0 21 0 0 244 0 259 524 

Tuff 0 0 0 0 0 271 251 522 

Total 299 282 296 210 270 271 1529 3152 

 

Table 5.1: MODI Confusion Matrix 
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The measures of performance used to compare the resulting terrain 

recognition inference systems were the Precision of the classification [Santos, 

Fonseca et al. (to appear 2008)], the Mean Certainty Level and a combination of 

these two measures. Consider the confusion matrix in Table 5.1 that shows the 

hardness types of terrain of a test data set and its classification with the MODI 

inference system.  

The overall Precision (P) of the terrain recognition inference system is the ratio 

between the number of well classified samples (grey cells) and the total number of 

samples [Santos, Fonseca et al. 2008]. For the confusion matrix in Table 5.1 the 

precision would be 0.5035 (50.35%). The Mean Certainty Level (MCL) is the average 

of the certainty levels obtained for each sample, for the samples that were correctly 

classified. To combine these two measures of performance, it is used an average of 

these two (based on the F1 score [Rijsbergen 1979]) given by: 

 

 
MCLP

MCLP
F






2
 (5.1) 

These three measures of performance take values between 0 and 1 and are to 

be maximized. 

 

5.2 Heuristics 

 

In [Setnes, Babuska et al. 1998], Setnes presents a rule base simplification 

algorithm that can be summarized by the fluxogram in Figure 5.4. Given a fuzzy 

variable with initial membership functions M  and a threshold minS for the similarity 

(set by the user or by some other algorithm), we select the most similar pair of fuzzy 

sets A  and B  (for a certain fuzzy similarity measure). If this similarity value is above 

the previously defined threshold (minS), we combine these two fuzzy sets, update 

the rule-base and the algorithm proceeds by choosing the most similar pair in M . 

Otherwise, the algorithm stops and M is returned.  
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Figure 5.4: Original algorithm [Setnes, Babuska et al. 1998] 

 

Instead of basing the decision of merging or not two membership functions A   

and B  only on their similarity, it was decided to look at the differences in terms of 

“design” between the original model and the ones achieved each iteration. This way 

a more global view of the changes being made to the linguistic variable being pruned 

was done. Therefore it was defined a measure for comparing two sets of 

membership functions representing the same linguistic variable. This way it would be 

possible to compare the models obtained through the algorithms to the initial model 

or linguistic variable. 

A distinguishability measure   between fuzzy sets can be defined as the 

complement of their similarity measure [Mencar, Castellano et al. 2007].  

 

 ),(1),( BASBA   (5.2) 

Given a new set of membership functions (obtained, for instance, by merging 

two or more membership functions of the original set) and the correspondence 

between the new set and the original one, we can define what can be intuitively seen 

as a model error by taking the average distinguishability measures between all 

NO 

YES 

Start 

End 

Initial Model: M 

Threshold : minS  

Select the most similar pair of 

fuzzy sets A and B in M 

Merge A and B 

Return M 

S(A,B)>minS 

Update rule-base 
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original sets and the one that represents them in the new set. Consider the example 

in Figure 5.5: 

 

 

Figure 5.5: Example of model error 

 

Using the Jaccard similarity measure [Mencar, Castellano et al. 2007]  given 

by equation (1.19) with the pair (minimum, maximum) as intersection and union 

operators we obtain: 

 

 1),(8182.0),(6364.0),(  CCSDBSDAS  (5.3) 

Thus, 
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 (5.4) 

 

The adapted algorithm can then be summarized by the fluxogram in Figure 

5.6. Given a fuzzy variable with initial linguistic variables M and a threshold ε for the 

model error (set by the user or by some other algorithm), we select the most similar 

pair of fuzzy sets A  and B  (for a certain fuzzy similarity measure) and combine 

these two fuzzy sets, thus obtaining a new set of linguistic variables, M  . If the model 

error, denoted by ε, is above the threshold or if all pairs of fuzzy sets are totally 

dissimilar (similarity zero) the algorithm stops. Otherwise, the algorithm proceeds by 

choosing the most similar pair in M  .  

 

Original Set New Set 

)3,2,1,0(A  

)4,3,2,0(B  

)8,7,5,4(C  

)4,5.2,5.1,0(D    

)8,7,5,4(C  

Merge A and B 
into D 
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Figure 5.6: Adapted algorithm 

 

The above algorithm can be seen as a hierarchical clustering algorithm. We 

start with as many clusters as the initial number of membership functions and in each 

step we merge two clusters into a single one. Several methods of choosing the 

optimal number of clusters (and thus the optimal number of iterations) for this kind of 

clustering algorithms have been proposed [Milligan and Cooper 1985; Salvador and 

Chan 2004]. Some consist of finding the knee of a curve obtained by representing 

the number of iterations or number of clusters versus some metric of evaluation of 

the clustering algorithm. Since using the inference system performance measure 

(5.1) as evaluating metric during the clustering would be time consuming, it was 

decided to use the model error instead. Running the adapted algorithm using the 

NO 

NO 

YES 

Start 

End 

Initial Model: M 

Maximum Error: ε 

Select the most similar pair of 

fuzzy sets A and B in M 

M’ ← new model with A and B 

merged 

M ← M’ 

Model 

Error < ε 

Return M 

S(A,B)=0 YES 
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Jaccard similarity measure in (1.19) with the minimum and maximum operators until 

all membership functions are disjoint and plotting each iteration number versus its 

model error, gave a curve like the one in Figure 5.7 a). The Model Error increases 

slowly with each iteration until it reaches a point where it starts to grow exponentially. 

We can choose the number of iterations to be the x-axis coordinate of that point. This 

way, we will have an automatic method for choosing the number of iterations of the 

algorithm and we will no longer need to heuristically choose the parameter ε. 

 

 

  a) Iteration vs Model Error            b) L-Method 

 

Figure 5.7: a) Iteration vs Model Error; b) L-method 

 

 To find the knee of this curve the L-method, proposed by Salvador and Chan 

in [Salvador and Chan 2004], was used. Let n  be the number of the last iteration, 

that is, nx ,,1 . Let cL  and cR  be the left and right sequences of data points 

partitioned at 2,...,2,  nccx . Fitting a line to cL  and another to cR  we can define 

the total root mean square error (RMSE) by: 

 

 )()( ccc RRMSE
n

cn
LRMSE

n

c
RMSE


  (5.5) 

i.e., the total root mean squared error is a weighted average of the root mean 

squared error of both fittings. The optimal number of iterations is the value c  that 

minimizes cRMSE . In Figure 5.7 b), c  is the number of chosen iterations 
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corresponding to the point circled ( 43c ).  The c  value is the stopping criterion 

threshold used in the adapted algorithm.  

 

 As will be seen through the computational results presented in section 5.3, 

although this approach improves the original inference system used as a test case, 

the use of the L-method as a stopping criterion is not the best choice. By penalizing 

dissimilarity, it assumes that the initial model is the one with best performance, which 

is not the case in this case study. Since the original inference system was obtained 

automatically from sensor data, it is full of redundancy. The stopping criterion should 

not be based on a comparison in terms of “design” to the original model but on the 

actual performance measures of the inference system. 

 

The final algorithm, called bestP, is illustrated in Figure 5.8. 

We ran the original algorithm (Figure 5.4) until all membership functions are 

disjoint (similarity zero). In each iteration, the rules are updated and the performance 

of the resulting inference system, P(M), is obtained and compared with the 

performance of the best model found so far, P(BestM). The bestP algorithm returns 

the inference system with best performance, from the ones generated throughout the 

iterations. Note that this algorithm is defined for any performance measure, P(.). In 

our case study, we used the performance measure F  given by (5.1). This means 

that we will be maximizing the inference system performance. If the initial system is 

the best system in terms of this measure of performance, there will be no reduction in 

the number of membership functions. If we want to find a compromise between the 

number of membership functions and the inference system performance we can use 

a linear combination of these two objectives in the following way: 

 

 n
n

FMP
0

1
)(





  (5.6) 

where  1,0  is the weight given to F , 0n  is the initial number of membership 

functions, used as a scaling factor and n  is the number of membership functions of 

model M .  
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Finally, the adapted algorithm is applied sequentially to each input variable to 

be pruned (in this case, all input variables except the set points). After this pruning is 

completed, duplicate rules are removed from the rule system to improve the 

computational efficiency of the final inference system.  

 

 

 

Figure 5.8: Final algorithm – bestP 
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5.3 Computational Results 

 

The heuristic algorithms described in the previous section were applied to a 

terrain recognition inference system constructed as described in section 5.1. All 

experiments were done using Matlab and Java. 

 

The set points used were: 

1. Rotation Speed (rpm) - SPRS 

2. Translational Speed (mm / min) - SPTS 

  

The sensor’s variables used were: 

1. Rotation Current (A) - RC 

2. Rotation Voltage (V) - RV 

3. Rotation Speed (rpm) - RS 

4. Thrust (N) - TH 

5. Torque (N) - TO 

6. Translational Voltage (V) - TV 

7. Translational Current (A) - TC 

8. Translational Speed (mm/min) - TS 

 

Six different types of terrain hardness were tested. The 6 scenarios considered 

were: Not Drilling (drilling in air); Concrete; Gas-Concrete; Marble; Travertine; and 

Tuff. Setting 3 different values for each of the set points, these scenarios were further 

sub-divided into 54 ( 336  ) sub-scenarios that provided the basis for the 

construction of the linguistic variables representing each input variable.  

 The original membership functions in this inference system are represented in 

Figure 5.9. In all linguistic variables in the system it is clear that some of its terms 

should be merged. The sensor values were collected as integers. Integer 

programming is more efficient and was thus used to guarantee real time tasks. 

Therefore, the x-axis of the plots representing the linguistic variables in the system 

have no physical meaning, i.e., they cannot be interpreted as voltages, rotations per 

minute, ...  
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Rotation Current Rotation Voltage 

  

Rotation Speed Thrust 

  

Torque Translational Voltage 

  

Translational Current Translational Speed 

  

 

Figure 5.9: Original input linguistic variables (except set points)  
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 First, the algorithm summarized by Figure 5.6 (adapted algorithm) with the 

stopping criterion defined by minimization of (5.5) – L-method [Salvador and Chan 

2004] - was applied sequentially to all input variables except set points. Then, the 

algorithm summarized by Figure 5.8, were the inference system with best 

performance is chosen, was used in the same sequence. The following figures show 

the evolution of the performance measure F  (to be maximized) given by equation 

(5.1) when the algorithms run until all membership functions are disjoint. The vertical 

lines mark the iteration chosen by the L-method and the circle marks the iteration 

with best performance, i.e., the iteration chosen by bestP. 

 

 

 

 

Figure 5.10: Evolution of performance measure F during the algorithm – Rotation 

Current 
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Figure 5.11: Evolution of performance measure F during the algorithm – Rotation 

Voltage 

 

 

 

 

Figure 5.12: Evolution of performance measure F during the algorithm – Rotation 

Speed 
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Figure 5.13: Evolution of performance measure F during the algorithm – Thrust 

 

 

 

 

Figure 5.14: Evolution of performance measure F during the algorithm – Torque 
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Figure 5.15: Evolution of performance measure F during the algorithm – 

Translational Voltage 

 

 

 

 

Figure 5.16: Evolution of performance measure F during the algorithm – 

Translational Current 
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Figure 5.17: Evolution of performance measure F during the algorithm – 

Translational Speed 

  

 Original Adapted Algorithm BestP 

Rotation Current 54 21 3 

Rotation Voltage 54 20 5 

Rotation Speed 54 8 3 

Thrust 54 22 17 

Torque 54 25 46 

Translational Voltage 54 10 3 

Translational Current 54 10 3 

Translational Speed 54 13 3 

TOTAL 432 129 45 

 

Table 5.2: Number of membership functions before and after optimization 

  

As can be seen by the previous figures and by Table 5.2, using the L-method 

as a stopping criterion is not the best choice. In most cases this stopping criterion 

chooses to stop too early. Although in this case study this method already reduces 

the number of membership functions without losing performance, this method fails to 

choose the best iteration to stop. Analyzing the previous figures it is clear why 

concentrating on the model error instead of the inference system actual performance 
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is not a good strategy. By minimizing the model error, changes to the original 

inference system are being penalized. If the original system was “perfect”, reducing 

the number of terms in linguistic variables by merging similar membership functions 

should negatively affect the performance of the system. The previous figures show 

that this is not the case, merging membership functions is actually increasing the 

inference system performance. This means that the initial system is full of 

redundancy and that some of this redundancy is being eliminated by the algorithm. 

For this reason, instead of using the model error, a comparison between the initial 

inference system and the ones obtained by the algorithm, it is wiser to focus on 

performance measures such as the ones described in the previous section. This is 

what motivated the use of the bestP algorithm. 

 

 Original Adapted Algorithm BestP 

P 72.33% 76.49% 85.47% 

MCL 34.49% 36.88% 44.00% 

F 46.71% 49.77% 58.09% 

N 423 129 45 

 

Table 5.3: Comparison of inference systems 

 

Table 5.3 compares the three inference systems – original inference system 

and inference systems obtained using the Adapted Algorithm and the BestP 

algorithm – in terms of systems performance measures and number of membership 

functions. Figure 5.18 shows the linguistic variable Translational Voltage before and 

after using both algorithms. By using the bestP heuristic it was possible to reduce the 

number of membership functions in the system and improve its overall performance. 

It was possible to reduce the number of membership functions in input linguistic 

variables (except set points) from 432 to 45. All measures of performance used 

improved after this optimization. The easiest to interpret performance measure, the 

Precision of the classification (P), increased from 72.33% to 85.47%. The 

advantages of using this algorithm in this case study was clear. If it was desirable to 

further reduce the number of membership functions a measure such as the one in 

equation (5.6) could be used. Figure 5.19 shows the linguistic variables returned by 
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the algorithm. Some linguistic variables seem to be too reduced, i.e., its new 

linguistic variables do not seem well representative of the original linguistic variables. 

We have to keep in mind that the original system was created automatically and is 

full of redundancy. 

 

 
(a) Original 

 
(b) Adapted Algorithm 

 
(c) BestP 

 

Figure 5.18: Linguistic Variable Translational Voltage before (a) and after using the 

adapted (b) and BestP (c) algorithms 
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 Rotation Current Rotation Voltage 

  

Rotation Speed Thrust 

  

Torque Translational Voltage 

  

Translational Current Translational Speed 

  

Figure 5.19: Input linguistic variables after optimization with BestP (except set points) 



  5. Case Study: a Fuzzy Inference System 

 - 144 - 

5.4 Summary 

In this chapter the goal was to reduce the number of membership functions in 

linguistic variables of an already existing inference system. An inference system 

construted in the scope of a project developed for ESA served as case study. The 

inference system was constructed automatically from sensor data and was thus full of 

redundancy. The aim was to reduce the complexity of the inference system while 

maintaining its structure, without losing too much performance. Not only was this 

objective achieved, but also the inference system performance was increased. 

Moreover, a paper about this subject was published [Gomes, Santos et al. 2008]. 

 I could have presented only the last algorithm, bestP, and ignore the 

intermediate attempts to find an algorithm for reducing the number of membership 

functions. However, I preferred to describe my first and more intuitive approach to 

this problem for two reasons: first, to show the importance of trial and error in science 

and second because the results obtained with the first adapted algorithm justify the 

necessity to evaluate the system performance during the algorithm instead of 

concentrating on “design” measures such as the model error. 

 There are still some questions that should be answered about this procedure. 

The algorithm was applied sequentially to input linguistic variables. There was no 

study about the importance of the order in which this pruning is made. I believe that 

this order can have some impact on the results. To solve this problem, instead of 

sequentially running the algorithm, a global algorithm where in each iteration the 

most similar membership functions from any linguistic variable was merged could be 

designed. Another question concerns the similarity measure used. Experiments with 

other similarity measures should be used to justify the choice of similarity measure. 
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Chapter 6. Conclusions and Future Work 

 

The purpose of this thesis was to develop algorithms to reduce the number of 

membership functions in a linguistic variable. One of the main advantages of fuzzy 

models is that they are usually less complex and easy to interpret than classical 

models. By reducing the number of membership functions in linguistic variables the 

aim was to achieve simpler and more efficient fuzzy models. 

The problem of reducing the number of membership functions in a linguistic 

variable was approached as a clustering problem. The pruned linguistic variable was 

the result of merging clusters of similar membership functions into a new membership 

function. Some possible formulations to the clustering problem were presented. 

Exact methods were used with one of these formulations and the combinatorial 

nature of clustering problems was clear. As expected, only very small data sets can 

be optimally solved through these methods in a reasonable amount of time. Although 

it was never the purpose of this thesis to use exact methods to solve this problem, 

this was an important step to better understand the dimension of the problem at 

hands. 

To find good quality solutions in a more reasonable amount of time a Scatter 

Search procedure was developed and compared to the K-Means++ algorithm. Both 

procedures were implemented in Matlab and tested with two different case studies. 

The linguistic variables from these case studies could later be used in a fuzzy 

inference system or any other fuzzy model constructed taking into account the 

pruned membership functions instead of the original ones. The computational results 

were not as expected. The second phase of the Scatter Search algorithm was not 

able to produce good quality solutions. However, the first part of the algorithm was 

sufficient to obtain better results than the ones given by the K-Means algorithm. Both 

methods achieved a high reduction in the number of membership functions in each 

linguistic variable.    

The last chapter presented a different case study. The objective was to reduce 

the number of membership functions in linguistic variables of an automatically 

constructed inference system without losing two much performance. It was seen that, 
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in this case, concentrating on the characteristics of a single linguistic variable was 

insufficient. It is important to concentrate on the actual performance of the inference 

system, using appropriate measures of performance. Therefore the heuristics 

implemented before were not applied to this case study. Although the fitness function 

of the scatter search algorithm could have been changed to account for these 

performance measures, the time it takes to evaluate the inference system and the 

number of times it would be necessary to evaluate it explain why it was chosen not to 

use this algorithm in this case. The algorithms used in this case study can be 

categorized as hierarchical clustering algorithms. The results achieved in this case 

study were more than satisfying. It was possible to improve the initial inference 

system performance and simplify the system at the same time. 

 Although a lot of work was developed during this thesis, there is still much to 

be done in the future. In the first procedures a comparison of the different cluster 

validity indexes and of the shapes of the clusters themselves, translated by the 

clustering criteria used, should be made. Different strategies inside the scatter search 

algorithm could be tested to try to overcome the poor results obtained in terms of the 

way solutions are combined. More work is needed in estimating the correct number 

of clusters or a good maximum number of clusters to be given as input for the scatter 

search algorithm or other clustering algorithms. It would also be interesting to 

construct fuzzy models to identify the type of breast cancer (malign or benign) from 

the cell nuclei characteristics and to support credit approval decision processes  

using the linguistic variables from section 4.3 before and after being pruned, 

comparing results. In the MODI case study, as mentioned, the impact of the order in 

which the linguistic variables are pruned in the results or the possibility of designing a 

global algorithm that looked at all variables at the same time are possible directions 

for future work, along with a study of how results are affected by using different 

similarity measures. Furthermore, given the good results obtained in this case study, 

it is important to confirm the validity of the algorithm by running it on different case 

studies. 
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Resumo Alargado 
 

1. Introdução 

Uma variável linguística [Zadeh 1965] é composta por conjuntos vagos que 

podem ser matematicamente representados por funções de pertença. Por exemplo a 

variável linguística Altura pode ser composta pelos conjuntos vagos Baixa, Média e 

Alta (Figure 1.1). Em vez de um indivíduo pertencer apenas a um destes conjuntos 

como aconteceria com a lógica clássica, o grau de pertença de qualquer indivíduo a 

cada um destes conjuntos é dado  pela respectiva função de pertença. 

O objectivo desta tese era desenvolver algoritmos para reduzir o número de 

funções de pertença em variáveis linguísticas. Este problema é extremamente 

importante quando é utilizado um processo automático de criação de variáveis 

linguísticas, podendo-se assim obter uma variável linguística com um elevado 

número de funções de pertença. De uma forma mais geral, o problema que se 

coloca pode ser visto da seguinte maneira: como reduzir a quantidade de dados a 

analizar (aqui representados pelas diferentes funções de pertença) sem com isso 

perder informação? Esta é precisamente a mesma questão que nos é posta em 

problemas de agrupamento ou clustering. Assim, o problema da redução do número 

de funções pertença numa variável linguística foi aqui abordado como um problema 

de agrupamento. Começamos por identificar possíveis grupos de funções de 

pertença semelhantes. Funções de pertença pertencentes a um mesmo grupo são 

então agrupadas numa nova função de pertença, obtendo-se assim um novo 

conjunto mais pequeno de funções de pertença que representam aproximadamente 

o mesmo conceito que a variável linguística inicial. 

Podemos considerar que nesta tese foram abordados dois grandes tipos de 

problemas. No primeiro o objectivo é a redução do número de funções de pertença 

em variáveis linguísticas que mais tarde poderiam vir a fazer parte de um qualquer 

modelo (não necessariamente um sistema de inferência) que seria construído já 

tendo em conta as características da variável linguística depois desta redução. No 

segundo, pelo contrário, o objectivo seria a redução do número de funções de 

pertença de variáveis linguísticas pertencentes a um sistema de inferência 

previamente construído, tendo em conta as características das variáveis linguísticas 

originais. Assim, neste caso, a variável linguística terá que ser encarada como parte 
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de um sistema e o objectivo passa a ser obter um equilíbrio entre o desempenho do 

sistema e a sua simplificação por meio da redução do número de funções de 

pertença.  

 

2. Conceitos Importantes 

No Capítulo 1Chapter 1 é introduzida alguma informação sobre lógica difusa 

necessária para melhor compreender o contexto em que esta tese se insere, bem 

como alguma notação que será utilizada noutros capítulos. Apenas as ideias mais 

importantes são aqui referidas.  

 

2.1. Representação de funções de pertença 

Algumas famílias de funções de pertença podem ser mapeadas para pR , em 

que p  é o número de parâmetros dessa família de funções e cada dimensão 

representa um parâmetro diferente.  

Por exemplo, para 3p  uma função de pertença triangular pode ser 

representada por um triplo  cba ,,  (Figure 1.9). Se o triângulo for simétrico podemos 

tomar 2p , representando a função de pertença por  ,a , em que bcab  .  

De modo semelhante, podemos representar uma função de pertença 

trapezoidal por um vector  dcba ,,,  contendo os seus vertices . No caso de esta ser 

simétrica, ou seja, 
22

cbda 



, podemos usar um triplo   ,,m , em que 

22

cbda
m





 , bc   and ad   (Figure 1.10). 

Esta representação será usada para tratar o problema da redução do número 

de funções de pertença numa variável linguística como um problema de 

agrupamento tradicional.  

 

2.2. Fundir Funções de Pertença 

A ideia por trás dos algoritmos a utilizar é a fusão de grupos de funções de 

pertença semelhantes.  
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Dadas n  funções de pertença trapezoidais,   nidcbaT iiii

i ,,1,,,,  , 

estas serão fundidas numa nova função de pertença   nidcbaT ,,1,,,,   

usando uma generalização do método proposto em [Setnes, Babuska et al. 1998]: 
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As formulas para fundir um grupo de funções de pertença triangular vêm 

directamente das anteriores.  

 

 

3. Métodos Exactos 

Nesta tese são discutidas algumas formulações em programação inteira para 

este problema (secção 2.3). Embora nunca tenha sido o objectivo desta tese 

encontrar soluções óptimas para estes problemas usando métodos exactos como o 

Branch & Bound [Land and Doig 1960], uma destas formulações foi introduzida no 

CPLEX para dois conjuntos de problemas de pequena dimensão, um com apenas 

12 funções de pertença em cada variável linguística e outro com 54. Enquanto que 

no primeiro conjunto de problemas foi possível encontrar soluções óptimas em 

menos de 2 minutos, no segundo conjunto de problemas já não foi possível 

encontrar soluções óptimas, tendo o programa parado por falta de memória. Estas 

experiências permitiram ter uma maior noção da dimensão e dificuldade deste tipo 

de problemas e justificaram a necessidade de recorrer a métodos heurísticos para 

encontrar boas soluções num espaço de tempo mais realista.    
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4. Métodos Heurísticos baseados em Pesquisa Local 

Dada a ineficácia dos métodos exactos em encontrar a solução óptima para o 

agrupamento dos pontos num determinado conjunto X , foram explorados métodos 

heurísticos. Foi desenvolvida uma meta-heurística, Scatter Search, baseada em 

[Pacheco 2005; Abdule-Wahab, Monmarché et al. 2006] que foi posteriormente 

comparada com uma variação do algoritmo das K-Médias ou K-Means [McQueen 

1967], denominada K-Means++ [David and Sergei 2007].  

 

4.1. K-Means++ 

O algoritmo K-Means [McQueen 1967] começa por escolher aleatoriamente 

para centros dos clusters K  pontos do conjunto de dados  nxxX ,,1  . Depois 

desta inicialização, determina-se uma partição dos dados em K  grupos, afectando 

cada ponto ao grupo com centro mais próximo. A partir deste momento os centros 

dos grupos vão sendo actualizados e os pontos vão sendo afectados ao grupo mais 

próximo até que algum ser satisfeito algum critério de paragem.  

O algoritmo K-Means++ [David and Sergei 2007] difere do algoritmo original 

apenas na maneira como os centros iniciais são escolhidos. Depois de o primeiro 

centro ser escolhido aleatoriamente e de forma uniforme, isto é, considerando iguais 

probabilidades de escolha para cada ponto de X , os restantes são escolhidos de 

acordo com probabilidades proporcionais à sua distância ao centro mais próximo, de 

entre os centros já escolhidos. Quanto mais longe um ponto se encontra dos centros 

já escolhidos, maior será a probabilidade de este ser escolhido. Desta forma 

pretende-se dispersar a distribuição dos centros iniciais para que o algoritmo 

convirja mais rapidamente. 

Neste algoritmo o número de grupos a formar, K , é escolhido a priori. 

Quando não sabemos a priori o número de grupos a formar, corremos o algoritmo 

para várias escolhas de K  e escolhemos a melhor configuração encontrada, tendo 

em conta um determinado índice para a qualidade dos agrupamentos. O índice 

usado nesta tese, discutido em [Ujjwal and Sanghamitra 2002], deve ser maximizado 

e é dado pelas expressões seguintes:  
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K ccD 
 ,,1,

max


 (7) 

sendo que  
nKkjuU


  é uma matrix binária representando uma partição dos dados 

em K  grupos ( i.e., 1kju  se e só se jx  está no k-ésimo grupo) e o centro do grupo 

k  é representado por kc .  

 

4.2. Scatter Search 

 

O algoritmo Scatter Search (Figure 4.1), opera sobre um pequeno conjunto de 

referência, composto por boas soluções e por soluções com elevada diversificação 

(em relação às restantes). Um conjunto inicial de soluções é criado pelo Método de 

Geração de Diversificação (DG – Diversification Generation Method). Cada solução 

neste conjunto é melhorada pelo Método de Melhoria (Imp - Improvement Method) 

antes da criação do conjunto de referência pelo Método de Actualização do Conjunto 

de Referência (RSU – Reference Set Update Method), que escolhe para fazer parte 

deste conjunto as melhores soluções bem como soluções com elevado nível de 

diversificação. O Método de Geração de Subconjuntos (SG – Subset Generation 

Method) forma subconjuntos de soluções do conjunto de referência para serem 

combinados pelo Método de Combinação de Soluções (SC – Solution Combination 

Method) em novas soluções. A qualidade das soluções assim obtidas é mais uma 

vez melhorada pelo Método de Melhoria antes do conjunto de referência ser 

actualizado. O algoritmo continua até que algum critério de paragem seja satisfeito.  

O algoritmo pode ser implementado de diversas maneiras de acordo com as 

estratégias adoptadas em cada um dos seus cinco métodos principais. As 

estratégias utilizadas nesta tese para cada um dos métodos são adaptadas de 

[Pacheco 2005; Abdule-Wahab, Monmarché et al. 2006] e resumidamente descritas 

de seguida. Como função de adaptação foi usado o índice I . 
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4.2.1 Método de Geração de Diversificação 

Este método é responsável pela criação de um conjunto inicial de sizeOS  

soluções.  

Para cada solução, começamos por gerar aleatoriamente um número de 

grupos a formar, K , entre 1 e maxK , sendo  maxK  o número máximo de grupos 

permitido (dado pelo utilizador). São escolhidos aleatoriamente K  centros 

 KccS ,,1  . No entanto, em vez de poderem ser escolhidos para centros 

quaisquer pontos de X , foi introduzido um parâmetro  1,0  que controla o nível 

de aleatoriedade deste processo, determinando o conjunto de pontos que em cada 

passo podem ser escolhidos para centros, como proposto em [Pacheco 2005]. Para 

evitar a repetição na escolha dos centros das várias soluções criadas durante esta 

fase do algoritmo guardou-se a frequência com que casa ponto foi escolhido como 

centro, penalizando-se a escolha de pontos com elevada frequência. A penalização 

é controlada pelo parâmetro   .  

Depois de terem sido escolhidos os centros dos grupos, os restantes pontos 

são atribuídos a estes grupos usando o processo heurístico greedy descrito em 

[Pacheco 2005], com o objectivo de minimizar a soma dos quadrados das distâncias 

de cada ponto ao centro do grupo a que pretence.  

 

 

4.2.2 Método de Melhoria 

Foi escolhido o método de melhoria apresentado em [Abdule-Wahab, 

Monmarché et al. 2006], baseado no algoritmo das K-Médias [Gan, Ma et al. 2007] e 

que utiliza a simplificação proposta por Spath [Spath 1980] para aproximar o 

incremento em termos de soma dos quadrados das distâncias de cada ponto ao 

centro do seu grupo resultante de mover o ponto ix  do grupo lC  para o grupo jC . 

Em cada iteração deste método cada ponto de X  é movido para o grupo que 

corresponde a um maior decréscimo nesta soma dos quadrados das distâncias. São 

feitas MaxIterImp iterações sempre que o método é utilizado. 
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4.2.3 Método de Actualização do Conjunto de Referência 

Para construir o conjunto de referência, RS , começamos por escolher as 

melhores 1b  soluções, de entre as  sizeOS   soluções criadas inicialmente. São depois 

adicionadas iterativamente 2b  soluções de acordo com a sua diversidade. As 

soluções escolhidas são as que maximizam 

 

  RSdif   :),(min)(min  (8) 

em que ),(  dif  é o número de pontos que são atribuídos a grupos diferentes nas 

soluções    e  . 

Nesta implementação o conjunto de referência é apenas actualizado quando 

são encontradas soluções de boa qualidade. 

 

4.2.4 Método de Geração de Subconjuntos 

Este método gera uma colecção de subconjuntos de soluções do conjunto de 

referência para serem posteriormente combinadas em novas soluções. Nesta 

implementação foram considerados todos os pares de soluções do conjunto de 

referência, isto é, são considerados 21

2

bb
C

  pares de soluções. 

 

4.2.5 Método de Combinação de Soluções 

Para combinar um par de soluções numa ou mais novas soluções foi 

considerada uma estratégia do tipo path relinking, descrita em [Pacheco 2005]. A 

ideia deste tipo de estratégia é de que no “caminho” (série de movimentos simples 

que permitem alcançar uma solução a partir da outra) entre duas boas soluções 

deverão existir outras boas soluções. Neste caso um movimento corresponde a 

trocar um ponto de um grupo para outro. São propostas uma a três soluções 

escolhidas aleatoriamente neste caminho.   

 

 

4.3. Resultados 

 

Para ambos casos de estudo considerados, foi apresentada uma pequena 

análise dos parâmetros envolvidos no algoritmo Scatter Search. Apenas 5 
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experiências foram feitas para cada conjunto de valores dos parâmetros do 

algoritmo, pelo que os resultados não devem ser generalizados mas devem ser tidos 

em conta apenas a título indicativo. Em todas as experiências foi escolhido 

100max K , 21 bb   e  2110 bbOSsize  .  

 Foi possível ver a importância do parâmetro   no controlo da aleatoriedade 

do algoritmo, uma vez que para 0  (escolha dos centros totalmente aleatória) os 

resultados finais apresentavam um elevado desvio padrão, não acompanhado de 

uma melhoria dos resultados em termos médios. O uso da memória durante a 

geração do conjunto de soluções iniciais mostrou-se positivo. Ao aumentar a 

dimensão do conjunto de referência de 4  21 b  para 10  51 b  conseguimos 

aumentar a qualidade das soluções com algum esforço computacional adicional. No 

entanto para ambos os casos de estudo este esforço adicional não foi considerado 

excessivo. Claro que, numa situação real, esta conclusão dependeria sempre do 

problema em concreto e do tempo disponível para realizar esta tarefa. O método de 

melhoria das soluções não melhorou significativamente a qualidade média das 

soluções para todas as variáveis linguísticas. Ao estudar a evolução do conjunto de 

referência verificou-se que a segunda parte do algoritmo não produziu boas 

soluções. 

 

 

K-Means++ Scatter Search 

Tempo 

(seg.) 

Nº 

Clusters 
I 

Tempo 

(seg.) 

Nº 

Clusters 
I 

Radius 426,3904 4 18,9609 352,8277 3 26,9636 

Texture 398,9221 3 16,8796 344,1798 5 30,18262 

Perimeter 463,4574 7 830,33 371,4513 3 1286,17 

Area 416,6392 6 426500,7 394,1495 3 668728,5 

Smoothness 419,2019 3 0,000143 413,9573 4 0,0002044 

Compactness 407,7729 3 0,004632 308,5648 3 0,004547 

Concativity 418,1248 3 0,080241 305,7193 3 0,080673 

Concave Points 405,9813 3 0,002273 470,995 3 0,002743 

Symmetry 411,8899 3 0,000921 672,4182 3 0,000932 

Fractal Dimension 413,8989 4 0,000167 679,9634 3 0,000255 

 

Tabela 1: Caso de Estudo 1- K-Means++ vs Scatter Search (melhores resultados) 
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K-Means++ Scatter Search 

Time 

(sec.) 
Nr. Clusters I 

Time 

(sec.) 

Nr. 

Clusters 
I 

A2 854.5374 5 266.0796 821.3367 3 384.8384 

A3 862.5715 4 90.18299 794.977 4 96.4486 

A8 810.7072 6 105.4446 1277.734 6 94.76789 

A11 735.1273 23 6.97E+28 1112.77 23 6.97E+28 

A14 1134.509 6 346890.2 1812.912 4 402917.4 

A15 1062.561 6 5.51E+09 2031.943 6 5.57E+09 

 

Tabela 2: Caso de Estudo 2 – K-Means++ vs Scatter Search (melhores resultados) 

 

Em termos médios, foi considerando 5.0 , 8.0 , 51 b  e MaxIterImp 2  

que se obtiveram os melhores resultados. Os resultados apresentados na Tabela 1 

foram obtidos com estes parâmetros. O algoritmo Scatter Search desenvolvido foi 

capaz de obter melhores resultados que o algoritmo K-Means++ para a maior parte 

das variáveis. Com ambos os algoritmos, foi possível reduzir significativamente o 

número de funções de pertença das variáveis linguísticas analisadas (Figure 4.24 - 

Figure 4.33 e Figure 4.52 - Figure 4.57).  

 

 

5. Caso de Estudo: Um Sistema de Inferência Fuzzy 

Como foi referido na Introdução, a natureza deste caso de estudo é diferente 

da dos casos de estudo do capítulo anterior. Neste caso de estudo o objectivo é a 

redução do número de funções de pertença em variáveis linguísticas pertencentes a 

um sistema de inferência previamente construído. Pretende-se reduzir a 

complexidade do sistema sem perder demasiado desempenho.  

Este caso de estudo foi desenvolvido no CA3 – UNINOVA [CA3 2006] no 

âmbito do projecto “MODI- Simulation of a Knowledge Enabled Monitoring and 

Diagnosis Tool for ExoMars Pasteur Payloads” [CA3 2006; Jameaux, Vitulli et al. 

2006; Santos, Fonseca et al. 2006; Santos, Martins et al. 2008] para a Agência 

Espacial Europeia [ESA 2008]. Foram construídos de forma automática dois 

sistemas de inferência: um para um sistema de alarme para a detecção de 
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comportamentos anormais durante perfurações em Marte e outro para o 

reconhecimento da dureza do terreno a ser perfurado. Os resultados aqui 

apresentados utilizam somente o sistema de reconhecimento de terreno. 

As variáveis linguísticas de entrada foram criadas automaticamente usando 

dados recolhidos por sensores durante a fase de aprendizagem [Santos, Fonseca et 

al. 2008]. Durante a fase de aprendizagem foram realizados furos para diferentes 

velocidades de translação e rotação em diversos tipos de terreno. Cada variável 

linguística representa um sensor diferente e cada função de pertença trapezoidal 

numa dada variável linguística corresponde a um diferente subcenário testado. O 

resultado da inferência é um dos tipos de terreno possível e o nível de certeza nessa 

classificação [CA3 2006; Jameaux, Vitulli et al. 2006; Santos, Martins et al. 2008]. 

 

5.1. Algoritmo 

O algoritmo adoptado baseia-se no algoritmo proposto por [Setnes, Babuska 

et al. 1998], em que os conjuntos difusos mais semelhantes vão sendo fundidos de 

forma iterativa até que os restantes conjuntos sejam suficientemente distintos, o que 

é feito através da imposição de um limite mínimo para a semelhança entre dois 

conjuntos juntar, minS (Figure 5.4). Este algoritmo pode ser visto como um algoritmo 

de agrupamento hierárquico. 

Viu-se que neste caso de estudo em que o sistema de inferência foi 

construído previamente seria importante ter em conta medidas de desempenho do 

sistema de inferência. Assim, em vez de se definir um valor para minS, corremos o 

algoritmo até todas as funções de pertença serem disjuntas, avaliando o 

desempenho do sistema de inferência actual, P(M), e comparando-o com o 

desempenho do melhor sistema encontrado até ao momento, P(BestM). O algoritmo 

devolve o sistema de inferência com melhor desempenho, de entre os sistemas 

gerados durante o algoritmo (Figure 5.8). O algoritmo foi definido para qualquer 

medida de desempenho para um sistema de inferência, P(.). Neste caso foi utilizada 

a seguinte medida de desempenho (a ser maximizada) : 

 

 
MCLP

MCLP
F






2
 (9) 
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em que a Precisão (P) do sistema de inferência é o quociente entre o número de 

amostras bem classificadas sobre o total de amostras e o Nível de Certeza Média 

(MCL) é a média dos níveis de certeza para as amostras correctamente 

classificadas. 

 Se quisermos uma solução de compromisso entre o número de funções de 

pertença no sistema e o seu desempenho podemos combinar estes objectivos 

considerando 

 n
n

FMP
0

1
)(





  (10) 

em que  1,0  é o peso dado a F , 0n  é o número inicial de funções de pertença e 

n  é o número de funções de petença do sistema M  a ser avaliado.   

 

O algoritmo está ainda definido para uma medida de semelhança entre dois 

conjuntos difusos genérica. Neste caso foi usada a medida de semelhança de 

Jaccard com : 

  
BA

BA
BASJ




,  (11) 

em que  U C dxxC )(||   e   e   representam a intersecção e a união de 

conjuntos difusos. 

 

  

5.2. Resultados 

Foram testados 6 tipos de terreno, 3 valores para a velocidade de rotação e 3 

valores para a velocidade de translação da broca, obtendo-se assim 54 funções de 

pertença para cada uma das variáveis linguísticas que representam os diferentes 

sensores instalados na broca (Figure 5.9). 

O algoritmo foi aplicado a cada uma das variáveis linguísticas de forma 

sequencial. Os resultados estão resumidos nas tabelas abaixo. Como se pode ver 

na Tabela 3 e pelos gráficos das variáveis linguísticas finais (Figure 5.19) foi 

possível reduzir de forma muito significativa o número de funções de pertença em 

praticamente todas as variáveis linguísticas. Foi também possível melhorar o 
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desempenho do sistema de inferência, como se pode ver pela Tabela 4. Por 

exemplo, a Precisão do sistema (P), aumentou de 72.33% para 85.47%.  

  

 Original BestP 

Rotation Current 54 3 

Rotation Voltage 54 5 

Rotation Speed 54 3 

Thrust 54 17 

Torque 54 46 

Translational Voltage 54 3 

Translational Current 54 3 

Translational Speed 54 3 

TOTAL 432 45 

 

Tabela 3: Redução do número de funções de pertença 

 

 Original BestP 

P 72.33% 85.47% 

MCL 34.49% 44.00% 

F 46.71% 58.09% 

N 423 45 

 

Tabela 4: Comparação dos sistemas de inferência 

 

6. Conclusões 

O objectivo desta tese era desenvolver algoritmos para reduzir o número de 

funções de pertença numa variável linguística. Este problema foi abordado como um 

problema de agrupamento.  

Foi desenvolvida uma metaheurística Scatter Search para encontrar boas 

soluções para o problema. Usando dois casos de estudo, esta metaheurística foi 

comparada com o algoritmo K-Means++. Os resultados obtidos não foram os 

esperados. A segunda parte do algoritmo Scatter Search não conseguiu produzir 
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boas soluções. No entanto, a primeira parte do algoritmo foi suficiente para obter 

melhores resultados que os resultados conseguidos com o K-Means++. Com ambos 

os métodos, foi possível reduzir significativamente o número de funções de pertença 

em cada variável linguística.  

No último capítulo foi apresentado um caso de estudo em que as variáveis 

linguísticas faziam parte de um sistema de inferência construído de forma 

automática. Neste caso é importante ter em conta o desempenho do sistema de 

inferência durante o algoritmo de redução, usando medidas de desempenho 

adequadas. Os resultados obtidos foram bastante satisfatórios. Não só foi possível 

reduzir de forma bastante significativa o número de funções de pertença no sistema, 

mas também foi possível aumentar o seu desempenho. 
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Abstract 

 

The purpose of this thesis was to develop algorithms to reduce the number of 

membership functions in a fuzzy linguistic variable. Groups of similar membership 

functions to be merged were found using clustering algorithms. By “summarizing” the 

information given by a similar group of membership functions into a new membership 

function we obtain a smaller set of membership functions representing the same 

concept as the initial linguistic variable. 

The complexity of clustering problems makes it difficult for exact methods to 

solve them in practical time. Heuristic methods were therefore used to find good 

quality solutions. A Scatter Search clustering algorithm was implemented in Matlab 

and compared to a variation of the K-Means algorithm. Computational results on two 

data sets are discussed. 

A case study with linguistic variables belonging to a fuzzy inference system 

automatically constructed from data collected by sensors while drilling in different 

scenarios is also studied. With these systems already constructed, the task was to 

reduce the number of membership functions in its linguistic variables without losing 

performance. A hierarchical clustering algorithm relying on performance measures for 

the inference system was implemented in Matlab. It was possible not only to simplify 

the inference system by reducing the number of membership functions in each 

linguistic variable but also to improve its performance.  



   

 

Resumo 

 

O objectivo desta tese era desenvolver algoritmos para reduzir o número de 

funções de pertença numa variável linguística. Foram usados algoritmos de 

agrupamento ou clustering para encontrar grupos de funções de pertença 

semelhantes. Concentrando a informação dada por um grupo de funções de 

pertença semelhantes numa nova função de pertença obtém-se um conjunto mais 

reduzido de funções de pertença que representam o mesmo conceito que a variável 

linguística original. 

Dada a complexidade computacional dos problemas de agrupamento, 

métodos exactos para a resolução de problemas de programação inteira apenas 

conseguem encontrar uma solução óptima em tempo útil para pequenas instâncias. 

Assim, foram usados métodos heurísticos para encontrar boas soluções. Foi 

implementado em Matlab um algoritmo do tipo Scatter Search e este foi comparado 

com uma variante do algoritmo K-Means. São apresentados resultados 

computacionais para dois casos de estudo. 

É também apresentado um caso de estudo em que as variáveis linguísticas 

pertencem a um sistema de inferência previamente construído a partir de dados 

recolhidos por sensores. O objectivo era reduzir o número de funções de pertença 

das suas variáveis linguísticas sem comprometer o desempenho do sistema. Foi 

implementado em Matlab um algoritmo de agrupamento hierárquico que tem em 

conta medidas de desempenho do sistema de inferência. Para além de ter sido 

possível simplificar o sistema, a redução do número de funções de pertença levou a 

um aumento do desempenho do próprio sistema, através da remoção de alguma 

redundância existente no sistema inicial. 
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Introduction 

 

 In human reasoning many concepts are not crisp in the sense of being 

completely true or false, instead they can be interpreted in a more qualitative way. In 

everyday life we use concepts like tall, small, fast, slow, good, bad … that are difficult 

to translate numerically. Classical logic and inference have been insufficient to deal 

with these apparently vague concepts. Although humans reason with these concepts 

in a natural way on a daily basis, our search for scientific knowledge has lead us to 

address the problem of representing these concepts in a more systematic and 

precise way. As Engelbrecht [Engelbrecht 2002] states, “In a sense, fuzzy sets and 

logic allow the modelling of common sense”. 

 Since 1965, when Zadeh first formalized the concept of fuzzy set [Zadeh 

1965], the field of fuzzy logic and approximate reasoning has attracted the interest of 

the scientific community. Fuzzy set theory and fuzzy logic concepts have been 

applied in almost all fields, from decision making to engineering [Costa, Gloria et al. 

1997; Ross 2004], from medicine [Adlassnig 1986 ] to pattern recognition and 

clustering [Nakashima, Ishibuchi et al. 1998].   

 In engineering, fuzzy logic has been used, for instance, in monitoring and 

classification applications [Isermann 1998; Ribeiro 2006]. The main goal when 

constructing a fuzzy monitoring system is to develop a fuzzy inference system (FIS) 

[Lee 1990a; Lee 1990b] to monitor certain variables and warn decisors (or an 

automatic system) when variables behaviour is not correct, so that they can 

intervene.  For the development of monitoring systems, in general, a formal and 

precise mathematical understanding of the underlying process is usually needed. 

These mathematical models may become too complex to formalize or to implement, 

reducing the advantage of an automatic and independent system over a human 

expert. Once again, fuzzy knowledge can be used to overcome this problem, 

modelling complex systems by mimicking human thinking.   

 In decision making, for instance, the advantages of using fuzzy logic is even 

more evident. In many cases the processes behind a decision are too complex to be 

defined through a precise classical mathematical model and the underlying 
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preferences and choices of decision makers have many uncertainties and are better 

represented through a fuzzy number. Although crisp decision models do exist, more 

and more papers and books propose the use of fuzzy sets and fuzzy models to deal 

with the underlying uncertainty [Anoop Kumar and Moskowitz 1991; Lai and Hwang 

1994; Ribeiro 1996; Ross 2004]. 

 The main idea when choosing a fuzzy model over a classical one is to obtain 

models that are less complex and easy to interpret. The trade off between 

interpretability and precision must be studied for each application. To achieve such 

interpretability, it is desirable that the linguistic variables in a fuzzy model [Zadeh 

1975] are as intuitive as possible. This in addition to a search for computationally 

efficient models motivated the research of this master thesis. When linguistic 

variables are constructed directly from expert knowledge its interpretability is usually 

clearer. This is not the case when an automatic procedure is used to create the 

membership functions of a certain linguistic variable or when membership functions 

represent a single sample from a large data base. As an example consider a fuzzy 

set used to represent an agent preference between two alternatives and suppose the 

number of agents involved in the process to be modelled is considerably large.  

 The purpose of this thesis is to develop algorithms to reduce the number of 

membership functions in a linguistic variable. The problem of reducing the amount of 

data to be analysed, while maintaining as most information as possible from the 

original data, is not exclusive from fuzzy domains. Large crisp data sets often have to 

be clustered to become treatable [Hartigan 1975; Murtagh 1983; Everitt, Landau et 

al. 2001; Gan, Ma et al. 2007]. Clustering data corresponds to finding natural groups 

of data that represent similar objects. The same approach can be used to reduce the 

number of membership functions in linguistic variables. We start by identifying 

clusters of similar membership functions. If each cluster of membership functions can 

be “summarized” into a new membership function, we obtain a new and smaller set 

of membership functions that approximately represents the same concept as the 

initial linguistic variable. This will be the basic approach that will be developed during 

this thesis. The problem of reducing the number of membership functions in linguistic 

variables will be formulated as a clustering problem. Resulting clusters of 

membership functions will be merged in a way of “summarizing” the information 

contained in the original membership functions.  
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 In Chapter 1 theoretical background that is needed to understand following 

development is presented. An introduction to fuzzy logic and fuzzy inference systems 

is described. Similarity measures and merging methods that will be used to reduce 

the number of membership functions in linguistic variables are also introduced. 

Since, as stated before, the problem of reducing the number of membership 

functions in a linguistic variable can be stated as a clustering problem, Chapter 2 will 

present different approaches to the clustering problem in statistics and optimization 

and the state of the art. Also, some possible formulations to the clustering problem 

will be discussed.  

The complexity of clustering problems makes it difficult for exact methods to 

solve them in practical time. Exact methods can only find an optimal solution in a 

reasonable amount of time for very small data sets, especially if the number of 

clusters is unknown. However, before deciding for heuristic methods, it is important to 

use exact methods to better understand the complexity of the problem at hands. 

Since it was never the purpose of this thesis to solve these problems through exact 

methods, Chapter 3 gives only a brief introduction to some of the exact methods 

used for combinatorial and integer programming.  

When finding optimal solutions through exact procedures is too time 

consuming, it is still usually possible to find good quality solutions in a reasonable 

amount of time, using heuristic methods that take advantage of the problem structure 

to achieve good solutions (not necessarily optimal) in less computational time. Both a 

heuristic and a metaheuristic to solve the automatic clustering problem were 

implemented in Matlab. Chapter 4 describes these algorithms and presents 

computational results on two case studies. In both case studies several linguistic 

variables are pruned. These linguistic variables could later be used in a fuzzy 

inference system or any other fuzzy model. The model would be constructed taking 

into account the already clustered membership functions instead of the original ones.  

Chapter 5 introduces another case study. This case study has different 

characteristics from those used in Chapter 5. In this case study linguistic variables 

belong to an already existing fuzzy inference system. Instead of using the algorithms 

from Chapter 4, a heuristic relying on measures of performance of the inference 

system is used. The work presented in this chapter was developed within the scope 
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of project “MODI – Simulation of a Knowledge Enabled Monitoring and Diagnosis 

Tool for ExoMars Pasteur Payloads”[CA3 2006; Jameaux, Vitulli et al. 2006; Santos, 

Fonseca et al. 2006], a CA3 – UNINOVA project for the European Space Agency 

[ESA] Aurora programme [ESA 2008]. In this project two inference systems were 

constructed: one for monitoring exploratory drilling processes and another capable of 

detecting the type of terrain being drilled. These systems were automatically 

constructed using data collected from sensors while drilling in different scenarios. 

With these systems already constructed, the task was to reduce the number of 

membership functions in its linguistic variables without losing performance. This 

project was on the origin of the development of the ideas presented in this thesis. 

The contribution to this project can also be found in [Gomes, Santos et al. 2008]. This 

paper summarizes the main results obtained when reducing the number of 

membership functions of MODI’s linguistic variables and was presented at the Eight 

International Conference on Application of Fuzzy Systems and Soft Computing 

(ICAFS-2008) in September 2008 in Helsinki, Finland. 

Finally, Chapter 6 presents the conclusions of this thesis and some guidelines 

for future work. 

 

  



  Chapter 1. Preliminaries 

 - 14 - 

Chapter 1. Preliminaries 

 

In this Chapter we present the background on fuzzy set theory necessary to 

understand the results presented later.  

Sections 1.1 and 1.2 introduce the main concepts of fuzzy logic and fuzzy 

inference systems. Formal definitions of the concepts of linguistic variable, fuzzy set, 

membership function and the most used operations on fuzzy sets are given. A 

description of the structure of a fuzzy inference system and of its underlying modules 

is also presented. 

In section 1.3, analytical and pR  representations of some of the most common 

types of membership functions - triangular, trapezoidal and Gaussian membership 

functions – are introduced. 

The notion of similarity or proximity between membership functions will be the 

main idea underneath the algorithms for reducing the number of membership 

functions in linguistic variables. Section 1.4 describes these concepts and presents 

the measures of proximity of fuzzy sets that will be used. After identifying the most 

similar membership functions, these will be merged to give rise to a new set of 

membership functions simultaneously as small and as representative of the original 

linguistic variable as possible. Section 1.5 presents some membership functions 

merging methods. 

 

1.1  Fuzzy Logic 

 

In crisp logic, if we want to categorize a group of individuals as tall, medium or 

small, we have to distribute those individuals into two disjoint sets, as in Figure 1.1, 

by a crisp rule. For instance, if the height of an individual is above 1.75m, the 

individual is tall, if the height is bellow 1.60m, the individual is short and otherwise the 

individual is medium.  
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Figure 1.1: Concepts Short, Medium and Tall represented by Crisp Sets 

 

 This does not accurately represent human reasoning. In our mind, the frontier 

between these sets is not as well defined as in Figure 1.1. These concepts are better 

represented by fuzzy sets [Zadeh 1965], as in Figure 1.2. This representation allows 

for an individual to be considered simultaneously short and medium or medium and 

tall, with different degrees of membership. The definition of fuzzy set is given bellow. 

 

 

Figure 1.2: Concepts Short, Medium and Tall represented by Fuzzy Sets 

 

  

Definition 1.1 [Zimmermann 1990] - If X  is a collection of objects denoted 

generically by x  then a fuzzy set A
~

 in X  is a set of ordered pairs: 

   XxxxA A  :)(,
~

  (1.1) 

where )(~ x
A

  is called the membership function or grade of membership of x  in A
~

 

which maps X to the membership space M . The range of the membership function is 

B 

A C 

D 

Short 

G 
E 

F 

Tall Medium 
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a subset of nonnegative real numbers whose supremum is finite. Usually M  is the 

real interval  1,0 . 

 ♦ 

 

The representation of some common types of membership functions will be 

further presented in the next section. 

 

 Zadeh [Zadeh 1975] defines a linguistic variable as a quintuple 

),,),(,( MGUxTx  in which x  is the name of the variable; )(xT is the term set of x , that 

is, the collection of its linguistic values; U  is a universe of discourse; G  is a syntactic 

rule which generates the terms in )(xT ; and M  is a semantic rule which associates 

with each linguistic value )(xT  its meaning, )(XM , where )(XM denotes a subset of  

U . 

 The fuzzy sets in Figure 1.2 represent a linguistic variable Height.  

 

 T-norms and t-conorms generalize the idea of intersection and union of sets to 

fuzzy set theory. 

 

Definition 1.2 [Klir and Yuan 1995] – A t-norm is a function      1,01,01,0: t  

satisfying the following properties: 

Boundary Condition: aat )1,(   (1.2) 

Monotonicity: cbcatbat  if),(),(  (1.3) 

Commutativity: ),(),( abtbat   (1.4) 

Associativity: )),,(()),(,( cbattcbtat   (1.5) 

 ♦ 

 

 

Definition 1.3 [Klir and Yuan 1995] – A t-conorm or s-norm is a function 

     1,01,01,0: u  satisfying the following conditions: 

Boundary Condition: aau )0,(   (1.6) 
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Monotonicity: cbcaubau  if),(),(   (1.7) 

Commutativity: ),(),( abubau   (1.8) 

Associativity: )),,(()),(,( cbauucbuau   (1.9) 

 ♦ 

 

The fuzzy minimum and the fuzzy maximum, defined bellow, are the most 

used t-norms and t-conorms. Examples of these operators can be found in Figure 1.3 

and Figure 1.4, respectively. 

 

Definition 1.4 [Klir and Yuan 1995] – Given two fuzzy sets A  and B , their standard 

intersection, BA , and standard union, BA , also known as fuzzy minimum and 

fuzzy maximum, are defined for all Xx  by the equations: 

  )(),(min))(( xBxAxBA   (1.10) 

  )(),(max))(( xBxAxBA   (1.11) 

 ♦ 

 

 

 

 

Figure 1.3: Fuzzy min 
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Figure 1.4: Fuzzy max 

 

 To generalize the concept of negation, complement operators are used. The 

membership function of a fuzzy set A  represents, for each x  in its universe of 

discourse, the degree to which x  belongs to A . The membership functions of the 

complement of A  represents the degree to which x  does not belong to A . 

 

Definition 1.5 [Klir and Yuan 1995] – A complement of a fuzzy set A  is specified by 

a function    1,01,0: c  satisfying the following properties [Klir and Yuan 1995]: 

 

Boundary Conditions: 0)1(;1)0(  cc   (1.12) 

Monotonicity: babcac  if)()(  (1.13) 

 ♦ 

 

 The standard complement is defined bellow and exemplified in Figure 1.5. 

  

Definition 1.6 [Klir and Yuan 1995] -  The standard complement, A , of a fuzzy set A  

with respect to the universal set X  is defined for all Xx  by the equation: 

 )(1)( xAxA   (1.14) 

 ♦ 
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Figure 1.5: Standard fuzzy complement 

 

1.2  Fuzzy Inference Systems 

 

 A fuzzy inference system is composed of fuzzy if-then rules relating different 

fuzzy sets, which are stored in a knowledge-base, and an inference engine that 

performs approximate reasoning [Ross 2004].  As mentioned before, one of the main 

advantages of inference systems [Ross 2004] is the ability to build models that mimic 

human reasoning and are relatively simple and easy to interpret. These models might 

be less accurate than classical and more formal ones but when dealing with real 

world applications interpretability, significance and computational efficiency can 

overcome some lack of accuracy, as depicted in Figure 1.6, taken from [Mathworks]. 

 

 

Figure 1.6: Precision vs. Significance in the Real World [Mathworks] 
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There are two main kinds of fuzzy inference systems, Mamdani and Sugeno 

[Lee 1990a; Lee 1990b]. The knowledge base of a Mamdani inference system 

contains rules where both the antecedents and the consequents are fuzzy sets. 

Sugeno inference systems, on the other hand, use rules with fuzzy antecedents and 

crisp consequents. In this thesis only Mamdani inference systems will be used but 

the ideas and algorithms developed can also be used in Sugeno inference systems. 

Fuzzy if-then rules used in Mamdani inference systems are expressions of the 

type [Ross 2004]: 

“if x  is A  then y  is B ” 

where A  and B  are fuzzy sets, “ x  is A ” is called the antecedent and  “ y  is B ” is 

called the consequent of the rule.  

The antecedent part of the rule can have multiple parts connected by fuzzy 

operators, typically t-norms and t-conorms giving meaning to the linguistic 

expressions “and” and “or” respectively. The consequent can have multiple parts 

representing distinct conclusions that can be inferred from the given antecedent. The 

firing level or firing strength of the rule is the degree to which the antecedent part of 

the rule is satisfied.  

To determine the outcome of fuzzy if-then rules given the crisp inputs, we need 

to fuzzify the inputs, apply the fuzzy operators that connect the multiple parts of the 

antecedent (if needed) to find the firing level of the rule and use an implication 

operator to apply the firing level to the consequent part (or parts) [Lee 1990a; Lee 

1990b]. The output of the rule is a fuzzy set (or fuzzy sets). These concepts are 

better explained through an example. The following example in Figure 1.7 is taken 

from Matlab Fuzzy Logic Toolbox documentation [Mathworks]. 
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Figure 1.7: Example of fuzzy if-then rule [Mathworks] 

 

 

Given crisps values for the service and food quality the correspondent degrees 

of membership in the antecedent are computed and combined through the OR 

operator to give the rule firing level. For instance, if we consider service=3 and 

food=8, the degrees of membership in excellent (for service) and delicious (for food) 

are 0 and 0.7, respectively, and the firing level of the rule is given by   7.07.0,0max  . 

The implication operator is then applied taking into account this firing level to obtain 

the fuzzy set representing the output of the rule.  
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Figure 1.8: Example of fuzzy inference system [Mathworks] 

 

For each rule in the knowledge base the previously described steps are 

performed and the resulting fuzzy sets are aggregated through an appropriate 

operator (usually standard fuzzy maximum) to obtain a new fuzzy set representing 

the output of the system. This fuzzy set is then defuzzified to obtain a crisp value for 

the inference. Several defuzzification methods can be used, e.g. the centroid [Lee 

1990a; Lee 1990b]. Continuing with the tipping example from Fuzzy Logic Toolbox 

documentation [Mathworks], Figure 1.8 shows a possible inference system with three 

rules and the necessary steps to determine the tip to be given crisp values for the 

service and food quality. In Figure 1.8, the three first fuzzy sets on the right represent 

the output of each rule after implication, using the same input values as before, i.e., 
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service=3 and food=8. Aggregating these three fuzzy sets, the fuzzy set in the 

bottom right of Figure 1.8 is obtained. In this example the centre of area or centroid 

defuzzification method, defined by (1.15), is used and a tip of 16.7% is 

recommended. 

 

Definition 1.7 [Klir and Yuan 1995] -  Consider a fuzzy set A  with membership 

function  1,0: XA . The centre of area or centroid defuzzification method returns 

the value )(AdCA  within X  for which the area underneath the graph of membership 

function A  is divided into two equal subareas. This value is given by the following 

expression: 

 
dxx

dxxx

Ad

X

A

X

A

CA

)(

)(

)(



 






 (1.15) 

 ♦ 

 

1.3 Representation of Membership Functions 

 

Some types of membership functions can be mapped to pR , where p  is the 

number of parameters of that family of membership functions and each dimension 

represents a different parameter. In this section both analytical and pR  

representations of some of the most common types of membership functions are 

presented. 

 

1.3.1 Triangular Membership Functions 

 

Definition 1.8 - A triangular membership function is given by the analytical 

expression:  
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  



























otherwise,0

,

,

,,, cxb
bc

xc

bxa
ab

ax

xcba  (1.16) 

where ba, and c  correspond to the x-axis coordinates of the vertices of the triangle, 

as in Figure 1.9.  

 ♦ 

  

There are several possibilities for mapping these membership functions into 

3,2, pR p . For instance, for 3p  we can consider a vector with the x-axis 

coordinates of the vertices of the triangle,  cba ,, , or a vector  RLb  ,,  where 

abL   and bcR   represent its left and right spreads, respectively. This way 

we define a mapping between the family of triangular membership functions and 3R . 

If we only consider symmetrical membership functions, i.e., if   RL , we can use 

a pair  ,b  to represent a membership function of this family. In this way the 

mapping can be done in 2R . 

 

 

Figure 1.9: Triangular membership function )8,3,1(),,( cba  
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1.3.2 Trapezoidal Membership Functions 

 

Definition 1.9 - A trapezoidal membership function is given by the analytical 

expression:  

  





























otherwise,0

,

,

,1

,,,,

dxc
cd

xd

bxa
ab

ax

cxb

xdcba  (1.17) 

 

where cba ,, and d correspond to the x-axis coordinates of the vertices of the 

trapezoid, as in Figure 1.10.  

 ♦ 

 

Similarly to the case of triangular membership functions, we can now map the 

family of trapezoidal membership functions to 4R  and 3R (symmetric trapezoidal). We 

can consider a vector with the x-axis coordinates of the vertices of the trapezoidal, 

 dcba ,,, , to map this family of membership functions to 4R  and if we only consider 

symmetrical membership functions, i.e., if 
22

cbda 



, we can use a vector   ,,m , 

where 
22

cbda
m





 , bc   and ad  , to represent a membership function 

of this family. 
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Figure 1.10: Symmetrical trapezoidal membership function   )8,6,3,1(,,, dcba  

 

1.3.3 Gaussian Membership Functions 

 

Definition 1.10 – A Gaussian membership function is given by the analytical 

expression:  

 
 2  xe  (1.18) 

where   and   are the mean and spread of the Gaussian function.  

 ♦ 

 

The mapping of this family of membership functions to 2R  is straightforward 

and is given by the pair  , . 
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Figure 1.11: Gaussian membership function    1,5,   

 

 

1.4 Proximity Measures between Membership Functions 

 

As stated in the introduction of this Chapter, the notion of similarity or proximity 

between membership functions will be the main idea underneath the algorithms for 

reducing the number of membership functions in linguistic variables. When faced with 

the problem of reducing the number of terms in linguistic variables, we intuitively 

think of joining or merging membership functions that are somehow similar. For crisp 

data sets, a similar idea is the foundation of cluster analysis. Clusters are groups of 

objects that are similar according to some proximity measure [Hartigan 1975]. The 

problem presented in this thesis can then be approached as a clustering problem 

where the objects are membership functions and suitable proximity measures are 

used. 

 In general, similarity measures between membership functions or fuzzy sets 

can be classified as geometric or set-theoretical [Miyamoto 1990]. Geometric 

measures are based on distance-measures and represent proximity between fuzzy 

sets. Set-theoretical similarity measures, based on operations such as union and 

intersection, translate the degree to which two fuzzy sets are equal and are not 

influenced by scaling and ordering of the domain. 
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 One of the most used set-theoretical similarity measures, the fuzzy Jaccard 

index or Jaccard similarity measure [Miyamoto 1990], is defined by: 

  
BA

BA
BASJ




,  (1.19) 

where  U C dxxC )(||   and ),(   is a pair of fuzzy t-norms    and t-conorms )( . 

 

 An overview of some similarity measures for comparing fuzzy sets can be 

found in [Chen, Yeh et al. 1995]. The Jaccard similarity measure will be used in the 

algorithms presented in Chapter 5, but other similarity measures could also be used. 

For instance, since in Chapter 5 only trapezoidal membership functions are used, the 

following two similarity measures used for comparing trapezoidal fuzzy sets could be 

considered. 

The first one can be calculated by the following expression [Chen 1996]: 

 

 
4

||

1),(

4

1






 i

ii

C

ba

BAS  (1.20) 

where ),,,( 4321 aaaaA   and ),,,( 4321 bbbbB  .  

 
The second one was proposed by Shi-Jay Chen and Shyi-Ming Chen [Chen 

and Chen 2008] and is given by: 
 

 
),max(
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BAS BA  (1.21) 

where 

 









0 if,0

0 if,1
),(

BA

BA

BA
SS

SS
SSB  (1.22) 

 14 aaSA   (1.23) 

 14 bbSB   (1.24) 
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and ),( 

AA yx  and ),( 

BB yx  are the centre of gravity points of A  and B , respectively. 

These points can be easily determined by the simple centre of gravity method 

(SCGM) [Chen and Chen 2008], using the following expressions: 
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
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
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
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,
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aaif
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aa
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yA  (1.25) 

 

 
2

)1)(()( 1423



 
 AA

A

yaaaay
x  (1.26) 

 

 In the previous section it was shown how the most used families of 

membership functions can be mapped to pR . By mapping a membership function to 

pR  the problem to be addressed becomes equivalent to finding clusters given a data 

set in pR , provided that we are considering linguistic variables where all membership 

functions belong to the same family, which is usually the case. Therefore, the 

proximity measures used for comparing objects in pR  can also be used to compare 

membership functions of the same family. For instance, the Euclidean Distance given 

by (1.27) can be used to compare two membership functions of the same family, 

 
paaA ,,1   and  pbbB ,,1  , represented in pR . This will be done in the 

algorithms presented in Chapter 4 where the problem of reducing the number of 

membership functions in linguistic variables will be approached by clustering the 

vectors of parameters representing the membership functions.  

 

    



p

i

ii baBAD
1

2
,  (1.27) 
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1.5 Merging Membership Functions 

 

In this section we discuss some methods on how to merge membership 

functions to reduce the number of membership functions in a linguistic variable, by 

using the concept of similarity. This section is not intended as an overview of the 

possible methods for merging membership functions since these methods could vary 

according to several factors: the type of membership functions being merged, the 

algorithms in use, the context of the problem, among others. 

Membership functions of the types referred in section 1.2 will be considered, 

since these are the most used ones. Also, throughout this thesis, it will be assumed 

that all membership functions of a certain linguistic variable to be pruned share the 

same type (either triangular or trapezoidal) and that the merging of two membership 

functions should yield a new membership function of the same type as the original 

ones. This simplification does not change the nature of the problem and the 

algorithms that will be use to solve it are as general as possible. If one of these 

conditions fails we only have to redefine the way two membership functions are 

merged but the algorithms still apply. 

 

1.5.1 Merging Trapezoidal Membership Functions 

 

Given two trapezoidal membership functions ),,,( 4321 aaaaA   and 

),,,( 4321 bbbbB  , merging them using the method proposed in [Setnes, Babuska et al. 

1998] gives a new trapezoidal membership function ),,,( 4321 ccccC   where: 

 

  111 ,min bac   (1.28) 

   22222 1 bac    (1.29) 

   33333 1 bac    (1.30) 

  444 ,max bac   (1.31) 
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 The parameters 2  and 3 belong to the interval  1,0 . These parameters allow 

weighting the importance of A  and B  in the final membership C . In subsequent 

chapters this operator will be used with 5.032   . See for instance Figure 1.12, 

which shows the trapezoidal membership functions )6,4,2,1(A  and )7,5,3,2(B  

combined into )7,5.4,5.2,1(C . Notice that (1.28) and (1.31) guarantee that the same 

“coverage” as A  and B , i.e., points with positive membership in either A  or B  will 

still have positive membership in C . This might be crucial for some applications.  

 

 

Figure 1.12: Merging trapezoidal membership functions )6,4,2,1(A  and )7,5,3,2(B  

into )7,5.4,5.2,1(C . 

 

In the previous merging method only two membership functions are merged at 

a time. When merging more than two membership functions at a time, a 

generalization of this method was used.  Given n  trapezoidal membership functions 

  nidcbaT iiii

i ,,1,,,,  , these will be simultaneously merged into a membership 

function   nidcbaT ,,1,,,,   where: 
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 
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1.5.2 Merging Triangular Membership Functions 

 

It is straightforward to adapt the previous methodology to the case of triangular 

membership functions. Considering that a triangular membership function is a 

trapezoidal membership function with ii cb   Given n  triangular membership 

functions   nidbaS iii

i ,,1,,,  , these will be simultaneously merged into a 

membership function   nidbaS ,,1,,,   where: 
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  (1.38) 

  

 

1.5.3 Merging Gaussian Membership Functions 

 

In [Song, Marks et al. 1993] the fusion of two Gaussian membership functions 

with parameters  11,  and  22 ,  is a Gaussian membership function with 

parameters  ,  defined by the following equations. See for instance Figure 1.13. 

 

21

2211


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


  (1.39) 
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  (1.40) 

 

Figure 1.13: Merging Gaussian membership functions    2.0,5, 11   and 

   4.0,6, 22   into    3464.0,667.5,   

 

 We can extend this method by defining the merge of n  Gaussian membership 

functions with parameters   niii ,,1,,   as by the pair  , , where: 
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1.6 Summary 

In this Chapter the concepts of fuzzy set theory necessary to understand the 

work presented in this thesis were introduced. The concepts in sections 1.1 and 1.2 
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are the basic concepts of fuzzy logic and inference systems. Analytical and pR  

representations of three of the most used families of membership functions are given 

in section 1.3. In this thesis it will be seen how to reduce the number of terms in a 

linguistic variable by merging similar membership functions. Sections 1.4 and 1.5 

present the proximity measures between membership functions that will be used in 

later chapters and the methods for merging membership functions.   
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Chapter 2. A Clustering Problem Approach 

  

 As stated in the introduction, the problem of reducing the number of 

membership functions in linguistic variables can be formulated as a clustering 

problem. We need to identify groups of similar membership functions and merge 

them. As a result, we should obtain a smaller set of membership functions capable of 

approximately represent the initial linguistic variable.   

 In section 2.1 the clustering problem will be introduced. Section 2.2 will 

present the state of the art and finally in section 2.3 some integer programming 

formulations for the clustering problem will be given. 

 

2.1 The Clustering Problem 

 

There is no uniform formal definition for data clustering. The task of defining the 

meaning of clustering have been pointed out as a difficult one by several authors 

[Everitt, Landau et al. 2001; Estivill-Castro 2002]. In [Gan, Ma et al. 2007] the 

following informal definition can be found: 

 

“Data clustering (or just clustering), also called cluster analysis, segmentation 

analysis, taxonomy analysis, or unsupervised classification, is a method of creating 

groups of objects, or clusters, in such a way that objects in one cluster are very 

similar and objects in different clusters are quite distinct.” 

 

As can be seen in Figure 2.1, two main types of clustering problems exist: hard 

clustering and fuzzy clustering [Gan, Ma et al. 2007]. In hard clustering problems an 

object or record has to belong to one and only one cluster, that is, a partition of the 

data into mutually exclusive groups is obtained. Fuzzy clustering problems on the 

other hand, allow an object to belong to several clusters, with different degrees of 

membership. In this thesis the problem of reducing the number of membership 

functions in a linguistic variable will be formulated as a hard clustering problem. 

Therefore the term clustering will be used instead of hard clustering. Approaching 
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this problem as a fuzzy clustering problem by allowing membership functions to 

belong to more than one cluster and defining appropriate membership function 

merging techniques is a possibility to be studied in the future. 

 

 

 

Figure 2.1: Diagram of Clustering Algorithms [Gan, Ma et al. 2007] 

 

 

2.2 State of the Art 

 

As stated in the previous section, there is no unique definition of clustering. 

Appropriate criteria for clustering have to be chosen for each application, according 

to the type of groups to be found in data. This partially explains the existing diversity 

of clustering algorithms [Estivill-Castro 2002]. Given this diversity, this state of the art 

will not be exhaustive in describing all the existing methods. Some more extensive 

reviews can be found in [Sokal and Sneath 1963; Hartigan 1975; Rijsbergen 1979; 

Jain and Dubes 1988; Kaufman and Rousseeuw 1990; Jain, Murty et al. 1999; 

Everitt, Landau et al. 2001; Engelbrecht 2002; Mirkin 2005; Gan, Ma et al. 2007]. 

As depicted in Figure 2.1, conventional (hard) clustering algorithms can be 

divided into two categories, according to the type of structures they return. 
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Hierarchical methods return a hierarchy or set of nested partitions while partition 

methods return a single partition of the data. 

The next subsections will present the main ideas of hierarchical methods 

(section 2.2.1), classical partition methods (section 2.2.2), graph based methods 

(section 2.2.3), metaheuristics (section 2.2.4) and other clustering methods (section 

2.2.5). 

 

2.2.1 Hierarchical Methods 

 

As stated before, hierarchical methods return a hierarchy or set of nested 

partitions, as depicted in Figure 2.2. Agglomerative hierarchical algorithms start with 

each data point in a different cluster and proceed by merging clusters, according to 

some criterion, until there is only one cluster containing all data points in the data set. 

Divisive hierarchical algorithms start with one cluster containing all data points and 

proceed by splitting clusters until each data point is in a different cluster. 

 

 

Figure 2.2: Dendogram 

 

An hierarchical agglomerative clustering algorithm consists of the following 

steps [Jain, Murty et al. 1999]: 
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1. Compute the proximity matrix containing the distance between each pair 

of data points. Treat each data point as a cluster; 

2. Find the most similar pair of clusters using the proximity matrix and 

merge them into one cluster; 

3. Update the proximity matrix to reflect the merging operation in 2; 

4. If all data points are in one cluster, stop. Otherwise, go to step 2. 

 

Different algorithms can be developed according to the way the proximity 

measure is updated in step 3. The most used are the single-link, complete link and 

Ward’s methods [Jain, Murty et al. 1999].  

 

The single-link method, also known as nearest neighbour method and minimum 

method, was first introduced by [Florek, Lukaszewicz et al. 1951] and then 

independently by [McQuitty 1957] and [Sneath 1957]. Let 1C  and 2C  be two clusters 

and  ,d  a distance measure between two points. In the single-link method, the 

distance between 1C  and 2C , also referred to as linkage function, is given by: 

 

    yxdCCD
CyCx

,min,
21 ,

21


  (2.1) 

 

 

The complete-link [King 1967], also known as farthest neighbour method, 

updates the proximity measure using the following expression, using the same 

notation as in (2.1). 

 

    yxdCCD
CyCx

,max,
21 ,

21


  (2.2) 

 

 

The Ward’s method [Ward Jr. 1963; Ward Jr. and Hook 1963], also known as 

minimum-variance method, aims at forming partitions 1,, PPn   of the original data 

minimizing the loss of information, quantified in terms of the error sum of squares 

(ESS) criterion, associated with each merge. Consider a partition of the data into K  

clusters KCC ,,1  . The information loss is represented by: 
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 



K

i

iCESSESS
1

)(  (2.3) 

where 

       



Cx

T
CxCxCESS )(  (2.4) 

and 

 



Xx

x
C

X
1

)(  (2.5) 

 

 At each step of the Ward’s method the two clusters whose fusion results in the 

minimum increase in loss of information are merged. The linkage function is 

computed as the increase in ESS after merging two clusters, i.e.: 

 

        212121, CESSCESSCCESSCCD   (2.6) 

 

where 21CC  denotes the cluster resulting from merging 1C  and 2C . 

 

 Other linkage functions are described in [Hartigan 1975; Everitt, Landau et al. 

2001; Gan, Ma et al. 2007]. In [Kuiper and Fisher 1975] a comparison of several 

hierarchical clustering algorithms is done using the Monte Carlo method. 

  

 As stated before, divisive hierarchical algorithms proceed the opposite way of 

the agglomerative algorithms. We start with one cluster containing all data points and 

proceed by splitting clusters until each data point is in a different cluster. Since given 

a cluster C  there are 12
1


C
 nontrivial ways of splitting it into two subclusters, it is 

not feasible to enumerate all the possible divisions of a cluster to find the optimal 

division, except for small clusters [Edwards and Cavalli-Sforza 1965]. Several divisive 

hierarchical clustering algorithms can therefore be designed considering different 

criteria for choosing the cluster to be split and different methods for splitting clusters. 

Examples of divisive algorithms can be found in [Edwards and Cavalli-Sforza 1965; 

Spath 1980; Kaufman and Rousseeuw 1990].  
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To illustrate divisive hierarchical clustering algorithms we will consider the 

DIANA (DIvisive ANAlysis) algorithm proposed by [Kaufman and Rousseeuw 1990].  

 

For a given distance measure ),( d , the diameter of a cluster C  is given by: 

 

   ),(max
,

yxdCDiam
Cyx 

  (2.7) 

 

 Denote the average dissimilarity from a point x  to the points in a set S  by 

 SxD , , i.e., 

 

    



Sy

yxd
S

SxD ,
1

,  (2.8) 

 

 In each step of the DIANA algorithm, the cluster with largest diameter, C  

( 2C ), is split into two subclusters, A  and B . These subclusters are determined by 

the following procedure: 

 

1. Do CA   and  B ; 

2. Do    AxxAxDz  ,\,maxarg ; 

3. Move point z  from A  to B , i.e.,  zAA \  and  zBB  ; 

4. Do      AxBxDxAxDz  ,,\,maxarg ; 

5. If      0,\,  BzDzAzD  then move point z  from A  to B , i.e.,  zAA \  

and  zBB  , and return to 4. Otherwise stop the procedure, returning 

A  and B . 

 

The procedure starts by considering CA   and  B , i.e., all points belong 

to subcluster A .  Then the point with highest dissimilarity is moved from subcluster 

A  to B . The procedure continues by moving points from A  to B  whenever their 

average dissimilarity to B  is smaller than the average dissimilarity to the rest of the 

points in A . 
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Generally, hierarchical methods have a complexity of )( 2nO  for memory space 

and  )( 3nO  for CPU time [Hartigan 1975; Murtagh 1983], n  being the number of 

points to be clustered. Therefore, they become impractical for large data sets. 

 

 

 

 

2.2.2 Classical Partition Clustering Methods 

 
Unlike hierarchical methods, partition methods create a single partition of the 

data points.  

The most known partition method is the K-Means algorithm [McQueen 1967]. 

This algorithm is a centre-based method. Each cluster is represented by a centre and 

the corresponding clusters have convex shapes. The algorithm starts by choosing 

initial K  cluster centres from the original data. After the initialization, a partition of the 

data is determined by assigning each point to the cluster with closest centre. After 

this assignment the centroids of each cluster are calculated according to the 

following expression: 

  

 Kix
C

c
iCxi

i ,,1,
1

 


 (2.9) 

where ic  is the centre of cluster iC . 

 

 Then the points are reassigned to the clusters regarding the closeness to the 

centroids. Again, the centroids are recalculated and the algorithm proceeds in the 

same way until some stopping criterion is met. Usually the algorithm will proceed until 

the cluster centroid and partition no longer change or until a predefined number of 

iterations is reached. This way the K-Means algorithm is a heuristic method that tries 

to minimize the sum of squared distances from each point to its cluster centre. The 

number of clusters K  is determined by the user a priori. In practice, if the user can 

not identify the correct number of clusters, the algorithm is run for a certain range for 

the number of clusters, i.e.  maxmin ,, KKK  , and the best configuration found, 

according to some criterion, is chosen. 
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Many variations of the original K-Means algorithm have been developed. 

Some try to improve the efficiency of the algorithm by reducing the computational 

effort demanded by the algorithm [Tapas, David et al. 2002]. Others differ from the 

original algorithm in the way the initial cluster centres are chosen, as is the case of 

the algorithm presented in [David and Sergei 2007] called K-Means++ that will be 

further discussed in section 4.1. Some allow merging or splitting clusters according to 

centres distances or cluster within variance [Ball and Hall 1965].  

 

Another widely used partition method is the Expectation Maximization 

Algorithm (EM) [Dempster, Laird et al. 1977], a model based clustering algorithm. In 

model based clustering it is assumed that the data comes from a certain mixture of 

distributions 



K

k

kk axfpxf
1

),()(  







 



K

k

kk pp
1

1,0 ,  with each component ),( kaxf  

representing a different cluster, where ),( kaxf  is a family of density functions over x  

and ka  is the parameter vector that identifies a particular density from that family. 

Model based clustering algorithms try to optimize the fit between the data and the 

proposed model.  

To estimate the individual cluster parameter the EM algorithm uses the 

maximum likelihood approach. The logarithm of the likelihood of the observed data 

given by (2.10) is maximized under the assumption that the data comes from a 

mixture of distributions.  

 

  








 
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K

k

kik ayfpL
1 1

,log  (2.10) 

 

Maximization of (2.10) can be reformulated as the maximization of (2.11).  

   
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and K  and N  are the number of clusters and data points, respectively. 

 

The EM algorithm can then be summarized in the following way [Mirkin 2005]: 

 

1. Start with any initial values of the parameters kk ap ,  and ikg , 

Ni ,,1 , Kk ,,1 ; 

2. (E-step) Given kp  and ka  estimate ikg ; 

3. (M-step) Given ikg  find kp  and ka  maximizing (2.11); 

4. Repeat steps 2 and 3 until there is no change in the parameter values 

(or the absolute difference is below some previously defined threshold). 

 

 

2.2.3 Graph Based Methods 

 

The relationship between graph theory and the clustering problem has been 

discussed by [Wirth, Estabrook et al. 1966; Jardine and Sibson 1968; Gower and 

Ross 1969; Hubert 1974; Hansen and Delattre 1978], among other authors. 

Algorithms that take advantage of the graph theoretical properties of data are called 

graph based methods.  

The single-link and complete-link hierarchical methods discussed in section 

2.2.1 can be approached from a graph theoretical view. More computationally 

efficient algorithms for single and complete link hierarchical methods than the ones 

already presented are described in [Gower and Ross 1969; Hansen and Delattre 

1978; Jain and Dubes 1988].   

A minimum spanning tree (MST) of a connected, undirected, weighted graph 

is a subgraph that connects all its edges without cycles (tree) with minimum weight. 

Several methods for finding a minimum spanning tree of a graph have been 

developed [Kruskal 1956; Prim 1957]. In [Jain and Dubes 1988] the following 

algorithm for the single-link  method using a  minimum spanning tree is given, where 

the data is represented by a complete weighted graph  WEVG ,, , V  being the 

vertices of the graph representing the objects or data points to be clustered, E  being 
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the set of edges connecting all pairs of vertices and W  being the weights of the 

edges representing the distance between two points: 

  

1. Begin with each object in its own cluster and find the MST of G ; 

2. Merge the two clusters connected by the MST edge with smallest 

weight to define the next clustering; 

3. Replace the weight of the edge selected in 2 by a weight larger than the 

largest proximity; 

4. Repeat steps 2 and 3 until all objects are in one cluster.  

 

 

Figure 2.3 presents an example of this procedure. The information in the 

distance matrix D  serves as a basis for the construction of the graph in Figure 2.3 

(b). Figure 2.3 (c) depicts a possible minimum spanning tree for this graph. Merging 

the clusters corresponding to connected vertices in the MST from the smallest to the 

largest edge weight gives the dendogram in Figure 2.3 (d).   

 

 

 

 

 

(a) (b) 
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(c) (d) 

 

Figure 2.3: Example of single-link method using a MST: (a) distance matrix; (b) 

weighted graph; (c) MST; (d) Dendogram 

 

 

 

Just as the single-link method can be approached using a minimum spanning 

tree, the complete-link method can be approached using node colouring theory 

[Hansen and Delattre 1978]. Other graph based methods for clustering data are  

reviewed in [Gan, Ma et al. 2007]. 

 

 

 

 

2.2.4 Metaheuristics 

 

Heuristic approaches consist on a search strategy starting from a given 

feasible or unfeasible solution or set, an iterative process designed to favour the 

improvement of the solutions regarding feasibility and value and a stopping criterion. 

In [Colin 1993], the following definition of heuristic is given: 

 

Definition 2.1 – A heuristic is a technique which seeks good (i.e. near-optimal) 

solution at a reasonable computational cost without being able to guarantee either 
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feasibility or optimality, or even in many cases to state how close to optimality a 

particular feasible solution is. 

 ♦ 

 

 

The most classical clustering methods in statistics and data mining, namely 

hierarchical clustering methods and partitioning methods, like K-Means [Gan, Ma et 

al. 2007], are heuristic. They take advantage of the problem structure to find good 

solutions but they cannot guarantee optimality. 

The most basic heuristic methods may be trapped at local optima. Although it 

is possible that this local optimum is also the global optimum in general this will not 

be the case. To overcome this deficiency more sophisticated and elaborated 

heuristics incorporate techniques to increase the search space and escape local 

optima. With this purpose, in recent decades more algorithms that use information 

regarding the search process itself have been developed. These methods are 

designated as metaheuristics. In [Hillier and Lieberman 2005], the following definition 

of metaheuristics in given. 

 

Definition 2.2 – A metaheuristic is a general kind of solution method that 

orchestrates the interaction between local improvement procedures and higher level 

strategies to create a process that is capable of escaping from local optima and 

performing a robust search of a feasible solution. 

 ♦ 

 

 Among the most well-known metaheuristics we have Simulated Annealing, 

Genetic Algorithms and Tabu Search.  

Simulated Annealing, proposed by [Kirkpatrick, Gelatt et al. 1983], mimics the 

process of healing and cooling of material. At each iteration of the algorithm we move 

from the current solution to a neighbour solution, similarly to what happens in a 

descent heuristic for minimization. However, instead of moving always in the direction 

of improvement, worse solutions are accepted with a probability that depends on the 

magnitude of increase of the cost function (in a minimization problem) and on a 

parameter representing the temperature of the system. This parameter is decreased 

during the algorithm, simulating the cooling of material, until the temperature is close 
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enough to zero. Following thermodynamics rules, at high temperatures the probability 

of accepting a randomly generated neighbor solution is higher. As the temperature 

decreases, this probability of acceptance also decreases. Application of the 

Simulated Annealing algorithm to the clustering problem can be found in [Brown and 

Huntley 1990; McErlean, Bell et al. 1990; Shokri and Alsultan 1991]. 

Genetic Algorithms [Holland 1975] are population based methods and are 

inspired in Charles Darwin theory of evolution. During the algorithm, a population 

consisting of a usually large set of solutions (chromosomes) is evolved through 

crossover and mutation operators. Pairs of solutions (parents) are chosen randomly 

to serve as input for the crossover operator that will generate one or more children. 

Fittest members are more likely to become parents, thus the next generation tends to 

be more fitted than the current one, following the natural selection and the principle of 

survival of the fittest. Additionally, with a typically small probability, mutation of one or 

more genes (variables) of a chromosome occurs. Through the natural selection 

process, at the end of the algorithm we expect a population of good quality solutions. 

Genetic Algorithms have been widely used on the clustering problem. A variety of 

papers on this subject have been published, for instance [Jiang and Ma 1996; Maulik 

and Bandyopadhyay 2000; Cheng, Lee et al. 2002; Gautam and Chaudhuri 2004; 

Jimenez, Cuevas et al. 2007; Petra 2007].  

Unlike the two previous metaheuristics, Tabu Search [Glover 1986; Glover and 

Laguna 1997] is a deterministic process. The keyword in Tabu Search is “memory”. 

Tabu Search uses different structures of memory – long term and short term memory 

- to control the search process. In this way it is possible to avoid search cycles, 

conduct the search to domains of the solution space that would otherwise be 

skipped, concentrate the search around good quality solutions and avoid getting 

stuck at local optima. By concentrating the search around good solutions, usually 

called elite solutions, we are intensifying the search process. On the other hand, by 

moving to solutions somehow distant to the ones already visited, to avoid local 

optima, we are diversifying the search process. Efficiency of the Tabu Search 

Algorithm widely depends on a good balance between these two opposite strategies 

– intensification and diversification. Just as the previous metaheuristics, Tabu Search 

has also been applied to the clustering problem [Joyce and Michael 2000; Sung and 

Jin 2000; Yongguo, Zhang et al. 2008].  
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In this thesis a Scatter Search algorithm [Glover 1977] will be implemented. In 

a Scatter Search algorithm a reference set of both good quality and diverse solutions 

chosen from a larger original set of solutions is sequentially updated to produce 

better solutions. The algorithm implements both diversification and intensification 

search strategies to achieve a more intelligent search. Scatter Search algorithms 

were already applied to the clustering problem in [Pacheco 2005; Abdule-Wahab, 

Monmarché et al. 2006]. The scatter search algorithm that was implemented is based 

on the algorithms presented in these two papers. The algorithm is presented in detail 

in section 4.2. 

 

 

2.2.5 Other Methods 

 

Density-based or grid-based clustering methods are useful for finding 

arbitrarily shaped clusters consisting of denser regions than their surroundings in 

large multidimensional spaces. As pointed out in [Gan, Ma et al. 2007], “the grid-

based clustering approach differs from the conventional clustering algorithms in that 

it is concerned not with the data points but with the value space that surrounds the 

data points”. The main idea of a density-based cluster is that for each point of a 

cluster the density of points in its ε-neighbourhood, for some 0 , has to exceed 

some threshold [Ester, Kriegel et al. 1996]. The most well-known density-based 

algorithm, proposed by [Ester, Kriegel et al. 1996], is called DBSCAN.  

 

For high dimensional data it is hard to find good clusters using conventional 

clustering algorithms. Dimension reduction or feature selection techniques can be 

used before performing clustering, thus reducing the dimensionality of the data to be 

clustered. However, these approaches imply a loss of information and consequently 

the clusters obtained may not fully reflect the original structure of a given data set 

[Gan, Ma et al. 2007]. The goal of subspace clustering or projected clustering is to 

find clusters embedded in subspaces of the original data space with their own 

associated dimensions. The first subspace clustering algorithm, CLIQUE, was 

proposed by [Agrawal, Gehrke et al. 1998]. Other subspace clustering algorithms 

were proposed by [Agrawal, Gehrke et al. 1998; Aggarwal and Yu 2000; Procopiuc, 
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Jones et al. 2002], among others. In this thesis we are clustering data points 

representing the parameters of membership functions belonging to a certain family of 

membership functions, typically Triangular, Trapezoidal or Gaussian membership 

functions. Since these families of membership functions can be described using a 

small number of parameters, the dimensionality of the data involved is low. 

Therefore, the methodology for subspace clustering will not be further described. 

Details on some of these algorithms can be found in [Gan, Ma et al. 2007].  

 

 

2.3 Formulations in Integer Programming 

 

 In this section some formulations of the clustering problem to be solved are 

given. In these formulations only binary and integer variables will be used. The 

problem consists of clustering n  fuzzy sets into k  clusters, nk 1 . The number of 

clusters is not known a priori. In all formulations ijd  denotes the distance between 

fuzzy sets i  and j . If the fuzzy sets are represented in pR , the Euclidean Distance 

defined by (1.27) or other distance for comparing objects in pR  can be used. It is also 

possible to use distance measures based on similarity measures for comparing fuzzy 

sets. The formulations presented are as general as possible and do not assume any 

particular distance measure. 

 

2.3.1 A Binary Linear Programming Formulation - I 

 

This first formulation is a linear programming formulation using only binary 

variables.  
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 nkjiyxx ijkjkik ,,1,,,1   (2.15) 

 nkjiyxx ijkjkik ,,1,,,2   (2.16) 

 nkjiyx ijkik ,,1,,,   (2.17) 
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 (2.18) 

       nknjnizyx kijkik ,,1,,,1,,,1,1,0,    (2.19) 

 

As can be seen by the integrality conditions (2.19), ikx , ijky  and kz  are binary 

variables. Variable ikx  takes value 1 if and only if point i  is in cluster k , ijky  equals  1 

if and only if points i  and j  belong to cluster k  and kz  takes value 1 if and only if 

cluster k  is not empty. Notice that jkikijk xxy   and ikiik xy  .  

One of the most used criteria for clustering is to minimize the sum of squared 

distances (or equivalently the mean of squared distances) of data points belonging to 

the same cluster. However, if the number of clusters is not defined a priori, this yields 

an optimal solution where each data point forms a different cluster, with an optimal 

value of zero. Therefore the objective function has to account for the number of 

clusters formed. Since 1
1




n

k

ijky  if points i  and j  belong to the same cluster and 

0
1
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 is the mean of squared distances of all pair of 

points belonging to the same cluster. The number of non-empty clusters is given by 




n

k

kz
1

 and the parameter 0  is not only used to control the importance given to 

both objectives – minimization of mean of squared distances and minimization of the 

number of clusters – but also to deal with the difference in scales present in the 

objective function. 
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Equations (2.14) ensure that each point belongs to exactly one cluster. 

Equations (2.15) translate that if point i  belongs to cluster k  ( 1ikx ) and point j  

belongs to cluster j  ( 1jkx ), then both clusters belong to cluster k  ( 1ijky ). The 

reciprocal is ensured by minimization of the objective function but can also be 

expressed by equations (2.16) or by equations (2.17). Equations (2.18), where M is 

a large constant, allow identifying if the clusters are empty or not. If 1ijky  for some 

i  and j  then 1kz , i.e., the cluster is not empty. Minimization of the objective 

function guarantees that 0kz  whenever cluster k  is empty. 

 

 

2.3.2 A Binary Linear Programming Formulation - II 

 

This formulation is another linear programming formulation using only binary 

variables. In the previous formulation the ikx  variables are redundant, since iikik yx  . 

Also, since jikijk yy    nji ,,1,  , it is possible to further reduce the number of 

variables in the formulation by considering only variables ijky  for  ni ,,1  and 

 nij ,, . 

 

  
  


n

i

n
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n

ij
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ijkij zyd
n

Min
1 11 1
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  (2.20) 

..ts  

 

 niy
n

k

iik ,,1,1
1




 (2.21) 

     nknijniyyy ijkjjkiik ,,1,,,1,,,1,1    (2.22) 

     nknijnizy kijk ,,1,,,,,,1,    (2.23) 

       nknijnizy kijk ,,1,,,,,,1,1,0,    (2.24) 
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In this formulation ijky  are binary variables, as can be seen by the integrality 

conditions (2.24), taking value 1 if and only if points i  and j  belong to cluster k  and 

kz  is a binary variable that takes value 1 if and only if cluster k  is not empty. Notice 

that 1iiky  if and only if point i  belongs to cluster k .  

The objective function in (2.20) was already explained in the previous 

formulation. Equations (2.21) ensure that each point belongs to exactly one cluster, 

as was the case for equations (2.14). Equations (2.22), similarly to equations (2.15), 

translate that if point i  belongs to cluster k  ( 1iiky ) and point j  belongs to cluster j  

( 1jjky ), then both clusters belong to cluster k  ( 1ijky ). The reciprocal is ensured 

by minimization of the objective function. Equations (2.23) allow identifying if the 

clusters are empty or not. If 1ijky  then 1kz , i.e., the cluster is not empty. 

Minimization of the objective function guarantees that 0kz  whenever cluster k  is 

empty.  

Additional valid inequalities, i.e., constraints that are satisfied by all admissible 

solutions, can be considered. The following inequalities are just some of the possible 

valid inequalities that can be used.  

 

 

     nknijniyy ijkiik ,,1,,,1,,,1,    (2.25) 

     nknijniyyy ijkjjkiik ,,1,,,1,,,1,2    (2.26) 

 nkzMy
n

i

n

ij

kijk ,,1,
1


 

 (2.27) 

 

Equations (2.25), similarly to equations (2.17) express that if both points i  and 

j  are in cluster k , then point i  is in cluster k . Equations (2.26) can be immediately 

obtained from equations (2.25). Just like equations (2.23), Equations (2.27) allow to 

identify if the clusters are empty or not. These equations could replace equations 

(2.23), as in the case of the previous formulation. 
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2.3.3 A Formulation using precedence 

  

 In the previous formulation, we do not take advantage of the fact that 

membership functions have their domain in R . Consider the linguistic variable in 

Figure 2.4. In the previous formulation, membership functions 1A  and 3A  can belong 

to the same cluster even if 2A  does not belong to this cluster. Intuitively this should 

not happen. The space of admissible solutions can be reduced if we consider an 

ordering of the membership functions.  

 

 

Figure 2.4: Example of a Linguistic Variable with three fuzzy sets 

 

Consider that an ordering of the membership functions to be clustered 

nAAA  21  exists. Then we can formulate the problem if the following way. 

 

 
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ijij zxd
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Min
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21
  (2.28) 

..ts  

 

11 z   (2.29) 

 1,,1,11  nizz ii   (2.30) 

 1,,1,01  nizz ii   (2.31) 
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   nijnixzz ijij ,,1,1,,1,1    (2.32) 

   nijnixMzz ijij ,,1,1,,1,)1(    (2.33) 

   ninzi ,,1,,,1    (2.34) 

     nijnixij ,,1,1,,1,1,0    (2.35) 

where iz  is the number of the cluster that contains membership function iA , 

 ni ,,1 , ijx  is a binary variable that takes value 1 if and only if membership 

functions iA  and jA  belong to the same cluster,    nijni ,,1,1,,1   , and 

M  is an arbitrarily large constant. 

 

 The equality in (2.29) guarantees that the first membership function is always 

in the first cluster.  Since  nizi ,,1,   are integers, inequalities (2.30) and (2.31) 

state that two consecutive membership functions iA  and  niAi ,,1,1   are in the 

same cluster ( ii zz 1 ) or 1iA  is in the cluster immediately after the cluster that 

contains iA  ( 11  ii zz ). Equations (2.32) and (2.33) make the correspondence 

between the two groups of variables. Membership functions iA  and  njiAj ,,1,,   

belong to the same cluster ( 1ijx ) if and only if they have the same cluster number 

( ji zz  ).  

 The objective function has the same meaning as the one in (2.20).  

 This formulation assumes that an ordering of the fuzzy sets exists. There are 

several methods for ordering fuzzy sets [Shu-Jen and Hwang 1992]. However, this 

ordering is not unique. It varies according to the method used. Therefore, an optimal 

solution to the previous formulation is only optimal for that particular ordering and not 

for the problem itself.   
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2.3.4 Quadratic Formulation 

 

The previous formulations were all linear formulations. It is also possible to 

formulate this problem as a quadratic integer programming problem. Although the 

problem is easy to formulate with a quadratic objective function, quadratic problems 

are usually more difficult to solve then linear ones. 
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 (2.37) 

 nkMcx k

n

i

ik ,,1,
1




 (2.38) 

 nkcx k

n

i

ik ,,1,
1




 (2.39) 

     njnixik ,,1,,,1,1,0    (2.40) 

   nkck ,,1,1,0   (2.41) 

 

where ijx  is a binary variable that takes value 1 if and only if membership function i  

is in cluster k ,  nki ,,1,  , kc  is a binary value that takes value 1 if and only if 

cluster k  is not empty,  nk ,,1 , and M is an arbitrarily large constant. 

 

 Equations (2.37) state that each membership function is in exactly one cluster. 

Equations (2.38) and (2.39) are equivalent to  nkcx k

n

i

ik ,,1,00
1




. By 

identifying if the clusters are empty or not it is possible to get the number of non-

empty clusters to be used in the objective function. 
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2.4 Summary 

 

The problem of reducing the number of membership functions in linguistic 

variables can be formulated as a clustering problem, as explained before. Therefore, 

this chapter started by introducing the clustering problem and the state of the art in 

this area (sections 2.1 and 2.2) and proceeded by discussing some integer 

programming formulations to the clustering problem (section 2.3).   



  Chapter 3. Exact Methods 

 - 57 - 

Chapter 3. Exact Methods 

 

 The initial purpose of the work in this thesis was not to solve the reduction of 

membership functions through exact methods. The complexity of clustering problems 

is one of the main reasons why exact methods are in general not efficient and so 

finding an optimal solution in a reasonable amount of time will most likely only be 

possible for small data sets, particularly if the number of clusters is unknown. 

Nevertheless it seemed important to explain, even briefly, how to approach the 

problem if a global optimal solution is intended. Therefore, this chapter presents only 

a brief introduction to some of the exact methods used for combinatorial and integer 

programming.  

 Finding an optimal solution of a discrete optimization problem is in general 

difficult and known methods are not efficient for large instances. The complexity that 

characterizes these NP-Hard problems has the consequence that the computational 

implementation of exact algorithms is in general too heavy in terms of memory and 

too time-consuming for large problems. Partial enumeration methods, like Branch-

and-Bound [Land and Doig 1960] or Branch-and-Cut [Wolsey 1998], are examples of 

such algorithms. The dimension of the instances above which is no more practical to 

apply an exact method varies according to the problems under study. This is one 

reason why exact methods should always be, at least, tested before switching to a 

heuristic approach. Cluster problems are among those problems for which a 

dimensionality above 40 variables makes the application of exact methods almost 

impractical [Lourenço 1995]. 

 

3.1 Branch-and-Bound 

 

The Branch-and-Bound algorithm [Land and Doig 1960] is a divide and 

conquer technique that implicitly enumerates all feasible solutions of an integer (or 

mixed integer) linear programming problem. The three main aspects of this algorithm 

are the branching, fathoming or pruning and bounding strategies used. The original 

problem is divided into smaller problems by the branching strategy, usually 
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represented by a solution tree. The bounding strategy tries to update the lower and 

upper bound on the optimal value of the objective function, L  and U , by solving the 

linear relaxations of the integer problems considered, providing information that 

allows pruning some of the branches of the solution tree. 

Consider the integer linear programming maximization problem defined by 

(3.1). 

 

  integers and0,,

..

1 





nxxx

bAxts

cxZMax



 (3.1) 

and its linear relaxation 

 

  0,,

..

1 





nxxx

bAxts

cxZMax



 (3.2) 

 

To initialize the upper bound U  the linear relaxation (3.2) at the root node is 

solved through a linear programming method. The lower bound is set to L .  

If the optimal solution *x  of the linear relaxation problem is integer, i.e., if 

nxx ,,1   are integers, then this is also the optimal solution of the integer problem.  

Otherwise, a branching variable jx  is chosen among the basic variables that have 

non-integer values in this solution and two sub-problems are considered by adding 

the constraints  *

jj xx   and   1*  jj xx  to (3.2), where  a  stands for the largest 

integer smaller or equal to a. 

 

The bounding strategy is applied for each new sub-problem. If an integer 

optimal solution for one of the sub-problems is found, we may try to update L  

because this solution is a feasible solution of the original problem. If subz  denotes the 

objective function value of such solution we have L =  subzL,max .  

The pruning strategy allows reducing the number of nodes in the solution tree 

that need to be explicitly visited. If a sub-problem satisfies one of the following 

conditions – pruning by optimality, pruning by bound or pruning by infeasibility 
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[Wolsey 1998] - the corresponding node will node be branched. These conditions are 

presented below: 

 

1. Pruning by optimality – an integer optimal solution to the sub-problem was 

found; 

2. Pruning by bound – Lzsub  , i.e., solutions found by branching this node 

will always be worse than a feasible known solution whose value is equal 

to the lower bound; 

3. Pruning by infeasibility – the sub-problem (and thus all possible branches 

of this node) is infeasible. 

 

The branching, bounding and pruning steps are iteratively applied to each sub-

problem until there are no remaining non-pruned sub-problems or until *ZUL  . In 

this case either an optimal solution was found or the problem is infeasible. It is also 

common to stop the algorithm when the amplitude of the interval  UL,  is small, 

where the concept small is given by considering an error measure and threshold for 

this error, but in this case optimality is not guaranteed. 

 

3.2 Branch-and-Cut 

 

The Branch-and-Cut algorithm [Wolsey 1998] is a hybrid of Branch-and-Bound 

and cutting plane algorithms. A cutting plane for an integer programming problem is a 

valid inequality, i.e., a constraint that is satisfied by all admissible solutions, that 

reduces the admissible region of the linear programming relaxation.  

 Several implementations of this algorithm exist. Basically, cutting planes are 

generated during the Branch-and-Bound algorithm. The goal is to find better bounds 

in each node in order to reduce the number of nodes to be visited. As stated in 

[Wolsey 1998], “though this may seem to be a minor difference, in practice there is a 

change of philosophy”. Instead of quickly solving the node problems, emphasis is 

given to improving the formulation at each node. 

 Other than generating cutting planes, additional strategies can be used to 

improve the formulation at each node. Some of these strategies consist of fixing 
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variables to the only possible value that can take part in an optimal solution or 

eliminating redundant constraints. The efficiency of a Branch-and-Cut algorithm 

depends on a good implementation of such strategies. Knowing when to include or 

eliminate constraints is a major aspect of this algorithm. Although general 

implementations exist, to solve a specific (and more complex) problem an 

implementation that takes advantage of the underlying problem structure should be 

developed.    

 

3.3 Branch-and-Price 

 

The Branch-and-Price algorithm [Barnhart, Johnson et al. 1998] is another 

variation of Branch-and-Bound. Just like in Branch-and-Cut, emphasis is given to the 

strategies employed in each node to obtain better solutions or better bounds. 

However, instead of using cutting planes (row generation) to improve the 

formulations at each node, column generation methods are used.   

This algorithm is especially suited for solving problems with a large number of 

variables. The basic idea is that in many problems most of the variables will have a 

zero value in the optimal solution. By using column generation, a master problem 

corresponding to the original problem but where only a subset of variables is 

considered can be more efficiently solved. To identify which columns should enter 

the master problem, subproblems based on the dual linear programming problem, 

called pricing problems, are solved. This allows choosing variables with positive 

(negative) reduced cost in the minimization (maximization) problem that should 

therefore enter the master problem. When no such variables exist and the integrality 

conditions are not satisfied, branching is performed as in the original Branch-and-

Bound algorithm. 

 

3.4 Computational Results 

 

To better understand the dimension of the problem and the difficulty of using 

exact methods for clustering some computational experiments were done. These 

experiments were done using data from the case study that will be presented in 
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Chapter 5. The formulation presented in section 2.3.1 was implemented in GAMS 

and latter run on CPLEX. In these experiments the distance between two 

membership functions i  and j , ijd , was chosen to be ijij sd 1 , where ijs  is the 

Jaccard Similarity given by (1.19) using the fuzzy minimum and fuzzy maximum, 

given by (1.10)  and  (1.11), as intersection and union operators.  

All experiments were done in Pentium(R) 4 CPU 2.6 GHz, 504 MB of RAM. 

First we considered linguistic variables with 12 membership functions each. 

The results are summarized in Table 3.1. Instead of running CPLEX until an optimal 

solution was found (and proved to be optimal) a threshold of 10% for the relative gap 

between the lower and upper bounds on the objective function was used as a 

stopping criterion. As can be seen in Table 3.1, CPLEX took less than 2 minutes – 

40.41 seconds in average – to stop. Given these results we ran CPLEX for linguistic 

variables with 54 membership functions to see if exact methods could still be used to 

solve these problems in a reasonable amount of time. However, for these problems 

CPLEX stopped because lack of memory, without returning an optimal solution. 

These results show what was already expected by the combinatorial nature of 

clustering problems: exact methods can only deal with very small data sets. 

 

   

 
Solution 

Best 
Possible 

Absolute 
Gap 

Relative 
Gap 

Elapsed Time 
(sec.) 

Number of 
Clusters 

Rotation Current 0.767505 0.690776 0.076729 0.099972 95.063 8 

Rotation Voltage 0.898916 0.809514 0.089402 0.099455 33.672 8 

Rotation Speed 0.768401 0.694777 0.073624 0.095815 19.313 7 

Thrust 0.939391 0.845645 0.093746 0.099794 41.172 10 

Torque 0.75501 0.680006 0.075003 0.099341 45.922 7 

Translational Voltage 0.58426 0.527426 0.056835 0.097276 30.219 5 

Translational Current 0.555146 0.501321 0.053825 0.096956 26.531 4 

Translational Speed 0.684707 0.616784 0.067923 0.099199 31.422 7 

 

Table 3.1: Computational Results 
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3.5 Summary 

 

In this Chapter some exact methods for solving integer problems were briefly 

described. These methods consist of a set of strategies to methodically examine the 

search space of an integer or mixed integer problem without having to implicitly 

enumerate all possible solutions. Even though these methods allow to optimally solve 

many problems that by explicit enumeration could not be solved in a reasonable 

amount of time, for a wide class of combinatorial problems the search for an optimal 

solution is still too time-consuming. When this is the case, heuristic methods such as 

the ones described in Chapter 4 can provide good quality solutions with less 

computational effort without guaranteeing optimality. 
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Chapter 4. Heuristic Methods Based on Local 

Search 

 

In real applications, the dimension and complexity of combinatorial and integer 

problems and the need to find good solutions in useful time have lead to the 

development of algorithms that take advantage of the problem structure to achieve 

good solutions (not necessarily optimal). Computational implementations of these 

algorithms, contrary to exact methods, are quite efficient regarding time and memory. 

Whenever the application of global optimization methods is not advisable, it is still 

usually possible to find good quality solutions by using heuristic methods. 

As was pointed out in section 2.2.4, the most classical clustering methods in 

statistics and data mining are heuristic and can therefore be trapped at local optima. 

For this reason, a variety of metaheuristics have been applied to the clustering 

problem. 

In this thesis a Scatter Search algorithm was implemented. Although this 

metaheuristic is not as well-known as the metaheuristics described in section 2.2.4, it 

already proved to be efficient at finding good quality solutions for many problems. 

Scatter Search has been applied to find solutions to the nodes graph coloring 

problem [Jean-Philippe and Jin-Kao 2002], to vehicle routing problems [Russell and 

Chiang 2006], to clustering problems [Pacheco 2005; Abdule-Wahab, Monmarché et 

al. 2006], among many other applications.  

 Both a heuristic and a metaheuristic to solve the automatic clustering problem 

were implemented in Matlab. Section 4.1 describes a heuristic approach called K-

Means++ [David and Sergei 2007]. Section 4.2 describes the general Scatter Search 

algorithm and the details of this particular implementation. In Section 4.3 

computational results on two case studies are presented in order to compare these 

two implementations.  
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4.1 A heuristic approach: K-means ++ 

 

One of the most used algorithms for clustering data is the K-Means algorithm 

[McQueen 1967], already described in section 2.2.2. The algorithm starts by 

choosing initial K  cluster centres from the original data X . After the initialization, a 

partition of the data is determined by assigning each point to the cluster with closest 

centre. After this assignment the centroids of each cluster are calculated and the 

points are reassigned to the clusters regarding the closeness to the centroids. Again 

the centroids are recalculated and the algorithm proceeds in the same way until 

some stopping criterion is met. 

A variation of this method, called K-Means++ [David and Sergei 2007], was 

implemented in Matlab for finding a feasible solution of the clustering problem. This 

method differs from the original K-Means algorithm in the way the initial clusters are 

chosen. Sections 4.1.1 and 4.1.2 describe the K-Means++ algorithm used for 

partitioning n  points into K  clusters. Section 4.1.3 discusses how to choose the 

correct number of clusters by evaluation of cluster validity indexes. 

 

4.1.1 Initialization 

 

The K-Means algorithm starts by choosing K  cluster centres from the original 

data to be clustered. Usually the cluster centres are chosen uniformly at random from 

the original data, i.e., they are chosen with equal probabilities. The K-Means++ 

[David and Sergei 2007] differs from the original K-Means algorithm in the way the 

initial cluster centres are chosen. Cluster centres are still chosen randomly, but they 

are not chosen uniformly.  After the first cluster centre is chosen uniformly at random 

from the original data, the remaining 1K  centres are chosen proportionally to their 

distance to the centres already chosen, a method referred in [David and Sergei 2007] 

by “ 2D  weighting”.  The empirical reasoning of this rule is to diversify the location 

centres within the set of points to allow for a better assignment of points to clusters. 

Let )(xD  denote the shortest distance from a point Xx  to the closest centre 

already chosen. In this work we used the Euclidean distance and so )(xD  is given 

by:  
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  ),(min)( i
Si

cxdxD


  (4.1) 

where S  is the set of all already chosen cluster centres and ),( d  is the Euclidean 

distance. 

Then the necessary steps to perform the cluster centres initialization are the 

following: 

 

1. Choose an initial centre uniformly at random from X , i.e., ,
1

n
pi   

ni ,,1  , where ip  denotes the probability of choosing ix . 

2. Choose the next centre randomly according to the probability distribution  
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xD
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1

2

2

)(
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, ni ,,1 . 

3. Repeat step 2 until K  centres have been chosen. 

 

We should notice that the probability of choosing a point is proportional to the 

distance to the closest already chosen centre. So the further away the point is the 

likely it is that it will be chosen as a new centre. After the K  initial cluster centres are 

chosen, the algorithm proceeds as the original K-Means.  The iterative procedure is 

described in the next section. 

 

4.1.2 Iterative Procedure 

 

Now that the initial cluster centres are chosen, the remaining points are 

assigned to its closest cluster and the cluster centroids are updated. This procedure 

is repeated until a stopping criterion is met. The steps of this procedure, after the 

initialization phase, are summarized below.  

1.  Assign each point to the closest centre. 

2. Update cluster centres by recalculating the cluster centres according to 

(2.9). 

3. Repeat steps 1 and 2 until the centres no longer change. 
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In addition, a maximum number of iterations could be used as a stopping 

criterion. However, due to the rapid convergence of the algorithm, in the 

computational experiments that will be presented in section 4.3, it was not necessary 

to prematurely stop the algorithm. 

 

4.1.3 Choosing the number of clusters 

 

The previous algorithm partitions n  data points into K  clusters (or less, 

because empty cluster might be formed). However, when the number of clusters is 

not known a priori, the correct number of clusters has to be estimated. Usually this is 

done by running the algorithm for a range of values for K  and choosing the best 

partition according to some cluster validity index.  

In [Ujjwal and Sanghamitra 2002] several validity indexes for clustering 

algorithms are compared using different clustering algorithms. The experiments 

conducted by the authors lead them to the following conclusion: “Compared to the 

other considered validity indexes, I  is found to be more consistent and reliable in 

indicating the correct number of clusters”. This index is defined by equation (4.2). 
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Kji
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 ,,1,
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

 (4.4) 

 In these equations  nxxX ,,1   is the data to be clustered and  
nKkjuU


  is 

a partition binary matrix representing a possible clustering of the data into K  disjoint 

clusters, i.e., 1kju  if and only if jx  is in the kth cluster. The centroid of cluster k  is 

denoted by kc . To find the correct number of clusters we chose the value of K  which 

maximizes )(KI .  
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 Analyzing )(KI  we see that as the error KE  decreases, the factor 
KE

E1  

increases. It is always possible to obtain a partition with zero error by considering n  

clusters, each consisting of a single data point. To balance the error with the number 

of cluster the factor 
K

1
 is introduced. As the number of clusters decreases, this factor 

increases. To achieve well separated clusters, the factor KD  should be large, that is, 

the maximum distance between two cluster centres should be large. The previous 

considerations intuitively justify that )(KI  should be maximized. 

 

 

 

4.2 Scatter Search 

 

Scatter Search [Glover 1977] has some similarities to Tabu Search and Genetic 

Algorithms. The use of memory is one of the main features of Tabu Search and is 

usually present in Scatter Search. Such as Genetic Algorithms, Scatter Search is an 

evolutionary algorithm. While in Genetic Algorithms an usually large population is 

evolved through crossover and mutation operations, in Scatter Search instead of a 

population it is used a smaller reference set (composed of good quality solutions and 

diverse solutions) and it plays the most important role in the algorithm. 

Essentially, Scatter Search operates on a small set of solutions, the reference 

set, and consists on the application of the following methods, which can be 

implemented in different ways, according to the problem at hand: 

1. A Diversification Generation (DG) method to produce a collection of diverse 

trial solutions from which the initial reference set is built; 

2. An Improvement (Imp) method to enhance the quality of trial solutions;  

3. A Reference Set Update (RSU) method responsible for constructing a 

reference set of both high quality solutions and diverse solutions from the 

collection of solutions obtained by the diversification generation method and 

of updating this reference set when new solutions are created during the 

algorithm;  
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4. A Subset Generation (SG) method that, in each iteration of the algorithm, 

creates a collection of subsets of solutions belonging to the reference set, 

such that the solutions in each subset are to be combined through the 

solution combination method;  

5. A Solution Combination (SC) method that takes a subset of solutions given 

by the subset generation method and generates one or more new trial 

solutions. 

 

 

 

Figure 4.1: Scatter Search Algorithm 

 

The way the previous methods operate is summarized in Figure 4.1. The 

original set is created by the Diversification Generation Method (DG). Each solution 

in this set is then improved by the Improvement Method (Imp) before the Reference 

Set Update Method (RSU) constructs the reference set, selecting the best quality 
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solutions in the original set, along with diverse solutions. The subsets of solutions to 

be combined through the Solution Combination Method (SC) are chosen by the 

Subset Generation Method (SG). The solutions resulting from this combination are 

improved before the Reference Set Update Method (RSU) updates the reference set. 

The process continues until some stopping criterion is met.   

The scatter search algorithm that was implemented is based on the algorithms 

in [Pacheco 2005] and [Abdule-Wahab, Monmarché et al. 2006]. The next sections 

describe the implementations of each of the five methods mentioned above.  

 

4.2.1 Fitness Function 

 

In  [Pacheco 2005], quality of solutions was measured by the sum of squared 

distances from each point to the centroid of  its cluster. This measure cannot be used 

in the automatic clustering problem, where the number of clusters is not defined a 

priori. Using this measure when the number of clusters can vary, yields the 

construction of as many clusters as the number of points to be clustered, giving a 

sum of the squared distances from each point to the centroid of its cluster (the point 

itself) of zero. Therefore, a different quality measure was used. The validity index I  

described in section 4.1.3 and defined by equations (4.2) - (4.4) was used as fitness 

function, to be maximized.  

 

4.2.2 Diversification Generation Method 

 

The diversification generation method used was proposed by Pacheco 

[Pacheco 2005], based on GRASP – Greedy Randomized Adaptive Search 

Procedure. However in this work the number of clusters is predefined by the user. To 

achieve an automatic clustering procedure, as it is aimed in our work, the correct 

number of clusters should be determined by the algorithm. Therefore, before creating 

a new solution with the diversification generation method, it is necessary to generate 

a random number of clusters, i.e., an integer K  between 1 and maxK , where maxK  is 

the maximum number of clusters allowed. 
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 Given the number of clusters K  to be considered for the generation of a 

solution, the cluster centres  KccS ,,1   are randomly chosen from the data set X  

in the following way [Pacheco 2005]: 

 

1. Find *j
x , the farthest point from the centroid of X  and do *1 j

xc   and  1cS  . 

Set 2h . 

2. Fix  0 ≤ ≤  and while KS  do: 

a. Determine   SXxSccx jlljj \,:min   

b. Determine  SXx jj \:maxmax   

c. Do  max:  jjxL  

d. Choose Lx
j
*  uniformly at random and do *jh xc  ,  hcSS   and 

1 hh . 

 

If 0 , the cluster centres are chosen completely at random from the original 

data X . If 1  the process is deterministic if there is only one point in L, and so the 

only farthest point from the centres already chosen will enter S . Therefore, generally 

speaking, the parameter   controls the level of randomization of the process.  

A memory structure is used to avoid repetition of centres and consequently of 

solutions. The number of times that a point jx  is selected as a centre is stored in 

)( jfreq  and the values of j  in subsequent iterations are modified according to 

equation (4.6), where: 

 

  jjfreqfreq  :)(maxmax  (4.5) 

    

and   controls the importance of memory in the diversification generation method.  

 

 

max

max

' )(

freq

jfreq
jj    (4.6) 
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Equation (4.6) decreases the value of j  proportionally to )( jfreq  and so the 

possibility of inclusion of jx  in L  also diminishes.   

After the clusters centres are defined, the remaining points are assigned to 

these clusters. This is done with the goal of minimizing the sum of squared distances 

from each point to its cluster centre. When the number of clusters is not 

predetermined, minimizing the sum of squared distances from each point to its 

cluster centre yields a solution where each point is a centre itself and we have as 

many clusters as points. However, since for a particular solution to be generated the 

number of clusters is previously determined, the remaining points can be assigned in 

order to minimize this measure, as in [Pacheco 2005], in the following way: 

   

1. Let A  be the set of unsigned points, i.e., SXA \ . 

2. For each point Ax j   and each cluster KiCi ,,1,   determine ij  given by 

 
2

1
ji

i

i

ij xc
C

C



  (4.7) 

where ic  is the centroid of iC . 

3. Calculate  KiAx jijji
,,1,:min**  . 

4. Assign *j
x  to *i

C and set  *\
j

xAA  . 

5. If 0A return to 2, else stop. 

 

The formula in (4.7) gives the increase in terms of sum of squared distances 

from each point to its cluster centre when point jx  is assigned to cluster iC . Steps 1 

through 5 define a greedy heuristic for assigning the remaining points to the clusters 

whose centres were previously chosen. 

This algorithm is used to generate sizeOS  initial solutions, called the original set 

that will serve as basis for constructing the reference set.  
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4.2.3 Improvement Method 

 

The improvement method is used to enhance the quality of the solutions 

generated both during the diversification phase and after the combination of two 

solutions. In this thesis it was chosen to implement the improvement method 

presented in [Abdule-Wahab, Monmarché et al. 2006], based on the K-Means 

algorithm [Gan, Ma et al. 2007]. The following steps are taken a number of times 

equal to MaxIterImp, where MaxIterImp is a parameter to be chosen by the user. 

 

1. For each point Xx j   do: 

a. For each cluster KiCi ,,1,   determine ijv  given by 

 
22

11
jl

l

l

ji

i

i

ij xc
C

C
xc

C

C
v 





  (4.8) 

where jx  currently belongs to cluster lC  and ic   and lc  are the 

centroids of iC  and lC , respectively. 

b. Determine  ijljKj va  ,,,1minarg  . 

c. If 0a  reassign jx  to aC . 

2. Compute the fitness of the new solution obtained. 

3.  If the fitness of the new solution, given by equation (4.2) is better than the 

original solution, replace the original solution by the new solution. 

 

The formula in (4.8) is given by Spath [Spath 1980] to simplify the K-Means 

algorithm and approximates the increase in terms of sum of squared distances from 

each point to its cluster centre when point ix  is moved from cluster lC  to cluster jC .  

 

4.2.4 Reference Set Update Method 

 

The reference set, RS , is composed of 1b  high quality solutions and 2b diverse 

solutions. To construct the initial reference set, the first 1b  best solutions are inserted 

in the reference set, where the quality of solutions is given by the fitness function 
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presented in section 4.2.1.  Next, 2b  solutions are added one by one to reference set 

according to its diversity. In this work  it was used the diversity measure proposed by 

Pacheco[Pacheco 2005]. Let ),(  dif  be the number of assignments in solution   

that are different from the assignments in solution  . For instance, suppose that we 

have an instance with 5 objects and 4 clusters. Consider two solutions,  2,3,2,1,11 y  

and  3,4,2,2,12 y , where the i -element of the vector corresponds to the cluster to 

which object i  is assigned. In this case ),(  dif  is equal to 3. 

 

Iteratively, it is chosen to enter the reference set, the solution that maximizes: 

 

  RSdif   :),(min)(min  (4.9) 

 

In this implementation the reference set is only updated when better quality 

solutions are found. Other implementations [Abdule-Wahab, Monmarché et al. 2006] 

also update the reference set according to the measure of diversity, reinforcing the  

diversification strategy.  

 

4.2.5 Subset Generation Method 

 

In each iteration of the algorithm, the subsets of solutions from the reference 

set that will be latter combined by the solution combination method consist of pairs of 

solutions. The collection of subsets created through this method is composed of all 

pairs of solutions from the reference set  ji, , 1,,1 21  bbi  , 21,,2 bbj   , 

ji  . Supposing that we have 3 solutions, we should consider the following subsets 

(1,2), (1,3), (2,3). 

Each element of the collection of subsets generated by this method serves as 

an input to the solution combination method that generates one or more trial 

solutions that, after being enhanced by the improvement method in section 4.2.3, can 

enter the reference set as described in section 4.2.4. 
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4.2.6 Solution Combination Method 

 

To combine two solutions it was implemented the path relinking strategy 

described in [Pacheco 2005]. The idea of path relinking is that, in the “path” between 

two good quality solutions other good quality solutions should exist. A “path” is a 

series of simple movements that lead from one solution to another. In this case we 

can start on one solution and move points from one cluster to another until the 

second solution is reached. For instance, consider two solutions,  2,3,2,1,11 y  and 

 3,4,2,2,12 y  to be combined. A path between these solutions could be given by: 

       3,4,2,2,12,4,2,2,12,3,2,2,12,3,2,1,1  , where in each movement the first point 

assigned differently than in 2y  is assigned as in 2y . Solutions in this path can be 

chosen as trial solutions.  

As in [Pacheco 2005], given two solutions, the number of trial solutions that 

will be generated through the solution combination method varies. If the two solutions 

to be combined were chosen from the 1b  high quality solutions in the reference set, 

three trial solutions will be generated. If the two solutions were chosen from the 2b  

diverse solutions in the reference set, only one solution will be generated. Otherwise, 

two solutions will be created. These solutions are randomly chosen from the 

solutions in the path. 

 

4.2.7 The Final Algorithm 

 

After the basic methods of the scatter search algorithm have been described, 

we may now describe the final algorithm.  

The algorithm starts by generating the original set through the diversification 

method. The best quality solutions and most diverse solutions are chosen to form the 

reference set before the iterative part of the algorithm starts. In each iteration, the 

subset generation method forms all subsets consisting of pairs of solutions from the 

reference set. These pairs of solutions are then combined through the solution 

combination method and the generated trial solutions are improved through the 

improvement method. The reference set update method is then responsible for 

deciding if any of the generated solutions should replace one of the solutions in the 
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reference set. The iterative procedure continues until there are no new elements in 

the reference set. The best solution is then returned. 

 

4.3 Computational Results 

 

In this section computational results on two case studies will be presented. In 

both case studies real world data sets are used. Fuzzyfication of the data is needed 

before using the previously described algorithms. The reason for fuzzyfying data 

comes either from a way to deal with different source of uncertainty or to categorize 

numerical data. Depending on the application that it will be given to the fuzzified data, 

it may be needed to reduce the number of membership functions to simplify the 

system that will use this functions. The idea is to reduce the number of terms in each 

linguistic variable by merging membership functions in the same cluster. These 

linguistic variables could then be used, for instance in a fuzzy inference system or 

other fuzzy model. All experiments were conducted in a Intel Core2 Duo, CPU 2.2 

GHz, 2 GB of RAM. 

 

 

4.3.1 Wisconsin Diagnostic Breast Cancer Data Set 

 

The data used in this section is taken from [Asuncion 2007]. Wisconsin 

Diagnostic Breast Cancer (WDBC) data set contains 569 samples of data describing 

characteristics of the cell nuclei present in digitalized images of a fine needle aspirate 

(FNA) of a breast mass. Ten real-valued features were computed for each cell 

nucleus [Asuncion 2007]: 

 

 

a) Radius (mean of distances from centre to points on the perimeter) 

b) Texture (standard deviation of gray-scale values) 

c) Perimeter 

d) Area 

e) Smoothness (local variation in radius lengths) 
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f) Compactness 

g) Concavity (severity of concave portions of the contour) 

h) Concave Points (number of concave portions of the contour) 

i) Symmetry 

j) Fractal dimension (“coastline approximation” -1) 

 

 

 

For each of these features, the mean, standard error and mean of the three 

largest values (“worst”) of these features were computed for each image. Therefore, 

each sample has the following 32 attributes: 

 

 

1. ID number 

2. Diagnosis (M = malignant, B = benign) 

3. Mean Radius 

4. Mean Texture 

5. Mean Perimeter 

6. Mean Area 

7. Mean Smoothness 

8. Mean Compactness 

9. Mean Concavity 

10. Mean Concave Points 

11. Mean Symmetry 

12. Mean Fractal dimension 

13. Radius  Standard Deviation 

14. Texture  Standard Deviation 

15. Perimeter Standard Deviation 

16. Area Standard Deviation 

17. Smoothness Standard Deviation 

18. Compactness Standard Deviation 

19. Concavity Standard Deviation 

20. Concave Points Standard Deviation 

21. Symmetry Standard Deviation 
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22. Fractal dimension Standard Deviation 

23. Worst Radius 

24. Worst Texture 

25. Worst Perimeter 

26. Worst Area 

27. Worst Smoothness 

28. Worst Compactness 

29. Worst Concavity 

30. Worst Concave Points 

31. Worst Symmetry 

32. Worst Fractal dimension 

 

 

 

 

In this thesis only features 3 through 22 where used.  The mean radius can be 

used as a measure of the cell nuclei radius. The radius standard deviation gives a 

measure of the error associated with this measure. For this reason it is advisable to 

fuzzify the data as a way to deal with uncertainty.  To do so we represent each 

sample’s radius by a symmetric triangular membership function   2, , as described 

in section 1.3.1 with  equal to the mean radius. The width of the triangular 

membership functions was chosen to be 4  because in a random variable following 

a normal distribution, approximately 95% of the samples are expected to belong to 

the interval   2,2  . The same fuzzification scheme, and with the same 

reasoning, was used for the rest of the features, resulting in 10 linguistic variables 

with 569 membership functions each, depicted in Figure 4.2 through Figure 4.11. The 

objective is to reduce the number of membership functions in each linguistic variable 

using the algorithms described in Chapter 4. The resulting linguistic variables could 

then be used in a fuzzy inference system or other fuzzy model to diagnose the type 

of cancer. The construction of such model is outside the scope of this thesis. 
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Radius 

 

Figure 4.2: Linguistic Variable Radius 

 

 

Texture 

 

Figure 4.3: Linguistic Variable Texture 
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Perimeter 

 

Figure 4.4: Linguistic Variable Perimeter 

 

 

Area 

 

Figure 4.5: Linguistic Variable Area 
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Smoothness 

 

Figure 4.6: Linguistic Variable Smoothness 

 

 

Compactness 

 

Figure 4.7: Linguistic Variable Compactness 
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Concativity 

 

Figure 4.8: Linguistic Variable Concativity 

 

 

Concave Points 

 

Figure 4.9: Linguistic Variable Concave Points 
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Symmetry 

 

Figure 4.10: Linguistic Variable Symmetry 

 

 

Fractal Dimension 

 

Figure 4.11: Linguistic Variable Fractal Dimension 
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4.3.1.1  Computational results 

 

The K-Means++ algorithm, described in section 4.1, was applied to each 

linguistic variable previously presented. The number of clusters was estimated by 

running the algorithm for 15681  nK  and choosing the iteration that maximizes 

the evaluation measure I  given in (4.2). For nK   the evaluation measure I  is not 

defined since 0nE , as can be seen in (4.3). Figure 4.12 and Figure 4.14 show the 

evolution of I  using K-Means++ for 5681  K , for linguistic variables Radius and 

Texture. For all other linguistic variables in this case study the overall behaviour is 

the same. It seems that I  increases with K . However, looking at Figure 4.13 and 

Figure 4.15 it is possible to see that this is not always that case.  

 

 

 

Radius - Evaluation Measure 

 

Figure 4.12: Evaluation measure I using K-means++ for 5681  K , linguistic 

variable Radius 
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Radius - Evaluation Measure – zoom 

 

Figure 4.13: Evaluation measure I using K-means++ for 5001  K (zoom in of 

previous plot) 5681  K , linguistic variable Radius 

 

 

Texture - Evaluation Measure 

 

Figure 4.14: Evaluation measure I using K-means++ for 5681  K , linguistic 

variable Texture 
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Texture - Evaluation Measure – zoom 

 

Figure 4.15: Evaluation measure I using K-means++ for 5001  K (zoom in of 

previous plot), linguistic variable Texture 

 

 

 Running the Scatter Search algorithm from section 4.2 with 1max  nK  yield 

solutions with 1n  clusters. This is easily explained by the behavior of I  depicted in 

Figure 4.12 and Figure 4.14. Given this results it was necessary to redefine the 

maximum number of clusters allowed, maxK . Taking into account Figure 4.13 and 

Figure 4.15, it was chosen 100max K . Therefore we are interested in finding a 

partition of the data into less that 101 clusters that maximizes the cluster validity 

index I .  

The Scatter Search algorithm was run with several values for the parameters 

 ,  , MaxIterImp and 1b . To reduce the number of parameters to be analyzed, the 

number of good quality solutions and of diverse solutions to be included in the 

reference set was chosen to be equal ( 21 bb  ) and the original set was chosen to be 

10 times the size of the reference set ( )(*10 21 bbOSsize  ). This last choice is 

recommended in [Martí, Laguna et al. 1997; Abdule-Wahab, Monmarché et al. 2006]. 

The algorithm was run until no new elements entered the reference set. Since 

random numbers are used during the algorithm, for each combination of values of the 

parameters 5 experiments were run. Only 5 runs of each experiment is clearly not 
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enough to take any statistically valid conclusions, the purpose of these experiments 

was only to see how results were influenced by different choices of the several 

parameters involved.  

Only the results relative to the linguistic variable Radius will be discussed in 

more detail. Similar conclusions were found for the rest of the linguistic variables in 

this case study. Final results will be presented for all linguistic variables. 

 

The first experiments were conducted with no improvement method (i.e. 

MaxIterImp 0 ) and all possible combinations of  1;8.0;5.0;0 ,  5.0;0  and 

 5;21 b , with the purpose of analysing the influence of the parameter   in the 

algorithm. In section 4.2.2 it is stated that the parameter   controls the level of 

randomization used when choosing cluster centres. When 0 , the cluster centres 

are chosen completely at random from the original data X .  In Figure 4.16 it is clear 

that this randomness affects the standard deviation of the fitness of solutions 

returned by the algorithm. When 0  the standard deviation of results is much 

higher than for larger values of  . This standard deviation means that it is likely to 

achieve very good results but also very bad results, a characteristic that is 

undesirable in an algorithm. In fact, although in terms of the best result found for 

each 5 experiments a choice of 0  seems to produce good results (Figure 4.17), 

the same does not happen in terms of average results (Figure 4.18). Given this 

results, no further experiments were done with 0 .  

 

 

Figure 4.16: Influence of   in fitness function I  standard deviation 
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Figure 4.17: Influence of   in best results obtained for fitness function I  

 

 

Figure 4.18: Influence of   in mean results for fitness function I   

 

The parameter   controls the weight given to the memory in the process of 

choosing the cluster centres when creating initial solutions, as given by (4.6). Notice 

that it does not make sense to study the importance of this parameter for values of   

very close to zero since the choice of the cluster centres is close to random. In this 

case, although the quantities j  are replaced by '

j , this does not significantly 

change the set L  from which the cluster centres are chosen. As can be seen in 

Figure 4.19, there seems to be an improvement in terms of average results in using 



 Chapter 4. Heuristic Methods Based on Local Search 

 - 88 - 

this memory during the creation of the original set. Therefore, no further experiments 

for 0  will be discussed. 

 

 

Figure 4.19: Influence of   in mean results for fitness function I  

 

By considering a larger reference set we expect to obtain better results but 

worse computational efficiency. Not only does it take more time to generate the 

original set (since the size of the original set was chosen to be 10 times the size of 

the reference set), but also the number of subsets of solutions to be combined 

increases exponentially. In Figure 4.20 we can see that increasing the size of the 

reference set does indeed produce better quality results, but this improvement is 

achieved at a computational cost, as can be seen in Figure 4.21. However, in this 

case study, we are considering an increase from an execution time of around 1 

minute to around 3.5 minutes. Due to these low execution times, we can afford to 

consider a larger reference set to obtain better solutions. In other applications where 

the number of membership functions to merge is higher, this increase in execution 

time could be unaffordable. Reference sets are typically small. Only two small values 

for 1b  were considered, 21 b  and 51 b . This is due to the way the size of original 

set is related to this parameter. Since it was chosen that 21 bb   and 

)(*10 21 bbOSsize  , we are considering original sets with 40 and 100 solutions. 

Larger original sets would mean that the initial diversification achieved would be such 

that a very good quality solution was probably already found in this first step of the 

algorithm.   
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Figure 4.20: Influence of 1b  in mean results for fitness function I  

 

 

 

Figure 4.21: Influence of 1b  in execution time 

 

 

 

Until this point experiments were done without the Improvement Method. This 

way the influence of the parameters being analyzed in the solutions obtained was 

clearer. The computational cost, in terms of execution time (Figure 4.23), of using the 

Improvement Method should lead to an improvement in the quality of the solutions 

obtained by the algorithm. However, this was not always the case, as can be seen in 
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Figure 4.22.  The increase in execution time when using MaxIterImp 5  is 

considerably high and does not result in a significant improvement in the quality of 

solutions. Considering MaxIterImp 2  the increase in terms of execution time is not 

high (from approximately 1 minute to approximately 3 minutes) but only improves the 

average quality of solutions in some of the sets of experiences made. This result was 

unexpected. Since only 5 experiments per each choice of parameters were made, 

these results could be explained by the weak estimate of the actual mean values. 

Since the increase in execution time for using MaxIterImp 2  is not too high, this 

value will be considered for this parameter. Also, the two first combinations of 

parameters seem to give consistently better results than the rest. From these two 

sets of experiences, the second presents slightly better average results. Therefore, in 

the results presented in Table 4.1 and Figure 4.24 through Figure 4.33 were obtained 

with 5.0 , 8.0 , 51 b  and  MaxIterImp 2 . Figure 4.24 through Figure 4.33 

show, for both algorithms, a scatter plot of the centre values versus the width of the 

triangular membership and the final configuration of the linguistic variable. 

 

 

 

 

Figure 4.22: Influence of Improvement Method in mean  

results for fitness function I  
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Figure 4.23: Influence of Improvement Method in execution time 

 

 

 

 

To better understand what happens during the algorithm a study of how the 

reference set evolves was conducted. Surprisingly, for all experiments conducted the 

reference set was only updated a few times after its initial construction and the best 

solution found was always generated during the first part of the algorithm. This result 

was not expected. Unfortunately, the second part of the Scatter Search algorithm is 

not producing good solutions. Still, Table 4.1 shows that the Scatter Search returned 

better results than K-Means++ for almost all variables. The first part of the algorithm 

is sufficient to obtain better quality solutions than the K-Means++. The computational 

time of the Scatter Search was expected to be much higher than the computational 

time of the K-Means++. This did not happen only because the Scatter Search 

algorithm stopped after the first iteration of the second part of the algorithm.  
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K-Means++ Scatter Search 

Time 

(sec.) 
Nr. Clusters I 

Time 

(sec.) 

Nr. 

Clusters 
I 

Radius 426,3904 4 18,9609 352,8277 3 26,9636 

Texture 398,9221 3 16,8796 344,1798 5 30,18262 

Perimeter 463,4574 7 830,33 371,4513 3 1286,17 

Area 416,6392 6 426500,7 394,1495 3 668728,5 

Smoothness 419,2019 3 0,000143 413,9573 4 0,0002044 

Compactness 407,7729 3 0,004632 308,5648 3 0,004547 

Concativity 418,1248 3 0,080241 305,7193 3 0,080673 

Concave Points 405,9813 3 0,002273 470,995 3 0,002743 

Symmetry 411,8899 3 0,000921 672,4182 3 0,000932 

Fractal Dimension 413,8989 4 0,000167 679,9634 3 0,000255 

 

Table 4.1: K-Means++ vs Scatter Search (best results) 
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Radius 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.24: Best Results for Linguistic Variable Radius 
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Texture 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.25: Best Results for Linguistic Variable Texture 
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Perimeter 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.26: Best Results for Linguistic Variable Perimeter 
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Area 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.27: Best Results for Linguistic Variable Area 
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Smoothness 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.28: Best Results for Linguistic Variable Smoothness 
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Compactness 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.29: Best Results for Linguistic Variable Compactness 
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Concativity 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.30: Best Results for Linguistic Variable Concativity 
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Concave Points 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.31: Best Results for Linguistic Variable Concave Points 
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Symmetry 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.32: Best Results for Linguistic Variable Symmetry 
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Fractal Dimension 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.33: Best Results for Linguistic Variable Fractal Dimension 
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4.3.2 Credit Approval Data Set 

 

The data used in this section is taken from [Asuncion 2007]. This data concerns 

credit approval information. Credit approval information is usually prone to 

uncertainty. On one hand, attributes like annual income are usually average 

information rather than absolute information. On the other hand, misinformation from 

the credit candidates, for instance undeclared income, provides additional uncertainty 

to the values presented. Therefore, it is natural to use fuzzy models when 

constructing automatic credit approval applications. Credit Approval (CA) data set 

contains 690 samples (665 after removing missing data) of data concerning credit 

approval information. Unfortunately, for confidentiality purposes, all attribute names 

and values have been changed to meaningless symbols. Each sample is composed 

of features A1 through A16. Ahead each variable its possible values are presented 

[Asuncion 2007]: 

 

1. A1 – b, a 

2. A2 – continuous 

3. A3 – continuous 

4. A4 - u, y, l, t 

5. A5 – g, p, gg 

6. A6 – c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff 

7. A7 – v, h, bb, j, n, z, dd, ff, o 

8. A8 – continuous 

9. A9 - t, f 

10. A10 – t, f 

11. A11 – continuous 

12. A12 – t, f 

13. A13 – g, p, s 

14. A14 – continuous 

15. A15 – continuous 

16. A16 - +,- (class attribute) 
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Only continuous attributes will be considered because other attributes are 

already categorized and the number of categories is already small. Once again, 

symmetrical triangular membership functions will be used. Since there is no 

information on the attributes and no additional information on accuracy of the data, 

triangular membership functions  
jijv 2,  where used, where ijv  is the value of 

attribute j  for sample i  and j  is the standard deviation of attribute j .  Of course all 

membership functions from the same linguistic variable, representing an attribute, will 

have the same width. In reality, the width of the membership functions would vary 

according to additional information collected from experts or from credit candidates. 

The six linguistic variables in this case study are represented in Figure 4.34 through 

Figure 4.39.  

 

 

 

A2 

 

Figure 4.34: Linguistic Variable A2 
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A3 

 

Figure 4.35: Linguistic Variable A3 

 

 

 

A8 

 

Figure 4.36: Linguistic Variable A8 
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A11 

 

Figure 4.37: Linguistic Variable A11 

 

 

 

A14 

 

Figure 4.38: Linguistic Variable A14 
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A15 

 

Figure 4.39: Linguistic Variable A15 

 

 

4.3.2.1 Computational Results 

 

The same study conducted for the linguistic variables in the previous case 

study was conducted for the six linguistic variables in this case study. The K-

Means++ algorithm, described in section 4.1, was applied to each of the linguistic 

variables.  

Figure 4.40 and Figure 4.42 show the evolution of I  using K-Means++ for 

6651  K , for linguistic variables A2 and A3. For all other linguistic variables in this 

case study the overall behaviour is the same. This is not the same behaviour as in 

the previous case study. Now there is a very sudden improvement in the quality of 

solutions for a certain number of clusters. However, this sudden improvement is 

achieved only for high number of clusters, between 200 and 350 clusters for the 

linguistic variables in this case study. This is a high number of membership functions 

in a linguistic variable. It is desirable to achieve a greater reduction in the number of 

membership functions to improve its interpretability. Therefore, as in the previous 

case study, it was chosen 100max K .  It is left for future work to investigate on 
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procedures to estimate this parameter. Figure 4.41 and Figure 4.43 show a zoom of 

the previous plots, for 1501  K . 

 

A2 - Evaluation Measure 

 

 

Figure 4.40: Evaluation measure I using K-means++ for 6651  K , linguistic 

variable A2 

 

 

A2 - Evaluation Measure – zoom 

 

Figure 4.41: Evaluation measure I using K-means++ for 1501  K (zoom in of 

previous plot), linguistic variable A2 
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A3 - Evaluation Measure 

 

Figure 4.42: Evaluation measure I using K-means++ for 6651  K , linguistic 

variable A3 

 

A3 - Evaluation Measure – zoom 

 

Figure 4.43: Evaluation measure I using K-means++ for 1501  K  (zoom in of 

previous plot), linguistic variable A3 

 

 

 The Scatter Search algorithm was run with the same values for the 

parameters  ,  , MaxIterImp and 1b  as in the previous case study, considering 5 
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experiments for each choice of parameters and with the same stopping criterion as 

before. Once again, the number of good quality solutions and of diverse solutions to 

be included in the reference set was chosen to be equal ( 21 bb  ) and the original set 

was chosen to be 10 times the size of the reference set ( )(*10 21 bbOSsize  ), as in 

[Martí, Laguna et al. 1997; Abdule-Wahab, Monmarché et al. 2006].  

Only the results relative to the linguistic variable A2 will be discussed in more 

detail.  

 

To study the influence of   in the results, experiments were conducted with 

no improvement method (i.e. MaxIterImp 0 ) and all possible combinations of 

 1;8.0;5.0;0 ,  5.0;0  and  5;21 b . When 0  the standard deviation of 

results is much higher than for other values of   (Figure 4.44), explaining why 0  

was responsible for the best results (Figure 4.45) but does not give competitive 

results in average (Figure 4.46). Due to the referred high standard deviation in the 

results, no further experiments were done with 0 .  

 

 

 

Figure 4.44: Influence of   in fitness function I  standard deviation 
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Figure 4.45: Influence of   in best results obtained for fitness function I  

 

 

Figure 4.46: Influence of   in mean results for fitness function I   

 

 

In Figure 4.47 the use of memory in the Diversification Generation method is 

clear since using 0  gives worse results in average. Therefore, no further 

experiments for 0  will be discussed. 
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Figure 4.47: Influence of   in mean results for fitness function I  

 

Increasing the size of the reference set produces better quality results, as can 

be seen in Figure 4.48. Increasing the number of solutions in the reference set from 4 

to 10 ( 21 b  to 51 b .) resulted in an increase in the execution time (Figure 4.49) by 

a factor between 1.6 and 2.9. Still, all experiments were run in less than 10 minutes. 

It is still affordable to consider a larger reference set to improve the overall quality of 

solutions.  

 

 

Figure 4.48: Influence of 1b  in mean results for fitness function I  
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Figure 4.49: Influence of 1b  in execution time 

 

Just as before, the increase in execution time when using MaxIterImp 5  is 

considerably high (Figure 4.51) and does not result in a significant improvement in 

the quality of solutions in most of the cases (Figure 4.50). Since the increase in 

execution time for using MaxIterImp 2  is not too high (from approximately 6 minute 

to approximately 10 minutes), this value will be considered for this parameter. Just as 

in the previous case study, the choice of parameters 5.0 , 8.0 , 51 b  and  

MaxIterImp 2  gives better results, in average, and were used to obtain the results 

summarized in Table 4.2 and Figure 4.52 through Figure 4.57. 

 

 

Figure 4.50: Influence of Improvement Method in mean  

results for fitness function I  
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Figure 4.51: Influence of Improvement Method in execution time 

 

 

 

Once again, the best solution found by the algorithm was always generated by 

the diversification generation method. The results reported in Table 4.2 were 

achieved only by the first stage of the algorithm, which still was sufficient to produce 

better results than the K-Means++ algorithm in most variables.  Notice that both 

algorithms returned the same solution (except for cluster numbering) with 23 clusters 

for linguistic variable A11. This can be explained with information about this linguistic 

variable. Although A11 is continuous, there are only 23 different values for this 

variable. The solution returned by the algorithm corresponds to the 23 different 

membership functions corresponding to the 23 crisp values. This result show that the 

two algorithms are not giving “fake” low numbers of clusters (until now the number of 

clusters varied from 3 to 6) but are indeed capable of estimating a good number of 

clusters.  
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K-Means++ Scatter Search 

Time 

(sec.) 
Nr. Clusters I 

Time 

(sec.) 

Nr. 

Clusters 
I 

A2 854.5374 5 266.0796 821.3367 3 384.8384 

A3 862.5715 4 90.18299 794.977 4 96.4486 

A8 810.7072 6 105.4446 1277.734 6 94.76789 

A11 735.1273 23 6.97E+28 1112.77 23 6.97E+28 

A14 1134.509 6 346890.2 1812.912 4 402917.4 

A15 1062.561 6 5.51E+09 2031.943 6 5.57E+09 

 

Table 4.2: K-Means++ vs Scatter Search (best results) 

 

A2 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

Figure 4.52: Best Results for Linguistic Variable A2 
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A3 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.53: Best Results for Linguistic Variable A3 
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A8 

  

(a) Cluters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.54: Best Results for Linguistic Variable A8 
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A11 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.55: Best Results for Linguistic Variable A11 
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A14 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.56: Best Results for Linguistic Variable A14 
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A15 

  

(a) Clusters with K-Means++ (b) Linguistic Variable after K-Means++ 

  

(c) Clusters with Scatter Search (d) Linguistic Variable after Scatter Search 

 

Figure 4.57: Best Results for Linguistic Variable A15 
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4.4 Summary 

 

In this Chapter an heuristic and a metaheuristic for clustering were described. 

The first is the K-Means++ algorithm [David and Sergei 2007], a variation of the K-

Means algorithm [Gan, Ma et al. 2007]. The second is a Scatter Search algorithm 

based on the work of [Pacheco 2005] and [Abdule-Wahab, Monmarché et al. 2006]. 

These two algorithms where implemented in Matlab.  

The computational results were not as expected. The second phase of the 

Scatter Search algorithm was not able to produce good quality solutions. However, 

the first part of the algorithm was sufficient to obtain better results than the ones 

given by the K-Means++ algorithm. Both methods achieved a high reduction in the 

number of membership functions in each linguistic variable.   
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Chapter 5. Case Study: a Fuzzy Inference 

System 

 

In the previous chapter, computational results for two case studies were 

presented. In both cases the problem consisted in reducing the number of 

membership functions in linguistic variables that could later be used in the 

construction of an inference system. Each membership function represented a 

sample or an individual and merging similar membership functions could be seen as 

finding groups of individuals with similar characteristics. The rule base system that 

could be constructed afterwards would take into account the final morphology of the 

linguistic variables. The case study presented in this section is of a different nature. 

In this case, the goal is to reduce the number of membership functions in linguistic 

variables of an already existing inference system [Gomes, Santos et al. 2008]. The 

aim is to reduce the complexity of the inference system while maintaining its 

structure, without losing too much performance. 

In 2001, the European Space Agency [ESA] launched the Aurora Programme 

whose main goal is the robotic and human exploration of the solar system [ESA 

2008]. ExoMars, one of the missions under this programme, will require the drilling 

and sampling of Martian rocks [ESA 2008]. The case study here presented has been 

developed at CA3 - UNINOVA [CA3 2006] in the scope of this programme.  

In section 5.1 the case study will be described. Section 5.2 discusses the 

heuristics used for reducing the number of membership functions and in section 5.3 

the computational results for the heuristics applied to this case study will be 

presented and discussed. 

 

5.1 Overview of the case study: MODI 

 

During project “MODI- Simulation of a Knowledge Enabled Monitoring and 

Diagnosis Tool for ExoMars Pasteur Payloads” [CA3 2006; Jameaux, Vitulli et al. 

2006; Santos, Fonseca et al. 2006; Santos, Martins et al. 2008] two fuzzy inference 

systems were developed: one for an alarm system for detecting faulty behaviours 
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during drilling in Mars and other for recognition of terrain hardness types. These 

inference systems were created automatically from signals first generated by a 

simulator and later in the project acquired from a drilling station developed during the 

project. Pictures of this drilling station prototype constructed as proof of concept 

during this project and a simulated image of the rover that might use this technology 

can be found in Figure 5.1 and Figure 5.2, respectively.  

 

 

Figure 5.1: MODI drill station 

 

Figure 5.2: ExoMars Rover (courtesy of ESA [ESA 2008]) 
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The inference systems developed included two types of input variables: set 

points and sensor variables. The set points are variables whose values are pre-

defined by the user to study the behaviour of the drill while drilling in different types of 

materials (rocks). Given the values for these two set points, the drilling process would 

start and sensors installed in the drill would measure the rest of the variables in our 

model. 

As the project evolved, the sensors available increased. These sensors were 

able to measure rotational and translational currents and voltages, thrust, among 

other measures. 

All linguistic variables that were created in the MODI project are trapezoidal 

membership functions, except the ones that describe the set points that are either 

triangular membership functions or singletons [Santos, Fonseca et al. 2008]. In the 

MODI project the linguistic variables (except the set points that are pre-defined by the 

user) were constructed automatically, using sensor data collected during a learning 

phase [Santos, Fonseca et al. 2008]. During the learning phase, drills in different 

types of terrain hardness, using different values for the set points, were performed. 

Each combination of values for the set points and terrain type defined a sub-scenario 

in our model. Each linguistic variable represents a different sensor and each term in 

a linguistic variable refers to a different sub-scenario. Trapezoidal membership 

functions for each sub-scenario and sensor were constructed taking into account the 

mean and standard deviation of the corresponding signal.    

If we consider a drill with d  sensors and a set of tests consisting in drilling in t  

different types of terrain with all possible combinations of 1sp  values for set point 1 

and 2sp  values for set point 2, the model will have 21 spsptd   membership 

functions, excluding set points and output variables. As the number of sub-scenarios 

or number of sensors increases, so does the complexity of the inference system.    

 

The output of the terrain recognition inference system is the terrain hardness 

for the t  scenarios defined (T) and the certainty level of that classification [CA3 2006; 

Jameaux, Vitulli et al. 2006; Santos, Fonseca et al. 2006]. An example of a rule used 

for scenario Concrete hardness type, sub-scenario 0 (C0) with 2 set points – Set 

Point Rotation Speed (SPRS) and Set Point Translational Speed (SPTS) – and 8 

sensor variables – Rotation Current (RC), Rotation Voltage (RV), Rotation Speed 
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(RS), Thrust (TH), Torque (TO), Translational Voltage (TV), Translational Current 

(TC) and Translational Speed (TS) - is shown bellow. There is one such rule in the 

system for every sub-scenario considered. In the following rules Variable_Name –

Sub-scenario_code is the fuzzy set representing the nominal situation in variable 

Variable_Name and sub-scenario Sub-scenario_code.  

 

If        

Set Point Rotation Speed is SPRS-C0 and Set Point Translational Speed 

is SPTS-C0 and Rotation Current is RC-C0 and Rotation Voltage is RV-

C0 and Rotation Speed is RS-C0 and Thrust is TH-C0 and Torque is TO-

C0 and Translational Voltage is TV-C0 and Translational Current is TC-

C0 and Translational Speed is TS-C0  

Then       

Terrain is T-C0 

 

The output of the alarm inference system is the alarm level, on a scale from 0 

to 1 [CA3 2006; Jameaux, Vitulli et al. 2006; Santos, Fonseca et al. 2006]. An 

example of a rule corresponding to the variables and sub-scenario above is shown 

bellow. 

If        

Set Point Rotation Speed is SPRS-C0 and Set Point Translational Speed 

is SPTS-C0 and (Rotation Current is not RC-C0 and Rotation Voltage is 

not RV-C0 and Rotation Speed is not RS-C0 and Thrust is not TH-C0 

and Torque is not TO-C0 and Translational Voltage is not TV-C0 and 

Translational Current is not TC-C0 and Translational Speed is not TS-C0  

Then       

Alarm Level 

 

In this thesis only the terrain recognition system will be used as a test case. 

The same analysis could be done to the monitoring system, using appropriate 

measures of performance of the inference system. 
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Figure 5.3: Example of linguistic variable – Rotational Voltage 

 

Considering that an automatic process was used to create the terms for the 

linguistic variables, in Figure 5.3 we can see that many terms of this linguistic 

variable overlap heavily or are even included in others. It is also easy to observe 

some implicit clusters of similar membership functions. Merging the membership 

functions, pertaining to a cluster, into a single one seems an obvious way of reducing 

the number of membership functions in the system.  

The contribution to this project was to define an algorithm capable of reducing 

the number of terms of a linguistic variable to improve the overall computational effort 

of the system without compromising the performance of the system.  

 

 

  

Classified  

Concrete GasConcrete Marble NotDrilling Travertine Tuff Unknown Total 

R
ea

l 

Concrete 299 0 0 0 0 0 242 541 

GasConcrete 0 267 0 0 26 0 229 522 

Marble 0 0 296 0 0 0 226 522 

NotDrilling 0 0 0 210 0 0 311 521 

Travertine 0 21 0 0 244 0 259 524 

Tuff 0 0 0 0 0 271 251 522 

Total 299 282 296 210 270 271 1529 3152 

 

Table 5.1: MODI Confusion Matrix 



  5. Case Study: a Fuzzy Inference System 

 - 127 - 

The measures of performance used to compare the resulting terrain 

recognition inference systems were the Precision of the classification [Santos, 

Fonseca et al. (to appear 2008)], the Mean Certainty Level and a combination of 

these two measures. Consider the confusion matrix in Table 5.1 that shows the 

hardness types of terrain of a test data set and its classification with the MODI 

inference system.  

The overall Precision (P) of the terrain recognition inference system is the ratio 

between the number of well classified samples (grey cells) and the total number of 

samples [Santos, Fonseca et al. 2008]. For the confusion matrix in Table 5.1 the 

precision would be 0.5035 (50.35%). The Mean Certainty Level (MCL) is the average 

of the certainty levels obtained for each sample, for the samples that were correctly 

classified. To combine these two measures of performance, it is used an average of 

these two (based on the F1 score [Rijsbergen 1979]) given by: 

 

 
MCLP

MCLP
F






2
 (5.1) 

These three measures of performance take values between 0 and 1 and are to 

be maximized. 

 

5.2 Heuristics 

 

In [Setnes, Babuska et al. 1998], Setnes presents a rule base simplification 

algorithm that can be summarized by the fluxogram in Figure 5.4. Given a fuzzy 

variable with initial membership functions M  and a threshold minS for the similarity 

(set by the user or by some other algorithm), we select the most similar pair of fuzzy 

sets A  and B  (for a certain fuzzy similarity measure). If this similarity value is above 

the previously defined threshold (minS), we combine these two fuzzy sets, update 

the rule-base and the algorithm proceeds by choosing the most similar pair in M . 

Otherwise, the algorithm stops and M is returned.  
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Figure 5.4: Original algorithm [Setnes, Babuska et al. 1998] 

 

Instead of basing the decision of merging or not two membership functions A   

and B  only on their similarity, it was decided to look at the differences in terms of 

“design” between the original model and the ones achieved each iteration. This way 

a more global view of the changes being made to the linguistic variable being pruned 

was done. Therefore it was defined a measure for comparing two sets of 

membership functions representing the same linguistic variable. This way it would be 

possible to compare the models obtained through the algorithms to the initial model 

or linguistic variable. 

A distinguishability measure   between fuzzy sets can be defined as the 

complement of their similarity measure [Mencar, Castellano et al. 2007].  

 

 ),(1),( BASBA   (5.2) 

Given a new set of membership functions (obtained, for instance, by merging 

two or more membership functions of the original set) and the correspondence 

between the new set and the original one, we can define what can be intuitively seen 

as a model error by taking the average distinguishability measures between all 

NO 

YES 

Start 

End 

Initial Model: M 

Threshold : minS  

Select the most similar pair of 

fuzzy sets A and B in M 

Merge A and B 

Return M 

S(A,B)>minS 

Update rule-base 



  5. Case Study: a Fuzzy Inference System 

 - 129 - 

original sets and the one that represents them in the new set. Consider the example 

in Figure 5.5: 

 

 

Figure 5.5: Example of model error 

 

Using the Jaccard similarity measure [Mencar, Castellano et al. 2007]  given 

by equation (1.19) with the pair (minimum, maximum) as intersection and union 

operators we obtain: 

 

 1),(8182.0),(6364.0),(  CCSDBSDAS  (5.3) 
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The adapted algorithm can then be summarized by the fluxogram in Figure 

5.6. Given a fuzzy variable with initial linguistic variables M and a threshold ε for the 

model error (set by the user or by some other algorithm), we select the most similar 

pair of fuzzy sets A  and B  (for a certain fuzzy similarity measure) and combine 

these two fuzzy sets, thus obtaining a new set of linguistic variables, M  . If the model 

error, denoted by ε, is above the threshold or if all pairs of fuzzy sets are totally 

dissimilar (similarity zero) the algorithm stops. Otherwise, the algorithm proceeds by 

choosing the most similar pair in M  .  

 

Original Set New Set 

)3,2,1,0(A  

)4,3,2,0(B  
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)4,5.2,5.1,0(D    

)8,7,5,4(C  

Merge A and B 
into D 
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Figure 5.6: Adapted algorithm 

 

The above algorithm can be seen as a hierarchical clustering algorithm. We 

start with as many clusters as the initial number of membership functions and in each 

step we merge two clusters into a single one. Several methods of choosing the 

optimal number of clusters (and thus the optimal number of iterations) for this kind of 

clustering algorithms have been proposed [Milligan and Cooper 1985; Salvador and 

Chan 2004]. Some consist of finding the knee of a curve obtained by representing 

the number of iterations or number of clusters versus some metric of evaluation of 

the clustering algorithm. Since using the inference system performance measure 

(5.1) as evaluating metric during the clustering would be time consuming, it was 

decided to use the model error instead. Running the adapted algorithm using the 
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Jaccard similarity measure in (1.19) with the minimum and maximum operators until 

all membership functions are disjoint and plotting each iteration number versus its 

model error, gave a curve like the one in Figure 5.7 a). The Model Error increases 

slowly with each iteration until it reaches a point where it starts to grow exponentially. 

We can choose the number of iterations to be the x-axis coordinate of that point. This 

way, we will have an automatic method for choosing the number of iterations of the 

algorithm and we will no longer need to heuristically choose the parameter ε. 

 

 

  a) Iteration vs Model Error            b) L-Method 

 

Figure 5.7: a) Iteration vs Model Error; b) L-method 

 

 To find the knee of this curve the L-method, proposed by Salvador and Chan 

in [Salvador and Chan 2004], was used. Let n  be the number of the last iteration, 

that is, nx ,,1 . Let cL  and cR  be the left and right sequences of data points 

partitioned at 2,...,2,  nccx . Fitting a line to cL  and another to cR  we can define 

the total root mean square error (RMSE) by: 
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i.e., the total root mean squared error is a weighted average of the root mean 

squared error of both fittings. The optimal number of iterations is the value c  that 

minimizes cRMSE . In Figure 5.7 b), c  is the number of chosen iterations 
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corresponding to the point circled ( 43c ).  The c  value is the stopping criterion 

threshold used in the adapted algorithm.  

 

 As will be seen through the computational results presented in section 5.3, 

although this approach improves the original inference system used as a test case, 

the use of the L-method as a stopping criterion is not the best choice. By penalizing 

dissimilarity, it assumes that the initial model is the one with best performance, which 

is not the case in this case study. Since the original inference system was obtained 

automatically from sensor data, it is full of redundancy. The stopping criterion should 

not be based on a comparison in terms of “design” to the original model but on the 

actual performance measures of the inference system. 

 

The final algorithm, called bestP, is illustrated in Figure 5.8. 

We ran the original algorithm (Figure 5.4) until all membership functions are 

disjoint (similarity zero). In each iteration, the rules are updated and the performance 

of the resulting inference system, P(M), is obtained and compared with the 

performance of the best model found so far, P(BestM). The bestP algorithm returns 

the inference system with best performance, from the ones generated throughout the 

iterations. Note that this algorithm is defined for any performance measure, P(.). In 

our case study, we used the performance measure F  given by (5.1). This means 

that we will be maximizing the inference system performance. If the initial system is 

the best system in terms of this measure of performance, there will be no reduction in 

the number of membership functions. If we want to find a compromise between the 

number of membership functions and the inference system performance we can use 

a linear combination of these two objectives in the following way: 
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where  1,0  is the weight given to F , 0n  is the initial number of membership 

functions, used as a scaling factor and n  is the number of membership functions of 

model M .  
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Finally, the adapted algorithm is applied sequentially to each input variable to 

be pruned (in this case, all input variables except the set points). After this pruning is 

completed, duplicate rules are removed from the rule system to improve the 

computational efficiency of the final inference system.  

 

 

 

Figure 5.8: Final algorithm – bestP 
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5.3 Computational Results 

 

The heuristic algorithms described in the previous section were applied to a 

terrain recognition inference system constructed as described in section 5.1. All 

experiments were done using Matlab and Java. 

 

The set points used were: 

1. Rotation Speed (rpm) - SPRS 

2. Translational Speed (mm / min) - SPTS 

  

The sensor’s variables used were: 

1. Rotation Current (A) - RC 

2. Rotation Voltage (V) - RV 

3. Rotation Speed (rpm) - RS 

4. Thrust (N) - TH 

5. Torque (N) - TO 

6. Translational Voltage (V) - TV 

7. Translational Current (A) - TC 

8. Translational Speed (mm/min) - TS 

 

Six different types of terrain hardness were tested. The 6 scenarios considered 

were: Not Drilling (drilling in air); Concrete; Gas-Concrete; Marble; Travertine; and 

Tuff. Setting 3 different values for each of the set points, these scenarios were further 

sub-divided into 54 ( 336  ) sub-scenarios that provided the basis for the 

construction of the linguistic variables representing each input variable.  

 The original membership functions in this inference system are represented in 

Figure 5.9. In all linguistic variables in the system it is clear that some of its terms 

should be merged. The sensor values were collected as integers. Integer 

programming is more efficient and was thus used to guarantee real time tasks. 

Therefore, the x-axis of the plots representing the linguistic variables in the system 

have no physical meaning, i.e., they cannot be interpreted as voltages, rotations per 

minute, ...  
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Rotation Current Rotation Voltage 

  

Rotation Speed Thrust 

  

Torque Translational Voltage 

  

Translational Current Translational Speed 

  

 

Figure 5.9: Original input linguistic variables (except set points)  
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 First, the algorithm summarized by Figure 5.6 (adapted algorithm) with the 

stopping criterion defined by minimization of (5.5) – L-method [Salvador and Chan 

2004] - was applied sequentially to all input variables except set points. Then, the 

algorithm summarized by Figure 5.8, were the inference system with best 

performance is chosen, was used in the same sequence. The following figures show 

the evolution of the performance measure F  (to be maximized) given by equation 

(5.1) when the algorithms run until all membership functions are disjoint. The vertical 

lines mark the iteration chosen by the L-method and the circle marks the iteration 

with best performance, i.e., the iteration chosen by bestP. 

 

 

 

 

Figure 5.10: Evolution of performance measure F during the algorithm – Rotation 

Current 
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Figure 5.11: Evolution of performance measure F during the algorithm – Rotation 

Voltage 

 

 

 

 

Figure 5.12: Evolution of performance measure F during the algorithm – Rotation 

Speed 

 

 

 



  5. Case Study: a Fuzzy Inference System 

 - 138 - 

 

Figure 5.13: Evolution of performance measure F during the algorithm – Thrust 

 

 

 

 

Figure 5.14: Evolution of performance measure F during the algorithm – Torque 
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Figure 5.15: Evolution of performance measure F during the algorithm – 

Translational Voltage 

 

 

 

 

Figure 5.16: Evolution of performance measure F during the algorithm – 

Translational Current 

 

 

 



  5. Case Study: a Fuzzy Inference System 

 - 140 - 

 

Figure 5.17: Evolution of performance measure F during the algorithm – 

Translational Speed 

  

 Original Adapted Algorithm BestP 

Rotation Current 54 21 3 

Rotation Voltage 54 20 5 

Rotation Speed 54 8 3 

Thrust 54 22 17 

Torque 54 25 46 

Translational Voltage 54 10 3 

Translational Current 54 10 3 

Translational Speed 54 13 3 

TOTAL 432 129 45 

 

Table 5.2: Number of membership functions before and after optimization 

  

As can be seen by the previous figures and by Table 5.2, using the L-method 

as a stopping criterion is not the best choice. In most cases this stopping criterion 

chooses to stop too early. Although in this case study this method already reduces 

the number of membership functions without losing performance, this method fails to 

choose the best iteration to stop. Analyzing the previous figures it is clear why 

concentrating on the model error instead of the inference system actual performance 
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is not a good strategy. By minimizing the model error, changes to the original 

inference system are being penalized. If the original system was “perfect”, reducing 

the number of terms in linguistic variables by merging similar membership functions 

should negatively affect the performance of the system. The previous figures show 

that this is not the case, merging membership functions is actually increasing the 

inference system performance. This means that the initial system is full of 

redundancy and that some of this redundancy is being eliminated by the algorithm. 

For this reason, instead of using the model error, a comparison between the initial 

inference system and the ones obtained by the algorithm, it is wiser to focus on 

performance measures such as the ones described in the previous section. This is 

what motivated the use of the bestP algorithm. 

 

 Original Adapted Algorithm BestP 

P 72.33% 76.49% 85.47% 

MCL 34.49% 36.88% 44.00% 

F 46.71% 49.77% 58.09% 

N 423 129 45 

 

Table 5.3: Comparison of inference systems 

 

Table 5.3 compares the three inference systems – original inference system 

and inference systems obtained using the Adapted Algorithm and the BestP 

algorithm – in terms of systems performance measures and number of membership 

functions. Figure 5.18 shows the linguistic variable Translational Voltage before and 

after using both algorithms. By using the bestP heuristic it was possible to reduce the 

number of membership functions in the system and improve its overall performance. 

It was possible to reduce the number of membership functions in input linguistic 

variables (except set points) from 432 to 45. All measures of performance used 

improved after this optimization. The easiest to interpret performance measure, the 

Precision of the classification (P), increased from 72.33% to 85.47%. The 

advantages of using this algorithm in this case study was clear. If it was desirable to 

further reduce the number of membership functions a measure such as the one in 

equation (5.6) could be used. Figure 5.19 shows the linguistic variables returned by 
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the algorithm. Some linguistic variables seem to be too reduced, i.e., its new 

linguistic variables do not seem well representative of the original linguistic variables. 

We have to keep in mind that the original system was created automatically and is 

full of redundancy. 

 

 
(a) Original 

 
(b) Adapted Algorithm 

 
(c) BestP 

 

Figure 5.18: Linguistic Variable Translational Voltage before (a) and after using the 

adapted (b) and BestP (c) algorithms 
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 Rotation Current Rotation Voltage 

  

Rotation Speed Thrust 

  

Torque Translational Voltage 

  

Translational Current Translational Speed 

  

Figure 5.19: Input linguistic variables after optimization with BestP (except set points) 
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5.4 Summary 

In this chapter the goal was to reduce the number of membership functions in 

linguistic variables of an already existing inference system. An inference system 

construted in the scope of a project developed for ESA served as case study. The 

inference system was constructed automatically from sensor data and was thus full of 

redundancy. The aim was to reduce the complexity of the inference system while 

maintaining its structure, without losing too much performance. Not only was this 

objective achieved, but also the inference system performance was increased. 

Moreover, a paper about this subject was published [Gomes, Santos et al. 2008]. 

 I could have presented only the last algorithm, bestP, and ignore the 

intermediate attempts to find an algorithm for reducing the number of membership 

functions. However, I preferred to describe my first and more intuitive approach to 

this problem for two reasons: first, to show the importance of trial and error in science 

and second because the results obtained with the first adapted algorithm justify the 

necessity to evaluate the system performance during the algorithm instead of 

concentrating on “design” measures such as the model error. 

 There are still some questions that should be answered about this procedure. 

The algorithm was applied sequentially to input linguistic variables. There was no 

study about the importance of the order in which this pruning is made. I believe that 

this order can have some impact on the results. To solve this problem, instead of 

sequentially running the algorithm, a global algorithm where in each iteration the 

most similar membership functions from any linguistic variable was merged could be 

designed. Another question concerns the similarity measure used. Experiments with 

other similarity measures should be used to justify the choice of similarity measure. 
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Chapter 6. Conclusions and Future Work 

 

The purpose of this thesis was to develop algorithms to reduce the number of 

membership functions in a linguistic variable. One of the main advantages of fuzzy 

models is that they are usually less complex and easy to interpret than classical 

models. By reducing the number of membership functions in linguistic variables the 

aim was to achieve simpler and more efficient fuzzy models. 

The problem of reducing the number of membership functions in a linguistic 

variable was approached as a clustering problem. The pruned linguistic variable was 

the result of merging clusters of similar membership functions into a new membership 

function. Some possible formulations to the clustering problem were presented. 

Exact methods were used with one of these formulations and the combinatorial 

nature of clustering problems was clear. As expected, only very small data sets can 

be optimally solved through these methods in a reasonable amount of time. Although 

it was never the purpose of this thesis to use exact methods to solve this problem, 

this was an important step to better understand the dimension of the problem at 

hands. 

To find good quality solutions in a more reasonable amount of time a Scatter 

Search procedure was developed and compared to the K-Means++ algorithm. Both 

procedures were implemented in Matlab and tested with two different case studies. 

The linguistic variables from these case studies could later be used in a fuzzy 

inference system or any other fuzzy model constructed taking into account the 

pruned membership functions instead of the original ones. The computational results 

were not as expected. The second phase of the Scatter Search algorithm was not 

able to produce good quality solutions. However, the first part of the algorithm was 

sufficient to obtain better results than the ones given by the K-Means algorithm. Both 

methods achieved a high reduction in the number of membership functions in each 

linguistic variable.    

The last chapter presented a different case study. The objective was to reduce 

the number of membership functions in linguistic variables of an automatically 

constructed inference system without losing two much performance. It was seen that, 
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in this case, concentrating on the characteristics of a single linguistic variable was 

insufficient. It is important to concentrate on the actual performance of the inference 

system, using appropriate measures of performance. Therefore the heuristics 

implemented before were not applied to this case study. Although the fitness function 

of the scatter search algorithm could have been changed to account for these 

performance measures, the time it takes to evaluate the inference system and the 

number of times it would be necessary to evaluate it explain why it was chosen not to 

use this algorithm in this case. The algorithms used in this case study can be 

categorized as hierarchical clustering algorithms. The results achieved in this case 

study were more than satisfying. It was possible to improve the initial inference 

system performance and simplify the system at the same time. 

 Although a lot of work was developed during this thesis, there is still much to 

be done in the future. In the first procedures a comparison of the different cluster 

validity indexes and of the shapes of the clusters themselves, translated by the 

clustering criteria used, should be made. Different strategies inside the scatter search 

algorithm could be tested to try to overcome the poor results obtained in terms of the 

way solutions are combined. More work is needed in estimating the correct number 

of clusters or a good maximum number of clusters to be given as input for the scatter 

search algorithm or other clustering algorithms. It would also be interesting to 

construct fuzzy models to identify the type of breast cancer (malign or benign) from 

the cell nuclei characteristics and to support credit approval decision processes  

using the linguistic variables from section 4.3 before and after being pruned, 

comparing results. In the MODI case study, as mentioned, the impact of the order in 

which the linguistic variables are pruned in the results or the possibility of designing a 

global algorithm that looked at all variables at the same time are possible directions 

for future work, along with a study of how results are affected by using different 

similarity measures. Furthermore, given the good results obtained in this case study, 

it is important to confirm the validity of the algorithm by running it on different case 

studies. 
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Resumo Alargado 
 

1. Introdução 

Uma variável linguística [Zadeh 1965] é composta por conjuntos vagos que 

podem ser matematicamente representados por funções de pertença. Por exemplo a 

variável linguística Altura pode ser composta pelos conjuntos vagos Baixa, Média e 

Alta (Figure 1.1). Em vez de um indivíduo pertencer apenas a um destes conjuntos 

como aconteceria com a lógica clássica, o grau de pertença de qualquer indivíduo a 

cada um destes conjuntos é dado  pela respectiva função de pertença. 

O objectivo desta tese era desenvolver algoritmos para reduzir o número de 

funções de pertença em variáveis linguísticas. Este problema é extremamente 

importante quando é utilizado um processo automático de criação de variáveis 

linguísticas, podendo-se assim obter uma variável linguística com um elevado 

número de funções de pertença. De uma forma mais geral, o problema que se 

coloca pode ser visto da seguinte maneira: como reduzir a quantidade de dados a 

analizar (aqui representados pelas diferentes funções de pertença) sem com isso 

perder informação? Esta é precisamente a mesma questão que nos é posta em 

problemas de agrupamento ou clustering. Assim, o problema da redução do número 

de funções pertença numa variável linguística foi aqui abordado como um problema 

de agrupamento. Começamos por identificar possíveis grupos de funções de 

pertença semelhantes. Funções de pertença pertencentes a um mesmo grupo são 

então agrupadas numa nova função de pertença, obtendo-se assim um novo 

conjunto mais pequeno de funções de pertença que representam aproximadamente 

o mesmo conceito que a variável linguística inicial. 

Podemos considerar que nesta tese foram abordados dois grandes tipos de 

problemas. No primeiro o objectivo é a redução do número de funções de pertença 

em variáveis linguísticas que mais tarde poderiam vir a fazer parte de um qualquer 

modelo (não necessariamente um sistema de inferência) que seria construído já 

tendo em conta as características da variável linguística depois desta redução. No 

segundo, pelo contrário, o objectivo seria a redução do número de funções de 

pertença de variáveis linguísticas pertencentes a um sistema de inferência 

previamente construído, tendo em conta as características das variáveis linguísticas 

originais. Assim, neste caso, a variável linguística terá que ser encarada como parte 
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de um sistema e o objectivo passa a ser obter um equilíbrio entre o desempenho do 

sistema e a sua simplificação por meio da redução do número de funções de 

pertença.  

 

2. Conceitos Importantes 

No Capítulo 1Chapter 1 é introduzida alguma informação sobre lógica difusa 

necessária para melhor compreender o contexto em que esta tese se insere, bem 

como alguma notação que será utilizada noutros capítulos. Apenas as ideias mais 

importantes são aqui referidas.  

 

2.1. Representação de funções de pertença 

Algumas famílias de funções de pertença podem ser mapeadas para pR , em 

que p  é o número de parâmetros dessa família de funções e cada dimensão 

representa um parâmetro diferente.  

Por exemplo, para 3p  uma função de pertença triangular pode ser 

representada por um triplo  cba ,,  (Figure 1.9). Se o triângulo for simétrico podemos 

tomar 2p , representando a função de pertença por  ,a , em que bcab  .  

De modo semelhante, podemos representar uma função de pertença 

trapezoidal por um vector  dcba ,,,  contendo os seus vertices . No caso de esta ser 

simétrica, ou seja, 
22

cbda 



, podemos usar um triplo   ,,m , em que 

22

cbda
m





 , bc   and ad   (Figure 1.10). 

Esta representação será usada para tratar o problema da redução do número 

de funções de pertença numa variável linguística como um problema de 

agrupamento tradicional.  

 

2.2. Fundir Funções de Pertença 

A ideia por trás dos algoritmos a utilizar é a fusão de grupos de funções de 

pertença semelhantes.  
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Dadas n  funções de pertença trapezoidais,   nidcbaT iiii

i ,,1,,,,  , 

estas serão fundidas numa nova função de pertença   nidcbaT ,,1,,,,   

usando uma generalização do método proposto em [Setnes, Babuska et al. 1998]: 
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As formulas para fundir um grupo de funções de pertença triangular vêm 

directamente das anteriores.  

 

 

3. Métodos Exactos 

Nesta tese são discutidas algumas formulações em programação inteira para 

este problema (secção 2.3). Embora nunca tenha sido o objectivo desta tese 

encontrar soluções óptimas para estes problemas usando métodos exactos como o 

Branch & Bound [Land and Doig 1960], uma destas formulações foi introduzida no 

CPLEX para dois conjuntos de problemas de pequena dimensão, um com apenas 

12 funções de pertença em cada variável linguística e outro com 54. Enquanto que 

no primeiro conjunto de problemas foi possível encontrar soluções óptimas em 

menos de 2 minutos, no segundo conjunto de problemas já não foi possível 

encontrar soluções óptimas, tendo o programa parado por falta de memória. Estas 

experiências permitiram ter uma maior noção da dimensão e dificuldade deste tipo 

de problemas e justificaram a necessidade de recorrer a métodos heurísticos para 

encontrar boas soluções num espaço de tempo mais realista.    
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4. Métodos Heurísticos baseados em Pesquisa Local 

Dada a ineficácia dos métodos exactos em encontrar a solução óptima para o 

agrupamento dos pontos num determinado conjunto X , foram explorados métodos 

heurísticos. Foi desenvolvida uma meta-heurística, Scatter Search, baseada em 

[Pacheco 2005; Abdule-Wahab, Monmarché et al. 2006] que foi posteriormente 

comparada com uma variação do algoritmo das K-Médias ou K-Means [McQueen 

1967], denominada K-Means++ [David and Sergei 2007].  

 

4.1. K-Means++ 

O algoritmo K-Means [McQueen 1967] começa por escolher aleatoriamente 

para centros dos clusters K  pontos do conjunto de dados  nxxX ,,1  . Depois 

desta inicialização, determina-se uma partição dos dados em K  grupos, afectando 

cada ponto ao grupo com centro mais próximo. A partir deste momento os centros 

dos grupos vão sendo actualizados e os pontos vão sendo afectados ao grupo mais 

próximo até que algum ser satisfeito algum critério de paragem.  

O algoritmo K-Means++ [David and Sergei 2007] difere do algoritmo original 

apenas na maneira como os centros iniciais são escolhidos. Depois de o primeiro 

centro ser escolhido aleatoriamente e de forma uniforme, isto é, considerando iguais 

probabilidades de escolha para cada ponto de X , os restantes são escolhidos de 

acordo com probabilidades proporcionais à sua distância ao centro mais próximo, de 

entre os centros já escolhidos. Quanto mais longe um ponto se encontra dos centros 

já escolhidos, maior será a probabilidade de este ser escolhido. Desta forma 

pretende-se dispersar a distribuição dos centros iniciais para que o algoritmo 

convirja mais rapidamente. 

Neste algoritmo o número de grupos a formar, K , é escolhido a priori. 

Quando não sabemos a priori o número de grupos a formar, corremos o algoritmo 

para várias escolhas de K  e escolhemos a melhor configuração encontrada, tendo 

em conta um determinado índice para a qualidade dos agrupamentos. O índice 

usado nesta tese, discutido em [Ujjwal and Sanghamitra 2002], deve ser maximizado 

e é dado pelas expressões seguintes:  
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 ,,1,
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

 (7) 

sendo que  
nKkjuU


  é uma matrix binária representando uma partição dos dados 

em K  grupos ( i.e., 1kju  se e só se jx  está no k-ésimo grupo) e o centro do grupo 

k  é representado por kc .  

 

4.2. Scatter Search 

 

O algoritmo Scatter Search (Figure 4.1), opera sobre um pequeno conjunto de 

referência, composto por boas soluções e por soluções com elevada diversificação 

(em relação às restantes). Um conjunto inicial de soluções é criado pelo Método de 

Geração de Diversificação (DG – Diversification Generation Method). Cada solução 

neste conjunto é melhorada pelo Método de Melhoria (Imp - Improvement Method) 

antes da criação do conjunto de referência pelo Método de Actualização do Conjunto 

de Referência (RSU – Reference Set Update Method), que escolhe para fazer parte 

deste conjunto as melhores soluções bem como soluções com elevado nível de 

diversificação. O Método de Geração de Subconjuntos (SG – Subset Generation 

Method) forma subconjuntos de soluções do conjunto de referência para serem 

combinados pelo Método de Combinação de Soluções (SC – Solution Combination 

Method) em novas soluções. A qualidade das soluções assim obtidas é mais uma 

vez melhorada pelo Método de Melhoria antes do conjunto de referência ser 

actualizado. O algoritmo continua até que algum critério de paragem seja satisfeito.  

O algoritmo pode ser implementado de diversas maneiras de acordo com as 

estratégias adoptadas em cada um dos seus cinco métodos principais. As 

estratégias utilizadas nesta tese para cada um dos métodos são adaptadas de 

[Pacheco 2005; Abdule-Wahab, Monmarché et al. 2006] e resumidamente descritas 

de seguida. Como função de adaptação foi usado o índice I . 
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4.2.1 Método de Geração de Diversificação 

Este método é responsável pela criação de um conjunto inicial de sizeOS  

soluções.  

Para cada solução, começamos por gerar aleatoriamente um número de 

grupos a formar, K , entre 1 e maxK , sendo  maxK  o número máximo de grupos 

permitido (dado pelo utilizador). São escolhidos aleatoriamente K  centros 

 KccS ,,1  . No entanto, em vez de poderem ser escolhidos para centros 

quaisquer pontos de X , foi introduzido um parâmetro  1,0  que controla o nível 

de aleatoriedade deste processo, determinando o conjunto de pontos que em cada 

passo podem ser escolhidos para centros, como proposto em [Pacheco 2005]. Para 

evitar a repetição na escolha dos centros das várias soluções criadas durante esta 

fase do algoritmo guardou-se a frequência com que casa ponto foi escolhido como 

centro, penalizando-se a escolha de pontos com elevada frequência. A penalização 

é controlada pelo parâmetro   .  

Depois de terem sido escolhidos os centros dos grupos, os restantes pontos 

são atribuídos a estes grupos usando o processo heurístico greedy descrito em 

[Pacheco 2005], com o objectivo de minimizar a soma dos quadrados das distâncias 

de cada ponto ao centro do grupo a que pretence.  

 

 

4.2.2 Método de Melhoria 

Foi escolhido o método de melhoria apresentado em [Abdule-Wahab, 

Monmarché et al. 2006], baseado no algoritmo das K-Médias [Gan, Ma et al. 2007] e 

que utiliza a simplificação proposta por Spath [Spath 1980] para aproximar o 

incremento em termos de soma dos quadrados das distâncias de cada ponto ao 

centro do seu grupo resultante de mover o ponto ix  do grupo lC  para o grupo jC . 

Em cada iteração deste método cada ponto de X  é movido para o grupo que 

corresponde a um maior decréscimo nesta soma dos quadrados das distâncias. São 

feitas MaxIterImp iterações sempre que o método é utilizado. 
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4.2.3 Método de Actualização do Conjunto de Referência 

Para construir o conjunto de referência, RS , começamos por escolher as 

melhores 1b  soluções, de entre as  sizeOS   soluções criadas inicialmente. São depois 

adicionadas iterativamente 2b  soluções de acordo com a sua diversidade. As 

soluções escolhidas são as que maximizam 

 

  RSdif   :),(min)(min  (8) 

em que ),(  dif  é o número de pontos que são atribuídos a grupos diferentes nas 

soluções    e  . 

Nesta implementação o conjunto de referência é apenas actualizado quando 

são encontradas soluções de boa qualidade. 

 

4.2.4 Método de Geração de Subconjuntos 

Este método gera uma colecção de subconjuntos de soluções do conjunto de 

referência para serem posteriormente combinadas em novas soluções. Nesta 

implementação foram considerados todos os pares de soluções do conjunto de 

referência, isto é, são considerados 21

2

bb
C

  pares de soluções. 

 

4.2.5 Método de Combinação de Soluções 

Para combinar um par de soluções numa ou mais novas soluções foi 

considerada uma estratégia do tipo path relinking, descrita em [Pacheco 2005]. A 

ideia deste tipo de estratégia é de que no “caminho” (série de movimentos simples 

que permitem alcançar uma solução a partir da outra) entre duas boas soluções 

deverão existir outras boas soluções. Neste caso um movimento corresponde a 

trocar um ponto de um grupo para outro. São propostas uma a três soluções 

escolhidas aleatoriamente neste caminho.   

 

 

4.3. Resultados 

 

Para ambos casos de estudo considerados, foi apresentada uma pequena 

análise dos parâmetros envolvidos no algoritmo Scatter Search. Apenas 5 
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experiências foram feitas para cada conjunto de valores dos parâmetros do 

algoritmo, pelo que os resultados não devem ser generalizados mas devem ser tidos 

em conta apenas a título indicativo. Em todas as experiências foi escolhido 

100max K , 21 bb   e  2110 bbOSsize  .  

 Foi possível ver a importância do parâmetro   no controlo da aleatoriedade 

do algoritmo, uma vez que para 0  (escolha dos centros totalmente aleatória) os 

resultados finais apresentavam um elevado desvio padrão, não acompanhado de 

uma melhoria dos resultados em termos médios. O uso da memória durante a 

geração do conjunto de soluções iniciais mostrou-se positivo. Ao aumentar a 

dimensão do conjunto de referência de 4  21 b  para 10  51 b  conseguimos 

aumentar a qualidade das soluções com algum esforço computacional adicional. No 

entanto para ambos os casos de estudo este esforço adicional não foi considerado 

excessivo. Claro que, numa situação real, esta conclusão dependeria sempre do 

problema em concreto e do tempo disponível para realizar esta tarefa. O método de 

melhoria das soluções não melhorou significativamente a qualidade média das 

soluções para todas as variáveis linguísticas. Ao estudar a evolução do conjunto de 

referência verificou-se que a segunda parte do algoritmo não produziu boas 

soluções. 

 

 

K-Means++ Scatter Search 

Tempo 

(seg.) 

Nº 

Clusters 
I 

Tempo 

(seg.) 

Nº 

Clusters 
I 

Radius 426,3904 4 18,9609 352,8277 3 26,9636 

Texture 398,9221 3 16,8796 344,1798 5 30,18262 

Perimeter 463,4574 7 830,33 371,4513 3 1286,17 

Area 416,6392 6 426500,7 394,1495 3 668728,5 

Smoothness 419,2019 3 0,000143 413,9573 4 0,0002044 

Compactness 407,7729 3 0,004632 308,5648 3 0,004547 

Concativity 418,1248 3 0,080241 305,7193 3 0,080673 

Concave Points 405,9813 3 0,002273 470,995 3 0,002743 

Symmetry 411,8899 3 0,000921 672,4182 3 0,000932 

Fractal Dimension 413,8989 4 0,000167 679,9634 3 0,000255 

 

Tabela 1: Caso de Estudo 1- K-Means++ vs Scatter Search (melhores resultados) 
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K-Means++ Scatter Search 

Time 

(sec.) 
Nr. Clusters I 

Time 

(sec.) 

Nr. 

Clusters 
I 

A2 854.5374 5 266.0796 821.3367 3 384.8384 

A3 862.5715 4 90.18299 794.977 4 96.4486 

A8 810.7072 6 105.4446 1277.734 6 94.76789 

A11 735.1273 23 6.97E+28 1112.77 23 6.97E+28 

A14 1134.509 6 346890.2 1812.912 4 402917.4 

A15 1062.561 6 5.51E+09 2031.943 6 5.57E+09 

 

Tabela 2: Caso de Estudo 2 – K-Means++ vs Scatter Search (melhores resultados) 

 

Em termos médios, foi considerando 5.0 , 8.0 , 51 b  e MaxIterImp 2  

que se obtiveram os melhores resultados. Os resultados apresentados na Tabela 1 

foram obtidos com estes parâmetros. O algoritmo Scatter Search desenvolvido foi 

capaz de obter melhores resultados que o algoritmo K-Means++ para a maior parte 

das variáveis. Com ambos os algoritmos, foi possível reduzir significativamente o 

número de funções de pertença das variáveis linguísticas analisadas (Figure 4.24 - 

Figure 4.33 e Figure 4.52 - Figure 4.57).  

 

 

5. Caso de Estudo: Um Sistema de Inferência Fuzzy 

Como foi referido na Introdução, a natureza deste caso de estudo é diferente 

da dos casos de estudo do capítulo anterior. Neste caso de estudo o objectivo é a 

redução do número de funções de pertença em variáveis linguísticas pertencentes a 

um sistema de inferência previamente construído. Pretende-se reduzir a 

complexidade do sistema sem perder demasiado desempenho.  

Este caso de estudo foi desenvolvido no CA3 – UNINOVA [CA3 2006] no 

âmbito do projecto “MODI- Simulation of a Knowledge Enabled Monitoring and 

Diagnosis Tool for ExoMars Pasteur Payloads” [CA3 2006; Jameaux, Vitulli et al. 

2006; Santos, Fonseca et al. 2006; Santos, Martins et al. 2008] para a Agência 

Espacial Europeia [ESA 2008]. Foram construídos de forma automática dois 

sistemas de inferência: um para um sistema de alarme para a detecção de 
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comportamentos anormais durante perfurações em Marte e outro para o 

reconhecimento da dureza do terreno a ser perfurado. Os resultados aqui 

apresentados utilizam somente o sistema de reconhecimento de terreno. 

As variáveis linguísticas de entrada foram criadas automaticamente usando 

dados recolhidos por sensores durante a fase de aprendizagem [Santos, Fonseca et 

al. 2008]. Durante a fase de aprendizagem foram realizados furos para diferentes 

velocidades de translação e rotação em diversos tipos de terreno. Cada variável 

linguística representa um sensor diferente e cada função de pertença trapezoidal 

numa dada variável linguística corresponde a um diferente subcenário testado. O 

resultado da inferência é um dos tipos de terreno possível e o nível de certeza nessa 

classificação [CA3 2006; Jameaux, Vitulli et al. 2006; Santos, Martins et al. 2008]. 

 

5.1. Algoritmo 

O algoritmo adoptado baseia-se no algoritmo proposto por [Setnes, Babuska 

et al. 1998], em que os conjuntos difusos mais semelhantes vão sendo fundidos de 

forma iterativa até que os restantes conjuntos sejam suficientemente distintos, o que 

é feito através da imposição de um limite mínimo para a semelhança entre dois 

conjuntos juntar, minS (Figure 5.4). Este algoritmo pode ser visto como um algoritmo 

de agrupamento hierárquico. 

Viu-se que neste caso de estudo em que o sistema de inferência foi 

construído previamente seria importante ter em conta medidas de desempenho do 

sistema de inferência. Assim, em vez de se definir um valor para minS, corremos o 

algoritmo até todas as funções de pertença serem disjuntas, avaliando o 

desempenho do sistema de inferência actual, P(M), e comparando-o com o 

desempenho do melhor sistema encontrado até ao momento, P(BestM). O algoritmo 

devolve o sistema de inferência com melhor desempenho, de entre os sistemas 

gerados durante o algoritmo (Figure 5.8). O algoritmo foi definido para qualquer 

medida de desempenho para um sistema de inferência, P(.). Neste caso foi utilizada 

a seguinte medida de desempenho (a ser maximizada) : 

 

 
MCLP

MCLP
F






2
 (9) 
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em que a Precisão (P) do sistema de inferência é o quociente entre o número de 

amostras bem classificadas sobre o total de amostras e o Nível de Certeza Média 

(MCL) é a média dos níveis de certeza para as amostras correctamente 

classificadas. 

 Se quisermos uma solução de compromisso entre o número de funções de 

pertença no sistema e o seu desempenho podemos combinar estes objectivos 

considerando 

 n
n

FMP
0

1
)(





  (10) 

em que  1,0  é o peso dado a F , 0n  é o número inicial de funções de pertença e 

n  é o número de funções de petença do sistema M  a ser avaliado.   

 

O algoritmo está ainda definido para uma medida de semelhança entre dois 

conjuntos difusos genérica. Neste caso foi usada a medida de semelhança de 

Jaccard com : 

  
BA

BA
BASJ




,  (11) 

em que  U C dxxC )(||   e   e   representam a intersecção e a união de 

conjuntos difusos. 

 

  

5.2. Resultados 

Foram testados 6 tipos de terreno, 3 valores para a velocidade de rotação e 3 

valores para a velocidade de translação da broca, obtendo-se assim 54 funções de 

pertença para cada uma das variáveis linguísticas que representam os diferentes 

sensores instalados na broca (Figure 5.9). 

O algoritmo foi aplicado a cada uma das variáveis linguísticas de forma 

sequencial. Os resultados estão resumidos nas tabelas abaixo. Como se pode ver 

na Tabela 3 e pelos gráficos das variáveis linguísticas finais (Figure 5.19) foi 

possível reduzir de forma muito significativa o número de funções de pertença em 

praticamente todas as variáveis linguísticas. Foi também possível melhorar o 
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desempenho do sistema de inferência, como se pode ver pela Tabela 4. Por 

exemplo, a Precisão do sistema (P), aumentou de 72.33% para 85.47%.  

  

 Original BestP 

Rotation Current 54 3 

Rotation Voltage 54 5 

Rotation Speed 54 3 

Thrust 54 17 

Torque 54 46 

Translational Voltage 54 3 

Translational Current 54 3 

Translational Speed 54 3 

TOTAL 432 45 

 

Tabela 3: Redução do número de funções de pertença 

 

 Original BestP 

P 72.33% 85.47% 

MCL 34.49% 44.00% 

F 46.71% 58.09% 

N 423 45 

 

Tabela 4: Comparação dos sistemas de inferência 

 

6. Conclusões 

O objectivo desta tese era desenvolver algoritmos para reduzir o número de 

funções de pertença numa variável linguística. Este problema foi abordado como um 

problema de agrupamento.  

Foi desenvolvida uma metaheurística Scatter Search para encontrar boas 

soluções para o problema. Usando dois casos de estudo, esta metaheurística foi 

comparada com o algoritmo K-Means++. Os resultados obtidos não foram os 

esperados. A segunda parte do algoritmo Scatter Search não conseguiu produzir 
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boas soluções. No entanto, a primeira parte do algoritmo foi suficiente para obter 

melhores resultados que os resultados conseguidos com o K-Means++. Com ambos 

os métodos, foi possível reduzir significativamente o número de funções de pertença 

em cada variável linguística.  

No último capítulo foi apresentado um caso de estudo em que as variáveis 

linguísticas faziam parte de um sistema de inferência construído de forma 

automática. Neste caso é importante ter em conta o desempenho do sistema de 

inferência durante o algoritmo de redução, usando medidas de desempenho 

adequadas. Os resultados obtidos foram bastante satisfatórios. Não só foi possível 

reduzir de forma bastante significativa o número de funções de pertença no sistema, 

mas também foi possível aumentar o seu desempenho. 
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