JCU ePrints

This file is part of the following reference:

Tobin, Renae C. (2006) The effectiveness of recreational only fishing areas in North Queensland estuaries for reducing conflict and improving recreational catches. PhD thesis,

James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/2102

THE EFFECTIVENESS OF RECREATIONAL ONLY FISHING AREAS IN NORTH QUEENSLAND ESTUARIES FOR REDUCING CONFLICT AND IMPROVING RECREATIONAL CATCHES.

Thesis submitted by

Renae Carolyn TOBIN BSc & Grad Cert (Fisheries Management)

in January 2006

for the degree of Doctor of Philosophy
in the Department of Tropical Environment Studies and Geography, and
The School of Marine Biology and Aquaculture

James Cook University

and CRC Reef Research Centre.

STATEMENT OF **A**CCESS

I, Renae Tobin, author of this work, understand this thesis available for use within the University	·
Theses network, for use elsewhere.	
I understand that, as an unpublished work, a the	esis has significant protection under the
Copyright Act and I do not with to place any furt	her restriction on access to this work.
Signature	 Date

STATEMENT OF SOURCES

DECLARATION

I declare that this thesis is my own work and has not been submitted	ed in any form for
another degree or diploma at any university or other institution of to	ertiary education.
Information derived from the published or unpublished work of other	ers has been
acknowledged in the text and a list of references is given.	
Signature	Date

STATEMENT ON THE CONTRIBUTION OF OTHERS

CRC Reef Research Centre (CRC Reef) provided student stipend support throughout my PhD candidature via the Student Merit scholarship and Completion Scholarship. These scholarships also covered all HECS fees. CRC Reef and the department of Tropical Environment Studies and Geography at James Cook University provided financial support for research and for attendance at various conferences.

Principal supervision was provided by Prof. Bruce Mapstone from 2001 to 2005; however he was unable to continue this supervision after leaving James Cook University due to external work commitments. Dr Stephen Sutton provided supervision from 2002 (principal from 2003), while Dr Marcus Sheaves provided supervision for the duration of the candidature. Drs Sutton and Sheaves provided editorial and statistical advice.

Dr Daryl McPhee (University of Queensland and Queensland Seafood Industry Association) and Mr Darren Cameron (Great Barrier Reef Marine Park Authority) were assigned as Task Associates via CRC Reef. They provided general advice on the project particularly at the project design stage.

Numerous volunteers assisted with the implementation of field work for the questionnaire program and fishery-independent structured fishing surveys.

The Australian National Sportsfishing Association (ANSA) provided recreational fishing data, and Queensland Department of Primary Industries and Fisheries (QDPI&F) provided information on the recreational fishery, inshore charter fishery and inshore commercial net fishery.

ACKNOWLEDGEMENTS:

First and foremost I thank Prof Bruce Mapstone (previously of CRC Reef Research Centre (CRC Reef) and James Cook University (JCU)), Dr Stephen Sutton (of CRC Reef Research Centre and the Department of Tropical Environment Studies and Geography (TESAG), JCU) and Dr Marcus Sheaves (of the School of Marine Biology and Aquaculture, JCU) for supervising the thesis. Your essential advice, input and support is greatly appreciated.

This research was supported by CRC Reef via a student merit scholarship, without which the research would not have been possible. Thanks also to TESAG for additional financial support for research and conference attendance.

I also thank various people who assisted with providing information at various stages of the project: these people are my Task Associates Mr Darren Cameron and Dr Daryl McPhee who provided invaluable input and support, particularly in the early stages of the project; Dr Ken Pollock who arrived at CRC Reef precisely when I was designing my recreational fisher surveys for which topic he is an expert; and numerous researchers and academics who provided hard-to-find papers relevant to my literature review, particularly Prof Bob Kearney, Dr Lynnath Beckley, and Dr Daryl McPhee.

Mr Jim Higgs from Queensland Department of Primary Industries and Fisheries (QDPI&F) promptly provided essential information on Queensland's recreational fisheries from bi-annual recreational fisher ('RFISH') surveys, as well as advice on how to implement my own recreational fisher surveys. Also from QDPI&F, Mr Ian Halliday and Mark Doohan provided prompt information on the inshore commercial fishery whenever requested. Thanks for your help.

Numerous recreational fishing clubs allowed me to attend their meetings and competitions and provided essential opinions, advice and catch data. Thanks to all of you for your help and support, especially Gordon Leverton from the Hinchinbrook Sportsfishing Club, Rod Knight from the Army Sportsfishing Club, and Rob Dwyer from the Burdekin Recreational Fishing Club. Thanks also to Bill Sawynok from the Australian Sportsfishing Association (ANSA), SUNTAG and CapReef for providing detailed recreational catch data and for your support of the project.

A number of fishers also provided information on ramp usage and were 'guinea pigs' for pilot questionnaires and catch logbooks – your assistance is appreciated, particularly Vern Veitch and Tony Katsaros.

I presented research results at numerous conferences and for various fishing clubs and research agencies – this required countless practice seminars which the

members of the Fishing and Fisheries Team at CRC Reef, Tim Harvey, and various TESAG students patiently sat through. I am grateful for your advice and help.

Interviewing almost 400 recreational fishers would not have been possible without the help of willing volunteers, particularly the continued help of Beth Cameron, Kara Dew and Denise Betts. Similarly the fishery-independent fishing surveys were reliant on help from volunteers, so thanks to all who assisted, particularly Mark O'Callaghan and Peter Short who always seemed to be available.

The use of the public media was essential to alert fishers to the project – both to gain participants and to disseminate research results. I couldn't have done this without the help of Dr Annabel Jones and Dr Louise Goggin – Thanks.

And finally, thanks to my family – thanks to Andrew and little Elliot for providing a life outside of the PhD. I couldn't have done this and stayed sane without you. And thanks to baby Charlotte for waiting until your due date to arrive (5 days after thesis submission).

ABSTRACT

Allocation of fisheries resources to recreational fishers via Recreational Only Fishing Areas (ROFAs) is becoming increasingly common in all developed countries, particularly in coastal areas. ROFAs are often introduced with the expectation that such action will segregate competing recreational and commercial fishers (by excluding commercial fishers) and thus resolve apparent conflict over previously shared fisheries resources. ROFAs also have the expected benefit of improving recreational catch quality for previously shared species. Whether these benefits are realised, however, is unknown because little monitoring of outcomes occurs post-ROFA implementation.

Using questionnaires of recreational and commercial fishers and collection of fishery-dependent and fishery-independent recreational catch data, this study investigated the outcomes of ROFAs in north Queensland estuaries. Specifically, the study examined: the nature and source of conflict between recreational and commercial fishers competing for shared barramundi stocks; whether current estuarine ROFAs are successful in segregating and reducing conflict between these sectors; and whether ROFAs result in improved recreational catches of barramundi.

Results from the questionnaires show that while recreational fishers (anglers) have high expectations of ROFAs and would like more implemented, most anglers are unaware of locations of current ROFAs, and do not deliberately choose to use them. Consequently, current ROFAs are not increasing segregation of recreational and commercial fishers. Moreover, contact between the recreational and commercial sectors appears to already be limited due to time segregation (commercial netting is not allowed in estuaries on weekends) and the finding that most commercial fishers avoid areas heavily occupied by recreational fishers. Thus the conflict between these sectors does not appear to be due to high levels of direct contact.

Investigations of the perceptions of fishers from both sectors via the questionnaire program revealed that the underlying conflict between commercial and recreational fishers in north Queensland appears to be based on mutual misperceptions of the competing sector's operations and impacts, particularly from anglers. Such misperceptions lead to blame (i.e. anglers blame commercial fishers) for negative outcomes such as (real or perceived) catch declines. ROFAs do not address this problem of mutual misperceptions of fishers and are therefore unlikely to resolve this conflict in the long-term. Increased communication between sectors and education from fisheries managers and researchers and stakeholder representatives regarding each sector's operations and impacts on the resource is more likely to reduce conflict.

Such actions should reduce misperceptions, adjusting attitudes of fishers to be more positive towards the competing sector, and hence reducing conflict.

Despite anecdotal claims and expectations of improved recreational catches of barramundi in ROFAs compared to open estuaries in north Queensland, fishery-dependent (from charter fishing records, voluntary recreational catch logbooks, and personal fisher time series records) and fishery-independent (in the form of structured fishing surveys) recreational catch data collected though this study did not reveal improvements in catch per unit effort or success rates for barramundi in ROFAs. Results did show that the average size of barramundi caught in ROFAs was larger than those caught in the open estuaries, though the reason for this difference in size structure is unknown. Further investigation into why recreational catch benefits are not being realised and what this may mean for barramundi populations is required. Results imply natural variation may be more influential on barramundi populations than fishing, or that recreational fishing is highly variable and not a good indicator of stock structure and abundance.

Overall, results of this project suggest current estuarine ROFAs in north Queensland are not resulting in the expected benefits: i.e. they are not reducing conflict between recreational and commercial fishers or resulting in improved recreational catches of barramundi. This study highlights the importance of determining the source of conflict, and collecting quality time-series recreational catch data before and after ROFA implementation. Future studies should aim to examine both the costs and expected benefits of ROFAs to determine whether benefits outweigh the costs involved. Costs and benefits should be examined from a multi-disciplinary approach, including social, ecological and economic aspects.

TABLE OF CONTENTS:

STATEMENT OF ACCESS	I
STATEMENT OF SOURCES	II
STATEMENT ON THE CONTRIBUTION OF OTHERS	III
ACKNOWLEDGEMENTS:	IV
ABSTRACT	VI
TABLE OF CONTENTS:	VIII
LIST OF TABLES:	ΥI
LIST OF FIGURES:	
LIST OF ABBREVIATIONS:	XVI
CHAPTER 1: GENERAL INTRODUCTION	1
1.1 Introduction	1
1.2 LITERATURE REVIEW: THE BENEFITS AND COSTS OF RECREATIONAL ON	LY FISHING
Areas	3
1.2.1 Benefits of ROFAs	5
1.2.2 Costs of ROFAs	19
1.2.3 Conclusion	26
1.3 ROFAs within Queensland east coast estuaries	26
1.3.1 ROFAs for barramundi	28
1.3.2 Goals of ROFAs	28
1.3.3 Available data for Queensland estuarine ROFAs	30
1.4 Objectives of Project	30
1.5 STUDY AREA	31
1.6 THE BARRAMUNDI FISHERY	33
1.6.1 Barramundi biology	33
1.6.2 The Barramundi Fishery	34
1.6.3 Threats to the resource	37
1.7 CHAPTER OUTLINE	37
CHAPTER 2: QUESTIONNAIRE PROGRAM	39
2.1 Introduction	39
2.1.1 The nature and source of conflict	
2.1.2 Are ROFAs likely to resolve the conflict?	42

2.2 OBJECTIVES	42
2.3 METHODS	42
2.3.1 Questionnaire development	43
2.3.2 Distribution methods	44
2.3.3 Data Analysis	49
2.4 RESULTS	50
2.4.1 Objective 1: To explore the nature and source of apparent competition	on and
conflict between recreational line and commercial gill net fishers in north	
Queensland	50
2.4.2 Objective 2: To examine whether fishers support the current and futu	ıre use of
estuarine finfish ROFAs to reduce conflict between the two sectors	60
2.5 DISCUSSION	69
2.5.1 Is competition and conflict realised by the general fishing public?	69
2.5.2 What is the nature and source of the conflict?	69
2.5.3 Do fishers support the use of ROFAs?	73
2.5.4 Are more ROFAs necessary?	74
2.5.5 Other potential solutions to conflict	75
2.6 CONCLUSION	80
2.7 FUTURE SURVEY IMPROVEMENTS	80
CHAPTER 3: FISHERY-DEPENDENT RECREATIONAL CATCH DATA	82
3.1 Introduction	82
3.1.1 Fishery-dependent data sources	85
3.2 OBJECTIVES	86
3.3 METHODS AND RESULTS	86
3.3.1 Charter fishery catch data	86
Methods	86
Results	87
3.3.2 Voluntary recreational catch logbooks	88
Methods	88
Results	92
3.3.3 ANSA time-series data for the Hinchinbrook region	110
Methods	110
Results	111
3.4 DISCUSSION	122
3.4.1 Is recreational fishing quality better in ROFAs?	122
3.4.2 Consequences for future ROFAs	129

3.4.3 Difficulties with fishery-dependent data	130
3.4.4 Future directions	131
CHAPTER 4: FISHERY-INDEPENDENT STRUCTURED FISHING SURV	/EYS 133
4.1 Introduction	133
4.2 OBJECTIVES	134
4.3 METHODS	134
4.3.1 Site selection	134
4.3.2 Sampling periods	136
4.3.3 Sampling within estuaries	137
4.3.4 Sampling methods	138
4.3.5 Data recorded	138
4.3.6 Data Analysis	139
4.4 RESULTS	140
4.4.1 Description of the catch data	140
4.4.2 CPUE comparisons	141
4.4.3 Size frequency of barramundi	145
4.5 DISCUSSION	147
CHAPTER 5: GENERAL DISCUSSION	152
5.1 OVERVIEW	152
5.1.1 Segregation as a solution to conflict	152
5.1.2 Education and communication as a solution to conflict	154
5.1.3 The use of ROFAs to improve recreational catches	156
5.2 IMPLICATIONS FOR FUTURE ROFAS	160
5.3 CONCLUSION	162
REFERENCES:	164
APPENDICES:	187
Appendix 1 Queensland estuaries north of Fraser Island closed to	commercial
gill net fishing (i.e. effectively ROFAs for finfish)	187
Appendix 2 Fisher Questionnaires	193
Appendix 3 Timetables for the recreational fisher access point (box	at ramp) Bus
Route Surveys	206
Appendix 4 QDPI&F Charter Fishing Catch Logbook	207
Appendix 5 Recreational fisher catch logbook	209
Appendix 6 Classification and Regression Trees for Voluntary Rec	reational
Catch Logbook Data	213

Appen	dix 7 Timetable for fishery-independent structured fishing surveys246
Appen	dix 8 Mud-maps of each sampled estuary for the fishery-independent
structu	ured fishing surveys250
Appen	dix 9 Data sheets for fishery-independent structured fishing surveys256
LIST OF TABL	.ES:
Table 2.1 Route Sເ	Regions within study area for the recreational fisher access point Busurveys, listed south-north45
Table 2.2 Surveys.	Sampling timetable for the recreational fisher access point Bus-Route47
Table 2.3	Perceived threats to the resource listed by recreational and commercial
	response to the open-ended question: "What do you see as the biggest local estuarine fish stocks?"
Table 2.4	Reasons listed by recreational and commercial fishers for why they think
their cato	th has changed in recent years53
Table 2.5	Solutions suggested by recreational and commercial fishers to resolve
or reduce	e competition between the two sectors in local estuaries61
Table 2.6	List of factors given by recreational and commercial fishers that usually
affect the	eir choice of fishing location65
Table 3.1	Codes assigned to each fishing factor within the "fishing factor code"91
Table 4.1	Estuaries sampled within each region for the fishery-independent
structure	d fishing surveys, including approximate estuary dimensions136
Table 4.2	Description of fishery-independent structured survey fishing trips in each140
Table 4.3	Total number (n) and catch per unit effort (CPUE, number of fish per
	er hour) of each species (grouped to genus in some instances) caught in
	uary with the fishery-independent structure fishing surveys142
List of Figu	RES:
Figure 1.1	Map outlining the study area within Queensland, Australia32
Figure 1.2	Map of study area in north Queensland outlining ROFA and part-ROFA
estuaries	and Dugong Protection Areas (DPAs)33
Figure 2.1	Map of regions within the study area for the recreational fisher access
point (bo	at ramp) Bus Route Surveys46

Figure 2.2	Percentage of a) recreational fishers, and b) commercial fishers in each	
answer c	ategory for the question: "Do you think competition/conflict between	
recreatio	nal and commercial fishers in estuaries is a significant problem in the loca	ıl
area; or f	for you personally? If yes, at what level?"5	1
Figure 2.3	Percentage of respondents from the recreational and commercial	
sectors the	hat think the number of fish they catch has increased, decreased or not	
changed	in recent years5	3
Figure 2.4	Percentage of recreational and commercial fishers who hold a positive	
('like'), ne	eutral ('indifferent') or negative ('dislike') attitude toward the competing	
sector	5	4
Figure 2.5	Percentage of recreational and commercial fishers in each answer	
category	for the question: "Do you think recreational fishers as a group have an	
impact or	n estuarine fish stocks? If yes, to what extent?"5	5
Figure 2.6	Percentage of commercial fishers who answered 'yes' or 'no' to the	
questions	s: "Do you think recreational fishers regularly keep undersize fish;	
barramuı	ndi over 1m; more than their bag limit; or fish to sell on the black market?"	
	5	6
Figure 2.7	Percentage of recreational and commercial fishers that think the	
commerc	cial gill net fishery is, or is not, sustainable at current effort levels on	
Queensla	and's east coast5	7
Figure 2.8	Percentage of commercial fishers in each answer category for the	
question	"Do you think the commercial gill net sector catches more or less	
barramuı	ndi per year than the recreational sector on Queensland's east coast?"5	7
Figure 2.9	Percentage of recreational fishers that answered 'yes' or 'no' to the	
question	"Do you think commercial gill net fishers regularly keep undersize	
barramuı	ndi; or large female barramundi (over 1m)?"5	8
Figure 2.10	Species listed by recreational and commercial fishers when asked what	
the main	target species is for the estuarine commercial gill net fishery on	
Queensla	and's east coast5	9
Figure 2.11	Species listed by recreational fishers when asked what they believe	
commerc	cial estuarine gill nets catch on Queensland's east coast6	0
Figure 2.12	Percentage of recreational and commercial fishers that think anglers wil	ı
catch mo	ore, less or the same number of fish on an average fishing day in an	
estuary t	hat is closed to commercial fishing (ROFA) compared to one that is open.	
	6	2

Figure 2.13	Percentage of recreational and commercial fishers in each answer
category	for the question: "If an estuary was closed to commercial gill net fishing,
do you th	ink recreational effort would increase as a result? If yes, at what level?" 63
Figure 2.14	Number of interviews per hour from anglers fishing in open, ROFA and
part-ROF	A estuaries surveyed with the access point Bus Route Surveys65
Figure 2.15	The percentage of anglers that correctly or incorrectly stated whether
the estua	ry they were fishing on the day of the interview was open or closed
(ROFA) t	o commercial gill net fishing66
Figure 2.16	The percentage of anglers (from those that claimed knowledge of
ROFAs) 1	that correctly or incorrectly stated whether the estuary they were fishing
on the da	ay of the interview was open or closed (ROFA) to commercial gill net
fishing	67
Figure 2.17	Percentage of recreational and commercial fishers who answered 'yes'
or 'no' to	the question: "Do you think it is necessary to close more estuaries in the
local area	a to commercial gill net fishing?"68
Figure 2.18	Percentage of recreational and commercial fishers who think closing an
area to o	ne sector for the benefit of the other (i.e. sector-specific closures) is 'fair'
or 'unfair'	⁷ 68
Figure 3.1	Classification and Regression Tree (CART) with the 1-SE rule
examinin	g the effect of fishing location (management status and bay) on catch per
unit effort	t (CPUE, weight per day) of barramundi for the Commercial Charter
Fishery.	88
Figure 3.2	Percentage of recreational logbook holders (that targeted barramundi) in
each avid	dity category, plus percentage of trips provided by anglers in each avidity
category.	93
Figure 3.3	Percentage of trips logged by each fishing party size (i.e. number of
anglers).	94
Figure 3.4	Percentage of logged trips by anglers using different line numbers per
angler	94
Figure 3.5	Duration of logged fishing trips within one-hour time categories (rounded
up to the	nearest hour)95
Figure 3.6	Percentage of logged fishing trips using each fishing method (i.e. bait
type) to ta	arget barramundi95
Figure 3.7	Classification and Regression Tree (CART) with the 1-SE rule for: a) all
fish spec	ies; b) all barramundi; c) undersize barramundi; and d) legal-sized
barramur	ndi, examining the effect of various fishing factors on the percentage of
successf	ul (for catching at least one fish) trips97

Figure 3.8	CART with the 1-SE rule for: a) all fish species; b) all barramundi; c)
undersize	e barramundi; and d) legal-sized barramundi, examining the effect of
combined	d fishing factors (avidity, number of anglers, and number of lines per
angler) o	n catch per unit effort (CPUE, number of fish per angler per hour)99
Figure 3.9	Interaction effect of avidity, number of anglers per fishing party and line
number p	per angler on CPUE (number of fish per angler per hour) for successful
trips for a	a) fish of any species; b) barramundi; c) undersize barramundi; and d)
legal-size	ed barramundi100
Figure 3.10	CART with the 1-SE rule for: a) all fish species; b) all barramundi; c)
undersize	e barramundi; and d) legal-sized barramundi, examining the effect of
fishing m	ethod on CPUE (number of fish per angler per hour)101
Figure 3.11	CART with the 1-SE rule for the success rate for catching at least one:
a) fish of	any species; b) barramundi; c) undersize barramundi; and d) legal-sized
barramur	ndi103
Figure 3.12	Average CPUE with 95% CI for successful fishing trips for: a) all fish; b)
all barrar	nundi; c) undersize barramundi; and d) legal-sized barramundi for open,
ROFA ar	nd part-ROFA estuaries in the study area104
Figure 3.13	CART with the 1-SE rule for a) all fish, b) all barramundi, c) undersize
barramur	ndi; and d) legal-sized barramundi for CPUE for successful trips in each
bay	105
Figure 3.14	CART with the 1-SE rule for the legal-sized barramundi CPUE for
successf	ul trips in each bay using: a) only artificial bait; and b) a mixture of real and
artificial b	pait106
Figure 3.15	Frequency histogram of each size class of barramundi caught in open
and ROF	A estuaries throughout the study area107
Figure 3.16	Correspondence analysis of size classes of barramundi caught in open
and ROF	A estuaries in each bay in the study area108
Figure 3.17	Size frequency histograms for barramundi caught in open and ROFA
estuaries	in each bay in the study area109
Figure 3.18	CPUE (number of fish per angler per hour) for all barramundi for
estuaries	within the Hinchinbrook DPA region and adjacent open estuaries over
time	112
Figure 3.19	CPUE for all barramundi for estuaries within the Hinchinbrook DPA
region ar	nd adjacent open estuaries over time (grouped within 3-year blocks)112
Figure 3.20	CART with the 1-SE rule for the number of barramundi caught per
angler pe	er hour in: a) estuaries within the Hinchinbrook DPA area; and b) adjacent
open est	uaries over time (within 3-year blocks)113

Figure 3.21	Cross-correlation of open versus DPA estuaries of average barramund	li
CPUE ove	er time (within 3-year blocks)1	14
Figure 3.22	CPUE for legal-sized barramundi for: a) estuaries within the	
Hinchinbr	ook DPA region over time (open estuaries not included due to large erro	r
bars); and	b) DPA and adjacent open estuaries within 3-year blocks1	15
Figure 3.23	CART with the 1-SE rule for legal-sized barramundi CPUE in: a)	
estuaries	within the Hinchinbrook DPA area; and b) adjacent open estuaries over	
time (with	in 3-year blocks)1	16
Figure 3.24	Success rate for all barramundi for estuaries within the Hinchinbrook	
DPA region	on and adjacent open estuaries for: a) individual years; and b) 3-year	
blocks	1	17
Figure 3.25	CART the 1-SE rule comparing average success rate for 3-year blocks	į
for barran	nundi between: a) estuaries within the Hinchinbrook DPA area; and b)	
adjacent o	open estuaries1	18
Figure 3.26	Cross-correlation of open versus DPA estuaries of success rate for	
catching t	parramundi (within 3-year blocks)1	19
Figure 3.27	Success rate for legal-sized barramundi for: a) estuaries within the	
Hinchinbr	ook DPA region over time (open estuaries not included due to large erro	r
bars); and	d b) DPA and adjacent open estuaries within 3-year blocks12	20
Figure 3.28	CART the 1-SE rule comparing success rate for legal-sized barramuno	li
between 3	3-year blocks in: a) estuaries within the Hinchinbrook DPA area; and b)	
adjacent o	open estuaries1	21
Figure 3.29	Size frequency histogram for all barramundi caught within the	
Hinchinbr	ook DPA region pre- and post-DPA implementation1	22
Figure 4.1	Map of estuaries sampled (fished) within the fishery-independent	
structured	fishing surveys within each region in the study area1	35
Figure 4.2	Common dropper rig used for targeting barramundi by fishing with live	
prawns in	snags (exaggerated for clarity)1	39
Figure 4.3	Average CPUE (number of fish per angler per hour) for all fish caught i	n
each sam	pled estuary14	41
Figure 4.4	Classification and Regression Tree (CART) with the 1-SE rule for the	
CPUE (nu	umber of fish caught per angler per hour) of all fish in all sampled	
estuaries.	14	43
Figure 4.5	Average CPUE for all barramundi caught in each sampled estuary14	14
Figure 4.6	CART with the: a) 1-SE rule; and b) min-CV rule for barramundi CPUE	
in all sam	pled estuaries14	45

Figure 4.7	Size frequency histogram for barramundi caught in the sampled open	ì
and ROF	A estuaries	146
Figure 4.8	Average size of barramundi caught in the sampled open and ROFA	
estuaries.		147

LIST OF ABBREVIATIONS:

AFANT	Amateur Fisherman's Association of the Northern Territory
ANSA	Australian National Sportsfishing Association
CHRIS	Coastal Habitat Resources Information System
CPUE	Catch per unit effort
CRC Reef	CRC Reef Research Centre
DPA	Dugong Protection Area
ECIFF	East Coast Inshore Finfish Fishery
EoNF Project	Effects of Net Fishing Project
GBRMP	Great Barrier Reef Marine Park
GBRMPA	Great Barrier Reef Marine Park Authority
GBRWHA	Great Barrier Reef World Heritage Area
NSW	New South Wales
NRIFS	National Recreational and Indigenous Fishing Survey
QDPI	Queensland Department of Primary Industries
QDPI&F	Queensland Department of Primary Industries and Fisheries
QBFP	Queensland Boating and Fisheries Patrol
QSIA	Queensland Seafood Industry Association
RAP	Representative Areas Program
RFISH	QDPI&F Recreational Fisher Monitoring Program
ROFA	Recreational Only Fishing Area
WA	Western Australia