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Abstract 

 

Abstract 

Neutral theory explains patterns of biodiversity based solely on speciation, 

demographic stochasticity, and dispersal limitation. The validation of this 

controversial theory depends on empirical support and it has been largely untested in 

marine communities. Coral assemblages have been repeatedly invoked as the animal 

communities most likely to conform to the assumptions of neutral theory. This thesis 

tested the hypothesis that neutral theory explains the macroecological structure of 

coral assemblages. 

Firstly, I assessed whether neutral models can accurately characterise coral 

species abundance distributions across multiple scales. Simulation-based and 

analytical neutral models were fitted to a hierarchical dataset of coral species 

abundance distributions from across the Indo-Pacific gradient of biodiversity. The 

dataset has three replicate habitats (slope, crest and flat), and three spatial scales (site, 

island and region). Both models exhibit significant lack of fit to empirical data at the 

site and island scales, but not at the region scale. The neutral model consistently 

underestimates the number of rare species, and overestimates the number of common 

species. Additionally, the neutral model fits coral abundance distributions less 

accurately than the poisson-lognormal at all scales. Using two formulations of neutral 

theory, and two goodness-of-fit tests, along with comparisons with the lognormal 

distribution, ensures that the inferences about coral assemblages and neutral dynamics 

are robust. Neutral model predictions are consistently and significantly different from 

observed coral species abundance distributions.  

Secondly, I developed a novel test of neutral theory that examines variability 

between communities of species relative abundances. In neutral communities, species 
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relative abundances are determined by demographic stochasticity or “ecological 

drift”. Thus, communities diverge through time, and are expected to have low 

community similarity. In contrast, niche apportionment mechanisms have been 

invoked to argue that higher levels of community similarity should be observed under 

niche assembly than under neutral dynamics. These contrasting predictions provide an 

ideal opportunity to test neutral models against empirical data. Relative abundances of 

species across local communities differ markedly from neutral theory predictions: 

coral communities exhibit community similarity values that are far more variable, and 

lower on average, than neutral theory can predict. Surprisingly, empirical community 

similarities deviate from the neutral model in a direction opposite to that suggested in 

previous critiques of neutral theory. Instead, the results support spatio-temporal 

environmental stochasticity as a major driver of community structure at the 

macroecological scale. 

Thirdly, I unveiled a coral local community species abundance distribution. 

Community structure patterns are notoriously sensitive to sampling issues, and a 

comprehensive characterization of such patterns requires extremely large sample 

sizes. Consequently, the fit of biodiversity models to species abundance distributions, 

and parameter estimates in particular may be sensitive to sample size. To address 

these questions, over 44,000 corals were counted and identified to species at an 

exposed crest in Lizard Island, Great Barrier Reef. A neutral model was fitted to the 

species abundance distribution of the total dataset, and to sub-samples of various 

sizes. Parameter estimates and fit of the neutral model at different sample sizes were 

compared. The unveiled species abundance distribution appears to be multimodal. 

Parameter estimates are not affected by sample size. 
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These results strongly indicate that the limited suite of ecological and 

evolutionary processes included in neutral theory do not suffice to explain diversity 

patterns in coral assemblages. In combination, the three approaches included in this 

thesis suggest that neutral theory is most useful as a null model for community 

structure. Furthermore, the thesis highlights differences in species’ responses to 

environmental fluctuations as a potential major driver of species abundance patterns. 
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Chapter 1: General Introduction 

Understanding the processes that govern biodiversity has long been one of 

the central objectives of community ecology (Hutchinson 1959; Whittaker 1972; 

MacArthur 1975). Since effective conservation efforts depend on understanding how 

ecological processes affect community structure, there are now also pressing practical 

implications associated with this endeavour. These questions are more relevant than 

ever as diversity is currently being lost at a rate unprecedented in the last 65 million 

years (Chapin et al. 2000). Coral reefs in particular are increasingly threatened, and 

urgent measures are needed in order to ensure the sustainability of these ecosystems 

(Hughes et al. 2003; Bellwood et al. 2004). The main objective of this thesis was to 

contribute to the understanding of the mechanisms that determine coral community 

structure. 

Throughout this thesis the term community is defined as a group of species 

that are taxonomically similar and compete for resources (i.e., belong to the same 

trophic group) (Hubbell 2001). For example, on a coral reef, the corals and fishes 

belong to different communities according to this definition. Community structure, 

thus defined, refers to the patterns of diversity, and of species’ relative abundances. 

Diversity indices are often used to characterize community structure. These indices 

aim to summarize community structure taking into account both the number of 

species in the community and their abundance (Magurran 2004). Diversity, however, 

is not an univariate linear property of a community, and different indices measure 

different properties of community structure (Hurlbert 1971). Alternatively, analysing 

the distribution of species abundance can provide more detailed information about 

community structure than diversity indices do.  Therefore, the analyses in this thesis 
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focus on patterns of species abundances, particularly on how they vary among 

locations, as descriptors of community structure. 

Two statistical distributions are particularly prominent candidates as good 

descriptive models for species abundances: the log-series and the lognormal. The log-

series is derived from the negative binomial and accommodates a large number of rare 

species and a decreasing number of increasingly abundant species (Fisher et al. 1943). 

It arises as the result of random sampling from a community with heterogeneous 

species abundances (Fisher et al. 1943). The lognormal is a normal distribution in a 

log scale (Preston 1948). Statistically the lognormal arises as a consequence of the 

central limit theorem: many different random variables interacting multiplicatively are 

expected to generate lognormal distributions (May 1975). Preston (1948) also 

remarked that ecological data are usually a sample from a community, and we seldom 

have information about entire communities. Preston proposed that limitations of 

sampling would impose a “veil” on species abundance distributions, so that the rarest 

species would not be present in the sample. This veil would cause an apparent 

resemblance with a log-series distribution, which should disappear if sample size is 

increased. In fact, a sampling model for the lognormal (the Poisson lognormal) 

produces SADs that vary from log-series-like to lognormal-like depending on sample 

size (Pielou 1975; Lande et al. 2003a). 

Species abundance distributions (SADs) have remarkable similarities across 

ecological communities. Empirical data usually have SADs that resemble either 

logseries or lognormal distributions. Communities dominated by a few highly 

competitive species, with low to moderate diversity, or relatively small samples from 

a large community often have log-series SADs (May 1975; Hubbell 2001; Magurran 
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2004). However increasing sample size often reveals an internal mode, as a 

lognormal-like distribution is unveiled. This “unveiling” has been demonstrated in 

communities as varied as, for example, birds (Nee et al. 1991), trees (Hubbell 1997b), 

estuarine fish (Magurran and Henderson 2003), and reef fishes and corals (Connolly 

et al. 2005). The two distributions are similar in most of their range (Hughes 1984), 

and therefore fitting a lognormal to samples that do not have an internal mode has 

been questioned (Hughes 1986). However, quantitative comparisons between the fit 

of the log-series and the sampling distribution from a lognormal to empirical data can 

still be made, even in the absence of an internal mode (Connolly et al. 2005). In 

general, species abundance distributions from a large variety of different communities 

seem to be well described by lognormal distributions. 

The regularity of patterns in species abundance distributions suggests that in 

general the same processes regulate community structure. The classical theoretical 

explanation for these patterns is based on species differences in niche (Hutchinson 

1959; MacArthur 1960; Sugihara 1980; Tilman 1982; Tokeshi 1990). Each species is 

adapted to certain environmental conditions, and is most efficient (and therefore has a 

competitive advantage) in places where the environment is similar to its optimal 

conditions. The species that live in any particular location must compete for the 

resources available. Niche theory suggests that the fraction of resources each species 

consumes is related to its competitive ability (Tilman 1982) and each species 

consumes a fraction of the resources left available from its superior competitors. 

Finally if a species’ abundance is proportional to the fraction of resource it consumes, 

the distribution of species abundances can be predicted by this partition of resources 

(MacArthur 1960).  
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There are a number of ways that resources can be partitioned, which 

correspond to different predicted SADs. For example, if each species consumes a 

fixed fraction of the resources left available from its superior competitors 

(hierarchical model) the predicted SAD is a geometric series (Motomura 1932 in 

(Whittaker 1972). Alternatively, the broken stick distribution, which is similar to but 

more even than the lognormal, arises from the random partition of resources 

(MacArthur 1960). In this model the resource is partitioned at random, in S fractions 

of random size, where S is the number of species in the community. Finally, a 

hierarchical random partition of resources produces the lognormal distribution 

(Sugihara 1980). Resource partitioning in this model is often referred to as 

sequentially random, as species are sorted by competitive rank, and each species is 

sequentially allocated a random fraction of the resources left available by its superior 

competitors. This last model is particularly relevant, given the near-ubiquity of the 

lognormal distribution as a statistical description of empirical SADs. 

Numerous studies have provided evidence for niche theory. Examples 

include the comparison of empirical SADs with distributions obtained from the 

random assortment of species as well as with different niche models (Tokeshi 1990). 

More sophisticated studies examine multiple patterns, such as the proportionality 

between species abundances and the fraction of resources they consume when isolated 

(Tilman 1990; Harpole and Tilman 2006), or between species abundances and niche 

similarities (Sugihara et al. 2003). The mechanisms that promote species coexistence 

under niche theory have been thoroughly studied (Tilman and Pacala 1993) and niche 

assembly is generally considered to be an essential driver of community structure 

(Chesson 2000). Niche theory has, thus, been the paradigm of community ecology for 

the past half century. 
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In spite of this popularity there are some limitations to niche theory. Niche 

models are static and based on the abstract partitioning of resources. Ideally, 

theoretical models used to explain patterns of community structure should rest on 

basic ecological processes and allow exploration of community dynamics through 

time and space. Yet, developing dynamic models based on species niches has proven 

extremely difficult: even for communities of modest diversity, the models require far 

too many parameters (e.g. Schwilk and Ackerly 2005). 

An alternative explanation for community structure – neutral theory (Hubbell 

1997b; Bell 2000; Bell 2001; Hubbell 2001) – has recently gained increasing 

attention. Neutral theory is based on demographic stochasticity and dispersal 

limitation. The neutrality assumption at the core of this theory means that all 

individuals, regardless of species, are demographically identical. This is in direct 

contradiction to niche theory, for which community structure is determined by species 

differences in resource use and local adaptation. Additionally, the neutrality 

assumption sits uncomfortably within community ecology, much of which is 

concerned with quantifying and explaining inter-specific differences in demographic 

rates, abundance, and distribution. Hence, it is not surprising that neutral theory is 

controversial (Abrams 2001; Brown 2001; Mazancourt 2001; Bengtsson 2002; Dial 

2002; Silander 2002; Harte 2003; Ricklefs 2003; Chave 2004; Chisholm and 

Burgman 2004; Chase 2005; Gaston and Chown 2005). However, unlike niche 

models, neutral models are dynamic and explicitly incorporate fundamental 

demographic processes, such as births, deaths, and dispersal. Neutrality may be a 

reasonable simplifying assumption if inter-specific demographic differences are 

obscured by intra-specific variability, and thus species differences can be ignored 

when studying community structure. Most importantly, in spite of its simplicity, 
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neutral theory can produce community structure patterns that are surprisingly similar 

to empirical patterns (Hubbell 2001). Consequently, assessing whether neutral theory 

is capable of explaining observed community structure patterns is critical for the 

debate between niche and neutral theories. In this thesis, I test how well neutral theory 

can explain the community structure of scleractinian corals in the Indo-Pacific.  As a 

highly diverse group with limited scope for resource partitioning within communities, 

scleractinian corals are ideally suited as a test case for neutral theory. 

The thesis starts with a review and comparison of the most prominent neutral 

models that have been explicitly fitted to empirical data (Chapter 2). I show that in 

spite of differences in ancillary assumptions (i.e., assumptions other than the “core” 

assumptions that species have identical resource requirements and demographic 

rates), the neutral models compared predict similar patterns. Thus, conclusions drawn 

from empirical tests of neutral theory are likely to be robust to the choice of which 

particular neutral model is used.  

Chapter 3 presents the first of three approaches used to test neutral theory: 

assessing the fit of neutral models to coral SADs across multiple scales, habitats and a 

biodiversity gradient. In this test I used an extensive data set of coral community 

composition that is housed at the ARC Centre of Excellence for Coral Reef Studies 

dataset (kindly provided by T.P. Hughes). The data include three habitats, and five 

regions distributed along a 10,000 km biodiversity gradient. In this Chapter, two 

neutral models are used to show that absolute goodness-of-fit tests indicate rejection 

of neutral theory as an explanation for coral community structure. Additionally, 

neutral models are rejected in a relative goodness-of-fit comparison with the 

lognormal. 
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Tests of macroecological theory based exclusively on curve-fitting to SADs 

are increasingly criticized as being relatively weak tests (McGill et al. 2006). Such 

tests do provide an important first test of the ability of a model to reproduce a pattern, 

but it is often impossible to use these results to link pattern and process, because 

several models can generate similar patterns (Magurran 2005). In particular, the 

superiority of the lognormal is difficult to interpret because, unlike neutral theory, it is 

not a mechanistic model. Therefore, in Chapter 4, I move beyond the analyses in 

Chapter 3 and present a novel test of neutral theory that is based on between 

community patterns. I analyse frequency distributions of community similarity and 

show that coral communities are more variable than neutral theory predicts. The 

nature of the differences between the data and the model predictions also highlight the 

role of environmental stochasticity in shaping reef corals community structure. 

The shape of SADs is highly sensitive to sampling effort. Extremely large 

sample sizes are needed to know the true underlying SAD of a community. Thus, the 

fit of models to these kind of data is likely to be affected by sample size. In neutral 

models, parameter estimates, and immigration rates in particular, may be affected by 

sample size. To address these questions, I collected the largest coral species 

abundance dataset from a single location. In Chapter 5, I unveil a local coral 

community’s SAD, and I determine whether neutral model parameter estimates are 

sensitive to sample size. The dataset reveals that increasing sample size does not 

unveil a lognormal distribution. Instead, the resulting distribution seems to be multi-

modal. Neutral model analyses also indicate that parameter estimates are robust to 

variation in sample size. 
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The thesis finishes with the overall conclusions and a brief discussion of the 

implications of the results for community ecology and conservation (Chapter 6).
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Chapter 2: A Review of neutral models 

2.1. The origins of neutral models 

Biodiversity neutral theory has its roots in population genetics. Neutral 

theory was initially developed to explain the dynamics of alleles with equal fitness 

consequences (neutral alleles) in population genetics (Kimura 1968; King and Jukes 

1969). Most mutations are base substitutions that have little or no phenotypic effect, 

and hence a negligible influence on fitness. Such “neutral” mutations are thus not 

subject to natural selection, and genetic drift plays the principal role in evolution at 

the molecular level. Like the alleles in population genetics, in biodiversity neutral 

models, species are neutral. The neutrality assumption means that competition 

between individuals follows a lottery process that is independent of species identities. 

That is, all individuals in a community are competitively identical (use the same 

resources in the same amounts, and have the same demographic rates). In analogy 

with genetic drift, biodiversity neutral models propose that demographic stochasticity, 

in combination with dispersal limitation, drives community dynamics.  

Population genetic neutral models (Ewens 1972; Karlin and McGregor 1972; 

Watterson 1974) were first analysed in the context of community ecology in the 70’s 

(Caswell 1976; Hubbell 1979). Caswell (1976) advocated the use of neutral models as 

a scale of reference against which empirical patterns should be compared to estimate 

the effects of biological interactions on community structure. However, because 

immigrants were assumed to come from an infinite source of species, these models 

could not generate species abundance distributions (SADs) with the ubiquitous 

lognormal distribution. In contrast, Hubbell’s neutral model (1979) emphasized 

dispersal limitation and combined neutral dynamics with island biogeography theory 
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(MacArthur and Wilson 1967). This model generated lognormal-like SADs. 

However, most ecologists continued to focus on niche partitioning as an explanation 

for community structure (MacArthur 1960; Whittaker 1972; Sugihara 1980), and thus 

neutral models were largely ignored. It was not until recently that neutral models were 

proposed as a general explanation for biodiversity patterns (Hubbell 1997b; Hubbell 

1997a; Hubbell 2001) and gained prominence.  

Hubbell’s (2001) claim that neutral theory was adequate to explain many 

empirical generalities in biogeography and biodiversity has caused a great deal of 

interest and controversy (Abrams 2001; Brown 2001; Mazancourt 2001; Bengtsson 

2002; Dial 2002; Silander 2002; Harte 2003; Ricklefs 2003; Chave 2004; Chisholm 

and Burgman 2004; Chase 2005; Gaston and Chown 2005). Since then, there have 

been numerous theoretical developments and empirical tests of neutral models. In this 

Chapter I review the literature regarding biodiversity neutral models in general, and I 

compare the three main theoretical approaches to modelling neutral dynamics in 

particular. I start by discussing the assumptions of a broad suite of neutral models, 

and I highlight differences in ancillary assumptions that could potentially give rise to 

discrepancies in model predictions. Then I focus on the three main modelling 

approaches that can be, and have been, explicitly fitted to empirical data, and I 

describe them in some detail. To finalise I compare model predictions, to show that 

differences are minimal, and thus neutral models can be used interchangeably 

according to convenience. To conclude I discuss some practical considerations 

regarding the use of the different models. 
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2.2. Neutral model assumptions 

There are currently several neutral models including both simulation-based 

(Bell 2000; Bell 2001; Hubbell 2001; Chave and Leigh 2002; Chave et al. 2002), and 

analytical models (Volkov et al. 2003; Etienne and Olff 2004; McKane et al. 2004; 

Etienne 2005; He 2005). By definition, neutral models assume that all individuals 

have the same probability of dying, producing offspring, speciating and immigrating 

from the metacommunity. Although per capita demographic rates are the same for all 

individuals in a community, species vary in their total mortality, birth and 

immigration rates: the more abundant a species is, the more likely it is that one 

individual of this species will provide a local birth or an immigrant, but also the more 

likely it is to die. In general, neutral models include two spatio-temporal scales: the 

metacommunity and the local community. At the metacommunity scale, speciation 

rate and the total number of individuals determine species richness and species 

abundance. At the local community scale, random deaths, births and immigration 

determine community structure.  

Both Hubbell’s (2001) simulation, and Etienne’s (2005) analytical neutral 

models have the additional assumption of community saturation, also known as the 

zero-sum assumption. This assumption states that every individual that dies is 

replaced either by a local birth or an immigrant, and therefore community size is 

constant. Because the number of individuals is unlikely to be constant in most 

communities, the applicability of neutral theory to unsaturated communities has been 

questioned (Silander 2002). However, this assumption is not present in some 

analytical neutral models (McKane et al. 2000; Vallade and Houchmandzadeh 2003; 

Volkov et al. 2003; McKane et al. 2004; He 2005). Comparing predictions made by 
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these different model versions should allow inferences about what, if any, is the effect 

of the saturation assumption. 

Neutral models also differ in terms of dispersal dynamics. In most simulation 

models local communities have complete mixing within them, but dispersal from the 

metacommunity is filtered through a migration probability (but see Chave and Leigh 

(2002) for a model with spatially explicit local communities). In contrast, it has been 

argued that analytical models can be conceptualised as a continuous landscape 

(Etienne and Alonso 2005), with dispersal limitation occurring at each point in space. 

Given the importance dispersal limitation plays in neutral models, it is important to 

understand the effects of these differences in dispersal dynamics for neutral theory 

predictions. 

Finally neutral models differ on the species abundance distribution (SAD) of 

the source pool of immigrants. Caswell’s neutral model has an infinite source of 

immigrant species (Caswell 1976). Bell’s neutral model (Bell 2000) as well as He’s 

neutral model (He 2005) sample immigrants from a distribution with a constant 

number of species and a uniform distribution. These three models do not make 

assumptions about how species originate, but most other neutral models (Hubbell 

2001; Volkov et al. 2003; McKane et al. 2004) assume that species arise by point 

mutation (i.e. instantaneously with the initial abundance of one individual). This 

speciation mechanism generates a logseries metacommunity SAD from which 

immigrants are sampled. This speciation mechanisms has been criticized as being 

unlikely to be the predominant type of speciation, and for generating too many 

species with short life-spans (Ricklefs 2003). Other speciation mechanisms can be 
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used for neutral dynamics which generate different metacommunity SADs (Hubbell 

2001). However, such formulations are not yet available as tractable models. 

The neutral models currently available can be classified into three main 

modelling approaches: simulation models, analytical models based on a mean field 

approximation, and analytical models based on a genealogical approach. These 

modelling approaches share the neutrality assumption, but, as discussed above, vary 

slightly in ancillary assumptions. Here I describe each approach separately, compare 

the patterns they predict, and discuss the advantages and disadvantages of using each 

modelling approach to test neutral model predictions.  

 

2.3. Simulation neutral models 

Biodiversity neutral models were firstly developed as simulation algorithms. 

There are several formulations that differ slightly in dynamics (Bell 2000; Bell 2001; 

Hubbell 2001; Chave and Leigh 2002; Chave et al. 2002). However, the most cited 

and commonly used simulation neutral model is Hubbell’s (2001). This is the 

simulation model I used in the following Chapters, and thus it is described here in 

detail (henceforth SNM).  

In the SNM, a local community is composed of J individuals. These 

individuals are initially randomly drawn from a metacommunity with Jm individuals. 

Metacommunity diversity is determined by both the per-time-step speciation rate (ν) 

and Jm. Under point mutation speciation, these two parameters always appear 

combined in the parameter θ (the “fundamental biodiversity number”).  
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If more than one speciation event is allowed to occur at each time step, θ is 

defined as: 

! 

" = 2Jm#                                                      (2.1) 

(Hubbell 2001; Volkov et al. 2003).  

 

Alternatively if only one species can arise per time step, θ is defined as: 

! 

" =
# $ 

1% # $ 
(Jm %1)                                              (2.2) 

(Vallade and Houchmandzadeh 2003), where the per time step speciation rate (ν) 

relates to the per capita speciation rate (ν’) 

! 

" =
# " 

1$ # " 
                                                     (2.3) 

In the SNM, θ determines the number of species in a sample of the 

metacommunity, because it corresponds to the probability that an individual belongs 

to a species not previously sampled. The metacommunity is the source of immigrants 

for local communities. The distribution of abundances in the metacommunity is 

similar to Fisher’s logseries, and, in practice, immigrants for the SNM are drawn from 

a large pool (relative to local community size) generated by a sampling algorithm 

(Ewens 1972; Hubbell 2001). 

Local community dynamics occur in discrete time. At each time step, D 

individuals randomly die. Each empty site is either occupied by an immigrant from 

the metacommunity with probability of immigration m, or by the offspring of an adult 

randomly chosen from within the community, with probability 1-m. In simulations, 
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SADs usually reach a noisy equilibrium after about 50 turnovers of the community 

(i.e., a total number of births that exceeds J by a factor of about 50) (McGill 2003c). 

Allowing enough turnovers for communities to stabilize is extremely important, as it 

affects not only the shape of SADs (McGill 2003c; Chisholm and Burgman 2004), but 

also the degree of divergence between communities (Maurer and McGill 2004).  In 

this thesis, I adopt a conservative approach and run simulation models for 500 

turnovers of the community (50 000 time steps with D = 1% of J). The shape of the 

SAD is determined by J, m and θ, and is not affected by the size of the 

metacommunity (Jm) or the number of individuals replaced at each time step (D). 

 

2.4. Mean field neutral model 

The first analytical approach to biodiversity neutral models to be developed 

applies mean field approximations to neutral models (McKane et al. 2000; McKane et 

al. 2004). Instead of examining the interactions among the species that compose a 

community individually, this approach assumes that a species interacts with all the 

other species in the community combined. Grouping all but the focal species greatly 

simplifies the dynamics involved, as only the interactions between the focal species 

and the rest of the community need to be taken into account, instead of the 

interactions between each pair of species in the community. Thus, grouping the 

effects of all the other species (using the “mean field approximation”) allows inferring 

an analytical expression for expected SADs. Several authors have followed this 

approach with equivalent results (McKane et al. 2000; Vallade and Houchmandzadeh 

2003; Volkov et al. 2003; Alonso and McKane 2004; McKane et al. 2004). Here, and 

in subsequent Chapters, I use Volkov’s (2003) terminology (henceforth MFNM). 
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For the MFNM the probability that a species has abundance n (pn) is: 

! 

pn =
"

S

J!

n!(J # n)!

$(%)

$(J + %)

$(n + x)

$(1+ x)

$(J # n + % # x)

$(% # x)
e
(
#x"

%
)

0

x

& dx                (2.4) 

where θ , J and m are as defined for the SNM, S is the number of species, Γ is the 

gamma function, and γ = m(J-1)/(1-m) (Volkov et al. 2003). The expected number of 

species with abundance n is equal to pnS.  

 

2.5. Genealogical neutral model 

An alternative analytical approach returns to neutral theory’s roots on 

population genetics, specifically to Ewens sampling formula (Ewens 1972). It is based 

on developing the genealogical tree of the local community by tracing back each 

individual to its ancestor that immigrated from the metacommunity (Etienne and Olff 

2004; Etienne 2005; Etienne and Alonso 2005) (henceforth GNM). In the GNM, the 

probability of observing a SAD in a sample from a local community with parameters 

θ , m, J is: 

! 

P[D |",m,J] =
J!

ni
i=1

S

# $j!
j=1

J

#
" S

(I)J
K(D,A)

I
A

(")A= S

J

%
A

                (2.5) 

(Etienne 2005) where θ , m, J and S are as defined for the SNM and MFNM, ni is the 

number of individuals of species i, Φj is the number of species with abundance j. The 

notation (a)b is the Pochhammer symbol, or rising factorial, also denoted as ab which 

is defined as: 
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! 
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b
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                          (2.6) 

 

I is related to m in the same way as θ is related to ν’ 
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where ai is the number of ancestors of species i, and s(a,i) is the absolute value of a 

Stirling number of the first kind (or the ith coefficient of the falling factorial ab): 

! 

a
b

= a(a "1)(a " 2)...(a " b +1)                                (2.9) 

The sum of all the ai must equal A, the total number of ancestors in the local 

community. To fit the GNM, the combination of m and θ that minimizes expression 

(2.5) is found, rather than calculating log-likelihoods for each species abundance 

separately and then summing them. Although an analytical expression exists for the 

expected SAD in this model (Etienne and Alonso 2005), the expected SAD can also 

be obtained by using Hoppe urns to simulate samples from a distribution with a 

certain parameter combination (Etienne 2005). Hoppe urns work much like the 

metacommunity simulation algorithm in the SNM, where each individual in the 

sample is given a species label according to probabilities determined by θ and m. 

However, the GNM’s Hoppe urn represents a dispersal-limited community at 

equilibrium, rather than a fully mixed metacommunity. One advantage of the Hoppe 
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urn approach (over the analytical formula) is that, as with the SNM, a number of 

simulations can be run to estimate the variance of the number of species (across 

simulations) in each abundance class, as well as the mean. 

 

2.6. Comparison of the three main neutral models 

Discrepancies between predictions of different neutral models are of great 

importance, because they can affect the outcome of empirical tests. In particular the 

differences in ancillary assumptions previously discussed can potentially generate 

variations in predictions that are independent of the fundamental assumption of 

neutrality. Apparent discrepancies between different neutral model versions have 

previously been reported between the SNM and MFNM (Chisholm and Burgman 

2004) and between the MFNM and the GNM (Etienne and Alonso 2005). Here I 

review the extent of these discrepancies, and show they can be resolved by small 

adjustments in the models. For completeness, and to illustrate the patterns predicted 

by neutral models, I present also a comparison of SADs generated by the SNM and 

the GNM. 

The SNM has been suggested to predict a lognormal-like distribution for 

parameter combinations (low m and medium to high θ) for which the MFNM predicts 

a low diversity flat SAD (Chisholm and Burgman 2004). This discrepancy is very 

important because the SNM’s ability to generate lognormal-like distributions has 

repeatedly been invoked as one of the strengths of neutral models (Hubbell 1997b; 

Hubbell 1997a; Hubbell 2001; Volkov et al. 2003). However, it seems that this 

apparent discrepancy is an artefact of failing to allow time for simulated communities 

to equilibrate. When the simulations described above are run for sufficiently many 



Chapter 2: A review of neutral models 

19 

community turnovers, the SNM’s SADs do converge to the MFNM’s predictions of 

flat SADs (Chisholm and Burgman 2004). For extremely large J (~100,000), both the 

SNM and the MFNM do generate a lognormal-like SAD (Hubbell and Borda-De-

Agua 2004). Hence, provided the distributions are allowed to stabilize, the SNM and 

MFNM seem to generate equivalent SADs.  

The MFNM has also been suggested to differ from the GNM. The MFNM is 

based on an approximation, which assumes Jm to be infinitely large. SADs predicted 

by the GNM have been reported to have fewer species than those predicted by the 

MFNM, when Jm < ∞ (Etienne and Alonso 2005). However, SADs are 

indistinguishable if Jm >> J (Etienne and Alonso 2005), which is the only realistic 

scenario, given that a metacommunity is composed of many local communities. 

Furthermore, Jm also does not affect within (Hubbell 2001) and between community 

patterns in the SNM (Chapter 5) as long as it is sufficiently larger than J. Thus, 

differences between the MFNM and the GNM caused by Jm are also easily resolved 

by adjusting the models to biologically meaningful scenarios. 

SADs predicted by the SNM, and GNM vary similarly with spatial scale and 

parameter values. A log-series distribution is predicted for the metacommunity 

(Hubbell 2001; Etienne 2005). For the local community, SADs vary considerably 

with the three parameters: m, J, and θ (Hubbell 2001; Fig 2.1, 2.2 and 2.3). Isolation 

decreases species richness (the height of the bars in SADs) and the proportion of rare 

and abundant species in local communities (the shape of SADs, Fig 2.1). As m 

decreases rare species go locally extinct, and abundant species become more 

abundant. This is reflected by the modal class moving to the right on a SAD plot. In 

particular, extremely low immigration rates (m = 0.0001) lead to communities with a
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single dominant species (Fig 2.1 C). However, the degree of isolation that leads to 

mono-dominance depends on J (Fig 2.2), as larger communities can sustain more 

species for a certain immigration rate. Additionally, higher diversity at the 

metacommunity scale (higher θ) leads to higher species richness at the local 

community scale (Fig 2.3). This effect is more pronounced for rare species, and thus, 

for constant m and J, θ affects not only the height of the distribution, but also the 

location of the internal mode.  

The SNM and the GNM modelling approaches generate similar predictions 

for most parameter values (Fig 2.1 to 2.3). The only apparent exception is for very 

low m and relatively high J (Fig 2.2 B, C), for which the GNM predicts a flat SAD 

with very few species, and the SNM a left-skewed lognormal-like distribution. This is 

analogous to the previously-reported differences between the SNM and the MFNM 

(Chisholm and Burgman 2004). However, the predicted abundance distributions for 

the SNM, like those shown in Fig. 2.2 B and C, are transient. When the SNM is run 

for more community turnovers, the differences are resolved because the SNM loses its 

lognormal-like shape as it tends to monodominance (Chapter 5). Nevertheless, this 

discrepancy highlights the importance of verifying that simulations have stabilized 

before making comparisons with empirical data. Thus, although SADs vary 

considerably with model parameters, the variability is consistent within these two 

model versions, and any differences are well within the variance inherent to 

simulations. As both the SNM and the GNM have been shown to be equivalent to the 

MFNM (see above), tests of neutral models using any of the three versions should 

yield similar results. 
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2.7. Practical considerations 

The SNM relies exclusively on simulations. Therefore, this model version is 

the most susceptible to uncertainty, both in terms of the variation between simulation 

runs, and the stabilization (through time) of the patterns generated. When this model 

is fitted to empirical data, to reduce uncertainty related to simulation noise, 

abundances are usually classified into octaves (log2 classes of abundance). Multiple 

simulations are run, so that the expected SAD used for fitting uses the mean number 

of species (across simulations) in each abundance class to reduce susceptibility to 

simulation variation. When fitting the SNM to empirical SADs J is assumed to be 

equal to the sample size, and for each SAD, θ and m are sequentially estimated by 

Maximum Likelihood methods using Hubbell’s (2001) sequential estimation 

procedure. All of this, however, makes the SNM extremely computationally intensive. 

Nevertheless the SNM is the most flexible of all neutral models, as different ancillary 

assumptions can easily be incorporated with small changes to the simulation 

algorithm. Thus, it is extremely useful as a means to identify areas in which to invest 

analytical effort, and to examine combinations of assumptions that are not analytically 

tractable. It also facilitates quantifying the variance associated with neutral dynamics. 

Finally, some aspects of community structure can be readily examined by simulation 

(e.g. community similarity, as in Chapter 4), but cannot yet be examined with 

analytical versions of the theory. 

The MFNM and GNM avoid uncertainty in parameter estimates related to 

the stochastic fluctuations inherent to simulations. This increased accuracy allows 

them to be fitted to un-binned species abundances, instead of octave-classified 

abundances. Thus the MFNM and GNM provide more sensitive tests of goodness-of-
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fit, and allow more accurate analyses of deviations between model predictions and 

observed SADs. Because the MFNM is essentially a sampling theory (Alonso and 

McKane 2004), when fitting this model J is the sample size, and m is the only 

estimated parameter, which is estimated by Maximum Likelihood methods. For every 

value of m attempted in the fitting procedure, pnS is solved for θ, by constraining the 

integral of the expected number of species with abundances between 0 and J so that it 

is equal to S. Thus, the MFNM has only one estimated parameter. However, because 

the integral in expression (2.4) must be solved numerically, this modelling approach 

is still extremely computer intensive and susceptible to numerical error (McGill et al. 

2006), as well as difficult to implement. Furthermore, it is based on a approximation, 

and thus is not an exact analytical solution. In contrast, calculating the likelihood for 

the GNM, is far less computationally intensive than for the other neutral models. The 

GNM’s numerical efficiency allows more comprehensive explorations of likelihood 

surfaces, as well as efficient estimation of confidence intervals for maximum 

likelihood parameter estimates. 

 

2.8. Conclusions 

Biodiversity neutral models all share the fundamental neutrality assumption, 

although ancillary assumptions vary to some extent between different model versions. 

However, previous findings of differences between predictions of the models appear 

to be due to failure to reach equilibrium in simulation models. Thus the ”best” 

formulation of neutral theory to use can be based on its suitability for the aims of a 

particular study, rather than on the assumptions of the models. In Chapter 3, I used the 

SNM and the MFNM to test whether neutral models can predict coral SADs across 
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multiple scales, habitats and a biodiversity gradient. This study was completed before 

publication of the tractable form of the GNM (Etienne 2005). However, the results 

presented above strongly suggest that the findings in Chapter 3 would not have been 

different if I had used the GNM model instead. In Chapter 4, I examine patterns of 

community similarity, and I use the SNM because the analytical models currently do 

not make predictions regarding between community patterns. In Chapter 5, I exploit 

the computational efficiency of the GNM to examine parameter estimates for a coral 

community, and how these are affected by sample size. Again, the equivalence of the 

different neutral models shown in the present Chapter supports the robustness of the 

results in Chapter 5 to the choice of GNM. 
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Chapter 3: Coral species abundance distributions – a multi-scale test of 

neutral theory 

3.1. Introduction 

Neutral theory (Hubbell 2001) explains community structure based on the 

assumption that all individuals, regardless of species, are demographically identical. 

Hence, macro-ecological patterns are driven by speciation, demographic stochasticity, 

and dispersal limitation, with demographic and ecological differences between 

species having a comparatively negligible effect. The neutrality assumption 

contradicts much of classical ecological theory, which explains biodiversity and 

community structure based on local adaptation, and inter-specific differences in 

demographic rates, competitive abilities, and resource use (Hutchinson 1959; 

MacArthur 1960; Sugihara 1980; Tilman 1982; Tokeshi 1990). The assumption of 

neutrality has been branded as obviously “wrong” (Brown 2001; Mazancourt 2001; 

Baker 2002; Enquist et al. 2002; Norris 2003), because niche differences are likely to 

be essential to determine species coexistence (Chesson 1991). However, neutral 

theory should ultimately be judged based on its ability to explain empirical data. 

Coral assemblages are particularly suited to test neutral theory predictions. 

Most ancillary assumptions of neutral theory are appropriate for the biology of corals. 

In fact, the theory was originally proposed for tropical forests (Hubbell 1979; Hubbell 

and Foster 1986), which are often compared to coral reefs in terms of their high 

diversity. Neutral communities are, by definition, composed of trophically equivalent 

species, as is generally the case for coral assemblages. The life cycle of individuals in 

the neutral model includes an adult stage fixed in the same local community, and a 

dispersive reproductive stage, connecting different local communities into a 
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metacommunity. This closely matches reef corals’ life cycle. Space (and the 

associated access to light) is the primary limiting resource, and there is a strong 

competitive advantage to incumbent space occupants. Therefore it is not surprising 

that coral assemblages have been repeatedly postulated as ideal for testing neutral 

theory predictions (Hubbell 1997b; Hubbell 1997a; Whitfield 2002; Chave 2004; 

Williamson and Gaston 2005).  

Neutrality, however, is a highly controversial premise, since there is little 

empirical evidence for competitive equivalence (Abrams 2001). However, equalising 

processes, such as priority effects and life-history trade-offs, have long been 

recognized as mechanisms of coexistence (Chesson 2000). From this perspective, it 

has been argued that neutrality approximates this kind of unpredictability in 

competitive interactions (Chave 2004), due, for instance, to intra-specific variability 

in competitive ability (Buss and Jackson 1979; Connolly and Muko 2003). Hence, 

neutrality has been argued to be a reasonable simplifying assumption when analysing 

community structure (Hubbell 2001). However, support for this proposition depends 

on the ability of neutral models to predict observed patterns. 

Species abundance distributions (SADs) are one of the most important 

ecological predictions generated by neutral theory (Chapter 1). The classical statistical 

model for SADs is the lognormal distribution, and it has been shown to provide good 

fit to coral abundance distributions (Connolly et al. 2005). Initial support for neutral 

theory was drawn from its apparent ability to characterise community structure in 

empirical communities better than the lognormal (Hubbell 2001; Volkov et al. 2003), 

although subsequent tests have generated contradictory results (McGill 2003c). In this 
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Chapter I test the goodness-of-fit of neutral models to coral SADs, and compare it to 

the fit of a poisson lognormal (Connolly et al. 2005). 

Support for ecological hypotheses typically varies with scale (Levin 1992). 

This is particularly true for neutral theory, where defining the two spatio-temporal 

scales (local community and metacommunity) in ecological and evolutionary time-

frames is crucial to ensure appropriate testing (Hubbell 2001; McGill et al. 2006). 

Local adaptation and habitat heterogeneity may be important at some scales but not 

others, and hence support for neutral theory may vary with the scale at which it is 

tested (McGill et al. 2006). However, most empirical tests of neutral theory have 

focused on a single spatial scale. Here I analyse coral SADs across multiple scales: 

with local communities examined at the scale of sites (1-2 km), islands (10-100 km) 

and regions (>1,000 km). 

In this Chapter I test whether neutral theory is consistent with observed coral 

SADs, and I compare neutral theory’s fit to the data with that of the lognormal. The 

tests are done at three different spatial scales, and for coral assemblages from across a 

10,000 km biodiversity gradient, and three reef habitats (reef flat, crest and slope). 

Previous empirical tests using a single forest dataset have reached opposite 

conclusions depending on which model version and which statistical tests are used 

(McGill 2003c; Volkov et al. 2003). Hence, both the SNM (simulation neutral model 

– Chapter 2 (Hubbell 2001)) and the MFNM (mean field neutral model – Chapter 2 

(Volkov et al. 2003; McGill et al. 2006)) are fitted to the data. I conduct a 

comprehensive analysis of relative abundance patterns, to understand how the 

absolute and relative performance of neutral theory depends upon spatial scale. I 

develop a new goodness-of-fit test for neutral theory that is based on the actual unit of 
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ecological sampling (i.e., individuals), rather than on species (as conventional tests 

assume), and I apply it to these data. I also test the fit of the MFNM relative to the 

lognormal, using model selection statistics. The combination of fitting multiple 

neutral models, and of testing both absolute and relative fit at multiple spatial scales, 

and for assemblages from multiple habitats, and across a biodiversity gradient makes 

this study a particularly robust test of neutral theory.  

 

3.2. Methods 

3.2.1. Data collection 

Coral species abundances were measured at several locations from across the 

Indo-Pacific to examine coral community structure patterns and to describe diversity 

and biogeographical trends. Sampling followed a hierarchical design with three 

spatial scales: regions, islands and sites. The five regions - Indonesia, Papua New 

Guinea, Solomon Islands, American Samoa and French Polynesia - are distributed 

along the Indo-Pacific gradient of coral biodiversity. Three high islands were selected 

in each region and four sites were chosen at each island (Karlson et al. 2004). 

Abundance of a species can be measured by the number of individuals, or by their 

biomass. In neutral models all individuals are implicitly assumed to be the same size, 

and hence the two measures are equivalent. However, in real communities, this is not 

the case, and different species can have dramatically different sizes. In fact the 

distribution of body sizes is one key macroecological pattern for which explanations 

are currently being sought (Brown 1999). This is particularly problematic in the case 

of colonial organisms, like corals, where individuals can be defined as a colony, or as 

the units that compose the colony. Furthemore, coral SADs using numbers of 
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individuals are strikingly different from SADs using colony cover (which is a proxy 

for biomass) (Connolly et al. 2003). In this study, each colony was counted as a single 

individual, so that all individuals originated from sexual reproduction, rather than by 

colony growth. This reflects more closely the type of lottery competition inherent to 

neutral models. At each site, all of the coral colonies intercepted by ten 10m long 

haphazardly placed transects were counted and identified to species. This was 

repeated in each of three reef habitats: slope, crest and flat using a total of 1800 

transects. The different habitats were treated separately because their species 

composition is highly differentiated and neutral theory assumes homogeneous habitat. 

To generate island-level SADs, samples were pooled by summing the abundances of 

each species across the four sites on each island. Similarly, summing the abundances 

of each species across the 12 sites in each region created region-level SADs. A total 

of 60 site, 15 island, and 5 regional SADs were obtained for each habitat. 

3.2.2. Testing the goodness-of-fit of the neutral model 

To determine if the neutral model can accurately describe coral SADs we 

tested the goodness-of-fit of the SNM and the MFNM to the data at each of the three 

spatial scales. The MFNM was fitted to each of the SADs by finding the value of m 

that maximizes the log-likelihood: 

! 

LL = O
i
log(E

i
/S)

i=1

J

"                                                           (3.1) 

Where Oi is the observed number of species with abundance i, Ei is the 

expected number of species with abundance i, and S is the total number of species. 

Expected SADs were obtained using expression (2.4) in Chapter 2 (Volkov et al. 

2003), using MATLAB code kindly provided by BJ McGill (McGill et al. 2006). 
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Algorithms for fitting the MFNM are notoriously prone to numerical error, and, for 

this code, some numerical errors were present that led, in some cases, to dramatic 

underestimates of the probability of observing a species with a certain abundance. 

Therefore, I modified the code to use a slower, but more accurate function, in order to 

be able to confidently fit the model to species abundances rather than octave classified 

abundances. For this reason both the SNM and the MFNM were extremely 

computationally intensive (requiring several months on a supercomputer composed of 

16 500 MHz MIPS R14000 processors and 68 400 MHz MIPS R12000 processors, 

housed at the High Performance Computing Section of James Cook University). 

I tested the goodness-of-fit of the neutral models by comparing the observed 

deviances with the corresponding expected deviances under the null hypothesis of 

neutral dynamics. Observed model deviance is calculated as: 

)(2
s

LLLLd !!=                                                         (3.2) 

where LL is the log-likelihood of the best fitted MFNM to the data, and LLs is the log-

likelihood of the saturated model (Burnham and Anderson 1998). The saturated 

model follows the observed distribution exactly, that is the probability of observing a 

species with abundance i in the saturated model is equal to the proportion of species 

with abundance i in the data. Total deviance is the sum of deviances for all replicates 

at each spatial scale and each habitat. Expected deviance is estimated by 

implementing a parametric bootstrap: species are randomly sampled from a 

theoretical distribution of abundances with the same parameters as the data, and the 

model is fitted to these simulated samples. This procedure yields a null distribution of 

deviances. The proportion of bootstrap replicates with a deviance higher than the 

observed deviance (p) is a measure of the probability that goodness-of-fit of the 
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model is acceptable. If p is low, then it is unlikely that the log-likelihood of the data is 

typical of a neutral community.  Following convention, we take p<0.05 as our critical 

threshold value for rejecting the neutral model. 

Traditional goodness-of-fit tests for SADs, such as chi-square tests, treat 

species as the units of sampling, when in fact individuals are being sampled, and this 

is also true of the procedure described above. The SNM allows me to avoid this 

problem by simulating communities with the same number of sampling units 

(individuals) as the data. The SNM was fitted to each of the octave-classified SADs 

by Maximum Likelihood sequential estimation of θ and m (Hubbell 2001). I 

developed a method based on parametric bootstrapping to test whether the goodness-

of-fit of the model to the data is worse than would be expected if a community were 

undergoing truly neutral dynamics. 1000 SNM datasets were simulated with the 

parameters estimated for the data. For each of the simulated datasets and each spatial 

scale the global goodness-of-fit (GGOF) was calculated as: 

! 

GGOF = LL
i

i

"                                                      (3.3) 

where LLi is the log-likelihood of ith SAD. As a result, I obtain an expected 

distribution of GGOF statistics, under the null hypothesis that the data were generated 

by neutral dynamics. Thus, the proportion of simulated datasets with a log-likelihood 

more negative than the data’s (p) is an estimate of the probability that the goodness-

of-fit of the data is consistent with a community undergoing neutral dynamics. Note 

that the goodness-of-fit statistic for the simulated data sets was calculated relative to 

the best-fit distribution for the empirical data, rather than from a best-fit calculated by 

fitting the SNM to each simulated abundance distribution separately (which would 
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have been computationally prohibitive). The effect of this more exhaustive process 

would have been to increase the goodness-of-fit of the simulated data sets (i.e., the 

null distribution of fit statistics), without changing the fit of the actual data set. This 

would in turn increase the likelihood of rejecting the neutral model. Thus, this test is 

conservative with respect to rejecting the neutral model. 

 

3.2.3. Assessing the level of parameterisation of the MFNM 

To account for the effects of parameter uncertainty on the lack of fit, the 

MFNM was fitted separately for each site, and I also fit reduced parameter models. 

Specifically, the parameters were constrained to be constant for the entire dataset, for 

all sites within a region, and all sites within an island (Connolly et al. 2005). For each 

constrainment scale, the model was fitted by finding the value of m that maximized 

the sum of the log-likelihoods (expression 3.1) of all the sites included in that 

constrainment scale. Similarly, I fitted the MFNM for each island and for each region 

separately, and with constant parameters for the entire dataset and at the region scale, 

in the case of the islands. The relative fit of the different levels of parameterisation 

was compared using Akaike’s Information Criterion (AICc) (Akaike 1985): 

2 ( 1)
2 2

1

p p
AICc MLL p

n p

+
= ! + +

! !
                            (3.4) 

Where MLL is the maximum log-likelihood, p is the number of parameters of the 

model, and n is the sum of the number of observed species abundances in each SAD. 

The estimated best model is the model with the lowest AICc.  To quantify the 

uncertainty associated with model selection, Akaike weights were calculated: 
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                                                       (3.5) 

where Δi is the difference between the AICc of model i and the lowest AICc of the 

models being compared. W estimates the probability that a model is the best among 

the models being compared. Aggregate comparisons were made by summing the 

MLLs and computing AICc and W using the corresponding (total) number of 

parameters and observations.  

 

3.2.4. Comparing the neutral model with the Poisson Lognormal 

To test the relative goodness of fit of neutral models in comparison with 

other available models, the fit of the MFNM was compared with the Poisson 

lognormal. The best level of parameterisation of the two models was used in this 

comparison, as the Poisson lognormal is best parameterised with constant parameters 

at the region scale (Connolly et al. 2005). The two models were compared using 

AICc, as described above.  Because the SNM was fit to binned abundances, its 

likelihoods were not comparable to those of the other models, so it was not used in 

this analysis. Although the use of AICc for selection between different models is 

superior to approaches that rely on arbitrary P-values, its use is nonetheless somewhat 

controversial (Boik 2004). Therefore, I also quantify and examine the deviations 

between the data and the predictions of each model.  For this analysis, I use both 

MFNM and SNM, as well as the poisson lognormal. 
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3.3. Results 

3.3.1. Testing the goodness-of-fit of the neutral model 

Observed and fitted SNM and MFNM SADs are presented in Appendix I, 

Figs A.I.2-37. Parameter estimates for θ and m were similar for the SNM and the 

MFNM (Fig 3.1). Estimates of the diversity parameter θ increased predictably with 

increasing spatial scale, across the biodiversity gradient and the three reef habitats 

(Appendix I, Fig. A.I.1). θ varied between 1.3 (on a reef flat at a single site in Samoa) 

and 54.3 (on reef slopes at the regional scale in Indonesia). Estimates of θ with the 

MFNM were extremely well predicted by estimates with the SNM (Fig 3.1 A, R2 of 

0.9914, 0.9949 and 0.9887 for the site, island and region scales respectively), 

although the MFNM had slightly higher estimates (see figure legend for regression 

equations). Estimates of m were consistently high. Over 50% were above 0.8, over 

90% above 0.7, and all estimates were above 0.25. However, regressions between the 

estimates of m with the MFNM and the SNM had lower R2 (0.5599, 0.1692 and 0.695 

for the site, island and region scales respectively), mostly because of the cases in 

which either one model or the other had m estimates below 0.8.  

The species parametric bootstrap analysis shows the MFNM exhibits 

significant lack of fit at the site and island scales (p < 0.001 in both cases). In contrast, 

at the region scale, the goodness-of-fit of both neutral models is low, but within 

expected values for a neutral community (MFNM p = 0.1625). Results from the 

individual parametric bootstrap are entirely consistent with the species parametric 

bootstrap. At the site and island scales the SNM exhibits significant lack of fit, 

whereas at the region scale goodness-of-fit is low, but within expected values (site 

and island p < 0.001, region p = 0.187, Fig 3.2). 
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The cause of the lack of fit at site and island scales is apparent in a plot of the 

deviations between observed and best-fit neutral SADs (Fig 3.3). In the data there are 

more rare species, and fewer common species than predicted by the neutral model at 

the site and island scales, but the differences are smaller at the regional scale. The 

disparity between observations and predictions is observed both with the SNM and 

the MFNM (Fig 3.3). 

 

3.3.2. Comparing the neutral model with the Poisson Lognormal 

As for the Poisson lognormal (Connolly et al. 2005) the best 

parameterisation level for the MFNM is for parameters to be constant at the region 

scale (over 99.9% support in the AICc comparison). The Poisson lognormal has more 

support than the MFNM at all scales, as evidenced by the Akaike weights. At the site 

scale the Poisson lognormal has 99.7% vs. 0.3% for the MFNM. At the island scale 

the Poisson lognormal has over 99.9% support whereas the MFNM has less than 

0.1%. Finally, at the regional scale the Poisson lognormal has 96.1% vs. 3.9% for the 

MFNM. 

These results are consistent with visual inspection of the deviations between 

the data and each model’s predictions. Deviations are smaller on average for the 

Poisson lognormal than either of the neutral models, at every scale (Fig 3.3). At the 

site scale, the SADs typically have a high number of singletons and a steeply 

decreasing number of increasingly abundant species. The Poisson lognormal captures 

the shape remarkably well, whereas the MFNM severely underestimates the number  
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of singletons and overestimates the number of species with intermediate to high 

abundances (Fig 3.4). At the island scale, the pattern is similar, although the decrease 

in number of species is not as steep (Fig 3.4). At the region scale, the SADs usually 

have an internal mode and the Poisson lognormal follows the curve closest in most 

octaves (Fig 3.4). If SADs are examined individually it becomes apparent that the 

MFNM only outperforms the Poisson lognormal in cases when neither model fits 

well. In high diversity habitats and regions the Poisson lognormal follows observed 

SADs closely. The MFNM occasionally has better goodness of fit than the Poisson 

lognormal in depauperate regions and habitats, where neither model follows the 

observed pattern accurately (e.g. Appendix I, Fig. A.I.35 D and E). 

 

3.4. Discussion 

The results show substantial differences between neutral theory predictions 

and SADs of empirical coral assemblages. There is some debate about which groups 

of organisms are appropriate to test neutral theory (McGill et al. 2006). However, this 

Chapter presents empirical evidence against neutral theory from communities for 

which neutral theory has repeatedly been suggested to be most applicable (Hubbell 

1997b; Hubbell 1997a; Whitfield 2002; Chave 2004; Williamson and Gaston 2005). 

Therefore, these results challenge neutral theory as a general explanation of 

biodiversity patterns in animal and marine communities. 

The importance of scale has long been recognized in ecology, and it is 

possible that neutral dynamics are appropriate at some scales but not others. In fact, at 

the largest spatial scale examined (local communities pooled at the regional scale), 

coral SADs are not significantly different from neutral models (Fig 3.1). This is 

surprising, because at the regional scale empirical SADs should be approaching 
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metacommunity dynamics and deviating from local community SADs. This result 

was probably caused by the lack of power of the test at this scale, since the dataset 

includes only 5 regional SADs for each habitat, as opposed to 15 island and 60 site 

SADs for each habitat. However, sample sizes at the regional scale are much larger 

than at the site and island scales. Therefore, it is possible that sample size may 

influence the goodness-of-fit of neutral models to SADs. In Chapter 5, I investigate 

this by fitting a neutral model to SADs with sample sizes varying 300-fold. 

Nevertheless, the model selection process consistently supports the Poisson lognormal 

against the neutral model across spatial scales that vary 100 – 104 km across the 

Pacific Ocean. Hence, the conclusion that neutral theory does not provide a good 

model for SADs of coral assemblages is robust and independent of scale. 

Empirical tests of neutral models have in some cases supported neutral 

theory (Volkov et al. 2003; Olszewski and Erwin 2004) and in others provided 

evidence against it (McGill 2003c; Etienne and Olff 2004). Because these conflicting 

results are sometimes obtained using the same dataset (McGill 2003c, Volkov et al. 

2003), it is possible that such mixed results are in part caused by different testing 

methodologies. For example, using the SNM (McGill 2003c) or the MFNM (Volkov 

et al. 2003) can lead to opposite conclusions regarding a single dataset. In fact, in this 

Chapter the two models led to different estimates for the immigration parameter m. 

This was probably caused by uncertainty in the estimation process of the SNM related 

to, for example, stochastic variation in expected distributions, the sequential 

estimation procedure or fitting the model to octave classified data, instead of raw 

abundances. These discrepancies motivated the use of both models in the goodness-

of-fit test, as well as the analysis regarding parameter estimates presented in Chapter 

5. Additionally, the statistics used to test the goodness-of-fit, and whether octave 
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classes or actual abundances are used can also influence the results. Hence, multiple 

approaches are needed to ensure the robustness of tests of model fits to empirical 

SADs. The consistency of the results presented here when using two different 

versions of the model, two different tests of goodness–of-fit, and a model selection 

process against the Poisson lognormal, emphasises the robustness of this conclusion. 

The most relevant example of a dataset where neutral theory also failed was 

a study of the beetles (Coleoptera) of Borneo. This dataset has the same qualitative 

deviations from the model as the coral data analysed here: more rare species and 

fewer common species than predicted by the model (Hubbell 2001). Hubbell (2001) 

suggests that these data are not intrinsically incompatible with the neutral model, and 

are to be expected under highly leptokurtic dispersal kernels with fat long tails. Under 

such dispersal, species should be very common in some locations and rare elsewhere. 

SADs in spatially explicit neutral models are indeed greatly influenced by the type of 

local within-community dispersal, and a stronger skew towards rare species occurs 

under such localised dispersal (Chave et al. 2002). However, it is not clear how a 

similar skew would arise from neutral dynamics with localized dispersal between 

local communities with high immigration, as seems to be the case both with the Indo-

Pacific corals and, indeed, the Coleoptera of Borneo.  

It is difficult to infer what causes the lack-of-fit of a model to SADs. 

Consequently, curve-fitting has been questioned as the best way of testing 

biodiversity models, despite being the mostly widely used approach. Additionally, 

interpreting the superior fit of the lognormal is not straightforward. The lognormal is 

unquestionably a valuable descriptive model, and arguably an appropriate null model 

for SADs (McGill 2003b; Williamson and Gaston 2005). A number of biological 
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explanations have been put forward for the lognormal (May 1975; Tokeshi 1990; 

Engen and Lande 1996; Sugihara et al. 2003). However the lognormal distribution is a 

statistical description of a pattern, not an ecological theory (Harte 2003). Because 

there are a variety of biological mechanisms that can give rise to lognormal 

distributions, its good fit is not sufficient, by itself, to identify the particular 

ecological processes that should be included in an improved theory of biodiversity.  

In this Chapter I performed a comprehensive and robust test of neutral model 

goodness-of-fit to coral SADs, and presented evidence that neutral models are not 

consistent with coral community structure. However, because of the reasons 

highlighted above, testing the goodness-of-fit of biodiversity models to these curves is 

useful mostly as a first test. In the following Chapter I build on these results, and 

move beyond this approach to examine between-community patterns to try to 

understand why coral communities diverge from neutral theory predictions. 
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Chapter 4: Neutral Dynamics and Coral Reefs: patterns of community 

similarity 

4.1. Introduction 

Neutral theory (Hubbell 2001) proposes that species relative abundances in a 

community can be explained by the processes of birth, death, speciation and 

migration, under the assumption that all individuals are demographically identical. 

Niche assembly theory, in contrast, assumes that differences in species’ resource use 

are the major factors determining community structure (MacArthur 1960; Tilman 

1982; Tokeshi and Schmid 2002; Sugihara et al. 2003). Most empirical tests of neutral 

theory have focused on assessing the fit of a neutral model to relative abundance 

patterns within local communities, or for a metacommunity as a whole (Hubbell 2001; 

McGill 2003c; Volkov et al. 2003). However, several other models based on very 

different assumptions can generate similar relative abundance patterns (Engen et al. 

2002; Mouquet and Loreau 2003). Hence, such approaches, used in isolation, have 

been argued to provide only weak tests of community structure models (McGill 

2003b; Connolly et al. 2005). Instead, testing the predictions of a theory against 

multiple patterns (Adler 2004) is preferable, particularly where competing theories 

make different predictions. In Chapter 3, I discussed how coral species abundance 

distributions (SADs) from across the Indo-Pacific deviate significantly from neutral 

model predictions. Here, I analyse patterns of community similarity in the dataset 

used in Chapter 3, and compare them to neutral theory predictions. 

High community similarity has been suggested as evidence for niche theory 

and against neutral theory. Niche assembly theory predicts that limiting similarity and 

complementarity of ecological niches should stabilize community structure and lead 
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to high community similarity (Clark and McLachlan 2003). By contrast, in neutral 

models each species undergoes independent random walks, and ecological drift 

should lead to increasing divergence between communities (Clark and McLachlan 

2003; Maurer and McGill 2004), and thus to low community similarity. Because, the 

two competing theories have different expectations, examining patterns of community 

similarity should support either one or the other. High similarity in coral communities 

would provide support for niche theory, and low similarity for neutral theory. 

Several examples of communities with high similarity in space or time have 

been suggested to provide evidence against neutral dynamics (McGill et al. 2006). 

One such example is tree composition of floodplain forests, which is constant in plots 

of similar habitat and disturbance history over scales of 1 to 40 km (Terborgh et al. 

1996). Composition of terra firma forests is also dominated by a few species which 

are the same over scales of thousands of kms (Pitman et al. 2001). Another example 

are coral paleo-communities, for which constancy in composition has been suggested 

to support niche assembly driven community structure rather than dispersal limitation 

(Pandolfi 1999). Finally, pollen paleo-records trapped in lakes are also more constant 

in space and time than predicted by simulated neutral communities (Clark and 

McLachlan 2003). However, in these studies community similarity is generally 

assessed using only the most abundant species, which could lead to large differences 

in less common species being unnoticed. Furthermore, under neutral dynamics, it is 

precisely the most abundant species that are expected to contribute most to the 

immigrants pool, and thus be common to most local communities (Bell 2001). Most 

importantly, these studies do not take into account the homogenizing effects of 

immigration. Theoretical analyses of neutral models have shown that ecological drift 

leads to divergence between communities (Maurer and McGill 2004), but community 
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similarity is determined by the strength of dispersal limitation (Hubbell 2001; Maurer 

and McGill 2004; Volkov et al. 2004). Here I compare patterns of community 

similarity from coral communities across the Indo-Pacific, with those of neutral 

communities simulated with the parameters estimated in Chapter 1. This approach 

takes into consideration the effects of both dispersal limitation and diversity on 

similarity patterns. Similarity patterns under neutral dynamics are extensively 

characterized to ensure that the results are not affected by uncertainty in the parameter 

estimates obtained in Chapter 3. 

 

4.2. Methods 

4.2.1. Data 

Sampling followed a hierarchical design with three spatial scales: site, island 

and region (Chapter 3, (Karlson et al. 2004)). At each site the coral colonies 

intercepted by ten 10-m long haphazardly placed transects were identified to species 

and counted, at each of three reef habitats (flat, crest and slope). Four sites were 

sampled for every island, and three islands were sampled at each of the five regions. 

The dataset is composed of 60 sites of each reef habitat.  

4.2.2. Simulations 

To characterize similarity patterns under neutral dynamics, I simulated 

metacommunities with θ of 1, 5, 10, 50, 100 and 500, and Jm of 107. I simulated 100 

local communities with J of 104 individuals and m of 0.999, 0.1, 0.01, 0.001, 0.0001, 

0.00001 and 0.000001, sampling immigrants from each of the metacommunities 

previously simulated. (I used large values of J, instead of the sample sizes, for this 
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particular analysis because small local communities with m of 0.01 or smaller cannot 

sustain a diverse community, and tend towards mono-dominance [Chapter 2]). These 

parameter values span a very broad range of parameter space, including highly 

unlikely values, and encompass all published empirical estimates to date. Each local 

community was simulated for 50,000 time steps with 1% of the individuals replaced 

at each time step (i.e., 500 turnovers of the local community). There is presently some 

dispute about the extent to which the community structure patterns reported for 

neutral models are stable (Chisholm and Burgman 2004; Hubbell and Borda-De-Agua 

2004). In particular, analysis of neutral models over time scales much longer than 

those used in most neutral model analyses has shown a trend of increasing variance of 

abundances and decreasing local species richness (Maurer and McGill 2004). To 

verify if community composition had indeed stabilized, I ran additional simulations 

for up to 1500 turnovers. These simulations are exceptionally extensive: the local 

communities are one to two orders of magnitude greater and included six-fold more 

community turnover than previous studies. 

The best-fitting estimates of m and q for both SNM and MFNM, obtained in 

Chapter 3, were used. Because the best-fit parameterisation of the ANM (with over 

99.9% support) is for all local communities within the same habitat and region to have 

the same parameters, the metacommunity was defined at the region scale for the 

analyses of community similarity. To examine community similarity under neutral 

dynamics, I simulated the dynamics of 15 metacommunities: one for each habitat type 

in each region. The dynamics of the 12 local communities within each of the 15 

metacommunities were simulated with J equal to the sample size for each 

corresponding local community in the coral dataset, and m and θ equal to the values 

estimated from the fits to the corresponding coral metacommunity. To verify that the 
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results were robust to metacommunity size, I simulated groups of local communities 

for fixed θ and m, with Jm varying from twice the size of the local communities to 

five orders of magnitude greater. The effect of metacommunity size was assessed by 

computing Spearman correlations of Jm with the mean and standard deviation of 

similarity.  

4.2.3. Similarity. 

I calculated Bray-Curtis community similarities between all pairs of sites in 

the data set, and for each set of 100 simulated neutral communities. Because neutral 

theory assumes homogeneous habitat, only within habitat similarities were calculated. 

To verify that the results were not sensitive to the choice of the Bray-Curtis statistic as 

a measure of community similarity, I repeated the analysis using Jaccard statistics, 

which use only presence-absence data, and thus contain less information but are more 

robust to sampling effects (Legendre and Legendre 1998).  

The frequency distribution of coral community similarities was compared 

with that of the dataset simulated with the parameters estimated for the SADs. To 

verify that the results were not sensitive to uncertainty in the parameter estimates, I 

also compared the observed similarities with those of the range of parameter 

combinations simulated for the characterization of neutral similarity patterns. Finally, 

extensions of neutral theory that explicitly incorporate spatial structure predict 

decreasing similarity with distance (Hubbell 2001; Chave and Leigh 2002). This 

dataset allows assessing whether distance-decay in similarity is a likely cause of the 

differences between the data and neutral model’s predictions. The most distant sites 

are more than 10,000 km apart and differ in their regional species pools. Therefore, to 

assess the effect of distance-decay on similarity patterns, I additionally analysed the 
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frequency distribution of similarity values obtained using only all the pairs of sites 

from each habitat, and only pairs of sites from the same island. 

 

4.3. Results 

The simulations showed that frequency distributions of community similarity 

under neutral dynamics are approximately normally distributed. Jaccard and Bray 

Curtis similarities showed similar trends (e.g. Fig. 4.1) so only Bray Curtis 

similarities are reported henceforth. Mean similarity decreases with increasing 

diversity, which is controlled by the parameter θ (Fig. 4.2.A). This is because in 

species-rich communities there are more species whose abundances can vary among 

communities. Isolation (low m) decreases mean similarity and increases its variance 

(Fig. 4.2.B). However, even moderate rates of immigration (0.1) generate local 

communities with very high similarity. The frequency distribution of community 

similarity exhibits no trend over the substantial range of metacommunity sizes (Jm) 

analysed for any of the parameter sets (Fig. 4.3, Spearman’s r, all correlations -0.454 

< r < 0.115, P > 0.187, n = 10 for mean similarity; -0.358 < r< 0.430, P > 0.214, n = 

10 for standard deviation of similarity). Nevertheless, to be conservative, I used the 

largest metacommunities (five orders of magnitude greater than local community 

size) in all the analyses. Finally, the analysis of the 1500-turnover simulations reveals 

that community structure had stabilized by 500 turnovers for parameter values above 

very low migration rates (m~0.001 or greater), regardless of the value of θ (Fig. 4.4). 

For communities with immigration rates below 0.001, community structure does not 

equilibrate, even after 1500 turnovers (Fig. 4.4.A, B). In fact, with these extremely 

low migration rates communities slowly lose species as they approach mono- 
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100 (blue), 50 (red) and 10 (green), and m of 0.1 (large dash), 0.001 (small dash), and 
0.00001 (solid line). Note the trend towards mono-dominance in the communities 
with lowest migration rate.
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dominance (Fig. 4.4.C). When local communities with smaller J are used, neutral 

theory predictions are nearly identical for high immigration rates (such as those 

estimated for our data), and the trend towards mono-dominance at lower immigration 

rates becomes even more pronounced (Chapter 2). 

The similarities predicted for the parameter estimates are consistently high 

(Fig. 4.5.A). Mean similarity for simulations of each of the five regions varies 

between 0.77 and 0.88, with corresponding standard deviations varying between 

0.019 and 0.023. In contrast, the observed similarities of coral communities are 

markedly lower, and more variable, than predicted by neutral theory (Fig. 4.5.B). 

Mean similarity of coral communities is between 0.25 and 0.60, and standard 

deviation varies between 0.080 and 0.131. Clearly, similarities predicted by neutral 

theory differ significantly from observed patterns. Figure 4.5 reports results for the 

slope, however, the pattern is common to the three habitats (Fig. 4.6). For the very 

broad range of parameter values examined in the characterization of similarity 

patterns under neutral dynamics, the community similarity distributions produced are 

markedly different from those exhibited by the data (Fig. 4.6). Therefore, the results 

are not caused by uncertainty in the parameter estimates (including uncertainty due to 

estimation procedure for the SNM, as suggested by Fig. 3.1). Finally, the distribution 

of similarity values calculated using only sites less than 10 km apart are as different 

from neutral model patterns as similarities calculated among sites up to 10,000 km 

apart. Indeed, while mean similarity is greater when the analysis is confined to nearby 

sites, there is no corresponding reduction in variance towards values consistent with 

neutral theory (Fig. 4.6).  
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Fig 4.5 -  Frequency distribution of Bray-Curtis similarities for (A) local 
communities simulated with parameters estimated from the data’s species abundance 
distributions and (B) observed coral assemblages on reef slopes. Parameter estimates 
were: m= 0.905, 0.916, 0.915, 0.867, 0.748 and θ =25.4, 26.5, 30.6, 10.8, 6.3 
respectively for Indonesia (red), Papua New Guinea (yellow), Solomon Islands 
(green), Samoa (light blue), and French Polynesia (dark blue). The heights of the bars 
sum to 100% separately for each region, so the stacked bars may exceed 100%. Note 
the low mean and high variance of the observed distributions in comparison to the 
simulations. Flat and crest assemblages differ from neutral model predictions in a 
very similar fashion (Fig 5.6).
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approximately normal (Supplementary Information), they can be compared in terms of 
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Coral assemblages Bray-Curtis similarity distributions of each habitat are plotted as 
black points: Si within island slope assemblages, Ci within island crest, assemblages, 
Fi within island flat assemblages, SR within region slope assemblages, CR within 
region crest assemblages, FR within region flat assemblages, S among all slope 
assemblages, C among all crest assemblages, F among all flat assemblages. Note how 
all data points, regardless of spatial scale or habitat, fall outside and comparably 
distant from the contours generated by neutral simulations. 58
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4.4 Discussion 

The finding that observed community similarities are lower than neutral 

model predictions is unexpected, and contrary to the widespread view that high 

similarity over space and time in empirical data constitutes evidence against neutral 

theory (Terborgh et al. 1996; Pitman et al. 2001; Clark and McLachlan 2003; Gilbert 

and Lechowicz 2004). However, others have argued that neutral theory can, in fact, 

produce high similarities (Hubbell 2001; Volkov et al. 2004). The results confirm that 

neutral theory can produce extremely high similarities, provided that immigration 

rates from the metacommunity are high, or diversity is very low. However, the 

analyses also reveal that variance in community similarity under neutral dynamics is 

consistently low, much lower than in the data, regardless of parameter values, thereby 

also confirming that this large discrepancy between neutral model predictions and the 

data is robust to uncertainty in parameter estimates. 

For extremely low migration rates, community structure does not equilibrate, 

even after 1500 turnovers. Therefore, the possibility that distributions of community 

similarity for these parameter values could resemble those of the data cannot be ruled 

out. However, this superficial resemblance should not be interpreted as evidence for 

good fit of the neutral model, for several reasons. Firstly, for these parameter values, 

local species richness progressively decreased as communities tended towards mono-

dominance. This is clearly not representative of scleractinian coral communities, 

which have sustained moderate to high biodiversity for tens of thousands of years. 

Moreover, the immigration rates necessary to produce these distributions (m<0.001, 

or less than one immigrant to a local community per ten thousand births) differ from 
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the estimated migration rates from the local community distributions (0.75<m<0.92) 

by over two orders of magnitude, and they are also inconsistent with population 

genetic data, which indicate moderate to high levels of immigration at spatial scales 

comparable to those of the local communities (Ayre et al. 1997; Ayre and Hughes 

2000). 

The higher variance of real coral communities compared to neutral theory 

predictions points to a strong role for environmental variability in determining 

patterns of community similarity on coral reefs. This high variance in community 

similarity indicates that the data contain a much broader mixture of sites that are very 

similar and very different, compared with neutral theory. Because habitat differences 

were minimized by the sampling design (see Methods and Chapter 3), the most likely 

source of this variability is spatio-temporal environmental stochasticity: the tendency 

for different local communities to experience fluctuations in environmental conditions 

differently. On coral reefs, even adjacent reefs can have markedly different 

environmental histories (Connell et al. 2004). Such historical differences would tend 

to decrease mean similarity if species differ in their responses to environmental 

fluctuations. These mechanisms would also be expected to increase the variability in 

community similarity values: communities that have experienced similar 

environmental histories would tend to have higher-than-average similarity (e.g., 

communities at similar successional stages), while communities with markedly 

different histories would tend to have lower-than-average similarity. In contrast, 

neutral models assume that metacommunities are environmentally homogeneous in 

space and time. Indeed, differences among species in responses to environmental 

fluctuations challenge a core assumption of neutral theory: that species are 

demographically identical. 
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In addition to the environmental homogeneity and neutrality assumptions, 

which are shared by all neutral models (McGill et al. 2006), there are other 

assumptions that differ among alternative formulations. However, these assumptions 

seem to be less plausible candidates as causes of the discrepancies between the neutral 

model and the data. Firstly, neutral models can have different assumptions about how 

speciation occurs (Hubbell 2001). However, because speciation occurs rarely 

compared with changes in relative abundance within species, it seems unlikely that 

different speciation mechanisms would have a marked effect on community similarity 

patterns, at least for realistic speciation rates (Ricklefs 2003). A second assumption is 

the “mainland-island” framework: metacommunities are held constant during local 

community dynamics (Hubbell 2001). An alternative formulation uses an archipelago 

framework with the metacommunity changing as local communities change (Bell 

2000). While this might decrease community similarity over time, there is no obvious 

reason to expect it to increase variance in similarity among local communities, which 

is a major cause of the discrepancies between coral communities and neutral model 

predictions. Thirdly, spatially explicit neutral models predict decreasing similarity 

with distance (Hubbell 2001; Chave and Leigh 2002). Given that the most distant 

sites are more than 10,000 km apart, dispersal limitation is certainly occurring within 

the sampling scale. If dispersal limitation was the principal cause of the discrepancies 

between the data and the neutral model, the empirical data should converge towards 

the neutral model as the spatial scale at which community similarity is calculated 

decreases. However, the data do not converge to the model, because the high variance 

in coral community similarity does not decrease as the spatial scale decreases, even 

when similarity is calculated only for sites less than 10 km apart.  



Chapter 4: Neutral Dynamics and Coral Reefs: patterns of community similarity 

62 

Because coral communities have been viewed as among the assemblages 

most likely to exhibit neutral dynamics (Hubbell 1997b; Whitfield 2002; Chave 2004; 

Williamson and Gaston 2005), the findings seriously challenge neutral theory’s utility 

as a general theory of biodiversity and biogeography. Neutral theory was initially 

proposed as a null model for macroecology, predicting the diversity patterns that 

could arise from the action of demographic stochasticity and dispersal limitation alone 

(Hubbell 2001). However, early findings that neutral models can exhibit close fit to 

empirical species-abundance distributions rapidly shifted the focus towards whether 

or not neutral theory is sufficient, by itself, to explain macroecological regularities, 

such as species-abundance distributions and species-area relationships (McGill 2003c; 

Volkov et al. 2003; Adler 2004; Wootton 2005). Although the results do not support 

this latter hypothesis, they do show how using neutral theory as a null model can shed 

light on the mechanisms responsible for macroecological patterns. 

In recent years, there has been a renewed focus on the use of ecological 

theory to inform conservation priorities. At the large ecological scales relevant to this 

endeavour, the prevailing view is that niche apportionment rules stabilize community 

structure over space and time (Pandolfi 1996; Terborgh et al. 1996; Pitman et al. 

2001; Clark and McLachlan 2003; Gilbert and Lechowicz 2004). The results, 

however, support an alternative view in which species’ different responses to spatial 

and temporal environmental fluctuations play a crucial role in the maintenance of 

biodiversity (Chesson and Huntly 1989). From this perspective, protecting 

biodiversity requires preserving the patterns of connectivity that allow species to find 

and exploit suitable environments that are patchy over both space and time. 

Fluctuation-mediated coexistence has received comparatively little attention in the 

ongoing controversy about neutral theory, despite the existence of tractable models of 
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species’ relative abundance that explicitly incorporate effects of environmental 

stochasticity (Engen and Lande 1996). Given the accelerating pace of coral reef 

habitat loss (Hughes et al. 2003), a renewed focus on these mechanisms, and the body 

of ecological theory associated with them, is urgent. 
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Chapter 5: Unveiling a Coral Species Abundance Distribution 

5.1. Introduction 

So far I showed that coral communities of the Indo-Pacific deviate 

significantly from neutral model predictions both in their species abundance 

distributions (SADs, Chapter 3) and community similarity distributions (Chapter 4). 

However, these approaches raised questions that can only be answered with a 

different dataset. Firstly, in Chapter 3 goodness-of-fit of neutral models appeared to 

increase with spatial scale. However, in the dataset used, spatial scale cannot be 

unambiguously separated from sample size, as larger scale SADs are obtained by 

pooling samples from smaller spatial scales. Secondly, in Chapter 4 I showed that 

patterns of community similarity predicted by neutral models varied substantially 

with parameter values. Hence, confidence in the parameter estimates for the data is 

very important to ensure the reliability of the results. Specifically, it is important to 

verify whether parameter estimates are affected by sample size. To address these 

questions I collected and analysed a dataset of coral species abundances from a single 

location and habitat, with a total sample size approximately equal in magnitude to the 

total sample size of the Indo-Pacific dataset (when all regions and habitats are 

combined).  

Diversity patterns are notoriously affected by sampling. Rare species are less 

likely to be observed in small samples than in large samples. Thus, sample size affects 

estimates of species richness, diversity and, most importantly for this study, species 

relative abundances (Magurran 2004). The effects of sampling have been present in 

the theoretical study of SADs from early on. The first statistical distribution proposed 

for SADs – the logseries – was defined as a distribution expected for a random sample 
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from populations with heterogeneous abundances (Fisher et al. 1943). The apparent 

concordance with a logseries distribution was later suggested to be the result of 

incomplete sampling, as the true underlying distribution for ecological SADs was 

proposed to be lognormal (Preston 1948). Because Preston suggested that incomplete 

sampling acted as a “veil” truncating part of the distribution, the process of exposing 

this underlying distribution with increasing sample size is known as “unveiling”.  

The logseries and lognormal differ most in the numbers of rare species. Most 

species in a logseries distribution are extremely rare. By contrast in a lognormal 

distribution most species are moderately abundant, and there is a small number of 

extremely rare, and extremely abundant species. The predicted change in shape of a 

SAD with increasing sample size is approximately as Preston (1948) had suggested. 

Poisson sampling from a lognormal distribution shows that as sample size increases, 

SADs are initially logseries-like, then an internal mode becomes apparent, and finally, 

at large sample sizes, they resemble a lognormal distribution (Lande et al. 2003b). 

Thus, if real SADs are indeed lognormally distributed, then increasing sample size 

should gradually unveil a lognormal distribution. In this Chapter I examine how coral 

SADs change with increasing sample size, as the true abundance distribution of a 

coral community is unveiled. 

Empirical SADs usually vary from logseries-like to lognormal-like (see 

Chapter 1), and much of this variation is usually attributed to sample size. Small 

samples, relative to the size of the community being sampled, usually have the highest 

number of species represented by only one individual (singletons) (Pielou 1969). In 

marine communities in particular SADs tend to have many singletons (Hughes 1984; 

Hughes 1986). Therefore the use of the lognormal has been questioned when there is 
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no information to suggest that the true underlying SAD has an internal mode 

(Dewdney 1998; Dewdney 2000). However, numerous studies present lognormal-like 

SADs e.g.(Whittaker 1965; Wilson 1991), and the lognormal has become the classical 

distribution for SADs. 

Large or exhaustive samples tend to have left-skewed, lognormal-like SADs 

(Nee et al. 1991; Hubbell 2001; Olszewski and Erwin 2004). This skewness, which 

has been the object of much recent attention, can be attributed to pooling samples 

(McGill 2003a). However, a left-skewed lognormal-like SAD can also be caused by 

the presence of occasional or migrant species (Magurran and Henderson 2003). Thus, 

the same pattern may be caused by an ecological process, or be the result of the 

sampling protocol. Discriminating between the effects of these two processes is 

essential to ensure that adequate patterns are used for testing ecological hypothesis. 

Specifically, it is important to assess whether the species that are apparent specialists 

in a certain habitat have a different abundance distribution than occasional species, 

typical of other habitats. In this Chapter I analyse the contribution of species not 

typical of a habitat to the habitat’s SAD. 

In the context of neutral theory, another potential confounding factor 

emerges: the effects of dispersal limitation and sample size are very similar. SADs 

predicted by neutral theory vary from logseries-like to lognormal-like as immigration 

rate decreases (Hubbell 2001; Chapter 2). These are the same changes expected by 

increasing sample size. In fact, the changes in SAD shape with immigration are 

somewhat related to the unveiling process: lower immigration rates correspond to a 

larger proportion of an independent community being sampled. However, sampling 

protocol can also potentially affect parameter estimates. A community may be 
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characterized by exhaustively identifying and counting all the individuals of a 

relatively small area, or, alternatively, by pooling several small samples distributed 

over a larger area. For the same sample size, these two approaches correspond to 

different levels of unveiling (sample size relative to the universe being sampled) and 

dispersal limitation. In the first case, the distribution is totally unveiled, and only 

effects of dispersal limitation are present. In the second case, dispersal limitation is 

smaller (a greater area is involved), but a smaller proportion of the universe is 

sampled. A sampling theory for a dispersal limited neutral community has been 

developed, which takes both factors into account (Etienne and Alonso 2005). 

However, the extent to which this sampling theory can discriminate between the 

effects of sample size and dispersal limitation has not yet been tested with empirical 

data. If sample size is truly accounted for, then parameter estimates for a community 

should not change with sample size. 

In this Chapter I present an extensive characterization of a coral community 

in the Great Barrier Reef. This is, to my knowledge, the largest sample of a living 

coral community ever collected from a single site. It allows for an unprecedented 

characterization of the patterns of species relative abundances in a local coral 

community. Additionally, I separate species not typical of the habitat sampled, and 

examine whether excluding these species changes the shape of SADs. I examine how 

neutral model parameter estimates for a coral community vary as sample size 

increases nearly 300-fold. I examine changes in deviations between observed and 

predicted SADs with sample size, and I ask whether and how these change with 

increasing sample size. In summary, this Chapter focuses on three questions: 1) How 

does the SAD of a local coral community change as it is unveiled? 2) How do species 
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not typical of a habitat contribute to the habitat’s SAD? and 3) How do neutral model 

parameter estimates and goodness-of-fit change with sample size? 

 

5.2. Methods 

5.2.1. Data Collection 

Sampling took place between South and Palfrey Islands, in the Lizard Island 

group, Great Barrier Reef (Fig 5.1). Zonation patterns in reef communities are 

marked, and different habitats have different (albeit overlapping) species composition 

(Veron 2000). Because neutral models assume habitat homogeneity, this study 

focused on a single habitat: the exposed crest. The study site faces SE, which is the 

predominant wind direction, and therefore is often exposed to waves and currents. 

The exposed crest habitat is clearly defined in the field as a band between the reef 

slope (nearly vertical wall in this site) and the reef flat (horizontal surface that extends 

into the lagoon), where most waves break. It has approximately constant depth (~ 3 

m) and a diverse coral assemblage with high cover, albeit small average colony size. 

The coral assemblage of the exposed crest habitat was characterized by identifying to 

species and counting the coral colonies within 276 belt-transects (10 x 1 m). The 

sample corresponds to the majority of the coral colonies on the exposed crest between 

South and Palfrey islands, within a total area of 2,760 m2. 
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Fig 5.1 - Study site (marked by black stars): crest habitat between South and Palfrey 
Islands, in the Lizard Island Group, Great Barrier Reef, Australia.
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5.2.2. Analysis 

To obtain different sample sizes, an increasing number of transects (at 

intervals of 5: 1, 5, 10, 15…) were randomly selected to be pooled. This generated a 

total of 56 different samples with sample sizes varying over three orders of 

magnitude. I analysed the change with sample size of patterns of species relative 

abundance by plotting SADs and rank-abundance relationships for the different 

sample sizes.  

To analyse the contribution of species not typical of the crest habitat to the 

SADs, I classified species according to their preferential habitat. Species habitat 

description in monographs are often not detailed enough to allow a consistent 

classification, therefore I used information from the CCRB dataset (Chapter 3). This 

dataset has species abundances for the three main reef habitats: flat, crest and slope. 

Species that were substantially more abundant at either the flat or the slope habitats 

were classified as non-crest, and examined separately. I used two different cut-off 

values: more than twice, and more than three times, as abundant on flat/slope relative 

to crest. SADs were then plotted separately for crest and non-crest species. 

I analysed how parameter estimates and goodness-of-fit of the Genealogical 

Neutral Model (GNM) (Etienne 2005; Chapter 2) changed with increasing sample 

size. The GNM was fitted individually to each of these SADs, by calculating the log-

likelihood (Etienne 2005; expression 2.5 in Chapter 2) for an extensive scope of 

parameter combinations (10,000 > θ >1 and 0.999 > m > 0.00008). PARI/GP code for 

the K(D,A) component of expression 2.5 was provided by Etienne (2005), and I 

implemented the remaining steps in MATLAB. Two likelihood peaks were observed 

in every case. Only one of these peaks was biologically reasonable (see Results and 
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Discussion), so it was used in the remaining analyses. A second more detailed 

likelihood surface was then obtained for a more restricted scope of parameter 

combinations around this maximum (50 > θ >1 and 0.999 > m > 0.1), in order to 

accurately estimate the best-fitted parameters for each SAD. 95% profile likelihood 

confidence intervals were calculated according to standard likelihood practice as the 

parameter values whose log-likelihood satisfied: 

! 

LL
CL

= MLL " cl                                                  (1) 

where MLL is the maximum likelihood of the biologically reasonable peak and cl is 

half the critical value for 95% of a χ2 distribution for the appropriate number of 

degrees of freedom (Hilborn and Mangel 1997). For univariate confidence limits cl is 

1.92, which is half of 3.84, the critical value for one degree of freedom. For bivariate 

confidence limits (confidence ellipses) cl is 3.00, which is half of 5.99, the critical 

value for 2 degrees of freedom. 

Predicted SADs for each set of parameters (J, m and θ) were obtained by 

simulating 1,000 samples using the GNM urn scheme (code provided by Etienne 

(2005)). The simulation approach allowed me to calculate not only the mean but also 

the variance of each abundance class, and thus to estimate the expected stochastic 

variability in SAD shape under neutral dynamics. Observed and predicted SADs were 

then compared. 
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5.3. Results 

In total, the 276 transects included 44,291 coral colonies and 156 species 

(see Appendix III for a species list). More than half the colonies (28,774) belonged to 

one of the ten most abundant species: Porites massive1, Acropora cuneata, Acropora 

hyacinthus, Acropora dig-gem 2, Goniastrea retiformis, Pocillopora damicornis, 

Acropora valida, Acropora nasuta, Pocillopora verrucosa and Favites halicora (in 

order of abundance). A large proportion of species observed were extremely rare and, 

in particular, 19 species were represented by a single individual.  

Species relative abundance patterns vary substantially with sample size (Fig 

5.2). Small samples (1 transect or ~200 colonies) have a logseries-like SAD, with a 

large number of singletons, and a steeply decreasing number of increasingly abundant 

species. As sample size increases (20 transects or ~ 2,000 colonies) an internal mode 

appears, suggesting a lognormal distribution might be unveiling. However, as sample 

size increases further (140 transects or ~ 20,000 colonies, and 276 transects or 44,291 

colonies), multiple modes become apparent. The apparent multimodality of the 

distribution does not seem simply the result of sampling noise, given its consistency, 

as it appears in SADs across a two-fold change in sample size and the modes can be 

seen travelling right in the graph as sample size increases.  

                                                
1 Porites massive cannot be resolved to species without microscopic observations, 
which would be impossible without destructive sampling. The number of colonies 
involved made this prohibitive both in terms of sampling time and the impact on the 
community contravening the Great Barrier Reef Marine Park Authority regulations 
for the Lizard Island Group. 
2 Acropora dig-gem has been shown, based on morphological, reproductive, and 
genetic criteria to be distinct from other species in the Acropora humilis species group 
(Wolstenhome 2004). Therefore, I treat it as a distinct species here, even though it has 
yet to be formally named. 
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The multiple modes are not caused by the presence of non-crest species (Fig 5.3). The 

two cut-off values used (species twice and three times more abundant in other 

habitats) led to classification of 48 and 67 species, respectively, as “non-crest”. These 

two cut-off values produced similar results: the SAD distribution of crest species 

remained multimodal (and, indeed, the SAD of non-crest species is also multimodal). 

Therefore, the shape of SADs in this crest habitat appears not to be caused by the 

presence of transient species specialized for other habitats. 

Across all sample sizes, there were consistently two peaks in the log-

likelihood surface (Fig 5.4 and 5.5). The two peaks are present in approximately the 

same positions in every SAD examined, regardless of sample size (see Appendix II 

for all the Log-likelihood surfaces). The smaller peak is approximately for θ of 21 and 

m of 0.9. The largest peak is ridge shaped, and abuts the edge of the parameter space 

explored (up to θ < 500,000), where it is still increasing.  The m values corresponding 

to this peak decrease with sample size from 0.069 (1 transect or ~200 colonies – Fig 

5.4 A) to 0.0004 (276 transects or 44,291 colonies – Fig 5.5 B).  

The parameter estimates of this second peak are orders of magnitude higher than any 

previously estimated; therefore, I assessed whether this peak was biologically realistic 

by investigating the consequences of both θ and m values. I used the (under)estimate 

of θ (500,000) to generate a metacommunity of 10 million individuals (calculated 

with expression on page 165 of (Hubbell 2001). This metacommunity has over 

1,500,000 species of corals, even though 10 million individuals corresponds only to 

less than 1 km2 of reef. Furthermore, even if values of θ close to the lower confidence 

limits for this peak are used (θ~321), the metacommunity of 
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Fig 5.4 - Log-Likelihood surface for 164 colonies or 1transect (A) and 2755 colonies or 
20 transects (B). Log-Likelihoods below 10 units of the likelihood maximum are 
truncated (represented in dark blue) to increase clarity. Colours warm as the likelihood 
increases.
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colonies or 276 transects (B). Log-Likelihoods below 10 units of the likelihood maximum 
are truncated (represented in dark blue) to increase clarity. Colours warm as the likelihood 
increases.
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10 million individuals still contains over 3,300 species. Similarly, m~0.07 for single 

transects implies that 93% of the new colonies establishing on a 10m2 area of reef 

were produced by adults within that same transect.  Because both sets of values are 

wildly implausible (see Discussion), the high θ, low m peak was ignored in 

subsequent analysis and best-fitted parameters henceforth refer to the first maximum 

likelihood peak.  

Profile likelihood confidence limits around the parameter estimates, using 

the fine-grained likelihood surfaces, reveal that the biologically realistic peak varies 

slightly in location with sample size (Fig 5.6-5.8). Estimates of θ increased from 13 to 

20 as sample size reached 2,000 individuals, but remained constant thereafter (Fig 5.8 

A). Estimates of m varied between 0.99 for small samples, to 0.3 for samples between 

5,000 and 25,000 colonies, and back to 0.99 for larger samples (Fig 5.8 B). Most 

importantly, 95% confidence around maximum likelihood parameter estimates (MLE) 

overlap substantially for all sample sizes, suggesting that differences between MLEs 

are not statistically significant. 

Predicted SADs deviate considerably from observed distributions for all 

sample sizes (Fig 5.9 and 5.10). For the smallest sample sizes deviations are similar to 

those described in Chapter 3 for the site and island scales: the model underestimates 

the number of rare species, and over-estimates the number of species with 

intermediate to high abundances (Fig 5.9 A). As sample size increases to ~2,000 

colonies, the observed and predicted abundance distributions exhibit greater 

concordance, although the predicted distribution does not capture a small mode of 

very abundant species (Fig 5.9 B). As sample size increases further, several internal 
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modes become apparent in the data, which the model does not capture (Fig 

5.10 A and B). 

 

5.4. Discussion 

Increasing sample size does not seem to unveil a lognormal distribution for a 

crest coral community. This is particularly important because the lognormal has 

become the classical statistical distribution for SADs. Theoretical models of 

community structure are judged by their ability to generate lognormal distributions 

(e.g. Tokeshi 1990; Engen and Lande 1996), and the lognormal is the distribution 

against which other models are typically compared (Harte 2003; McGill 2003c; Nee 

and Stone 2003). Much of its support has come from the presence of an internal mode 

in SADs, if sample sizes are large enough (Whittaker 1965; Wilson 1991). However 

totally unveiled distributions are extremely rare in the literature, as the sampling effort 

involved is often enormous. Hence, the widespread use of the lognormal as a null 

expectation for SADs has been criticized (Dewdney 1998; Williamson and Gaston 

2005), particularly in cases when an internal mode is not present (Hughes 1986). This 

study shows that the appearance of an internal mode with increasing sample size does 

not necessarily correspond to the partial unveiling of a lognormal distribution. As 

sample size is increased further SADs gained a multimodal appearance. 

Multimodal SADs have previously been observed in empirical data, but are 

usually ignored. For example, the neutral model has been shown to provide a better fit 

than the lognormal to a brachiopod fossil community (Olszewski and Erwin 2004). 

However, neither model fits the data particularly well, in part because of what appears 
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to be a multimodal empirical abundance distribution. Others have sought to explain 

the multiple modes by partitioning species according to their preferential habitat and 

fitting different models to the SADs for the different partitions (Magurran and 

Henderson 2003). However, in the present study the sample collected was as 

ecologically homogenous as possible because it was collected at a single location in 

time and space. Furthermore, removing non-crest species does not reduce the 

multimodal appearance of the SADs, and hence the mixture of species adapted for 

different habitats is not likely to be causing this pattern.  

Lognormally distributed SADs are often observed for heterogeneous 

communities. The Barro-Colorado dataset, for example, includes a variety of habitats 

in terms of altitude, soil and humidity (Hubbell et al. 1999). Another example is the 

British bird abundance dataset, which includes all the habitats in Great Britain (Nee et 

al. 1991). In fact, the coral dataset used in Chapters 3 and 4, which is of the same 

order of magnitude in terms of sample size, has a partially unveiled lognormal SAD 

when all habitats and regions are combined (Connolly et al. 2005). It is thus possible 

that habitat heterogeneity promotes lognormality. Lognormal SADs have been 

suggested to result from many variables influencing species abundances interacting 

multiplicatively, as a consequence of the Central Limit Theorem (CLT) (May 1975). 

Habitat heterogeneity should increase the number of variables involved, and 

consequently decrease the probability of observing departures from the CLT. Larger 

scales should have a similar effect, and thus metacommunities may well be more 

lognormal-like than local communities. 

The fit of the GNM to these data is maximized by two parameter 

combinations, which correspond respectively to high immigration and low speciation, 
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or to low immigration and high speciation. (Etienne et al. 2006) report similar results 

for shrub communities in South Africa. The presence of two likelihood peaks is 

problematic because they correspond to two very different ecological hypotheses. 

Hence it is important to assess which peak is biologically realistic. In the case of the 

South African shrub communities, distinct isolation and high speciation rates are 

entirely consistent with the high level of endemism found in these communities 

(Latimer et al. 2005). In the current study, however, the high speciation peak leads to 

unrealistically high numbers of species at the metacommunity scale. Approximately 

800 coral species have currently been described for the entire planet (Veron 2000). 

Even using the lower confidence limit of the high-θ peak, and an absurdly small 

metacommunity size, predicted a metacommunity richness over four times this 

number. Moreover, the values for the immigration parameter m in this peak (0.069 for 

an area of 10 m2 to 0.0004 for an area of 2760 m2) are inconsistent with the basic 

population biology of scleractinian corals, most of which have external fertilization 

and whose larvae spend days to weeks in the plankton before settling back on the reef. 

Parameter estimates of the biologically realistic likelihood maximum do not 

vary significantly with sample size. Thus, the GNM can successfully separate the 

effects of dispersal limitation and incomplete sampling, which have similar qualitative 

effects on SADs. In particular, it is reassuring that fitting neutral models to small 

samples does not lead to over-estimates of immigration rates, as might be expected if 

incomplete sampling could not be separated from dispersal limitation. Furthermore, 

the confidence limits for the parameter estimates help explain the uncertainty 

regarding estimates of m in Chapter 3. The relative flatness of the likelihood surface 

around the maximum likelihood peak means that even small numerical errors in the 
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likelihood calculation can lead to differences in the best-estimated parameter. Thus, 

these results lend support to the parameter estimates in Chapter 3 since the parameter 

values of the two datasets are of comparable magnitude, and differences between 

SNM and MFNM estimates (Fig. 3.1) are within parameter confidence limits. Finally, 

confidence in the estimates of m reinforces the conclusions of Chapter 4, because 

differences between real and neutral communities were most pronounced for high 

immigration rates.  

Understanding the processes that determine species relative abundances 

remains one of the central “unanswered questions in ecology” (May 1999). Fitting 

explanatory models to SADs is possibly the most common approach to this question. 

However it is increasingly criticized as providing only weak tests of ecological 

hypothesis (McGill et al. 2006). The main objection to using curve fitting as an 

empirical test of a model is that the correlation between theoretical and observed 

curves does not necessarily imply a correspondence between pattern and process 

(Magurran 2005). However, the reverse is not true: failing to fit empirical SADs 

clearly suggests that the processes included in neutral models cannot, by themselves, 

explain coral patterns of species relative abundances. In concordance with Chapter 3, 

neutral model predictions deviate markedly from observed SADs. However, in 

contrast to the Indo-Pacific dataset, the abundance distribution characterized here is 

apparently different from a lognormal as well. 
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Chapter 6: Conclusions 

This thesis provides new and critical understanding of the processes that 

affect coral communities, achieved by examining exceptionally large datasets and 

comparing observed patterns with predictions from theoretical models of community 

structure. Firstly, relative abundance patterns of reef corals depart significantly from 

neutral theory predictions. This result is particularly important because corals were 

thought to be among the most likely communities to conform to neutral theory 

assumptions. This raises serious questions about using neutral theory as a general 

explanation for community structure. Secondly, patterns of community similarity 

differ from neutral theory predictions. Most importantly, they differ in the opposite 

direction of niche theory predictions, which suggest coral communities are strongly 

affected by environmental stochasticity. Thirdly, as sample size increases at a single 

location, the SAD that emerges appears to be multimodal, not lognormal.  This 

suggests that that we do not yet have a good theory to explain patterns of species 

relative abundance. 

Coral species abundance distributions (SADs) deviate from theoretical 

distributions. Observed patterns depart consistently and significantly from neutral 

theory predictions, across several habitats, bio-geographical regions, and spatial 

scales (Chapter 3). Neutral models have been compared to SADs of trees in tropical 

forests (Volkov et al. 2003; Volkov et al. 2005), fossil molluscs (Olszewski and 

Erwin 2004), birds (McGill 2003c), freshwater fish (Etienne and Alonso 2005), and 

intertidal communities (Wootton 2005) among others. Results have been inconsistent, 

but tended to reject neutral models (see McGill et al. 2006 for a review). Coral 
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communities add to the list of communities that do not conform to neutral theory 

predictions.  

Since the publications that brought attention to neutral theory as a general 

explanation of diversity patterns appeared (Bell 2000; Bell 2001; Hubbell 2001), there 

has been considerable theoretical progress regarding neutral models. Several neutral 

model versions have been developed, with slightly different ancillary assumptions 

(Volkov et al. 2003; Etienne and Olff 2004; McKane et al. 2004; Etienne 2005; He 

2005). In Chapter 2 I reviewed these models and compared the patterns generated by 

the three main modelling approaches to show that they generate similar predictions 

regarding species abundance distributions (SADs). The results from Chapters 3 and 5 

combined also confirm that neutral models are essentially equivalent, and thus 

deviations from neutral model predictions must be a consequence of violation of the 

assumptions common to all the model versions. 

In Chapter 5 I present a novel test of neutral models that uses parameters 

estimated from local community SADs, to test neutral model predictions regarding 

between community variability. I show that, for this pattern as well, coral 

communities deviate considerably from the model predictions. Hence, none of the 

patterns examined are consistent with neutral models, and these results add strength to 

the conclusion that the processes included in neutral models cannot explain coral 

community structure. Most importantly, coral communities are more variable than 

neutral model predictions, instead of less variable as many proponents of niche 

assembly have argued. This suggests that it is the violation of the spatial and temporal 

environmental homogeneity assumption that causes these results. The importance of 

environmental history for coral community structure has long been recognized 
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(Hughes 1989; Hughes 1994) and suggests that the state of a coral reef depends 

greatly on unpredictable but frequent disturbances.  

The effects of environmental variability and disturbances on community 

structure patterns are best understood with a hypothetical example. Consider several 

hypothetical nearby reefs with similar communities. A bleaching event caused by a 

mass of unusually hot waters affects some of the reefs but not others. As a 

consequence, the reefs affected suffer mass mortality of bleaching sensitive species, 

whereas the unaffected reefs remain unchanged. Mean community similarity 

decreases because of differences between affected and unaffected reefs. However, 

resemblance between similarly affected reefs increases variance in similarity. Because 

disturbances on coral reefs are frequent, localized and selective spatio-temporal 

environmental variability is a likely explanation for the patterns observed in this 

thesis.  

Coral SADs at a local level also seem to deviate from the classical lognormal 

distribution. For extremely large samples in a single habitat and local community, the 

distribution coral species abundances has several apparent modes (Chapter 5). 

Multimodal SADs have previously been reported (e.g. (Magurran and Henderson 

2003; Olszewski and Erwin 2004)) but no theoretical model can currently explain 

these patterns. Given the results of Chapter 4, it will be most interesting to examine 

how environmental stochasticity and, in particular, frequent disturbances affect 

species relative abundances at a local scale. 

In conclusion, the results of this thesis challenge neutral theory as a general 

explanation for community dynamics. The departures observed from neutral theory 

predictions clearly suggest that coral communities are strongly affected by processes 
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not included in neutral models. However, this thesis also highlights that neutral 

models are extremely useful as null models against which empirical patterns should 

be compared. This was the original purpose of neutral models (Caswell 1976; Hubbell 

1979) and has the potential to dramatically advance our understanding of the 

processes that determine biodiversity. 
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105Figure AI.1 – Estimates of θ across the biodiversity gradient (Indonesia, Papua
New Guinea, Solomon Islands, American Samoa and French Polynesia) and three
habitats (slope, crest and flat) for the SNM (blue diamonds) and MFNM (red
squares). Symbols represent the mean and error bars one standard deviation.
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Figure AI.2 – Slope observed species abundance distributions (bars), best fitted SNM (full
line), and MFNM (dashed line), for sites 1 to 4 in Irian Jaya (A to D) and Manado (E to H).
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Figure AI.3 – Slope observed species abundance distributions (bars), best fitted SNM (full
line), and MFNM (dashed line), for sites 1 to 4 in Wakatobi (A to D) and Kimbe (E to H).
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Figure AI.4 – Slope observed species abundance distributions (bars), best fitted SNM (full
line), and MFNM (dashed line), for sites 1 to 4 in Kavieng (A to D) and Madang (E to H).
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Figure AI.5 – Slope observed species abundance distributions (bars), best fitted SNM (full
line), and MFNM (dashed line), for sites 1 to 4 in Gizo (A to D) and Munda (E to H).
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Figure AI.6 – Slope observed species abundance distributions (bars), best fitted SNM (full
line), and MFNM (dashed line), for sites 1 to 4 in Upei (A to D) and Tutuila (E to H).
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Figure AI.7 – Slope observed species abundance distributions (bars), best fitted SNM (full
line), and MFNM (dashed line), for sites 1 to 4 in Ofu (A to D) and Tau (E to H).
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Figure AI.8 – Slope observed species abundance distributions (bars), best fitted SNM (full
line), and MFNM (dashed line), for sites 1 to 4 in Moorea (A to D) and Tahiti (E to H).
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Figure AI.9 – Slope observed species abundance distributions (bars), best fitted SNM (full
line), and MFNM (dashed line), for sites 1 to 4 in Raiatea (A to D).
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Figure AI.10 – Crest observed species abundance distributions (bars), best fitted SNM
(full line), and MFNM (dashed line), for sites 1 to 4 in Irian Jaya (A to D) and Manado (E
to H).
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Figure AI.11 – Crest observed species abundance distributions (bars), best fitted SNM
(full line), and MFNM (dashed line), for sites 1 to 4 in Wakatobi (A to D) and Kimbe (E to
H).
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Figure AI.12 – Crest observed species abundance distributions (bars), best fitted SNM
(full line), and MFNM (dashed line), for sites 1 to 4 in Kavieng (A to D) and Madang (E to
H).
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Figure AI.13 – Crest observed species abundance distributions (bars), best fitted SNM
(full line), and MFNM (dashed line), for sites 1 to 4 in Gizo (A to D) and Munda (E to H).
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Figure AI.14 – Crest observed species abundance distributions (bars), best fitted SNM
(full line), and MFNM (dashed line), for sites 1 to 4 in Upei (A to D) and Tutuila (E to H).
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Figure AI.15 – Crest observed species abundance distributions (bars), best fitted SNM
(full line), and MFNM (dashed line), for sites 1 to 4 in Ofu (A to D) and Tau (E to H).
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Figure AI.16 – Crest observed species abundance distributions (bars), best fitted SNM
(full line), and MFNM (dashed line), for sites 1 to 4 in Moorea (A to D) and Tahiti (E to
H).
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A B
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Figure AI.17 – Crest observed species abundance distributions (bars), best fitted SNM
(full line), and MFNM (dashed line), for sites 1 to 4 in Raiatea (A to D).
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Figure AI.18 – Flat observed species abundance distributions (bars), best fitted SNM (full
line), and MFNM (dashed line), for sites 1 to 4 in Irian Jaya (A to D) and Manado (E to H).
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Figure AI.19 – Flat observed species abundance distributions (bars), best fitted SNM (full
line), and MFNM (dashed line), for sites 1 to 4 in Wakatobi (A to D) and Kimbe (E to H).
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Figure AI.20 – Flat observed species abundance distributions (bars), best fitted SNM (full
line), and MFNM (dashed line), for sites 1 to 4 in Kavieng (A to D) and Madang (E to H).
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Figure AI.21 – Flat observed species abundance distributions (bars), best fitted SNM (full
line), and MFNM (dashed line), for sites 1 to 4 in Gizo (A to D) and Munda (E to H).
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Figure AI.22 – Flat observed species abundance distributions (bars), best fitted SNM (full
line), and MFNM (dashed line), for sites 1 to 4 in Upei (A to D) and Tutuila (E to H).
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Figure AI.23 – Flat observed species abundance distributions (bars), best fitted SNM (full
line), and MFNM (dashed line), for sites 1 to 4 in Ofu (A to D) and Tau (E to H).
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Figure AI.24 – Flat observed species abundance distributions (bars), best fitted SNM (full
line), and MFNM (dashed line), for sites 1 to 4 in Moorea (A to D) and Tahiti (E to H).
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A B

C D

Figure AI.25 – Flat observed species abundance distributions (bars), best fitted SNM (full
line), and MFNM (dashed line), for sites 1 to 4 in Raiatea (A to D).
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Figure AI.26 – Slope observed species abundance distributions (bars), best fitted SNM
(full line), and MFNM (dashed line), for Irian Jaya (A), Manado (B) and Wakatobi (C) in
Indonesia, and Kimbe (D), Kavieng (E) and Madang (F) in Papua New Guinea.
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Figure AI.27 – Slope observed species abundance distributions (bars), best fitted SNM
(full line), and MFNM (dashed line), for Gizo (A), Munda (B) and Upei (C) in Solomon
Islands, and Tutuila (D), Ofu (E) and Tau (F) in American Samoa.
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Figure AI.28 – Slope observed species abundance distributions (bars), best fitted SNM
(full line), and MFNM (dashed line), for Moorea (A), Tahiti (B) and Raiatea (C) in French
Polynesia.
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Figure AI.29 – Crest observed species abundance distributions (bars), best fitted SNM
(full line), and MFNM (dashed line), for Irian Jaya (A), Manado (B) and Wakatobi (C) in
Indonesia, and Kimbe (D), Kavieng (E) and Madang (F) in Papua New Guinea.
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Figure AI.30 – Crest observed species abundance distributions (bars), best fitted SNM
(full line), and MFNM (dashed line), for Gizo (A), Munda (B) and Upei (C) in Solomon
islands, and Tutuila (D), Ofu (E) and Tau (F) in American Samoa.
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Figure AI.31 – Crest observed species abundance distributions (bars), best fitted SNM
(full line), and MFNM (dashed line), for Moorea (A), Tahiti (B) and Raiatea (C) in French
Polynesia.
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Figure AI.32 – Flat observed species abundance distributions (bars), best fitted SNM (full
line), and MFNM (dashed line), for Irian Jaya (A), Manado (B) and Wakatoby (C) in
Indonesia, and Kimbe (D), Kavieng (E) and Madang (F) in Papua New Guinea.
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Figure AI.33 – Flat observed species abundance distributions (bars), best fitted SNM (full
line), and MFNM (dashed line), for Gizo (A), Munda (B) and Upei (C) in Solomon
Islands, and Tutuila (D), Ofu (E) and Tau (F) in American Samoa.
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Figure AI.34 – Flat observed species abundance distributions (bars), best fitted SNM (full
line), and MFNM (dashed line), for Moorea (A), Tahiti (B) and Raiatea (C) in French
Polynesia.
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Figure AI.35 – Slope observed species abundance distributions (bars), best fitted SNM
(full line), and MFNM (dashed line), for Indonesia (A), Papua New Guinea (B), Solomon
Islands (C), American Samoa (D) and French Polynesia (E).
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Figure AI.36 – Crest observed species abundance distributions (bars), best fitted SNM
(full line), and MFNM (dashed line), for Indonesia (A), Papua New Guinea (B), Solomon
Islands (C), American Samoa (D) and French Polynesia (E).
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Figure AI.37 – Flat observed species abundance distributions (bars), best fitted SNM (full
line), and MFNM (dashed line), for Indonesia (A), Papua New Guinea (B), Solomon
Islands (C), American Samoa (D) and French Polynesia (E).
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Figure A II.1 - Likelihood surfaces for 1 (A), 10 (B), 15 (C), 20 (D), 25 (E), 30
(F), 35 (G) and 40 (H) transects. Log-Likelihoods bellow 10 units of the
likelihood maximum are truncated to increase clarity.
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Figure A II.2 - Likelihood surfaces for 45 (A), 50 (B), 55 (C), 60 (D), 65 (E), 70
(F), 75 (G) and 80 (H) transects. Log-Likelihoods bellow 10 units of the
likelihood maximum are truncated to increase clarity.
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Figure A II.3 - Likelihood surfaces for 85 (A), 90 (B), 95 (C), 100 (D), 105 (E),
110 (F), 115 (G) and 120 (H) transects. Log-Likelihoods bellow 10 units of the
likelihood maximum are truncated to increase clarity.
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Figure A II.4 - Likelihood surfaces for 125 (A), 130 (B), 135 (C), 140 (D), 145
(E), 150 (F), 155 (G) and 160 (H) transects. Log-Likelihoods bellow 10 units of
the likelihood maximum are truncated to increase clarity.
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Figure A II.5 - Likelihood surfaces for 165 (A), 170 (B), 175 (C), 180 (D), 185
(E), 190 (F), 195 (G) and 200 (H) transects. Log-Likelihoods bellow 10 units of
the likelihood maximum are truncated to increase clarity.
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Figure A II.6 - Likelihood surfaces for 205 (A), 210 (B), 215 (C), 220 (D), 225
(E), 230 (F), 235 (G) and 240 (H) transects. Log-Likelihoods bellow 10 units of
the likelihood maximum are truncated to increase clarity.
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Figure A II.7 - Likelihood surfaces for 245 (A), 250 (B), 255 (C), 260 (D), 265
(E), 270 (F), 275 (G) and 280 (H) transects. Log-Likelihoods bellow 10 units of
the likelihood maximum are truncated to increase clarity.
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Appendix III 
 

Species list for the crest between South and Palfrey Islands, Lizard Island 
Group, Great Barrier Reef 

 
Acanthastrea echinata 
Acanthastrea hemprichii 
Acanthastrea lordhowensis 
Acanthastrea regularis 
Acropora abrotanoides 
Acropora anthocercis 
Acropora aspera 
Acropora austera 
Acropora brueggemanni 
Acropora cerealis 
Acropora clathrata 
Acropora cuneata 
Acropora cytherea 
Acropora digitifera 
Acropora divaricata 
Acropora elseyi 
Acropora dig-gem 
Acropora florida 
Acropora gemmifera 
Acropora grandis 
Acropora humilis 
Acropora hyacinthus 
Acropora intermedia 
Acropora latistella 
Acropora listeri 
Acropora loripes 
Acropora lutkeni 
Acropora microclados 
Acropora millepora 
Acropora monticulosa 
Acropora muricata 
Acropora nana 
Acropora nasuta 
Acropora palifera 
Acropora polystoma 
Acropora pulchra 
Acropora robusta 
Acropora samoensis 
Acropora sarmentosa 
Acropora secale 
Acropora selago 
Acropora spathulata 
Acropora tenuis 
Acropora valida 
Acropora verweyi 

Acropora yongei 
Alveopora sp. 
Astreopora myriophthalma 
Astreopora ocellata 
Australogyra zelli 
Coeloseris mayeri 
Coscinaraea columna 
Coscinaraea exesa 
Ctenactis echinata 
Cyphastrea chalcidicum 
Cyphastrea microphthalma 
Cyphastrea ocellina 
Cyphastrea serailia 
Diploastrea heliopora 
Echinopora gemmacea 
Echinopora horrida 
Echinopora lamellosa 
Favia favus 
Favia laxa 
Favia lizardensis 
Favia matthaii 
Favia pallida 
Favia rotumana 
Favia rotundata 
Favia stelligera 
Favites abdita 
Favites complanata 
Favites flexuosa 
Favites halicora 
Favites pentagona 
Favites russelli 
Fungia fungites 
Fungia paumotensis 
Fungia repanda 
Fungia scutaria 
Galaxea astreata 
Galaxea fascicularis 
Gardineroseris planulata 
Goniastrea aspera 
Goniastrea australensis 
Goniastrea edwardsi 
Goniastrea favulus 
Goniastrea pectinata 
Goniastrea retiformis 
Goniopora pendulus 
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Goniopora tenuidens 
Herpolitha limax 
Hydnophora exesa 
Hydnophora microconos 
Hydnophora rigida 
Leptastrea inaequalis 
Leptastrea pruinosa 
Leptastrea purpurea 
Leptastrea transversa 
Leptoria irregularis 
Leptoria phrygia 
Lobophyllia corymbosa 
Lobophyllia hataii 
Lobophyllia hemprichii 
Merulina ampliata 
Merulina scabricula 
Montastrea annuligera 
Montastrea curta 
Montastrea magnistellata 
Montastrea valenciennesi 
Montipora aequituberculata 
Montipora caliculata 
Montipora crassituberculata 
Montipora danae 
Montipora efflorescens 
Montipora floweri 
Montipora foliosa 
Montipora foveolata 
Montipora grisea 
Montipora hispida 
Montipora monasteriata 
Montipora spongodes 
Montipora spumosa 
Montipora tuberculosa 
Montipora turgescens 
Montipora undata 
Montipora venosa 
Montipora verrucosa 
Pavona varians 
Pavona venosa 
Platygyra daedalea 
Platygyra lamellina 
Platygyra pini 
Platygyra ryukyuensis 
Platygyra sinensis 
Platygyra verweyi 
Plesiastrea versipora 
Pocillopora damicornis 
Pocillopora eydouxi 
Pocillopora verrucosa 

Porites massive 
Psammocora digitata 
Psammocora haimeana 
Psammocora profundacella 
Psammocora superficialis 
Pseudosiderastrea tayami 
Seriatopora caliendrum 
Seriatopora hystrix 
Stylocoeniella armata 
Stylophora mordax 
Stylophora pistillata 
Symphyllia agaricia 
Symphyllia radians 
Symphyllia recta 
Turbinaria mesenterina 
Turbinaria reniformis 
Turbinaria stellulata 
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