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Resumo

Esta dissertação apresenta uma solução para o problema da detecção de obstáculos em am-

bientes todo-o-terreno, com particular interesse para robôs móveis equipados com visão estere-

oscópica. Apesar das vantagens da visão, sobre outros tipos de sensores, tais como o custo,

peso e consumo energético reduzidos, a sua utilização ainda apresenta uma série de desafios.

Tais desafios incluem a dificuldade em lidar com a considerável quantidade de informação ger-

ada e a robustez necessária para acomodar nı́veis altos de ruı́do. Estes problemas podem ser

atenuados por pressupostos rı́gidos, tal como considerar que o terreno à frente do robô é pla-

nar. Apesar de permitir um menor custo computacional, estas simplificações não são neces-

sariamente aceitáveis em ambientes mais complexos, onde o terreno pode ser mais irregular.

Esta dissertação propõe a extensão de um conhecido detector de obstáculos que, por relaxar a

assumpção do plano é mais adequado para ambientes não estruturados. As extensões propostas

são: (1) a introdução de um mecanismo de saliência visual para focar a detecção em regiões

mais prováveis de conter obstáculos; (2) filtros de votação para diminuir a sensibilidade ao

ruı́do; e (3) a fusão do detector com um método complementar por forma a criar um sistema

hı́brido e, portanto mais robusto. Resultados experimentais obtidos com imagens de ambientes

todo-o-terreno mostram que as extensões propostas permitem um aumento de robustez e ef-

ficiência computacional sobre o algoritmo original.
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Abstract

This dissertation presents a solution to the problem of obstacle detection in all-terrain en-

vironments, with particular interest for mobile robots equipped with a stereo vision sensor.

Despite the advantages of vision, over other kind of sensors, such as low cost, light weight and

reduced energetic footprint, its usage still presents a series of challenges. These include the dif-

ficulty in dealing with the considerable amount of generated data, and the robustness required

to manage high levels of noise. Such problems can be diminished by making hard assumptions,

like considering that the terrain in front of the robot is planar. Although computation can be

considerably saved, such simplifications are not necessarily acceptable in more complex envi-

ronments, where the terrain may be considerably uneven. This dissertation proposes to extend

a well known obstacle detector that relaxes the aforementioned planar terrain assumption, thus

rendering it more adequate for unstructured environments. The proposed extensions involve:

(1) the introduction of a visual saliency mechanism to focus the detection in regions most likely

to contain obstacles; (2) voting filters to diminish sensibility to noise; and (3) the fusion of

the detector with a complementary method to create a hybrid solution, and thus, more robust.

Experimental results obtained with demanding all-terrain images show that, with the proposed

extensions, an increment in terms of robustness and computational efficiency over the original

algorithm is observed.
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List of Symbols and Notations

Symbol Description

OD Obstacle Detector

OOD Original Obstacle Detector [Manduchi et al., 2005]

EOD Extended Obstacle Detector [Santana et al., 2008]

SalOD Saliency Based Obstacle Detector [Santana et al., 2009]

ESalOD Extended Saliency Based Obstacle Detector [Santana et al., 2010]

ROC Receiver Operating Characteristic

TPR True Positive Rate

FPR False Positive Rate

θ minimum slope a surface must have to be considered as an obstacle

Hmin minimum height an object must have to be considered an obstacle

Hmax maximum allowed height between two points to be considered com-

patible with each other

p generic 3-D data point

p′ projection of a generic 3-D data point p onto the image plane

CU upper truncated cone (for compatibility test)

C ′
U upper truncated triangle (result from projecting CU onto the image

plane)

CL lower truncated cone (for compatibility test)

C ′
L lower truncated triangle (projection of CL onto the image plane)
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Symbol Description

r range for ground plane estimation

t minimum area a triangle, defined by three 3-D points, must have in

order to the points be considered collinear

dplane maximum distance to a potential ground plane a 3-D point must have

to pertain to the same plane

nhypo number of generated plane hypoteses for ground plane estimation

g scalling factor for ground plane estimation

α scalling factor for ground plane estimation

n base resolution for space-variant resolution

m base resolution for rough analysis in space-variant resolution

nslide maximum number of consecutive pixels skipped in SalOD

nmax maximum number of consecutive pixels skipped in ESalOD

w radius of scan window for the region growing process

d maximum distance between two points to be aggregated in the region

growing process

v voting filter threshold

a area filter threshold
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Chapter 1

Introduction

Over the past few years, we have been observing an increasing interest on unmanned all-

terrain vehicles [Matthies et al., 2007]. From military operations [Bellutta et al., 2000] to in-

terplanetary exploration [Maimone et al., 2006], from rescue missions [Birk and Carpin, 2006]

to wide-area surveillance and humanitarian demining [Santana et al., 2007], their presence is

increasingly noticeable. Although the man-in-the-loop is often required for the control of high

level operations, service robots must integrate autonomous capabilities, such as obstacle detec-

tion and avoidance, in order to move safely [Kim et al., 2006], [Matthies et al., 2007].

Despite the long research history in obstacle detection, a set of hard challenges are still to be

tackled if the targeted environments are unstructured. This dissertation contributes to this line

of research by proposing a reliable and computationally efficient obstacle detector for off-road

environments. Efficiency here is particularly interesting to enable consumer robotics, which

must be cheap. Therefore, expensive sensors or computational units must be avoided.

In order to perceive their surroundings, robots are normally equipped with a wide variety

of sensors [Thrun et al., 2006], including Global Positioning Systems (GPS), Inertial Measure-

ment Units (IMU), Radio Detection and Ranging Systems (RADAR), Laser Scanners (LADAR)

or Stereoscopic Cameras. However, integrating all this equipment in low cost or small robots,

where space and energy storage are limited, is quite challenging. From the aforementioned

sensory modalities, stereo vision and laser scanners are the better suited to enable a proper
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characterisation of unknown scenarios [Lalonde et al., 2006], [Manduchi et al., 2005]. These

two types of sensors are complementary and consequently desirable. In particular, stereo vi-

sion overcomes several limitations of laser scanners, such as sensitivity to vibration due to

mechanical components, active interaction with the environment, slow 3D reconstruction, low

resolution, and absence of colour information. Moreover, vision systems aggregates a set of

important features for all-terrain service robots, such as general purpose capabilities, small en-

ergetic footprint, light weight, small size and low cost. Due to these reasons, stereo vision

has been selected in the context of this work. However, despite the mentioned advantages, the

large amount of generated data, which is also noisy, allied to the unstructured nature of off-road

environments makes the use of stereo vision for robust and fast obstacle detection a still open

problem.

A common approach to reduce its computational cost is to introduce some assumptions, such

as some form of structure. A typical one is that obstacles are 3-D points standing above a flat

ground [Konolige et al., 2006], [Broggi et al., 2006]. However, off-road terrains are often rough

and hardly flat, which makes this approach quite unsuitable. A more comprehensive technique

is the fitting of several planes to several parts of the environment, and use their residual as

a measure of traversability [Singh et al., 2000], [Goldberg et al., 2002]. One limitation of this

method is the computational cost associated to the multiple fitting processes. Another limitation

is related to its heuristic nature, which complicates the task of specifying the proper size of the

planes and what an obstacle is, taking into account a specific robot’s physical apparatus. A

more complete, yet too expensive solution, is to generate a digital elevation map, upon which

trajectories are planned according to models of interaction between the robot and the terrain

[Lacroix et al., 2002]. Another known approach is to characterise obstacles in terms of the

statistics governing patches of accurate 3-D point clouds [Lalonde et al., 2006]. However, such

accuracy is only attainable with laser scanners. A more useful technique for stereo vision and, in

particular, for outdoor environments is to define obstacles in terms of geometrical relationships

between their composing 3-D points, as proposed by Manduchi et al. [Manduchi et al., 2005].

However, this approach still lacks robustness and computational efficiency.
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In order to reduce both noise sensitivity and computational cost, the detector was recently

extended by Santana et al. [Santana et al., 2008]. However, the proposed extensions are too

rigid, i.e. noise and computational time are reduced at the expense of a reduction in terms of

true positive rate. Bearing what have been said, this dissertation describes the research work that

was carried out to improve robot obstacle detection. In particular, the work was concentrated

on improving the previously mentioned algorithm in order to increase accuracy, robustness and

computational efficiency.

1.1 Problem Statement

As previously stated, this dissertation intends to develop a pure vision-based obstacle detec-

tor for all-terrain service robots. In order to achieve this, three main problems must be taken

into consideration:

1. The proposed model must be suitable for off-road environments, where both structured

and unstructured surfaces must be correctly identified either as obstacles or free-space.

Obstacles here are defined as anything that can block the passage of a wheeled robot.

2. The proposed model must be robust to noisy data, typical of a stereo vision-based system.

Noise may be induced by several different factors (e.g. insufficient illumination, exces-

sive light exposure, dirty lens, uncalibrated cameras, etc.) and inevitably affects the 3-D

reconstruction process.

3. The proposed model must be computationally efficient and cope with real-time con-

straints, so that the robot can drive safely in demanding environments. As 3-D stereo

reconstruction generates dense point clouds, the analysis of such data is often expensive.

Thus, maintaining low complexity and improved efficiency can be particularly challeng-

ing.
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1.2 Solution Prospect

This dissertation proposes the following solutions for the identified problems:

1. Obstacles will be defined according to the geometrical relationships between their com-

posing 3-D points, as in the model proposed by Manduchi et al. [Manduchi et al., 2005].

By adopting this model, hard assumptions about the terrain’s topology are discarded and

surfaces will be considered as obstacles if their slope or height are higher than the max-

imum a wheeled robot can climb or step over. Additionally, a hybrid architecture is

presented where the proposed model is integrated with a detector that makes the plane as-

sumption. This architecture allows the exploitation of the complementary role exhibited

by both detectors, i.e. to increase in true positive rate and to reduce in computation time.

2. Noise will be reduced by means of a robust filtering mechanism. This mechanism

consists on a remodelled version of the voting filters introduced by Santana et al.

[Santana et al., 2008]. Briefly, each time a pair of related 3-D data points are consid-

ered to pertain to an obstacle, each one of them cast a vote. By the end of the analysis,

the more votes a potential obstacle point have, less likely is to be an outlier erroneously

computed from 3-D reconstruction. This dissertation adds scale invariance to the voting

mechanism. Additionally, potential obstacles are segmented and the number of points

each segment contains is thresholded by a novel area filter, eliminating sparse noisy data.

3. Computational efficiency will be improved by a saliency-based space-variant resolution

mechanism. The space-variant resolution mechanism was also proposed by Santana et

al. [Santana et al., 2008] in order to reduce the number of pixels being analysed, thus

saving computation time. This dissertation uses visual saliency in order to modulate the

space-variant resolution, so that the most important regions, i.e. regions that are prone to

contain obstacles, are analysed with more detail. This not only improves efficiency, but

also reduces false positive rate.
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1.3 Dissertation Outline

This dissertation is organised as follows:

Chapter 2 gives a brief overview of the state of the art regarding obstacle detection techniques

for off-road environments;

Chapter 3 describes the supporting mechanisms for the developed algorithm, such as the dis-

parity calculation, saliency computation and ground plane estimation.

Chapter 4 describes a full obstacle detector suited for autonomous mobile robots equipped with

a stereo vision sensor and operating in rough and unstructured outdoor environments;

Chapter 5 presents an improved obstacle detection architecture that integrates two different

techniques in an efficient way;

Chapter 6 presents a set of experimental results, which encompasses a comparative analysis

between the developed model and its predecessors.

Chapter 7 gives some conclusions about the developed work and future work possibilities.
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1.4 Further Readings

The work developed in this dissertation had as its starting point the algorithm proposed by

Santana et al. [Santana et al., 2008]. Part of the concepts proposed in this dissertation, with the

goal of extending this algorithm, had been published in:

[Santana et al., 2010] Santana, P., Guedes, M., Correia, L., and Barata, J. (2010). A saliency-

based solution for robust off-road obstacle detection. Proceedings of the 2010 IEEE Interna-

tional Conference on Robotics and Automation (ICRA 2010).

[Santana et al., 2009] Santana, P., Guedes, M., Correia, L., and Barata, J. (2009). Saliency-

based obstacle detection and ground-plane estimation for off-road vehicles. Proceedings of the

7th Intl. Conf. on Computer Vision Systems (ICVS 2009), volume 5815 of LNCS Series, pages

275-284. Springer.
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Chapter 2

State of the Art

This chapter surveys the state of the art in off-road obstacle detection algorithms. In the

past 10 years, there has been extensive research on obstacle detection techniques for all-terrain

service robots, mainly due to the challenging problem of properly distinguish obstacles in rough

and unstructured natural environments. This problem have promoted several approaches in the

search for better solutions.

Hence, herein is presented an overview of the most successful approaches to solve the prob-

lem previously mentioned.

The flat terrain assumption or flat world approach (section 2.1) is a well known method that

takes advantage of simplifications in order to reduce complexity and accelerate the detection

process. However, as the name suggests, work well when the terrain is relatively plane but fails

in rough areas. Next, a similar approach is taken so as to improve detection in curved terrains

by assuming that the plane show smooth slope variations (section 2.2), which is not necessarily

the case in off-road. A more comprehensive approach is to characterise obstacles by means of

a traversability cost (section 2.3). However, this technique requires the construction of local

maps containing the terrain’s topology, which is computationally expensive and needs high

storage capability. Loosing the necessity for topology understanding of the terrain, obstacles

can be characterised directly from a statistical analysis of its composing 3-D points (section 2.4).

However, this method requires accurate 3-D point registration, which is only attainable with
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laser scanners, thus is more applicable with data obtained by a laser scanner than the more

noisy data obtained by stereo vision. Finally, a more useful technique for vision systems is to

define obstacles in terms of geometric relationships between 3-D data points (section 2.5). This

method is more robust, still the involved complexity requires a comprehensive solution in order

to reduce computational cost.

The expensive computation of the referred techniques lies mainly in the large amount of

data that have to be analysed. This fact can be circumvented if the region of analysis is reduced.

However, the problem is to know which regions should be analysed. An efficient method capa-

ble of selecting interest regions is the application of visual attention mechanisms. Section 2.6

survey some of the attention mechanisms that are prone to be applied in mobile robotics.

2.1 Flat Terrain Assumption

Although off-road environments are quite marked by their irregularity, it is often possible to

determine a dominant ground plane in the robot’s surroundings. The presence of a ground plane

is of major importance for reducing the complexity of the assumptions needed to be made in

order to characterise obstacles. Moreover, assuming that the robot is navigating in a relatively

flat terrain, obstacles can be simply characterised as prominent surfaces standing above the

ground.

In the model proposed by Konolige et al. [Konolige et al., 2006], the robot is assumed to

navigate on a locally flat ground. In this case, obstacles near to the robot’s location can be

detected by thresholding the height of 3-D points standing above the ground plane. Fig. 2.1

depicts the proposed model to detect and map obstacles in the robot’s surroundings. First, dis-

parity and colour images are obtained from a stereo camera. Then, the 3-D point cloud is com-

puted from the disparity image and the ground plane is extracted using a RANSAC technique

[Fischler and Bolles, 1981]. 3-D points that lie too high above the ground plane, but lower than

the robot’s height, are labelled as obstacles and sight lines, i.e. columns of ground plane pixels

in the disparity image that lead up to a distant obstacle, determines if there is free-space. The
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Figure 2.1: Visual processing diagram for obstacle detection in flat terrains as proposed by
Konolige et al. [Konolige et al., 2006].

colour image is used by the algorithm to learn traversable paths.

Alternatively, Broggi et al. [Broggi et al., 2006] proposes to detect obstacles directly in

the disparity images, rather than performing a 3-D reconstruction of the environment. Hence,

detection is made by applying several filters to the disparity image in order to confine disparity

concentrations that are eligible to be obstacles. With this, computational time is saved but the

model are limited to specific types of obstacles. In fact, in this particular case, the model can

only successfully detect thin tall obstacles or large obstacles’ edges while untextured obstacles

are detected with a laser scanner.

Although these approaches work well for flat terrains, they fail in rougher ones, which is

typically the case in off-road.

2.2 OD in Terrains with Smooth Slope Variations

In the previous section, a flat terrain was assumed. However, apart from taking into account

the presence or not of a dominant ground plane, natural terrains are hardly flat. An approach that

deals with non-flat terrains is proposed by Batavia and Singh [Batavia and Singh, 2002]. Their

model is suited for cases where the terrain has significant curvature but is smooth enough to

consider obstacles as discrete discontinuities in the terrain. Although the basic idea behind this
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single-scan profile cartesian view

NN fusing filtered results

Figure 2.2: Overview of the obstacle detection algorithm for curved terrains as proposed in
[Batavia and Singh, 2002].

model is similar to the one presented earlier, i.e. to find prominent surfaces above the ground,

the difference lies in the ground’s topology. In their work, Batavia and Singh use a 2-axis laser

scanner as the input sensor. The obstacle detection algorithm is depicted in Fig. 2.2 and consists

of two stages: classification and clustering (fusion). In the classification stage, each range point

scanned is classified as obstacle or freespace if it represents or not a discontinuity across the

ground curve. The ground curvature is estimated by converting the laser data into Cartesian

coordinates and calculate the resulting gradient. Scans are then accumulated in a time window

in order to determine the amount of data that will be fused in the next stage. In the fusion stage,

pixels classified as obstacles are clustered using a nearest-neighbour (NN) criterion, and then

candidate obstacles are filtered based on their mass and size.

Being more generic than the previous assumption, this approach still doesn’t fit well with

the reality of off-road environments.

2.3 Traversability and Elevation Maps

Rather that assuming a typical geometry for the terrain (flat or curved), a more comprehen-

sive solution have also been studied, which consist on fitting several planes to different parts of

the environment, and use the residual of the process as a measure of traversability, as proposed
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by Goldberg et al. [Goldberg et al., 2002] and Hamner et al. [Hamner et al., 2008]. Differently

from deciding if a certain region in the environment corresponds to an obstacle that the robot

should avoid or a free space where the robot may navigate freely, traversability offers the pos-

sibility for the robot to negotiate a trajectory over that region trading off between the potential

cost of passing through versus opt for a longer route.

The concept consists on creating grid-based local traversability maps, where obstacles are

represented in terms of the level of hazardness associated to each cell. Briefly, the system starts

by collecting, for each cell, the first and second moment statistics about all the range points

(acquired from the input sensor and expressed in the coordinate frame of the local map) that

falls inside that cell. Then, for each cell, the moment statistics from a robot-sized patch of

surrounding cells are merged in order to find the best-fit plane. The resulting plane parameters

are used to compute an hazard level that corresponds to the traversability cost of the cell.

Following the idea of traversability measures, a similar procedure is also presented in Lacaze

et al. [Lacaze et al., 2002]. In the later, vehicle masks are placed along potential trajectories in

an elevation map in order to predict pitch and roll along the paths. Thus, plane fitting is only

done along the estimated paths. The pitch and roll measures are used to estimate the cost of

traversing each path.

One limitation of these methods, however, is the computational cost associated to the mul-

tiple fitting processes and storage requirements. Another limitation concerns with its heuristic

nature, which complicates the task of specifying the proper size of the planes and what an

obstacle is, taking into account a specific robot’s physical apparatus.

Lacroix et al. [Lacroix et al., 2002] proposes a model to predict the chassis attitude and the

internal configurations of the robot for several positions along a trajectory arc over a digitalised

elevation map. Prediction is made by a geometric placement function that modulate the inter-

action between the robot and the terrain. The predicted configurations are used to compute the

level of dangerousness for each position, which is considered for choosing the best trajectory.

However, this method is still too expensive to cope with real-time constraints.
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Figure 2.3: The three types of structure that 3-D data can be classified into (left: scattered
regions, middle: linear structures, right: planar surfaces) [Lalonde et al., 2006].

2.4 Statistic Analysis of 3-D Data

All previous approaches focused on finding prominent surfaces on the ground or estimate

trajectories based on the ground’s features. However, such approaches are best applied in

smooth terrains. For rougher or vegetated terrain, a different analysis criteria is needed.

A well known solution for this aspect interpret the statistics governing 3-D point clouds in

order to classify visible surfaces in the environment. This solution, proposed by Vandapel et

al. [Vandapel et al., 2004] and later by Lalonde et al. [Lalonde et al., 2006] uses the spatial

distribution of the generated 3-D point cloud to classify regions into surfaces, linear structures

and vegetation. The classification is done by first computing the eigenvalues of the covariance

matrix for all the points within a neighbourhood of the point of interest and inspect the relative

magnitudes of those eigenvalues. The vegetation, typically scattered points have no dominant

eigenvalue, linear structures have one dominant eigenvalue and solid surfaces have two dom-

inant eigenvalues (see Fig. 2.3). Also, the estimated ground plane of the local area can be

recovered by this method as it is the eigenvector corresponding to the smallest eigenvalue of the

covariance matrix.

However, this method requires accurate 3-D point registration, thus is more applicable with

data obtained by a laser scanner than the more noisy data obtained by stereo vision
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2.5 Geometrical Relationships in 3-D Point Clouds

An approach that have been attracting particular interest, mainly due to its correctness is the

one that define obstacles in terms of geometrical relationships between their composing 3-D

points. By inspecting such relationships it is possible to efficiently consider visible surfaces

whose geometric properties represent a real obstacle to the robot, because they are too high or

too inclined for the robot to pass through.

In the work of Manduchi et al. [Manduchi et al., 2005], an outstanding definition of obstacle

is presented by introducing the concept of compatibility between pairs of 3-D points.

Briefly, a visible surface is considered part of an obstacle if its slope is larger than a certain

value θ, representing the higher slope a robot can climb, and if it spans a vertical interval larger

than a threshold H , representing the height an obstacle must have to block the robot from

passing through. In order to apply this concept to arbitrarily shaped surfaces, slope and height

measures are taken from pairs of 3-D points and those who have the conditions to pertain to

the same surface and to be considered as obstacles are denoted compatibles. A more extensive

explanation about compatibility will be given in section 4.1.

By this model, any surface point is considered an obstacle if there is at least one other point

pertaining the same surface whose distance is within a certain interval and the line connecting

them presents a slope higher than θ. The geometrical interpretation that can be made from this is

that spanning an inverted truncated cone, with its vertex in a surface point and aligned upwards

or downwards, if it encompasses another surface point, then both the vertex point and all the

points encompassed by the cones are considered compatible and therefore, obstacle points (see

Fig. 2.4).

In spite of its applicability for detecting obstacles in rough terrains, this approach suffers

from a high sensitivity to noisy data and a excessive computational cost.

Several improvements over the original approach have been made in order to attenuate those

issues. In [van der Mark et al., 2007] computation time was reduced by extensive use of lookup

tables. Also, the inclusion of distance uncertainty measures for stereo computation have made
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Figure 2.4: Example in side-view for the process of classifying obstacle points (filled dots) by
the method proposed in [Manduchi et al., 2005]. For the sake of readability, only the upper
truncated cones are represented.

possible to better detect far obstacles besides the problem that accuracy in 3-D reconstruction

decreases with distance and hence, obstacle points appear more sparse. However, trying to

detect far obstacles in a bad signal-to-noise ratio is not mandatory. Instead, reliable detection

of obstacles with a low false positive rate, in the robot surroundings, its a more important issue

that still have to be solved

In the work of Santana et. al [Santana et al., 2008], efforts where made in order to reduce

computational cost of the original method by fastening the process of checking for compatible

points, applying a space-variant resolution mechanism that will be described in section 4.2.

Also, Santana et al. introduced two voting filters embedded in the original obstacle detection

algorithm so as to reduce its sensitivity to noise. These voting filters will be also described in

section 4.3.

In the later, the voting filters are too strong, influencing negatively the true positive rate.

Also, they are not scalable, which means that far obstacles, represented by fewer 3-D points are

more prone to be eliminated than closer ones. On the other hand, the space-variant resolution

operates to great extent blindly, i.e. in order to reduce computational cost, many pixels are

skipped. However, it would be useful to known whose pixels should be skipped and whose

should be analysed. This selection process can be carried out by a visual attention mechanism

capable of detach obstacle regions from the background.

32



2.6 Visual Attention Mechanisms

Recent research in the field of mobile robotics have shown the applicability of visual atten-

tion mechanisms in order to guide expensive tasks such as object detection and characterisation,

reducing the region of interest and, consequently, saving computation time.

Hong et al. [Hong et al., 2002] uses prediction to focus a colour-based detector of puddles

and road signs. Prediction, in this case, is no more than collecting laser and colour camera

data into a world model and, given the actual position of the robot in the world model and the

information previously obtained, estimate which regions of future images shall be analysed.

In a more active way, visual saliency has been used to control the gaze of a humanoid

head (e.g. [Vijayakumar et al., 2001], [Orabona et al., 2005], [Morén et al., 2008]), or to detect

objects in domestic environments (e.g. [Meger et al., 2008], [Yu et al., 2007]).

Besides object detection, visual saliency has also been used to select strong landmarks

for visual self-localisation and mapping in urban environments (e.g. [Newman and Ho, 2005],

[Frintrop et al., 2007]).

Except for the first case, all the previous applications are restricted to indoor or urban en-

vironments. In the unstructured off-road environments, obstacles are not necessarily the most

salient in the image and do not belong to well specified classes of objects.
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Chapter 3

Supporting Mechanisms

This chapter summarises the mechanisms that will serve as support for the obstacle detection

algorithm, namely the calculation of stereo disparity, the computation of saliency maps and

the estimation of the dominant ground plane. Stereo disparity allows the computation of 3-D

point clouds, i.e. a three-dimensional representation of the scene captured by the stereo sensor.

Saliency maps will be used to guide the detector through regions where obstacles detach more

significantly from the background. Finally, ground plane estimation determines the orientation

of the dominant ground plane next to the robot location.

3.1 Stereo Vision

The model proposed in this dissertation uses dense 3D point clouds (see Fig. 3.1) in order

to detect obstacles. Thus, an efficient method for calculating such point clouds is required. The

use of stereo vision was adopted for this purpose.

Briefly, a pair of cameras internally and externally calibrated, and displaced horizontally

from one another, gives a right and left image. Both images are then used to find matching

elements, i.e. elements in the right image that have high similarities with elements in the left

image. Calculating the disparity of the matched elements enables the estimation of their three-

dimensional positions.
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Figure 3.1: Example of a 3D point cloud obtained using the Small Vision System framework
[Konolige and Beymer, 2007].

3.1.1 Disparity

Disparity is defined by the difference in image location of an object. In stereo vision, dis-

parity is used to estimate the range of objects captured by the stereo sensor. The distance from

the camera to a given object is calculated by triangulation. Fig 3.2(a) exemplifies the process

assuming that both images are embedded within the same plane. This can be achieved by pre-

cise camera alignment. In order to calculate disparity, it’s needed to find the objects location

in both images. With this setup, disparity is only observed horizontally, i.e. a point projected

within a given row of the left image must project in the same row of the right image, which

reduce the search space. Fig 3.2(b) depicts a typical disparity map where pixel intensities are

related to computed range.

3.2 Saliency Computation

The following describes the biologically inspired saliency model. It is a specialisation for

off-road environments of the one proposed by Itti et al. [Itti et al., 1998]. Let L be the left image,

with width w and height h, provided by the stereo vision sensor. To reduce computational cost,

saliency is computed on a region of interest (ROI) of L. The ROI is an horizontal strip between

rows u and h, where u corresponds to the upper-most row containing more than 100 pixels with
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Figure 3.2: (a) Disparity calculation for an object located at a distance r from a stereo camera
with a baseline b and a focal length f . In the left image, the object is projected at a distance
dl from the centre of the image and in the right image is projected at a distance dr from the
centre. Knowing the disparity value d = dl − dr, the range r is given by r = (b · f)/d. (b)
Disparity map computed with the SVS libraries [Konolige and Beymer, 2007] for the image
#24 (see Fig: A.1). The gradient represents the range from nearer points (light gray) to farther
ones (black). White pixels represent points with no computed range.

an associated depth within the range of interest r. To further reduce computational cost, all

image operators are performed over 8-bit images, whose magnitude is clamped to [0, 255] by

thresholding.

A dyadic Gaussian pyramid I(σ) with six levels σ ∈ {0, . . . , 5} is created from the inten-

sity channel of ROI . The resolution scale of level σ is 1/2σ times the ROI resolution scale.

Intensity is obtained by averaging the three colour channels. Then, four on-off centre-surround

intensity feature maps Ion−off (c, s) are created, to promote bright objects on dark backgrounds,

in addition to four off-on centre-surround intensity feature maps Ioff−on(c, s), to promote dark

objects on bright backgrounds.

On-off centre-surround is performed by across-scale point-by-point subtraction, between

a level c with finer scale and a level s with coarser scale (linearly interpolated to the finer

resolution), with (c, s) ∈ Ω = {(2, 4), (2, 5), (3, 4), (3, 5)}. Off-on maps are computed the

other way around, i.e. subtracting the coarse level from the finer one.

These maps are then combined to produce the intensity conspicuity map,

CI =
∑

i∈{on−off,off−on}

(
1
2

⊕
(c,s)∈Ω I i(c, s)

)
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where the across-scale addition
⊕

is performed with point-by-point addition of the maps,

properly scaled to the resolution of level σ = 3. Sixteen orientation feature maps, O(σ, θ),

are created by convolving levels σ ∈ {1, . . . , 4} with Gabor filters tuned to orientations θ ∈

{0◦, 45◦, 90◦, 135◦}. Gabor filters are themselves centre-surround operators and therefore re-

quire no across-scale subtraction procedure [Frintrop, 2006]. As before, all orientation feature

maps are combined at the resolution of level σ = 3 in order to create the orientations conspicuity

map,

CO =
∑

θ∈{0◦,45◦,90◦,135◦}

(
1
4

⊕
σ∈{1,...,4} O(σ, θ)

)
.

The saliency map S is obtained by modulating the intensity conspicuity map CI with the

orientations one CO, S = M(1
2
· N (CI),

1
2
· N (CO)), where M(A,B) = A · sigm(B), be-

ing sigm(.) the sigmoid operator and N (.) rescales the provided image’s amplitude between

[0, 255]. Fig. 3.3(a) depicts a saliency map generated by this method.

The proposed saliency model is essentially based on the model proposed by [Itti et al., 1998]

but considering both on-off and off-on feature channels separately, which has been shown to

yield better results [Frintrop, 2006]. Still, two major innovations are present in the proposed

model. First, the normalisation operator N (.) does not try to promote maps according to their

number of activity peaks, as typically done. The promotion of some maps over others according

to activity peaks showed to provide poor results in the tasks herein considered. This is because

spatially frequent objects, which are inhibited in typical saliency applications, may be obstacles

for the robot, and thus must also be attended.

A narrow trail may be conspicuous in the intensity channel if it is, for instance, surrounded

by dense and tall vegetation. This contradicts the goal of making obstacles salient, rather than

the background, which is why saliency is computed from the weighted product of the conspicu-

ity maps [Hwang et al., 2009] rather than their addition [Itti et al., 1998], [Frintrop, 2006]. It

focus the saliency on regions where orientations are strong, i.e. small objects, borders of ob-

jects, and on entire objects if considerably textured, which is the most often case off-road.
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3.3 Ground Plane Estimation

The used solution to modulate the hypothesis-generation step of a conventional RANSAC

[Fischler and Bolles, 1981] robust estimation procedure is composed of the following seven

steps.

1. pick randomly a set R of three non-collinear 3-D points within range r, and generate its

corresponding ground plane hypothesis, hR, with some straightforward geometry. Points

are considered non-collinear if the area of the triangle defined by them is above a threshold

t.

2. the score of the plane hypothesis is the cardinality of the set of its inliers, score(hR) =

|PhR
|. An inlier, j ∈ PhR

, is a 3-D point whose distance to plane hR, d(j, hR), is smaller

than a given threshold dplane.

3. repeat steps 1 and 2 until nhypo hypotheses, composing a set H , have been generated.

4. select for refinement, from H , the hypothesis with the highest score:

b = arg maxh∈H score(h).

5. compute b′, which is a refined version of b, by fitting the inliers set of the latter, Pb. This

fitting is done with weighted least-squares orthogonal regression, via the well known

Singular Valued Decomposition (SVD) technique. The weight wq of an inlier q ∈ Pb is

given by wq = 1 − d(q,b)
dplane

. That is, the farther q is from b, the less it weights in the fitting

process. Compute the inliers set of b′, Pb′ , and substitute the current best ground plane

estimate by the refined one, i.e. make b = b′ and Pb = Pb′ .

6. iterate step 5 until |Pb| becomes constant across iterations or a maximum number of iter-

ations, mrefit, is reached.

7. take b as the ground plane estimate.
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To take saliency into account, each 3-D point p selected to build an hypothesis in step 1 must

pass a second verification step. This step reduces the chances of selecting p proportionally to

the local saliency of its projected pixel p′. The underlying empirical assumption is that saliency

is positively correlated with the presence of obstacles. Preferring non-salient points thus raises

the chances of selecting ground pixels (see Fig 3.3(e)).

Formally, a 3-D point p is rejected in the second verification step if sp′ > P (x)
α·nl

, where:

nl ∈ [0, 1] is the number of pixels with saliency below a given threshold l normalised by the

total number of pixels; local saliency sp′ ∈ [0, 255] is the maximum saliency within a given

sub-sampled chess-like squared neighbourhood of p′, with size g · nl, being g the empirically

defined maximum size; P (x) ∈ [0, 255] represents samples from an uniform distribution; and

α is an empirically defined scaling factor. The goal of using the normalised number of pixels

with a saliency value under a given threshold is to allow the system to progressively fall-back

to a non-modulated procedure as saliency reduces its discriminative power, i.e. it is too spread

in space. This happens for instance in too textured terrains, in which the sampling procedure is

too constrained as a result of the saliency map’s cluttering.
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(d) (e)

Figure 3.3: Saliency computation and ground-plane estimation results for a range of 10m (a):
left image obtained from a stereo camera; (b): saliency map generated from (a). (c): pixel clas-
sification results based on the computed ground-plane (red, green and black pixels correspond
to obstacles, ground, and points without computed depth, respectively). (d): pixels (red) corre-
sponding to 5000 3-D points randomly sampled for ground-plane estimation without saliency
modulation. (e): same as (d) but with saliency modulation.
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Chapter 4

Obstacle Detection Core

This chapter presents a full obstacle detector suited for autonomous mobile robots operating

in rough and unstructured outdoor environments, and equipped with a stereo vision sensor.

Since, in such environments, little assumptions can be made about the morphology of a typical

obstacle, Manduchi et al. [Manduchi et al., 2005] proposed a method for defining local obstacle

points based on the relationship between pairs of 3-D data points. Such definition, described

in section 4.1 serves as a basis for the work presented in this dissertation in which a space-

variant resolution mechanism modulated by saliency, described in section 4.2, and a voting

filter, described in section 4.3 are used in order to reduce both computation time and noise

sensitivity. Section 4.4 describes a method to isolate the detected objects and discard the ones

that are small enough not to be considered as obstacles.

4.1 Obstacle Definition

As previously mentioned, cross-country environments usually don’t have large planar sur-

faces where obstacles just pop out from the ground. In this case, having a model that classify

obstacles based on their heights according to the global ground plane is unreliable, thus a more

comprehensive approach is needed. In literature a suitable definition of obstacle in typical

off-road environments can be found in [Manduchi et al., 2005]. In their model, from now on
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denominated Original Obstacle Detector (OOD), obstacles are defined as follows:

Definition 1: Two 3-D points pa = (xa, ya, za) and pb = (xb, yb, zb) are considered compatible

with each other if the following conditions are both met:

1. Hmin < |yb − ya| < Hmax

2.
|yb − ya|
‖pb − pa‖

> sin θ

where, θ is the minimum slope a surface must have to be considered as an obstacle, Hmin is the

minimum height an object must have to be considered an obstacle, and Hmax is the maximum

allowed height between two points to be considered compatible with each other.

Definition 2: Two 3-D points pa = (xa, ya, za) and pb = (xb, yb, zb) pertain to the same obstacle

if at least one of the following conditions is met:

1. pa and pb are compatible with each other;

2. pa and pb are linked by a chain of compatible point pairs.

For a better understanding of how an obstacle can be specified by these conditions, the

compatibility relationship expressed in Definition 1 may be interpreted geometrically as follows:

considering a 3-D point p, its compatible points are those who are spatially positioned inside

two truncated cones CU and CL with vertex in p, both oriented vertically (i.e. along the y-

axis) and symmetrical between each other, with an aperture angle of (π − 2θ) and limited by

y = Hmin and y = Hmax (see Fig. 4.1).

Note that θ and Hmin are closely related with the robot’s technical and physical specifi-

cations. In fact, θ can be described as the maximum inclination a surface must have to be

climbable by the robot, while Hmin is actually the height of the free space between the ground

and the robot where small objects may be stepped over without harming the robot’s structure.

On the other hand, Hmax is more related with the quality of the computed stereo as a sparse 3-D
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Figure 4.1: Geometric interpretation of the base model [Manduchi et al., 2005] where filled and
unfilled circles represent points that are compatible and incompatible, respectively, with p. For
readability reasons, CL is not represented in the figure.

point cloud result on the obstacle points being located far apart from each other which, for a

low Hmax may result in over-segmentation or even having obstacle points not to be considered

as such. However, a Hmax excessively high have the consequence of increasing substantially

the number of points to be analysed and, consequently, increase the computation time of the

OD algorithm, as will be seen in the next section.

4.2 OD Algorithm

The previous section described the way two 3-D data points must be related in order to be

considered as obstacle points.

In this section, we will see how the process of checking the set of 3-D points, given by the

stereo sensor, is made. The 3-D point cloud is computed as in [Konolige and Beymer, 2007].

As previously seen, the task of finding obstacles in a 3-D point cloud implies looking at

pairs of compatible pixels. Rather than looking to all the possible pairs of points from the point

cloud, which would result in a number of N2 − N tests, with N the total number of computed

3-D points, Manduchi et al. [Manduchi et al., 2005] demonstrated that, actually, only a reduced

subset of pixels is needed. That is, being p′ the projection of the 3-D point p onto the image

plane, the two truncated cones, CU and CL, that involves the 3-D points compatible with p must
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Figure 4.2: Projection of the truncated cones CU onto the image plane, resulting in the truncated
triangles C ′

U .

project onto two truncated triangles C ′
U and C ′

L in the same image plane and with vertex in

p′ (see Fig. 4.2). Also, has been demonstrated that, by scanning the pixels in the range image

starting from bottom to it’s top and from left to right, it suffices to consider only the upper

truncated triangle C ′
U to efficiently detect obstacle points. Bearing this in mind, the task of

checking for the compatibility points of p means applying the compatibility test to the points

projected inside the C ′
U relative to p′. If compatible points are found, all of them as well as p′

are labelled as obstacle points.

When projecting the truncated cone onto the image plane, the correspondent truncated tri-

angle’s height is given by
Hmaxf

pz

, where f is the camera’s focal length, and base approximately

equal to
2Hmaxf

tan θmaxpz cos v
, with v = arctan

px

pz

.

4.2.1 Tilt-Roll Compensation

All the above geometrical considerations assume that the camera is not tilted nor rolled in

respect to the ground-plane. This is an obviously unbearable constraint for all-terrain robots. In

the original approach [Manduchi et al., 2005], the authors compensate small variations on the

camera’s attitude by overestimating the truncated triangle size. This approximation inevitably

increases the computational cost, and thus should be discarded.

The following proposes a more exact way of compensating for tilt and roll, whatever their
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Figure 4.3: Compatibility test on a real image. The zoomed image depicts the results of the
compatibility test regarding the pixel in the truncated cone’s vertex. Red, green and black
pixels overlay on the zoomed image correspond to the compatible, incompatible and without
computed range points, respectively. Incompatible points show up in the truncated triangle due
to perceptive. Note the rotation of the truncated triangle, which is a result of the compensation
for the camera’s roll angle, with respect to the ground-plane.

magnitude. First, the dominant plane, assumed to be the ground one, is computed according to

the method proposed in section 3.3. Then, the 3-D point cloud is rotated in order to align the

world’s reference frame, given by the normal to the computed ground-plane, with the camera’s

reference frame. The projected truncated triangle is also rotated accordingly, by projecting to

the image plane the normal vector to the estimated ground plane so as the truncated triangle

be oriented along the same normal vector (see Fig. 4.3. This way, the pixels scanned in the

image plane correspond to the 3-D points that are actually encompassed by the correspondent

truncated cone.

4.2.2 Space-Variant Resolution

Despite the advantages of using a truncated triangle in order to greatly reduce the compati-

bility tests, the computational cost of the method remains too expensive. Space-variant resolu-

tion is thus essential to further reduce the computational load. A successful model implementing

it, from now on denominated of Extended Obstacle Detector (EOD) [Santana et al., 2008], can

be summarised as follows.
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For a given pixel p′ (sequentially sampled from 1/n of the full resolution, from the image’s

bottom to its top and from left to right), its C ′
U is first scanned for compatible points with 1/m

of the maximum resolution in a chess-like pattern, where m > n. If a compatible point with

p′ is found, C ′
U is rescanned as usual with 1/n of the maximum resolution (see Fig. 4.5(c) for

a graphical interpretation of this method). Then, finished the scanning procedure, the full res-

olution is recovered with the following region growing method. For each obstacle pixel p′, all

its neighbours within a distance w in the image plane are also labelled obstacles if their corre-

sponding 3-D points are closer than d from p.

Despite its considerably achievements in reducing computational cost [Santana et al., 2008],

the EOD method operates to great extent blindly. That is, in order to reduce computational cost

n and m are increased and consequently the number of skipped pixels as well. Visual saliency

(section 3.2) is known to be an important asset in many search tasks and thus it is a powerful

candidate to guide the space-variant resolution mechanism in an informed way. Bearing this in

mind, a Saliency based Obstacle Detector (SalOD) [Santana et al., 2009] is herein proposed.

Rather than applying the compatibility test along the whole scan, as performed by the OOD

[Manduchi et al., 2005], a pixel p′, sampled from 1/n of the full resolution is tested iff:

1. nslide consecutive pixels in the same row of p′ have not been tested so far; or

2. n consecutive pixels, after a pixel that has been tested and labelled as obstacle in the same

row of p′, have not been tested so far; or

3. there is a 10% increment between the local saliency of p′ and the one of its preceding

scanned pixel, provided that both share the same row; or

4. the last scanned pixel had no computed 3-D, and hence no information could be obtained

from it.

Local saliency is computed by taking the maximum saliency from the set of pixels within

the same column of p′, including itself, and contained in its truncated triangle. This diminishes
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the effects of poor light conditions, which in some situations make the top of large obstacles to

appear more salient than their bottom. If only the saliency of p′ were used instead, many object

bottom pixels would be inappropriately skipped.

Roughly speaking, the described process slides along rows for nslide pixels unless an in-

crease in saliency is observed, or something has been detected. While sliding, the compatibility

test is not performed, and consequently computational cost is saved and the chances of gener-

ating false positives is reduced. However, some additional features can be added in order to

enhance the both system’s performance and accuracy. An extended version for the SalOD is

also proposed and coined as Extended Saliency based Obstacle Detector (ESalOD).

First, in the extended version of the algorithm, p′ is sampled from the full resolution input

image, so any pixel in a scanning row as a non-null probability of being assessed and, therefore

be considered as obstacle, which improve the reliability of the method.

Secondly, rather than having a fixed nslide, a dynamical one is used instead,

nslide =


k · n k < nmax

n

nmax otherwise

where k is the number of consecutive times a pixel was tested and labelled as non-obstacle,

since the last time a pixel was considered an obstacle, and nmax is an empirically defined scalar.

The application of this method results in skipping progressively more pixels as obstacles are

not found. Since the sliding process start with small jumps, the chances of failing to detect the

borders of objects are reduced.

Additionally, every time a pixel p′ is labelled as obstacle, the saliency of all pixels in CU ,

i.e. within its truncated triangle, are increased in 10% (empirically defined). This mechanism is

used to reinforce the presence of an obstacle by increasing the chances of a subsequent analysis

of all pixels associated with it. This is an atypical interaction between the task-specific detector

and the saliency map, as it allows the detection results to modulate the saliency map, which is

in turn guiding the detector. Typically (e.g. [Itti et al., 1998], [Frintrop, 2006]), the influence is

unidirectional and flows from the saliency map to the task-specific detector.
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Also, instead of analysing every rows that are multiple of n, as in the first approach (SalOD),

the extended (ESalOD) instead skips n+k rows, where k is incremented every time an analysed

row does not contain any obstacle pixel. Whenever an obstacle pixel is found k is zeroed. This

procedure, which mimics to some extent the columns sliding process, is extremely useful in

the reduction of the computation load in environments with few obstacles, or when obstacles

are mostly in the far-field. Since the truncated triangle for points in the near-field is quite large,

skipping image bottom rows when no obstacle is found there, greatly reduces the computational

cost.

A graphical representation of the space-variant resolution herein proposed is depicted in

Fig. 4.5(d).

4.3 Voting Filter

In addition to performance, both accuracy and robustness are likewise important. These two

additional ingredients, in the form of voting filters, are integral part of EOD. These filters intend

to diminish the effects caused by artifacts introduced during the 3-D reconstruction process.

In this formulation, a given point p is said to cast a number of votes equal to the number of

compatible points with p, and is also said to be voted by those points whose upper truncated

cone CU include p (see Fig. 4.4). Only points that cast more than minvotes votes and are

voted more than minvoted times, simultaneously, are considered obstacles. Thus, rather than

the one-to-one mapping considered in the OOD, where compatibility is sufficient to define an

obstacle, in EOD a many-to-many mapping is necessary. This naturally results in higher levels

of robustness.

A careful observation reveals that the and operation (see above) is too strong, and con-

sequently influences negatively the true positive rate. Empirical observations led to use the

conjunction operator instead, as it has been shown to foster parametrisation flexibility. This

slight change allows reducing the false positives rate by pushing further the voting thresholds,

with minimum impact on the true positives.
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Figure 4.4: Voting mechanism [Santana et al., 2008]. Considering that, for the sake of this
example, only p1 and p2 were tested for compatibility, p1 is said to cast 10 votes whereas p3 is
said to be voted 2 times.

A mechanism to normalise the number of votes associated to each point, according to the

theoretically maximum number of possible votes, is also missing in EOD. The relevance of

this issue stems from the fact that farther obstacles are represented by fewer pixels than closer

obstacles. In the algorithm herein proposed, the amount of votes and voted is normalised as

follows.

• Let p be a 3-D point and p′ its projection in the input image.

• Let A′
p be the set of pixels, with computed range, falling inside the truncated triangle of

p′.

• Let Rp be the set of points being voted by p.

• Let B′
p be the set of pixels, with computed range, whose truncated triangles encompass

p′.

• Let Sp be the set of points voting in p.

Now, rather than comparing minvotes and minvoted against Rp and Sp, respectively, as for

the OOD case, the comparison in is performed against the normalised scalars,
|Rp|
|A′

p|
and

|Sp|
|B′

p|
,

respectively. For the current implementation, the votes threshold is aggregated in a single pa-

rameter, v : v <
|Rp|
|A′

p|
∨ v <

|Sp|
|B′

p|
.
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4.4 Obstacle Segmentation

Although the focus of this work is centred in the correct and quick detection of obstacles,

an useful extra can be embedded in the algorithm in order to identify distinct obstacles in the

image. As being said in section 4.1, two 3-D points pa and pb pertain to the same obstacle if

they are compatible with each other or linked by a chain of compatible point pairs (Definition

2). Bering this in mind, we may segment obstacles by applying an Union-Find algorithm to

the points graph where compatible points are linked with each other [Manduchi et al., 2005].

Briefly, the algorithm can be explain as follows:

1. Firstly, label all points as non-obstacles;

2. When checking the upper truncated triangle, C ′
u, of a point p′, determine the set S ′

p of

compatible points with p′.

3. If S ′
p is not empty, add p′ to the set and find the point within S ′

p with the smallest label. If

all points are labelled as non-obstacles, assign a new label to all points in S ′
p, otherwise,

assign the smallest label found to all points in S ′
p, keeping track of label exchanges in an

equivalence table;

4. After all points are checked, make a second pass relabelling all points with their smallest

equivalent label.

Applying this connected component labelling to the 3-D point cloud instead of applying

it onto the image plane have the advantage of properly distinguish spatially linked obstacles

even if their projections presents unconnected regions. On the other and, connected regions in

the image plane may correspond to more than one obstacle which is also considered by this

approach (the results of this procedure may be seen on Fig. 4.5 (c) and (g)).
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4.4.1 Area Filter

Once all obstacles are isolated, we may apply a simple rule in order to eliminate those whose

number of pixels are low enough not to be considered as obstacles. In [Manduchi et al., 2005] a

shape-based validation is proposed to achieve this goal, taking into account some 3-D attributes

of the obstacles, as the volume of the 3-D bounding box around an obstacle, the average and

maximum slope of an obstacle and also its height. However, determining such attributes cor-

respond to an unnecessary addition of computation. Instead of considering such attributes, an

obstacle point p is considered non-obstacle if Lp < 100 × a

p2
z

, where Lp is the total number of

points with the same label as p and a is an empirically defined scalar. Although this approach

may not be very realistic in the point of view of obstacles’ morphologies, due to perspective,

experimental results prove its usefulness when in conjunction with the Voting Filter (section

4.3). In fact, the Voting Filter by itself remove most of the noise but if excessively exploited,

may weaken real obstacles. In order to achieve an acceptable trade-off, some punctual noise

may remain detected as obstacle. Fortunately, the remaining noise is typically sparse and with

low density which is easily removed by this Area Filter.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.5: Obstacle detection results. (a): Left image acquired from a stereo camera and
cropped to range r = 10m. (b): Saliency map computed from (a). (c-d) Graphical rep-
resentation of the space-variant resolution for (a), using, in (c) the original method (EOD)
[Santana et al., 2008] and in (d) the saliency modulated method (ESalOD) proposed in this dis-
sertation. White pixels correspond to points that have been skipped by the detector due to the
lack of saliency or computed range. Black pixels correspond to points that have been analysed.
Note that, instead of analysing equidistant pixels (c), the method herein proposed (d) focus
the analysis on salient regions and regions where obstacles are being detected, skipping more
pixels, otherwise. This mechanism result in reduced computation, as less analysis are being
made, and increased robustness, as analysis are focused in regions of interest. (e-h): Detected
segments using the EOD’s space-variant resolution and the ESalOD’s space-variant resolution
with the Voting Filter (section: 4.3) and Area Filter (section: 4.4.1) parameterised as follows:
(e) EOD with v = 0 and a = 0 (f) ESalOD with v = 0 and a = 0 (g) EOD with v = 20 and
a = 25 (h) ESalOD with v = 20 and a = 25. Note that, with the filters turned off, the EOD
method is significantly more noisy. Also note the advantage of using Votes and Area Filters for
noise reduction.

54



Chapter 5

Hybrid Obstacle Detector

As stated in [Rankin et al., 2005], the variety of objects with different dominant techniques

presented in off-road environments requires the use of different detection techniques in parallel

for a complete detection of all possible obstacles.

This chapter presents a new obstacle detection architecture, represented in Fig. 5.1, that

integrates two different techniques in an efficient way, where saliency is used throughout the

system in order to reduce its computational cost and augment its robustness. Briefly, a coarser

and faster obstacle detector is used to detect large obstacles and to focus the a finer and slower

one on regions of the environment where small obstacles, and consequently harder to detect,

may be present. Detectors complementary role aims at the development of a system that prop-

erly trade-offs between computational cost and detection accuracy.

5.1 Architecture for Hybrid Obstacle Detection

The following describes the system in a nutshell. First, a stereo vision sensor provides two

images, one obtained from the left camera and another from the right one. The saliency map of

the left image is computed, and a stereo processing step is carried out in order to provide a dense

3-D points cloud [Konolige and Beymer, 2007]. Saliency information (see section 3.2) is then

used to guide a hypothesise-test method for the ground plane estimation step (see section 3.3).
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Figure 5.1: Architecture for hybrid obstacle detection.
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(a) image #6 (b) image #6

(c) image #7 (d) image #7

Figure 5.2: Hybrid Obstacle Detector results. In the left column are depicted the results for the
small obstacles detector alone (as described in chapter 4 and set for its best parameterisation)
and in the right column are depicted the results of hybridisation. Note the difficulty for the
cone-based detector to classify the top of large homogeneous obstacles, which is resolved by its
fusion with the plane based detector.

Subsequently, a large obstacles map is obtained by checking which 3-D points are considerably

above or below the ground plane. As the camera’s optical axis, normally, isn’t parallel to the

ground plane, the 3-D points are rotated according to the estimated ground plane and thus

compensating for the robot attitude. The large obstacles map is then subtracted from the saliency

one in order to focus the accurate obstacle detector (see Chapter 4) on areas that have not been

already analysed. Finally, the small and large obstacles maps are merged in order to produce

the final obstacles map.

Obstacle detection in all-terrain requires some adaptations to the process of computing vi-

sual saliency. The adapted model (see section 3.2) uses the orientation of local patches as
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the main information source to assess the conspicuity of an image. Although this procedure

showed to reduce the false positives rate in all-terrain, it fails to pop-out large obstacles, where

the presence of shadows reduces their texture and consequently any orientation information

therein. That is, only the top of those obstacles gets notorious, which inevitably affects the

detection process. This is a problem the saliency-based small obstacles detector faces, but that

the coarser one can easily overcome due to the fact that it is not guided by saliency.

Fig. 5.2 depicts an example of the results obtained with this method, presenting the com-

plementary role of both detectors.

5.2 Cost Map Representation

The obstacle detector developed for this dissertation was made to detect discrete obstacles

which, as stated in [Rankin et al., 2005], it’s sufficient for uncluttered terrains where the free

space is equally traversable. However, in the architecture herein presented, the accurate obstacle

detector described previously (see chapter 4) can be used for detection of small protuberances

in the terrain, i.e. small obstacles, that can be traversed by the robot by stepping it over. This

small obstacles are better represented with an associated cost of traversability, either because

the motors must push harder or the terrain cause significant vibration.

Bearing this in mind, the accurate obstacle detector may be reinterpreted and readjusted

in order to detect such surfaces and represent them in terms of their traversability cost. First,

one can lower the minimum values of height, Hmin, and slope, θ. Second, reinterpret the Voting

Mechanism in a way that, instead of functioning as a binary classification process (obstacle/non-

obstacle), it is used for calculating the traversability cost. Finally, each obstacle point will have

an associated level of cost, given by the result of the adapted Voting Mechanism.

In its original form (see section 4.3) each compatible point contributes with a vote. In this

adaptation, each vote is weighted by the relationship between the pairs of compatible points in

terms of relative position. The logical idea behind this is that short and less inclined surfaces

are less expensive to traverse than taller and more inclined ones.
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p

max

Figure 5.3: Graphical representation of the weighted votes. The gradient represent the vote
amount va within a truncated cone from the maximum value (red) to the minimum value (yel-
low). For readability purposes, the cone was chopped by half.

The weighted votes may hence be described as follows. Let pa and pb be two 3-D data points

compatible with each other (see section 4.1 for details on compatibility). The vote amount va

each one will give to the other is the result of:

va = w1 ·

1 −

√
(xa − xb)

2 + (za − zb)
2

rC

 + w2 ·
(
|ya − yb|
Hmax

)

where rC is the base radius of the truncated cone CU and w1 and w2 are empirically defined

scalars. The practical effect of this equation (see Fig. 5.3) is that when applying the compatibil-

ity test to a point p, vote amount is maximum for a point located in the top centre of the truncated

cone, and varies inversely with the distance from that point. Fig. 5.4 depicts the generated cost

maps for a set of images.

In this model, obstacles detected by the small obstacle detector are represented in terms of

its traversability cost while the obstacles detected by the large obstacle detector are logically

represented as traversable or non-traversable. Unfortunately, due to schedule constraints, this

dissertation does not include rigorous analysis or extensive experimental tests for this model.

Nevertheless, the model offer great perspectives for future work.
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(a) image #5 (b) image #6

(c) image #11 (d) image #23

(e) image #25 (f) image #29

Figure 5.4: Cost map results for a subset of images obtained from the dataset used for exper-
imental tests (Fig. A.1). Traversability cost is represented as a gradient from the maximum
level (red) to the minimum (yellow). Green pixels correspond to free-space (i.e. without cost of
traversability) and black pixels correspond to points with no computed range. In order to isolate
the contribution of the weight votes, obstacles classified by the large obstacle detector are not
represented. Note that, in spite of the votes and area filters are turned off, much of the ground
noise is still eliminated. This happens because the points that cause such noise have typically
low values for va and consequently, in the normalisation process (see section 4.3 for details)
their casted votes are approximated to zero, thus being classified as free-space.
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Chapter 6

Experimental Results

In order to validate the developed obstacle detector, a series of experiments over the differ-

ent models (OOD, EOD, and the herein proposed SalOD and ESalOD) were carried out. All

experiments used a dataset composed by a set of 36 stereo 640× 480 image pairs (see Fig. A.1)

acquired with a 9cm baseline Videre Design STOC sensor, at an approximate height of 1.5m.

Due to poor light conditions and blur induced by motion, the acquired low contrast images

generate noisy 3-D point clouds. These are stringent conditions but quite realistic for outdoor

robots. The images have been hand-labelled (obstacle/non-obstacle pixels) for ground truth (see

Fig. A.3).

The libraries of Small Vision System (SVS) [Konolige and Beymer, 2007] and OpenCV

framework [Bradski and Kaehler, 2008] were used for stereo and low-level computer vision

routines, respectively. Tests where made on a Centrino Dual Core 2GHz. When nothing is said

otherwise, the ESalOD model has been parametrised for the best performance, Hmin = 0.1m,

Hmin = 0.4m, θ = 40◦, (n × m) = (3 × 6), a = 25, v = 20, nmax = 30, d = 0.4m, w = 8,

rmin = 1m, rmax = 10m, nhypo = 500. Additional parameters for saliency computation and

ground plane estimation have been set to their default values: r = 10m, t = 100, dplane =

0.15m, α = 4 and g = 150 [Santana et al., 2009].
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Figure 6.1: Base resolution selection.

6.1 Base Resolution Selection

Defining a proper base resolution for the algorithm to operate is very important in order to

allow computational cost to be kept within reasonable levels, without harming the True Positive

Rate (TPR).

Fig. 6.1 show the result of testing the system with several base resolutions. The graph plots

the average of the True Positive Rate (TPR) and False Positive Rate (FPR) (see Fig. A.5 for a

graphical representation of this correlation) of the ESalOD with and without the use of saliency

related mechanisms, over all images in the dataset, for a given base resolution. In either case and

in order to isolate the impact of saliency in the space-variant resolution mechanism, the voting

and area filters were turned off, v = 0 and a = 0. The grey square and diamond represent

the TPR and FPR of the OOD, respectively. Resolution 3 × 6 has been selected as it is the

rightmost, i.e. with lowest resolution, having a TPR similar to the one of OOD. The general

increment of both TPR and FPR, when compared to the ones of the ODD, are due to the use of
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region growing. This allows selecting lower resolutions without losing TPR. As expected, these

plots also confirm that the use of saliency alone, i.e. without the voting and area filters, is able

to help on the reduction of FPR, without harming the TPR.

6.2 Votes and Area Filters Testing

Fig. 6.2 show that the area filter, which aims at removing false positives, is pivotal for

the overall system improvement. Each plot in the graph is the average of the Receiver Op-

erating Characteristic (ROC) curves of the area filter over all images in the dataset A.1, for

a given parametrisation, that is, for a given image and parametrisation of the area filter, a ∈

{0, 5, 25}, the ROC curve is built by sliding the threshold of the votes filter over its domain,

v ∈ {0, 5, . . . , 100}.

The ROC curves reveal that the absence of the area filter (a = 0), results in the poorest

curve, i.e. with the lowest area under the curve, showing the usefulness of the filter. The

relative performance associated of the other two different values, i.e. a ∈ 5, 25, switches at the

intersecting point of the corresponding ROC curves. Nevertheless, a = 25 is selected as it is

the one performing better for lower values of FPR.

Fig. 6.3 show the impact of the voting mechanism. Each plot in the graph is the average of

the ROC curves over all images in the dataset A.1, for six different configurations:

1. OOD with resolution (1 × 1), which by not having a voting mechanism is limited to a

point;

2. EOD with resolution (3 × 6) and v ∈ [0, 15];

3. SalOD with resolution (3 × 6), which by the same reason of OOD is constrained to a

point;

4. ESalOD with votes filter on, v ∈ {0, 5, . . . , 100}, and area filter off, a = 0;

5. ESalOD with votes filter off, v = 0, and area filter on, a ∈ {0, 5, . . . , 100};
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Figure 6.2: Impact of the area filter.

Figure 6.3: Impact of the voting mechanism.
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6. ESalOD with both filters on, a = 25 and v ∈ {0, 5, . . . , 100}.

The ROC curves associated to using only the voting mechanism or the area filter are below

the curve when both are employed. The fact that the voting mechanism and area filter curves

switch their relative performance at an interception point show that their relevance depends on

the preferred trade-off. The blend of both mechanisms is always better than the two alone,

thus showing that only when the two are blended the highest area under the curve is attained,

whatever the preferred trade-off.

It is also visible that ESalOD performs better and more robustly than its previous versions,

i.e. OOD, EOD and SalOD.

The grey square signals the point associated to the ESalOD chosen configuration, i.e. a = 25

and v = 20. With this configuration, almost no false positives were visible (see Fig. A.4), and

most of the loss in terms of true positives were restricted to obstacles’ inner points. A proper

representation of obstacles’ boundaries are barely untouched.

This configuration thus provides a clean and sufficiently complete environment’s represen-

tation for obstacle avoidance purposes.

6.3 Computation Time Comparison

After determining the best parameterisation for efficient performance in ESalOD, its com-

putation time was compared with the previous models.

Fig. 6.4 shows that the added complexity of ESalOD, in order to obtain higher levels of ac-

curacy and robustness, does not compromise its performance. As predicted, the use of saliency

in SalOD results in a reduction of computation cost when compared to the EOD. Being the ESa-

lOD more comprehensive, i.e. able to operate in full resolution if the saliency map demands

it, results in a poorer performance when compared with the SalOD, but still better than the one

of the EOD. In sum, ESalOD generated a considerably better ROC curve than its predecessors,

without loosing on performance.
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Figure 6.4: Computation time comparison. Each bar corresponds to the average computation
time over all images in the dataset, for a given configuration. Error bars correspond to their
standard deviation. All configurations operate on resolution (3 × 6). EOD runs with votes
in their best parametrisation, i.e. v = 7, space-variant resolution, and without its additional
morphological filters [Santana et al., 2008]. ESalOD runs with both voting and area filters, and
space-variant resolution mechanisms turned on and parametrised for their best performance, i.e.
v = 20 and a = 25. SalOD runs with space-variant resolution and, differently from its original
implementation [Santana et al., 2009], for the sake of a comparison, with the filters configured
as for the ESalOD case. Ground-plane compensation is turned on in all cases, despite not
originally considered in EOD.

An additional experiment shows that the saliency-based slide mechanism is responsible for

17% saving of computation time. Stereo, saliency, and ground-plane estimate computation take,

in average, 40ms, 43ms and 54ms, respectively.

The original obstacle detector (OOD) performs in average significantly slower, roughly

110×, than the ESalOD. This is particularly important as the ESalOD is also performing in

full-resolution, despite the fact its base resolution is (3 × 6). The timing information reported

by Manduchi et. al [Manduchi et al., 2005] varies between 0.67s and 4s (after conversion to

640× 480 images). This is rather different from the timings one obtained with the implementa-

tion of their algorithm made for these tests, where an average of 40s was obtained. Possibly, this

is mostly due to the fact that a great part of the images in the used dataset (Fig. A.1) cover larger

areas of the near-field than the ones used by Manduchi et. al.. In these situations, the truncated

triangle is quite large and consequently more expensive to analyse. This happens because the

images were taken from a lower height, and many of them with large tilt and roll angles.
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Note that all tested algorithms are built from the same backbone, i.e. the OOD implementa-

tion. This reduces to the minimum any bias that could benefit any of the models.

6.4 Hybrid OD Testing

This section presents the experimental results for the Hybrid Obstacle Detector (see chapter

5). In order to take advantage of the ground-truth A.3 used in the previous tests, the Hybrid

OD was tested in its discrete detection mode, i.e. without cost maps and without the adapted

voting mechanism (see section 5.2 for details). Nevertheless, the results obtained show the

advantage of joining two different types of obstacle detectors that complement each other. For a

visualisation of the results obtained with the dataset (Fig. A.1) refer to Fig. A.6. The correlation

of this results with the ground truth is shown in Fig. A.7.

The predicted advantage of fusing two different but complementer detectors in a hybrid

model is that large and textureless obstacles, which lack saliency, are more detectable by a

plane-based method. In opposition, the linearisation nature of the plane-based method should

hinder a proper detection of small obstacles, making the cone-based method more convenient

for the task. Furthermore, setting the plane-based method to detect small obstacles should result

in an increase in terms of False Positive Rate (FPR).

As predicted, Fig. 6.5 shows a growth in terms FPR as the required height of objects to

be considered obstacles, h, in the plane-based method is reduced. Unpredictably however, the

growth is small. This phenomenon is due to the fact that the height of the estimated ground-

plane is most often slightly overestimated. As a result, the meaning of h changes to an ar-

tificially higher value. This can be observed by the larger amount of false negatives in the

lower parts of the obstacles, than the ones produced by the cone-based mechanism. Having

both methods the same critical threshold, those false negatives should coincide. This leads to

the conclusion that, as predicted, in order to have similar FPR, the plane-based method must

focus on taller obstacles than the cone-based one. The steady growth of TPR is a reflection of

the complementary role of both methods, further supported by Fig. 6.6. While the cone-based
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Figure 6.5: Analysis of the best configuration for the plane-based detector in the fusion process.
Plots refer to the average True Positive Rate (TPR) and False Positive Rate (FPR) over all
images in the dataset, for different values of h in the ground-plane method. Conversely, the
cone-based obstacle detector was set static to its best parametrisation.

Figure 6.6: Comparison between fusion and isolated obstacle detection methods. Bars corre-
spond to the Average True Positive Rate (TPR) and False Positive Rate (FPR) over all images
in the dataset, for three configurations: (1) cone-based detector alone (Hmin=10cm), (2) plane-
based detector alone (h = 10cm) and (3) fusion of the previous two configurations. The graph
shows that the fusion process produces a higher TPR than any of the methods alone. This sup-
ports the prediction that both methods could operate in a complementary way. This is further
enforced by the reduced standard deviation (error bars) of the fusion process. The opposite
trend in terms of FPR is ≈ 6× weaker, and thus insufficient to contradict the conclusions taken
so far.
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Figure 6.7: Correlation map between the results obtained from applying the ESalOD with its
best parameterisation to the image #5 and its ground truth. Red pixels correspond to true positive
detection, green pixels to true negative detection, blue pixels to false positive detection and
yellow pixels to false negative detection. Note the problem of false positive detection (blue
pixels) near dense obstacles.

method detects low obstacles and the lower parts of larger obstacles, the plane-based method

detects the upper regions (see Fig. 5.2).

The fact that the cone-based mechanism exhibits higher levels of FPR than the plane-based

one (see Fig. 6.6), is easily explained if the position where these false positives emerge is taken

into account. In the cone-based method case, false positives are mostly around obstacles, and

thus their sole consequence is the enlarged perception of obstacles (see Fig. 6.7). This hap-

pens because those false positives are in fact ground points compatible to the obstacles’ points.

Hence, under the compatibility test assumption, there are not actual false positives. In opposi-

tion, the false positives generated by the plane-based method are disperse all over the image,

having no correlation with the actual position of obstacles.
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Chapter 7

Conclusions, Contributions and Future

Work

This chapter summarises this dissertation, discussing the proposed approaches and contri-

butions, as well as the results obtained, followed by some aspects to be taken into consideration

for future work.

7.1 Summary of Contributions

In this dissertation, an accurate, robust, computationally efficient and vision-based obstacle

detector for all-terrain service robots was proposed.

The following summarises the set of contributions of this dissertation:

1. The well known obstacle detector originally proposed in the work of Manduchi et al.

[Manduchi et al., 2005] was enhanced and integrated in a hybrid architecture. The pro-

posed improvements greatly reduce false positive rate but also showed difficulties in cor-

rectly detecting the top of large homogeneous, i.e. structured, obstacles. An efficient

fusion with a fast, rough but complementary plane-based obstacle detector, allowed to

diminish this effect.
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2. The voting filters proposed by Santana et al. [Santana et al., 2008] where reinterpreted.

In its original model, the votes were not invariant to scale, which means that a vote casted

by a near 3-D point had the same weight as a vote casted by a 3-D point located far away.

The problem associated with this method relies on the fact that, when projected onto

the image plane, far away obstacles are represented by less pixels, thus encompassing

less data. In this dissertation, a normalisation for this method was proposed, by taking

into consideration not only the casted votes but also its maximum possible number. In

addition, the proposed voting mechanism was integrated with an area filter, allowing to

further reduce noise without hampering true positive rate.

3. The space-variant resolution mechanism proposed by Santana et al. [Santana et al., 2008]

was remodelled. In its original form, the method contributed to computational time re-

duction by blindly skipping some pixels. In this dissertation, a saliency model that pop

out obstacles from the background, in the image plane, was used to focus, in an informed

way, the attention of the detector in those salient regions. Thus, skipping more pixels in

less salient regions and analysing more data in more salient ones results on a lower proba-

bility to loose true positive detection and do detect false positives, as well as an improved

computational efficiency.

4. In order to improve the correctness of the method, invariance to the robot posture was

introduced in order to enable a robust behaviour in more demanding situations.

7.2 Conclusions

The following conclusions can be drawn.

Experimental results show the ability of the proposed model to properly locate all obstacles

in the environment. Although obstacles are not always fully represented (mainly due to lack

of 3-D information), in the majority of the cases their borders are correctly detected, which is

sufficient for proper obstacle avoidance. Also, fusing the proposed cone-based obstacle detector
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with a plane-based one have been shown to increase robustness over any of the methods alone.

It was shown that, with normalisation, the voting mechanism results in a more efficient noise

reduction. It was also shown the complementary role of the normalised voting mechanism and

the area filter. The integration of both results in a more robust solution than having only one

of them alone. Additionally, by an empirically analysis on the dataset images, it was possible

to conclude that an adapted version of the normalised voting mechanism can be used to label

obstacle points with a traversability cost (see Fig. 5.4), rather than a binary tag (obstacle/free-

space).

Finally, testings shown that the proposed model outperforms its predecessors on both robust-

ness and computation time. This fact suggests that saliency have an important role in focusing

the analysis. Being faster means that less points are analysed, but being more robust means that

the analysis is done where it needs to be done, i.e. in regions containing obstacles.

7.3 Future Work

The following presents some opportunities for future work, based on the obtained results:

• To implement the proposed detector in a physical robot in order to fully assess its appli-

cability for obstacle avoidance purposes.

• To explore new ways of modulating the saliency map with the output generated by the

obstacle detector. In the hybrid model, the output of the large obstacles detector modulate

the saliency map in order to focus the small obstacles detector in areas that have not

been already analysed. In the single model, obstacles’ presence is used to reinforce its

corresponding saliency. However, a more extensive analysis on this subject would be

interesting.

• To exploit the generation of traversability maps. In this dissertation, an adapted version of

the voting mechanism was used to represent obstacles in terms of their traversability cost.

73



However, the adaptation was based on simple heuristics. Further analysis and testing

would be required for better understanding the capabilities of this method.

• To improve obstacles’ representation. When 3-D point clouds are sparse, obstacles may

be poorly represented. Although a good detection of obstacles’ borders its sufficient for

obstacle avoidance, it would be interesting to use both colour images and saliency maps

to recover a full representation of each obstacle (regarding colour intensity or saliency ho-

mogeneity). This aspect is important for a proper representation and consequent labelling

of different types of objects (e.g. differentiating a rock from a bush would be important

to determine object’s traversability).
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Appendix A

Dataset and Image Results
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Figure A.1: Left-camera images encompassing the dataset used in all experiments.
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Figure A.2: Saliency maps obtained from each image in the dataset (Fig. A.1) up to a range of
10m.
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Figure A.3: Obstacle-ground truth hand-drawed for each image in the dataset (Fig. A.1). Ob-
stacles (in red) laying outside the detection range considered in the experiments made, i.e. more
than 10m away from the vision sensors, may not be represented.
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Figure A.4: Detection results obtained from all the images in the dataset (Fig. A.1) for the
best parameterisation (see chapter 6 for further details). Points considered as obstacles are
represented in red.
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Figure A.5: Correlation maps between the obstacle-ground truth (Fig. A.3) and the system
output (Fig. A.4). In red: true possitive detection; in green: true negative detection; in blue:
false positive detection; in yellow: false negative detection; black pixels have no computed
depth.
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Figure A.6: Detection results obtained from all the images in the dataset (Fig. A.1) for the
Hybrid Obstacle Detector. Points considered as obstacles are represented in red.
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Figure A.7: Correlation maps between the obstacle-ground truth (Fig. A.3) and the system
output (Fig. A.6). In red: true possitive detection; in green: true negative detection; in blue:
false positive detection; in yellow: false negative detection; black pixels have no computed
depth.
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