
  

 

Ludwig Krippahl 

Integrating Protein Structural Information 

Dissertação apresentada para obtenção 

de Grau de Doutor em Bioquímica, 

Bioquímica Estrutural, pela Universidade 

Nova de Lisboa, Faculdade de Ciências e 

Tecnologia. 

 

LISBOA 

2003





 

 i 

 

 

 

 

 

To Lena, Bruno, and Vasco 





 

 iii 

Acknowledgements 

Anytime you see a turtle up on top of a fence post, you know he had some help. 

Alex Haley, paraphrased. 

 

My work on molecular modelling began eight years ago, as a naïve undergraduate student of a 

bioinorganics course, when I proposed to write a protein docking program instead of the course’s 

regular assignment, which was a simple experimental protocol. Fortunately, the course lecturer was 

both generous and understanding, and let me off with a much simpler task. Little did I know that 

eight years later I would still be working with Professor José Moura on the assignment I had 

initially proposed. What I achieved these seven years I owe to the chance he gave me and to his 

constant support, orientation, and friendship. 

It was also at that time that I began working with Doctor Nuno Palma, and most of my work on 

BiGGER and Chemera was under his supervision. We worked extraordinarily well together, and our 

complementary views on most problems led me much farther than I could ever have gone 

otherwise. Working with Doctor Palma was a wonderful experience, and I could not have 

developed the docking algorithms without his supervision, his knowledge of molecular modelling, 

and his skill at finding the right tests and test cases to show us the problems along the way. 

Professor Pedro Barahona was the lecturer on the constraint programming course in the artificial 

intelligence master programme. Both the subject and the way it was presented aroused my interest 

in constraint programming, and led me to the application of these techniques to protein structure 

and interaction. The PSICO algorithm was developed under the guidance, and with the teachings, 

of Professor Barahona, and much of the credit should go to his orientation, experience, and interest 

in the problem of determining protein structures. 

A lot of work goes into implementing an algorithm. In this book I describe the algorithm itself, but 

gloss over the long labour of transforming an idea into a working application. In this I have to 

thank Marco Correia for his precious assistance and keen eye for my inevitable programming 

errors. His work on profiling and testing PSICO was invaluable in implementing the algorithm and, 

especially, in producing the dynamic link library that will allow the integration of this solver in 

other applications. 



iv 

I am thankful to my friends, family, and teachers for their contribution, direct or indirect, to this 

work. I thank Professor Victor Teodoro for showing me the beauty of numerical methods; Professor 

John Wampler for a memorable orientation, both for the experience of staying in his lab and for the 

ideas he planted and which grew into much of BiGGER and Chemera; Doctor Graham Pettigrew for 

a our long and fruitful collaboration, and for many delightful conversations; Doctor Sofia Pauleta 

and Patrícia Raleiras for their patience in bearing with the constant changes of the docking 

algorithms; Doctor Xavier Morelli, for his work with docking and constraints, a major factor in the 

development of the constraint processing systems in BiGGER; Doctor Brian Goodfellow and Doctor 

Anjos Macedo for their precious help with the NMR techniques; Professor Isabel Moura for her 

support; Doctors Francoise Guerlesquin, Antonio Rosatto, Tom Dietterich, Xin Wang, Michael 

Trosset, Jorge Cruz, Francisco Azevedo and Paula Amaral for fruitful discussions and their help. 

I am most grateful to my family for their support, especially all those times my work on this project 

kept me from the duties (and pleasures) of fatherhood. 



 

 v 

Sumário 

O tema principal deste trabalho é a aplicação de técnicas de programação por restrições e outras 

técnicas de inteligência artificial à modelação de estrutura e interacção de proteínas, com o 

objectivo de melhor combinar dados experimentais com métodos de previsão estrutural. 

A primeira parte desta dissertação introduz os temas principais de estrutura de proteínas e 

programação por restrições, resume as técnicas mais recentes de modelação de estruturas e 

complexos de proteínas, descreve o contexto em que se inserem as técnicas descritas nas partes 

subsequentes, e delineia o ponto fulcral da tese: a integração de dados experimentais na 

modelação.  

O primeiro capitulo, Protein Structure, introduz o leitor às noções básicas de estrutura de amino 

ácidos, cadeias proteicas, e enrolamento e interacção de proteínas. Estes são conceitos importantes 

para compreender o trabalho descrito nas partes dois e três.. 

O segundo capitulo, Protein Modelling, dá uma visão breve das técnicas experimentais e de 

previsão teórica usadas para criar modelos de estruturas proteicas. Este capítulo dá o contexto 

onde se insere o trabalho descrito nas partes dois e três, mas não é essencial para a compreensão 

dos algoritmos apresentados. 

O terceiro capítulo, Constraint Programming, delineia os conceitos principais desta técnica de 

programação. A compreensão de métodos de modelação de variáveis, noção de consistência e 

programação, e de métodos de pesquisa ajudará o leitor interessado nos detalhes dos algoritmos 

descritos na segunda parte desta dissertação. 

O quarto capítulo, Integrating Structural Information, resume a tese aqui proposta, os objectivos 

deste trabalho, e dá uma ideia de como os algoritmos desenvolvidos podem contribuir para a 

modelação de estruturas de proteínas. O objective principal é obter um sistema flexível e em 

evolução continua para a integração de dados experimentais e previsões teóricas. 

A segunda parte descreve os algoritmos desenvolvidos, que são a principal contribuição original 

deste trabalho. Esta parte é especialmente dedicada a leitores interessados em confirmar os 

resultados, em melhorar os métodos propostos, ou em integrar estes algoritmos em outros 

programas. Os aspectos bioquímicos são descritos apenas brevemente e só quando estritamente 

necessário, visto ser esta parte dedicada principalmente aos algoritmos e ao código. 
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O capitulo cinco, The PSICO Algorithm, descreve as componentes principais deste agoritmo para 

previsão e determinação de estruturas de proteínas. Estas incluem a modelação de domínios e 

variáveis, restrições binárias de distância, restrições sobre grupos rígidos e ângulos de torção, e 

detecção de sobreposições de átomos. Este capitulo descreve também como os diferentes métodos 

de propagação são integrados e as heurísticas usadas para guiar a pesquisa de soluções. 

O sexto capitulo, The BiGGER Algorithm, descreve o algoritmo de modelação de complexos de 

proteínas. Detalha o filtro geométrico e a pesquisa geométrica de modelos candidatos, e o 

algoritmo de avaliação que estima a viabilidade destes modelos. O capitulo seis descreve também 

a integração de restrições experimentais na fase de pesquisa e eliminação, usando técnicas de 

programação por restrições.. 

O capítulo sete, Algorithms in Chemera, descreve um conjunto de algoritmos auxiliares para 

visualizar estruturas e propriedades de proteínas. Alguns dos algoritmos apresentados neste 

capítulo tais como os de agrupamento ou avaliação de simetria de complexos são um 

complemento ao algoritmo BiGGER, permitindo um processamento adicional dos modelos gerados 

pelo algoritmo de previsão de complexos. 

A terceira parte desta dissertação apresenta os resultados experimentais usados para testar e 

parameterizar os algoritmos, bem como exemplos de aplicações práticas a casos reais, e é parte da 

contribuição original deste trabalho.  

O capítulo oito foca os testes do algoritmo PSICO, usando principalmente dados simulados. Este 

capítulo delineia também alguns problemas que só poderão ser adequadamente resolvidos quando 

o algoritmo começar a ser aplicado a casos reais. 

O capítulo nove descreve a parameterização da fase de pesquisa e triagem geométrica do 

algoritmo BiGGER, bem como o trabalho mais recente no aperfeiçoamento das funções de 

avaliação dos modelos gerados. 

O capítulo dez é uma selecção de aplicações práticas de ambos os algoritmos BiGGER e PSICO. A 

maioria destas aplicações contou com a colaboração de vários grupos de investigação que 

forneceram os dados experimentais. Todos os exemplos referem-se ao algoritmo BiGGER e a 

previsão de complexos proteicos, por ser este o algoritmo mais maduro, já em fase avançada de 

utilização. Duas excepções são a Dynamic Link Library do algoritmo PSICO, concebida para permitir 

a integração fácil deste algoritmo em qualquer programa em ambiente Windows™, e a aplicação 
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deste algoritmo a problemas gerais de escala multi-dimensional (Multidimensional Scaling), que 

usam parte dos mecanismos de propagação e pesquisa do algoritmo PSICO para produzir valores 

iniciais para algoritmos de optimização por pesquisa local. 

O último capítulo da dissertação dá uma visão algo pessoal dos objectivos atingidos e de direcções 

futuras deste trabalho. 
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Abstract 

The central theme of this work is the application of constraint programming and other artificial 

intelligence techniques to protein structure problems, with the goal of better combining 

experimental data with structure prediction methods. 

Part one of the dissertation introduces the main subjects of protein structure and constraint 

programming, summarises the state of the art in the modelling of protein structures and 

complexes, sets the context for the techniques described later on, and outlines the main points of 

the thesis: the integration of experimental data in modelling.  

The first chapter, Protein Structure, introduces the reader to the basic notions of amino acid 

structure, protein chains, and protein folding and interaction. These are important concepts to 

understand the work described in parts two and three. 

Chapter two, Protein Modelling, gives a brief overview of experimental and theoretical techniques 

to model protein structures. The information in this chapter provides the context of the 

investigations described in parts two and three, but is not essential to understanding the methods 

developed. 

Chapter three, Constraint Programming, outlines the main concepts of this programming 

technique. Understanding variable modelling, the notions of consistency and propagation, and 

search methods should greatly help the reader interested in the details of the algorithms, as 

described in part two of this book. 

The fourth chapter, Integrating Structural Information, is a summary of the thesis proposed here. 

This chapter is an overview of the objectives of this work, and gives an idea of how the algorithms 

developed here could help in modelling protein structures. The main goal is to provide a flexible 

and continuously evolving framework for the integration of structural information from a diversity 

of experimental techniques and theoretical predictions. 

Part two describes the algorithms developed, which make up the main original contribution of this 

work. This part is aimed especially at developers interested in the details of the algorithms, in 

replicating the results, in improving the method or in integrating them in other applications. 

Biochemical aspects are dealt with briefly and as necessary, and the emphasis is on the algorithms 

and the code.  
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Chapter five, The PSICO Algorithm, describes the main components of this algorithm for predicting 

and determining protein structure. These include the modelling of the variable domains, binary 

distance constraints, n-ary group constraints, torsion angle constraints and global atom overlap 

inconsistency detection. The chapter also describes how the different propagation methods are 

integrated, and the heuristics used to guide the search for a solution. 

Chapter six, The BiGGER Algorithm, describes the algorithm for modelling protein interactions. It 

details the geometric search and filtering of likely candidates, and the scoring algorithms to 

estimate the likelihood of each retained model being an accurate representation of the real 

complex. Chapter six also describes the integrating experimental data in the search stage of the 

algorithm, using constraint programming techniques. 

Chapter seven, Algorithms in Chemera, describes a set of auxiliary algorithms for the visualisation 

of protein structures and properties. Some of these algorithms, such as clustering, symmetry score 

evaluations and scoring of docking constraints are a complement to the BiGGER algorithm, serving 

to further process the models generated by the docking algorithm. 

The third part of this dissertation presents the experiments and results that validate the methods, 

and describes their application. It is part of the original contribution of this work, describing the 

experiments to test and parameterize the algorithms, and the practical applications of these 

algorithms.  

Chapter eight focuses on the testing of PSICO, using mostly simulated data. This chapter also 

outlines several issues with this algorithm that can only be properly resolved using experimental 

data, something not yet done at this stage. 

Chapter nine addresses the parameterization of the geometric search and filtering stages of the 

BiGGER algorithm, and the more recent and ongoing work on the scoring functions that evaluate 

the candidate models. 

Chapter ten describes practical applications of BiGGER and PSICO. Most of the work described in 

this chapter was done in collaboration with several research groups, who provided the 

experimental data. Also, the majority are applications of BiGGER, the more mature algorithm. Two 

exceptions are the PSICO Dynamic Link Library, an application extension that can provide the 

PSICO algorithm to any program in the Windows™ environment, and the application to 
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Multidimensional Scaling, which uses part of the PSICO propagation and search mechanisms to 

provide initial values for dissimilarity searches in this field. 

The final chapter, chapter eleven, is a more personal view on the achievements of this work and on 

possible directions for future research. 
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1 Protein Structure 

One unmoving that is swifter than Mind, That the Gods reach not, for It 
progresses ever in front. That, standing, passes beyond others as they run. (…) 
That moves and That moves not; That is far and the same is near; That is within 
all this and That also is outside all this. 

Isha Upanishad, 4-5, translated by Sri Aurobindo, in "Arya" August 1914. 

There are proteins in all living beings. They mediate all life processes, from growth to thought. They 

catalyse chemical reactions and are involved in the movements of our muscles and in the structure 

of our bodies. There are proteins in and around all organisms and everywhere there is life. The 

writers of the Vedas were unaware of this, having written the Upanishads some five thousand 

years ago, but even though they meant something else, theirs is an uncanny description of the role 

and importance of proteins. 

Proteins have fascinated chemists for centuries, for solidifying when heated, unlike other 

substances. In 1777, Pierre Maquer called them albuminous substances, from albumin (egg white, 

rich in protein) with which they shared this property. Gerardus Mulder coined the term “protein”, 

in 1839, when he proposed that all these substances were apparently multimers of a molecule with 

the chemical formula of C400H620N100O120 (Mulder 1839). He was wrong in his determination of the 

basic molecule that formed the albuminous substances, but the name was accepted. 

This chapter outlines the chemical composition and structural features of proteins. It focuses mainly 

on aspects important for the work presented in this book and provides only a basic description, so 

the author recommends additional sources, such as (Darby and Creighton 1993; Branden and Tooze 

1999) for an introduction to protein structure.  

1.1 Amino Acids and Primary Structure 

Proteins consist of amino acid residues bound together in long chains. The process by which 

proteins are synthesised in organisms is beyond the scope of this book, and the author refers the 

interested reader to a biochemistry textbook (for example, Stryer 1989). For our purposes, the 

important aspects are the structure and interaction of amino acid residues. 
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Figure 1-1 shows a segment of an amino acid chain. The repeating sequence of Nitrogen, Carbon, 

Carbon atoms is the backbone, or main chain. Branching out from the main chain we can see the 

amino acid side chains, which are unique to each amino acid. 

Figure 1-1 A short segment of four amino acid 
residues. The backbone is outlined in gray, and 
the atoms are represented in different colours 
(nitrogen in blue, carbon in white, oxygen in 
red, hydrogen atoms are not shown). The 
backbone atoms are outlined in grey, with each 
N-C-C sequence belonging to one amino acid 
residue (from top to bottom). Each amino acid 
residue has a unique side chain. 

 

 

The amino acid side chains have important properties that affect both the structure and the 

function of the protein. Their interaction with solvent is one example. The interaction of some side 

chain groups with water molecules is as favourable as the interaction between water molecules, or 

even more favourable, and this makes the side chains hydrophilic. For other amino acids, the 

interaction with the water molecules is not as favourable, suffering an entropy penalisation for 

forcing the surrounding water molecules to reorganise. 

Charge distribution is another important factor, as electrostatic attraction and repulsion is often 

crucial for complex formation, not only to keep the proteins together, but also to guide them to the 

correct configuration. It is also important in the folding of the protein, though not as important as 

hydrophobicity or hydrogen bonding for this. Hydrogen bonding, the sharing between two atoms of 

a loosely bonded hydrogen atom, is the last major factor for protein folding and complex 

formation. It stabilizes the main motifs of protein structure, and effectively binds proteins together 

in protein complexes. 

 

Tyrosine 

Leucine 

Glutamic 
Acid 

Valine 
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1.2 Secondary Structure 

Protein chains form several characteristic local structures due to hydrogen bonds between main 

chain atoms of different amino acids. The peptide bond between two amino acid residues locks the 

carboxylic oxygen and C' carbon of one residue and the amidic nitrogen and hydrogen of the other 

in a plane, and does not allow these atoms to rotate out of the plane. However, the bonds linking 

the alpha carbon to the C' Carbon and the main chain Nitrogen allow for a range of rotations. The 

angles of rotation around these bonds, known as phi and psi, respectively, determine the secondary 

structure and, ultimately, the folding of the protein. 

One example is the alpha-helix, in which the main chain forms a spiral, with the phi and psi angles 

ranging from -60º to -50º. The alpha helix has 3.6 amino acids per turn, and hydrogen bonds 

between the oxygen of one residue n and the nitrogen of residue n+4 gives it great stability. Less 

common variants are the pi helix, in which the hydrogen bonds are formed between n and n+5, or 

the 310 helix, with hydrogen bonds to residue n+3. 

Another important example is the beta strand. This local structure consists of usually 5 to 10 

residues in a fully extended configuration (phi and psi angles close to 180º). Beta strands can bind 

together to form beta sheets, also stabilized by hydrogen bonds between the hydrogen of the 

amino groups and the oxygen of the carboxyl groups. 

Secondary structures can combine to form structural motifs, or supersecondary structures. These 

are very important for structural modelling for several reasons. One reason is predictability; from 

sequence data alone it is possible to predict secondary structures and motifs with a 70% accuracy 

(Frishman and Argos 1997; Baldi and Brunak 1998; Wang and others 1999). Another reason is the 

conservation of secondary structure within protein families, both because of its strong correlation 

with local amino acid sequences and because evolution seems to favour the conservation of local 

structures in general (for example, Gille and others 2000). Finally, secondary structure elements are 

often easier to identify from experimental data, which even allows automated assignment 

procedures in multidimensional NMR spectroscopy (Bailey-Kellogg and others 2000). 

1.3 Folding 

Each protein chain folds over itself to form a three-dimensional structure, called the tertiary 

structure. This structure determines the properties of the protein and the mechanisms by which one 
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protein interacts with other molecules. Knowing the tertiary structure is crucial for understanding 

and manipulating the reaction pathways in living organisms.  

Often, a protein chain forms regions with separate hydrophobic cores. These regions are called 

domains, and can operate independently, as if they were several different proteins kept together by 

peptide linkers. Figure 1-2 shows two domains of desulfoferrodoxin.  

Figure 1-2 Example of two domains in the desufloferrodoxin 
monomer (Coelho and others 1997), in dark blue and in orange. 
Different domains are not only distinct structural motifs, but can 
also have different and independent functions. 

 

The semi-independence of protein domains makes these structural features the natural unit of 

protein structure and function. When comparing different proteins, or even protein systems, it is 

often necessary to take into account the modular nature of protein chains. 

1.4 Protein Interactions 

Most, if not all, proteins interact with other proteins. These interactions range from transient 

contacts, in which the partners meet briefly to perform some chemical reaction, to life-long 

partnerships, with each protein chain specifically adapted to be permanently associated to its 

partners. The structure of such assemblies of protein chains is the quaternary structure. 

Protein interactions play a central role in all living organisms, thus the importance of understanding 

the mechanisms and structure of protein complexes. As an example, Figure 1-3 shows the structure 

of a bacterial photosynthetic reaction centre (Deisenhofer and otherrs 1984). The 1988 Nobel prize 

in Chemistry was awarded to Johann Deisenhofer, Robert Huber, and Hartmut Michel for the 

determination of this structure. 
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Figure 1-3 The structure of the 
photosynthetic reaction center from 
Rhodopseudomonas viridis (Deisenhofer 
and otherrs 1984). Different protein 
monomers are shown in different colors. 
The whole protein consists of four 
different protein sub-units plus a large 
number of non-protein co-factors. 
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2 Protein Modelling 

There's a reason physicists are so successful with what they do, and that is they 
study the hydrogen atom and the helium ion and then they stop. 

Richard Feynman 

Quantum mechanics is a powerful tool to understand the dynamics of sub-atomic particles and 

simple atoms and molecules. However, our capacity to analyse the details of molecular systems 

decreases as complexity increases, and proteins are perhaps the most complex molecules known. 

Though smaller than DNA and some other polymers, their versatility and the diverse roles they play 

in chemical reactions make it very hard to predict and model all their features in detail. 

This chapter focuses on the modelling of one aspect of proteins: their structure. By protein structure 

one usually means an average three-dimensional configuration of the atoms in the protein, 

sometimes with a cursory indication of the mobility of each part of the protein chain. There are 

other important aspects, from folding to function, which are the subjects of much research, but fall 

outside the scope of this work. After an historical overview of protein structure modelling, this 

chapter addresses the most important experimental techniques for determining protein structures, 

and some prediction methods currently available. The emphasis is on Nuclear Magnetic Resonance 

(NMR) techniques and docking, for being the more relevant to the work presented in this book.  

2.1 Historical Overview 

The first technique that elucidated the structure of a protein was X-Ray crystallography, and it is 

still the most important technique in the number of structures generated every year. Successful 

crystallization of proteins dates at least to 1840, when Hunfield crystallized earthworm 

haemoglobin. In 1913 Sir L. Bragg solved structure of NaCl, and in 1932 Asturby and Street 

reported the X-Ray diffraction pattern of human hair and other protein fibers (Asturby and Street 

1932). Pauling and Corey (1951a; 1951b) publish the structures for the α-helix and β-sheet in 

1951, and between 1954 and 1960, Perutz and Kendrew determined the structure of myoglobin 

(Bragg and Perutz 1954; Kendrew and others 1960). 

Meanwhile, in 1945, Felix Bloch and Edward Purcell independently observed the magnetic 

resonance of hydrogen nuclei, initiating the field of NMR spectroscopy and winning them the 1952 
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Nobel Prize in physics. The techniques to manipulate relaxation times (Bloemberg and others 1948) 

established NMR spectroscopy as a tool to explore molecular structures. In 1965, Richard Ernst and 

Weston Anderson used a radiofrequency pulse that excited all the spins in the sample, and then 

applied a Fourier transform to the free induction decay results to obtain the frequency spectrum. 

This technique allowed all frequencies to be scanned simultaneously with a single pulse, greatly 

increasing the sampling rate for NMR spectroscopy. In the same year, James Cooley and John 

Tukey published the fast Fourier transform algorithm (Cooley and Tukey 1965), and this 

combination of techniques gave rise to Fourier-transform NMR and high resolution NMR 

spectroscopy. The first protein structures determined by NMR spectroscopy would appear two 

decades later. Richard Ernst won the 1991 Nobel Prize in chemistry for his contribution to high 

resolution NMR spectroscopy, and in 2002 this award was attributed to Kurt Wüthrich for the 

development of NMR spectroscopy techniques for the determination of protein structures. 

As of July 2002, there were 20922 protein structures deposited on the Protein Data Bank, 18118 

determined by X-Ray crystallography and 2804 by NMR spectroscopy, and the number of protein 

structures is growing exponentially. 

2.2 Experimental Techniques 

The two main techniques for determining protein structure, at present, are X-Ray crystallography 

and NMR spectroscopy. X-Ray crystallography is based on the diffraction of X-Rays by protein 

crystals. The ordered placement of the molecules in the crystal produces a diffraction pattern that 

contains information on the structure of the individual molecules. Many diffraction patterns are 

recorded at different orientations of the crystal (depending on the crystal symmetry), from which it 

is possible to calculate the electron density distribution that is generating the diffraction patterns 

and then fit the protein chain to this three-dimensional electron density map. 

One major problem is that the Fourier transform converting the reflection intensity data into a 

three-dimensional electron density map requires information on both the magnitude and phase of 

the reflections, but the diffraction pattern only provides the intensity of the reflections. This is 

known as the phase problem, and can be solved either by computation techniques (especially in 

smaller molecules) or by experimental techniques like Multiple Isomorphous Replacement or 

Multiple Anomalous Dispersion Phasing. Another major problem is often obtaining a crystal with 

the necessary quality for structure determination.  
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Nuclear Magnetic Resonance (NMR) spectroscopy is based on a different principle. Some atomic 

nuclei are magnetic dipoles, the most common example being the hydrogen nucleus (some nuclei 

are magnetic quadrupoles, but this section will focus on dipoles, without loss of generality). In a 

magnetic field, the magnitude of the component of the nuclear magnetic dipole vector that is 

parallel to the magnetic field is quantized, and can only take two values, either parallel or anti-

parallel to the magnetic field. 

The energy difference between these two orientations results in a net absorption of radiation by 

these nuclei, because relaxation mechanisms allow the nuclei to switch between the two states 

without emission, and thus dissipate the energy absorbed when changing from a lower energy 

state to a higher energy state. With the typical magnets used in NMR, the radiation is in the range 

of radio frequencies, at several hundred mega Hertz. 

Interactions with electrons and other nuclei affect both the magnetic field at each nucleus and the 

relaxation mechanisms by which the nucleus dissipates the energy absorbed. Thus, the 

environment around each nucleus influences both the resonance frequency and the intensity of the 

absorption. Not only do the NMR signals distinguish between nuclei in different environments – for 

example, hydrogen nuclei in different parts of the protein – but also identify interactions between 

one nucleus being irradiated and other nuclei whose signals are being affected. With these 

techniques, NMR spectroscopy can provide data on molecular bonds, orientations, and distances 

between atoms. 

The major problem in NMR spectroscopy is the assignment of the resonance frequencies to the 

corresponding atoms. This can be a difficult process depending on the protein, and is often done 

iteratively with structural calculation to help guide and correct the assignments. 

There are other techniques, such as electron microscopy or Infra-Red spectroscopy, among others, 

that can provide structural information. Two examples are the use of X-Ray scattering data to 

improve homology modelling (Zheng and Doniach 2002), and high-resolution atomic force 

microscopy to model protein structures (Todd and others 2003). However, X-Ray crystallography 

and NMR spectroscopy account for the vast majority of structural data on proteins at present. 
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2.3 Structure Determination from NMR Data 

Currently, the standard method to calculate protein structures from NMR data is an energy 

minimization using a torsion angle model of the protein and including in the energy function 

penalties for the violation of experimental constraints on dihedral angles and atomic distances. 

The torsion angle model of a protein represents the three-dimensional structure as a function of the 

rotation angles around some of the molecular bonds. This model implicitly takes into account the 

differences in flexibility in different parts of the chain. See section 5.8 for an illustration and more 

details on the torsion angle model. 

Available software packages such as DYANA (Guntert and others 1997; Hermann and others 2002), 

FANTOM, CNS (Brünger and others 1998), and X-Plor all use simulated annealing methods, often in 

conjunction with molecular dynamics or gradient methods such as Newton-Rhapson or conjugated 

gradient  minimization (see section 5.8). X-Plor allows the option of using a distance geometry 

method, but it seems torsion angle minimization methods are more efficient at the moment 

(Guntert and others 1997, but see section 10.8 and Trosset 2000 for recent developments in the 

distance geometry approach). 

So far, the use of constraint propagation techniques in NMR seems to have been restricted to the 

assignment problem. AUTOASSIGN is an example of this application (Zimmerman and others 

1994).  

2.4 Structure Prediction 

Homology modelling is the most widely used and successful technique to predict protein structures. 

Proteins with high sequence homology, especially in closely related organisms, often have similar 

structures (Clothia and Lesk, 1986), which makes it possible to predict the structure of one protein 

from the structures of homologous proteins, if such structures are known. 

Other prediction methods involve the use of neural networks or hidden Markov models to learn 

secondary structure folds from known structures (Baldi and Brunak 1998; Wang and others 1999) 

or evolutionary computation techniques to determine minimal energy folds (Fogel and Corne 2003). 

These are mostly successful only on small peptide chains or for secondary structure prediction. 
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Protein structure prediction involves a complex mixture of techniques, and a detailed analysis of 

these methods is outside the scope of this introduction. The important point for the work presented 

here is that prediction techniques can provide candidate structures that can be confronted with 

experimental data. Section 5.3 details the algorithm for this integration of experimental data with 

predictions of secondary structure, domains, or even of the whole protein structure. 

2.5 Protein Docking 

Protein interactions play a crucial role in all bio systems, and knowing the structure of a protein 

complex is an essential step in understanding the interaction mechanism. Modelling plays an 

important part in this process because of the difficulties in determining the structure of protein 

complexes by experimental techniques. 

In many cases proteins interact only temporarily; they must come together to perform some task 

and then go their separate ways once again. This makes it very difficult to co-crystallize the 

partners to obtain a crystallographic structure of the complex, and the large size of these 

complexes often precludes structure determination by NMR. This makes theoretical prediction a 

useful approach in these cases. Algorithms to predict such complexes are known as docking 

algorithms, and this prediction as protein docking. 

There is a considerable variety of docking algorithms being used at present. Examples of some 

approaches from the CAPRI experiment (Janin 2002) are: ICM, which uses detailed energy 

calculations and Brownian movement simulations to mimic the approach of the docking partners 

(Fernandez-Recio and others 2002); BUDDA, using geometric hashing techniques to quickly match 

surface patches (Schneidman-Duhovny and others 2003); GAPDOCK, using genetic algorithms to 

optimize contact energy (Gardiner and others 2001); HEX, which uses spherical harmonics to match 

complementary surfaces (Ritchie and Kemp 2000).  

However, the majority are based on the Fast Fourier Transform method first developed by 

Katchalski-Katzir and others (1992), which calculates cubic matrix correlations to find the best 

placements of the two docking partners. Examples are ZDOCK (Chen and Weng 2002) and MolFit 

(Katchalski-Katzir and others 1992). 
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These are just a sample from the participants in the CAPRI experiment (Janin 2002), but a 

representative sample, since this is the most important assessment program for docking 

predictions. 

 



14 Introduction  

14 

3 Constraint Programming 

When you have eliminated the impossible, whatever remains, however 
improbable, must be the truth. 

Sir Arthur Conan Doyle, “The Blanched Soldier” 

The ideas behind Constraint Programming (CP) originated in the decades of 1960 and 1970. Two 

seminal works in this area were Sketchpad (Sutherland 1963), an application to manipulate 

geometric figures, and the Waltz labelling algorithm, for labelling surfaces of an image 

representing a three dimensional scene (Waltz 1975). These applications and their successors 

introduced the fundamental concepts of propagation and consistency – in essence, the science of 

eliminating the impossible. 

An important shift came in the 1980’s with the realisation that logic programming, and declarative 

programming in general, was an example of CP (Gallaire 1985; Jaffer and Lassez 1987). In all these 

cases problems are declarations of variables, variable domains, and constraints on these variables; 

the Constraint Satisfaction Problem (CSP). This led to a common identification of CP with logic 

programming, and declarative languages are currently the preferred medium for CP. Nevertheless, 

it is also appropriate to use imperative languages, especially in specific problems where efficiency 

and integration with other applications are important, as is the case in the work presented on part 

2. 

This chapter outlines the main concepts in CP and is meant as a brief introduction for the reader 

unfamiliar with CP. These concepts are important for the discussion of the algorithms in chapters 5 

and 6. Some of the material in this chapter is based on a review article by Roman Bartak (Bartak 

1999) and on Bartak’s Foundations of Constraint Satisfaction site, which, for their availability on 

line (at least at the time of writing) are good starting points for an initiation on this subject. 

This chapter also provides a theoretical context for the algorithms described in part 2, especially in 

chapter 5. As such, the material in this chapter focuses mostly on those techniques relevant to the 

implementation of PSICO and is not meant to be a representative overview of constraint 

programming. 
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3.1 Variables and Constraints 

Variables are the unknowns in the problem, and may be anything from simple True/False variables 

to real numbers. Constraints are logical relations involving one or more variables. For example 

“x<5”, “At least one of Dumbo or Snoopy is a mammal”, “There can be at most one class in each 

classroom at any one time”, “r1<|p1;p2|<r2”. 

The solution to a CSP is an attribution of values to all variables such that all constraints are 

satisfied. In this, CP is similar to other methods for solving problems involving variables, such as 

linear programming or simulated annealing. What distinguishes the CP approach is that, along with 

variables and value attributions, CP also relies on variable domains. These are the sets of possible 

attributions for each value, in other words, the attributions that are not known to violate 

constraints. Typically, CP approach consists mainly in reducing the domains and not so much in 

manipulating value attributions, as is the norm in other approaches. 

3.2 Consistency, Support, and Propagation 

Consistency is a fundamental notion in constraint programming. Broadly, an attribution of values to 

a set of variables is consistent if it respects all constraints over all variables in the set. In this sense, 

consistency is the goal of CP, for a consistent attribution of values is the solution to the CSP. 

More generally, we can widen the meaning of consistency to apply to variable domains instead of 

only to single values. A domain is consistent with other domains if none of the values in the 

domain necessarily violates a constraint, which means that, for each value in the domain, there is 

at least one value in each of the other domains that would make the whole set of attributions 

consistent. 

The downside is that enforcing consistency, in this sense, is as difficult as solving the problem, and 

thus not useful in achieving that goal. It is more useful to use weaker notions of consistency that 

are restricted to sub-sets of variables, which can be enforced with less cost, and which can be used 

to reduce the number of possible value attributions. 

The simplest case is node-consistency, in which consistency is enforced by considering each 

variable (and corresponding domain) in isolation, and considering only those constraints that 

involve that variable alone. For example, if a constraint specifies that some variable must be an odd 

number, we can remove from its domain all numbers that are not odd. 
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Arc-consistency, the most used level of consistency, enforces consistency over all pairs of variables, 

considering all constraints over two variables. There are several standard algorithms for enforcing 

arc-consistency (Mackworth 1977; Bessiere 1994; Hentenryk and others 1992; Bessiere and others 

1999). This level of consistency seems to be the best compromise between effectiveness and 

computational cost, and has inspired considerable research efforts.  

Path-consistency considers triplets of variables, while k-consistency is the general case considering 

k variables in simultaneous. Apart from special cases, enforcing higher levels of consistency is too 

expensive to be of practical use. One exception is the case of global constraints, in which the 

properties of a constraint can be used to improve propagation. An example, in this work, is the 

group propagation algorithm presented in sections 5.3 and 5.4.  

Section 5.2 describes how arc consistency is enforced on modified distance constraints. Although 

enforcing arc consistency on non-linear constraints in continuous domains can be computationally 

demanding, a modification of the distance constraints simplifies the propagation and results in an 

efficient algorithm. 

3.3 Searching for a Solution 

Since it is generally not feasible to enforce complete consistency, it is necessary to search for sets of 

attributions that respect all constraints. This is a combinatorial problem, for potentially all 

combinations of attributions must be tested before either finding a solution to the CSP or proving 

that no solution exists. 

The simplest method of systematic search is generation and test. A candidate solution is generated 

by attributing values to all variables, and this solution is then tested to determine if it respects all 

constraints. Obviously, this approach is inefficient, as it will tend to waste most of the time on 

attributions that do not respect the constraints. 

A better method for a systematic search is to build the set of attributions incrementally. Instead of 

assigning values to all variables, the variables are instantiated one at a time. At each instantiation 

it is possible to determine inconsistencies or propagate constraints and thus eliminate values to 

test. The search can be imagined progressing through a tree, where each node represents a choice 

of possible instantiations, and where constraint propagation allows the pruning of branches from 

the search tree. 



 Constraint Programming 17 

  

Whenever an inconsistency is detected, it is necessary to try alternative routes through the search 

tree. This is the backtracking algorithm, named for the imaginary movement backwards through 

the search tree to explore another branch. Though always more efficient than the generation and 

test algorithm, backtracking has some weaknesses. A major problem is that, by simply undoing the 

attribution that resulted in a detectable inconsistency, backtracking loses the information on the 

conflict of attributions that caused the inconsistency. 

Backjumping is an alternative to backtracking that addresses this weakness by jumping backwards 

through the search tree up to the attribution responsible for the inconsistency detected. This is a 

significant improvement over backtracking alone without constraint propagation, but since 

constraint propagation eliminates inconsistent nodes before they are visited, in this case 

backjumping may bring no benefits. 

Local search methods are a broad and widely used category of incomplete search methods. The 

fundamental idea in local search is to generate a new candidate by a slight modifications of the 

current attribution. Tabu search, genetic algorithms and simulated annealing are some examples of 

this approach. 

3.4 Heuristics 

An important aspect of searching though a tree of possible attributions is the order in which the 

nodes are examined. Ideally, if one can ensure that the correct attributions are the first to be 

tested, an existing solution is found immediately on the first set of attributions. In practice, 

however, this ideal situation is very rare, and it is necessary to consider other approaches. Given 

the fallibility of most heuristics in a realistic situation, both the ordering of variables and of the 

values to attribute are important. 

Variable ordering can have a great impact on search efficiency (Gent and others 1996), and a 

common approach is to follow the fail first principle: “The best search order is the one that 

minimizes the expected length or depth of each branch” (Haralick and Elliott, 1980). This can be 

achieved by choosing first the variable with the smallest domain. However, it is important to note 

that branch depth is only part of what determines the number of nodes explored, and thus the 

search time. The branching of the search tree is also a factor, and these considerations led to the 

variable ordering heuristic described in section 5.7 for PSICO. A combination of first fail, round 
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robin enumeration, and terminating the search when the domains are sufficiently reduced is a 

compromise between the branching factor and the length of the branches in the search tree. 

Value ordering is also very important, but value ordering heuristics are often problem dependent, 

and it is hard to find a general principle that can guide this choice. The closest thing to such a 

principle is to choose the value that has the least impact on other choices. The heuristic described 

in section 5.7, though specific to the problem of determining a protein structure, is based on this 

concept. By splitting the domains so as to place each atom as far apart from the others as possible, 

this value ordering heuristic delays conflicts and allows enumeration to proceed farther before 

inconsistency is detected. Though in apparent contradiction to the first fail approach of the variable 

ordering heuristic, this ordering of values is crucial to the success of the algorithm, because the size 

of the search tree prevents the recovery from any but the most trivial conflicts. 

3.5 Applications to Bioinformatics 

Constraint programming is not a widely used technique in bioinformatics, but some interesting 

applications show it to be a promising approach in this field. Two recent examples are the 

determination of mutations to replace an amino acid by selenocysteine (Backofen and others, 

2002), choice of side chain rotamers (Swain and Kemp, 2001). Other related techniques are also 

gaining ground in biochemical applications, such as integer programming for solving the phase 

problem in X-ray crystallography (Lunin and others, 2002), but the bioinformatics field is still 

dominated by soft computing approaches like genetic algorithms, neural networks and hidden 

Markov models (Fogel and Corne 2003, Wang and others 1999, Baldi and Buinak 1998).  

Backofen (1998, 2001; Backofen and others 1999, 2002) applied constraint programming to 

protein folding, but only using the simple lattice models of protein structure, which represents each 

amino acid as an occupied cell in a cubic grid. Though potentially interesting from a theoretical and 

computational perspective, this approach did not yet show a practical application.  

The work presented here is thus an innovative application of constraint programming techniques to 

protein structure and interaction problems using real data. 
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4 Integrating Structural Information 

There are two things in the painter, the eye and the mind; each of them should 
aid the other. 

Paul Cezanne 

Molecular biology changed in 1953 with the publication of a structural model of DNA by Watson 

and Crick (Watson and Crick 1953). Aside from its importance in this field, this model illustrates the 

combination of theoretical considerations and empirical data that is necessary for modelling 

macromolecular structures. Watson and Crick were aware of the X-Ray diffraction patterns of DNA 

crystals that indicated DNA formed a helical structure, and of the near-unitary ratios of adenine to 

thymine and guanine to cytosine always found in DNA. These data had direct implications for DNA 

structure. In addition, there were theoretical considerations on atomic radii, bond angles and 

distances, hydrogen bonding and, especially, the ability of DNA to be copied in living organisms.  In 

short, the relevant information was diverse and broadly divided into two categories: observation 

data on the structure to model and other information on its purpose, similar molecules, and general 

chemistry. 

Modelling protein structures is a difficult task due to the complexity of protein folding and 

interaction, and there are two major approaches to this problem: predictive methods that build 

models by applying general rules, and experimental methods based on comprehensive data on the 

system to model. 

Many predictive methods are based on detailed simulations of the physics of protein folding and 

interaction. Examples are the pioneering work of the Kollman research group in protein folding 

simulations (Duan and Kollman 1998), distributed folding applications such as FOLDING@HOME 

(Stanford 2000; Zagrovic and others 2001), or protein folding and protein-ligand docking methods 

like ICM (Abgayan and others 1997; MolSoft 2003). Other predictive methods rely on identifying 

patterns in the data available and generalizing this information using learning algorithms or other 

forms of statistical analysis. This approach widely used in secondary structure prediction (Frishman 

and Argos 1997; Baldi and Brunak 1998; Wang and others 1999; Fogel and Corne 2003), but also 

for ternary structure (Simons and others 1997); in protein docking algorithms like AUTODOCK 

(Morris and others 1998); and in established methods like homology modelling and threading. 
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Predictive methods show great potential. As computational power and structural knowledge 

improves, these methods may eventually predict protein folding and interaction as accurately as 

they now predict the structure and activity of smaller ligands. However, currently these methods 

are not sufficiently reliable to solve the problem by themselves. In practice, modelling protein 

structure and interactions always requires a complement of experimental data to make up for the 

shortcomings of the theoretical prediction algorithms. 

Experimental methods for protein structure determination are well established. X-ray 

crystallography and Nuclear Magnetic Resonance (NMR) provide most of the data, and there are 

established algorithms for processing this information. The recent development in this area owes 

more to technological innovations providing new techniques for obtaining data than to 

improvements in the algorithms, especially in comparison with predictive methods. 

Though protein structure is a major research area, and both predictive and experimental 

approaches are the focus of much effort, the interface between these two areas is somewhat 

unexplored. The goal of the research into predictive algorithms seems to be to make predictions as 

general and as independent from experimental data as possible, often at great computation cost. 

However, researchers working with specific structural problems seldom wish to model the 

structures without experimental data, but rather using all available information. Computation costs 

and the discrepancy between what these algorithms are designed to do and what the potential 

users would like them to do restrict the application of this promising approach. 

The case of algorithms to process experimental data is the opposite. Their aim is to process 

homogeneous data, typically focusing on one experimental technique, and not to provide the 

necessary flexibility to take advantage of the diversity of data in most real applications. 

The major goal of the work presented here is to bridge this gap between theoretical prediction and 

processing of experimental data. The two problems addressed in this book illustrate the two 

approaches, with protein docking simulation being an example of a theoretical prediction (chapter 

6), and protein structure determination by NMR a problem of processing experimental data 

(chapter 5). 
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4.1 Processing NMR Data and Predicting Protein Structure. 

Acquiring and processing structural NMR data is time consuming and demanding. There are 

methods for semi-automated assignment (Bailey-Kellogg and others 2000; Herrmann and others 

2002; Szyperski and others 2003), but these invariably depend on isotopic labelling and multi-

dimensional spectra, which greatly increases the cost and complexity of producing the protein. In 

addition, these methods require multiple spectra with redundant information, also increasing the 

cost of data acquisition. In general, the problem of attributing resonance frequencies to atoms is a 

difficult one to solve. 

It is especially at this stage that additional information can be brought to bear. The goal is to 

determine the structure of the protein based on the experimental data, but predictive methods may 

help by providing candidate structures that can help decipher the NMR data. Furthermore, it may 

be that the NMR data is only partial – for example, if paramagnetic centres prevent the acquisition 

of data in one region of the protein – in which case predictive methods may fill in the gaps. 

It is possible, in theory, to do this with current techniques. We could generate additional 

constraints from each candidate structure, and combine them with the data available. However, 

currently available applications for processing NMR data are not meant to do this, which raises 

additional problems, such as ensuring the generation of an adequate set of constraints. 

PSICO (Processing Structural Information with Constraint programming and Optimisation, see 

chapter 5) was conceived from the start as a general geometric constraint solver that can process, 

in simultaneous, structural information from different sources, such as NMR spectroscopy, 

secondary structure prediction, or homology modelling, and it can be used to check the consistency 

of constraint sets, and thus evaluate the theoretical assumptions.  This efficient combination of 

diverse sources of information can simplify the assignment and speed up the determination of 

protein structures. 

4.2 Modelling Protein Interactions with Prediction and Experimental Data 

Another example is the study of protein interactions. One way of determining how two proteins 

interact is to crystallize them together and solve the structure, but this is a difficult task. 

Alternatively, there are several docking programs available that can try to predict the right 

configuration of the complex (see section 2.5). The major problem with docking predictions is that 
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even the best systems currently available have a very low success rate. According to the CAPRI 

evaluators: 

“[…] the performance of current procedures taken globally is by no means reliable enough to 

allow their use as a routine tool. For many real-world problems, as in the case of targets T01–T06, 

only around 10% of the submitted predictions are of acceptable quality or better. Only when 

detailed structural information is available on a related complex in which the interaction mode is 

conserved, as for Target 07, do we see a higher success rate of 30% correct predictions.” 

The situation is thus that neither experimental data nor theoretical predictions alone can reliably 

elucidate the structure of protein complexes. The integration of the two approaches is one possible 

solution to this problem. 

Most docking programs allow the user to restrict the model generated by specifying the contact 

surface, but the data seldom allows us to be so specific in protein-protein docking. More often, we 

have data on important residues, such as given by site-directed mutagenesis or NMR titration 

experiments. These data indicate which residues of the protein affect, or are affected by, docking, 

but do not necessarily reveal a contact surface, for some residues may show effects even if outside 

the contact region. 

HADDOCK (Dominguez and others 2003) is an exception, for it uses NMR or mutagenesis data 

explicitly, in a similar manner used in the BiGGER contact score (Morelli, Czjzek and others 2000; 

Morelli, Dolla and others 2000; Morelli, Palma and others 2001; Banci and others 2003; also see 

section 7.4). The HADDOCK approach is different in that it tries to minimize a set of distance 

constraints instead of maximizing contacts. This probably makes it easier to take advantage of the 

minimization algorithms implemented with the force field used by HADDOCK (the CNS force field), 

but can lead to problems if the data contains perturbations that are not caused by close contacts. 

By minimizing a set of incorrect distance constraints along with the correct ones, the algorithm is 

likely to systematically miss the correct structure. 

The constraint programming techniques used in BiGGER (section 6.5) are more resistance to noisy 

data because they can isolate sets of potential contacts that are feasible, instead of trying to 

minimise the distances for all candidate contacts, including the infeasible ones. 

Hopefully, the algorithms and results described in parts two and three of this dissertation will 

support the main thesis that the best course for protein structure and interaction modelling is 
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through the integration of experimental data and theoretical prediction, in algorithms conceived 

from the start to make the eye and the mind work together. 
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5 The PSICO Algorithm 

Seven houses contain seven cats. Each cat kills seven mice. Each mouse had 
eaten seven ears of grain. Each ear of grain would have produced seven hekats 
of wheat. What is the total of all of these? 

Rhind papyrus, Egypt, circa 1850 BC 

Combinatorial problems have fascinated mathematicians since ancient times for their exponential 

complexity. A hekat is an ancient Egyptian measure of volume of approximately 5 litres, so the 

solution is: seven houses, 49 cats, 553 mice, 3871 ears of grain, and nearly seventy tons of wheat. 

The determination of protein structures from geometric constraints is one such problem, for the 

number of possible arrangements grows exponentially with the number or atoms. This chapter 

describes the PSICO algorithm, and how PSICO counters the exponential growth of combinations 

by using constraint programming techniques to prune arrangements that cannot satisfy the 

constraints. 

The initial motivation for PSICO was the determination of protein structures by Nuclear Overhauser 

Enhancement Spectroscopy (NOESY), a Nuclear Magnetic Resonance (NMR) technique by which it 

is possible to obtain a set of distances between atoms in a molecule. The original idea was to solve 

the specific problem of finding the ternary structure of a protein given a set of distances between 

some of its atoms (see section 1.3). 

However, this problem is not as specific as it first appeared, nor its scope as narrow. The sequence 

of the protein – its primary structure – gives us considerable information about its structure at a 

small scale, for the covalent bonds that keep the molecule together specify the relative positions of 

small groups of atoms throughout the protein. The secondary structure of the protein also provide 

information on groups of atoms, and can be determined by experiments or predicted more easily 

than the ternary structure. Finally, as the result of a long process of evolution, proteins share 

similarities with other proteins, sometimes in very different kinds of organism.  

With the conception of new methods to process different sources of structural information, PSICO 

grew from a simple solver of binary distance constraints (Krippahl 1999; Krippahl and Barahona 

1999, 2001) into a flexible algorithm with a wide potential for applications, from testing homology 

models to solving structural NMR constraints (Krippahl and Barahona 2003). 
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The material in this chapter is divided into nine sections. The first section (5.1) explains the domain 

representations that store the possible the positions of the atoms. Section 5.2 explains how binary 

distance constraints affect these domains, and section 5.3 the propagation of rigid group 

constraints. Section 5.4 extends rigid group propagation to include two groups connected by a 

torsion angle. Section 5.5 explains how PSICO can detect if groups of atoms are being confined into 

a volume too small to hold them, which results in forbidden configurations with atomic overlaps. 

Section 5.6 describes how the constraint propagation algorithms in the previous sections are 

brought together to impose consistency on the system. Section 5.7 describes the enumeration and 

backtracking techniques used to search the possibilities that consistency could not rule out, and 

section 5.8 explains the local search algorithm that refines the final solution. Section 5.9 deals with 

several performance issues, mostly affecting only the calculation time. 

Chapter 8 describes performance tests on PSICO, and section 10.8 describes the combination of 

PSICO with a local search algorithm based on Multi-Dimensional Scaling and dissimilarity matrixes, 

with a potentially more general applicability beyond the field of protein structure. 

PSICO is also available as a Dynamic Link Library (DLL), which is described inAppendix I: PSICO 

Dynamic Link Library, page 147. 

5.1 Modelling the Variables 

The typical approach to protein structural problems using molecular dynamics or optimisation 

techniques is to find the coordinate values by solving systems of differential equations (Hansson 

and others 2002). Though the position variables are formally vectors, each x, y, and z coordinate is, 

in practice, an independent value, related to the other components of the vector solely by the 

functions to minimise or the equations of motion. Some methods convert the Cartesian coordinates 

to other systems to take advantage of some particular restrictions. Torsion angle dynamics is an 

example of this approximation, by modelling the coordinates of the atoms as a function of rotation 

angles around selected bonds (Abe and others 1984; Guntert and others 1997). Still, the 

transformation is only at the level of the model, while the solver, in practice, works with all the 

variables as independent scalars. 

The constraint programming approach to geometrical or structural problems is very different. In 

many cases, the problem is modelled in a finite domain, where each variable can have only one of 
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a finite set of possible values (Rodošek 2001; Bakofen 1998, 2001). A more general approach to 

geometrical problems focuses on the restrictions to the six degrees of freedom (rotation and 

translation) for the motions of parts of the system under study (Kramer 1992; Bhansali and others 

1996). The solution found for PSICO was inspired in the latter system, though applied to the special 

case of an atom, which has only three degrees of freedom. 

First, let us look at the problem of modelling each coordinate of each atom as a different variable. 

Using this approach, each x, y and z coordinate will have its own domain that is reduced 

independently of the others, and any relation between the coordinate domains of one atom must 

be assured by the propagation of constraints. Figure 5-1 shows illustrates, in two dimensions, the 

reduction of domain A by excluding the atom from region B. If modelled as separate variables, arc-

consistency cannot reduce neither the x nor the y domain (represented as horizontal and vertical 

bars, respectively), because all values have support even after removing region B.  

However, if the domain is the set of (x,y) pairs that are allowed (or triplets, in the three-

dimensional case), then it is possible to represent the exclusion of B from A to give A’. This is a 

natural extension of the idea of restricting freedom of motion (Kramer 1992; Bhansali and others 

1996). 
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Figure 5-1 Excluding atom A from region X requires a simple alteration in the domain of A if the coordinates 
of A are modelled together, but the separate x and y domains, represented by the bars, are not changed by 
removing the region X from domain A. 

The problem with this representation is its complexity, for it requires much more information to 

specify an arbitrary three-dimensional shape than an independent domain for each one-

dimensional x, y and z coordinate. 
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The solution is to simplify the representation, using a set of cuboid blocks to represent each 

domain. One block represents the Good Region, which is the volume where the centre of the atom 

can be, and an additional set of zero or more blocks represent the No-Good regions, a set of non-

overlapping volumes contained in the Good Region from which the atom is excluded. All block 

faces are orthogonal to the coordinate axes, so all blocks can be defined by two points marking the 

lower and upper bounds of the block coordinates in each axis.  

Figure 5-2 illustrates this representation. A domain with an arbitrary shape (represented by the blue 

spheres) can be simplified with a set of blocks. The second panel of the figure shows the Good 

region; a single block that includes all points in the original domain. A set of No-Good regions 

improves the approximation by representing volumes inside the Good block that do not belong to 

the domain represented. 

 

 

Figure 5-2 The domain of an atom (top left) is represented using a simple cuboid block (top right), the Good 
region, plus A set of zero or more additional blocks represents the no-Good region, from which the atom is 
excluded (bottom).  
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The shape of these blocks and their orientation relative to the coordinate axes simplifies the 

calculation of intersections or differences of domains. This is a useful property for constraint 

propagation, as shown in the next sections. 

Algorithm 5-1 ensures that the No-Good blocks do not overlap by decomposing intersecting blocks 

and eliminating the intersections. Algorithm 5-1 is not efficient, but its efficiency is not an 

important factor in practice, because No-Good blocks tend to appear in significant numbers only in 

the final stages of the computation. 

Input: Block, OldBlocks 
Output:NewBlocks 
For n=1 to length of OldBlocks do 
 If OldBlocks[n] contains Block then NewBlocks=OldBlocks; terminate 
 Else If OldBlocks[n] intersects Block then  
  Add to NewBlocks a set of blocks defining the region not  intersecting Block 
 Else Add OldBlocks[n] to NewBlocks 
End For 

Algorithm 5-1 inserts a new no-Good block (Block) into a set of no-Good blocks (OldBlocks) ensuring that 
the blocks in the final set (NewBlocks) do not overlap. 

The purpose of Algorithm 5-1 is to simplify the calculus of the total No-Good volume, by preventing 

No-Good blocks from overlapping. An alternative under consideration is to represent the No-Good 

region as a Constructive Solid Geometry (CSG) tree (Foley and others 1996) to represent the No-

Good region. Using this system, the set of No-Goods would be represented by a tree containing a 

cuboid block in each node and a set operation (union, intersection or difference) in each arc. CSG 

trees are widely used in ray-tracing algorithms and computer graphics in general, so there are 

several methods available for calculating the volume of the shape represented by the CSG tree. 

5.2 Distance Constraints 

Distance constraints in three dimensions have the general form: 

 2 2 2
1 2 1 2 1 2( ) ( ) ( )a bd x x y y z z d≤ − + − + − ≤  

Meaning that the distance between points (x1, y1, z1) and (z2, y2, z2) must be between the values of 

da and db. It is useful to divide this into two different constraints, because, as we shall see, they are 

propagated in different ways: 
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 Out Constraint:  2 2 2
1 2 1 2 1 2( ) ( ) ( ) ax x y y z z d− + − + − ≥  

 In Constraint: 2 2 2
1 2 1 2 1 2( ) ( ) ( ) bx x y y z z d− + − + − ≤  

The Out Constraint specifies that one point must be outside the neighbourhood of distance da of 

the other, while the In Constraint specifies it must be inside the neighbourhood db of the other 

point. 

The problem with this formulation is that these equations define spherical volumes, which do not 

fit well with the block representation of the domains. Furthermore, the combination of spherical 

volumes — especially intersections — tends to increase the complexity of the representation. The 

solution was to reformulate the constraints to use a distance metric of first order, and so define 

cuboid regions which can be easily combined with the domain representation described in section 

5.1: 

  Out constraint: 1 2 1 2 1 23 3 3
a a ad d d

x x y y z z− > ∨ − > ∨ − >  (5.1) 

 In Constraint:  1 2 1 2 1 2max(| |,| |,| |) bx x y y z z d− − − ≤  (5.2) 

Figure 5-3 illustrates this reformulation. 

 

Figure 5-3 Modelling distance constraints as cubic regions. On the left a sphere defined by the Euclidean 
distance to a point- On the centre, the cube modelling an In Constraint, with an edge of twice the distance 
value. On the right, the cube modelling an Out Constraint, with an edge of twice the distance value divided 
by the square root of three. 

To propagate In Constraints it is only necessary to intersect the Good Region of the domain of one 

atom with the neighbourhood of the Good Region of the domain of the other atom, this 

neighbourhood being determined by the Good Region and the distance value for the constraint. 

This restricts the domain of the first atom to those points within the required distance of any point 

2 ad×  
2

3
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in the domain of the second, thus eliminating regions where it is impossible to respect the In 

Constraint. Figure 5-4 illustrates this process. 

After reducing the domain of an atom by the propagation of an In Constraint, all No-Good blocks in 

that domain are intersected with the Good Region, to ensure it remains contained in the latter. 

Algorithm 5-2 outlines the propagation of an In Constraint. 

 

Figure 5-4 Propagation of an In Constraint. The left panel shows the Good Regions of the two atom 
domains. The centre panel shows the neighbourhood region of atom B, and the right panel shows the new 
domain of atom A, which was restricted to the intersection with the neighbourhood of the atom B. 

Input: Atom1, Atom2, Distance 
Block=Neighbourhood(Atom1.Good,Distance) 
Block=Intersect(Atom2.Good,Block) 
Atom2.Good=Block 
Intersect Atom2.NoGoods with Atom2.Good 

Algorithm 5-2 InConstraint. Propagating the In Constraint. The Neighbourhood function returns a copy of 
the block in the first parameter extended in all directions by the distance value in the second parameter. See 
Figure 5-4. 

To propagate an Out Constraint, it is necessary to eliminate from the domain of one atom those 

points that cannot be at least as distant as the constraint requires from any point in the domain of 

the other atom. Thus, the propagation of Out Constraints intersects the exclusion region of one 

atom with the Good region of the other, and then adds the result to the set of No-Good Regions of 

the other atom. This exclusion region is the set of points with a distance from all atoms in the 

domain no larger than that specified by the constraint. Figure 5-5 illustrates this propagation. 

A 

B 
Neighbourhood 

B 

d 
A 

B 



34 Algorithms  

34 

 

Figure 5-5 Propagating the Out Constraint. The left panel shows the Good Regions of two overlapping 
domains. The central panel shows the exclusion region of atom B. The right panel shows the intersection of 
the exclusion region with the good region of atom A, which is added to the No-Good Regions of atom A. 

To calculate the low coordinates of the exclusion region (blue, in Figure 5-5) we subtract the 

distance value from the high coordinates of the original, and add it to the low coordinates of the 

original to obtain the high coordinates of the exclusion region. We can imagine that we are turning 

the original block inside out by moving the extremities over the given distance value. If the distance 

value is less than half the length of the original block in any dimension then this constraint does 

not generate an exclusion region. Algorithm 5-3 outlines the calculation of the exclusion region and 

propagation of the Out Constraint.  

Input: Atom1, Atom2, Distance 
For j=1 to 3 do  
 Block.HighCoordinates[j]=Atom1.Good.LowCoordinates[j]+Distance 
 Block.LowCoordinates[j]=Atom1.Good.HighCoordinates[j]-Distance 
If Block.HighCoordinates>Block.LowCoordinates then 
 Block=Intersect(Atom2.Good,Block) 
 InsertNoGood(Block,Atom2.NoGoods) 

Algorithm 5-3 OutConstraint. Propagating an Out Constraint. After the exclusion region is calculated, Block 
is intersected with the Good region of the domain of Atom2, and the result inserted into the set of No Good 
block of Atom2 using Algorithm 5-1. See Figure 5-5. 

Algorithm 5-1, called as InsertNoGood in Algorithm 5-3, ensures that the No-Good blocks do not 

overlap, to make it possible to determine when the No-Good region fills all the Good Region by 

simply adding the volumes of all No-Good blocks. 

5.3 Rigid Group Constraints 

Chemical bonds restrict groups of atoms, making them effectively rigid groups, with a fixed 

geometry. This is not to say the groups of atoms are rigid. At the small scale of inter-atomic 

interactions, where quantum phenomena prevail, the very notion is somewhat questionable. 
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Furthermore, rapid vibrations and changes in the length and angle of covalent bonds are an 

intrinsic part of their nature, and some freedom of motion is an important factor in the 

thermodynamics of protein folding and interaction (Searle and others 1992). 

However, these considerations are implicit in the idea of protein structure, as we acknowledge that 

this abstraction represents an average structure, and not a single real molecule. We can consider 

rigid groups of atoms in somewhat the same sense that the plastic models for benzene rings and 

other groups are rigid: the rigid model is an accurate model, even if reality is more dynamic. 

In this sense, molecular bonds, bond angles, some chemical groups, and even the secondary 

structure of the protein provide rigid motifs. Sometimes it can even be reasonable to assume a 

fixed shape for some part of the molecule, either from experimental data (such as knowing the 

geometry of ligands of a prosthetic group) or from other sources (such as homology modelling). 

The motivation to implement a generic solver for rigid group constraints — a constraint that 

specifies that a group of atoms has a fixed geometry, with each atom keeping its position relative 

to the others in the group – was to provide a framework to integrate this knowledge with the 

constraint propagation system described in section 5.2. 

The group is a single entity, with three rotation and three translation degrees of freedom. By 

determining the possible placements of the group allowed by the domains of all atoms in the 

group, it is possible to restrict the domains of these atoms to those regions allowed by the possible 

placements of the group. 

In essence, the group propagation algorithm consists of three nested loops that run through all 

orientations of the rigid group. For each orientation, the algorithm determines the domain 

boundaries of each atom from the limits that all domains impose on the translational freedom of 

the group, as shown in sub-section 5.3.1. Without loss of generality, we can consider the three 

rotation loops to correspond to rotations around the x, y, and z axes, from outer to inner loop. The 

letters χ, ϕ, and ψ will designate angles of these rotations. 

Though it is useful to imagine the algorithm as three nested loops of rotations around the three 

coordinate axes, the algorithm actually determines the domain limits analytically as a function of 

one rotation, as section 2.2 describes. Thus, the last rotation, around the z axis, is not an actual 

loop, but the analytical determination of the domain limits for the x and y coordinates. The domain 

limits in the z coordinate, being independent of the last rotation around the z axis, are determined 
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analytically in the second loop, corresponding to the rotation around the x axis. This procedure is 

explained in section 5.3.2.  

5.3.1 Domain limits for a fixed orientation 

Given a fixed orientation, it is simple to determine the limits for the translation of the group. Figure 

5-6 shows this for a group of three atoms (A, B, and C).  

 
A 

B C 

A 

B C 
 

Figure 5-6 The three atoms A, B, and C, form a rigid group (dark orange circles), and each atom is restricted 
to a rectangular domain. The left panel shows the limits for a horizontal translation, and the right panel 
shows the limits for a vertical translation (light orange circles with dashed line). The dashed boxes on the 
right panel indicate the accessible regions for each atom with the group in this orientation. 

The range of the translation for the group is simply the intersection of the ranges allowed by all 

atoms. In this example, the domain boundaries of atom B limit the horizontal displacement (left 

panel), and the domain of atom A limits the vertical displacement (right panel). For this particular 

orientation of these three atoms, the domains are restricted to the dashed boxes shown on the 

right panel. 

Denoting by wc one of the coordinates of the center of the group (x, y or z), by wj the same 

coordinate for atom j, and by wmax and wmin the upper and lower limits, respectively, for that 

coordinate of a domain (of atom j or of the center c), the limits are related by the following 

equations: 
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min 1 min
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= + −
 (5.3) 

The absolute values of wc and wj are irrelevant; only the coordinate difference wc-wj is important, 

and is independent of translation. These equations apply to all coordinates x, y, and z. The center 

point is simply the pivot from which rotation is calculated. It can be the geometric center of the 
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group, or any other point. The choice has impact only on some performance details (see sub-section 

5.9.5), and not on the principles of the algorithm.  

5.3.2 Domain limits as a function of a single rotation. 

Equation (5.3) assumes a fixed orientation of the group, but we cannot make that assumption, 

since the group is free to rotate. Without loss of generality, we shall consider the case of the limits 

in the x and y coordinates as a function of a rotation around the z axis. Hence, the term (wj-wc) in 

equation (5.3) may represent the x-or y-components of the vector from atom j to the centre of the 

group, or, in other words, the position of the centre relative to atom j. 

This vector is a function of the orientation of the group. Denoting by ψ the rotation around the z 

axis, by A the amplitude of the projection of the vector onto the xy plane (orthogonal to the 

rotation axis) and by αj the angle of the vector yc-yj at ψ=0, then the terms wc –wj for the x and y 

coordinates are given by: 

 
cos( ) sin( )2
sin( )

c j j j j j

c j j j

x x A A
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πψ α ψ α

ψ α

− = + = + +

− = +
 (5.4) 

Where θ is the rotation around one axis perpendicular to the x coordinate axis, αj the angle of the 

vector xc-xj at θ=0, and A is the distance of the projection on the plane perpendicular to the 

rotation axis, as shown in Figure 5-7. 

A 

α’ 
α 

A 

sin( )A ψ α+  

ψ 

yc-yj 

x 

y 

 

Figure 5-7 The position of an atom relative to the center of the group as a function of the rotation angle ψ 
can be expressed as a sine function with amplitude A and phase α’. The position of the center relative to the 
atom is a similar curve, but with the phase shifted by 180º (α), giving the sine line shown on the right. 

Though rotation freedom increases the complexity of the computation, it is necessary because our 

rigid group constraints only give information on the relative positions of the atoms in the group 

and not on the orientation or position of the group relative to other atoms or groups. 
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Let us now recall the algorithm as outlined in the beginning of section 5.3. First, the orientation of 

the group around the x axis is fixed in an angle we designate χ. Next, the rotation around the y 

axis is fixed at angle ϕ. For each (χ;ϕ) pair, equation (5.4) can be used to describe the x and y 

coordinates for each atom as a function of the angle ψ, corresponding to the rotation around the z 

axis. An equation similar to equation (5.4) can also be used to describe the z coordinates of atom j 

(related to the centre of the group) as a function of the second rotation, ϕ, around the y axis. 

With no loss of generality, we can replace yc and yj in equations (5.4) with Lc and Lj to denote, 

respectively, the domain limits of the center and of atom j in an arbitrary x, y, or z coordinate. We 

also replace ψ with θ, denoting an arbitrary rotation angle (ϕ or ψ), and compute the contribution 

of each atom to the limits on the translation of the center of the group by means of Equation (5.5) 

below. Equation (5.5) gives us the limits for the translation of the centre as a function of the limit 

(upper or lower) of the domain of an atom in that direction (x, y, or z) and the orientation of the 

group around a rotation axis: 

 sin( )c j j jL A Lθ α= + +  (5.5) 

Lower Bound Segments 

Upper Bound Segments 

 

Figure 5-8 Each atom constrains the translation of the group as a function of the domain of the atom and 
rotation of the group. This figure shows such constraints for two atoms (red and blue) along one coordinate 
axis for one rotation. The grey areas indicate the angles for which the two atom positions are compatible 
and the corresponding constraints on the translation of the whole group in this orientation. 

Figure 5-8 shows two curves representing the limits on the movement of the centre imposed by 

two different atoms. As we saw before, the actual limits for the movement of the centre for each 
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orientation are the most restrictive limits (around the grey areas). To calculate these we must 

calculate the intersection of the limits imposed by two different atoms.  

 
sin( ) sin( )
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The values for A and θ can be calculated using the formulae for the superposition of two sine 

waves of the same frequency, noting that the sign change for Aj when manipulating equation (5.6) 

is equivalent to changing the phase θj by π: 
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 (5.7) 

The intersection angles are thus: 

 arcsin j iB B

A
θ α

− 
= − ± 

 (5.8) 

Using equations (5.7) and (5.8), Algorithm 5-4 defines the segments of the lines limiting the upper 

and lower bounds for the translation of the centre, with each segment being the line between two 

intersections. The upper limit is formed by the lowest segments of the upper limits of all atoms, and 

the lower limit by the highest segments of the lower limits of the atoms. The possible region for the 

centre is thus the intersection of the regions allowed by the limits of each atom, as illustrated in 

Figure 5-8. 

Output:Upper and Lower limits of center 
Lu=UpperLimit(Atom 1) 
Ll=LowerLimit(Atom 1) 
For n=2 to number of atoms do 
 Lu=LowLine(UpperLimit(Atom n ),Lu) 
 Ll=HighLine(LowerLimit(Atom n ),Ld) 
PossibleRegion(Ll,Lu) 
Return Ll, Lu 

Algorithm 5-4 CenterLimits; returns the upper and lower boundary segments that limit the displacement of 
the centre of the group in one direction as a function of the rotation of the group around one axis. 

Lu and Ll are lines formed by segments of the form of Equation (5.5). Functions UpperLimit and 

LowerLimit return the line defined in Equation (5.5), using respectively the upper and lower limit of 
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the domain of the atom. Functions LowLine and HighLine intersect two lines and return, 

respectively, the set of the lowest or highest segments between intersections. The PossibleRegion 

procedure restricts the lines to the ranges of rotation angle where the upper line is greater than or 

equal to the lower line. 

This algorithm returns the upper and lower limits for the displacement of the centre as a function of 

rotation. These include only the possible regions, where the upper limit is equal to or higher than 

the lower limit, as shown in Figure 5-8. To calculate the limits for the displacement of each atom, it 

is necessary to add the function for the position of the atom relative to the centre of the group. In 

other words, we projected the limits of each atom onto the displacement of the centre, and now 

project the limits of the centre back onto the atom. This will limit the range of possible positions for 

the atom using the limits for the centre, and may allow us to reduce the domain of the atom.  

As shown in Figure 3, the vectors used defined sine lines that differ only in a phase difference of π. 

Deriving from Equation (5.5): 
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 (5.9) 

Equation (5.5) shows that Lc is a function of the rotation parameter. If there were only one atom, Lc 

would be independent of θ, because we would simply invert the operation in equation (5.5). 

However, with several atoms, Lj is the limit of the intersection of several possible regions, and can 

consist of several different segments, which can have different A and α parameters. So the 

term sin( )j jA θ α π+ + must be added to each segment of Lc(θ), and Lj(θ) is a list with the same 

number of segments. All these sums are superpositions of sine waves of the same frequency, so we 

apply equation (5.7). 

It is not necessary to do this for all atoms; we can ignore any atom that contributed to Lc(θ), 

because this implies the atom reached the limit of its domain, and so its domain cannot be 

reduced. It is just necessary to keep track of which atom contributed to which segment. 

This solves the problem for the rotation around a single axis. However, it takes three axes to 

describe all possible orientations of the group. If we account for the additional rotations, the A and 

α terms in equation 3 become trigonometric functions of the other rotation parameters, which 

makes the system too complex for an efficient analytical solution. 
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The alternative is to use a discrete representation of the other rotation parameters, and interval 

algebra to account for the error introduced by this approach.  

5.3.3 Full rotation search. 

As outlined in the beginning of section 5.3, the algorithm searches the possible rotations by fixing 

the angle of rotation around the x axis, then for each rotation value it searches the rotations 

around the y axis, and finally the z axis. Dividing the rotations into finite intervals, each orientation 

corresponds to an interval of angles, instead of to a single angle, and each coordinate to an 

interval of values. 

As an example, the x coordinate as a function of the rotation ϕ around the y axis is: 

 ( ) cos( ) sin( )j j jx x zϕ ϕ ϕ= −  

where xj and zj are the x and z coordinates for ϕ = 0. If we consider the interval [ϕa ; ϕb], then x 

will be in the interval [xa ; xb], where 
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ϕ ϕ ϕ ϕ
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= −

= −  

If xj and zj are themselves intervals too, the principle is the same, with the only difference that the 

Min and Max functions will apply to all the four, following the rules for interval algebra. One thing 

to note is that the sine and cosine functions must be monotonous in the interval [ϕa; ϕb]. However, 

this is simple to guarantee by choosing the partition of the rotation so that the step size is a sub-

multiple of 90º. 

Because of this approach, the equations derived in sub-section 5.3.2 apply to intervals, and not to 

single coordinate values. Although the coordinates are in three dimensions, we need only consider 

the projection on the plane perpendicular to the rotation axis that provides the θ angle (θ 

corresponds to ϕ for the determination of the z limits as a function of the rotation around the y 

axis, or to ψ for the determination of the x and y limits as a function of the rotation around z axis). 

Let us assume, for example, that this rotation is around the z axis, and so the coordinates of one 

atom are ([xa;xb],[ya;yb]). This is a rectangular region, illustrated in Figure 5-9, with the corners 

labelled A, B, C, and D. As Figure 5-9 shows, these corners have different trajectories when the 

region is rotated. Now we need to find two lines of the form of equation (5.5) that enclose the 

trajectories of all points in the region by enclosing the trajectories of the corners. These lines are 
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the trajectory of the central point plus or minus a slack δ. The slack is half the diagonal of the 

region, which corresponds to the largest span the region can cover in any orientation: 

 
2 2( ) ( )
2

b a b ax x y y
δ

− + −
=  (5.10) 

Figure 5-9 shows these two lines (thicker black lines). By subtracting δ from the lower limit of the 

domain of the atom and using the result as the lower limit, and by adding δ to the upper limit and 

using that result as the upper limit we ensure no values of the domain are lost. 

To summarize, the algorithm searches the rotation space starting from the rotation around the x 

axis (χ), for each interval value of this rotation, the rotation around the y axis (ϕ), and for each 

(χ,ϕ) interval pair, the rotation around the z axis (ψ). 

The x and y coordinates of each atom depend on all three rotation parameters, but the z coordinate 

depends only on the first two (χ and ϕ, respectively rotations around the x and y axes), being 

independent of ψ. This suggested Algorithm 5-5. 
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Figure 5-9 The thick lines show the lines obtained by adding δ (top line) and subtracting δ (bottom line) to 
the line defined by the centre of the coordinates interval. The top panels show three orientations of the 
rectangle defined by the coordinate intervals. A, B, C, and D are the extreme points of the rectangle, and 
thin lines in the lower diagram show their trajectories as a function of the ϕ rotation parameter. 

y 
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The first rotation, χ, ranges from 0º to 180º; ϕ and ψ range from 0º to 360º. This is enough to 

represent all possible orientations of the atom group. For each step of the χ rotation, this algorithm 

calculates the domain of the centre in the z direction using Algorithm 5-4 for rotation ϕ and the z 

limits of all atoms. This will often prune the ϕ rotation, and only those steps allowed by the z limits 

of the centre will be considered in the calculation of the x and y limits. 

Initialize atom range limits 
Search χ using discrete intervals. For each step do 
 Project atom coordinates and z limits on xz plane 
 ZL=CenterLimits for z limits as a function ϕ 
 Search allowed values of ϕ using discrete intervals. For each step, do: 
  Project atom coordinates, x limits and y limits on xy plane 
  XL=CenterLimits for x limits as a function of ψ 
  YL=CenterLimits for y limits as a function of ψ 
  Intersect XL and YL limits to determine allowed ψ values 
  For each atom do 
   Project XL,YL to atom domain and determine x, y extremes. 
   Project ϕ interval of ZL to atom domain and determine z extremes 
  Update atom ranges for each coordinate: 
   Upper range limit =Max(new range limit, old range limit) 
   Lower range limit=Min(new range limit, old range limit) 

Algorithm 5-5 RotationSearch. Searches the three rotation axes χ, ϕ, and ψ, calling the CentreLimits 
algorithm (Algorithm 5-4) to determine the boundaries for the centre as a function at each orientation.  

For each (χ, ϕ) step, we have the centre limits of x and y as a function of ψ and the z limits as a 

function of ϕ, of which we only consider the segment referring to the current ϕ. Projecting these 

segments onto the atom domains determines the range of each atom in each coordinate. The final 

domain of each atom is initialised as an empty domain, but after each step it is extended to include 

the range of coordinates allowed by this orientation of the group. When the rotation search is 

complete, the final domain of each atom contains all the possible positions in all the possible 

orientations of the group, as allowed by the initial domains of all atoms in the group. 

5.4 Torsion Angle Constraints 

A molecular bond that connects two rigid groups restricts the relative movement of the groups, and 

often this restriction is an important experimental datum. One group is only free to move relative to 

the other by rotating around the axis defined by the molecular bond connecting the two, and this 

rotation can be restricted to a narrow range of values. The angle is measured relative to a dihedron 
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formed by four atoms, and is called a dihedral or torsion angle. . Figure 5-10 illustrates this 

movement, showing two groups connected by a rotatable bond. 

Because of this freedom of movement, we cannot model two connected rigid groups as a single 

rigid group, but we can model them as an ensemble of rigid groups spanning the conformations 

allowed by this rotation. In an approach similar to the one used for searching the rotation space of 

a rigid group, we can search the rotation of one group relative to the other by partitioning the 

rotation angle into a finite number of steps and using interval algebra to propagate the boundaries 

on the atomic coordinates. Algorithm 5-6 outlines this procedure. 

Figure 5-10 Two rigid groups, A and B, joined by a 
rotatable bond (1). Note that the two atoms on 
both ends of bond 1 belong to both groups, since 
rotation around this axis does not change the 
position of these atoms relative to the atoms in A 
or B. There are other bonds and other groups in 
the figure, but not all are displayed, for clarity. 
Atoms are coloured by element: C white, N blue, O 
red. Hydrogen atoms are not displayed. 

 

 

Input: Group1, Group 2, Rotation interval 
Partition the rotation interval into finite number of steps 
Initialize new atom domains 
For s=1 to number of steps do 
 Generate Group3 by combining Group1 with Group2 in rotation s 
 Calculate coordinate intervals for atoms in Group3 that correspond to Group2 
 Run RotationSearch without initializing atom domains 
  

Algorithm 5-6 TorsionGroup. Searches the rotation around the bond connecting two rigid groups. The 
RotationSearch procedure is Algorithm 5-5, without the domain initialisation step. 

5.5 Atomic Overlap Global Constraint 

No two atoms can occupy the same volume at the same time. If we know where each atom is, we 

can verify this constraint by checking each atom pair for overlap: if the distance between the 

centres is less than the sum of the two radii, then the constraint is violated. One way that PSICO 

models this constraint is by propagating Out Constraints between all atom pairs, but these 
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constraints are on the order of the square of the number of atoms, so the propagation must be 

limited to limit the impact on performance. See section 5.9 for more details. 

However, the most important problem is that we do not know the exact location of each atom. Let 

us imagine we have N atoms, each with a diameter of one unit, and we must fit them into a box 

with a width and height of one unit and a length of two units. If we check each atom pair, we will 

notice no problem, for two atoms fit in the box if we place them correctly. But it is evident that for 

N>2 not all atoms will fit. The problem we have is similar, because the domains only give us the 

boxes where the atoms must be in, but not their exact positions. The overlap constraint is thus a 

global constraint: 

The volume spanned by the domains of a group of atoms must be equal to or greater than the total 

volume occupied by all atoms in the group.  

This is a global constraint, because it applies to an arbitrary group of atoms, and the difficulty lies 

in determining which group of atoms to examine. We cannot expect that all atoms in the problem 

are restricted to a small enough volume to violate this constraint. The more common situation 

would be for some atoms, in one region, to be too close together, but if we use the volume of the 

complete set of atoms we will not notice this. Since the number of possible sub-groups of N atoms 

is 2N, it is not feasible to try them all. 

The algorithm implemented was a compromise between examining only atom pairs or all possible 

groups. The check is still restricted to all atom pairs, a total of [N×(N-1)]/2, but for each atom, the 

algorithm adds the minimum volumes that all other atoms must occupy in the domain of the first 

atom. Each of these minimum volumes cannot be occupied by more than one atom, because atoms 

do not overlap, so the sum of the minimum occupied volumes is a lower bound on the total volume 

the other atoms must occupy in the domain of the first. Figure 5-11 illustrates the calculation of the 

minimum occupation volume for one atom.  

Figure 5-11 Calculating the minimum volume occupied by B (domain shown as a 
dashed box) in the domain of A. Atom B is considered to be as far as possible 
from A (white circle), and occupies the region shown in orange. The red box 
shows the minimum volume B occupies in A. 

Calculating the minimum occupation volume is simple. As Figure 5-11 shows, atom B occupies the 

least volume on the domain of A if it is placed on the corner of the domain of B that is farthest 

from the domain of A. At most, this only requires measuring the distance from the domain of A to 

A B 
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each of the eight vertexes of the domain of B. Algorithm 5-7 outlines the procedure to calculate the 

total occupation volumes for all atoms. 

Input: 
 Atoms: array of atoms 
For j=1 to number of Atoms do  
 Volumes[j]= Atom[j].Good.Volume 
for j=1 to number of atoms –1 do 
 for k=j+1 to number of atoms do 
  Volumes[j]=Volumes[j]-MinOccupancy(k,j) 
  if Volumes[j]<0 then Fail  
  Volumes[k]=Volumes[k]-MinOccupancy(j,k) 
  if Volumes[k]<0 then Fail 

Algorithm 5-7 Checking atomic overlap. The MinOccupancy function returns the minimum volume that the 
atom in the first parameter must occupy in the domain of the atom in the second parameter, as shown in 
Figure 5-11. 

5.6 Enforcing Consistency 

The previous sections showed the various procedures PSICO uses to propagate and enforce 

constraints. The algorithm must combine all these to enforce consistency on all atoms and 

constraints. 

Because the distance constraints are the fastest to propagate (5.2), PSICO enforces arc consistency 

on these constraints (see section 3.2). When the domain of one atom is reduced, this atom is 

activated and all distance constraints involving that atom are propagated, potentially activating 

other atoms by reducing their domains. The process is repeated, as outlined in Algorithm 5-8, until 

no atom remains activated. 

After propagating the binary distance constraints to arc consistency, PSICO propagates the group 

and torsion angle constraints once for each group that was affected by the previous arc consistency 

round. The sequence is repeated until a fixed point is reached and no atoms remain active. 

Finally, the global atomic overlap algorithm checks for a possible failure due to excessive crowding. 

Algorithm 5-9 describes the complete procedure to enforce consistency. This algorithm is essentially 

AC-3 (Mackworth 1977), with the added complication of integrating different propagations and 

consistency checks, with different computation costs, in an efficient manner. More sophisticated 

Arc-consistency algorithms (Hentenryck and others 1992; Bessiere 1994; Bessiere and others 1999) 
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require the computation and storage of support sets, which would probably be too costly with the 

domain representations used in PSICO. 

Input:  
 Atoms: array of atoms 
 Active: Boolean array 
Repeat 
 Select Atoms[n] with smallest domain and Active[n] is True 
 Active[n]=False 
 for j=1 to Atoms[n].Constraints do 
  k=index of atom affected by Atoms[n].Constraints[j] 
  InConstraint(Atoms[n], Atoms[k], Atoms[n].Constraints[j].InDistance) 
  If Atoms[k] is changed by propagation then Active[k]=True 
  OutConstraint(Atoms[n], Atoms[k], Atoms[n].Constraints[j].OutDistance) 
  If Volume(Atoms[k].Good)<Volume(Atoms[k].NoGoods) then 
   Fail   
Until Fail or no Active[n] is True 

Algorithm 5-8 DistanceArcConsistency. Enforces Arc-Consistency on the network of binary distance 
constraints. The input is the set of atoms and a Boolean array marking the atoms changed since Arc-
Consistency was last enforced. InConstraint is Algorithm 5-2 and OutConstraint is Algorithm 5-3. Note that 
constraints are propagated using the Good region of the domain, so the OutConstraint propagation does not 
activate an atom, since it does not affect the Good region of the domain. The cycle continues until no atom 
is marked as active. 

Path-consistency and other higher consistency algorithms would require the manipulation of tuples 

of values, and a preliminary analysis suggested the added computational cost was significately 

greater than the benefits of the increase in propagation (Marco Correia, private correspondence).  

Input:  
 Atoms: array of atoms 
 Active: array of Boolean 
 Groups: array of atom groups 
 TorsionAngles:array of connections between groups 
repeat 
 DistanceArcConsistency(Atoms, Active) 
 For all TorsionAngles connecting groups with at least one active atom do 
  TorsionGroup(TorsionAngles[n].Group1,TorsionAngles[n].Group2,Interval) 
 For all remaining Groups with at least one activa atom do 
  RotationSearch (Groups[n]) 
until Fail or no atom Active 
AtomicOverlap(Atoms) 

Algorithm 5-9 Propagates all constraints to enforce partial consistency. DistanceArcConsistency is Algorithm 
5-8, TorsionGroup is Algorithm 5-6, RotationSearch is Algorithm 5-5, and AtomicOverlap Algorithm 5-7. 
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5.7 Enumeration, Heuristics, and Backtracking 

The propagation procedures described in the previous sections can determine the effects of 

restricting the domain of some atoms on the domains of all atoms in the structure. However, once 

such reductions are propagated, propagation can no longer help. Since consistency is not complete, 

a single propagation step will not result in a solution that respects the constraints. 

To solve this we need enumeration. In other words, it is necessary to decide which atoms to restrict 

and how to restrict them before propagation can even begin.  For the first choice, PSICO can pick a 

rigid group and place it anywhere in our coordinate space. This will only determine the position of 

the protein, but not the structure, since it does not affect the distances between the atoms. After 

propagating the consequences of this first enumeration, the algorithm must make a choice; it must 

choose an atom or group, and how to restrict its domain, before it can restart the propagation cycle 

described in Algorithm 5-9. Since this may be the wrong choice, it must be stored in a choice-point 

so execution can return to it and correct it if the choice results in an inconsistency. This, in short, is 

the enumeration and backtracking procedure, as outlined in Algorithm 5-10. 

As Algorithm 5-10 shows, there are two decisions to make: which variable to choose, and how to 

restrict the values allowed for that variable. 

The variable selection heuristic currently implemented chooses atoms starting from those with the 

smallest domains. The chosen atom is then marked as ineligible for enumeration until all other 

eligible atoms are chosen too. After each round, all atoms with a domain longer than the target 

length become eligible for enumeration once again. 

Select a rigid group G and fix it in the coordinate space 
Mark as active all atoms in G 
Propagate(Atoms, Actives, Groups)  
While not Fail and not Done do 
 Atom=SelectAtomToEnumerate(Atoms) 
 Domain=ChooseDomain(Atom) 
 Atoms[Atom].Domain=Domain 
 Actives[Atom]=True 
 Propagate(Atoms, Actives, Groups)  
 If Fail then Backtrack 
 Else If all Atoms below the target domain size then Done 
 Else StoreChoicePoint  
End  

Algorithm 5-10 Enumeration and Backtracking Propagate is Algorithm 5-9 
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A round robin selection is necessary because the atom with the smallest domain is likely to be 

selected again in the next enumeration because enumeration reduces the domain to half, especially 

if that domain reduction does not propagate to other domains. This would force a depth-first 

search and take less advantage of the pruning power of propagation by enumerating those atoms 

that have the least effect. 

The value selection heuristic aims to keep atoms as far apart as possible. To this end, it divides the 

current domain into two parts along its longest dimension, and chooses the one with the smallest 

total overlap with other atom domains. The objective is to postpone atom collisions as much as 

possible because these can only be detected if the domains are sufficiently small. 

Figure 5-12 shows the progress with the iterations of enumeration and propagation outlined in 

Algorithm 5-10. The blue structure indicates the target, a monomer of desulforedoxin (PDB code 

1DXG, Archer and others 1995). The red structure is the PSICO model, using experimental NOESY 

data (Goodfellow and others 1998, 2002, 2003). The PSICO models show only those atoms with a 

sufficiently small domain (less than 5Å to a side). 

 

Figure 5-12 Evolution of the enumeration cycle. From left to right, after one iteration, 15, 30 and 300. The 
last panel shows only the backbone for clarity. 

The first iteration, shown on the leftmost panel, fixes the side chain of tyrosine 7, which is the 

largest rigid group available. By iteration 15 (second panel) parts of the backbone of adjacent 

residues and some side chain atoms already have small domains. The reduction progresses along 

the protein chain until iteration 30, when constraints bridging two different segments of the chain 

start restricting the domains in another region, shown in yellow on the third panel. By iteration 300 

(last panel) the backbone is already well-defined, and with an approximately correct folding.  
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5.8 Local Search Optimisation 

After the constraint propagation stage builds an approximate solution, a conjugated gradient 

minimisation algorithm refines it to reduce remaining constraint violations and atomic clashes. This 

refinement stage operates on a torsion angle model of the protein. This model is a tree of rigid 

groups of atoms, connected by rotations around some covalent bonds, and the angles of these 

rotations determine the structure. Thus the algorithm ensures that bond lengths and angles are 

correct, since these remain constant, and only those dihedral angles with rotation freedom can 

change. Figure 5-13 illustrates the data structure and the corresponding molecular structure of the 

torsion angle model. Note that the nodes in the torsion angle model are similar to the rigid groups 

between the rotatable bonds, but not exactly the same. 

 A, B, C, D 

E, F, G H 

1 2 

3 4 

 

A 

C 

1 

B 

D 

F 

G 
E 

H 

2 

3 

4 

 

Figure 5-13 The torsion angle model. The panel on the left shows the data structure as a tree, with atom 
groups for nodes and dihedral angles for arcs. The panel on the right shows the respective protein structure. 

The tree shown on the left panel illustrates the data structure, where groups of atoms are 

connected by nodes which specify their relative orientations. 

The minimisation algorithm uses the conjugated gradient method (Press 1994). This is a standard 

minimisation technique that requires the evaluation of the function to minimise and its first 

derivative. In this case, the function to minimise is a function of the rotation and translation of the 

monomers in the protein, vectors R and T on equation (5.11), and the vector of rotation angles 

describing each protein chain (X in the same equation). 
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R and T can be ignored for the first monomer, or if the structure contains only one chain, but are 

important to specify the relative position of the second or subsequent monomers. 

The function to minimise is the sum of the constraint violations given by the Viol function, which 

returns the square of the difference between the interatomic distance and the constraint limit 

violated, or zero if there is no violation. 

Minimising this function is a straightforward procedure. The only complicating factor is the need to 

calculate the derivatives as a function of the torsion angles in an efficient manner. Abe and others 

(1984) describes a recurrent method to calculate the derivatives of energy functions with respect to 

torsion angles. This method was adapted to PSICO with minimal modifications. 

Just to outline the method briefly, the idea is to identify which atoms lie within and outside the 

group affected by each torsion angle. For each angle, the algorithm considers only those atom pairs 

with one atom affected by the angle and the other unaffected, and ignores distance constraints in 

which the angle affects either both atoms or none.  

5.9 Performance 

This section describes some implementation details that are important for the efficiency of the 

algorithm, but have little or no impact on the procedures or results. Since efficiency is an important 

issue for the objectives of PSICO, these issues deserve some consideration 

5.9.1 Simplified structure model 

Approximately half the atoms in a protein are Hydrogen atoms, so it is possible to reduce the 

number of variables to half by ignoring them during the constraint processing stage. This also 

reduces the number of constraints, because each Hydrogen atom requires several distance 

constraints to model the length and angle of its covalent bond. 

This is a legitimate simplification because each hydrogen atom can only be covalentely bound to 

one atom, and its placement is specified by the positions of neighbouring atoms, so they provide no 
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information on the structure of the molecule.  Unfortunately, most experimental distance 

constraints in protein NMR come from hydrogen resonance spectra. Since hydrogen atoms are not 

in the model, we have to apply each of these constraints to the atom bound to hydrogen atom, 

adding the hydrogen bond length to the upper distance limit for the constraint and subtracting the 

bond length from the lower distance limit. 

The same principle applies to pseudoatoms, which are not real atoms but merely placeholders for 

the geometric centres of groups of atoms that cannot be distinguished in the NMR spectra. For 

example, the three hydrogen atoms in a CH3 group may resonate at the same frequency, and the 

distance constraint found by the Overhauser enhancement of this peak will generate a constraint 

on the mid-point of the three hydrogen atoms. Some force fields for protein structural NMR (Gunter 

and others 1997) use an imaginary atom in that place to mark the extremity of the distance 

constraint. PSICO handles these atoms in the same way as it handles the hydrogen atoms, by 

shifting the constraint to the nearest atom in the model and loosening the boundaries to account 

for the displacement.  

5.9.2 Global overlap check ignores bonded pairs 

The closest atoms in any molecular structure are those that are covalently bound together, with a 

centre to centre distance of approximately 1-1.5Å. This distance is below the effective precision of 

the constraint processing stage, which is most efficient when stopping at a domain size of 

approximately 2.5Å. So bonded atom pairs would not only be the major contributors to detected 

domain overlaps, they could also mislead the algorithm by detecting a failure in a situation where 

the algorithm could complete the enumeration to the desired precision. 

For these reasons, Algorithm 5-7 ignores any atom covalently bound to the atom under 

examination. 

5.9.3 Out Constraints for overlap are propagated only in enumeration 

There is one Out Constraint implicitly connecting each atom pair, because two atoms cannot 

occupy the same place. This is a large number of constraints: [ ( 1)] / 2N N× − , with N the number 

of atoms, and it is not practical to propagate each of these constraints every time the domain of an 

atom is changed. 

To mitigate this problem, PSICO only propagates these Out Constraints during the enumeration of 

an atom, and only for the atom being enumerated. 
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5.9.4 Sine curves and intersections 

The trigonometric functions Sine and Cosine are very use in the group propagation algorithm. 

These are common functions, implemented by the compiler or a mathematical library, that calculate 

the value of the trigonometric function up to the precision of the floating point representation 

used. Since this precision is orders of magnitude beyond what is necessary for the applications of 

PSICO, we can improve performance by trading off precision for speed. The Taylor expansions for 

the Sine and Cosine functions are: 
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The algorithm calculates the power and factorial terms cumulatively and interrupts the iteration 

cycle when it reaches the desired precision, which is possible because of the alternating sign of the 

higher order terms. After trigonometric function evaluations, calculating intersections of sine curve 

segments accounts for most of the computation effort in group and torsion angle constraint 

propagation. Two quick intersection checks improve performance by ruling out a most cases where 

segments don’t intersect. One check applies to the whole line defined by equation (5.5). From the 

first equation in (5.7) we can tell that: 

 i jA A A≤ +  

From this equation, we know the lines cannot intersect if: 

 1i j

i j

B B
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This verification does not require the calculation of A or α.  

The other intersection check uses piecewise linear functions as upper and lower bounds for the sine 

line. If the regions limited by the linear bounds of two sine lines do not intersect, then the lines 

cannot intersect either. 

To define each linear boundary function and to compare them we need a set of points indicating 

the extremities of the segments forming the function. Figure 5-14 illustrates the calculation of these 

points. 
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P1 and P2 are the extreme values of the function. The maximum of the sine function is at π/2; 

subtracting the phase α we obtain P1(π/2-α+2nπ;L+A), where n is an arbitrary integer. The 

minimum value occurs 180º from the maximum, or P2(3/2 π-α+2nπ;L-A). The points P3 and P3’ lie at 

the zeroes of the sine term of the function: P3(π-α+2nπ;L), P3’(2nπ-α;L). 
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Figure 5-14 Piecewise linear upper and lower bounds (blue and orange, respectively) for a sine line. See text 
for how to calculate the points. 

Points P4 and P4’ lie on the intersection of the line y=L+A (the horizontal line crossing the 

maximum value of the function) and the derivatives of the function at points P3 and P3’ respectively. 

The coordinates are simple to calculate: the derivative at P3 is –A, and the ordinate of P4 is the 

ordinate of P3 plus A, so the abscissa of P4 is equal to the abscissa of P3 minus one. For P5 and P5’ 

the reasoning is similar. The following sets of points define the linear boundary functions: 

3{(1 ; ), ( 1; ), ( , ), ( ; ), (2 ; )}2

{( ; ), ( , ), ( 1; ), (2 1; ), (2 ; )}2

UB L A L A L L A L

LB L A L L A L A L

α π α π α π α π α

π α π α π α π α π α

= − + − − + − − − −

= − + − − + − − − − −
 

We can add 2nπ to the abscissa values to extend these functions to all real numbers, but in general 

only the interval [0;2π], or a sub-interval of this, will be relevant. When considering only an interval 

for the abscissa, we must consider not only the points inside the interval, but also the intersection 

of the boundary function lines with the extremities of the interval. The two leftmost points 

(unlabelled) on Figure 5-14 illustrate the result of this simple procedure. 
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Given two sine line segments A and B, defined in intervals [A1;A2] and [B1;B2], the algorithm will 

select all points in the four linear boundary functions for these sine lines (two boundary functions 

for each segment) with an abscissa value contained in the intersection of [A1;A2] with [B1;B2]. Then 

it will evaluate the linear boundary functions at all these points plus the two extreme values of the 

intersection of the two intervals: the maximum of A1 and B1, and the minimum of A2 and B2. If the 

sine line segments intersect, there must be at least one value in the abscissas set for which the 

ordinate of the upper boundary function of each line is at least as large as that of the lower 

boundary function of the other.  

At the intersection point, this is necessarily true, since the sine lines have the same value, but the 

linear boundary functions are not necessarily evaluated at this point. Nevertheless, if the condition 

holds anywhere within the interval of the linear segments, it must hold at least at one of the 

extremities of the interval. Algorithm 5-11 outlines the procedure. 

Input: 
BoundsA, BoundsB: points defining linear boundaries for lines A and B 
Low, High: extremities of the interval to check for intersection 
 
Abscissas={Low, High} 
Add to Abscissas all points in BoundsA contained in ]Low;High[ 
and add all points in BoundsB contained in ]Low;High[ and not in Abscissas 
Intersect=False 
For all Abcissas[n] do 
 Intersect= 
  (Eval(BoundsA.Up,Abscissas[n])>=Eval(BoundsB.Low,Abscissas[n]) And 
  (Eval(BoundsB.Up,Abscissas[n])>=Eval(BoundsA.Low,Abscissas[n])  
 If Intersect the Break 
EndFor 
Return Intersect 

Algorithm 5-11 Using piecewise linear boundary functions to determine if two sine line segments intersect. 

5.9.5 Choice of pivot point 

The geometric centre of the group is the ideal rotation pivot (see section 5.3) to minimise the loss 

in pruning power due to the discrete rotation search on χ and ϕ (see Algorithm 5-5). The farther 

away from the pivot, the greater the uncertainty region resulting from the same interval in the 

rotation angle, and placing the pivot at the centre results in the minimum average uncertainty for 

all atoms. 
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However, choosing one atom as a pivot results in one less sine line to process. The atom chosen as 

a pivot will generate the same limits independent of the orientation of the group, resulting in 

straight horizontal lines instead of the sine lines seen in Figure 5-8. This is an advantage for small 

groups, especially those with only three atoms, where the uncertainty due to the discrete rotation 

search is small and the elimination of one sine line can speed up calculations significantly. 
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6 The BiGGER Algorithm 

"Can you do addition?" the White Queen asked. "What's one and one and one 
and one and one and one and one and one and one and one?" "I don't know," 
said Alice. "I lost count."  

Lewis Carroll, Through the Looking Glass 

Part of the motivation for a docking algorithm came from experience with protein complex 

modelling (Palma and others 1994), which made clear the greatest difficulty in predicting the 

structure of a protein complex: the large number of possibilities to examine. The objective of 

BiGGER (Bimolecular complex Generation with Global Evaluation and Ranking) is to eliminate a 

large fraction of these possibilities and retain a manageable set of likely models for the researcher 

to examine. 

For every model generated, there is always the question of how many possible configurations were 

left unexplored. This concern determined the development of BiGGER as an exhaustive search 

algorithm instead of a random sampling algorithm like those based on simulated annealing or 

genetic algorithms (Goodsell and others 1990; Morris and others 1996,1998; Gardiner and others 

2001). The starting point for BiGGER was the work of Katchalski-Katzir (Katchalski-Katzir and 

others 1992) on surface recognition using fast Fourier transform (FFT) techniques to calculate 

correlation matrixes. There are now several methods derived from this concept (representative 

examples are: Gabb and others 1997; Ritchie and Kemp 2000; Chen and Weng 2002), and FFT 

techniques are now a common standard approach to protein docking. 

The advantage of FFT is the time complexity for the correlation of two three-dimensional matrixes, 

which is O(N3×Log2N
3), compared to O(N6) for a real space correlation. If one uses the correlation 

matrix to determine the configurations of greater complementarity, FFT is clearly the best choice. 

However, the docking problem is not to compare the three-dimensional shapes, but the surface 

contacts – a two-dimensional search space. Moreover, the objective is to retain a small proportion 

of solutions. These suggested that a better approach could be to use a real-space search, instead of 

a Fourier-space correlation, and use heuristics to reduce the search space. Finally, FFT calculations 

on large matrixes, for high-resolution docking, require considerably more memory than was readily 

available in personal computers in 1995, when work on BiGGER begun. 
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This led us to the Boolean Geometric Interaction Evaluation algorithm (BoGIE), the geometric 

surface contact filter that is still the core of BiGGER (see section 6.2). Using the bounds on the 

minimum scores of models to retain, the geometric filter can prune the search space and achieve an 

average time complexity of approximately T(n2.8), which is significantly better than FFT (Palma and 

others 2000). 

A more recent method based on geometric hashing, an algorithm originally developed for computer 

vision (Lamdan and others 1988; Wolfson and Rigoutsos 1997), may replace the FFT approach for 

its efficiency in finding shape complementarity (Noussinov and Wolfson 1999). However, it is still 

not possible to say if this approach is better than the one described in this work, and since, at 

present, the evaluation of the models retained takes nearly as long as the geometric filtering, the 

efficiency of this stage is no longer critical. 

Though initially successful with the original test case, the then recently determined structure of 

desulforedoxin (Archer and others 1995), BoGIE was unable to predict complexes that did not have 

the exceptional shape complementarity of the desulforedoxin dimer. With the introduction of other 

interaction scores, soft docking, side chain contact filtering, global evaluation of models and, more 

recently, constrained docking, the algorithm developed into BiGGER (Palma and others 2000; 

Krippahl and others 2003). 

This chapter explains the current implementation of the BIGGER algorithm. Except from the 

constrained docking methods (section 6.5), the basic algorithm is the same as found in the release 

version of Chemera and BiGGER (Krippahl and Palma 2001). However, several parameters on the 

side chain contact filter and on the scoring of the selected models have been adjusted, as discussed 

in chapter 9. 

6.1 Sampling the Search Space 

BiGGER generates candidate complexes by an elimination process, which starts from a set of 

hundreds of billions of possible configurations and ends in a few thousand possible models to be 

scored and ranked. The main criterion for this elimination is the geometric complementarity 

between the two molecules. 

There are two reasons for this choice. One is that the area of contact is a good predictor of protein 

binding. Protein interactions are non-covalent, and generally weak, so a large contact surface is 
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often necessary to keep two proteins together. The exception is Hydrogen bonding, which is a 

strong binding factor; however, the number of Hydrogen bonds formed between two proteins 

correlates well with area of contact (Betts and Sternberg 1999). The other reason is that surface 

contact can be evaluated efficiently, which is essential to process the large set of possibilities in a 

reasonable period. 

BiGGER samples the rotation space by rotating one protein (the probe) relative to the other protein 

(the target) in small steps, typically of 15º. For each orientation of the probe, the algorithm samples 

the translation space by moving the probe molecule relative to the target in steps of 1Å.  

6.1.1 Using Cylindrical Symmetry 

Though BiGGER can only model complexes between two partners, it is possible to extend the 

algorithm to complexes of more than two proteins if these can be reduced to a single pair by 

symmetry. This is the case for complexes with cylindrical symmetry. In such complexes, it is enough 

to dock two adjacent partners and then reconstruct the complex by rotation around the symmetry 

axis. 

The method is to generate a set of axes for rotation in all orientations on the two dimensions of the 

polar coordinates. For each of these rotation axis, the probe is rotated around the axis by a value of 

360º divided by the number of monomers in a complex. For a trimer, for example, this would be 

120º rotations. The translation is then restricted to a plane perpendicular to the rotation axis. This 

procedure ensures that all complexes generated will have a cylindrical symmetry around the axis 

chosen, and that the order of the symmetry will correspond to the number of monomers in the 

complex. 

Recently implemented, this algorithm was used to predict CAPRI target 10 (Janin 2002, Janin and 

others 2003), the trimeric form of the TBEV envelope protein. At the time of writing the results 

have not been disclosed. 

6.2 The Geometric Filter 

The geometric filter evaluates the atomic overlaps and surface contacts for each of the 109 models 

sampled. For this evaluation, we can imagine each structure to be represented as a three 

dimensional grid of cubes, indicating surface and core regions. As we will see, this is not the actual 

implementation, but is an easier way to explain the basic algorithm. The estimator for surface 
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contact is the overlap of surface cubes of one grid with the overlap of surface cubes of the other. 

The overlap of core regions indicates atomic collisions, and the geometric filter rejects any model in 

which core regions overlap. The geometric filter will retain the models with the greatest surface 

region overlap (the surface contact score). 

The number of models retained is predefined, with the default being five thousand; a reduction of 

six orders of magnitude in the sample size. 

The geometric filter operates at each step of the rotation search. The first task is to represent the 

proteins in a way that makes it easy to calculate surface contacts. BiGGER creates a three-

dimensional grid of cubic cells representing each structure. Each cell corresponds to a cubic volume 

of 1Å3 and has a value of 1 if the centre of the cube is occupied by an atom, a value of 0 otherwise.  

Each atom occupies a spherical volume of radius equal to the atomic Van der Waals radius plus 1Å. 

Algorithm 6-1 generates this first grid and, from it, the Surface and Core grids that will be used by 

the geometric filter. 

Clear FirstGrid, SurfaceGrid, CoreGrid 
For f=1 to number of Atoms do 
 Fill FirstGrid cells closer to 1Å+Atoms[f] 
For ShiftVector=(-1,-1,-1); (-1,-1,0) … (1,1,1), except (0,0,0), do 
 Copy FirstGrid to CopyGrid 
 Shift CopyGrid by ShiftVector 
 SurfaceGrid=SurfaceGrid OR (CopyGrid XOR FirstGrid) 
SurfaceGrid=SurfaceGrid AND FirstGrid 
CoreGrid=FirstGrid AND NOT SurfaceGrid 

Algorithm 6-1 Generating the Surface and Core grids 

A surface cell is a cell with a value of one and with at least one neighbour with a value of zero, and 

the Surface grid represents these cells. Algorithm 6-1 uses Boolean operations to determine if a 

grid cell has empty neighbours by shifting a copy of the first grid relative to the original, and 

combining with an inclusive Or (OR) the results of an Exclusive Or (XOR) operation between the 

original grid and all 26 one-cell displacements of the copy. The XOR operation gives a value of one 

if a cell is combined with a neighbour with a different value, so combining these results with an OR 

operation will give a value of one for all cells with at least one different neighbour. After the loop 

over the 26 displacements, the Surface grid contains a double surface shell, which is then trimmed 

by an AND operation with the original grid. The Core grid is simply the remainder of the original 
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grid, calculated by an AND operation between the original and the inverse of the Surface grid (the 

NOT operation converts zeroes into a ones, and ones into zeroes). Figure 6-1 illustrates this step. 

 A B C 

 D E F 
 

Figure 6-1 Using Boolean operations to determine the surface and core regions. Panel A shows the initial 
grid. A copy of this grid is shifted one cell to the right (B) and combined with the original using an XOR 
operation (C). Panel D shows the total (using OR operation) of all XOR combinations. Panel E shows the 
trimmed surface grid, and F the core grid. Filled squares represent grid cells with a value of one. 

Figure 6-2 shows an example of the grids generated for a protein structure, to give an idea of the 

relative scales of the grid cells and the typical structures used in BiGGER. 

 

Figure 6-2 The surface and core grids (blue and orange, respectively) for the HIV protease structure 
(Wlodawer and others 1989). The three panels show sections of the grid in three orthogonal planes. 

After Algorithm 6-1 generates the surface and core grids, these are converted from a binary grid 

representation into a two-dimensional array of grid segment lists. Each grid segment consists of a 

pair of grid coordinates indicating the low and high coordinate of a contiguous line of ones in the 

grid. Figure 6-3 illustrates this conversion for a two dimensional example.  
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 (1,4) 
(1,6) 
(1,6) 
(1,2);(4,6) 
(4,6) 

Figure 6-3 Converting a binary grid into a segment array. The binary 
grid represented by blue squares blue and dashed squares (one and 
zero, respectively) is converted into an array of segment lists. The 
fourth segment list contains two segments, (1,2) and (4,6), to 
represent the two disjoint segments on the fourth line of the grid. 

 

This representation simplifies the calculation of grid contacts, as the number of overlapping cells 

can be determined from the relative positions of the extremities of the overlapping segments. 

Similarly, it makes it easier to determine which relative positions of the two docking partners cause 

the core regions to overlap. 

For each orientation of the probe molecule, the geometric filter searches the possible 

configurations by shifting the two grids of the probe (surface and core) relative to the grids of the 

target in the x, y, and z directions. This is done in three nested loops. The outer loop searches the z 

direction. The second loop will search all possible displacements in the y direction for each position 

in the z direction. Finally, the inner loop will search through the x direction. In the segment array 

representation, the segments are aligned in the x direction, because it is the inner loop in the x 

direction that evaluates the overlaps. 

Any configuration in which core grids do not overlap is evaluated for surface grid overlap, and the 

total number of overlapping surface cells is the surface contact score. This model is added to the 

set of models to retain if the set is not yet filled, or if the score is higher than the lowest scoring 

model in the set, in which case the new model found replaces the old one. 

6.3 Soft Docking 

In general, the conformations of surface side chains in an unbound protein structure differ 

significantly from those of the bound structure, whether because of their mobility or because of 

uncertainty in the determination of the structure. If this results in excessive overlaps in the correct 

models for the complex, these will be excluded during geometric filtering. 

To solve this problem, BiGGER includes a soft docking option that eliminates the core regions of 

parts of the more mobile side chains from the grid representation. Figure 6-2 shows the difference 

in the grids used for hard and soft docking. 
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Figure 6-4 Difference in the grids when using hard (left panel) or soft docking (right panel). Grey cubes 
represent the core grids, blue cubes the surface grids. Note that the surface grids are identical, but the core 
grid in the soft docking option is empty in all cells spanned by the side chain of the aspartate shown in the 
centre of each panel.  

The surface grid is unchanged, so models have the same surface overlap score in both methods. 

However, soft docking allows some models that hard docking would rule out due to core grid 

overlaps. By creating these gaps on the more mobile surface side chains, soft docking makes the 

geometric filter less sensitive to side chain conformation changes. 

The downside of this approach is that it also allows incorrect models that the geometric filter 

would otherwise eliminate, and these models may drive the correct models out of the list of the 

best geometric fits. To mitigate this problem, BiGGER also filters any candidate model according to 

a statistical analysis of side chain contacts. 

6.4 The Side Chain Filter 

Perhaps the greatest advantage of real space docking algorithms relative to Fourier space methods 

is the efficiency with which they can use additional criteria to complement the surface contact 

filtering. While Fourier transform methods must examine all possible contacts for all filters used 

(Gabb  and others 1997), real-space methods can apply the additional filters only to the small 

subset of models that were selected by surface contact. 

The filter implemented in BiGGER is a two dimensional Self Organized Feature Map (Kohonen 

1982, in Haykin 1999) with 10x10 neurons. It was trained to classify docking models according to 

the side chain contacts between 5 disjoint classes of amino acids grouped by structural and 

chemical similarity (Table 1, page 153).  
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After training with correct and incorrect models obtained by docking simulations on 88 complexes 

(sub-section 9.1.3), each neuron was labelled with the number of correct and incorrect examples in 

its cluster, using the examples on the training set. The response of this neural network classifier is 

the label of the closest neuron to a given example, and the filter rejects the examples that fall in 

clusters that contained only incorrect models in the training set. 

6.5 Constrained Docking  

The method for geometric filtering allows us to impose constraints in a flexible way. Most docking 

algorithms, with the possible exception of those based on Fourrier transforms, allow the user to 

restrict the search to specific regions in space. However, experimental data is seldom this specific. 

Often, amino acids found to be crucial for complex formation (as in site directed mutagenesis) or 

affected by the other partner’s presence (as in NMR titration), are not part of the interface, but are 

important for other reasons, such as conformation changes. 

To use a wide range of experimental data we need a flexible algorithm to constrain the 

configuration search; an algorithm that can take into account the uncertainty associated with most 

experimental data. The constrained docking algorithm must be able to interpret any number of 

constraints of the form: 

 At least N atoms or residues of set A must be within distance R of atom set S Constraint 6.1 

The most important feature is the cardinality constraint, which specifies the number of atoms or 

residues that must meet the distance requirement. This is what gives the constraint the necessary 

flexibility to take advantage of most experimental data. 

It is simple to test this constraint for a given configuration to evaluate models according to these 

contact counts or other measures, and section 7.3 shows how Chemera implements these 

evaluations to score the models BiGGER retains. This section will explain how to apply these 

constraints to the geometric filter and restrict the search to those configurations the experimental 

data allows. The advantages of reducing the search space are twofold: more efficient docking and 

less interference from incorrect configurations that may exclude desirable models from the set of 

models BiGGER retains. 

In section 6.2, we saw that the geometric filter searches the translation space in three nested 

cycles, spanning the z, y, and x coordinate, from the outer to the inner cycle. To reduce this search 
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we need an algorithm that can return the allowed values of the displacement in the z direction, the 

allowed values in the y direction for each allowed value of the z cycle, and for each allowed (y,z) 

pair, the allowed values of x. In short, the algorithm must generate domains in one dimension.  

To understand the algorithm, let us first first note two features of constraint 6.1. One is that it 

distinguishes the two groups of atoms, for the cardinality constraint only applies to group A (at 

least N of these atoms must be within distance R of any atom in group B). The other is that the 

distance R is the same for any atom. This allows us to generate a region around the atoms of group 

B where the atoms of group A meet the requirements for the distance constraint, and the 

cardinality constraint becomes a matter of counting the number of atoms of group A in this region. 

Since we need to define the domains in one dimension at a time, and these domains are sets of 

integer values corresponding to the displacement of one grid relative to the other in grid 

coordinates, we can describe the allowed set of displacements as list of segments similar to those 

encoding the structure grids (see Figure 6-3). Thus, the task is reduced to generating a list of 

segments representing the displacements for which at least N atoms of group A are inside the 

segments defining the neighbourhood R of the atoms in group B.  

To calculate the displacement values that place the atom of group A inside the neighbourhood of 

group B we only have to shift the segments defining the neighbourhood of B by the coordinate 

value of the atom. For example, an atom at coordinate 5 will leave the neighbourhood segment 

that ends at coordinate value of 11 when the displacement value becomes greater than 11-5=6. 

Figure 6-5 illustrates this process. 
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Figure 6-5 Generating the displacement domain in one dimension. The left panel shows the generation of 
the neighbourhood of radius R of group B. The panel on the right shows the allowed displacements for each 
atom, and the final displacement domain for an N of 2. See constraint 6.1 and text for more details. 
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Once we have the displacement segments for all atoms, we must generate the segments describing 

the region at least N atoms are in the neighbourhood of B (see constraint 6.1). A naïve algorithm 

would be to count the atoms for each possible displacement value, but the number of operations in 

this case would be in the order of the number of atoms multiplied by the number of displacements 

to consider.  

The total number of displacements is twice the span of the coordinates of the atoms in group A 

plus the span of the neighbourhood of B minus two. This is the number of possible grid 

displacements, from placing the higher atom on group A to the lowest cell on the neighbourhood 

of B, to placing the lowest atom in the highest cell. Since this can be a large number, cycling 

through all atoms for all displacements can be inefficient. 

However, there is a better alternative. First, we use an array to represent all the displacements. This 

is an array of integer values, where the index represents the displacement. So cell number five, for 

example, would correspond to a displacement of five grid cell units. On this array we mark the 

entry point of each atom by incrementing the array on the cell corresponding to the low coordinate 

of each displacement segment for each atom, and the exit point by decrementing the cell 

immediately after the high coordinate for the displacement segment. With the array initialised at 

zero, if the first segment has the coordinate values (3;8), this means the array will now have a 

value of one at the cell corresponding to a coordinate value of three, and a value of minus one at 

the cell corresponding to the coordinate value nine. 

After doing this for all atoms, all we need is to run through the displacements array once, from the 

lowest coordinate index to the highest, and accumulate the values found in the cells. All cells 

where the accumulator is equal to or greater than N are added to the segments list that defines the 

domain where constraint 6.1 holds. Figure 6-6 illustrates this computation.  

This procedure can also combine any number of constraints of the form of Constraint 6.1. 

Furthermore, it is not limited to consider a lower limit on the number of instances where the 

constraint holds, but can be used to specify an exact value, an upper limit, or a range of values too. 

Though this may not be useful for the case of Constraint 6.1, for there will seldom be a need to 

specify an upper limit to the number of atomic contacts, it may be useful in combining several such 

constraints in a way that selects some configurations with specific interface regions while ruling 

out others. For example, if we suspect that a particular complex has two alternative forms with two 
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different contact regions, BiGGER can model the two regions as two constraints of the form of 

Constraint 6.1 and restrict the search to the regions where exactly constraint one holds true. 

 

 
1 

1 1 -1 1 -1 1 -1 

1 1 1 1 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 1 1 1 1 

2 

3  

Figure 6-6 Computing the domains for Constraint 6.1 from the regions where each atom respects the 
distance constraint. Step one shows the allowed regions for two atoms. Step two marks the entry and exit 
points on the displacement array. Step three runs through the displacement array from left to right, adding 
the value on each cell to the value on the accumulator. The region where both atoms respect the distance 
constraint is shown in green. 

This flexibility allows BiGGER to integrate a wide range of data and to test different assumptions 

about the system to model. Algorithm 6-2 outlines the procedure for generating the displacement 

domain from one constraint of the form of Constraint 6.1. 

Input  
 Allowed: Segment list with the neighbourhood of  Group B 
 GroupA: array of coordinate values for Group A 
 N: number of atoms in A that must be within R of B 
Set length of array Coords to span of Allowed plus 2×Span of GroupA  - 2 
Fill array Coords to 0 
For each atom j in GroupA do 
 Segments=Allowed 
 Shift all Segments by the coordinate value GroupA[j] 
 For each segment s in Segments do 
  Increment Coords[Segments[s].Low] 
  Decrement Coords[Segments[s].High] 
Accum=0 
Domain=empty list of segments 
For f=Low(Coords) to High(Coords) do 
 Accum=Accum+Coords[f] 
 if Accum>=N then add displacement f to Domain  
Return Domain 

Algorithm 6-2 Determines the domain of a displacement variable for which a minimum number of atoms 
respect a distance constraint. See Constraint 6.1 and text for more details. 

6.6 Optimising the Geometric Filter Algorithm 

The geometric filter retains only the models with the highest surface overlap score. If we can 

predict that a region in the translation search space cannot produce models with a higher score 
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than the lowest scoring model in the set, the algorithm can skip that region. This has no effect on 

the results, only on the efficiency of the computation. 

The first step in the optimisation is to calculate the total number of filled surface grid cells in each 

slice on the x;y plane as a function of the z coordinate. Searching through the z coordinate, we can 

use this information to check if the surface overlap can be greater than the minimum value on the 

set of models to retain. To do this, we compare the number of surface grid cells in each xy slice of 

the target and compare it with the corresponding slice on the probe, for a given displacement on 

the z axis. We add the minimum value for each pair of slices, and this gives us an upper bound for 

the surface overlap score of any model with this z displacement.  Figure 6-7 illustrates the 

procedure in two dimensions, replacing each xy slice with a single line for clarity. 

 3 
2 
11 
11 
8 
5 
1 
0 
0 
0 
0 
 

Probe 

Target 

0 
0 
0 
1 
4 
5 
4 
5 
15 
14 
5 
 

Minimum (P,T) 
 2,0 = 0 
11,0 = 0 
11,1 = 1 
 8,4 = 4 
 5,5 = 5 
 1,4 = 1 
 0,5 = 0 
 0,15 = 0 
 0,14 = 0 
Total  = 11 

 

Figure 6-7 Calculating the minimum overlap, for the surface contact score. The probe grids (core in grey, 
surface in light blue) and the target grids (core in grey, surface in dark blue). The vertical alignment 
represents a given displacement value for the vertical axis. The surface cell totals for the surface grids are in 
the two columns of numbers adjacent to the grids. The rightmost column shows the minimum value for each 
row. The total of 11 means that no model obtained by searching the horizontal displacement can have an 
overlap score greater than 11 for this vertical displacement. 

A similar procedure restricts the search in the y direction for each z displacement value, the only 

difference being that the values compared are the surface grid counts for the corresponding (y,z) 

grid rows in the given (y,z) displacement. 

To improve efficiency in the early stages of geometric filtering, when the set of models retained 

contains many low scoring models, we can impose a higher minimum contact score for an 

acceptable model. Chemera uses a default value of 300 for this parameter, because we can safely 

predict that the lowest geometric contact score in the models retained will be greater than this, and 

so this will only speed up the calculations without affecting the results. 
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6.7 Scoring 

Evaluating the selected models is the last task of the docking algorithm. The method evolved from 

the calculation of electrostatics and solvation parameters, to an aggregate function that was a 

linear combination of these two plus surface contact and side chain contact statistics, to the 

present form using a neural network to combine these four scores with a count of contacts 

between five amino acid groups. This section describes the algorithm as implemented in the release 

version (Palma and others, 2000). A new scoring method is under development, based on the 

results described on chapter 9. 

6.7.1 Side Chains Contact 

The side chains contact score is a measure of affinity of the amino acids at the interface. It is the 

sum of the frequency of the contact minus the expected frequency if there was no affinity. The 

frequencies are estimated from a database of high-resolution X-Ray structures (Singh and Thornton 

1992), and the contribution of each side chain contact is 

 AB B
AB

AX X

N N
S

N N
 

= − 
 

 (5.12) 

where SAB is the contribution of the contact of A with B, NAB/NAX the fraction of AB contacts in all 

contacts involving A, and NB/NX the frequency of amino acid B in the database. For random 

contacts these fractions have the same expected value. If the AB contact has a higher proportion, 

this indicates an affinity between A and B, and the score contribution is positive. A lower AB 

contact proportion indicates an unfavourable interaction and results in a negative score. 

6.7.2 Solvent Exclusion 

Solvation effects are an important factor in complex formation. To quantify these effects for each 

model, BiGGER calculates the area of the surface accessible to the solvent that was lost when the 

complex formed. Each amino acid is divided into several fragments, and each fragment has 

parameter specifying the solvation energy per surface area unit (Wang, Zhang, Scott 1995; Wang, 

Zhang, Li and Scott 1995).  

The area calculation is simplified, for this interaction score is only one of several that must be 

calculated for all 5000 models in each docking simulation. For each fragment in one docking 

partner that is close to other fragments in the other docking partner, the surface variation is equal 

to the cross section of the other fragment if these fragments are in contact, or zero if the fragments 
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are at a distance greater than 2.8Å (the diameter of a water molecule). If the distance is between 

zero and 2.8Å, the surface variation is calculated by a linear interpolation. 

6.7.3 Electrostatic Interaction 

To estimate the electrostatic interaction between the two docking partners, BiGGER uses the 

AMBER force field charges (Wang and others 2000; Cornell and others 1995) and a modified 

Coulomb model: 

 2
, ( )

i j
e

i j i ij

q q
V k

r c>

=
+∑  (5.13) 

where qi and qj are the atomic charges, and rij the distance between atom i and atom j. The factor k 

is a scaling factor that includes the dielectric contributions and the conversion to Cal/mol, and is 

331.98 e-2 Å2 Cal mol-1.  

One modification is to use a relative dielectric value proportional to the distance between the 

atoms, which makes the electrostatic potential inversely proportional to the square of the distance. 

This technique simulates the different dielectrics (water and protein) in solution, and is used in 

some force fields (Halgren 1996). The other modification is to add a constant to the distance 

measured. This constant (c) is 1.5Å, and serves to reduce the error from some atomic overlaps due 

to the soft docking algorithm, and to make the interaction score less sensitive to small differences 

in position that are below the precision of the docking algorithm. 

6.7.4 Global Score 

A neural network aggregates the four contact scores (surface contact, given by the geometric filter, 

side chain contacts, solvation, and electrostatics scores) and 15 additional side chain contact 

counts, between five categories of amino acids (see Table 1 on page 153 and chapter 9). These 

make an input vector with 19 values. The network is a fully connected, feed forward, neural 

network with 19 input neurons and one output neuron, and all neurons have a sigmoidal response. 

The global score is calculated from the response of the network, and is the percentage of correct 

models found in all models in the test set (see sub-section 9.1.3) that elicited a similar or higher 

response from the network. For example, a value of 9.8 means that 9.8% of the models in the test 

set with the same or higher output from the network were correct models. A model was considered 

correct if the RMSD from the known structure was below 4Å. 
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7 Algorithms in Chemera 

"Is that the truth?" 

"No, but it's a lot simpler." 

  Walt Kelly, in Pogo 

Much of modelling consists of simplifying reality. In molecular modelling, in particular, it is often 

necessary to sacrifice realism in order to visualise some aspects. Atoms are spheres, molecular 

structures are frozen, the solvent is a homogeneous background, and so forth. These 

representations do no justice to the complex dynamism of real molecules, but a realistic 

representation of a protein solution would be so complex as to be useless. 

The aim of Chemera, like that of other molecular visualisation applications, is to show simplified 

aspects of molecular properties. Chemera is the interface for PSICO and BiGGER, but is more than 

just the front end for these two algorithms. Work on the first versions of Chemera (then 

Cyberzyme) began even before the work on the docking algorithm (Krippahl and Palma 1996), and 

one of its main purposes has always been to display protein structures and estimate and represent 

protein properties, in addition to the analysis of docking results. This chapter explains some of 

these tools and algorithms. 

7.1 Structure Comparison 

Chemera compares structures by calculating the root mean square deviation (RMSD) of two sets of 

atoms. The RMSD value is the root of the mean of the squares of the distances between 

corresponding atoms in the two sets, and the minimum RMSD value, obtained by superposing the 

two structures, is a standard similarity measure. 

There are several closed-form solutions for comparing two sets of points in space (Eggert and 

others 1997; Horn B. 1987; Horn and others 1988; Walker and others 1991; and see Arun and 

others 1987 for a comparison). However, Chemera finds the rotation and translation coordinates 

minimising the RMSD using the conjugated gradient algorithm. The procedure is similar to the 

structure minimisation described in section 5.8, but without changing the torsion angles. The 

reason for this implementation in Chemera was expediency, since the algorithm for the 

minimisation was already implemented. 



72 Algorithms  

72 

Figure 7-1 illustrates the results with the structures of desulforedoxin (Archer and others, 1995) and 

desulfoferrodoxin (Coelho and others 1996, 1997), which contains a domain that is structurally 

similar to desulforedoxin. 

Figure 7-1 Desulforedoxin (orange) fitted to the 
desulforedoxin-like domain in desulfoferrodoxin (blue). 
Side chains are shown as thin lines, and the backbone as 
thick lines. The structures used were 1DXG (Archer and 
others 1995) and 1DFX (Coelho and others 1996, 1997). 

 

When necessary, Chemera can also determine the best sequence alignment using the Needleman-

Wunsch-Sellers algorithm (Needleman and Wunsch 1970; Sellers 1974). The user can also choose 

to calculate the RMSD on different sets of atoms, such as the α-carbons, backbone atoms, all 

atoms, and so forth.  

7.2 Clustering 

The function of the clustering algorithm is to form groups of similar complex models, from the set 

BiGGER generates. The similarity measure is the RMSD of the α-Carbons of the probe molecule, 

considering the target fixed in the same position for all models. This obviates the need for 

minimization, which is useful because the algorithm requires on the order of n2/2 measurements. 

The algorithm places in one group any model that is within a given RMSD from at least one 

element of the group. Algorithm 7-1 outlines this procedure. 
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Input 
 Rmsd: threshold RMSD value 
 Models: array model structures 
For n=1 to Length(Models) do 
 Models[n].Group=n 
For n=1 to Length (Positions)-1 do 
 For j=n+1 to Length (Positions) do 
  If ProbeRMSD(Models[n],Models[j])≤Rmsd) then 
   OldGroup=Models[j].Group 
   For k=1 to Length(Models) do 
    If Models[k].Group=OldGroup then 
     Models[k].Group=Models[n].Group 
   End For k 
 End For j 
End For n  

Algorithm 7-1 Clustering similar docking models. Each model is assigned to a group if the probe RMSD to a 
member of that group is within the threshold limit. 

Figure 7-2 illustrates the results, from a docking simulation of aldehyde oxidoreductase (Rebelo and 

others 2001) to a flavodoxin, from Desulfovibrio gigas. Section 10.2 has more details on this 

docking simulation. 

 

Figure 7-2 Two clusters of models for the docking simulation of Aldehyde Oxidoreductase (Rebelo and others 
2001), in green, complexed with an homology model for flavodoxin. 
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7.3 Complex Symmetry Score 

Proteins in living organisms are usually symmetric oligomers, due to evolutionary selection for 

stability, cooperativity, low solvent accessibility and other factors (Goodsell and Olson, 2000). The 

stability of these forms differs significantly from case to case, and often the only structure available 

is for the monomer. 

The frequent need to model homodimers led to the implementation of the symmetry score in 

Chemera. As Algorithm 7-2 illustrates, this is a simple measure of interface symmetry, 

corresponding to the root means square deviation in the distances of atom pairs. For each atom 

pair iAjB that are in contact, the algorithm adds the square of the difference between the iAjB and the 

distance for the complementary pair iBjA. For the perfectly symmetrical interface, this difference is 

zero for all atom pairs, and the score is zero. A higher score means the interface is less symmetric. 

At the moment, the algorithm can only handle dimeric structures, but the extension to higher 

oligomers is trivial, requiring only the identification of the correct atom pairs among the various 

protein chains.  

Input 
 MonA,MonB: Coordinates of the atoms in the two monomers 
 ContactDistance: Threshold value for atomic contacts 
Score=0 
Count=0; 
For i=1 to Length(MonA) do 
 For j=i to Length(MonB) do 
  If Distance(MonA[i],MonB[j])<ContactDistance then 
   Score=Score+Sqr(Distance(MonA[i],MonB[j]-Distance(MonA[j],MonB[i]) 
    Count=Count+1 
   EndIf 
  EndFor j 
 EndFor i 
Score:=Sqrt(Score/Count) 

Algorithm 7-2 Symmetry score 

Figure 7-3 shows two models of a reconstruction of the desulfoferrodoxin dimer (Coelho and others 

1996, 1997). The symmetric model has a score of 0.4Å, and deviates from the crystallographic 

structure by 0.3Å. The asymmetric model has a score of 19Å and deviates 16Å from the 

crystallographic structure of the dimer. 
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Figure 7-3 High and low symmetry complexes (left and right panels, respectively), from a docking simulation 
to reconstruct the desulfoferrodoxin dimer (PDB code 1DFX). Each monomer is shown in a different color. 

7.4 Evaluating Docking Constraints 

Chemera can score the models produced by BiGGER according to contacts or distances between 

atoms or residues. This is a useful and simpler alternative to constrained docking (section 6.5), 

allowing the user to try different scoring functions in the same set of models. 

The scoring algorithm can score each model according to the minimum or average distance 

between selected groups of atoms or residues, or the number of atoms in contact, or the number of 

residues in contact. The user can specify the contact distances and the groups to consider, and so 

adapt this score to a wide range of experimental constraints, from NMR titration data to cross 

linking. 

7.5 Electric Properties 

Electromagnetic forces dominate all events at the chemical scale, where gravity is too weak and 

nuclear forces too short-ranged to be of significance. Chemera includes tools to estimate and 

visualise several aspects of protein electrostatics, using the atomic charges of the AMBER force 

field (Wang and others 2000; Cornell and others 1995), and to estimate the dynamics of electron 

transfer using a simple algorithm (Beratan and others 1987). 

Chemera can display atomic or residue charges with user-defined colours, and estimate the dipole 

moment of a protein. The dipole moment estimate is the weighted sum of all the vectors from the 

geometric centre to each atom, with each vector weighted according to its charge. Figure 7-4 
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shows there representations for cytochrome 552 from Pseudomonas nautica, a small, polar protein 

(Brown and others 1999). Cythochrome 552 from P. nautica was crystalized as a dimer, but the 

figure only represents the monomer. 

 

Figure 7-4 Three representations of the electrostatic properties of cytochrome C-522. The left panel shows 
the individual atomic charges (red for negative, blue for positive), the central panel shows the total charges 
for each amino acid residue, and the right panel shows the dipole moment vector of this protein. 

Chemera can also calculate the electrostatic field surrounding a protein by solving the linear 

Poisson-Boltzmann equation with a multi-grid finite difference solver. The algorithm is based on 

the description by Klapper and others (1986), but with a correct implementation of the multi-grid 

solver.  

The Poisson equation (7.1) is a differential equation that describes the special variation of the 

electric field (φ) as a function of the dielectric constant (ε) and the charge distribution (ρ): 

 ( ) ( ) ( ) 0x x xε φ ρ ∇ ⋅ ∇ − = 
r r

 (7.1) 

The structure of a protein allows us to determine the charge distribution for the molecule, but not 

for surrounding ions in solution. To estimate the charge distribution due to these ions, we can use 

the Debye-Huckel estimate for the number of ions of one type (ni) in a unit volume based on their 

average number per unit volume in the solution (n0
i) and the electrostatic field in that region (φ). 

Equation (7.2) shows this relation, with k the Boltzmann constant and T the temperature (Debye 

and Huckel 1923). 

 ( ) /exp i xq kTo
i in n φ−=  (7.2) 

Since this is a Boltzmann distribution, the equation including the charge distribution due to the ions 

in solution is called the The Poisson-Boltzmann equation: 

 ( ) /
( ) ( ) ( ) exp 0i xq kTo
x x x i ii

q n φε φ ρ − ∇ ⋅ ∇ − − =  ∑
r r
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where ρ(x) is the charge density due to the known distribution of charges in the protein. 

In physiological solutions, the ions are almost exclusively Na+ and Cl-. In this particular case, 

considering only two univalent ions of equal concentration and symmetric charges, we can rewrite 

the Poisson-Boltzmann equation as equation (7.3): 

 ( ) ( ) ( ) ( )sinh( / ) 0x x i i x xq n kTε φ φ ρ ∇ ⋅ ∇ − − = 
r r

 (7.3) 

For weak electric fields, we can linearize the Poisson-Boltzmann equation by ignoring the higher 

terms in the Taylor series expansion of the hyperbolic sine function: 

 
3 5 7

sinh ...
3! 5! 7!
α α α

α α= + + + +  

and obtain equation (7.4).  

 ( ) ( ) ( ) ( )/ 0x x i i x xq n kTε φ φ ρ ∇ ⋅ ∇ − − = 
r r

 (7.4) 

For the finite-difference approximation, we integrate all terms in small cubic volumes in a grid. The 

integral of the last term (ρ) is the sum of the charges from the protein that lie inside the cubic grid 

cell. We can estimate the volume integral of the second term by assigning to the grid cell a value 

for the Debye-Hückel parameter κ0=qn/kT. This is zero on all cells inside the protein and a function 

of the ionic strength on all other cells, and the approximate value of the integral is: 

 3 3 3
( ) 0 0 0 0x

qn
d x d x h

kT
φ κ φ κ φ=∫∫∫ ∫∫∫;  

where h is the width of the cell.  

Using Gauss’s theorem, we can convert the volume integral in the first term into a surface integral 

and then calculate it by a finite difference formula. The integral becomes the sum over the six faces 

of the cube cell of the products of the dielectric constant associated with each face (εI), the 

difference between the field calculated for each neighbour and the cube cell (φi-φ0) and the width 

of the cell (h): 

 3 2
( ) ( ) ( ) ( ) 0( )x x x x i id x d A hε φ ε φ ε φ φ ∇ ⋅ ∇ = ∇ −  ∑∫∫∫ ∫∫

r r r ;  

Solving the complete equation for φ0 — the field value in the grid cell — we obtain: 



78 Algorithms  

78 

 0
0 2 2

0

i i

i

q

h

ε φ
φ

ε κ
+

=
+

∑
∑

 (7.5) 

The method described (Klapper and others 1986) uses a small initial grid to find an approximate 

solution for equation (7.5) at low resolution by the Jacobi relaxation method. This solution is 

interpolated to another grid with a higher resolution, this grid is relaxed to reduce the residual 

error, and then the process repeated until it reaches the highest resolution grid. According to 

Klapper and others 1986, the final solution is then obtained solely by Jacobi relaxation. 

The algorithm implemented in Chemera is similar, but makes full use of the multi-grid approach. 

The Jacobi relaxation method applies the residual error — the difference between the field value at 

each cell and the result of equation (7.5) — directly to the field value in each cell. Since all cells 

change, all values for the neighbouring fields in equation (7.5) change, and there is a new, but 

smaller, residual error. This way, Jacobi relaxation slowly reduces the residual. 

The multi-grid method not only uses the lower resolution grids to provide an initial guess, but also 

to estimate the best correction for each residual. The residuals are copied to the next lower 

resolution grid, which then determines the best correction to the higher resolution grid. The 

problem residual in the lower resolution grid is reduced in a similar way, using an even lower 

resolution grid to determine the best corrections to make. This way, the multi-grid algorithm 

improves convergence by using all the grids during all the calculation, and not merely to provide a 

first guess. See Press and others 1994 for more details on these numerical methods. 

Chemera can display the calculated field in different ways. Figure 7-5 shows three representations, 

again for the monomeric form of cytochrome C552 from Pseudomonas nautica. 

In addition to the electrostatic properties, Chemera can also estimate and display the dynamics of 

electron transfer within and between proteins. This is an important phenomenon, at the heart of 

photosynthesis, respiration, and many other parts of the metabolism of all living beings. Electron 

transfer in proteins is very hard to model, as the phenomenon can only be accurately described 

with quantum mechanics, which is very demanding for large systems like a protein. Furthermore, it 

is also dependent on redox potential differences, which depend on pH, mobility, local electric 

environment and other factors. A precise calculation of electron transfer pathways must take into 

account many factors, and is a complex and computationally demanding procedure (Balabin and 

Onuchic 1998, 2000). 
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Figure 7-5 Shows three representations of the electrostatic field surrounding the cytochrome C552 monomer 
from Pseudomonas nautical. The left panel shows the field in a plane, with the colour indicating the intensity 
of the field (red for negative, blue for positive). The centre panel shows isopotential lines at ±0.1Kcal/mol 
(solid) and ±0.01Kcal/mol (dotted). The right panel shows a three-dimensional representation of the ±0.1 
Kcal/mol isopotential surfaces. 

Chemera uses a very simple approach, considering three classes of electron transfer events – 

through covalent bonds, through hydrogen bonds, and through space – and adding the 

contribution from all possible paths to estimate the transition probability between an origin atom 

and any other atom in the structure. 

Figure 7-6 illustrates an application of this algorithm with a hypothetical model for the interaction 

between two desulfoferrodoxin dimers, built by docking simulations from the crystallographic 

structure of desulfoferrodoxin (Moura and others 1990; Coelho and others 1996, 1997). This model 

suggests how the protein exchanges electrons between the two different iron centres. 

The iron atom of one desulforedoxin-type domain A was chosen as the origin of the electron 

transfer, and in this configuration, the iron centre A is closest to the neelaredoxin-type centre of the 

other dimer (B) than to the neelaredoxin-type centre of the same monomer (C). The intensity of the 

red colour indicates a greater probability of electron transfer to the neelaredoxin-type centre of the 

other dimer than to the one in the same monomer. 
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Figure 7-6 Electron tunnelling within and between two dimers of desulfoferrodoxin (Coelho and others 1996, 
1997). The red colour indicates the probability of electron transfer from the iron atom at centre A, 
suggesting a possible pathway from atom A through B and to C. 
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8 PSICO: Protein Structure 

For those who intend to discover and to understand, not to indulge in conjectures 
and soothsaying, and rather than contrive imitation and fabulous worlds plan to 
look deep into the nature of the real world and to dissect it— for them 
everything must be sought in things themselves. 

 Sir Francis Bacon 

This chapter presents the results of some of the tests evaluating the performance of different parts 

of PSICO. This algorithm is still at an early testing stage, and less developed than BiGGER. Not only 

because work on PSICO began later, but especially because this algorithm is considerably more 

complex. The PSICO DLL, for example, contains some seventy thousand lines of code (ten times the 

number of lines in this book). With such a complex system, much could go wrong; and much did, so 

most tests had the objective of checking and correcting the implementation. 

Only recently was it possible to evaluate the performance of PSICO on more than a few test cases. 

PSICO was implemented with Delphi 5 (Borland Software Corporation ™). 

8.1 Binary Propagation 

This section evaluates the propagation of binary distance constraints using the algorithm described 

in section 5.2 (Krippahl and Barahona 1999, 2002; Krippahl, Trosset and Barahona 2001). The test 

set consisted of 182 protein chains of known structure selected from the SPIN-PP database (see 

section 9.2 for more details on this database). Table 2, on page 153, shows the PDB codes and 

chain identifiers for these strucures. 

The SPIN-PP database is a protein interface database, but the structures it contains are non-

redundant, having no more than 70% sequence homology with any other structure in the database, 

which made it a good source for structures with which to test PSICO. 

Chains belonging to the same oligomer as another selected chain were rejected, as were those with 

gaps in the residue sequence or other problems. The 182 chains used were those that could be 

readily interpreted by the PSICO DLL routines with no problems. 

The testing program generated a network of distance constraints for each structure. For each atom 

pair belonging to different residues and with a distance of 6Å or less, the testing program added 
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the distance between the atoms as a constraint with a probability of 25%. This is approximately 

the limit where random constraint generation can produce enough constraints to specify a globular 

structure, as previously determined by experiments in a case study (Krippahl 1999). The upper and 

lower limits for each distance constraint were, respectively, the measured distance plus or minus 

one Ångstrom. 

Figure 8-1 shows the results of these tests. The left chart shows the RMSD from the target structure 

for each PSICO model, plotted against the chain size in residues. All RMSD values are for α-carbon 

deviations. The right chart shows the computation time scaled to a 1GHz PC. 
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Figure 8-1 RMSD from the target structure and computation times for the 183 test structures. Computation 
times are scaled to a 1GHz PC. The red and green circles indicate the structures shown on Figure 8-2. See 
Table 2, page 153. 

The computation time increases with the square of the size of the structure (illustrated by the 

quadratic trend line on the computation time chart), which is as expected. The RMSD of the PSICO 

model from the target structure also seems to increase as the size of the structure increases. This is 

also not surprising, but the large variation in RMSD values is due to more than simply the size of 

the structure. 

Figure 8-2 illustrates the major factor in these results, showing a small protein whose PSICO model 

was very different from the target (23Å RMSD) and a large protein for which the model was fairly 

accurate (6Å RMSD). The small protein is a DNA binding protein (Wilson and others 1995; PDB 

code 1FJL) with two long, extended, segments. Short-range constraints like the ones simulated 

during this test are unable to restrict the mobility of these segments, which leads PSICO to place 

them in orientations that, though consistent with the constraints, are not similar to those in the 
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target structure. The RMSD for the region where the chain folds and short-distance constraints can 

specify the structure is less that 4Å. The flexible extremities account for most of the 23Å deviation. 

 

Figure 8-2 Two structures illustrating the performance of binary distance constraint propagation in PSICO. 
The left panel shows the target structure (in blue) for a DNA binding protein, PDB code 1FJL (Wilson and 
others 1995) and the PSICO model in red. The right panel shows the target structure of a 1,3-Beta-
Glucanase (Varghese and others 1994), PDB code 1GHS, in blue and the PSICO model in red. 

The second example is the opposite situation. This protein, 1,3-Beta-Glucanase (Varghese and 

others 1994; PDB code 1GHS) is a tightly packed globular protein. Since the distance constraints 

specify the structure to narrow limits, the PSICO model is close to the target structure, with a 

deviation of only 6Å for a structure with 304 amino acid residues. 

These two examples are marked in Figure 8-1, a red circle indicating the DNA binding protein and a 

green circle the position of the Glucanase on the chart. It is interesting to note that the Glucanase 

model was both the most accurate and the fastest to compute for a structure of that size. This is 

not surprising, for the more constrained the structure the more efficient propagation will be and, 

other things being equal, the faster PSICO can calculate the model. The interesting aspect is that 

this is the inverse of what happens with the commonly used local search methods, like simulated 

annealing. In these, a greater number of constraints results in a longer computation and in an 

increased probability of being trapped in local optima. 

8.2 Group Propagation 

This section describes the performance tests run on the group propagation algorithm (section 5.3), 

and comparisons with algorithm to propagate binary distance constraints (section 5.2). 
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The first test was on set of random groups of block domains, which each algorithm had to reduce 

by propagation. Each group was generated creating a random group of points, uniformly 

distributed in a cube of 8 volume units per point. For example, for a group of ten points, the points 

were distributed in a cube of 80 volume units. The coordinates of the points provided one group 

constraint, and a set of Nx(N-1)/2 distance constraints specifying all distances between atom pairs. 

The upper limit for each domain was the coordinate value of the respective atom plus a uniformly 

distributed random variable ranging from zero to two units, and the lower limit the coordinate 

value minus a similar random variable. Repeating the process for all three directions generated a 

set of random domains that included the position of the atom, thus ensuring a consistent set of 

domains. 

The binary distance constraints were propagated to arc-consistency (AC), as described in section 

5.6 (see also section 3.2). The group propagation algorithm used 10º steps for the rotation searches 

(see section 5.3). Figure 8-3 the propagation times and the final domain volumes for both 

algorithms.   
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Figure 8-3 Propagation times and final domain volumes for arc-consistency in binary distance constraints and 
group propagation for a randomly generated group. Times are in seconds for a PII at 300Mz running 
Windows. Volumes are arbitrary units. 

Each point on the chart corresponds to the average of 30 independent runs. In general, the group 

propagation algorithm is more effective than enforcing arc-consistency on a network of binary 
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constraints, even using all constraints, except for very small groups. For small groups, less than 10-

20 atoms, group propagation is only slightly more effective than arc-consistency on binary 

constraints. For groups of over 20, the final domains with group propagation are an order of 

magnitude smaller than for arc-consistency of binary distance constraints. 

The difference is even greater with more structured groups. Figure 8-4 shows the results of a 

similar experiment, but using a spiral structure with a radius of one unit, a step of two units per 

turn, and three points per turn. This approximates a α-Helix, a common structural motif in proteins, 

which has 3.6 residues per turn and approximately the same dimensions in Ångstrom. 

Spiral (Alpha-helix)
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Figure 8-4 Propagation times and final domain volumes for arc-consistency in binary distance constraints and 
group propagation for a spiral generated group, simulating an α-Helix structure. Times are in seconds for a 
PII at 300Mz running Windows. Volumes are arbitrary units. 

This domain reduction has a significant time cost for small groups, although, for large groups, 

group propagation is both more effective and faster. The reason for this cost in smaller groups is 

that, with little or no domain reduction, there is also no pruning of the rotational search. The 

interesting feature is that, the more the domains can be reduced, the faster the group propagation 

algorithm completes the search. This inverse correlation between domain pruning and computation 

time suggests that heuristics can make group propagation very efficient. Rules like a time limit for 

the propagation or checking the pruning on the ϕ rotation by the z limits are simple and effective 
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ways to use group propagation, because it is fastest when it is the most effective at reducing 

domains. 

Furthermore, though AC on the binary constraints is about two orders of magnitude faster on 

average, the difference between the minimum times is of only one order of magnitude for the 

smallest groups, and with groups of 7 atoms the minimum time for group propagation is already 

lower than the average time for AC on the binary constraints. Finally, these tests were run without 

the optimisations described in sub-sections 5.9.4 and 5.9.5. These results suggest that, with 

structured groups, group propagation can both increase pruning and decrease computation time if 

properly applied with moderate or large groups. However, with small groups, such as those 

normally formed by the more rigid parts of amino acids, group propagation should be used more 

intelligently than as shown in Algorithm 5-9. 

Another intended application of this algorithm is the integration of structural data from other 

sources, which can complement the experimental NMR constraints. These can be from secondary 

structure prediction (α-helices, β-sheets) or from homology modelling, for example, and can 

involve large rigid groups. As shown above, the group propagation algorithm is especially effective 

in these cases. But its use is not restricted to domain reduction; it is also useful for detecting 

inconsistencies, which is necessary to determine if the theoretical models assumed are compatible 

with the experimental data. 

The test for this hypothesis was to change the coordinates of the points in each group after  

generating the constraints for the propagation algorithms, and then generating the domains from 

the altered coordinates. Each x, y, and z coordinate was replaced by a uniformly distributed random 

value within a given distance of the original value.  

This simulated a situation where one set of constraints (e.g. from experimental data) reduced the 

domains to the current random configuration, and another constraint (e.g. from homology 

modelling) specifies a different configuration for the atoms. Thus the domains defined a structure 

that differed from the one that generated the constraints to test, and the difference could be 

controlled by the range of the random variable used to modify the coordinates of each point. 

Figure 8-5 shows the percentage of failures detected as a function of this displacement parameter 

for groups of 20, 10, and 5 atoms. The results show that the group propagation algorithm can 

detect inconsistencies more reliably. Though the difference in this test is in the displacement 
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necessary to make the algorithms detect a failure, in practice this will also translate into detecting 

the failure sooner when testing different sets of constraints for consistency. 
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Figure 8-5.Percentage of detected failures as a function of the maximum displacements of the atom 
coordinates. The figure shows three different group sizes (5, 10, and 20), comparing the binary arc-
consistency algorithm implemented in PSICO with the group propagation described here. 

This is a potentially useful feature, because it can provide the ability to screen a database of 

structures from homology candidates, fragments, secondary structure prediction (theoretical or 

even from the NMR data itself) and other sources to find structures compatible with the data 

available. This can assist the research when the data is incomplete, such as during the assignment 

of cross peaks. 

These preliminary results indicate that the group propagation algorithm is very efficient at 

detecting inconsistencies, because if the rigid group cannot fit the domains, the rotation searches 

are always significantly pruned (often completely) and the algorithm, in this case, runs very quickly. 

8.3 Local Search Refinement 

The final stage of PSICO consists in refining the approximate structure built by the constraint 

programming stage. Section 5.8 describes the local search algorithm, and this section gives an 

example of applying PSICO to a test case with real data. The target structure is desulforedoxin (PDB 

code 1DXG, Archer and others 1995) and the data is a set of NOESY constraints provided by Brian 

Goodfellow (Goodfellow and others 1998). Figure 8-6 shows the result. 
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Figure 8-6 PSICO model for desulforedoxin using 
experimental NOESY data (Goodfellow and others 
1998), shown in red, compared with the 
crystallographic structure of desulforedoxin, in blue 
(PDB code 1DXG, Archer and others 1995). 

 

Desulforedoxin is a dimer, consisting of two identical monomers of 36 residues each. It contains 

two iron-sulphur centres, with one iron atom coordinated to four cysteines in each monomer. 

Ignoring the less constrained extremities of the two chains, the for the of the PSICO model RMSD is 

below 3Å. This is a significant improvement over the solution obtained in the constraint processing 

stage, with a RMSD of 6Å. The complete calculation took approximately a minute, with 15 seconds 

for the initial stage and 45 seconds for the local search. These computation times include a 

significant overhead with diagnostic and debugging routines. 

8.4 Unresolved Issues 

At the time of writing, there are still several problems to solve before applying PSICO to real 

problems. The value and variable enumeration heuristics (section 5.7) seem to be inefficient, as the 

performance is similarly poor for a wide range of alternatives and combinations (Marco Correia, 

MsC thesis, forthcoming).  

The integration of the group and distance propagation algorithms is not straightforward, for the 

group propagation algorithm can be costly if applied indiscriminately. For large groups, such as in 

testing homology modelling candidates, there are no problems; the extensive pruning and the 

speed with which group propagation handles large groups make its use a simple choice in these 

cases. But it is still not clear what is the best method to take advantage of the many rigid groups of 

three or four atoms that make up a protein. 
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Finally, the local search optimisation algorithm is still mostly an unknown factor. The current 

implementation is a simple, naïve, approach, both inefficient and not adequate to producing 

multiple structures that can give information on the tightness of the constraints. Section 10.8 

presents a more accurate minimisation algorithm, based on multidimensional scaling techniques, 

that could replace the current torsion angle minimisation using conjugated gradients. Another 

alternative would be to apply a more sophisticated combination of simulated annealing and 

conjugated gradient minimisation, as described by Guntert and others (1997). 
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9 BiGGER: Protein Docking 

Errors using inadequate data are much less than those using no data at all. 

Charles Babbage 

Several factors make it difficult to properly optimise and test docking algorithms. The large number 

of possibilities in protein-protein interaction requires the examination of a wide range of cases. 

However, the more relevant cases involve weak interactions, and weakly biding complexes are the 

least well known of all structures. The computational demands of protein docking strongly limit the 

experimental possibilities 

This chapter describes the parameterization of version 2.0 of Chemera and BiGGER (Palma and 

others 2002), and the most recent approach, still in progress, aimed at correcting weaknesses 

identified in the previous version and at improving the performance of the algorithm. Chemera and 

BiGGER were implemented with Delphi 5 (Borland Software Corporation ™). 

9.1 Chemera and BiGGER Version 2.0  

Though the docking algorithm (Chapter 6) remained constant through these years of development, 

some features and parameters have undergone almost constant change. This section briefly 

describes the parameters of the release version of Chemera (Krippahl and Palma 2001), and 

provides a baseline for the more recent results and methods, described in the following sections. 

Most of this monograph provides the reader with only the more recent results and methods 

developed, despite being outnumbered by the many versions they superseded. But this case is an 

exception. The method in version 2.0 is publicly available, and so it is important to point out the 

problems identified during development, two years of application, and the work in progress to 

improve it. 

This section will have a somewhat negative outlook, because its purpose show what can be 

improved. It will focus on the problems and mostly gloss over the good features of version 2.0 

(Krippahl and Palma 2001; Palma and others 2002). So it is best to point out at the start that the 

parameters and filters described in this section have been successfully used to dock many different 
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complexes and that the docking applications shown on Chapter 10 all refer to this version. It is 

knowing that it works that we will look at what is wrong and how to fix it. 

9.1.1 The geometric docking parameters 

Until very recently, there were doubts about the choice of values for the geometric filter 

parameters. The decisions to use a 1Å resolution and radius modifier, a 12º or 15º rotation step, 

and to include hydrogen atoms were based on a very limited analysis (Krippahl 1996) of two test 

complexes: desulforedoxin (Archer and others 1995) and horse haemoglobin (Bolton and Perutz 

1970). Despite these being commonly used values in docking algorithms, and despite many tests 

and applications of BiGGER never revealing problems with these parameters, it was still desireable 

to test these values with a more systematic analysis. Section 9.3 shows the results of such an 

analysis, which confirms the initial choice of all parameters except the use of hydrogen atoms, 

which does not seem to benefit the algorithm. 

9.1.2 The need for additional filtering 

If there is no correct model in the set with the highest surface contact score, we cannot use the 

geometric filter alone to select the likeliest models. An additional filter is necessary to exclude 

enough high ranking incorrect models to allow a lower ranking correct model into the final set. For 

each candidate model with a surface contact score high enough to enter the final set, the 

additional filter examines the side chain contacts to determine if the model is likely to be correct. 

The model enters the final set only if accepted by the side chain contacts filter. 

Unlike the surface contact filter, this additional filter is not meant to retain the best N models, but 

to evaluate each model individually, either accepting it or rejecting it. Thus, the final set will 

contain the models with the highest surface contact score of all models accepted by the filter. 

There are several alternatives proposed in the literature, using electrostatics, biochemical 

information, experimental data, and solvation effects (Walls and Sternberg 1992; Braci and others 

2003; Guilquin and others 2002; Morelli and others 2000). The methods based on experimental 

data or biochemical knowledge are superior, but not applicable to all cases (see sections 6.5, 7.4, 

10.3, 10.4 and 10.5), while the remaining methods do not result in dramatic improvements and are 

often constrained by the need for computation efficiency. 

Therefore, we opted for machine learning techniques to identify features that distinguish correct 

models using the contact between the amino acid residues at the interface (Palma and others 
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2000). The choice of amino acid contacts as the determining factor was based on the assumption 

that local interactions have the greater role in complex formation. Electrostatic interactions can 

have a long-range effect, and it may be an advantage to include information on the electric field or 

polarity on the filter (Norel and others 2001). Another potentially important factor is the free 

energy – both entropy and enthalpy – of conformation change during complex formation (Searle 

and others 1992), but this is both difficult to estimate and possibly not applicable in a rigid docking 

algorithm. And while solvation effects are fundamental for protein folding and interaction, they 

have been successfully modelled by considering the solvent exposure of amino acid residues, which 

is a similar approach to the side chain contact criterion BiGGER uses to evaluate docking models. 

Although none of these simplified approaches can truly model the entropy of solvation, the side 

chain contact approach should be as successful as the more common approaches to modeling 

solvation effects. 

Since BiGGER uses a search in real space, the additional filter needs only be applied to the minority 

of models that are candidates for the final set. All models with a surface contact score below the 

lowest of this set can be ignored. Compared to Fourier transform methods, this allows a greater 

flexibility in the type of filter to use, both because computation efficiency is not so critical and 

because the filter does not have to be encoded into a single correlation matrix (see Gabb and 

others 1997 or Walls and Sternberg 1992 for an example), although it is possible to improve the 

efficiency of some FFT approaches. 

This section briefly describes the parameterization of the original contact filter, as implemented in 

the release version of Chemera, and focuses on the more recent work in a new filter, using a more 

methodical approach and better datasets to improve the results. 

9.1.3 The data set for the contact filter and the global evaluation score 

Table 3, on page 155, shows the PDB codes and chain identifiers for the structures used to 

generate the training set, forming 88 known complexes. This was the training set for the original 

side chain contact filter and for the global scoring network (sub-sections 9.1.4 and 9.1.5). Table 4, 

on page 155, lists the structures used to generate the test set. These test sets contained several 

redundant structures, where the same complex was formed by using the bound forms of the 

partners, the unbound forms, or one bound and one unbound partner. 

The training sets were generated by docking simulations using a full rotation search at low angular 

resolution, with angular steps of 30º, 45º or 180º, depending on the computers available. The test 
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sets, with only 20 complexes, were generated with a full rotation search at 15º of angular 

resolution.  

The docking simulations to generate training and test sets for the side chain contact filter used only 

the geometric filter with the soft docking modification (sections 6.2 and 6.3), while the simulations 

to generate the sets for the global score used both the geometric filter and the side chain filter, and 

the soft docking modifications (sections 6.2, 6.3, and 6.4). Thus, the global score as implemented 

on Chemera version 2.0 is best suited to soft docking with filtering, and the side chain contact filter 

for soft docking. 

9.1.4 The original side chain contact filter 

Our first side chain contact filter (Palma and others 2000) was motivated by the effects of the soft 

docking modification (sections 6.3 and 6.4), and was intended to balance the increase in incorrect 

models that threatened to exclude correct models from the final set. We opted for a Self-Organized 

Map (Kohonen 1982, in Haykin 1999), as a first approach to analysing potential features in a 

limited dataset. The training set consisted of 88 protein complexes, but was highly redundant, 

containing both bound and unbound versions of the same proteins and many homologous docking 

partners (see Table 3, page 155 ). 

The Self-Organised Map (SOM) had a dual purpose: to be a classifier, and to find a pattern in the 

contacts of correct and incorrect models. The initial hypothesis was that the patterns of amino acid 

contacts at the interface could give us not only information on the accuracy of the model but also 

on the nature of the interaction. The SOM could thus be used both as a classifier to distinguish 

correct from incorrect models and to identify the driving force in the formation of the complex, such 

as solvation or electrostatics.  

Unfortunately, the limitations on both the quantity and the quality of the data available presented 

some difficulties, and the results did not rise to the expectations.  

A major problem was the dimension of the input vectors needed to encode amino acid contacts. 

With 20 amino acid types there can be 210 different contacts; an input vector of this dimension 

would be excessive with only 88 structures.  

Our solution was to partition the amino acid types in five categories (Table 1, page 153), according 

to structural and chemical similarity. By considering only the category and not the amino acid type, 
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the contact vector was reduced to 15 values (the number of different pairs of five types). This 

vector is the V15 contact vector, to distinguish it from the V210 contact vector that uses all 20 

amino acid types, and the V28 contact vector (see below) that groups amino acids into seven 

overlapping categories according to physical and chemical parameters (Table 7, page 156). 

On hindsight, a Support Vector Machine (SVM) would have been a better classifier, since the main 

objective was to partition the models into two categories (correct and incorrect) using a limited 

dataset for learning. But inexperience and the possibility that the SOM could give us an additional 

insight into the type of interaction led to choosing this classifier. 

Despite these limitations, the combination of the soft docking modification and this SOM to filter 

incorrect models resulted in an improvement in docking unbound structures. In a test of twelve 

complexes using the unbound structures of the partners, the original surface contact filter (section 

6.2) retained correct models for four complexes. With the soft docking modification (section 6.3), it 

was successful in seven cases, including the first four. The combination of soft docking with the 

SOM filter for side chain contacts (section 6.4) was successful in an additional two cases, for a total 

of nine successes out of twelve (Palma and others, 2000). 

More importantly, our experience implementing the original side chain contact filter showed us the 

problems and difficulties of designing such filter. We assumed a criterion for determining side chain 

contact (6.4) without comparing it to alternatives, and our choice for the V15 contact vector was 

dictated mainly by limitations in the data set and in the computing capabilities we had available. 

Lack of experience led to choosing a sub-optimal architecture for the classifier. The limited size of 

the data set used forced us to do without an independent validation set, and the redundancy in the 

data increased the correlation between the training and test sets. Finally, the data set was biased 

towards the more stable complexes. As a result, the performance of the algorithm decreased in 

some cases, like the weak interactions in electron transfer complexes, leading us to set the soft-

docking and side chain filter modifications as an optional alternative to the initial hard docking 

algorithm, without additional filtering. But identifying the problem is the first step to solving it, and 

it is often the hardest. This was perhaps the most important benefit of our first attempt at 

implementing the side chain contact filter. 

9.1.5 Global score 

BiGGER uses a neural network to calculate the global score. As described in sub-section 6.7.4, this 

is a forward feeding network with two layers, 19 input neurons and 1 output neuron. The input 
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vector consists of the V15 contact vector plus the four interactions scores of surface contact, 

electrostatics, side chain affinity and solvation effects (see section 6.7).  

The network was trained with backpropagation to respond with a value of 0.9 to a model that 

deviated less than 4Å from the correct structures, and with value of 0.1 to the other models. The 

training set contained 43,500 models, 500 from each of 87 different complexes (one complex, PDB 

code 4CPA, was rejected at this stage because of problems with the structure). These models were 

generated by docking simulations with angular steps of 180º, 45º, and 30º. The test set contained 

100,000 models, 5,000 from each of 20 complexes, and was generated by docking simulations with 

an angular step of 15º. 

The global score is an estimate of the probability that a model is correct, given the response of the 

network. BiGGER calculates the global score from the output of the network on the test set models: 

for a network response of x, the global score is the number of correct models in the test set with 

responses ≥x divided by the number of models with responses ≥x. For example, there are 11,158 

incorrect models 1,448 correct models with a network response of at least 0.8 in the test set. The 

global score for a network response of 0.8 is 1148/(1148+11158)=9.3%. 

The idea behind this conversion is not to give an accurate estimate of the probability but to give an 

intuitive score with a linear scale with a simple visual representation, because the error associated 

with this global interaction estimate makes it more useful as a means to examine large groups of 

models.  

Figure 9-1 shows a histogram of the rank of the highest scoring correct model (below 4Å RMSD 

from the complex structure) for each complex in the test set.  
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Figure 9-1 Ranking of the highest scoring model with less than 4Å deviation from the target complex for the 
20 complexes in the test set. 

In eight cases the highest scoring correct model was among the 20 highest scoring models, but in 

the remaining 12 complexes correct models were only found at lower ranks, down to 469 in the 

worst case. 

9.2 The SPIN-PP Dataset 

The SPIN-PP (Surface Properties of INterfaces - Protein Protein Interfaces) is a database of 6454 

interfaces between two protein chains found in the PDB structure database. Each record includes 

the PDB code for the protein structure and the designations of the two chains in contact, plus 

information on several properties of each chain and the interface surface. The SPIN-PP database 

includes a non-redundant dataset containing no interfaces with more than 80% sequence 

similarity, and this set of 1029 interfaces from 760 protein structures was the chosen source for 

adjusting the added radius, angular step, and side chain contact filter parameters.  

Though this set is representative of known protein chain interfaces, the set of known protein chain 

interactions is itself strongly biased towards stable complexes, because these are more likely to co-

crystallise. Furthermore, a complex prediction algorithm is most useful in those cases where 

experimental determination of the complex is most difficult, which means that the set of cases 
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where BiGGER will tend to be used will have the opposite bias, towards weak interactions and 

unstable complexes. 

This consideration determined the first choice in processing the dataset, which was to use as 

docking partners only the chains specified in the SPIN-PP database records, and not to dock one 

chain to the remainder of the protein structure. The latter would be more realistic for recreating the 

protein stucture, because the placement of each monomer in a multimeric structure is not 

determined by a single interaction but by the total interaction with all monomers it is in contact 

with. However, it would aggravate the bias for strong and stable complexes. For the geometric 

complementarity filter, taking one chain and docking it with the remaining structure would often 

be as simple cutting a slice off a cake and trying to put it back again, and not at all representative 

of docking two weakly binding proteins. 

Unfortunately, using only the two chains specified in each interface record raises its own problems. 

For one, chain labels are somewhat arbitrary; often the same designation is used for all chains in a 

group (such as a protein that can be found isolated from the remaining chains) or all identical 

chains in a multimer structure, which raises the question of which chain or chains to use. For 

example, using all chains labelled “A” in a multimeric protein may result in an unrealistic structure 

formed by several separated chains, placed far apart; a most unlikely docking partner. 

Another problem is that the protein chain interfaces are defined by the distance between the two 

chains involved, and do not necessarily reflect an affinity between chains. Their proximity may be 

due to an artefact of crystallization or caused by interactions with other chains in a multimer 

structure. Bovine F1-ATPase (Lutter and others 1993) provides an example of the latter case. As 

Figure 9-2 shows, the interface between monomers F and D, one of the 1029 interfaces in the non-

redundant subset of the SPIN-PP database, is unlikely to represent an interaction between these 

protein chains. 

Finally, within such a diverse set of 790 structure files containing multiple protein chains and 

prosthetic groups, there was likely to be a number of other problems derived from the 

particularities of each structure. 
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Figure 9-2 Shows monomers D (red) and F(green) of 
Bovine F1-ATPase (PDB code 1BMF). The remainder 
of the protein is shown in grey. It is more likely that 
the placement of these two monomers is 
determined by interactions with other chains in the 
protein than by a mutual affinity. 

 

 

One possible way of solving these problems would be to examine each protein structure and 

manually select the correct chains. Though a laborious process with such a large number of 

structures, this was feasible, and was the solution we used in the first attempts to adjust the 

docking parameters (Palma and others, 2000). However, there is a serious drawback to this 

approach: human decisions on a case-by-case basis are difficult to reproduce, and would inevitably 

result in the criteria changing across the sample. Though this approach may be useful to get a first 

idea on the likelihood of an hypothesis (such as the simulation of experimental data in Krippahl 

and others 2003), the author felt a more precise and reproducible approach was necessary to fine-

tune parameters from statistical information, and so wrote a program to process the non-

redundant SPIN-PP dataset automatically. 

On the first pass, the program selected only the first amino acid chains in each protein structure 

with each of the chain identifiers specified by the SPIN-PP interface records. For example, if the 

interface was between chains A and B, the program would use only the first amino acid chain 

labelled A and the first amino acid chain labelled B. This excluded all prosthetic groups and 

duplicate chains, and 68 interface records where the SPIN-PP chain identifiers referred only to 

prosthetic groups or did not correspond to identifiers on the PDB files. 

On the second pass the program docked all chain pairs using a 1Å resolution grid, 1Å added radius 

value, and without rotation. The choice for the added radius parameter was determined by a 

preliminary analysis, similar to the one described in section 9.3. Only chain pairs with at least one 

model below 3Å RMSD from the correct configuration in the best 100 by the geometric score were 
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kept. This eliminated those interfaces that did not reflect a real interaction, but were due to other 

factors such as crystallisation, misidentification, or interaction with other monomers.  

Some of the 136 interfaces eliminated at this stage could have represented real interactions, 

eliminated because geometric surface contact was not optimised. This could make the dataset 

biased towards those cases where the geometric filter works best. However, the criterion of finding 

a good model within the highest 100 without rotation is very permissive; extrapolating to a full 

rotation search, this is equivalent to keeping from half a million to more than a million models, 

depending on the angular resolution used. This is two to three orders of magnitude over the 

practical limit of one to five thousand models. Furthermore, the chains were the correct orientation 

and in the bound conformation, which greatly increases geometric complementarity. Finally, only 

some 15% of the dataset was rejected in this stage, and part of those for legitimate reasons, so the 

bias introduced in the set should not have been significant. 

In any case, we cannot expect the docking algorithm to work where surface contact is not 

significant, nor can we generate a useful interface dataset without introducing some bias that 

distinguishes the relevant interfaces. Thus, the selected dataset consisted of 822 chain pairs found 

to interact in known structures, with significant surface contact, and in which no pair had more 

than 80%  similar in sequence to any other pair in the set. 

9.3 Rotation Search and Geometric Filtering 

Three parameters characterize the geometric search and filter (sections 6.1 and 6.2): the grid 

resolution, the added atomic radius, and the angular search step. In addition, many docking 

algorithms don’t use Hydrogen atoms in their representations of protein structures. This is justified 

by the small size of hydrogen atoms, and by their absence from protein structure files. 

The main problem in determining the optimal value for the three numerical parameters is their 

interdependency. Grid resolution affects the overall shape of the geometric grid, which in turn will 

affect the ideal value of the atomic radii function and sensitivity to the orientation of the probe. 

Even sampling only ten values for each parameter, a total of one thousand runs for each complex 

used would be necessary to evaluate all combinations. This was beyond the available 

computational capabilities, so some compromises were necessary. 
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The first was the arbitrary choice of 1Å for the grid resolution. This may not be the best 

compromise between accuracy and efficiency, but it is difficult to weigh one factor relative to the 

other. There was no apparent overall ratio to optimise in order to decide on the best grid resolution 

value. Furthermore, grid resolution affects all other parameters; a comprehensive search for the 

best value for this parameter would be prohibitive, as it would require the examination of all 

combinations. Nevertheless, experience with a few other values, such as 1.2Å and 2Å, suggested 

that 1Å is the best choice, and since 1Å is the diameter of the smallest atom, there should be little 

gain in using a finer resolution. 

The other concession to computation limitations was not to consider the interaction of the added 

radius parameter with angular sensitivity, by assuming them independent factors. This is a 

reasonable assumption, since angular sensitivity should be more dependent on the overall shape of 

the docking partners than on small adjustments of the order of fractions of an Ångstrom, but an 

untested assumption nonetheless. 

The experiments explored the added radius parameter between 0Å and 2Å, with and without 

hydrogen atoms. The data suggested not using hydrogen atoms and an added radius value of 1Å; 

these were the parameters used to explore the angular sensitivity to rotations between 0º and 20º. 

Each data point consisted of docking runs on all 822 chain pairs, using a fixed orientation, which 

was either the original relative orientation of the chains in the protein structure for the added 

radius and hydrogen atoms tests, or a rotation around the X coordinate axis between 0º and 20º. 

The axis of rotation was an arbitrary choice; without any reason to expect a correlation between 

the choice of coordinate reference frame and chain orientation, this is effectively identical to 

choosing a random rotation axis, and this simplified the implementation and the calculations. 

It would have been best to optimise these parameters with a full search and retaining a set of one 

to five thousand models, the number of models kept on previous versions of the algorithm, which 

experience indicated was a good compromise between a practical sample a the risk of losing the 

correct models. However, a full rotational search can take from a few hours to a few days, 

depending on the angular resolution, and with 822 complexes to model for each data point, this 

would have been impractical. 

Figure 9-3 shows the result for the optimisation of the added radius parameter. The results indicate 

optimal values of 1Å without hydrogen atoms and 0.8Å with hydrogen atoms, and that the 
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addition of hydrogen does not improve the success rate. These results differed from those that 

determined the use of a 1Å added radius with hydrogen atoms in previous versions of BiGGER 

(Krippahl 1996, Palma and others 2000), because the smaller datasets used were insufficient to 

detect the small difference in performance (5% lower success rate when using hydrogen atoms at 

1Å added radius). 

Figure 9-3 Shows the variation in the 
fraction of interfaces modelled with 
success as a function of the added 
radius parameter, both with and 
without hydrogen atoms. An 
interface was successfully modelled if 
there was at least one model at less 
than 3Å RMSD from the known 
structure within the 10 highest 
scoring models. Only the surface 
contact score was used in this test, 
and the chains were placed in the 
correct relative orientation. 

 

Performance was measured by the number of interfaces where a close model (less than 3Å RMSD) 

was present within the highest ten ranking models using the surface contact score. With a 0.8Å 

added radius and hydrogen atoms, 732 of the 822 interfaces met this criterion. Using a 1Å added 

radius and no hydrogen atoms the number was 738. This improvement is statistically insignificant, 

being smaller than the standard deviation for this binomial distribution (n=822; p=0.9; σ=8.6). 

However, the difference at an added radius value of 1Å for both cases is significant (42 cases, five 

times the standard deviation). 

Since the addition of hydrogen atoms seems not to improve performance, BiGGER will disregard 

hydrogen atoms in future versions. The 1Å value for the added radius parameter will remain. All 

following tests used a 1Å added radius value and no hydrogen atoms. 

The last parameter for the geometric filter is the angular search resolution. Since the angular step 

affects computation time, we cannot simply choose the value that guarantees the greatest success 

rate. The time complexity is on the order of the cube of the angular resolution (halving the angular 

step increases computation times eightfold), which makes it necessary to find a compromise 

between effectiveness and computation cost. 
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The most rigorous way to determine the effects of angular resolution would be to run the complete 

simulation for each pair of protein chains and for each value of the angular resolution to test. 

However, this would require on the order of a year of CPU time, so the effects must be estimated 

from other data. 

Aside from the practical issue of the computational cost of smaller angular steps, there is the 

matter of finding an accurate model in the final set of models retained. Using an elementary 

equality in probability, we can break down the probability of finding and retaining at least one 

accurate model into two components: the probability of finding at least one accurate model during 

the search, and the conditional probability that at least one accurate model found is retained in the 

final set, instead of all accurate models found being replaced by inaccurate models: 

 ( ) ( ) ( | )P F R P F P R F∧ = ×   (9.1) 

The probability of finding an accurate model in the search (event F) is a function of the angular 

step. This probability was estimated by sampling a single orientation at several rotation values. 

Each of the 822 complexes in the data set were reconstructed by searching the translational space 

after rotating one partner around the x coordinate axis. Since we expect no correlation between 

protein shape and the choice of coordinate references, this should be effectively a random axis. 

Figure 9-4 shows the percentage of accurate models found as a function of the rotation value, and 

the estimated probability that such models would be found as a function of the angular step value. 

For an angular step of  θ, the minimum angular distance to the correct orientation with vary 

between zero and θ/2, so the probability of finding an accurate model with a step of θ is the 

average of the probabilities of finding an accurate model at all rotation values from zero to θ/2.  

In three dimensions, this distribution is bell-shaped, not uniform, as the angular distance is the 

result of three rotation angles. Nevertheless, in the interval of interest, the probability decays 

approximately linearly with the increase in the angular step, so the average still provides a good 

estimate even if there is a greater probability of finding intermediate angular distances. 

The right panel in Figure 9-4 show the estimated the probability of finding a correct model during 

the search, represented by P(F) in equation (9.1). 
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Effect of Rotating one Docking Partner
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Estimated Effect of Angular Step
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Figure 9-4 The left panel shows the percentage of complexes with at least one accurate model in the highest 
scoring 30 models for a single orientation, as a function of the rotation angle of one partner rotated. The 
right panel shows the estimated probability of finding an accurate model for each angular step value. Note 
that there are three different criteria for an accurate model: 3 Å,  4Å,  and 5Å. 

This experiment considered the 30 highest scoring models, using the surface contact score (see 

section 6.2). Assuming this number was large enough to ignore the effects of accurate models 

being displaced by inaccurate models, we now have an estimate for P(F), as a function of the 

angular step.  

From the results obtained previously with docking unbound structures (Palma and others 2000), we 

can estimate P(F∧R) in realistic situations. The soft-docking modification without the side chain 

contact filter was successful in retaining at least one correct model in seven out of twelve cases, or 

approximately 60% of the time. These simulations used a 15º angular step, so we can calculate: 

 15ºP(R|F) =0.6/0.85=0.7  

Assuming the proportion of accurate models in the set of all models found is constant, and that the 

number of models retained in the final set is also constant, P(R|F) must be proportional to angular 

step, decreasing as we decrease the value of the angular step. This is because the total number of 

models found is proportional to the number of angles sampled, and the greater the total number of 

models, the more models will have a score higher than the best accurate model. The reason for 

keeping the size of the final set constant at five thousand models is that our experience indicates 

this to be the practical limit for scoring and analysing docking models. 

Let us make the approximation that the average number of models found in the set of five 

thousand retained is linearly proportional to the inverse of number of angles sampled, and that this 

average can be equated with P(R|F)θ. Knowing that the total number of angles sampled is inversely 

proportional to the cube of the angular step, we have: 
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 3( | )P R F θ α θ= ×  (9.2) 

Where α is a proportionality constant that we can estimate from the value obtained for θ=15º, and 

with values greater than 1 for considered equal to 1. 

Combining equations (9.1) and (9.2), and using α=2x10-4: 

 3 4( ) ( ) 2 10P R F P Fθ θ θ −∧ = × × ×  (9.3) 

Figure 9-5 shows the estimated combined probability, as a function of the angular step. If the 

assumptions hold, the value of 15º is  the best choice for the most stringent criterion of requiring a 

RMSD below 3Å for an accurate model. However, equation (9.2) is unlikely to be an accurate 

approximation, and the estimate for an angular step of 12º may be too pessimistic, especially if the 

algorithm uses a side chain contacts filter.  

Figure 9-5 Effect of the angular step on the probability 
of finding and retaining at least one correct model. See 
equation (9.3). 

 

Nevertheless, the main conclusion is reliable: even disregarding the practical issue of computation 

cost, too small an angular step is not necessarily an advantage. It seems the initial compromise due 

to computation cost led to, or close to, the optimal value for the angular step. 

An interesting result of this experiment is the suggestion that larger values, such as 20º, may be 

equally good or even slightly better; an interesting possibility to test. 

9.4 The new chain contact filter 

With the SPIN-PP dataset and the experience acquired, it was possible to correct or mitigate these 

problems. Using 700 of the 822 complexes for the training set gave a sizeable sample of protein 

chain interactions, with 122 complexes to serve as a test set. Since all these examples are from 

bound structures, the set of 25 unbound structure pairs in the docking benchmark compiled at the 
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Wang laboratory at Boston university (Chen and others 2003) provided an independent validation 

set.  

The problem with this larger data set was the increase in computation demands, now an order of 

magnitude greater than those of the initial filter. It was necessary to simulate the formation of each 

complex in the data set to produce a set of correct and incorrect models that reflected the 

conditions expected in a real application. Generating and processing the models for the first filter 

required a concerted effort using several computers, and took more than a month of calculations. 

Though computers have improved since then, it was still desirable to limit the computation 

requirements by a more intelligent selection of models to compare. 

In a real application, the vast majority of the models produced by a full rotation search are 

incorrect. Even if only a small fraction happens to have a better contact score than a correct model, 

this small fraction may amount to a significant number of incorrect models preceding the correct 

models. Our initial approach to modelling this situation was to try to explore as much of the 

rotation search space as possible, and the set of models to train the original filter were generated 

by searching the full rotation space for each complex, albeit at lower resolutions of 30º-45º. 

The current approach was to generate the models with sampling conditions that were unfavourable 

to the correct models. The docking simulation for each complex used a total of 16 orientations. 

Eight orientations were generated by rotating the sample ±7º on each axis, to simulate the worse 

case scenario with a 15º angular resolution step, where the sampled orientations miss the correct 

orientation by half the width of the interval. The remaining eight orientations were rotations 

around each axis using a uniformly distributed random value between 30º and 60º. 

This sampling scheme biased the model sets in two desirable ways: by generating a set of correct 

models that tended to have geometric contact scores inferior to the incorrect models, and by 

increasing the proportion of correct models relative to a real situation, where incorrect orientations 

can outnumber the correct ones by three orders of magnitude.  

The first bias is desirable because the purpose of the filter is to exclude incorrect models with a 

better surface contact score than correct models. Incorrect models with lower surface contact 

scores cannot displace the correct models during the simulation, so these are not a problem, and 

this way even a small sample can provide a good number of such case. The second bias is useful 

because the correct models are important, even if severely outnumbered in real applications. In our 
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original approach, the proportion of incorrect models to correct models was 100 to 1. Using this 

sampling scheme and selecting only the 50 incorrect models with the highest surface contact score 

in each docking simulation, the proportion is now a more reasonable 2 to 1, reducing the problem 

of having a training set excessively biased against the cases where we wish to have the smallest 

classification error. 

9.4.1 Contact parameters 

There are two parameters to decide before evaluating side chains contacts: how to determine if 

there is a contact, and what types of contacts to consider. 

Amino acid side chains can have great mobility, an important factor both in the stabilisation of the 

structure and in the formation of complexes (Doig and Sternberg 1995). Since the docking 

algorithm uses a rigid structure, it is the side chain contact model that must account for side chain 

mobility, and it does so by modelling each side chain as a sphere centred on the geometric centre 

of the side chain atoms. This way, the side chain can contact any other side chain in the 

neighbourhood even if the side chains are not oriented in the rigid structure so as to allow this 

contact.  

The base radius for each side chain is that of the smallest sphere that contains the centres of all the 

side chain atoms plus the α-carbon. The parameter to adjust is the contact radius modifier, a value 

that is added to the sphere radius to determine the effective radius, and model the mobility of the 

side chains. Two side chains are in contact if the distance between the centres is lower that the 

sum of the modified radii of the two spheres. 

The optimal combination is the one that best separates the correct cases from the incorrect cases. 

To estimate this without having to train classifiers in all possible combinations, we can measure the 

distance between the average contact vectors of correct models and incorrect models. Using the 

training set of 700 complexes, we calculate all contacts of all correct models for each V15, V28, 

and V210 and for each value of the contact radius modifier. We do the same for all incorrect 

models. 

For each combination of vector dimension and contact modifier, we have a set of average contacts 

and the corresponding variances. The distance measure between correct and incorrect contacts was 

the average of the t statistics for those vectors. 
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Let Ca and Ia be the average contact vectors for correct and incorrect models respectively. Let Cσ 

and Iσ be the standard deviation vectors for the contacts between correct and incorrect models 

respectively. The distance between correct and incorrect models is: 
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where N is the cardinality of the vectors (15, 28 or 210). 

This is not a standard measure of the statistical difference between two distributions, which is the 

χ2 test. However, this statistical test is biased in favour of higher dimensions and higher numbers of 

events in each bin of the observed distribution. The average vectors of V210 with +4Å contact 

modifier would be the most statistically different simply for having the highest dimension and the 

largest number of contacts because of the modifier used. 

The t average metric of equation (9.4) avoids these problems. Being an average, it cancels the bias 

for vectors with higher dimension, and the comparison of average and standard deviations is not 

affected by the overall increase in the number of contacts with the increase in the contact radius 

modifier. It is questionable to assume that the variances of these are similar, but the purpose of 

this metric is to provide an approximate ranking of the alternative configurations, not to give an 

exact absolute value of their statistical difference. 

Figure 9-6 shows the results, comparing the three types of contact vector and contact radius 

modifiers ranging from -5Å to +4Å. The green circle corresponds to V28 at +1Å, the selected 

combination for the new contact filter. The yellow circle at V15 and +1Å marks the combination of 

parameters used in the original contact filter; a better choice than using the complete contact set of 

V210, but inferior to the new V28 with a similar contact criterion. 
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Figure 9-6 Shows the average t values for the differences between the average contacts of correct and 
incorrect complexes, for the three different contact vector dimensions and as a function of the contact radius 
modifier. The green circle shows the selected parameters (V28, with +1Å of contact radius modifier). The 
yellow circle shows the parameters for the previous version of the filter, using V15 and approximately +1Å 
of contact radius modifier. See Table 8 on page 156. 

Based on these results, the side chain contact filters will use the V28 input vector and a +1Å 

contact radius modifier. There will be two side chain contact filters, for hard and soft docking. The 

global score classifiers will also be retrained with the V28 vector, with the possible addition of the 

four interaction scores (surface contact, side chain affinity, electrostatics, and solvation). There will 

also be different global scoring functions for hard and soft docking. It is necessary to train different 

classifiers for hard and soft docking because the soft docking option affects the models generated. 

Since soft docking improves the results in some cases but not in all cases, it is best to leave the soft 

docking modification as an option. 

All classifiers will be support vector machines, which are better than SOMs or neural networks 

trained with backpropagation at coping with inadequacies in the datasets. 

9.5 Soft-Docking 

The soft docking modification (section 6.3) consists of removing some atoms from the 

representation of the protein core, to simulate conformational changes that could shift these atoms 

if they were blocking the formation of the complex. 

Initially, the atoms removed were the side chain atoms from arginine, lysine, aspartic acid, glutamic 

acid and methionine, except for the β-carbon atoms, and only for the amino acids with more than 

40% of surface exposure (Palma and others 2000). This list was later expanded to include some 
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atoms from cysteine, glutamine, isoleucine, leucine, phenylalanine, serine, and tyrosine (Krippahl 

and Palma 2001). 

The list is currently being refined using a rotamer library (Lovell and others 2000) to determine the 

best choice of atoms to remove from the core representations. Rotamer libraries have been used 

with some success before to refine docking models (Jackson and others 1998) after the docking 

simulation. During the search for likely models, side chain flexibility is often accounted for by 

simplifying the structure representation of the docking partners (Li and others 2003, Zacharias 

2003).  The objective of the soft docking modification for BiGGER is to use the rotamer library to 

provide a more discriminate model of side chain flexibility to use during the search. 

9.6 Unresolved Issues 

The results shown in this chapter justify confidence in the search and geometric filtering procedures 

of BiGGER (sections 6.1 and 6.2), and in the values selected for the grid resolution, angular step, 

atomic radius modifier, and atoms used.  

The soft docking modification and the side chain contact filter (sections 6.3 and 6.4) may require 

some fine-tuning, but these approaches seem to be the best compromise between efficiency and 

effectiveness. The soft docking modification implemented in BiGGER is more precise than the usual 

method of using a low resolution representation to account for side chain flexibility, without the 

computation cost of structure refinement by molecular dynamics or using rotamer libraries, 

something that is not practical to do during the search for likely models. 

The side chain contact filter may be expanded to include other scores, such as solvation or 

electrostatic interactions, but this would only require changing the input vector and retraining the 

classifier. The basic concept seems to be the best option: with a real space search, additional filters 

evaluate only to the small fraction of models that pass the surface contact filter. Though still a 

sizeable sample, it is orders of magnitude smaller than the number of models other approaches 

need to examine. For example, to incorporate an additional filter in a FFT search, it is necessary to 

evaluate all possible configurations for both the surface contact and for the additional filter (Gabb 

and others 1997). 

The implementation of the constrained docking procedure is still being tested (section 6.5), and it is 

too soon to tell how useful it may be. Nevertheless, a simplified version of constrained docking, 
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that consists in scoring the satisfaction of constraints by the models BiGGER produced  (section 7.4) 

selected models, produced promising results so far (Morelli, Czjzek and others 2000; Morelli, Dolla 

and others 2000; Morelli and others 2001; Krippahl and others 2003). This justifies some 

confidence in the method, even at this early stage. 

The greatest weakness in BiGGER is the global scoring function. Though it is relatively successful 

on average, placing correct models among the highest ranking 10% of the set of 5,000 models  

BiGGER retains (see Figure 9-1, in sub-section 9.1.5), this is not enough to be useful in practice, for 

the user is still left with a few hundred models to examine, any of which can be the correct model. 

Furthermore, the scoring function is biased towards strong complexes (enzyme-inhibitor, dimers, 

and so forth), which were prevalent in the original training set. Its poor performance in modelling 

electron transfer complexes led to its replacement with other interaction scores such as 

electrostatics or older versions of the global score function in some cases (Pettigrew and others 

1999; see also section 10.2).  

The major problem with training the non-geometric filters and the global score is that the interface 

between proteins that form permanent complexes is likely different from that of proteins that form 

transient complexes, for the latter must be adapted to both solvated and unsolvated environments. 

This may result in different filter and score parameters depending on the nature of the complex to 

model, and different databases will have to be used to properly train these parameters. The SPIN-

PP database mentioned previously provides good data on permanent complexes, while the 

database used by Gideon Schriber for the characterization of protein-protein binding sites will, once 

published, provide the information on transient complexes (Schriber 2003). Once the data is 

available, a comparison of the parameters for the two sets should determine whether or not using 

two different sets of filtering and scoring functions can improve the docking models. 

Finally, there is still no clear way to interpret the results when the global function contradicts the 

experimental constraints. Such cases may indicate that no correct models were retained in the final 

set, that the global scoring function is not evaluating the models correctly, or that the experimental 

constraints were not correctly assigned. This is an important problem, but one that can probably 

only be solved with data from real cases, and not with simulated data. 
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10 Applications 

"One cannot guess the real difficulties of a problem before having solved it." 

Carl Ludwig Siegel 

This chapter presents some applications of the algorithms that the previous chapters described. 

BiGGER accounts for most of the examples, because its development begun nearly two years 

before PSICO, and several researchers have used it to predict protein interactions. Their feedback 

has been invaluable in the development of the docking algorithms, for our simulations and tests 

alone could not reveal the richness of real life problems.  

PSICO is at an earlier stage of development. Though the implementation is operational has 

produced results in test structures, there is still much to be done before other researchers can use 

it. There is need for graphical interfaces, compatibility with different types of data formats, 

interfaces where the user can specify special constraints, and so forth. This will likely be a long 

process, relying on the collaboration and suggestions of those working with real cases.  

Section 10.1 presents the two software products of this work so far: the Chemera software 

package, which includes BiGGER and PSICO, and the PSICO Dynamic Link Library, which allows 

other researchers to integrate the PSICO algorithm in their own applications. 

The remaining sections present some applications of these algorithms, chosen for their importance 

in the development and testing of PSICO and BiGGER. Section 10.3 describes the work of Graham 

Pettigrew and Sofia Pauleta, and section 10.4 describes the modelling and experimental work of 

Nuno Palma and Francoise Guerlesquin. The authors graciously supplied the docking models and 

figures presented in these sections. 

10.1 Software Tools 

Version 2.0 of Chemera is freely available since 2001 (Krippahl and Palma 2001). This version 

includes the graphics interface, BiGGER, and tools to process and evaluate docking models. With a 

few hundred registered downloads, it is probably the most visible product of this work. Through 

our email support service, we have helped approximately a dozen users who had questions or 

problems, and the feedback has been very positive, and the docking algorithm has been used in 
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several publications not involving the author’s contribution (Crowley and others 2002; Morelli X, 

Czjzek and others 2000; Morelli and others 2001; Pettigrew and others 2003). 

Though the release version of BiGGER still does not process experimental constraints as described 

in section 6.5, Chemera 2.0 can evaluate atom and residue contacts and so rank docking models 

using experimental constraints (see section 7.3). The release version also includes a comprehensive 

manual and some documentation on the algorithms. 

The development version of Chemera is more advanced, currently implementing all the algorithms 

described in this book, though the more recent ones, such as constrained docking in BiGGER and 

some optimisations in PSICO algorithm, are still in an early test stage. Nevertheless, the 

development version is available to some researchers for field-testing, and this work owes much to 

their collaboration and tolerance for the problems of testing new software. 

In the case of PSICO, the collaboration extended beyond the domain of biochemistry into computer 

science. The problem of protein structure determination is of interest to computer scientists too, 

both for its practical application and for its theoretical aspects. Being an important and difficult 

problem, there is interest in applying a various programming and artificial intelligence techniques 

in the search for solutions. 

This motivated the production of a Dynamic Link Library (DLL), described in more detail in Appendix 

I: PSICO Dynamic Link Library. The PSICO DLL allows researchers to integrate the PSICO algorithms 

with their own code, and provides a set of tools to manage protein structural data on PDB files, 

amino acid templates and constraints. 

10.2 Electron Transfer between Aldehyde Oxydoreductase and Flavodoxin 

The xanthine oxidase family is composed of enzymes containing a molibdenum co-factor, and 

catalyse the hydroxylation of aromatic compounds and aldehydes (PROMISE database, 

Degtyarenko and others 1999). Except for aldehyde oxidoreductase (MOP) from Desulfovibrio 

gigas, these enzymes are organised into five domains, the first two coordinating two iron-sulphur 

clusters, followed by a flavin domain, and finally the two domains which bind the molybdenum co-

factor. MOP is the exception for lacking the flavin domain. 
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Since the FAD co-factor in the flavin domain is the electron donor for the electron transfer reaction 

in these enzymes (Hille and Anderson 1991; Hille 1996), the Desulfovibrio gigas enzyme MOP 

would require a substitute donor protein, and a prime candidate would be the D. gigas flavodoxin. 

The structures used to model the electron transfer complex between MOP and flavodoxin were the 

X-Ray structure for MOP (PDB code 1hlr, after correcting the transformation matrix to generate the 

dimer; Rebelo and others 2001) and an homology model for the D. gigas flavodoxin. This model 

was based on the Swiss-PROT sequence Q01095 (Helms and others 1992) and the structure from 

the D. vulgaris flavodoxin (PDB code 1fx1; Watenpaugh and others 1972). 

Two other flavodoxin structures were used to test the suitability of the homology model for the D. 

gigas flavodoxin: the D. vulgaris flavodoxin (PDB code 1fx1; Watenpaugh and others 1972) 

homology model for the D. salexigens flavodoxin based on the D. vulgaris flavodoxin structure. 

We used the BiGGER docking algorithm both with and without the soft docking modification and 

side chain filtering (sections 6.3 and 6.4). The soft docking algorithm (Palma and others 2000) was 

designed to predict a wide range of complexes, from tightly binding enzyme-inhibitor complexes to 

transient electron transfer interactions, and so must take into account the effects of side chain 

flexibility, which may be essential to allow the formation of tightly bound complexes. Furthermore, 

this general purpose algorithm must evaluate the candidate models taking into account different 

factors such as solvent exclusion, side chain contacts, and electrostatics. 

Although this approach works moderately well in the general case, the downside is that it cannot 

take advantage of the particular nature of the complex to model. In this particular case, the weak 

binding of a transient electron transfer complex reduced the likelihood that incorrectly placed side 

chains would prevent the generation of the correct model. Therefore, we modelled all complexes 

with both hard and soft docking methods, and compared the results to see if we could use the 

more stringent hard docking algorithm without losing relevant models. Since the results are similar 

and the soft docking algorithm tends to generate a larger number of incorrect models, we present 

only the hard docking results.  

Should the overall pattern of results of the hard docking simulation differ significantly from those of 

the soft docking simulation, we would have to use the soft docking results, because this could be 

an indication that the stringent criteria of the hard docking algorithm had eliminated the correct 

models. 
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The second stage of BiGGER is the ranking stage, in which the 5000 models are evaluated by a 

global scoring function (see sub-sections 6.7.4 and 9.1.5). Again, the objective of this general 

classification function is to make the algorithm applicable to a wide range of complexes, but in this 

case we decided to use only the electrostatic interaction score (see sub-section 6.7.3). MOP and all 

flavodoxins are highly charged, the flavodoxins have a dipolar moment in the order of 400 Debye, 

and, though both partners are acidic, MOP has a positively charged surface patch near the exposed 

Fe2S2 cluster, which suggest the complex is driven by electrostatic interactions. Furthermore, the 

global ranking scores did not indicate a clearly preferred site, probably because of considering 

factors like solvent exclusion effects or surface complementarity, which are important in most cases 

but apparently not as much as electrostatics in this particular complex. So we assumed that 

electrostatic attraction was the most important driving force for the formation of this complex. 

Only the data on reaction kinetics for the D. gigas MOP-flavodoxin complex seemed at odds with 

this assumption, as the reaction rate increased with increasing ionic strength (Palma, unpublished 

data). However, the effect of ionic strength on the electrostatic field around MOP suggests an 

explanation. Figure 10-1 shows the isopotential lines near the Fe2S2 cluster at 0M and 0.5M ionic 

strength (see section 7.5 for details on the calculation of the electrostatic potential). Although at 

higher ionic strength the field is weaker, the overall negative charge of MOP has less influence near 

the positive patch surrounding the exposed Fe2S2 cluster, and no longer hinders the access of the 

negatively charged flavodoxin. 

 

Figure 10-1 The electrostatic field profile of MOP at 0M and 0.5M ionic strength. Dotted lines indicate 
negative potentials, full lines positive potentials. The isopotential lines are drawn at 1 and 0.1 Kcal/mol for 
the 0M ionic strength, and at 0.1, 0.01, and 0.001 Kcal/mol for 0.5M ionic strength. The Fe2S2 cluster is 
shown at the centre of each figure. 
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Our main goal was to model the D. gigas complex, but flavodoxins from D. vulgaris and D. 

salexigens also form productive complexes in vitro. Since the structure for the D. gigas flavodoxin 

was an homology model, the other two — one a crystallographic structure and the other also an 

homology model — could be used to check the consistency of the results, and verify that the D. 

gigas flavodoxin model was appropriate for our purposes. Figure 10-2 shows the results, and in all 

three cases most complexes place the FMN residue of the flavodoxin close to the exposed Fe2S2 

cluster (distances of 10-15Å).  

We cannot give one unique model for the MOP-flavodoxin complex, and it is likely that the 

interaction is dynamic and no single structure exists that represents it. But these results allow us to 

predict that flavodoxin interacts by docking near the exposed Fe2S2 cluster. Though not 

unexpected, this is an interesting result when we compare the MOP-flavodoxin suggested by these 

docking simulations with Xanthine Oxidase (PDB code 1fiq; Enroth and others 2000) and CO-

dehydrogenase (PDB code 1qj2; Dobbek and others 1999) 

 D. gigas D.salexigens D.vulgaris 

 

Figure 10-2A comparison of the three flavodoxin-MOP dockings. For each case the best ten models 
(according to the electrostatic score) are represented by the FMN residue relative to the MOP monomer. 

As Figure 10-3 shows, the arrangement of the prostethic groups in the MOP-flavodoxin complex is 

similar to the arrangements found in CO dehydrogenase and xanthine oxidase, which indicates 

that, in D. gigas, two separate proteins cooperate to form the same electron transfer chain that 

exists in a single protein in eukaryotes. 
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 CO Dehydrogenase Xanthine Oxidase MOP-Flavodoxin 

  

Figure 10-3 Comparison of the relative positions of the prosthetic groups for CO Dehydrogenase, Xanthine 
Oxidase and the best model for the MOP-Flavodoxin complex. The FMN group of flavodoxin is shown at the 
bottom, aligned with the FAD groups of CO Dehydrogenase and Xanthine Oxidase. The Fe2S2 clusters are 
shown at the center of each protein. 

10.3 Electron Transfer Complexes between Cytochrome c550 and 
Cytochrome c Peroxidase 

The objective of this work was to understand the mechanism of electron transfer between 

cytochrome c peroxidase from Paracoccus denitrificans with cytochrome c550 from the same 

organism, with horse cytochrome c (Pettigrew and others 1999; Pettigrew, Goodhew and others 

2003; Pettigrew, Pauleta and others 2003), and with pseudoazurin (Pauleta 2002) the dimerization 

of cytochrome c550 (Pettigrew and others 1998). The importance of this work for the development 

of BiGGER came from the diversity of data to be considered and integrated with the simulations. 

This led to the development of the clustering algorithm (section 7.2), the electron transfer estimates 

(section 7.5), and revealed some of the shortcomings in the soft docking (section 6.3), side chain 

contact filter (section 6.4), and the more recent global scoring algorithms (sub-section 6.7.4). This 

section will focus on the generation of the complexes, which is only a small part of the effort to 

understanding these processes. 

Electron transfer is a crucial and ubiquitous phenomenon in biological systems. Though there is still 

no consensus on the mechanisms that determine the specificity of these reactions, it seems that the 

simple lock-and-key model for protein recognition is not adequate in this case. Electron transfer 

complexes are likely to be fluid and dynamic, and no single model can account for this complexity. 
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Figure 10-4 shows families of models for the interaction of cytochrome c550 with the cytochrome c 

peroxidase. This is only one example, but it illustrates the approach. The interesting result from the 

perspective of the modeller was a clear family near the expected electron transfer heme 

(highlighted, near the heme marked E). But from a developer’s perspective these patterns 

suggested several improvements, such as the usefulness of clustering models by their similarity and 

of additional filtering by criteria other than geometric contacts.   

Side Front 

 

Figure 10-4 Families of docking models for cytochrome c550 and cytochrome c peroxidase. One peroxidase 
monomer is shown in grey, and the other monomer is shown in green in the front view. The yellow circles 
represent the placement of cytochrome c550 in different models. The two hemes on the peroxidase monomer 
are indicated by the letters E (electron transfer heme) and P (peroxidatic heme), and their atoms shown in 
purple. The highlighted family of solutions near the electron transfer heme contains several likely models for 
an electron transfer complex. Figure adapted from Pettigrew, Pauleta and others 2003.  

Cytochrome c peroxidase is a dimer, and the front view (right panel of Figure 10-4) shows a large 

disperse family of models near the interface of the two monomers. This is due to the high surface 

contact scores on the groove formed at the interface, and unlikely to represent physiological 

complexes. The soft docking modification makes this artefact a serious problem (sections 6.2 and 

6.3), and these results suggested the implementation of additional filters, such as the side chain 

filter (section 6.4). 

Another important development motivated by the modelling work on these systems was the ability 

to score models according to electron transfer properties. This led to the implementation of 

simplified algorithm (7.5) that can give reasonable estimates of electron transfer probabilities even 

though the models have significant errors in geometry, due to the discrete search in 1Å and 15º 

steps (section 6.1). 
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Throughout most of the development of BiGGER and Chemera (and their predecessors) this 

electron transfer system has been an important test case. Some issues revealed by this application 

of the software are still not completely resolved: the applicability of the new scoring functions to 

electron transfer complexes (section 6.7) and the when to use the soft docking modifications. 

10.4 Electron Transfer Complex between Cytochrome c553 and Ferredoxin 

The modelling of the electron transfer complexes of cytochrome c553 and ferredoxin (Morelli, 

Czjzek, and others 2000; Morelli, Dolla, and others 2000) and other systems (Morelli, Palma, and 

others 2000) provided the framework for developing the contact score (section 7.4) and, later, for 

the contact filter in constrained docking (section 6.5). 

The essence of the method is to find the agreement between the interaction prediction and NMR 

titration data. Observed perturbations on the chemical shifts and broadening NMR peaks during 

titration provide the experimental data. If the resonance frequencies are assigned, it is possible to 

identify regions in one or both partners that are affected during the formation of the complex. 

 A B C 

 

Figure 10-5 The top row shows the positions of cytochrome c553 in the best models (circles) relative to 
ferredoxin (shown in a backbone representation). The bottom row shows the same models but displaying the 
backbone of cytochrome c553 and the position of the ferredoxin as coloured circles. Red circles indicate a 
higher score, and columns A and B represent the best 1000 models according to the global score (column A) 
and the contact score from NMR data (column B). Column C shows the best models according to each score, 
and shows in red those models that score highest in both.  



 Applications 121 

  

Figure 10-5 shows the results for this complex. The selection criterion uses both the global score 

and the contact score (A and B in the figure, respectively). These theoretical and experimental data 

are combined by intersecting the sets of the best models according to each score (column C). 

The models were scored after the search and filtering stage, and not by using constrained docking 

as described in section 6.5. Constrained docking is a recent development, derived from the success 

of the contact score method, and still not fully tested. However, these results and those for the 

complex of ferredoxin with ferredoxin NADP+ reductase indicate that constrained docking is a 

promising approach.   

10.5 Electron Transfer Complex between Ferredoxin and Ferredoxin NADP+ 
Reductase 

Ferredoxin NADP+ reductase (FNR) catalyzes the production of NADPH from NADP+ and two 

electrons transferred by a ferredoxin from photosystem I. This section describes the modelling of 

the FNR-Fd electron transfer complex in the cyanobacterium Synechocystis sp. PCC 6803. 

The structures used were both homology models, based on the homologous proteins from the 

Anabaena cyanobacterium (Kurisu and others 2001; Morales and others 1999).  

2D 1H-15N-HSQC spectra provided the experimental data used to score the models (section 7.4) by 

counting the contacts for all residues with a 15N chemical shift of over 15ppm or whose HSQC cross 

peak vanished during titration. The selected contact residues for the ferredoxin were: L25, L35, 

R40, G49, L64, H90 and K91 for line broadening during titration, and D26, G32, Y80, D84, and Y96 

for the 15N chemical shift. There was no NMR data on the FNR. 

The data on the effect of a charge-reversal mutation of Glu94 in the Anabaena ferredoxin (Hurley 

and others 1997), which disrupts electron transfer between the Fd and FNR in Anabaena, provided 

an additional constraint to evaluate. This residue seems to stabilize the complex by forming a salt 

bridge with Lys75 of FNR (Navarro and others 1995), and an homologous residue in spinach 

ferredoxin (Glu92) can be cross-linked with FNR (Zanetti and others 1988). This data was used to 

score the Synechocystis FNR-Fd complex models by assuming that the homologous residue in this 

ferredoxin (Glu92) is an interface residue. Finally, the need for the two redox centres to be in 

proximity provided the third criterion to score the models produced by BiGGER. 
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Figure 10-6 shows the best models according to these three different scores. To represent a large 

number of models, the top panels show the complete structure only for FNR, representing the 

position of ferredoxin in each model by a single sphere located at the geometric centre of this 

protein. The bottom panels use the inverse representation, showing FNR as spheres and the main 

chain of ferredoxin. 

  NMR Glu92 Contact Electron Transfer 

 
Figure 10-6 The highest scoring solutions for the Synechocystis FNR-Fd complex, using three different scores. 
From left to right: NMR titration data (blue), site-directed mutagenesis data (green), and electron transfer 
(red). 

There were only two different models with high scores on all three criteria. Because both models 

had the same global score of 2.6 (see sub-section 6.7.4), it was not possible to select only one, so 

there are two alternative models for this electron transfer complex (Figure 10-7). 

BiGGER produced similar results for the Anabaena and maize complexes. Since the crystallographic 

structure of these complexes was available, these docking simulations served to validate the 

method, as the models produced had a RMSD from the known structure of 4.9Å for Anabaena and 

2.5Å for maize. 
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Figure 10-7 The two models for the Synechocystis FNR-Fd complex. The ferredoxin is shown in blue, on top, 
and the FNR in green. 

10.6 Electron Transfer Complex between Cytochrome b5 and Cytochrome C 

Another test case for the contact score approach, using NMR titration data on both docking 

partners (Banci and others 2003). The modelling approach and results were similar to those 

described in sections 10.4 and 10.5. 

10.7 The CAPRI Experiments 

The Critical Assessment of PRediction of Interactions (CAPRI) experiments (Janin 2002, Janin and 

others 2003) ran in three rounds from 2001 to 2003. The organizers collected a total of 9 protein 

complex structures provided by crystallographers, and distributed the docking partners to the 

contestants in random orientations. The goal was to predict the configuration of the complex prior 

to the publication of its structure by the crystallography teams who supplied the targets1. This 

section outlines our participation in CAPRI (Krippahl and others 2003), the results of the 

experiment, and the implications for the integration of experimental data in these simulations.  

                                                   

1 CAPRI documentation uses “target” to refer to the complexes to model, instead of to the molecule that remains fixed during 
docking (see section 6.1). In this section, when “target” is followed by a number (e.g. target 7) it refers to the CAPRI 
complexes, otherwise it means the largest of the docking partners. 
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Of the nine CAPRI targets, we attempted to predict seven. The docking algorithm was only 

operational close to the deadline for the first round of CAPRI, so there was no time to model 

targets 1 and 3. Targets 4, 5, 6, 8, and 9 were modelled using the soft docking geometrical search 

(see 6.3). Target 7 was modelled with hard docking, which is done by disabling the core grid 

alterations and the side chain contact filter described in sections 6.3 and 6.4. These simulations 

used version 2.0 of BiGGER. Target 2 was modelled during the development of BiGGER, and the 

different parameters and implementation details result in a slight difference between the models 

submitted and the models that would be obtained using the current version of the algorithm.  

In addition to using hard docking, the T cell receptor protein in target 7 was truncated: all residues 

up to D118 were used; those from L119 onward were discarded during docking. This was done 

because the V shape of this structure was favouring contact at the inner portion of the hinge, in 

detriment to the alternatives. The models submitted to CAPRI were obtained by fitting the 

complete structure with the fragment used in docking. This was the only case where additional 

information was used to generate the models, since we assumed that the region from L119 onward 

was not important for docking. 

For CAPRI rounds one and two, we were to submit five models for each target. We clustered all 

models using a 3Å cutoff value (see section 7.2), and considered only the highest scoring model in 

each cluster to represent the whole cluster. We submitted the five highest scoring representatives, 

except when visual inspection indicated that two models were too similar. In this case, we replaced 

the lowest scoring with the highest scoring representative outside the selected group.  

For round 3, targets 8 and 9, we submitted 10 models, ranked from most likely to least likely. We 

increased the clustering threshold to 5Å and 7Å for target 8 and target 9 respectively, to try to give 

a more representative sample of the models retained by BiGGER in the set of 10 candidates 

submitted. However, the overall performance was similar to that of the previous rounds. 

If we evaluate the models we submitted using the RMSD from the target complex, only one 

prediction was accurate (target 6). In all other cases, the RMSD value was too high. Finding the 

right model in such a small set is difficult for any docking algorithm, as the overall results of the 

CAPRI experiment show. A less stringent criterion is to evaluate the interface residues correctly 

predicted in each model, one of the criteria used by the CAPRI evaluation team. A model can 

deviate significantly from the target structure, but still accurately predict the interface regions on 

both partners; for example, if the partners are misaligned by a rotation around an axis 
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perpendicular to the interface plane. This still provides valuable information on the interaction, and 

it may even be a better model of the real complex than a single crystal structure, since protein 

complexes may be more dynamic than the static image crystallography often provides. 

Figure 10-8 shows a comparison of the results obtained by all the groups participating in CAPRI. 

The score attributed to each model is the fraction of correct interface residues in the model. As an 

example, one of our models for target 2 predicted 22 out of 27 interface residues on one protein, 

and 2 out of 27 on the other partner. The score for this model is (22+2)/(27+27), or 0.44. 
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Figure 10-8 Summary of the results for all CAPRI participants. The histograms represent all models 
submitted, evaluated by the fraction of correct residues at the interface. The red bars indicate the best 
models of the group with the lowest average, the green bars the best models of the group with the highest 
average, and the blue bars the best BiGGER models. 

The nine histograms, one for each target, show the number of models scoring from 0 to 0.1, from 

0.1 to 0.2, and so forth, for all models submitted by all groups. The thin bars indicate the best 

models generated by BiGGER (thin blue bars), and the best models generated by the highest and 

lowest scoring of the groups that participated in all three CAPRI rounds (thin green and red bars, 

respectively). The group scores are the average across the targets of the best score for each target. 
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These results show no clearly superior method; the highest scoring method produces better results 

than BiGGER only in four out of seven cases, and is not significantly better than the lowest scoring 

method in three out of nine targets. The most important factor determining the accuracy of the best 

models seems to be the nature of the target to model, and not the method. 

The implication is that purely theoretical prediction of protein complexes is not reliable, at least 

with current methods. The alternative is the integration of experimental information, such as data 

on interface residues. To test the hypothesis that this integration improves results, the author 

simulated these data on the CAPRI targets by randomly selecting four interface residues; three 

residues from the larger partner (the target in the docking simulation) and one residue from the 

other (the probe in the docking simulation. Table 9 (p. 157) lists the proteins on CAPRI and shows 

the selected residues. The models were then scored by counting the number of atoms, in the 3 

amino acids chosen on the target, that were within 5Å of any atom on the probe plus the number 

of atoms, in the amino acid chosen on the probe, that were within 5Å of any atom on the target. 

These scores meant to simulate the effects of experimental data on the quality of the models. This 

is the sort of scoring that could be used if some amino acids were known to be important for 

complex formation (e.g. by site directed mutagenesis), or present at the interface (e.g. by NMR 

data).  

Table 9 (p. 157) indicates the structures in each target and the residues chosen to simmulate 

contact data. No residues were picked for target 2 because there were no models in the final set 

close enough to the target structure. This experiment could not include targets 8 and 9 because the 

structures of the complexes were not available at the time. 

Table 10 (p. 157) summarizes the results, showing the rank and RMSD value for the highest 

ranking acceptable solution, or the best if no acceptable solution was kept. The last four columns 

show the same results using simulated information on the interface region. In some cases, there 

were several models with the same number of contacts. The numbers in parentheses indicate the 

number of models tied for first place in these cases. 

An acceptable model was any model with less thatn 2.5Å of RMSD from the target structure, or the 

model with the lowest RMSD if there were none below 2.5Å and the model showed the two 

partners in an approximately correct configuration. 
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The closest model to the X-Ray structure for target 2 has an RMSD of 10Å. This is not an acceptable 

model at all, and, in this case, additional information could not improve these results because there 

was no good model in the set of 5000 structures kept by BiGGER. 

For target 4, of three clusters of models with less than 2.5Å RMSD from the X-Ray structure (ten 

individual structures in total), the one with the highest global score was in position 1150. The 

highest scoring models all had RMSD values over 10Å, so in this case it would not be possible to 

identify an accurate model without additional information. Scoring for contacts with the three 

residues chosen for the target molecule, we find an acceptable model among the 22 models tied for 

the first place with 25 contacts (RMSD of 1.2Å). Scoring for all four amino acids we find a model 

with a 3.3Å RMSD in the 15 top scoring models (all with 49 contacts). Figure 10-9 compares these 

three models with the crystallographic structure.  

  

Figure 10-9 Models for target 4 (left panel) and target 5 (right panel). The backbone of the crystallographic 
structure is shown in thick lines and the backbone of the docking models in thin lines. The largest partner, 
on the left on each panel, is in the same position for all models. 

The closest model to target 5 had a RMSD of 3.4Å, and ranked in position 1374 by the global score. 

The ranking of this model improved to 49 with the contact scores for the 3 amino acids chosen on 

the target molecule, and then to 43 when considering all 4 amino acids. Even when sorting 

according to the contact scores, the high ranking models had large RMSD values: 6.6Å for the first 

position (18 models tied with 25 contacts) using three amino acids for the contact score, 5.4Å in 

the second place (the best of the first five, with 40 contacts) when using all four amino acids. 

Figure 10-9 shows these three models and the crystallographic structure of CAPRI target 5. 
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 A 2.1Å RMSD model for target 6 ranked in eighth place on the global score. Because 3 higher 

ranking models due were similar to others in the set to submit, they were discarded and the eighth 

ranking model was included, and this turned out to be the most successful prediction we 

submitted. Adding the contact information for the three amino acids on the target (see Table 1) 

promoted a worse model to the top rank (3.3Å RMSD), one of 63 models with the 41 contacts, but 

the difference is not significant. Adding the contact score for R51, on the probe, reduced this set to 

6 models tied for the first rank, with the 3.3Å RMSD model still the best among them, but with a 

good model (1.0Å RMSD) at position 15. Figure 10-10 shows these three models. 

  

Figure 10-10 Models for target 6 (left panel) and target 7 (right panel). The backbone of the crystallographic 
structure is shown in thick lines and the backbone of the docking models in thin lines. The largest partner, 
on the left on each panel, is in the same position for all models. Note that the probe molecule for CAPRI 
target 7 was truncated before docking, and the docking models show only the fragment used for docking. 

For target 7, a 1.9Å RMSD at 21 on the global score, but there was no similarly accurate model in 

the 5 candidates submitted. Using the contact scores for the 3 amino acids on the target promoted 

another good model (1.8Å RMSD) to third place, and adding the contact score for the probe amino 

acid brought it to second place on the contact ranking. These models are shown in Figure 10-10. 

Note that the chain of the probe (T Cell Receptor protein) is shown only up to D118, because only 

this fragment was used in this docking.  

These results indicate that docking simulations can benefit significantly from even a little additional 

information on the residues or regions critical for docking. There are between 38 and 66 interface 

residues in these complexes, (targets 7 and 6, respectively), and knowing only 5-10% of these was 

enough to produce accurate models. 
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By themselves, these results are not conclusive. Picking 4 amino acids from the interface region is 

not a good substitute for experimental data. But these results agree with those obtained using 

NMR data (Morelli, Dolla, and others 2000; Morelli, Czjzek, and others 2000; Morelli and others 

2001). 

In cases like target 2, where the initial filtering stage eliminates all acceptable models, there is no 

possibility of promoting correct models because they are no longer available. It would be 

interesting to re-run this experiment using the constrained docking algorithm as described in 

section 6.5  

10.8 Combining PSICO with Multidimensional Scaling 

This section describes the combination of PSICO with a Multidimensional Scaling (MDS) algorithm, 

a general-purpose solver for distance geometry problems. The work was done in collaboration with 

Michael Trosset (Krippahl, Trosset and Barahona 2001; Trosset 2000). 

The objective was to show how the combination of these two approaches could help solve 

problems where each method alone performs poorly. Though all test problems were protein 

structure determinations, there is nothing in the combined method that restricts it to proteins or 

even molecules. The method can be applied to the general problem of finding a configuration of 

points in an N-dimensional space from a set of constraints on distances between points.  

Section 5.2 describes how PSICO processes such distance constraints. Though the algorithm 

operates in three-dimensions, it is trivial to extend it to the general case of an N-dimensional 

problem. Both the domain representation (section 5.1) and the propagation of constraints (section 

5.2) can be applied in N dimensions, as long as the distance metric is the same. 

The two basic concepts behind the MDS method are the distance matrix and the dissimilarity 

matrix. A dissimilarity matrix is a symmetric n × n matrix in which all diagonal elements are zero, 

and all other elements are positive or zero. A symmetric n × n matrix ∆ = (d i j) is a p-dimensional 

Euclidean distance matrix if there exists a configuration of n points in p dimensions such that d i j is 

the distance between point i and point j. 

The data stored in a dissimilarity matrix represent information about the dissimilarity of each pair 

of objects. In classical applications of MDS, these objects can be psychometric data points (such as 
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colour preferences, for example) or statistical measures. The objective of metric MDS is to 

determine the configuration of objects that corresponds to the dissimilarity matrix. 

It is possible to determine the configuration of points from the distance – in other words, if all the 

distances are known exactly (Torgerson 1952). For the specific problem of determining the 

structure of a protein, this amounts to knowing the exact distances between all atom pairs. 

But this information is not readily available. What the experimental data provide is a set of upper 

and lower bounds for all the distances. The method proposed by Trosset (2000) aims at finding a 

dissimilarity matrix, bound by the matrixes of the upper and lower distance bounds, which is the 

most similar to a distance matrix. 

The experiments reported in this section used a limited memory algorithm (Byrd and others 1995) 

to find this matrix and thus the configuration of atoms in the protein from the set of distance 

constraints. Implementation used was the L-BFGS-B, version 2.1 (Zhu and others 1996).  

The strength of the constraint programming approach is its ability to find an approximate solution 

(in which some constraints are violated) very quickly. However, as one demands solutions that 

violate fewer and fewer constraints, the computational expense grows exponentially.  In contrast, 

the most difficult aspect of the MDS approach is finding good initial dissimilarities from which to 

begin the optimisation. Although this is not a substantial difficulty in simple problems with a small 

number of atoms, experiments with larger molecules and more realistic problems suggest that it 

will become so as the number of atoms increases. Furthermore, in real life problems only a 

relatively small set of interatomic distances are known in advance to be constrained, which makes 

it necessary to propagate these constraints to obtain enough information to generate a good initial 

dissimilarity matrix. 

We tested this combination of PSICO with the MDS algorithm on known protein structures. For 

PSICO, we used only the constraint propagation stage and binary distance constraints; there was 

no optimisation or rigid group constraints. Two structures (Mutant P53 Anti-Oncogene and 

Phosphotransferase, PDB codes 1AU1 and 1PHO respectively) were obtained by Nuclear Magnetic 

Resonance (NMR) spectroscopy. The remaining three (Desulforedoxin, Bovine Trypsin inhibitor and 

Barstar, PDB codes 1DXG, 1BPI and 1BRS respectively) are X-Ray structures.  
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All atom pairs closer than 7Å were used to generate a constraint pair, where the distance between 

two atoms is constrained by both a lower and upper boundary. The values for the boundaries were 

taken to be the distance value in the known structure plus or minus 0.1Å. 

This method provides a large number of very tight constraints. The number of constraints expected 

from an actual NMR experiment would be an order of magnitude smaller, and the distance 

boundaries at least an order of magnitude larger than the ones used for these tests. Although this 

way we are not accurately simulating a real NMR structural determination, these ‘tighter’ problems 

allow for a more stringent test on the performance of the algorithm. 

PSICO was run on a PII processor at 300MHz, and the calculations took between 20 seconds 

(Desulforedoxin) and 2 minutes (Barstar). The MDS stage was run on a PIII processor at 600MHz, 

with the calculations taking between 15 minutes (Desulforedoxin) and 6 hours (Barstar), although 

computation time can be reduced by allowing for less accurate solutions. 

The figures below (10.11 to 10.15) show the name of the protein, the number of atoms and of the 

distance constraint pairs (upper an lower bound) taken from the known structure. These were all 

interatomic distances below 7Å and the boundaries were considered to be equal to the interatomic 

distance ±0.1Å. For all other distance constraints, for a total of n×(n-1) pairs, the boundaries were 

considered to be 7.0Å and infinity (100.0Å). 

Each case also shows the quality of the PSICO and MDS structures by measuring the root mean 

square deviation (Rmsd) from the target structure and the average constraint violations for the 

constraints taken from the structure. The violations that can still be observed are caused by the 

premature termination of the optimisation. Since the dissimilarity matrix when the process is 

terminated is still significantly different from a configuration matrix, when the nearest 

configuration matrix is found constraints are still violated. Given enough time the program would 

converge to a solution with no constraint violations, but the trade-off between accuracy and 

calculation economy is still being under study, so these results show a tentative exploration of the 

possibilities. 

As these results show, the combination of these two complementary approaches makes it possible 

to solve problems of a size and with a precision beyond the practical capabilities of each method 

alone, for neither can PSICO reach an accurate solution in an acceptable time, nor can the MDS 

algorithm do so reliably without an approximate initial guess. 
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 PSICO MDS Target Structure 

   
Figure 10-11 Desulforedoxin Monomer (Archer and others 1995). 260 Atoms, 5951 Constraint pairs. The 
RMSD from the crystallographic structure was 2.1Å for PSICO and 0.02 Å for MDS. The average constraint 
violations were, respectively, 0.82 Å and 0.04 Å 

 PSICO MDS Target Structure 

   
Figure 10-12 Trypsin Inhibitor 448 Atoms, 11613 Constraint pairs. The RMSD from the crystallographic 
structure was 2.8Å for PSICO and 0.02 Å for MDS. The average constraint violations were, respectively, 0.73 
Å and 0.05 Å 

 PSICO MDS Target Structure 

   
Figure 10-13 Mutant P53 Anti-Oncogene (McCoy and others 1997): 514 Atoms, 12938 Constraint pairs. The 
RMSD from the crystallographic structure was 2.5Å for PSICO and 0.02 Å for MDS. The average constraint 
violations were, respectively, 0.68 Å and 0.05 Å 
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 PSICO MDS Target Structure 

   
Figure 10-14 Phosphotransferase (Jia and others 1993): 639 Atoms, 17206 Constraint pairs. The RMSD from 
the crystallographic structure was 2.8Å for PSICO and 0.02 Å for MDS. The average constraint violations 
were, respectively, 0.67 Å and 0.01 Å 

 PSICO MDS Target Structure 

   
Figure 10-15 Barstar Mutant (Buckle and others 1994) 693 Atoms, 18996 Constraint pairs. The RMSD from 
the crystallographic structure was 4.1Å for PSICO and 0.02 Å for MDS. The average constraint violations 
were, respectively, 0.76 Å and 0.01 Å. 

These results show the potential of combining constraint propagation with local search in order to 

solve problems that neither technique alone can solve efficiently. However, the examples shown in 

the previous section are not a realistic representation of the experimental data available in real life 

structural NMR problems. Although we know that the PSICO algorithm can perform satisfactorily in 

real life situations (Krippahl and Barahona 2000), the MDS algorithm was not yet tested with 

experimental data. Nevertheless, the MDS optimisation algorithm gave extremely accurate 

solutions to the problems tested so far.  

Regarding the efficiency of the method in the particular problem of protein structure determination 

from NMR data, at this moment we do not know what is the best trade-off between the time to run 

the MDS stage (the PSICO stage is very fast) and the quality of the solution produced. The 

calculation times for the examples in the previous section were between 20 minutes and 3 hours, 

but the accuracy obtained in most cases is still significantly higher than is necessary in real 

problems. It is possible that the MDS method is more efficient than the torsion angle minimization 

described in section 5.8 and by Guntert and others (1997). Furthermore, the MDS method has the 
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added advantage of being a generic distance geometry method, and thus independent of structural 

features particular to proteins and other macromolecules, and not restricted to three-dimensional 

problems. 

The MDS method cannot solve these problems reliably by itself, because the results are dependent 

on the starting point for the local search. Without using PSICO to provide the initial guess, MDS 

would often stop at a completely incorrect solution. 
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11 Concluding Remarks 

One never notices what has been done; one can only see what remains to be 
done. 

Maria Sklodowska-Curie 

The work presented here is a starting point for an approach to protein structure modelling. It is not 

likely that it will ever be finished, for the integration of experimental data in theoretical prediction 

methods is always subject to improvements in both areas, and in new ways of using old 

techniques.  

BiGGER has been in use by several research groups for some years now, and the experience in 

developing the algorithm alongside those using it in different ways has shown how important it is 

for those working with the theoretical models to do so in close collaboration with those solving the 

real problems. 

Chemera has also benefited from the input of many kind and patient colleagues who helped test 

the software as it developed. Version 2.0 has been distributed on the Internet to hundreds of users, 

and feedback has been encouraging so far.  

BiGGER and Chemera were a major achievement of this work; two useful tools with demonstrated 

applicability to modelling protein interactions. 

PSICO is still at an earlier stage. While BiGGER can be used in parallel, independently of other 

research efforts to obtain information about protein interactions, PSICO must be made part of the 

process for the determination of protein structures. It must interface with other applications for 

data acquisition and pre-processing, and must do so without inconveniencing the user. This raises 

programming and design problems that are not very relevant for this work, and thus the author 

decided to postpone this task and focus instead on the perfecting the algorithm as much as could 

be done without working on real cases.  

Once PSICO starts being used on protein structure research it is bound to suffer many changes and 

improvements, for there are several open problems to solve. The most efficient ways to combine 

the propagation binary distance constraints and rigid group constraints is likely to depend on the 

constraints involved, and so can only be properly determined with real problems. The same is true 
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for search heuristics, and of the possibility of using local search during the constraint processing 

stage instead of only afterwards. 

Much can also be done to improve BiGGER. The scoring functions that evaluate the models 

retained would benefit from a better parameterization using a larger number and different types of 

complexes, and the integration of experimental data in the search and filtering stage must still be 

used in real problems to identify any possible weaknesses or ways to improve the algorithm and its 

application. 

The possibility for improvement is, perhaps, the greatest strength of the approach. The tools 

produced so far and described in this document are efficient at solving protein structure and 

interaction problems, but the ultimate goal is not to solve a specific problem; rather, it is to solve a 

general and open-ended problem. In a sense, the objective is to solve the problem of solving 

protein structural problems. This makes development an integral part of the method, constantly 

responding to the needs of researchers and to innovative uses of techniques and data. 

Hopefully, this will keep the author employed and happily busy for years to come. 
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Appendix I: PSICO Dynamic Link Library 

AI. 1. Initialisation, Finalisation, and Problem Selection functions 

BuildPivotSet 
Selects the rigid group with the largest number of constraints with other residues in the protein as a 
pivot. This group can be fixed in space to start propagation. 

 CalculateSolution 
Sets the coordinates of the atoms in the internal representation of the protein structure to the centres of 
the good regions in their domains. Can be used to visualise the structure during the calculations.  

ClearCurrentProblem 
Clears all variables and constraints from the current problem. 

 ExportSolution(FileName:PChar) 
Saves the current solution to a PDB file specified by the FileName parameter. The coordinates for each 
atom are the central point of the Good region of the domain. 

FinalizePsicoDll 
Frees memory used by PsicoDll. Should be called at the end of the calculations. 

GetProblemCount:Integer 
Returns the number of problems active at the time. 

InitializePsicoDll(DataPath:PChar) 
Must be called once before using the Dll. Reads the residue information file Resinfo.Cyb in the DataPath 
folder, and initialises the Dll. 

LoadProblem(SequenceFile,ConstraintsFile:PChar) 
Loads a problem file. If ConstraintsFile is null, SequenceFile is the name and path of a PSICO problem 
file. Otherwise, SequenceFile is the name and path of a sequence file, and ConstraintsFile of a DYANA 
constraints file. 

PivotSetCount:Integer 
Returns the number of the atoms in the Pivot set generated by BuildPivotSet. 

SetCurrentProblem(ProblemIndex:Integer) 
The problems are indexed from zero to Count-1 (see SetProblemCount). Typically, this procedure will be 
called with ProblemIndex=0. Must be called after SetProblemCount and before other function calls, but 
can be called at any time if there are several problems loaded to switch processing to another problem.  

SetMaxChoicePoints(MaxCP:Integer) 
Sets the maximum number of choice points to be stored by the DLL. If additional choice points are 
necessary, the DLL disposes of the oldest choice points and keeps only the only the last MaxCP choice 
points. 

SetOmegaLock(Lock:Integer) 
If lock is not zero all omega torsion angles are considered locked at 180º. 

SetProblemCount(Count:Integer) 
Sets the number of problems to create. For typical applications, it will be run with a Count value of 1. 
Must be called after InitializePsicoDll, but before any other function call. 

SetSplit(Split:Integer) 
Sets the fraction of the domain that is kept when splitting during enumeration. Units are 0.001. 
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AI. 2. Atom Handling Functions 

 AtomConstraint(AtomIndex,ConstraintIndex:Integer; 
var HighB,LowB,ToAtomIndex:Integer) 

Returns the data for constraint ConstraintIndex of the atom AtomIndex. HighB and LowB are the upper 
and lower distance bounds, and ToAtomIndex the index of the other atom constrained. AtomIndex and 
ToAtomIndex range from 0 to AtomCount-1. ConstraintIndex ranges from 0 to AtomConstraintCount. 

 AtomConstraintCount(AtomIndex:Integer):Integer 
Returns the number of binary distance constraints involving atom AtomIndex. AtomIndex ranges from 0 
to AtomCount-1. 

AtomCount:Integer 
Returns the number of atoms in the current problem. 

 AtomicNumber(AtomIndex:Integer):Integer 
Returns the atomic number of the atom specified by AtomIndex. AtomIndex ranges from 0 to 
AtomCount-1. 

AtomNode(AtomIndex:Integer):Integer 
Returns the index of the node in the torsion angle model where the atom specified in AtomIndex 
belongs. AtomIndex ranges from 0 to AtomCount-1. 

 AtomResidueId(AtomIndex:Integer):Integer 
Returns the Id number for the residue of the atom AtomIndex. The residue Id number is the number on 
the PSICO problem file. AtomIndex ranges from 0 to AtomCount-1. 

GetConnection(ConIx:Integer):Integer 
Gets the index of the atom at conection ConIx from the connection buffer. See MakeConnectionBuffer. 

IsBackBoneAtom(AtomIndex:Integer):Integer 
Returns 1 if the atom AtomIndex belongs to the backbone, zero otherwise. 

MakeConnectionBuffer(AtomIx:Integer):Integer 
Creates an stack of atoms that are connected to the atom indicated, and returns the length of the stack 
(indexed at 0). 

 NodeAtom(NodeIndex,AtomNodeIndex:Integer):Integer 
Returns the global index of the atom number AtomIndex in the torsion angle specified by NodeIndex. 
NodeIndex ranges from 0 to NodeCount-1, and AtomIndex from 0 to NodeAtomCount-1. 

 NodeAtomCount(NodeIndex:Integer):Integer 
Returns the number of atoms in the torsion angle node specified by NodeIndex. NodeIndex ranges from 0 
to NodeCount-1. 

 NodeCount:Integer 
Returns the total number of nodes in the torsion angle model. 

 NodeOffspring(NodeIndex,OffspringIndex:Integer):Integer 
Returnd the index of the offspring number OffspringIndex of node NodeIndex. NodeIndex ranges from 0 
to NodeCount-1, and OffspringIndex ranges fom 0 to NodeOffspringCount-1. 

 NodeOffspringCount(NodeIndex:Integer):Integer 
Returns the number of offspring of the torsion angle node specified by NodeIndex. NodeIndex ranges 
from 0 to NodeCount-1. 

PivotAtom(Index:Integer):Integer 
Returns the global index of the Pivot atom specified by the Index parameter. The Index parameter ranges 
from 0 to PivotSetCount-1. The Pivot set is generated by BuildPivotSet 



 Appendix I: PSICO Dynamic Link Library 149 

  

SetAtomicCollisionRadius(Rad:Integer) 
Sets the atomic radius value used to determine collisions. 

SetOracleCoord(AtomIndex,x,y,z:Integer) 
Sets the oracle coordinate for atom AtomIndex. Units are 0.001Å. 

 TemplatePosition(AtomIndex:Integer; var cx,cy,cz:Integer) 
Sets variables cx, cy, and cz to the coordinates of amino acid template for the atom specified in 
AtomIndex. AtomIndex ranges from 0 to AtomCount-1 

AI. 3. Enumeration and Backtracking Functions 

BackTrack:Integer 
Causes the enumeration process to return to the previous choicepoint, and choose the next search 
branch in the next enumeration. 

ChoicePointCount:Integer 
Number of choice points currently stored. 

GetEnumerationFlag(AtomIndex:Integer):Integer 
Returns the enumeration state of atom AtomIndex in the current enumeration round. The value is -1 if 
AtomIndex is not the variable currently chosen for enumeration, or the number of previous attempts at 
enumerating AtomIndex in this enumeration node. With current value enumeration heuristics, this value 
can only be 0 – the atom is being enumerated at this node for the first time – or 1 – the atom was 
enumerated at this node once, but execution returned to this node due to backtracking. 

 PopChoicePoint 
Returns enumeration to the last stored choice point and sets the enumeration flags to force value 
enumeration into the alternative branch of the search tree. 

 PushChoicePoint(EnumeratedAtom:Integer) 
Stores a choice point in the current enumeration 

QueryDefaultEnumeration(var AtomIndex,Hx,Hy,Hz,Lx,Ly,Lz:Integer) 
Queries the heuristic for the next atom to enumerate (returned in AtomIndex) and the domain to restrict 
it to (returned in the high and low coordinates Hx, Hy, Hz, Lx, Ly, and Lz). 

QueryDefaultValueEnumeration(AtomIndex:Integer; var Hx,Hy,Hz,Lx,Ly,Lz:Integer) 
Queries the value enumeration heuristic to returns the block to restrict atom numbered AtomIndex in the 
next enumeration (returned in high coordinates Hx, Hy, Hz, and low coordinates Lx, Ly, Lz) 

RestrictAtom(AtomIndex,Hx,Hy,Hz,Lx,Ly,Lz:Integer) 
Intersects the domain of the atom numbered AtomIndex with the block defined by the high coordinates 
Hx, Hy, Hz, and the low coordinates Lx, Ly, and Lz, and marks the atom as active for propagation. 

SetCurrentHeuristic(Heuristic:Integer) 
Sets the value enumeration heuristic to use. 

SetCurrentVarHeuristic(Heuristic:Integer) 
Sets the heuristic for variable selection.  

SetMaxWidToEnumerate(Wid:Integer) 
Sets a maximum value for the size of the domain of an atom to be enumerated. If no atom below this 
threshold is left to enumerate in the current enumeration round, a new round starts. The default value is 
zero. 
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AI. 4. Propagation and Domain Handling Functions 

AtomGood(Index:Integer;var Hx,Hy,Hz,Lx,Ly,Lz:Integer) 
Sets the Hx, Hy, Hz, Lx, Ly, Lz to the upper and lower boundaries for the Good block of the atom Index. 

 AtomNoGood(AtomIndex,NoGoodIndex:Integer;var Hx,Hy,Hz,Lx,Ly,Lz:Integer) 
Sets the Hx, Hy, Hz, Lx, Ly, Lz to the upper and lower boundaries for the No-Good block NoGoodIndex of 
the atom AtomIndex. 

 AtomNoGoodCount(Index:Integer):Integer 
Returns the number of No-Good blocks for atom Index. 

ExcludeAtoms(Atom,Radius:Integer) 
Propagates an Out constraint of radius Radius from atom Atom to all atoms that do not have constraints 
specified with this atom. 

Propagate:Integer 
Calls the Arc-Consistency propagation procedure. Returns a value of one if propagation reduced all atom 
domains to less than the target size for enumeration, a value of two if one propagation failed), or zero 
otherwise. 

ReadFailureData(var AtomIx,Cause:Integer) 
Returns the atom index of the failure detected in Propagate. The Cause variable returns zero if the reason 
for failure was an empty atom domain, a value of one if the failure was detected by the atomic collision 
detection algorithm.  

SetMaxDomainEdge(Size:Integer) 
Sets the maximum length for the Good region for an atom domain to be considered sufficiently reduced. 

TotalVolumes(var Good,NoGood:Double) 
Sets variables Good and NoGood to the total volumes of Good and No-Good blocks for all atoms. 

AI. 5. Group Handling Functions 

GroupCount:Integer 
Returns the number of rigid groups defined. 

GroupSize(Ix:Integer):Integer 
Returns the total number of atoms in group number Ix. Atoms are numbered within the group from zero 
to GroupSize-1. 

GroupAtomIndex(GIx,AIx:Integer):Integer 
Returns the global index of atom Aix of group Gix 

ImportRigidGroups(FileName:PChar) 
Imports a PDB file containing the coordinates for rigid groups. Each rigid group is a set of atom records 
using the PDB format ending in the TER keyword. 

GroupAtomCoords(Gix,Aix:Integer;var x,y,z:Integer) 
Returns the coordinates for the atom number Aix in group number Gix. 

SetGroupPropagationFlag(Ix,F:Integer) 
Marks the propagation flag of group number Ix with False if F is 0, True otherwise. A True flag forces a 
call to the group propagation algorithm for this group at the next call of Propagate. 

SetRigidGroups(MinSize:Integer) 
Builds rigid groups of size equal to or greater than MinSize from the torsion angle model. 
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AI. 6. Optimisation Functions 

Minimize(FitIters:Integer;FitVar:Single; MinIters:Integer;MinVar:Single) 
Calls the local search minimisation to reduce constraint violations. FitIters and FitVar are the maximum 
number of iterations and maximum variation for fitting the torsion angle model to the central points of 
the atom domains. MinIters and MinVar are the maximum number of iterations and maximum variation 
for minimizing constraint violations. These parameters set the stopping conditions for the local searches. 

SetCPCoords 
Sets the domains of all atoms to the coordinates in the torsion angle model. 

AI. 7. Debugging Functions 

LoadOracle(OracleFile:PChar) 
Loads a PDB file with the structure of the correct solution to the current problem.  

OraclePosition(AtomIndex:Integer; var cx,cy,cz:Integer) 
Returns the Oracle coordinates for atom AtomIndex. 

SetCallbackFlag(Id:Integer;Status:Boolean);stdcall 
The Status flag determines whether the Callback function supplied in SetDebugCallback will be called, 
and the Id value determines which step in the Propagate procedure calls the function. 

SetDebugCallback(Callback:TPDDCallback) 
Supplies a pointer to a callback function of the form: 
CallBack(ID:Integer;IntCount:Integer;Ints:Pointer;SingleCount:Integer;Sings:Pointer) 
This function is called by the Dll on different steps depending on the value of the Id sent in the 
SetCallbackFlag function. The parameters of the CallBack function will vary depending on where it is 
called from. 

AI. 8. Other Functions 

DestroyGroups 
Removes all rigid group constraints 

 EditConstraint(AtomIndex,ConstraintIndex,HighB,LowB:Integer) 
Sets the upper and lower distance bounds (HighB and LowB) of the constraint specified by 
ConstraintIndex in atom AtomIndex. AtomIndex ranges from 0 to AtomCount-1, and ConstraintIndex 
from 0 to AtomConstraintCount-1. 

ExportConstraints(FileName:PChar) 
Exports all constraints to a text file specified in FileName. 

OracleRMSD(Mirror:Integer):Integer 
Calculates the Root Mean Square Deviation between the current structure and an oracle. The coordinates 
used for the atoms are the centres of the domains. If the Mirror flag is not 0, the coordinates are 
mirrored before the calculation. 

OracleRMSDFit(Mirror:Integer):Integer 
Returns the RMSD of the central points of the current domains to the oracle structure. If Mirror is not 
zero the mirror image of the structure is used. The oracle is placed at the orientation and position that 
minimises the RMSD value. 

Refresh(AtomIndex:Integer) 
Refreshes the statistics on the specified atom. A value of -1 on AtomIndex refreshes all atoms. 
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RotateCoords(AngX,AngY,AngZ:Integer;var x,y,z:Integer) 
Rotates the coordinates x, y and z by the rotation angles supplied in AngX, AngY, AngZ. 

Version:Integer 
Returns the Dll version number 
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Appendix II: Tables 

Table 1 Classes of similar amino acids used in the side chain contact filter (Section 6.4) 

Class Amino Acids 

2 Gly, Met, Ala, Val, Ile, Leu, Phe, Pro 

4 Asp, Glu 

5 Ser, Thr, Cys 

6 Asn, Gln, His, Trp, Tyr 

7 Arg, Lys 

Table 2 Set of structures (PDB code and chain ID) used to test the binary distance constraint propagation 
(continued on next page). 

Name Residues RMSD Time Name Residues RMSD Time Name Residues RMSD Time 
137lA 173 6.3 29.6 1cgsL 226 16.9 34.6 1hyxL 223 11.1 54.8 
1aa7A 162 11.0 29.3 1choE 93 9.9 6.8 1iaiL 223 10.5 70.0 
1aalA 60 4.6 5.5 1chpD 109 6.4 12.5 1ibcA 175 13.3 31.5 
1aapA 58 6.8 6.0 1ciqA 38 8.7 1.9 1ibgL 223 12.6 56.0 
1ab9B 130 8.0 21.4 1cksA 87 10.5 6.7 1iesA 186 8.8 30.4 
1ac1A 197 8.9 31.9 1cloL 218 12.1 34.8 1igcL 220 12.8 51.7 
1ac6A 114 4.4 19.2 1clyL 224 7.4 32.3 1igfL 226 6.8 66.5 
1acyL 221 12.0 67.8 1clzL 227 12.3 34.1 1igiL 224 8.2 54.0 
1ad0A 217 7.7 57.7 1cnpA 95 6.5 9.6 1igmL 117 5.7 14.2 
1ad9L 226 10.2 59.0 1cnsA 245 5.6 33.8 1igtA 219 12.8 63.6 
1afvA 156 9.5 22.0 1cpjA 258 4.9 37.5 1ihvA 58 6.0 4.3 
1ag1O 251 8.0 64.1 1cweA 105 8.9 13.0 1ikfL 220 12.4 51.3 
1agbA 300 15.4 100.7 1cwpA 149 10.3 13.7 1indL 213 12.3 48.3 
1ahsA 126 3.5 20.4 1dbaL 224 7.1 34.8 1ivlA 109 4.3 12.1 
1ahwA 223 9.7 62.9 1dclA 214 12.6 28.8 1jckA 250 6.4 38.8 
1ai0A 21 4.0 0.7 1dfbL 218 11.7 30.5 1jhlL 111 6.4 13.8 
1ai4A 221 15.5 54.7 1dfjE 127 5.6 20.6 1kbaA 67 5.1 4.0 
1aifL 221 10.8 51.5 1dhmA 89 7.5 5.9 1kelL 225 11.7 63.6 
1aihA 182 15.3 21.0 1dkkA 133 7.7 12.1 1kipA 110 4.2 21.0 
1aisA 189 12.4 34.7 1dkyA 213 20.0 24.9 1klaA 119 10.1 20.7 
1aj7L 220 7.2 34.5 1dvfA 110 7.9 15.4 1knoA 221 11.9 68.4 
1akjA 300 11.6 52.5 1dynA 126 4.7 9.5 1kxiA 65 7.3 4.6 
1aksA 124 10.0 10.3 1eapA 221 11.7 40.0 1lbeA 268 13.1 68.5 
1anwA 336 7.3 104.3 1efnA 61 11.7 2.5 1lemA 188 10.6 39.1 
1ao7A 298 9.2 67.0 1enxA 196 4.3 22.8 1lenA 188 9.4 33.3 
1aokA 126 5.4 10.2 1extA 166 12.3 19.2 1lgbA 187 11.5 34.6 
1apyA 160 10.1 23.4 1faiL 222 17.7 32.1 1lilA 213 13.9 50.7 
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Name Residues RMSD Time Name Residues RMSD Time Name Residues RMSD Time 
1aqdA 196 7.9 24.6 1fbiL 223 17.5 58.1 1lmkA 245 16.5 78.8 
1aqkL 212 12.2 35.5 1fccA 221 10.6 55.8 1lynA 140 9.5 22.8 
1as4A 357 10.4 124.6 1fdlL 222 15.4 59.3 1mamL 222 13.5 57.9 
1askA 133 5.4 24.4 1fgvL 109 10.0 17.0 1mcoL 214 13.3 51.9 
1atzA 184 7.2 32.2 1ficA 277 6.1 60.5 1mcpL 225 12.9 35.1 
1autC 252 10.7 69.9 1figL 218 23.4 29.1 1mctA 219 6.7 26.0 
1avdA 128 10.1 16.9 1fjlA 75 23.4 3.5 1mdaH 344 12.6 60.8 
1awbA 276 8.5 94.1 1fleE 243 6.0 34.5 1meeA 260 5.5 83.8 
1axsL 220 13.1 54.0 1flrL 226 16.3 32.3 1melA 130 8.0 14.8 
1azsA 198 11.4 40.0 1fonA 235 10.7 38.5 1mf2L 221 17.3 55.8 
1azzA 220 9.4 58.3 1forL 216 18.9 46.9 1mfbL 214 9.6 53.3 
1bafL 220 12.7 57.8 1fptL 226 6.6 33.1 1mhcA 299 15.1 94.8 
1bbdL 228 11.3 48.8 1frgL 225 8.7 47.0 1mlbA 221 10.6 61.6 
1bbrH 165 11.5 16.8 1ftpA 140 7.7 13.3 1mlcA 221 11.9 51.8 
1bcpB 204 7.6 23.4 1fvcA 112 11.3 25.6 1mpaL 226 11.9 51.1 
1bcrA 267 13.4 45.3 1fvdA 219 7.5 53.6 1mrcL 223 14.8 51.0 
1bebA 164 7.3 14.9 1gamA 97 5.7 11.1 1mspA 132 10.2 17.7 
1berA 210 11.2 35.0 1gdtA 190 11.5 42.2 1ndlA 160 9.9 26.8 
1bfmA 71 10.8 4.6 1ggbL 222 12.6 34.9 1ngpL 213 8.5 56.8 
1bgsA 117 5.4 18.5 1ghfL 219 15.8 31.4 1nldL 226 13.1 65.9 
1bjmA 212 11.9 46.2 1ghsA 304 6.8 46.7 1npoA 76 8.4 6.1 
1blbA 199 11.0 26.6 1gigL 212 13.0 38.5 1nqbA 242 13.3 76.1 

1bmsA 129 10.4 11.4 1hiiA 100 10.1 9.0 1nsnL 226 18.0 50.6 
1bplA 195 8.8 24.0 1hiwA 122 8.1 8.2 1opaA 145 7.1 21.8 
1bqlL 218 13.3 37.3 1hngA 186 11.4 43.7 1opgL 220 7.8 57.9 
1brcE 222 15.2 27.9 1hocA 296 10.2 86.5 1ospL 222 5.5 50.3 
1breA 110 8.1 12.8 1hrjA 73 5.4 6.5 1pauA 148 9.0 22.0 
1bunA 125 7.5 11.3 1hsaA 300 11.2 85.5 1pciA 326 7.2 81.6 
1ca0B 130 6.9 14.3 1hslA 246 5.5 56.4 1pfxC 245 9.9 59.2 
1cbiA 145 9.0 13.1 1hstA 75 5.0 8.3 1pmkA 83 8.3 7.4 
1cbvL 226 18.2 41.6 1htiA 249 11.1 68.9 1pp2R 126 6.4 22.9 
1cfpA 99 10.5 16.2 1htlD 110 4.9 19.5 1ppeE 217 8.6 42.1 
1cfyA 141 4.7 13.3 1hulA 116 9.6 25.2 1ppfE 218 7.1 24.5 
1cgiE 240 5.7 27.6 1humA 73 5.7 6.5     
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Table 3 PDB codes and chain identifiers for the complexes used to train the side chain contact filter on 
version 2.0 of BiGGER 

Dimers Protease 
Inhibitor 

Other Enzyme 
Complexes 

Antibody 
Antigen 

Electron 
Transfer 

1a2kAB 1avw 1a2kBC 1gua 1bzqAL 1bvy 
1ask 1bthHP 1agrAE 1hwgAB 1fbiLH 1ewym 

1cc0AC 1cgj 1aipAC 1qfk 1fc2 1MDAm 
1cdt 1cho 1ak4AD 1seb 1fdl 2MTAm 
1cta 1cse 1ao7AB 1smp 1jhl 2pcb 

1dg1GH 1fle 1aro 1stf 1kb5  
1dlfLH 1hia 1atnAD 1stf 1melAL  
1dvfAB 1mct 1dfj 1tx4 1mlc  
1f2xKL 1ppf 1dhkAB 1ycs 1nca  

1fc1 1tab 1efnAB 2btf 1nmb  
1il8 1tbqHR 1efuAB 2dlf 1nsn  

1msb 1tgs 1egp 2sdp 2jel  
1oun 2sni 1ernAB 2trcBP 1aifLH  
1pp2 2tec 1fin 3hla 1cfq  
1ypi 3sgb 1fss 4cpa   
2ccy 3tgi 1gla    
2rus 3tpi     
2sod      
2tsc      

4mdh      
6ebx      

 

Table 4 PDB codes for the structures used to test the side chain contact filter and the soft docking 
modification on version 2.0 of BiGGER 

Bound Pseudo-Unbound Unbound 

1acb 1dxg 1a19 1fss 2ovo 
1sbn 1lza 1a2p 1hpt 2pcb 
1tec 2mip 1bpi 1hrc 2pcc 
2pcc 3hfl 1brs 1lza 2pka 
2sic 3hfm 1ccp 1mlb 2ptc 
3sdh 3sdh 1ccp 1mlc 2ptn 

 6ebx 1cgi 1sup 2sic 
  1chg 1vfa 2sni 
  1cho 1ycc 2st1 
  1cta 2ace 3ssi 
  1fdl 2ci2 4pti 
  1fsc 2kai 5cha 
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Table 5 Percentage of complexes in the SPIN-PP dataset with at least one correct model, as a function of the 
angular step (º) 

RMSD Cutoff 0º 4º 8º 12º 16º 20º 24º 28º 32º 36º 40º 

3Å 90% 86% 72% 61% 54% 51% 48% 48% 47% 46% 45% 
4Å 90% 88% 78% 67% 60% 54% 51% 50% 48% 47% 47% 
5Å 90% 89% 81% 71% 64% 58% 54% 52% 50% 48% 47% 

Table 6 Percentage of complexes in the SPIN-PP dataset with at least one correct model, as a function of the 
atom radius modifier. 

Case 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Without H atoms 0% 0% 56% 82% 88% 90% 86% 63% 43% 32% 23% 
With H atoms 0% 21% 76% 85% 89% 85% 63% 43% 30% 21% 12% 

Table 7 Categories for the 20 basic amino acid residues used in the V28 contact vector . 

Residue Hydrophobic Polar H Donor H Acceptor Aromatic Neg Pos 

Alanine  y       
Arginine    y    y 

Asparagine   y y y    
Aspartic Acid     y  y  

Cysteine   y y     
Glutamic Acid     y  y  

Glutamine   y y y    
Glycine  y       
Histidine    y    y 

Isoleucine  y       
Leucine  y       
Lysine    y    y 

Methionine   y      
Phenylalanine      y   

Proline  y       
Serine   y y y    

Threonine   y y y    
Tryptophan      y   

Tyrosine    y y y   
Valine  y       

Table 8 Average t values for the differences between correct and incorrect contact averages (Figure 9-6) 

C. Vector -5Å -4Å -3Å -2Å -1Å 0Å 1Å 2Å 3Å 4Å 

V210 1.97 3.15 5.60 9.75 15.30 21.12 25.45 28.58 31.03 33.22 
V28 4.21 10.94 23.08 36.29 44.28 47.34 48.09 48.24 48.87 49.66 
V15 2.84 7.71 17.44 28.69 37.60 41.75 43.08 43.64 44.43 45.37 
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Table 9 Residues selected to simulate contact information for selected CAPRI targets. References are: [1] 
Mathieu and others 2001,  [2] Desmyter and others 2002, [3] Sundberg and others 2002, [4]Stetefeld and 
others 1996, [5] Tibeurgh and others 2001. 

ID Target Residues selected  Probe Residue 

2 Viral Capsid VP6 [1] — — — FAB (K + IG) — 

4 Pig Amylase [2]  S243 S245 G249 Camel Amyd10 VHH [2] F47 

5 Pig Amylase [2] S270 G271 G285 Camel Amy07 VHH [2] F52 

6 Pig Amylase [2] N53 S145 V349 Camel Amy09 VHH [2] R51 

7 Strp. Pyrog. Exotoxin A1 [3] N20 N54 Y84 14.3.D T Cell A. R. [3] G53 

8 Laminin[4] - - - Nidogen-G3 - 

9 Wild type LicT - - - LicT (homodimer) - 

Table 10 Simulating experimental data on amino acid contacts with the selected CAPRI targets 

   Best in 5 highest 

CAPRI Highest acceptable With 3 AAs With 3+1 AAs 

Target Rank rmsd Rank rmsd Rank rmsd 

2 136 10.8 - - - - 

4 1150 2.3 1 (22) 1.2 1 (14) 3.3 

5 1374 3.4 1 (18) 6.6 2 5.4 

6 8 2.1 1 (63) 3.3 1 (6) 3.3 

7 21 1.9 3 1.8 2 1.8 



158   

158 

Glossary 

AND: Boolean operation that is 1 if both operands are 1, 0 otherwise 

BiGGER: Bimolecular complex Generation with Global Evaluation and Ranking. See chapters 6, 9, 

and 10) 

Bound Structure: The structure of a protein found in association with another protein in a 

complex. May differ significantly from the Unbound Structure. 

CAPRI: Critical Assessment of Prediction of Interactions. An experiment for the evaluation of 

docking algorithms and the prediction of protein complexes (Janin 2002; Janin and others 

2003) 

Chemera: A Windows application for molecular modeling and the display of protein structures. 

Includes the BiGGER and PSICO modules, several modelling tools, and can display 

structures and calculation results. 

Condensation Reaction: Chemical reaction in which two reactants combine into a single product 

with the formation of water. 

Core: The inner region of a protein structure, as opposed to the Surface. 

CSG tree: A Constructive Solid Geometry tree a procedural representation of solid shapes. The tree 

stores a hierarchy of elementary shapes, such as cuboid blocks, spheres, cones, and so 

forth, and Boolean operations that connect them (intersection, union, and difference). The 

shape can be reconstructed by following the procedure of combining the shapes using the 

operations in the order specified by the tree. 

Distance Constraint: A constraint that specifies an allowed range of distances between two 

points, generally two atoms. 

Docking: Predicting the structure of a complex of two molecules (for example, protein docking) 

DNA: Deoxyribonucleic Acid 
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Exclusion Region: Region defined by an Out Constraint from the Good region of the atom domain, 

and from which the other atom must be excluded. 

FFT: Fast Fourier Transform 

Geometric Hashing: A technique of dividing a set of coordinates into regions of space to speed up 

searche and matching. 

Good Region: A cuboid block defining a volume where the atom can be located 

In Constraint: A constraint specifying the maximum distance between two atoms. 

Neighbourhood: The Good region of an atom domain expanded by the value of the In Constraint 

under consideration. 

NOESY: Nuclear Overhauser Enhancement Spectroscopy 

No-Good Regions: A set of zero or more cuboid blocks within the Good Region that specify 

volumes from where the atom is excluded. 

OR: Inclusive Or, Boolean operation that is 1 if one of the operands is 1, 0 otherwise 

Out Constraint: A constraint specifying the minimum distance between two atoms. 

PDB: Protein Data Bank. A repository for protein structures. 

Primary Structure: Amino acid sequence of a protein chain. 

Probe: One of the two docking partners that is rotated and translated to search for the best 

complex configurations. 

Protein complex: A protein structure formed by two or more protein chains. See Quaternary 

Structure. 

PSICO: Processing Structural Information with Constraint Programming and Optimisation 

Quaternary Structure: The structure formed by several protein chains. Se Protein Complex. 

Rigid Group Constraint: An n-ary constraint specifying the relative position of a set of atoms. 
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RNA: Ribonucleic acid. 

Secondary Structure: In a protein chain, a structure stabilised by local interactions. 

Surface Contact Score: The number of surface grid cubes of one docking partner that overlap the 

surface grid cubes of the other.  

Target Complex: A known complex to be modelled. 

Target Structure: The known structure to be modelled, either a complex in the case of BiGGER or 

a protein structure in the case of PSICO 

Target: Refers to the largest of the docking partners in BiGGER, which is fixed while the Probe is 

rotated and moved to explore possible docking configurations. See also Target Structure 

and Target Complex. 

Ternary Structure: The folding of the protein chain, that confers it its three dimensional structure. 

Unbound Structure: The structure of a protein as found outside a complex (see Bound Structure). 

V15: Contact vector for the side chain contact filter and for the global scoring function. See 

sections 6.4, 6.7, 9.1. See Table 1 for the five classes of amino acids that give the contact 

vector of dimension 15. 

V28: Contact vector for the side chain contact filter. See sections 6.4 and  9.1. See Table 7 for the 

seven amino acid categories that result in a contact vector of dimension 28. 

XOR: Exclusive Or, Boolean operation that is 1 if the operands differ, 0 otherwise 
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Index 

A 

Aldehyde Oxydoreductase, 114 

B 

backjumping, 17 

backtracking, 17 

BiGGER, 57 
applications, 113 
constrained docking, 64 
Core grid, 60 
geometric filter, 59 
probe, 59 
scoring, 69 
search, 58 
soft docking, 62 
surface contact score, 60 
Surface grid, 60 
target, 59 

C 

CAPRI, 123 

Chemera, 71 
applications, 113 
contact score, 75 
symmetry score, 74 

Clustering, 72 

constraint 
In Constraint, 32 
Out Constraint, 32 
Rigid Group, 34 

Constraint Programming, 14 

Constraints, 15 

Contact parameters, 108 

Contact score. See Chemera contact score 

crystallography. See X-ray crystallography 

cuboid, 30 

Cytochrome b5, 123 

Cytochrome C, 123 

Cytochrome c Peroxidase, 118 

Cytochrome c550, 118 

Cytochrome c553, 120 

D 

Dll. See PSICO:Dll 

Docking, 12 

Domains, 28 

Dynamic Link Library. See PSICO:Dll 

E 

Enumeration, 48 

F 

fail first, 17 

Ferredoxin, 120, 121 

Ferredoxin NADP+ Reductase, 121 

Flavodoxin, 114 

Folding. See Protein folding 

G 

generation and test, 16 

geometric hashing, 12 

Good region, 28 

H 

Heuristics, 17 

L 

local search, 17 

M 

Multidimensional Scaling, 129 
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N 

NMR spectroscopy, 9 

NoGood region, 28 

O 

Optimisation. See PSICO optimisation 

P 

Poisson-Boltzmann, 76 

Propagation, 15 

Protein 
docking. See Docking 
folding, 5 
modelling, 8 
primary structure, 3 
secondary structure, 5 
structure, 3 
ternary structure, 5 

PSICO 
Distance constraint, 31 
Dll, 147 
Exclusion region, 33 
Good Region, 30 
No-Good regions, 30 
Optimisation, 50 
PSICO Algorithm, 27 

R 

RMSD, 71 

S 

Search algorithms, 16 

Symmetry. See Chemera symmetry score 

X 

X-Ray crystallography, 9 

 


