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abstract: Null models that place species ranges at random within
a bounded geographical domain produce hump-shaped species rich-
ness gradients (the “mid-domain effect,” or MDE). However, there
is debate about the extent to which these models are a suitable null
expectation for effects of environmental gradients on species richness.
Here, I present a process-based framework for modeling species dis-
tributions within a bounded geographical domain. Analysis of null
models consistent with the mid-domain hypothesis shows that MDEs
are indeed likely to be ubiquitous consequences of geographical do-
main boundaries. Comparing the probability distributions of range
locations for the process-based and randomization-based models re-
veals that randomization models probably overestimate the contri-
bution of MDEs to empirical patterns of species richness, but it also
indicates that other testable predictions from randomization models
are likely to be robust. I also show how this process-based framework
can be extended beyond null models to incorporate effects of en-
vironmental gradients within the domain. This study provides a first
step toward an ecological theory of species distributions in geograph-
ical space that can incorporate both “geometric constraints” and
effects of environmental gradients, and it shows how such a theory
can inform our understanding of species richness gradients in nature.

Keywords: macroecology, mid-domain effect (MDE), geographic
range, species richness, latitudinal gradient.

Understanding the causes of large-scale gradients in species
richness has been a core enterprise of ecology since its
inception. Numerous hypotheses for these gradients have
been proposed, including physical environmental variables
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that increase the probability of species origination, inva-
sion, or persistence, as well as differences in the time over
which species have accumulated (for recent reviews, see
Chown and Gaston 2000; Willig et al. 2003). In a seminal
article, Colwell and Hurtt (1994) proposed a radically dif-
ferent kind of explanation, that the overlap of species
ranges, and thus species richness, should increase toward
the center of a geographical domain, even in the absence
of environmental gradients. This hypothesis was inspired
by the finding that species ranges, when placed at random
within geographical domains, tend to produce a “mid-
domain effect” (MDE)—a quasi-parabolic gradient in spe-
cies richness, peaking in the center of a geographical do-
main (Colwell and Hurtt 1994; Colwell and Lees 2000).
Subsequently, a variety of null models have been used to
assess how much observed species richness gradients can
be explained by mid-domain effects (for reviews, see Za-
pata et al. 2003; Colwell et al. 2004). Moreover, assessments
of the effects of environmental factors on species richness
(e.g., energy, area) have been reassessed in light of the
MDE (Jetz and Rahbek 2002; Sanders 2002; Connolly et
al. 2003), as well as other hypotheses about the causes of
species richness gradients (e.g., Rapoport’s rule; Lyons and
Willig 1997; Hughes et al. 2002).

Null models are controversial, and mid-domain models
are no exception (Zapata et al. 2003; Colwell et al. 2004).
This controversy is due to the nonbiological nature of
many null models, which makes both model formulation
and the interpretation of model fit more problematic than
for explicitly process-oriented models (Roughgarden
1983). For mid-domain models, the key question is how
well randomizations of species ranges approximate the ef-
fects of geographical domain boundaries on species’ dis-
tributions. Colwell and Hurtt (1994) reasoned that envi-
ronmental conditions vary but that species’ responses to
environmental conditions would be sufficiently indi-
vidualistic that, in the aggregate, no part of the domain
would be more hospitable to species than any other part.
From this, they conjectured that species’ responses to geo-
graphically variable environmental conditions would tend
to produce species distributions that were largely inde-
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pendent of one another and in which one particular range
location was as likely as any other.

Mid-domain models typically either randomize both
range size and location (hereafter termed “fully random-
ized” models; Colwell and Hurtt 1994; Bokma et al. 2001;
Grytnes 2003) or they randomize the locations of observed
range sizes (Piñeda and Caswell 1998; Jetz and Rahbek
2001). In general, quantitative agreement between fully
randomized models and empirical species richness gra-
dients is poor, even when the empirical gradient is hump-
shaped (for reviews, see Zapata et al. 2003; Colwell et al.
2004). This poor fit occurs because the model always pre-
dicts the same frequency distribution of range sizes relative
to domain size (Arita 2004). In other words, fully ran-
domized models assume that the frequency distribution
of range sizes is entirely a property of the domain, inde-
pendent of species’ dispersal abilities or the breadth or
narrowness of their environmental tolerances. On the
other hand, randomization models that use observed range
sizes tend to agree more closely with empirical data (e.g.,
Jetz and Rahbek 2001; Connolly et al. 2003). Using ob-
served range sizes in a null model implicitly assumes that
range size is determined entirely by species’ intrinsic char-
acteristics (e.g., dispersal characteristics, breadth of envi-
ronmental tolerances). In nature, however, the distribution
of environmental conditions, as well as species’ intrinsic
properties, plays a role in the determination of range size.
Consequently, these models may inadvertently “smuggle
in” effects of environmental gradients and overestimate
the importance of MDE (Zapata et al. 2003).

Clearly, there are problems with both of these assump-
tions about how the frequency distribution of range sizes
is determined. As a result, there is no consensus about
whether geometric boundary constraints induce MDEs in
nature, and if so, how important they are. Indeed, some
have argued that the species richness gradients produced
by null models are statistical artifacts that do not actually
follow from biological assumptions consistent with a null
expectation of no environmental gradients (Bokma et al.
2001; Hawkins and Diniz-Filho 2002; Zapata et al. 2003;
but see Grytnes 2003). One way to resolve this problem
is to extend mid-domain theory with more process-based
models that allow species to differ in their breadth of
environmental tolerances, whose assumptions are explic-
itly consistent with the mid-domain hypothesis and that
do not incorporate features of observed data in a way that
might smuggle in the effects of environmental gradients.

In this article, I undertake this extension of mid-domain
theory by developing a general model of species distri-
butions within a bounded geographical domain. Within
this framework, I formulate specific null models for which
the parameters governing the probability that a region of
the domain contains suitable habitat are constant within

a bounded geographical domain. I analyze these models
to determine, first, whether MDEs are produced, and sec-
ond, if they are, how well randomization models approx-
imate them. I also show how this framework can be very
naturally extended beyond the null hypothesis to for-
mulate models that include effects of environmental gra-
dients as well as domain boundaries. Such models allow
us to quantify how environmental gradients cause species
distributions to deviate from the patterns expected under
MDEs alone.

Randomization Models

I compare predictions from the process-based null models
with two randomization-based null models that are emerg-
ing as the preferred models in mid-domain analyses (Col-
well et al. 2004). Both models randomly place observed
range sizes within a bounded geographical domain (here
normalized to extend from 0 to 1), but they do so in
different ways. In the first model (here termed the “range
shuffling model”), all geometrically feasible range locations
are equally likely (Piñeda and Caswell 1998; Lees et al.
1999), so the probability that a species with range size r
overlaps location x on the domain is

 1 if 1 � r ≤ x ≤ r
r

if r ≤ x ≤ 1 � r
1 � r

Pr (xFr) p (1)1 � x
( )if x 1 max r, 1 � r

1 � r

x ( )if x ! min r, 1 � r
1 � r

(cf. Lees et al. 1999). Fully randomized models are special
cases of this model; they follow equation (1), but as noted
earlier, they also specify the frequency distribution of range
sizes (Colwell and Hurtt 1994; Willig and Lyons 1998; Arita
2004). In the second model (the “spreading dye” model
of Jetz and Rahbek 2001), a point of origin is chosen at
random from within the domain, and the range then ran-
domly spreads out from that point. An analytical expres-
sion for a one-dimensional version of this model is

 1 if 1 � r ≤ x ≤ r
r if r ≤ x ≤ 1 � r rPr (xFr) p (2){ }x � if x ! min r, 1 � r

2

r { }1 � x � if x 1 max r, 1 � r
2

(for a full derivation, see app. A in the online edition of
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the American Naturalist). Despite their differences, both
models predict that all possible interior range locations
(i.e., ranges not abutting domain boundaries) are equally
likely; however, in the spreading dye model, species are
more likely to abut a domain boundary (see app. A for
details). Consequently, this model will always exhibit a
shallower MDE than the range shuffling model.

To compare these models with the process-based mod-
els, I calculated predictions for the probability that a spe-
cies’ range overlaps location x for each randomization
model from

1

Pr (x) p Pr (xFr)h(r)dr, (3)�
rp0

where is the probability that a species of range sizePr (xFr)
r overlaps location x, obtained from equation (1) or (2),
as appropriate, and h(r) is the probability distribution of
range size obtained from the relevant process model (eq.
[6], below). This is equivalent to simulating a set of species
distributions according to the process model, then ran-
domizing the locations of the “observed” (i.e., simulated)
ranges.

General Model

To maintain consistency with the randomization models,
the theory presented here models species as distributed
within a one-dimensional, bounded domain whose length
is normalized to unity. In each model, the location of a
species’ peak conditions is determined by a probability
distribution q(y), and its range extends outward until it
encounters a species-specific range limit or a domain
boundary, whichever occurs first. With these assumptions,
the probability that a species’ range overlaps location x is
given by

1

Pr (x) p q(y) Pr (xFy)dy, (4)�
yp0

where is the probability that a species encountersPr (xFy)
no distributional limit before reaching x, given that its
peak conditions are at location y. In words, equation (4)
states that the probability that a species range overlaps
location x is the probability that its peak conditions are
at location y and it does not encounter a range limit before
extending to location x, summed over all possible values
of y.

Similarly, an expression for the probability distribution

for range location (lower range endpoint at xL, upper end-
point at xU) can be written

1

( ) ( ) ( )Pr 0Fy Pr 1Fy q y dy 0 p x , x p 1� L U

yp0

1

( ) ( ) ( )g x Fy Pr 1Fy q y dy 0 ! x , x p 1� L L U
ypxL( )f x , x p ,L U xU

( ) ( ) ( )Pr 0Fy g x Fy q y dy 0 p x , x !1� U L U

yp0

xU ( ) ( ) ( )g x Fy g x Fy q y dy 0 ! x , x ! 1� L U L U

 ypxL

(5)

where is the probability density for the encounterg(xFy)
of a distributional limit at x, given peak conditions at y.
Thus, the first term is the (discrete) probability that a
species encounters no distributional limit before encoun-
tering the upper and lower domain boundaries (i.e., it is
pandemic). The second term is the probability density for
a species that extends all the way to the upper domain
boundary but encounters a species-specific distributional
limit at xL before reaching the lower domain boundary.
The third term represents the converse: a species that abuts
the lower domain boundary but encounters an upper
range limit at xU before reaching the upper boundary. The
final term is the probability density for a species that en-
counters a lower limit before reaching the lower domain
boundary and an upper limit before reaching the upper
domain boundary. Equation (5) can be integrated to ob-
tain a probability distribution for range size, r:

 ( )f 0, 1 r p 1
1�rh(r) p .


( ) ( ) ( )f 0, r � f 1 � r, 1 � f x , x � r dx r ! 1� L L L

 x p0L

(6)

This expression was used in equation (3) to generate the
range shuffling and spreading dye predictions for com-
parison with the process-based null models presented
below.



4 The American Naturalist

Poisson Model

An ideal starting point for a model of species distributions
is to assume that species encounter distributional limits
according to a Poisson process. There are three reasons
for this. First, a null model allowing species to differ in
their environmental tolerances can be formulated as par-
simoniously as possible: with a single parameter. Second,
assumptions of the Poisson model can be readily relaxed
(see “Alternative Null Models”), allowing us to assess the
robustness of model results. Third, it allows us to move
beyond the null model and incorporate effects of envi-
ronmental gradients in a straightforward way. Specifically,
under a Poisson process, the probability that a barrier to
range expansion is encountered in an infinitesimally small
interval (x, ) isx � dx

( )Pr barrier in x, x � dx pl(x)dx, (7)[ ]

where l(x) is the stochastic rate at which barriers to range
expansion are encountered at x. In general, we might ex-
pect l(x) to vary as a function of x (e.g., as a function of
the quality of the environment at x or the steepness of
gradients in environmental conditions at x). For this gen-
eral model, the probability that a species’ range does not
encounter a range limit between its peak conditions at y
and some other location x follows from the theory of
inhomogeneous Poisson processes:

x  
exp � l(z)dz y ! x�   zpy

Pr (xFy) p . (8a)
y 

exp � l(z)dz y 1 x� 
  zpx

Similarly, the probability density for the encounter of dis-
tributional limits is

x  
l(x) exp � l(z)dz y ! x�   zpy

g(xFy) p . (8b)
y 

l(x) exp � l(z)dz y 1 x� 
  zpx

If environmental suitability results from the interaction
of many factors distributed independently in the domain,
consistent with a null hypothesis that environmental gra-

dients do not influence species distributions (sensu Colwell
and Hurtt 1994; Willig and Lyons 1998), then the prob-
ability distribution of peak conditions should be approx-
imately uniform ( ), and the stochastic rate atq(x) p 1
which species encounter range limits should be approxi-
mately constant across the domain ( ). With thesel(x) p l

constraints, equation (8a) can be combined with equation
(4) to obtain the species richness gradient:

x 1

�l(x�y) �l(y�x)p(x) p e dy � e dy� �
yp0 ypx

�lx �l(1�x)2 � e � e
p . (9)

l

This model exhibits a quasi-parabolic mid-domain effect:
the species richness gradient is steepest at domain bound-
aries, and it flattens as it approaches a maximum at the
mid-domain (fig. 1A). This result is robust to the Poisson
process assumption: for the general class of null models
in which depends only on the distance between xPr (xFy)
and y (i.e., not on their specific locations), there is always
a quasi-parabolic MDE (see app. B in the online edition
of the American Naturalist).

Combining equations (5), (8a), and (8b) and noting
that , we can obtain the probability distri-r p x � xU L

bution of range endpoints:

�l e 0 p x , x p 1L U
�lr lre 0 ! x , x p 1L U( )f x , x p . (10a–10d)L R �lrlre 0 p x , x !1L U

2 �lrl re 0 ! x , x ! 1 L U

Like the MDE itself, this distribution exhibits a feature
that is common to randomization-based null models. In
particular, equation (10d) is independent of range loca-
tion. In other words, conditional on range extent, r, all
interior range locations (i.e., range locations other than
those abutting a range boundary) are equally likely. How-
ever, the probability that a species’ range abuts one or both
domain boundaries is always higher for the process-based
null model than for either of the randomization models;
consequently, its MDE is always overestimated by the ran-
domization models, particularly for intermediate l (fig.
1B; see app. C in the online edition of the American
Naturalist).

Alternative Null Models

Weibull Model. The Poisson process follows from the “law
of rare events” (see, e.g., Taylor and Karlin 1994) and
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Figure 1: A, Probability of range overlap versus location on the domain
for the Poisson model (eq. [6]) for a variety of values of the range
limitation parameter, l. Higher values of l correspond to higher rates
of encounter of range endpoints and thus smaller ranges. B, Represen-
tative comparison of the difference between the Poisson model’s mid-
domain effect and those of the two null models for an equivalent prob-
ability distribution of range extents as per eq. (3) ( ).l p 2

entails two key assumptions: rarity and independence. The
rarity assumption—that the probability of multiple events
in one infinitesimally small interval is negligibly small—
is clearly satisfied here because distributional limits will
only be encountered once on either side of a species’ peak
conditions. The independence assumption implies that the
probability of encountering a species-specific range limit
at some location within the domain depends only on en-
vironmental conditions at that location (i.e., it is inde-
pendent of how far a species has already successfully ex-
tended its range). In nature, this latter assumption may
be violated; for instance, the probability of encountering
a barrier to range expansion may be low near the location
of peak conditions and then increase with increasing dis-

tance from that location. The Weibull distribution captures
this form of distance-dependent stochastic process (Cox
and Oakes 1984). Therefore, to assess the robustness of
the results from the Poisson model, I developed a second
model for which the distance from species’ peak conditions
to their distributional limits were drawn from a Weibull
distribution.

For the Weibull model, the probability that a species’
range extends from the location of its peak conditions to
encompass location x is given by

g g ( )exp �l x � y y ! x[ ]
Pr (xFy) p , (11a) g g( )exp �l y � x y 1 x[ ]

and the probability density for the encounter of distri-
butional limits is

g gg�1 g ( ) ( )l g x � y exp �l x � y y ! x[ ]
g(xFy) p , (11b) g gg�1 g( ) ( )l g y � x exp �l y � x y 1 x[ ]

where g is the so-called shape parameter of the Weibull
distribution. When , this model is equivalent to theg p 1
Poisson model. When , then the stochastic rate atg 1 1
which range limits are encountered increases with increas-
ing distance from the location of peak conditions (with
larger g corresponding to a more steeply increasing rate).
As with the Poisson model (and consistent with the general
proof in app. B), this model exhibits a quasi-parabolic
MDE. As g increases, the shape of the species richness
gradient shifts so that species richness increases more
sharply from domain boundaries toward an increasingly
flat plateau through the mid-domain (fig. 2A). Despite this
variability in exact shape, the MDE of the Weibull model,
like that of the Poisson model, is always shallower than
that of either randomization model (fig. 2B). Also con-
sistent with the Poisson model, numerical integration of
the Weibull model’s analogue of equation (10d) indicates
that, conditional on range size, all possible interior range
locations (i.e., range locations other than those abutting
domain boundaries) are equally likely.

Patchy Distribution Model. In the preceding models, all of
the domain that lies between a species’ distributional limits
is occupied. However, in nature, many species consist of
multiple geographically separated subpopulations con-
nected by dispersal. This may occur because only a portion
of the domain between potential distributional limits is
habitable (i.e., patches of suitable habitat are separated by
intervening regions of unsuitable habitat), or it may also
occur as a result of the interaction between local popu-
lation extinction and recolonization (i.e., unoccupied
regions are habitable, but populations are not established
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Figure 2: A, Probability of range overlap versus location on the domain
for the Weibull model for a variety of values of the parameters l and g.
For each line type, values of g range from 2 (lowermost line) to 10
(uppermost line), with l varied so that the mean of the Weibull distri-
bution is constant (at 0.7, 0.3, and 0.15 for the solid, dashed, and dotted
lines, respectively). B, Representative comparisons of the difference be-
tween the Weibull model’s mid-domain effect and that of the two null
models for an equivalent probability distribution of range sizes as per
eq. (3) ( 6; ). Numerical investigations indicate that thisl p 0.3 g p 5
result—shallower species richness gradients in the Weibull model than
the randomization models—is consistent across parameter values.

there). To determine how this influences species richness
gradients, I relaxed the range contiguity assumption by
allowing species to consist of multiple discrete populations
in between their potential range limits (which are still
encountered at rate l, as in the Poisson null model). Spe-
cifically, transitions from occupied to unoccupied habitat,
and vice versa, occur at Poisson rates a and b, respectively
(and consequently, the sizes of occupied patches and dis-
tances between them are exponentially distributed with
means 1/a and 1/b, respectively). The derivation of species

richness gradients and probability distributions of range
endpoints for this model is somewhat complicated (for
details, see app. D in the online edition of the American
Naturalist).

Based on patterns in range overlap, this model produces
a broad range of MDEs, depending on how patchy species
distributions are (fig. 3A–3C). MDEs are most pronounced
when three conditions are met: range limitation is weak
(l on the order of 101 or smaller; fig. 3A), there are few—
but more than one—patches of occupied habitat (b on
the order of 100–101; fig. 3B), and patches of occupied
habitat are small (a is large, on the order of 102 or greater;
fig. 3C). However, because species in this model do not
necessarily occupy all habitat between their potential range
limits, range overlap (the probability that a species’ range
encompasses a location) and local presence-absence (the
probability that a species occupies a location) are not
equivalent. If, instead of range overlap, we consider local
occupancy, a different picture emerges (fig. 3D–3F). Even
for parameter values that produce very peaked MDEs from
the standpoint of range overlap (i.e., regional species rich-
ness), MDEs in local occupancy (i.e., local species richness)
are consistently shallow, similar in shape to—or in some
cases, flatter than—the MDEs of the Poisson and Weibull
models.

In contrast to the previous models, the patchy distri-
bution model does not predict that, conditional on range
size, all possible interior range locations are equally likely.
Rather, because species may not occupy habitat adjacent
to their potential distributional limits, range endpoints
that would have abutted a domain boundary in the Poisson
model are “smeared” into the domain so that range lo-
cations near domain boundaries are more likely than lo-
cations near the mid-domain (fig. 4; app. D). The extent
to which this occurs depends on how frequently patches
of occupied habitat recur within a species’ distributional
limits (i.e., on b) regardless of the other model parameters.
In general, the effect is either quite small or confined to
a narrow region near domain boundaries. The exception
occurs when species ranges are highly noncontiguous (b
is on the order of 101; occupied habitat patches are, on
average, separated by distances of the domain).≈ 1/10

Discussion

These results support the hypothesis that the effects of
domain boundaries alone will induce mid-domain effects,
but they indicate that the height of these MDEs is con-
strained. In particular, for the Poisson and Weibull models,
the maximum difference in species richness between the
mid-domain and domain boundaries is approximately
twofold (figs. 1, 2). Exceptions occur when species range
over a few small patches of occupied habitat distributed
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Figure 3: Probability of range overlap (A–C) and occupancy (D–F) versus location on the domain for the patchy distribution model, illustrating
the effects of the three model parameters. A, D, Effect of varying range limitation, l ( ; ). B, E, Effect of varying the distances betweena p 10 b p 5
patches of occupied habitat, b ( ; ). C, F, Effect of varying patchiness of occupied habitat, a ( ; ).l p 3 a p 10 l p 3 b p 5

widely within the domain, in which case there is a pro-
nounced MDE in range overlap but not local habitat oc-
cupancy (fig. 3). However, it is unlikely that this accounts
for pronounced species richness gradients in nature: the

contrasting patterns in range overlap versus local occu-
pancy produced by the model imply that local species
richness should remain fairly constant over very large gra-
dients in regional species richness, whereas empirical data
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Figure 4: Probability density for alternative interior range locations,
conditional on range size (eq. [D5c]), illustrated here for a range size of
0.4 (i.e., a range encompassing 40% of the domain) and a range of values
of the habitat recurrence parameter, b. Note that because , onlyr p 0.4
range midpoints between and are geometrically feasible.x p 0.2 x p 0.8
A horizontal line indicates a uniform distribution: all interior range lo-
cations (i.e., ranges not abutting a domain boundary) are equally likely.
Bowl-shaped lines indicate that ranges are more likely to be near one or
the other domain boundary than centered within the domain. Numerical
investigation indicates that the effect of changes in b on the probability
density is consistent for different combinations of l and a. Therefore,
only one case ( and ) is shown here for illustration.l p 1 a p 10

consistently show strong increases in local richness with
regional richness (e.g., Ricklefs 1987; Cornell and Karlson
1997; Karlson et al. 2004; Witman et al. 2004).

It is likely that a strong constraint on the height of
MDEs, such as that identified here, will prove to be a
common feature of process-based null models, indicating
that the extent to which boundary constraints can induce
MDEs in nature will be limited. In particular, a constraint
on the height of MDEs is robust to relaxation of the Pois-
son process and (for local species richness) the contiguous
range assumptions (figs. 2, 3D–3F). Moreover, there is an
intuitive explanation for this result. For species richness
to have a high peak in the mid-domain, species must have
broad environmental tolerances (i.e., encounter unsuitable
conditions rarely), so that many species extend their dis-
tributions to encompass the mid-domain. However, in the
absence of gradients in the quality of environmental con-
ditions, these same broad tolerances increase the proba-
bility that species will extend all the way to domain bound-
aries, leading to relatively high species richness adjacent
to those boundaries. This finding raises questions about
the interpretation of statistical concordance between ran-
domization models and observed patterns in species rich-
ness. This concordance arises because fully randomized

and range shuffling models, like many empirical richness
gradients, generally exhibit a gradual decline from high
values of species richness to zero or near zero at domain
boundaries (e.g., Willig and Lyons 1998; Lees et al. 1999;
Koleff and Gaston 2001; Ellison 2002; Connolly et al.
2003). However, if the magnitude of MDEs is constrained,
then comparing observed versus randomized species rich-
ness gradients will overestimate the variation in species
richness that can be explained by MDE.

Although the theory presented here raises questions
about the interpretation of statistical concordance between
observed species richness gradients and the predictions of
randomization models, it also identifies an alternative way
to use randomizations to conduct more robust tests of
MDE. Except for species distributions that are highly non-
contiguous, process-based null models and randomization
models consistently agree on one prediction: conditional
on range size, the geographical distribution of interior
range locations is either uniform or nearly so. In other
words, if a species richness gradient is principally due to
MDE, then species ranges should be approximately ran-
domly (i.e., uniformly) distributed among interior range
locations, with a possible accumulation of species at or
very near domain boundaries. This prediction is eminently
testable, using data available from most data sets on species
distributions (for an example, see Connolly et al. 2003).

Although testing for and quantifying deviations from a
null model can be informative in and of itself, there is a
need to understand whether and how MDEs may interact
with the effects of environmental gradients to produce
species richness gradients (Colwell et al. 2004). One way
forward is to construct models that explicitly incorporate
different assumptions about how environmental gradients
and domain boundaries influence species distributions and
then to compare these models with equivalent null models
that omit these gradients. The general model presented
here (eqq. [4]–[6]) is readily adapted for that purpose.
For instance, consider an extension of the Poisson model
(eqq. [8a], [8b]) that allows for symmetric variation in
l(x) across the domain:

 a
0 ! x ! 0.5

b x( )l x p . (12) a
0.5 ! x ! 1 b( )1 � x

Equation (12) allows a broad range of gradients in envi-
ronmental conditions (fig. 5A). It includes the null model
as a limiting case: as b approaches zero, l(x) remains fairly
constant through the interior of the domain and then
increases rapidly toward infinity as domain boundaries are
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Figure 5: Effect of geographical gradients in the range limitation param-
eter, l(x), on species richness gradients (eq. [12]). A, Gradients in range
limitation, l(x). B, Probability of range overlap versus location on the
domain predicted by the gradients in l(x). The legend in A applies to
both figures. Note that the dashed line is equivalent to the null model
with ).l p 1

Figure 6: Probability distribution of range locations associated with pa-
rameters that generate bell-shaped distributions, showing the shift from
a bimodal distribution at small range sizes to a unimodal distribution at
large range sizes ( ; ; cf. fig. 5). Numerical investigationsa p 0.03 b p 3
indicate that the same pattern is generated for other combinations of
parameter values that also produce bell-shaped species richness gradients.

approached. As b increases, l(x) varies more gradually
across the domain.

In specific empirical contexts, it may be particularly
informative to model l(x) as an explicit function of dif-
ferent environmental variables such as habitat type, pro-
ductivity, or temperature. However, even the simple model
presented above produces some differences with the cor-
responding null model that are illuminating (fig. 5B). In
particular, as the environmental gradient steepens, species
richness exhibits an increasingly bell-like shape: there is a
broad, shallow gradient in species richness in the mid-
domain, then a steep decline followed by a tailing off of
species richness as domain boundaries are approached.
This tailing-off pattern is not produced by either process-

based or randomization-based null models, and it is qual-
itatively similar to that of some latitudinal gradients in
species richness, which deviate from the quasi-parabolic
shape of null models in the same qualitative way (e.g.,
New World bats and marsupials: Willig and Lyons 1998;
New World parrots: Koleff and Gaston 2001; Indo-Pacific
reef fishes and corals: Connolly et al. 2003). It also resem-
bles the pattern of decline at the upper end of many al-
titudinal gradients (e.g., Andean plants: Kessler 2001;
Himalayan plants: Grytnes and Vetaas 2002; North Amer-
ican ants: Sanders 2002). More strikingly, parameter values
that lead to this kind of species richness gradient also
produce a distinctive probability distribution of range
locations that is markedly different from the uniform
distributions produced by null models. In particular,
large ranges are disproportionately centered near the mid-
domain, but small ranges are centered away from the mid-
domain, in the region where species richness exhibits its
steep decline (fig. 6). Interestingly, the latitudinal ranges
of Indo-Pacific reef fishes and corals also exhibit this pe-
culiar geographical distribution (Connolly et al. 2003).
This concordance suggests that even simple environmental
gradient models can shed light on how and why real dis-
tributions of species ranges deviate from the assumptions
of null models. Again, only this one study (to my knowl-
edge) has conducted empirical analyses of this kind, but
clearly, further theoretical and empirical work on the dis-
tributions of range locations in geographical space has the
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potential to shed considerable light on how environmental
gradients shape species distributions in nature.

One of the powerful features of mid-domain models is
that they can be assessed against much more stringent
conditions than, for example, regression models: they pre-
dict not only the shape of a species richness gradient but
also the bivariate distribution of range sizes and locations
that gives rise to those gradients (cf. “strong” vs. “weak”
tests of McGill [2003]). The theoretical framework pre-
sented here preserves that important feature of null models
(eq. [5]), but it also allows us to make the same kinds of
predictions for models incorporating environmental gra-
dients (e.g., fig. 6). Consequently, null models and envi-
ronmental gradient models can be formulated for specific
ecological contexts and explicitly fitted to empirical data.
In this article, results have been expressed in terms of
probability distributions on a species-by-species basis (e.g.,
probability of range overlap) because species differ in their
breadths of environmental tolerances (and, for “non-null”
models, their sensitivity to environmental gradients).
Quantitative fits of models to data will require accounting
for this heterogeneity in a parsimonious way, but methods
exist for precisely these kinds of extensions (e.g., mixture
models; Norris and Pollock 1996). A second consideration
is nonindependence of environmental tolerances among
species (e.g., closely related species may tolerate similar
conditions), but again, the effects of nonindependence can
be readily accounted for in parameter estimation (Buck-
land et al. 1993; Anderson et al. 1994).

The mid-domain hypothesis has prompted ecological
biogeographers to recognize that species richness at a par-
ticular place depends not only on environmental quality
at that location but on the broadscale distribution of en-
vironmental conditions that determines the locations and
sizes of species ranges. Unfortunately, ecology has lacked
a formal theory of species distributions in geographical
space that allows us to model species ranges as a function
of the distribution of environmental conditions that pro-
mote or inhibit the origination or persistence of species.
This contrasts with many other areas of ecology, which
are increasingly adopting approaches that confront pro-
cess-oriented models directly with empirical data (e.g., be-
havioral and population ecology: Hilborn and Mangel
1997; some aspects of macroecology: e.g., Hubbell 2001;
Engen et al. 2002; Gaston and He 2002). The present con-
tribution offers a way forward, allowing formulation of
null models as well as alternatives that incorporate envi-
ronmental gradients. Using such process-based approaches
to analyze species richness patterns, as a complement to
prevailing regression and randomization approaches, is
feasible and worth further exploration.
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